WO2014205704A1 - 光线寻迹方法与装置 - Google Patents

光线寻迹方法与装置 Download PDF

Info

Publication number
WO2014205704A1
WO2014205704A1 PCT/CN2013/078083 CN2013078083W WO2014205704A1 WO 2014205704 A1 WO2014205704 A1 WO 2014205704A1 CN 2013078083 W CN2013078083 W CN 2013078083W WO 2014205704 A1 WO2014205704 A1 WO 2014205704A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
light
sensing elements
ray tracing
energy
Prior art date
Application number
PCT/CN2013/078083
Other languages
English (en)
French (fr)
Inventor
张云山
Original Assignee
林大伟
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 林大伟 filed Critical 林大伟
Priority to JP2016522160A priority Critical patent/JP6236150B2/ja
Priority to PCT/CN2013/078083 priority patent/WO2014205704A1/zh
Publication of WO2014205704A1 publication Critical patent/WO2014205704A1/zh

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/033Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor
    • G06F3/0354Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor with detection of 2D relative movements between the device, or an operating part thereof, and a plane or surface, e.g. 2D mice, trackballs, pens or pucks
    • G06F3/03543Mice or pucks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/0304Detection arrangements using opto-electronic means
    • G06F3/0317Detection arrangements using opto-electronic means in co-operation with a patterned surface, e.g. absolute position or relative movement detection for an optical mouse or pen positioned with respect to a coded surface
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/033Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor
    • G06F3/038Control and interface arrangements therefor, e.g. drivers or device-embedded control circuitry
    • G06F3/0383Signal control means within the pointing device

Definitions

  • the invention relates to a light indicating device, in particular to a light tracing method and device for using a same dimming interference pattern and a special binary bit image as a basis for determining a moving track. Background technique
  • FIG. 1 is a schematic diagram of an internal circuit of a conventional optical mouse 10.
  • the optical mouse 10 is moved on a surface 11.
  • the main components of the internal circuit of the mouse casing 12 are provided with a circuit board 14 except for some optical components.
  • a controller 18 for controlling and computing the emitted light and the sensed light is provided, as well as a light source 16 and a sensor 19.
  • the outer casing 12 of the optical mouse 10 has an aperture 17 facing the outer surface 11.
  • the circuit board 14 is disposed adjacent to the slot 17, and the circuit board 14 is provided with a laser or a light emitting diode (LED).
  • Light source 16 When the optical mouse 10 is in operation, the light source 16 continuously generates the emitted light, and is directed toward the surface 11 at a specific angle, as indicated by a broken line in the figure, the signal of the reflected light is obtained by the sensor 19, or the image distribution of the reflected light intensity is obtained (for example, the sensor 19)
  • the controller 18 can analyze the moving direction of the optical mouse 10, which can be a CMOS or CCD image sensor.
  • the signal of the reflected light obtained by the surface 11 is considerably dependent, and therefore the function of the optical mouse 10 will generally be different depending on the form of the surface 11.
  • the optical mouse 10 will not operate smoothly; if the surface 11 includes a non-planar structure with uneven undulations, the optical mouse 10 is also difficult to operate smoothly, such as a wrinkled piece. cloth.
  • An object of the present invention is to provide a ray tracing method and apparatus which solves the problem that the conventional ray tracing apparatus cannot maintain the tracing function on different planes and cannot be applied to all planes with high reflection or low reflectivity.
  • the present invention is achieved in this way, a method of ray tracing, comprising:
  • An inductive chip receives a reflected light reflected from a surface, the sensing chip comprising a plurality of sensing elements arranged in a geometrically symmetric form;
  • a change in the energy state before and after the time interval is compared with a statistical average of the time before and after the time of the acquisition, and a motion vector is determined.
  • the reflected light is light having good spatial coherence.
  • the reflected light is generated by a light source device emitting a light toward the surface.
  • the light source device is a laser light device provided in a light indicating device.
  • the sensor chip is a sensor array provided with the plurality of sensing elements arranged in an array, and is disposed in the light indicating device for receiving the reflected light.
  • the motion vectors of the plurality of time intervals are calculated by repeating the steps of the ray tracing method, thereby determining a movement trajectory.
  • the time interval is formed by a first time and a second time
  • the calculating step of the energy state of the sensing element at the first time or the second time comprises:
  • a difference between the energy received by each of the sensing elements and the average value is calculated, wherein the difference is an energy state of each of the sensing elements at the first time or the second time.
  • the step of calculating the change of the energy state of the sensing element before and after the time interval with respect to the statistical average value before and after the collection time includes:
  • a change in the energy state of the sensing element from the first time to the second time relative to a statistical average before and after the collecting time is obtained to determine the motion vector.
  • the invention provides a light tracing device using the ray tracing method as described above, comprising: a light source device for generating a light incident on the surface;
  • a sensor array comprising the plurality of sensing elements arranged in an array
  • a controller coupled to the light source device and the sensor array, configured to obtain an optical signal received by the plurality of sensing elements, calculate an energy state, and calculate an energy state of the sensing element before and after the time interval relative to a collection time Changes in statistical averages before and after;
  • the sensor array and the controller are integrated together in a semiconductor circuit, the light source device and the integrated sensor array and the controller are packaged on a circuit board within the light tracing device.
  • the light tracing device is an optical pointing device that uses laser light as a light source.
  • the image of the constructive and destructive interference between the light reflected by the surface and the original emitted light, as the basis of the tracking identification, can still have the function of tracing on various planes, and is suitable for all high reflections. Or on a plane with very low reflectivity.
  • FIG. 1 is a schematic diagram of an internal circuit of an optical mouse in the prior art
  • FIG. 2 is a schematic view showing a reflected light path of an incident plane and reflected light according to the present invention
  • FIG. 3 is a schematic diagram of a sensor array packaged in an integrated circuit in the ray tracing device of the present invention.
  • the flow shown in FIG. 4 is an embodiment of the ray tracing method of the present invention.
  • FIG. 5 is a schematic view showing an embodiment of a sensor array used in the tracking device of the present invention.
  • FIG. 6 is a schematic diagram showing a method for performing ray tracing by a sensing element in the device disclosed in the present invention
  • FIG. 7 is a second schematic view showing a method for performing ray tracing by each sensing element in the device disclosed in the present invention
  • the flow description shows that the tracking method is a step of judging the motion vector according to the direction of the energy change.
  • the technique of using non-coherent light as the position determination method usually requires complicated data calculation procedures, such as judging the mouse movement trajectory. Such techniques are often limited to several planes (such as avoiding the use of light reflectance). A low plane can have a good effect.
  • the present invention discloses a ray tracing method and apparatus.
  • One embodiment uses a coherent light or a spatial coherence light as a light source. This detects the direction of movement.
  • a motion recognition algorithm can be used, and the device using the J3 ⁇ 4 technology can be applied to various planes.
  • the light tracing device proposed by the present invention can use a coherent light source package integration, and a device using J3 ⁇ 4 technology, such as an optical indicating device. There is no need to install additional optical lenses or specific image sensors, such as a complementary CMOS image sensor (CIS).
  • CIS complementary CMOS image sensor
  • FIG. 2 a schematic diagram of a specific light source device (not shown) for generating incident light 201 to a plane and then reflecting to form a plurality of reflected lights 203.
  • the light source is especially a laser such as the same.
  • Coherent light as used herein refers to a light with good spatial homology.
  • the plurality of optical paths shown in Fig. 2 include incident light 201 directed toward a plane having a surface structure 205 which is then reflected to form reflected light 203. Since the microscopic upper surface structure 205 is an irregular structure, the reflected light 203 forms light having different directions as shown in FIG.
  • the light source device continuously generates incident light 201 to a plane, and reflects to form reflected light 203.
  • the reflected light 203 is received through a sensor (not shown in FIG. 2), and light constructive and destructive interference occurs in various optical paths. Pattern, where the incident light 201 of the coherent light source is used in particular to enhance the interference effect
  • the light sensor receives the information of the reflected light 203, and then according to the time slot (sampling)
  • the information data, and the average energy value of the reflected light 203 are obtained, and the energy difference of the reflected light 203 at different times and at different positions is calculated.
  • the ray tracing apparatus disclosed in the present invention preferably employs a sensor array to obtain energy at different positions of the reflected light 203 and a difference from the average energy value, that is, the movement trajectory can be judged.
  • the average value of the reflected light 203 can be calculated by using the average value of the energy obtained by all the sensor cells, or the average value of the energy obtained by the partial sensing elements, for example, the average value or the column (in the X direction of FIG. 5). As shown in the Y direction of Fig. 5, the average value is a calculation reference of the average value; it is also possible to take the average value of the energy of the peripheral or intermediate portion as a reference average value.
  • the interference effect of the reflected light can be enhanced.
  • Same dimming is a very small phase in a wave envelope
  • the same dimming can improve the sensitivity of the optical sensor that senses the reflected light interference. Because the same dimming has a small phase difference, the same dimming will have a smaller phase delay than the spatial interference caused by the non-coherent reflected light. . Therefore, the same dimming can enhance the spatial interference of the reflected light, and the aforementioned sensor array (for light) can obtain the spatial interference difference of a plane reflected light.
  • the sensor array can be referred to the schematic diagram of the sensor array packaged in an integrated circuit (IC) in the ray tracing device of the present invention shown in FIG.
  • IC integrated circuit
  • Figure 3 shows a sensor array 32 disposed on a circuit board 30 within a device (e.g., an optical mouse or a particular pointing device).
  • the sensor array 32 includes a plurality of sensing elements 301 arranged in an array, through the integrated package technology. (Integrated optical sensor array on IC ), each of the sensing elements 301 on the sensor array 32 can obtain a plane-reflected light on average at a fixed position.
  • a light source device 34 emits light to an illumination range 303 on a plane, and then the light is reflected by the plane and then directed to the sensor array 32, wherein each of the sensing elements 301 respectively receives reflected light in different directions and is converted by appropriate photoelectric signals.
  • the controller 36 in the device and the sensor array 32 and the associated circuit of the semiconductor circuit can calculate the average value of the energy received by each of the sensing elements 301, and then calculate the respective sensing elements 301 and average.
  • the difference in values is to obtain the spatial interference difference formed by the plane reflection, and the controller 36 determines the moving direction based on the accumulated energy difference before and after each time interval.
  • the so-called spatial interference when the light rays (especially the same dimming, but the invention is not limited to the same dimming), is directed to the surface having the irregular surface structure and then reflected in different directions. Light interference caused by reflected light, which is reflected to produce a constructive or destructive interference pattern. After that, the sensor array obtains spatial information reflected by the plane due to relative motion (relative motion of the device and the plane). Create mobile data on the XY plane.
  • the ray tracing device disclosed in the present invention may be an optical pointing device using laser light as a light source, such as an optical mouse, wherein the main circuit components are disposed on a circuit board 30.
  • the light source device 34 is configured to generate light of an incident surface, and includes a sensor array 32, wherein the plurality of sensing elements 301 are arranged in an array, and the controller 36 includes the foregoing, and controls
  • the device 36 is coupled to the light source device 34 and the sensor array 32 for acquiring the optical signals received by the plurality of sensing pixels in the plurality of sensing elements 301, and calculating the energy state, and calculating the energy state of the time interval with respect to the statistics before and after the collecting time. The change in the mean.
  • the flow shown in Figure 4 is an embodiment of the ray tracing method of the present invention.
  • the step starts as S401, and the light source device disposed in the light tracing device emits light to a surface, and then, as in step S403, the reflected light is received by the sensor in the device.
  • the light source is preferably like dimming, and the main purpose is to improve the sensitivity of detecting the moving direction by the reflected light interference by utilizing the characteristic of the phase shift with less dimming.
  • the light source device may be a laser light device disposed in the light indicating device, and the sensor preferably uses the sensor array as shown in FIG.
  • the ray tracing method disclosed by the present invention mainly calculates the energy state of all or part of the sensing elements before and after the time interval, and then judges according to the change of the energy state of the sensing element before and after the time interval with respect to the statistical average before and after the aging time.
  • a moving vector one of which is as follows.
  • step S405 the control circuit in the device calculates the energy received by each of the sensing elements before and after a time slot, and then calculates all or part of the sensing element according to step S407 (may not be all the sensing elements/
  • the sensor pixels receive enough light to calculate the energy, as shown in the example in Figure 6.
  • the average value of the energy obtained by the sensing element before and after the time interval (at least two values are processed at the same time).
  • the sensing elements can be calculated.
  • the difference between the energy and the average value (in one embodiment, the difference here may represent the energy state of each of the sensing elements), wherein at least two differences before and after the time interval are respectively processed, as by step S409.
  • the motion vector of the device of the track technique is as in step S411.
  • motion vectors of a plurality of time intervals can be calculated, and accordingly, the trajectory of movement within a certain time can be judged.
  • FIG. 5 is a schematic diagram showing an embodiment of a sensor array operation calculation energy distribution used by the light tracing device.
  • the proposed tracing calculation mode passes through the circuit structure shown in FIG. 5 and the sensor array.
  • Figure 5 shows the layout of the sensor array.
  • a plurality of sensing elements are distributed on the XY plane to form an NxM sensor array, including a plurality of sensing elements 501, 502, 503, 504, 505 arranged in an array, respectively, along X, Y.
  • Direction setting, the actual number is not limited to this diagram.
  • the main components on the circuit board on which these sensing elements 501, 502, 503, 504, 505 are laid are also a plurality of comparators 521, 522, 523, 524, 525, and the respective comparators are respectively connected with corresponding two sensing elements, and the input values are respectively
  • the average voltage signal Vavg of the energy generated by each of the sensing elements is used to compare the voltage signals obtained after the sensing elements sense the light, and the signal values of the high and low voltages can be compared.
  • the tracing method obtains the comparison result of two adjacent sensor values and makes a judgment of the moving direction.
  • the comparator 521 in FIG. 5 is coupled to the sensing element 501.
  • One of the input signals that is, the energy signal sensed by the sensing element 501, can be represented by a voltage signal, and the other input terminal is an average voltage signal Vavg, so the comparator 521 Comparing the two input signals, a comparison result can be output, such as the high and low voltage signals respectively indicated by H or L shown in FIG. 6.
  • the manner of tracing is characterized by the energy pattern displayed in the constructive and destructive interference pattern formed by the light reflection (preferably the same dimming) through the plane reflection.
  • the motion vector is judged by the change of the energy distribution at different times.
  • the implementation method is based on the non-relative view points to do movement judgment, that is, the energy information of the surrounding sensing elements is introduced, and the moving direction is compared with the average inductive energy. It is worth mentioning that this is different from the general method of judging the motion vector by using image pixel information.
  • the present invention compares the time and the calculated energy change (the reading of the two bits, and the statistical average value, H and L) determine the movement trajectory.
  • Step S801 describes that the device first obtains the energy received by each sensor element at the time before and after (to, tl), and then calculates the average value of all or part of the sensor element received energy of the time energy before and after, as in step S803. After the energy values obtained by the sensing elements at different times (represented by voltage signals) are compared with the average values, the energy changes before and after the time can be calculated, as in step S805.
  • the overall motion vector can be determined by the energy change direction of the plurality of sensing elements.
  • the energy of the sensing element in the front and rear time may be an energy state expressed in the form of a voltage, such as an energy average at the same time as the whole.
  • an energy state represented by H or L as shown in FIG. 6 can be obtained. Therefore, first determining the energy state of each sensor element at the first time (to) and the second time (tl), and then obtaining the energy state of the sensor element from the first time to the second time relative to the statistical average before and after the time of the collection. The change can be judged by the motion vector.
  • This example shows a plurality of arrays of sensing element combinations 601, 602, 603, 604, 605, 606. This example only illustrates the sense of passing adjacent sensing elements at different times (eg, first time to, second time t1).
  • t0 and t1 are the two sample times before and after
  • H and L respectively represent the high and low voltage signals output by the aforementioned comparator, that is, can be regarded as the energy state (compared to the average energy as an energy state), mainly through The voltage signal transitions before and after the time determine an overall motion vector.
  • Figure 6 shows the energy changes in two different sensors at different times before and after.
  • the sensing element combination 601 schematically displays several (at least two) sensing elements, wherein the left side is displayed at the first time t0, and the two sensing elements respectively sense two energy states of L and H; when entering the second time tl At the same time, the energy changes of the two sensing elements are converted to 11 and H.
  • L, H ( t0 ) is transformed into H, H ( tl )
  • the energy state of one of the sensing elements is changed from L to H, indicating that the right side H is substituted to the left position, so it can be initially judged here.
  • the direction of effective sensing in the time interval is to the left.
  • the other group of sensing elements of the sensing element combination 601 is at the first time t0, the energy state is H and L; and at the second time t1, the energy state is L and L, wherein there is a sensing element energy state by H
  • the transition to L means that the right L is substituted to the left, so it can be judged that there is a leftward moving direction.
  • the two sensing elements on the left side of the sensing element combination 602 have L and H at the first time t0, and the second time t1 changes to L and L, it can be seen that the H direction of the left side is L and L.
  • the right substitute becomes L, so it is preliminarily judged that there is a rightward moving vector.
  • the right side of the sensing element combination 602 has two sensing elements whose energy states are H and L at the first time t0, and then changes to H and H when the second time t1, where the right L passes to the left.
  • the H substitute is converted to H, so it can be judged that there is a rightward moving vector.
  • the sensing element combinations 605 and 606 do not have an arrow indicating the direction. It is determined that in this example, the plurality of sensing elements have no energy change in the time interval between the first time to the second time t1, or cannot pass through the same.
  • the medium energy change determines the moving direction.
  • the sensing element combination 606 is at the first time t0, the energy state is L and H, and at the second time t1, the energy state is changed to H and L, which is impossible to determine the moving direction by the energy state change. of. Therefore, these two aspects have no valid output signal.
  • Figure 7 Another way of judging the direction of movement is shown in Figure 7 as a second schematic diagram of the method of performing ray tracing by the inductive chip in the device disclosed in the present invention.
  • Figure 7 a schematic diagram of a method for recognizing a motion vector by changing the direction of the induced meta-energy state at different times, where X is an unintentional value, @ is an alignment of the signals sensed by t0 and tl, thereby judging the motion vector.
  • the plurality of sensing elements in the sensing chip When the sensing chip receives the reflected light, the plurality of sensing elements in the sensing chip generate different high and low voltage signals according to the received signal energy and the average energy at different times, as shown in FIG. 7 to generate the sensing signal "@ In some cases, it is still possible that some of the sensing elements have no energy change, or that there is no difference in the voltage signal. At this time, as shown in Fig. 7, the value "X" is not noticed.
  • the energy change of the adjacent sensing element is obtained by the comparator at the first time to be expressed as the state "X@@", wherein "X" is not concerned.
  • the value, "@” indicates that there is a high and low voltage change; at the second time t1, the energy change of several adjacent sensing elements is obtained, which is expressed as the state "@@x”.
  • the energy state of each sensor element after the first time to and the second time t1 changes, and the state display state "X@@” is changed to "@@X", and the left shift (shift) can be judged, so that the sensor can be judged.
  • the meta-combination 701 has a change to the left, as indicated by the arrow in the figure.
  • the energy change of the adjacent sensing element at the first time t0 is represented as the state "@@X", and at the second time t1, the energy state is represented as "X@@", which is visible After the time transition (to to tl), the state "@@” shows a tendency to shift to the right. Therefore, the tracing method disclosed by the present invention uses the energy change of the time before and after to judge the moving direction of the overall device.
  • the tracing method is applied to a computer optical mouse, the moving frequency of the general user operating the mouse is much lower than the processing speed of the control circuit, and some slowly changing reference values do not affect the overall judgment.
  • the disclosed light tracing device is integrated in a semiconductor package, thereby effectively suppressing internal intrinsic noise, and the device using the tracing method particularly uses the same dimming As a light source, the same dimming can improve the sensitivity of an optical sensor that senses the interference of reflected light.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Position Input By Displaying (AREA)

Abstract

一种光线寻迹方法与执行相关方法的装置,其应用于一光学指示器上,其中光传感器取得各种反射光径中所产生的光建设性与破坏性干涉的图像作为移动方向判断的依据,而采用同调光源可以增强此干涉效应。该方法包括由感测芯片(32)中各感应元(301)接收到自表面反射的反射光(203),根据各感应元(301)在一时间间隔前后接收的光线计算各感应元(301)所接收的能量,并计算在此时间间隔前后所有或部分感应元(301)的能量状态,此方法能够根据感应芯片(32)中的感应像素在该时间间隔前后能量状态相对于采集时间前后统计平均值的变化判断一移动矢量,可在各种样态的平面上仍具有寻迹的功能,适用于所有高反射或者很低反射率的平面上。

Description

光线寻迹方法与装置 技术领域
本发明涉及一种光指示装置, 尤其涉及一种釆用同调光干涉图案和特殊二 位元釆集呈像作为移动轨迹判断依据的光线寻迹方法与装置。 背景技术
图 1所示为现有的光学鼠标 10的内部电路示意图, 光学鼠标 10于一表面 11上移动, 鼠标外壳 12内部电路的主要元件除了一些光学元件外, 电路部分设 有一电路板 14, 电路板 14上设有一控制与运算发射光和感测光的控制器 18, 以及一光源 16与传感器 19。
于此光学鼠标 10的外壳 12上有一个朝向外部表面 11的开槽(aperture )17, 此电路板 14 即设于此开槽 17 附近, 电路板 14上设有如镭射或者发光二极管 ( LED ) 的光源 16。 当此光学鼠标 10运作时, 光源 16连续产生发射光, 以特 定角度射向表面 11 , 如图中虚线表示, 经传感器 19取得反射光的信号, 或者取 得反射光强度的影像分布 (如传感器 19可为 CMOS或 CCD影像传感器),控制 器 18即分析出光学鼠标 10的移动方向。
在上述熟知的光学鼠标 10的轨迹判断的技术中, 相当依赖由表面 11取得 的反射光的信号, 因此一般光学鼠标 10的功能将会随着表面 11 的形式而有不 同的表现。
比如, 若表面 11为透明或者不易反光的材质, 则此光学鼠标 10将无法顺 利运作; 若表面 11 包括起伏不均的非平面结构, 此光学鼠标 10也难以顺利操 作, 比如一块有皱摺的布。
现有技术中, 若欲让釆用前述光传感器的寻迹装置在不同平面上仍保有一 定寻迹的功能, 取得光线移动行径的方式多使用额外的外部定位感测或者一些 复杂的运算, 但这些定位感测或者运算因为灵敏度的限制、 高耗能与复杂的算 法等原因而仅适用于有限的平面样态上。 这些常见的方式并不适用于所有高反 射或者很低反射率的平面上, 甚至根本就无法达成光线寻迹的目的。 发明内容
本发明的目的在于提供一种光线寻迹方法与装置, 解决了现有光线寻迹装 置无法在不同平面上保有寻迹功能以及无法适用于所有高反射或者很低反射率 的平面上的问题。
本发明是这样实现的, 一种光线寻迹方法, 包括:
一感应芯片接收自一表面反射的一反射光, 该感应芯片包括以几何对称形 式排列的多个感应元;
根据各感应元在一时间间隔前后接收的光线计算各感应元接收的能量; 计算该时间间隔前后所有或部分感应元的能量状态; 以及
居该感应芯片中感应元在该时间间隔前后能量状态相对于釆集时间前后 统计平均值的变化, 判断一移动矢量。
具体地, 该反射光为空间同调性良好的光线。
具体地, 该反射光为一光源装置发射一光线射向该表面所产生。
具体地, 该光源装置为设于一光指示装置的镭射光装置。
具体地, 该感应芯片为设有阵列形式排列的该多个感应元的传感器阵列, 设于该光指示装置内, 用于接收所述反射光。
具体地, 经反复该光线寻迹方法的步骤计算多个时间间隔的移动矢量, 据 此判断出一移动轨迹。
具体地, 由一第一时间与一第二时间形成该时间间隔, 该感应元于该第一 时间或该第二时间的能量状态的计算步骤包括:
计算该所有或部分感应元所接收能量的一平均值; 以及
计算各感应元所接收的能量与该平均值的差异, 其中该差异为各感应元于 该第一时间或该第二时间的能量状态。
具体地, 计算该感应元在该时间间隔前后的能量状态相对于釆集时间前后 统计平均值变化的步骤包括:
判断各感应元于该第一时间能量状态;
判断各感应元于该第二时间能量状态; 以及
取得该感应元于该第一时间至该第二时间的能量状态相对于釆集时间前后 统计平均值的变化, 以判断该移动矢量。
本发明提供的一种釆用如前所述的光线寻迹方法的光线寻迹装置, 包括: 一光源装置, 用于产生一入射该表面的光线;
一传感器阵列, 包括以阵列形式排列的该多个感应元; 以及
一控制器, 耦接该光源装置与该传感器阵列, 用于取得该多个感应元所接 收的光信号, 并计算能量状态, 以及计算该感应元在该时间间隔前后能量状态 相对于釆集时间前后统计平均值的变化;
其中,该传感器阵列以及该控制器一起集成于半导体电路, 该光源装置和该 集成的传感器阵列以及该控制器封装于该光线寻迹装置内的一电路板上。
具体地, 该光线寻迹装置为一以镭射光为光源的光学指示装置。 应用表面反射的光与原发射光之间的光建设性与破坏性干涉的图像, 作为寻迹 识别的依据, 可在各种样态的平面上仍具有寻迹的功能, 适用于所有高反射或 者很低反射率的平面上。 附图说明
图 1所示为现有技术中的光学鼠标内部电路示意图;
图 2所示为本发明的入射平面与反射光的反射光径示意图;
图 3 所示为本发明光线寻迹装置中封装于一集成电路内的传感器阵列的示 意图;
图 4所示的流程为本发明光线寻迹方法的实施例步骤;
图 5所示为本发明寻迹装置釆用的传感器阵列的实施例示意图;
图 6所示为本发明所揭示装置中感应元执行光线寻迹方法的示意图之一; 图 7所示为本发明所揭示装置中各感应元执行光线寻迹方法的示意图之二; 图 8所示的流程描述寻迹方法是根据能量变化的方向判断移动矢量的步骤。 具体实施方式
釆用非同调光( non-coherent light )作为移动位置判断的技术通常需要复杂 的资料运算程序, 比如判断鼠标移动轨迹, 这类的技术常限制在几种平面 (比 如避免使用光反射率过低的平面)上才能有较好的效果。 有鉴于此, 本发明揭 示了一种光线寻迹方法与装置, 实施例之一釆用了同调光( coherent light )或说 是一种空间同调性( spatial coherence )良好的光线作为光源,藉此侦测移动方向, 并可结合灵敏度补偿 ( sensitivity compensation )的方式, 利用一种光线寻迹算法 ( movement recognition algorithm ),相关釆用 J¾技术的装置可以适用于各种样态 的平面上。
值得一提的是, 本发明所提出的光线寻迹装置内可以釆用一种同调光源整 合型去†装技术 ( coherent light source package integration ), 釆用 J¾类技术的装置, 如光学指示装置, 无须安装额外的光学透镜或特定影像传感器, 如一种互补式 金属氧化物半导体影像传感器 ( CMOS image sensor, CIS )。
首先请先参看图 2所示由一特定光源装置(未显示于此图)产生入射光 201 射向一平面再反射形成多个反射光 203 的示意图, 光源特别是釆用一种如镭射 的同调光(coherent light ), 此处所描述的 "同调光" 是指一种空间同调性良好 的光线。
图 2显示的多个光径包括入射光 201射向一个具有表面结构 205的平面, 再反射形成反射光 203。 由于微观上表面结构 205为不规则的结构, 因此反射光 203形成如图 2所示有不同射向的光线。
光源装置连续产生入射光 201射向平面, 并反射形成反射光 203 , 过程中反 射光 203经由传感器(未显示于图 2中)接收, 各种光径中产生了光建设性与 破坏性干涉的图像(pattern ), 此处特别使用同调光源的入射光 201 可以增强此 干涉效应 ( interference effect )„
当载有执行此寻迹方法的相关电路的装置相对于感测平面 (X-Y平面)进 行移动时, 其中光传感器接收到反射光 203的信息,再依据时间间隔(time slot ) 釆样(sampling )其中信息资料, 以及取得反射光 203的平均能量值, 并计算反 射光 203不同时间、 不同位置的能量差异。 特别是, 本发明所揭示的光线寻迹 装置较佳地釆用一种感应器阵列( sensor array )以取得反射光 203不同位置能量, 以及与平均能量值的差异, 即能判断出移动轨迹。 其中反射光 203平均值的计 算可以釆用全部感应元(sensor cell )取得的能量平均值, 或者部分感应元取得 的能量平均值, 比如以行(如图 5的 X方向)平均值或列 (如图 5的 Y方向) 平均值为平均值的计算参考; 亦可能釆取外围或中间部分的能量平均值作为参 考平均值。
根据釆用上述感应器阵列的实施例之一, 若以同调光为光源, 可以增强反 射光线的干涉效应。 同调光为一种在一波包(wave envelope ) 中具有非常小相 位延迟(phase delay ) 的光源, 其中镭射光即是一种同调光, 不同于太阳光或 LED光等非同调光。
应用同调光于本发明揭示的寻迹装置中, 同调光可以改善感测反射光干扰 的光学传感器的灵敏度。 因为同调光有很小相位差 ( phase difference ) 的特性, 相对于非同调光的反射光所产生的空间干扰(spatial interference ), 同调光会有 较小的相位延迟(phase delay )现象。 因此, 釆用同调光可以加强反射光空间干 扰的优点, 前述传感器阵列 (针对光线)可以取得经一个平面反射光的空间干 扰差异。
传感器阵列可参阅图 3所示本发明光线寻迹装置中封装于一集成电路(IC ) 内的传感器阵列的示意图。
图 3中显示一个设于一装置 (如光学鼠标或者特定指示装置) 内电路板 30 上的传感器阵列 32, 传感器阵列 32包括有阵列形式排列的多个感应元 301 , 通 过这个整合型封装的技术( integrated optical sensor array on IC ), 传感器阵列 32 上的各个感应元 301可以在固定的位置平均取得经平面反射的光线。 图 3 中由 一光源装置 34发射光线到一个平面上的照射范围 303 , 之后光线经平面反射后 射向传感器阵列 32 , 其中各感应元 301分别接收到不同方向的反射光, 通过适 当光电信号转换, 装置内的和传感器阵列 32 —起半导体电路集成的控制器 36 与相关电路取得信号后可以计算出加总每个感应元 301接收到的能量的平均值, 再接着计算各个感应元 301 与平均值的差异, 以取得由平面反射形成的空间干 扰的能量差异( spatial interference difference ),控制器 36根据每个时间间隔( time slot )前后累积计算的能量差异判断出移动方向。
上述实施例所揭示的光线寻迹装置中, 所谓的空间干扰, 当光线 (特别是 同调光, 但发明不限于同调光)射向有不规则表面结构的表面后又反射产生不 同方向的反射光而产生的光线干扰(interference ), 此光线经反射后产生建设性 或破坏性的干扰图案, 之后, 由传感器阵列取得因为相对运动 (装置与平面的 相对运动)平面反射的空间信息后, 建立在 X-Y平面上的移动资料。
如图 3 所示, 特别于一实施例中, 本发明所揭示的光线寻迹装置可为一以 镭射光为光源的光学指示装置, 如光学鼠标, 其中主要电路元件包括设于一电 路板 30上的光源装置 34, 用于产生一入射表面的光线, 包括有感测器阵列 32 , 其中有以阵列形式排列的多个感应元 301 , 以及包括有前述的控制器 36, 控制 器 36耦接光源装置 34与传感器阵列 32 , 用于取得多个感应元 301内多个感应 像素所接收的光信号, 并计算能量状态, 以及计算时间间隔的能量状态相对于 釆集时间前后统计平均值的变化。
图 4所示的流程为本发明光线寻迹方法的实施例步骤。
在此实施例流程中, 步骤开始如 S401 , 由设于光线寻迹装置内的光源装置 发射光线, 射向一个表面, 之后如步骤 S403 , 由装置内的传感器接收反射光。
根据实施例, 光源较佳如同调光, 主要目的是利用同调光较小相位延迟的 特性改善利用反射光干扰侦测移动方向的灵敏度。 其中光源装置可为设于光指 示装置内的镭射光装置, 而传感器则较佳釆用如图 3显示的传感器阵列。
之后, 本发明所揭示的光线寻迹方法主要通过计算前述时间间隔前后所有 或部分感应元的能量状态, 再根据感应元在时间间隔前后能量状态相对于釆集 时间前后统计平均值的变化而判断一移动矢量, 其中之一实施方式的细节如下。
经传感器接收反射光后, 如步骤 S405 , 装置内控制电路计算一个时间间隔 ( time slot )前后的各感应元接收的能量,并如步骤 S407 ,再计算所有或部分(可 能非所有的感应元 /感应像素 (sensor pixel )都接收到足以计算能量的光线, 如 图 6 所载范例)感应元在该时间间隔前后所取得的能量平均值(同一时间至少 处理两个值)。 经前后不同时间计算各感应元的能量与所有或部分(比如以行平 均值、 列平均值、 外围平均值、 中央平均值为参考平均值) 的能量平均值后, 可以计算出各感应元接收能量与平均值的差值(在一实施例中, 此处的差值可 表示各感应元的能量状态), 其中分别处理该时间间隔前后的至少两个差值, 如 步骤 S409。 时间间隔前后的两组数值之间可存在一个差异, 也就是前后时间的 能量变化, 之后可根据感应芯片内的多个(至少两个)感应元所计算的能量变 化判断出整体釆用此寻迹技术的装置的移动矢量, 如步骤 S411。
经反复上述光线寻迹方法的步骤可计算出多个时间间隔的移动矢量, 据此 判断出在一定时间内的移动轨迹。 其中根据各感应元中感测到的能量变化判断 装置与表面的相对移动的方式, 可以参考图 6、 图 7所记载的范例, 步骤可参考 图 8所示的流程。
图 5 则显示光线寻迹装置所釆用的传感器阵列运作计算能量分布的实施例 示意图, 根据发明实施例, 其中所提出的寻迹的演算方式通过此图 5 所示的电 路结构以及传感器阵列。 图 5显示了传感器阵列的布局, 多个感应元分布于 X-Y平面上, 形成 NxM 的传感器阵列, 包括阵列形式排列的多个感应元 501, 502, 503, 504, 505 , 分别沿 着 X, Y方向设置,实际数量并不限于此示意图。铺设这些感应元 501, 502, 503, 504, 505的电路板上主要元件还有多个比较器 521, 522, 523, 524, 525 , 各个比较 器分别连接对应的两个感应元, 输入值为各个感应元产生的能量的平均电压信 号 Vavg, 用于比较感应元感测到光线后所得到的电压信号, 可以比较得到高低 电压的信号值。 最后, 寻迹方法即取得相邻两个传感器值比对结果, 作出移动 方向的判断。
比如图 5中比较器 521耦接于感应元 501 , 其中一个输入信号即感应元 501 所感测产生的能量信号, 可以用电压信号表示, 另一输入端则为平均电压信号 Vavg, 因此比较器 521比对这两个输入信号, 可以输出一个比较结果, 比如图 6 所示 H或 L分别表示的高低电压信号。
根据本发明所记载的光线寻迹方法中, 寻迹的方式特征在于利用光线 (较 佳为同调光) 经平面反射后形成的建设性与破坏性干扰图案中显示的能量分布 ( energy pattern ), 通过不同时间的能量分布变化判断移动矢量。 其中实施方式 比^口釆用非相关视点进行移动判断 ( non-relative view points to do movement judgment )的方式, 也就是引入周围感应元的能量信息, 与平均感应能量进行比 对判断移动方向。 值得一提的是, 这不同于一般利用影像像素 (pixel )信息判 断移动矢量的方式, 本发明是通过釆用时间与计算能量变化 (二位元的读值, 和 统计平均值比较的结果, H和 L )而判断出移动轨迹。
应用不同时间能量变化判断移动方向的步骤如图 8显示。 步骤 S801描述装 置先取得各感应元于前后时间 (to, tl )接收的能量, 再计算前后时间能量的全 部或部分感应元接收能量的平均值, 如步骤 S803。 各感应元不同时间所取得的 能量数值(可以电压信号表示) 与平均数值比对后, 可以计算前后时间的能量 变化, 如步骤 S805。
之后参考在不同时间 (t0, tl ) 的感测元的能量变化, 可以判断前后时间能 量变化的方向, 如步骤 S807。 最后如步骤 S809所载, 可以通过多个感测元的能 量变化方向来判断整体移动矢量。
在图 8 所述通过前后能量变化判断移动矢量的方式中, 感应元在前后时间 的能量可以一种以电压形式表示的能量状态, 比如与整体同一时间的能量平均 值比较后可以取得一个如图 6所示的 H或 L表示的能量状态。 因此, 先判断各 感应元分别于第一时间 (to )与第二时间 (tl )的能量状态, 之后取得感应元于 第一时间至第二时间的能量状态相对于釆集时间前后统计平均值的变化, 可以 判断移动矢量。
移动矢量的判断可以参考图 6 所示本发明所揭示装置中多个感应元执行光 线寻迹方法的示意图。
此例显示有多个阵列排列的感应元组合 601, 602, 603, 604, 605, 606,此例仅 示意列举通过相邻感应元在不同时间 (如第一时间 to , 第二时间 tl )感测到的 能量变化而辨识移动矢量的范例。
其中 t0与 tl为前后两个釆样时间, H与 L分别表示由前述比较器所输出的 高低电压信号, 也就是可视为能量状态(相较于平均能量为一个能量状态), 主 要是通过前后时间的电压信号转变判断出一个整体的移动矢量。 图 6显示为个 别感应元中在前后两个不同时间的能量变化。
比如感应元组合 601 中示意显示几个(至少两个)感应元, 其中左方显示 在第一时间 t0时, 两个感应元分别感应到 L与 H两个能量状态; 当进入第二时 间 tl时, 两个感应元的能量变化则转变为 11与 H。 当 L、 H ( t0 )转变为 H、 H ( tl ) 时, 其中有个感应元的能量状态由 L转变为 H, 表示由右方的 H替补到 左方的位置, 因此可以初步判断在此时间间隔中有效感应的移动方向为向左。
而此感应元组合 601的另一组感应元在第一时间 t0时,能量状态为 H与 L; 到了第二时间 tl , 能量状态则为 L与 L, 其中有个感应元能量状态的由 H转变 为 L, 也就是表示右方的 L替补到左方的位置, 因此可以判断有个向左的移动 方向。
再如感应元组合 602内左方的两个感应元在第一时间 t0的能量状态为 L与 H, 到了第二时间 tl改变为 L与 L, 可以看出其中的 H经左方的 L向右替补成 为 L, 因此初步判断有个向右的移动矢量。
同理, 感应元组合 602内的右方有两个感应元在第一时间 t0的能量状态为 H与 L, 之后到了第二时间 tl时变化成为 H与 H, 其中右方的 L经左方的 H替 补转变为 H, 因此可以判断出有个向右的移动矢量。
图中感应元组合 605与 606并没有箭头标示方向, 经判断为此例中多个感 应元在第一时间 to与第二时间 tl的时间间隔中没有能量变化, 或者无法通过其 中能量变化判断出移动方向, 比如感应元组合 606在第一时间 t0能量状态为 L 与 H, 到了第二时间 tl , 能量状态转变为 H与 L, 这是无法通过能量状态变化 来判断移动方向的。 因此, 这两种态样是没有有效输出信号的。
当前后两个时间的全部感应元都判断了各自能量变化的方向时, 可以整体 判断出一个总体的移动矢量。
另一个移动方向判断的方式如图 7 所示为本发明所揭示装置中感应芯片执 行光线寻迹方法的示意图之二。 此例通过不同时间的感应元能量状态的转换方 向以辨识移动矢量的方法示意图, 其中 X为不在意的值, @为 t0与 tl所感应信 号的比对, 藉此判断移动矢量。
经感应芯片接收到反射光时, 感应芯片内的多个感应元在不同时间根据接 收的信号能量与平均能量比较时, 产生有高低不同电压信号, 如图 7 所示为产 生有感应信号 "@ "; 在一些情况下, 仍有可能部分的感应元并没有能量变化, 或者无关电压信号的高低, 此时如图 7显示为不在意的值 "X"。
根据图 7所示的实施例, 在感应元组合 701 中, 经前述比较器于第一时间 to取得相邻感应元的能量变化, 表示为状态 "X@@" , 其中 "X" 为不在意值, "@" 表示有高低电压变化; 在第二时间 tl取得几个相邻感应元的能量变化, 表示为状态 "@@x"。经第一时间 to与第二时间 tl的各感应元的能量状态变化, 此例显示状态 "X@@" 转变为 "@@X" , 可以判断 向左位移 (shift ), 因此可以判断这个感应元组合 701有一个向左移动的变化, 如图中箭头所示。
在感应元组合 702中, 其中相邻的感应元在第一时间 t0的能量变化表示为 状态 "@@X" , 在第二时间 tl时, 能量状态表示为 "X@@" , 此时可见经时间 转变(to到 tl )后, 其中状态 "@@" 显示有向右位移的趋势。 因此, 本发明所 揭示的寻迹方法则利用此前后时间的能量变化判断整体装置的移动方向。
值得一提的是, 在判断移动方向时, 由于发明釆取了传感器阵列, 因此微 小的误差并不会影响整体判断的结果。 若寻迹方法应用于计算机光学鼠标上, 一般使用者操作鼠标的移动频率远低于其中如控制电路的处理速度, 一些緩慢 改变的参考数值并不会影响整体判断。 迹装置, 所揭示的光线寻迹装置整合于一半导体封装内, 藉此可以有效压抑内 部固有的噪声 (intrinsic noise ), 而应用其中寻迹方法的装置则特别釆用同调光 作为光源, 同调光可以改善感测反射光干扰的光学传感器的灵敏度。 以上所述是本发明的优选实施方式, 应当指出, 对于本技术领域的普通技 术人员来说, 在不脱离本发明原理的前提下, 还可以做出若干改进和润饰, 这 些改进和润饰也视为本发明的保护范围。

Claims

权利要求书
1.一种光线寻迹方法, 其特征在于, 包括:
一感应芯片接收自一表面反射的一反射光, 该感应芯片包括以几何对称形 式排列的多个感应元;
根据各感应元在一时间间隔前后接收的光线计算各感应元接收的能量; 计算该时间间隔前后所有或部分感应元的能量状态; 以及
居该感应芯片中的感应元在该时间间隔前后能量状态相对于釆集时间前 后统计平均值的变化, 判断一移动矢量。
2.如权利要求 1 所述的光线寻迹方法, 其特征在于, 该反射光为空间同调 性良好的光线。
3.如权利要求 2所述的光线寻迹方法, 其特征在于, 该反射光为一光源装 置发射一光线射向该表面所产生。
4.如权利要求 3 所述的光线寻迹方法, 其特征在于, 该光源装置为设于一 光指示装置的镭射光装置。
5.如权利要求 4所述的光线寻迹方法, 其特征在于, 该感应芯片为设有阵 列形式排列的该多个感应元的传感器阵列, 设于该光指示装置内, 用于接收所 述反射光。
6.如权利要求 5 所述的光线寻迹方法, 其特征在于, 经反复该光线寻迹方 法的步骤计算多个时间间隔的移动矢量, 据此判断出一移动轨迹。
7.如权利要求 1 所述的光线寻迹方法, 其特征在于, 由一第一时间与一第 二时间形成该时间间隔, 该感应元于该第一时间或该第二时间的能量状态的计 算步骤包括:
计算该所有或部分感应元所接收能量的一平均值; 以及
计算各感应元所接收的能量与该平均值的差异, 其中该差异为各感应元于 该第一时间或该第二时间的能量状态。
8.如权利要求 7 所述的光线寻迹方法, 其特征在于, 计算该感应元在该时 间间隔前后的能量状态相对于釆集时间前后统计平均值变化的步骤包括:
判断各感应元于该第一时间能量状态;
判断各感应元于该第二时间能量状态; 以及
取得该感应元于该第一时间至该第二时间的能量状态相对于釆集时间前后 统计平均值的变化, 以判断该移动矢量。
9.一种釆用如权利要求 1 所述的光线寻迹方法的光线寻迹装置, 其特征在 于, 包括:
一光源装置, 用于产生一入射该表面的光线;
一传感器阵列, 包括以阵列形式排列的该多个感应元; 以及
一控制器, 耦接该光源装置与该传感器阵列, 用于取得该多个感应元所接 收的光信号, 并计算能量状态, 以及计算该感应元在该时间间隔前后能量状态 相对于釆集时间前后统计平均值的变化;
其中,该传感器阵列以及该控制器一起集成于半导体电路, 该光源装置和该 集成的传感器阵列以及该控制器封装于该光线寻迹装置内的一电路板上。
10. 如权利要求 9所述的光线寻迹装置, 其特征在于, 该光线寻迹装置为 一以镭射光为光源的光学指示装置。
PCT/CN2013/078083 2013-06-26 2013-06-26 光线寻迹方法与装置 WO2014205704A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016522160A JP6236150B2 (ja) 2013-06-26 2013-06-26 光線追跡方法及びその装置
PCT/CN2013/078083 WO2014205704A1 (zh) 2013-06-26 2013-06-26 光线寻迹方法与装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/078083 WO2014205704A1 (zh) 2013-06-26 2013-06-26 光线寻迹方法与装置

Publications (1)

Publication Number Publication Date
WO2014205704A1 true WO2014205704A1 (zh) 2014-12-31

Family

ID=52140807

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/078083 WO2014205704A1 (zh) 2013-06-26 2013-06-26 光线寻迹方法与装置

Country Status (2)

Country Link
JP (1) JP6236150B2 (zh)
WO (1) WO2014205704A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101082847A (zh) * 2006-06-01 2007-12-05 达方电子股份有限公司 激光鼠标及其像素数据的取得方法
CN101126648A (zh) * 2006-08-18 2008-02-20 艾勒博科技股份有限公司 光学导航装置和补偿光学导航装置中的偏移的方法
US20100103107A1 (en) * 2008-10-23 2010-04-29 Pixart Imaging Inc. Image processing method of optical navigator and optical navigator using the same
US20120038554A1 (en) * 2010-08-13 2012-02-16 Pixart Imaging Inc. Lift detection method for optical mouse and optical mouse with lift detection function

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2803307B2 (ja) * 1990-04-03 1998-09-24 富士ゼロックス株式会社 スペックルパターンの移動検出方法及びこれを用いた位置指定装置
KR100494469B1 (ko) * 2002-10-02 2005-06-13 삼성전기주식회사 광 마우스용 단일 집적회로
JP4335218B2 (ja) * 2006-01-27 2009-09-30 國防部軍備局中山科學研究院 スペックル捕獲デバイス、光学式マウス及びスペックル捕獲方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101082847A (zh) * 2006-06-01 2007-12-05 达方电子股份有限公司 激光鼠标及其像素数据的取得方法
CN101126648A (zh) * 2006-08-18 2008-02-20 艾勒博科技股份有限公司 光学导航装置和补偿光学导航装置中的偏移的方法
US20100103107A1 (en) * 2008-10-23 2010-04-29 Pixart Imaging Inc. Image processing method of optical navigator and optical navigator using the same
US20120038554A1 (en) * 2010-08-13 2012-02-16 Pixart Imaging Inc. Lift detection method for optical mouse and optical mouse with lift detection function

Also Published As

Publication number Publication date
JP6236150B2 (ja) 2017-11-22
JP2016526725A (ja) 2016-09-05

Similar Documents

Publication Publication Date Title
US10521017B1 (en) Method for detecting gestures using a multi-segment photodiode and one or fewer illumination sources
CN1916826B (zh) 用于光学导航装置的系统和方法
US9122350B2 (en) Optical touch apparatus capable of detecting displacement with two light beams and optical touch method thereof
JP2005302036A (ja) デバイスと表面との間の距離を測定する光学デバイス
JP2011524034A (ja) 対話型入力装置と、該装置のための照明組み立て品
US20140035812A1 (en) Gesture sensing device
TWI530828B (zh) 具有熱感應器之光學滑鼠
CN103353790B (zh) 光线寻迹方法与装置
TWI533010B (zh) 光學感測裝置以及偵測光學感測裝置周遭之物件的方法
JP6216776B2 (ja) タッチイベントテンプレートを使用した光タッチセンサー式装置におけるマルチタッチイベントの検出
US20150261329A1 (en) Electronic device having optical indexing module
US20130229349A1 (en) Optical touch input by gesture detection from varying images
TWI497036B (zh) 光線尋跡方法與裝置
TWI439906B (zh) 感測系統
WO2014205704A1 (zh) 光线寻迹方法与装置
WO2014205705A1 (zh) 光传感器阵列装置
US20160321810A1 (en) Optical navigation sensor, electronic device with optical navigation function and operation method thereof
US9804688B2 (en) Light tracing method and apparatus thereof
TWI525507B (zh) 光學觸控系統、觸控偵測方法及電腦程式產品
US9804695B2 (en) Cursor control apparatus and method for the same
US20150193019A1 (en) Mobile apparatus with optical indexer, and method for indexing using the same
CN109032430B (zh) 光学触控面板装置
US9116577B2 (en) Sensing method of optical touch
TWI476646B (zh) 游標控制裝置與控制方法
US8351042B1 (en) Object detecting device and information acquiring device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13887902

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016522160

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13887902

Country of ref document: EP

Kind code of ref document: A1