WO2014205646A1 - 一种检测上行控制信道上发送的信号的方法、装置和设备 - Google Patents
一种检测上行控制信道上发送的信号的方法、装置和设备 Download PDFInfo
- Publication number
- WO2014205646A1 WO2014205646A1 PCT/CN2013/077859 CN2013077859W WO2014205646A1 WO 2014205646 A1 WO2014205646 A1 WO 2014205646A1 CN 2013077859 W CN2013077859 W CN 2013077859W WO 2014205646 A1 WO2014205646 A1 WO 2014205646A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- signal
- matrix
- user equipment
- pucch
- index
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 80
- 239000011159 matrix material Substances 0.000 claims description 261
- 238000004364 calculation method Methods 0.000 claims description 93
- 238000004422 calculation algorithm Methods 0.000 claims description 40
- 230000006870 function Effects 0.000 claims description 29
- 230000008569 process Effects 0.000 claims description 23
- 238000005562 fading Methods 0.000 claims description 19
- 238000001514 detection method Methods 0.000 abstract description 17
- 230000008859 change Effects 0.000 abstract description 8
- 238000004891 communication Methods 0.000 abstract description 2
- 238000010586 diagram Methods 0.000 description 15
- 238000012804 iterative process Methods 0.000 description 4
- 230000010363 phase shift Effects 0.000 description 3
- 239000000969 carrier Substances 0.000 description 2
- 238000004590 computer program Methods 0.000 description 2
- 230000001934 delay Effects 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 101000741965 Homo sapiens Inactive tyrosine-protein kinase PRAG1 Proteins 0.000 description 1
- 102100038659 Inactive tyrosine-protein kinase PRAG1 Human genes 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000009131 signaling function Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/24—Testing correct operation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/20—Arrangements for detecting or preventing errors in the information received using signal quality detector
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/004—Arrangements for detecting or preventing errors in the information received by using forward error control
- H04L1/0045—Arrangements at the receiver end
- H04L1/0047—Decoding adapted to other signal detection operation
- H04L1/005—Iterative decoding, including iteration between signal detection and decoding operation
Definitions
- the present invention relates to the field of mobile communications, and in particular, to a method, apparatus, and device for detecting a signal transmitted on an uplink control channel.
- the Physical Uplink Control CHannel (PUCCH) of the Long Term Evolution (LTE) system carries two types of information, one is a Non ACKnowledge/ACKnowledge (NACK/ACK) signal, which is called by the 3GPP protocol.
- NACK/ACK Non ACKnowledge/ACKnowledge
- For formatl one is a Channel Quality Indication (CQI) and a Precoding Matrix Index (PMI).
- CQI Channel Quality Indication
- PMI Precoding Matrix Index
- the 3GPP protocol is called a format2 signal.
- the format2 signal is transmitted in two slots, which are in different frequency bands. There are two pilot symbols per slot, and the other symbols are data symbols.
- the coded signal is modulated by Orthogonal Phase Shift Key (QPSK) to 10 Orthogonal Frequency-Division Multiplexing (OFDM) symbols.
- QPSK Orthogonal Phase Shift Key
- OFDM Orthogonal Frequency-Division Multiplexing
- Each OFDM symbol has 12 subcarriers, and the signal or pilot symbols are spread to 12 subcarriers by a computer generated sequence (e.g., a random sequence).
- the receiver on the side of the base station device solves the format 2 signal or the format1 signal by detecting the PUCCH.
- a method provided by the prior art is to assume that a channel is constant within a time slot, that is, does not change with a subcarrier. Based on this assumption, a tensor is used to describe a process from user equipment (UE) to a user equipment (UE). Then, an iterative method is used to detect and demodulate the PUCCH.
- UE user equipment
- UE user equipment
- the tensor method does not substantially improve the performance when detected at the receiving end.
- Embodiments of the present invention provide a method, apparatus, and device for detecting a signal transmitted on an uplink control channel to coordinate communication between a base station and a user equipment.
- a method for detecting a signal transmitted on an uplink control channel including: processing a signal received by an air interface by using a channel model related to a subcarrier to obtain a received signal
- the channel model associated with the sub-carriers is a function of subcarrier index
- said signal comprising at least one user equipment a signal transmitted through the PUCCH order Q ⁇ is a diagonal matrix, the diagonal elements of ⁇ a signal X (g, Z) transmitted by any one of the at least one user equipment through the PUCCH, the index of the OFDM symbol is Orthogonal Frequency Division Multiplexing, and g is an index of the user equipment; Performing an iterative calculation to solve the signal X sent by the at least one user equipment through the PUCCH.
- the using the channel model associated with the subcarrier to process the signal received by the air interface to obtain the received signal includes:
- the matrix W is an N x Q-order matrix composed of elements
- the matrix ⁇ is a matrix of r(fc) elements
- the subcarrier index the /1 is an antenna index
- the index is g
- the determining, by using the received signal, an iterative calculation, to solve the at least one user equipment include:
- the performing the iterative calculation on the received signal to solve the at least one user equipment include:
- a method for detecting a signal sent on an uplink control channel including: processing a signal received by an air interface by using a channel model related to a user delay to obtain a received signal Y t, the channel model associated with the user delay is a function of the user equipment, said signal comprising at least one user equipment a signal transmitted through the PUCCH order Q ⁇ is a diagonal matrix, the diagonal elements of ⁇ a signal X qJ) transmitted by any one of the at least one user equipment by using a PUCCH, where is an index of an OFDM symbol, and g is an index of the user equipment; performing iterative calculation on the received signal Solving the at least one user equipment
- the using the channel model related to the user delay to process the signal received by the air interface to obtain the received signal includes:
- a matrix W, T matrix, and a matrix in accordance with the signal o ⁇ X t matrix operation, to obtain wx ⁇ .
- the matrix w is an NxQ order matrix composed of elements
- the matrix / ⁇ is a ⁇ ⁇ order matrix composed of elements, wherein each matrix of the matrix / ⁇ in the small area is orthogonal, small interval
- the matrix r is a ⁇ ⁇ matrix composed of r (g, W elements, the subcarrier index, the w is an antenna Index, the channel value of the antenna indexed as "in the user equipment indexed by g, the P q, W is a pilot sequence of subcarriers indexed in the user equipment indexed by g, the 7 ⁇ , W is the fading channel and the frequency selection characteristics caused by the delay.
- the determining, by the iterative calculation, the at least one user equipment The signals transmitted through the PUCCH include:
- the determining, by using the received signal, an iterative calculation, to solve the at least one user equipment include:
- an apparatus for detecting a signal sent on an uplink control channel including: a first processing module, configured to perform, by using a channel model related to a subcarrier, a signal received by an air interface
- the channel model associated with the subcarrier is a function of a subcarrier index
- the signal includes at least one signal X t transmitted by the user equipment through the PUCCH, where the ⁇ is a Q-order diagonal matrix, and the ⁇
- the diagonal element is a signal X (g, Z) transmitted by the PUCCH by any one of the at least one user equipment, the / is an index of the orthogonal frequency division multiplexing OFDM symbol, and g is an index of the user equipment;
- a first iteration module configured to perform iterative calculation on the received signal, and decode a signal X t sent by the at least one user equipment through the PUCCH.
- the first iterative module includes:
- the first iterative calculation unit is configured to perform an iterative calculation on the received signal by using a least squares LS algorithm to solve the signal transmitted by the at least one user equipment through the PUCCH.
- a second iterative calculation unit configured to perform an iterative calculation on the received signal by using a minimum mean squared error MMSE algorithm to solve a signal transmitted by the at least one user equipment through the PUCCH.
- the fourth aspect provides an apparatus for detecting a signal sent on an uplink control channel, where: the second processing module is configured to process, by using a channel model related to a user delay, a signal received by the air interface to obtain a received signal.
- the channel model related to the user delay is a function of the user equipment, and the signal includes at least one signal transmitted by the user equipment through the PUCCH, where is a Q-order diagonal matrix, and the diagonal element is the at least Any one of the user devices a signal X (g, Z) transmitted through the PUCCH, the / is an index of an orthogonal frequency division multiplexing OFDM symbol, q is an index of the user equipment;
- a second iteration module configured to perform iterative calculation on the received signal, and decode a signal X t sent by the at least one user equipment through the PUCCH.
- the second processing module includes: a second matrix operation unit, configured to use a matrix W, a matrix, and a matrix ⁇ according to W3 ⁇ 4 ⁇ .
- the matrix W is an Nx2 order matrix composed of elements
- the matrix / ⁇ is a matrix of elements formed by elements, wherein each of the elements in the matrix / ⁇ in the small area is orthogonal, the small interval is The correlation between each row element in the matrix / ⁇ is, the matrix ⁇ is a ⁇ ⁇ matrix composed of 7 ⁇ , w elements, the subcarrier index, the "index for the antenna, the g is g
- the channel value of the antenna indexed in the indexed user equipment, the pilot sequence of the subcarrier indexed in the user equipment indexed by g, the 7 ⁇ , W is caused by the fading channel and the delay Frequency selection characteristics.
- a third iterative calculating unit configured to perform iterative calculation on the received signal by using a least squares LS algorithm, and decode the signal transmitted by the at least one user equipment through the PUCCH.
- a fourth iterative calculation unit configured to perform an iterative calculation on the received signal by using a minimum mean squared error MMSE algorithm, and decode a signal transmitted by the at least one user equipment through the PUCCH.
- a computer storage medium may store a program, the program including the steps of the first aspect or any of the first to third possible implementations of the first aspect or The steps of the second aspect or any of the first to third possible implementations of the second aspect.
- a receiver including: an input device, an output device, a memory, and a processor; wherein the processor performs the following steps: processing a signal received by the air interface by using a channel model related to the subcarrier Obtaining a received signal, the channel model associated with the subcarrier is a function of the subcarrier index, where the signal includes a signal transmitted by the user equipment through the PUCCH, where the signal is a Q-th order diagonal matrix, and the diagonal element is sent by any one of the at least one user equipment through the PUCCH.
- the signal X q , l , , is / is an index of an orthogonal frequency division multiplexing OFDM symbol, and g is an index of the user equipment;
- a receiver including: an input device, an output device, a memory, and a processor; wherein the processor performs the following steps: performing a signal received by the air interface by using a channel model related to a user delay
- the channel model related to the user delay includes the fading channel and the frequency selection characteristic caused by the delay
- the signal includes at least one signal transmitted by the user equipment through the PUCCH
- the received signal is obtained.
- a diagonal matrix of the Q-th order the diagonal element of the ⁇ is a signal X (g, Z) transmitted by any one of the at least one user equipment through the PUCCH, and the / is an orthogonal frequency division multiplexing OFDM symbol Index, g is the index of the user device;
- a base station comprising any one of the first to third possible embodiments of the third aspect or the third aspect or the first to third possible implementation of the fourth aspect or the fourth aspect.
- the user equipment passes the physical uplink control channel.
- the detection of the signal transmitted by the PUCCH is based on the assumption that the channel is related to the subcarrier or the user delay. Therefore, when detecting the PUCCH with the prior art, it is assumed that the channel is constant within one time slot, that is, does not change with the subcarrier.
- the method provided by the embodiment of the present invention considers the channel condition in the actual scenario, and the channel model is similar to the actual channel, thereby improving the detection performance of the PUCCH.
- FIG. 1 is a schematic flow chart of a method for detecting a signal transmitted on an uplink control channel according to an embodiment of the present invention
- FIG. 2 is a schematic flowchart of a method for detecting a signal transmitted on an uplink control channel according to another embodiment of the present invention
- FIG. 3 is a schematic structural diagram of an apparatus for detecting a signal transmitted on an uplink control channel according to an embodiment of the present invention
- FIG. 4 is a schematic structural diagram of an apparatus for detecting a signal transmitted on an uplink control channel according to another embodiment of the present invention.
- FIG. 5-a is a schematic structural diagram of an apparatus for detecting a signal sent on an uplink control channel according to another embodiment of the present invention.
- FIG. 5-b is a schematic structural diagram of an apparatus for detecting a signal sent on an uplink control channel according to another embodiment of the present invention.
- 6-a is a schematic structural diagram of an apparatus for detecting a signal transmitted on an uplink control channel according to another embodiment of the present invention.
- 6-b is a schematic structural diagram of an apparatus for detecting a signal transmitted on an uplink control channel according to another embodiment of the present invention.
- FIG. 7 is a schematic structural diagram of an apparatus for detecting a signal transmitted on an uplink control channel according to another embodiment of the present invention.
- FIG. 8 is a schematic structural diagram of an apparatus for detecting a signal transmitted on an uplink control channel according to another embodiment of the present invention.
- 9-a is a schematic structural diagram of an apparatus for detecting a signal transmitted on an uplink control channel according to another embodiment of the present invention.
- 9-b is a schematic structural diagram of an apparatus for detecting a signal transmitted on an uplink control channel according to another embodiment of the present invention.
- FIG. 10-a is a schematic structural diagram of an apparatus for detecting a signal sent on an uplink control channel according to another embodiment of the present invention.
- FIG. 10-b is a diagram of detecting a signal sent on an uplink control channel according to another embodiment of the present invention. Schematic diagram of the structure.
- FIG. 1 is a schematic flowchart of a method for detecting a signal sent on an uplink control channel according to an embodiment of the present invention, where an execution body can be a station, a receiver of a base station, or a function module/unit in a base station receiver.
- the method illustrated in Figure 1 mainly includes steps S101 and S102, which are described in detail as follows:
- S101 processing, by using a channel model related to the subcarrier, a signal received by the air interface to obtain a received signal
- the signal is a signal transmitted from the user equipment and transmitted to the base station via the wireless channel and received by its air interface.
- the signal received by the base station air interface includes at least one user equipment through a physical uplink control channel (Physical Uplink Control CHannel, in addition to the noise signal and the pilot signal.
- the signal sent by the user equipment through the physical uplink control channel PUCCH is a Q-th order diagonal matrix, where the diagonal element is a signal sent by any one of the at least one user equipment through the PUCCH. It may be a formatl signal or a format2 signal in the 3GPP protocol, and the modulation method may be quadrature phase shift keying (Quadrature Phase Shift)
- the index of the symbol, g is the index of the user equipment.
- the channel model used is based on the assumption that the channel model associated with the subcarrier, that is, the assumed
- the subcarrier related channel model is a function of the subcarrier index.
- the matrix W is an NX ⁇ -order matrix composed of the elements «)
- the matrix / ⁇ is a ⁇ -X-order matrix composed of elements ⁇
- W and the matrix ⁇ is a matrix of orders composed of ⁇ elements, and is a subcarrier index.
- w is the day
- the line index is the channel value of the antenna indexed by w in the user equipment indexed by g, ⁇ , ) is the pilot sequence of the subcarrier indexed in the user equipment indexed by g
- the element T in the matrix r ( k) is the frequency selective characteristic caused by the fading channel and the delay, which is related to the subcarrier, and is independent of the user equipment and the antenna, that is, all user equipments and antenna frequency selection are the same.
- the channel of all the user equipments is not related to the sub-carriers.
- the introduction of the matrix has an essential change and improvement; it can be considered that the model in the prior art is only one type of the embodiment of the present invention.
- the matrix ⁇ is a unit matrix.
- S102 Perform an iterative calculation on the received signal to solve a signal sent by at least one user equipment through the physical uplink control channel.
- the received signal is iteratively calculated to solve the signal X transmitted by the at least one user equipment through the PUCCH
- the received signal may be iteratively calculated by using a Least Square (LS) algorithm to solve at least A signal transmitted by a user equipment through a PUCCH.
- LS Least Square
- the received signal may be minimized.
- the Minimum Mean Square Error (MMSE) algorithm performs an iterative calculation to solve the signal transmitted by the at least one user equipment through the PUCCH. Since the MMSE algorithm is used, the PUCCH detection working point is relatively low, and in the iterative process, noise is considered. / Influencing factors:
- the method for detecting a signal sent on an uplink control channel is that, since the detection of a signal sent by a user equipment through a physical uplink control channel (PUCCH) is based on a channel-subcarrier-related hypothesis, When the PUCCH is detected, it is assumed that the channel is constant within a time slot, that is, the channel does not change, and the method provided by the embodiment of the present invention considers the channel condition in the actual scenario, and the channel model and the actual channel are given. Close, thereby improving the detection performance of the PUCCH.
- PUCCH physical uplink control channel
- FIG. 2 is a schematic flowchart of a method for detecting a signal sent on an uplink control channel according to another embodiment of the present invention.
- the execution body may be a base station, a receiver of a base station, or a function module/unit in a base station receiver.
- the method illustrated in FIG. 2 mainly includes step S201 and step S202, which is described in detail. As follows:
- the signal is a signal transmitted from the user equipment, transmitted to the base station via the wireless channel, and received by its air interface.
- the signal received by the base station air interface mainly includes at least one signal X transmitted by the user equipment through a Physical Uplink Control CHannel (PUCCH), in addition to the noise signal and the pilot signal.
- the signal X is a Q-order diagonal matrix, where the diagonal element is a signal X qJ transmitted by any one of the at least one user equipment through the PUCCH, and may be a formatl signal or a format2 signal in the 3GPP protocol.
- the modulation mode is QPSK, where / is the index of the OFDM symbol, and g is the index of the user equipment.
- the channel model used is based on the assumption that the channel model related to the user delay is assumed.
- the matrix W is an NX ⁇ -order matrix composed of the element «), and the element «) is a channel value of an antenna indexed by w in the user equipment indexed by g, and the matrix / ⁇ is a ⁇ ⁇ -order matrix composed of elements
- the element is a pilot sequence of subcarriers indexed in the user equipment indexed by g, wherein each row element in the matrix is orthogonal, and the correlation between each row element in the small interval matrix is 1/V.
- the matrix r is a ⁇ matrix consisting of r (g, w elements, r (g, w is a fading channel and a frequency-selective characteristic caused by delay), which can be regarded as a function of the user equipment. Since it is a user equipment The function is related to the user equipment, and the delay of each user equipment is different. Therefore, in this embodiment, the channel model is related to the user delay.
- the subcarrier index is n is the antenna index.
- a least squares (Least) of the received signal may be used.
- the Square, LS) algorithm performs an iterative calculation to solve the signal transmitted by at least one user equipment through the PUCCH.
- the received signal is iteratively calculated, and at least one user equipment is solved.
- the received signal may be iteratively calculated by using an MMSE algorithm to solve a signal sent by the at least one user equipment through the PUCCH. Due to the MMSE algorithm, the PUCCH detection operating point is relatively low. In the iterative process, the noise/influencing factors are considered:
- Update matrix, ie, - ⁇ r'
- the method of decoding the feedback by RM may be used. , Refactoring the reliability of the symbol.
- the method for detecting a signal sent on an uplink control channel is that, since the detection of a signal sent by a user equipment through a physical uplink control channel (PUCCH) is based on a hypothesis that a channel is related to a user delay,
- the method provided by the embodiment of the present invention considers the channel condition in the actual scenario, and the channel model and the actual situation are given in the case that the channel is a constant value within a time slot, that is, does not change with the subcarrier. The channel is close, thereby improving the detection performance of the PUCCH.
- FIG. 3 it is a schematic structural diagram of an apparatus for detecting a signal transmitted on an uplink control channel according to an embodiment of the present invention.
- the apparatus for detecting a signal transmitted on the uplink control channel as illustrated in FIG. 3 may be a base station or a base station receiver or a functional module therein, including a first processing module 301 and a first iteration module 302, where:
- the first processing module 301 is configured to process, by using a channel model related to the subcarrier, a signal received by the air interface to obtain a received signal.
- the signal is a signal transmitted from the user equipment and transmitted to the base station via the wireless channel and received by the air interface.
- the signal received by the base station air interface mainly includes the noise signal and the pilot signal.
- the signal sent by the user equipment through the physical uplink control channel PUCCH is a Q-th order diagonal matrix, where the diagonal element is a signal X q,n sent by any one of the at least one user equipment through the PUCCH, which may be a 3GPP protocol.
- the formatl signal or format2 signal in the modulation mode is QPSK, where / is the index of the OFDM symbol, and g is the index of the user equipment.
- the channel in the time slot is constant.
- the channel model used is based on the assumption that the channel model associated with the subcarrier, that is, the assumed
- the subcarrier related channel model is a function of the subcarrier index.
- the first iteration module 302 is configured to perform iterative calculation on the received signal to decode the signal X sent by the at least one user equipment through the PUCCH.
- each functional module is only an example, and may be configured according to requirements, such as corresponding hardware configuration requirements or
- the above-mentioned function allocation is completed by different functional modules, that is, the internal structure of the device for detecting the signal transmitted on the uplink control channel is divided into different functional modules to complete all or part of the above description.
- the corresponding functional modules in this embodiment may be implemented by corresponding hardware, or may be executed by corresponding hardware.
- the foregoing first processing module may have the foregoing implementation.
- the channel model associated with the subcarrier processes the signal transmitted by the plurality of user equipments through the PUCCH to obtain hardware for receiving the signal function, such as the first processor, or may be a general computer capable of executing the corresponding computer program to perform the foregoing functions.
- a processor or other hardware device; and the first iterative module, as described above, may be hardware having the function of performing the foregoing iterative calculation on the received signal to solve the signal sent by the at least one user equipment through the PUCCH, for example,
- An iterator may also be a general processor or other hardware device capable of executing a corresponding computer program to perform the aforementioned functions (the various embodiments provided in this specification may apply the above described principles).
- the first processing module 301 illustrated in FIG. 3 may include a first matrix operation unit 401, which is a device for detecting a signal transmitted on an uplink control channel, as shown in FIG. 4, according to another embodiment of the present invention.
- the matrix W is the Nx2 moment of the element Array
- matrix / ⁇ is a ⁇ matrix composed of elements
- matrix ⁇ is a matrix of r(fc) elements
- the channel value of the antenna, P(q, k) is the pilot sequence of the subcarrier indexed in the user equipment indexed by g
- the element r in the matrix (w is the fading channel and the frequency selection characteristic caused by the delay, It is related to the subcarriers, and is independent of the user equipment and the antenna, that is, all the user equipments and the antenna frequency selection are the same.
- the channels of all the user equipments are independent of the subcarriers.
- the matrix is introduced. After that, there are essential changes and improvements; it can be considered that the model in the prior art is only a special case of the embodiment, that is, the matrix ⁇ is a unit array.
- the first iterative module 302 illustrated in FIG. 3 or FIG. 4 may include a first iterative computing unit 501, as shown in FIG. 5-a or FIG. 5-b, which is provided on the detection uplink control channel according to another embodiment of the present invention.
- the first iterative calculation unit 501 is configured to perform an iterative calculation on the received signal by using a least squares LS algorithm to solve a signal sent by the at least one user equipment through the PUCCH.
- the receiving processing circuit domain of the receiver can be designed as follows:
- the supporting matrix ⁇ is a unit matrix, and the sum W can be obtained. , where, and W.
- X, 0 diag (W ° ⁇ ⁇ P* )diag (W °*W °* ) (Y 2 P* + ) / 2.
- the iterative calculation is performed, that is, the first iteration calculation unit 501 continuously updates the iteration using the LS method, including:
- ALS Alternating Least Square
- the first iteration module 302 illustrated in FIG. 3 or FIG. 4 may include a second iterative calculation unit 601, as shown in FIG. 6-a or FIG. 6-b, which is provided on the detection uplink control channel according to another embodiment of the present invention.
- the second iterative computing unit 601 is configured to perform an iterative calculation on the received signal by using a minimum mean squared error MMSE algorithm to solve the signal sent by the at least one user equipment through the PUCCH. Due to the MMSE algorithm, the PUCCH detection operating point is relatively low.
- the influence factors of noise/consideration are considered:
- ". Expresses the Hadamard product, which is a parameter related to noise/correlation.
- FIG. 7 is a schematic structural diagram of an apparatus for detecting a signal transmitted on an uplink control channel according to an embodiment of the present invention. For the convenience of description, only parts related to the embodiment of the present invention are shown.
- the apparatus for detecting a signal transmitted on an uplink control channel as illustrated in FIG. 7 may be a base station or a base station receiver or a functional module therein, and includes a second processing module 701 and a second iteration module 702, where:
- the second processing module 701 is configured to process, by using a channel model related to the user delay, the signal received by the air interface to obtain a received signal.
- the signal is a signal transmitted from the user equipment and transmitted to the base station via the wireless channel and received by the air interface.
- the signal received by the base station air interface includes, in addition to the noise signal and the pilot signal, at least one message sent by the user equipment through the PUCCH. number.
- the signal transmitted by the user equipment through the PUCCH is a Q-th order diagonal matrix, where the diagonal element is a signal X (g, /) transmitted by any one of the at least one user equipment through the PUCCH, which may be in the 3GPP protocol.
- the formatl signal or the format2 signal is modulated in the QPSK, where / is the index of the OFDM symbol, and g is the index of the user equipment.
- the second iteration module 702 is configured to perform an iterative calculation on the received signal to decode the signal X t sent by the at least one user equipment through the PUCCH.
- the channel in the time slot is constant.
- the channel model used is based on the assumption that the channel model related to the user delay is assumed.
- the channel model associated with user latency is a function of the user equipment.
- the second processing module 701 illustrated in FIG. 7 may include a second matrix operation unit 801, as shown in FIG. 8, which is a device for detecting a signal transmitted on an uplink control channel according to another embodiment of the present invention.
- the matrix w is an Nx2 order matrix composed of elements
- the element is a channel value of an antenna indexed in the user equipment indexed by g
- the matrix / ⁇ is a ⁇ ⁇ order matrix composed of elements
- the element is g a pilot sequence of subcarriers indexed in the indexed user equipment, where each row element in the matrix/ ⁇ in the cell is orthogonal, and the correlation between each row element in the small interval matrix is />/>
- T(q, k) is the frequency selection characteristic of the fading channel and the delay bow I, which can be regarded as a function of the user equipment. Since the function of the user equipment is related to the user equipment, and the delay of each user equipment is different, in this embodiment, the channel model is related to the user delay. In the element expression of the above matrix, it is a subcarrier index, which is an antenna index.
- the second iteration module 702 illustrated in FIG. 7 or FIG. 8 may include a third iterative calculation unit 901, as shown in FIG. 9-a or FIG. 9-b, which is provided on the detection uplink control channel according to another embodiment of the present invention.
- the third iterative calculation unit 901 is configured to perform iterative calculation on the received signal by using the LS algorithm, and solve the signal transmitted by the at least one user equipment through the PUCCH.
- the iterative calculation is performed, that is, the third iteration calculation unit 901 continuously updates the iteration using the method of the LS, including:
- Update W ie arg min
- it refers to the norm of the matrix element and (where the subscript "F " is the norm of the barrel", the upper right standard 2 refers to the norm squared, arg refers to the search for the matrix to minimize F.
- the signal X sent by the user equipment is obtained.
- the second iteration module 703 illustrated in FIG. 7 or FIG. 8 may include a fourth iterative calculation unit 1001, as shown in FIG. 10-a or FIG. 10-b, which is provided on the detection uplink control channel according to another embodiment of the present invention.
- the fourth iterative calculation unit 1001 is configured to perform iterative calculation on the received signal by using a minimum mean square error MMSE algorithm, and solve the problem that the at least one user equipment sends through the PUCCH.
- Signal X Due to the adoption of the MMSE algorithm, the PUCCH detection operating point is relatively low, and the fourth iterative calculation unit 1001 considers the influence factors of noise/in the iterative process:
- ".” indicates the Hadamard product, which is a parameter related to noise/correlation.
- the embodiment of the present invention further provides a receiver, including: an input device, an output device, a memory, and a processor; wherein the processor performs the following steps: processing a signal received by the air interface by using a channel model related to the subcarrier Obtaining a received signal, the channel model associated with the subcarrier is a function of a subcarrier index, and the signal includes at least one signal transmitted by the user equipment through the PUCCH, wherein the ⁇ is a Q-order diagonal matrix, and the diagonal element of the ⁇ a signal sent by the PUCCH to the user equipment of the at least one user equipment, where is an index of the OFDM symbol, and g is an index of the user equipment; performing iterative calculation on the received signal, And sending a signal ⁇ sent by the at least one user equipment through the PUCCH.
- a receiver including: an input device, an output device, a memory, and a processor; wherein the processor performs the following steps: processing a signal received by the air interface by using a channel model
- Another embodiment of the present invention further provides a receiver, including: an input device, an output device, a memory, and a processor; wherein the processor performs the following steps: receiving, by using a channel model related to a user delay, an air interface The signal is processed to obtain a received signal, and the received signal is iteratively calculated, and the signal sent by the at least one user equipment through the PUCCH is solved.
- An embodiment of the present invention further provides a receiver for a base station, including an input device, an output device, a memory, and a processor, and one or more programs, wherein one or more programs are stored in the memory and configured to be
- the one or more processors executing the one or more programs include instructions for performing the following operations:
- the signal received by the air interface is processed by using a channel model associated with the subcarrier to obtain a received signal.
- the channel model associated with the subcarrier is a function of a subcarrier index, and the signal includes at least one signal sent by the user equipment through the PUCCH.
- the ⁇ is a Q-order diagonal matrix, and the diagonal element of the ⁇ is a signal X(g, /) transmitted by any one of the at least one user equipment through the PUCCH, and the / is orthogonal
- An index of the frequency division multiplexed OFDM symbol, g is an index of the user equipment; performing an iterative calculation on the received signal to decode the signal X sent by the at least one user equipment through the PUCCH.
- the memory of the terminal further includes The following operations are: performing an iterative calculation on the received signal by using a least squares LS algorithm, and decoding a signal sent by the at least one user equipment through the PUCCH.
- the memory of the terminal further includes The operation instruction: performing an iterative calculation on the received signal by using a minimum mean square error MMSE algorithm, and decoding a signal sent by the at least one user equipment through the PUCCH.
- An embodiment of the present invention further provides a receiver for a base station, including an input device, an output device, a memory, and a processor, and one or more programs, wherein one or more programs are stored in the memory and configured to be
- the one or more processors executing the one or more programs include instructions for performing the following operations:
- the signal received by the air interface is processed by using a channel model related to the user delay to obtain a received signal.
- the channel model related to the user delay is a function of the user equipment, and the signal includes at least one signal sent by the user equipment through the PUCCH.
- the ⁇ is a Q-order diagonal matrix, and the diagonal element of the ⁇ is a signal X(g, /) transmitted by any one of the at least one user equipment through the PUCCH, and the / is an orthogonal frequency division complex Using the index of the OFDM symbol, g is the index of the user equipment;
- the memory of the terminal further includes the following operations.
- Instruction: Use matrix ⁇ , matrix and matrix r. r performs a matrix operation on the signal ⁇ to obtain wx ⁇ . r, the matrix w is an Nx2 order matrix composed of elements, and the matrix / ⁇ is a ⁇ ⁇ order matrix composed of elements, wherein each matrix of the matrix / ⁇ in the small area is orthogonal, small interval
- the correlation between each row element in the matrix / ⁇ is ⁇ />
- the matrix r is a ⁇ ⁇ matrix composed of r (g, fc) elements, the subcarrier index
- the M is an antenna Index, the channel value of the antenna indexed by the user equipment indexed by g, wherein the pilot sequence of the subcarrier indexed in the user equipment indexed by g, the r (g, w is The fading channel and the frequency selection characteristics caused by the delay.
- the memory of the terminal further includes The following operations are: performing an iterative calculation on the received signal by using a least squares LS algorithm, and decoding a signal sent by the at least one user equipment through the PUCCH.
- the memory of the terminal further includes The following operations are performed: performing an iterative calculation on the received signal by using a minimum mean squared error MMSE algorithm, and decoding a signal transmitted by the at least one user equipment through the PUCCH.
- Still another embodiment of the present invention provides a computer readable storage medium, which may be a computer readable storage included in the memory in the above embodiment.
- the storage medium may also be a computer readable storage medium that exists alone and is not assembled into the terminal.
- the computer readable storage medium stores one or more programs, the one or more programs being used by one or more processors to perform a method of detecting a signal transmitted on an uplink control channel, the method comprising:
- the signal received by the air interface is processed by using a channel model associated with the subcarrier to obtain a received signal.
- the channel model associated with the subcarrier is a function of a subcarrier index
- the signal includes at least one signal sent by the user equipment through the PUCCH.
- X t the ⁇ is a Q-order diagonal matrix
- the diagonal element of the ⁇ is a signal X(g, /) transmitted by any one of the at least one user equipment through the PUCCH, and the / is orthogonal An index of the frequency division multiplexed OFDM symbol, where g is an index of the user equipment; performing an iterative calculation on the received signal, and decoding the at least one user equipment to pass
- the channel model associated with the subcarrier is used for the at least one
- the matrix W is an N x Q-order matrix composed of elements
- the matrix / ⁇ is a ⁇ ⁇ -order matrix composed of elements
- the matrix ⁇ is an order matrix composed of r(fc) elements, a subcarrier index, where /1 is an antenna index, where is a channel value of an antenna indexed by the user equipment indexed by g, and the ⁇ , W is an index indexed by the user equipment in the index of g
- the pilot sequence of the carrier, the r(fc) is a frequency selective characteristic caused by the fading channel and the delay.
- the iterative calculation and the solution are performed on the received signal.
- the signal sent by the at least one user equipment by using the PUCCH includes: performing an iterative calculation on the received signal by using a least squares LS algorithm, and decoding a signal sent by the at least one user equipment by using a PUCCH.
- the iterative calculation and the solution are performed on the received signal.
- the received signal is iteratively calculated by using a minimum mean squared error MMSE algorithm to solve the signal X t transmitted by the at least one user equipment through the PUCCH.
- the embodiment of the present invention further provides a computer readable storage medium, which may be a computer readable storage medium included in the memory in the above embodiment; There is a computer readable storage medium that is not assembled into the terminal.
- the computer readable storage medium stores one or more programs, the one or more programs being used by one or more processors to perform a method of detecting a signal transmitted on an uplink control channel, the method comprising:
- the signal received by the air interface is processed by using a channel model related to the user delay to obtain a received signal.
- the channel model related to the user delay is a function of the user equipment, and the signal includes at least one signal sent by the user equipment through the PUCCH.
- the ⁇ is a Q-order diagonal matrix, and the diagonal element of the ⁇ is a signal X(g, /) transmitted by any one of the at least one user equipment through the PUCCH, and the / is an orthogonal frequency division complex Using the index of the OFDM symbol, g is the index of the user equipment;
- the channel model associated with the user delay is used for the at least A user equipment processes the signal sent by the PUCCH to obtain a received signal, including: using a matrix ⁇ , a matrix, and a matrix r according to w3 ⁇ 4 ⁇ .
- the matrix w is an N x Q-order matrix composed of elements
- the matrix / ⁇ is a ⁇ ⁇ -order matrix composed of elements, wherein each of the elements in the matrix / ⁇ in the small area is orthogonal
- the correlation between each row element in the matrix / ⁇ is ⁇ /> /
- the matrix r is a ⁇ ⁇ matrix composed of r (g, w elements, the subcarrier index
- the w is An antenna index, where is a channel value of an antenna indexed by M in the user equipment indexed by g, where P q, W is a pilot sequence of subcarriers indexed in the user equipment indexed by g, It is a frequency selective characteristic caused by a fading channel and delay.
- the iteratively calculating the received signal, and decoding the signal sent by the at least one user equipment by using the PUCCH includes: using least squares on the received signal
- the LS algorithm performs an iterative calculation to solve the signal X t sent by the at least one user equipment through the PUCCH.
- Decoding the signal sent by the at least one user equipment by using the PUCCH includes: performing an iterative calculation on the received signal by using a minimum mean square error MMSE algorithm, and decoding a signal X t sent by the at least one user equipment through the PUCCH.
- An embodiment of the present invention further provides a base station, which includes the apparatus for performing the method illustrated in FIG. 1 or FIG. 2, and the method for detecting a signal transmitted on an uplink control channel, or any of the foregoing embodiments, of any of FIGS. 3 to 10-b.
- a base station which includes the apparatus for performing the method illustrated in FIG. 1 or FIG. 2, and the method for detecting a signal transmitted on an uplink control channel, or any of the foregoing embodiments, of any of FIGS. 3 to 10-b.
- Computer storage medium or receiver Computer storage medium or receiver.
- the program may be stored in a computer readable storage medium, and the storage medium may include: Read Only Memory (ROM), Random Access Memory (RAM), disk or optical disk.
- ROM Read Only Memory
- RAM Random Access Memory
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Quality & Reliability (AREA)
- Mobile Radio Communication Systems (AREA)
- Radio Transmission System (AREA)
Abstract
本发明实施例提供一种检测上行控制信道上发送的信号的方法、装置和设备,以协调基站和用户设备的通信。所述方法包括:采用与子载波相关或与用户时延相关的的信道模型对空口接收到的信号Y
l 进行处理,得到接收信号Y
l ;对所述接收信号Y
l 进行迭代计算,解出所述至少一个用户设备通过PUCCH发送的信号X
l 。由于对用户设备通过物理上行控制信道PUCCH发送的信号的检测是基于信道与子载波或与用户时延相关的假设,因此,与现有技术在检测PUCCH时假设在一个时隙之内信道是恒值即不随着子载波发生变化相比,本发明实施例提供的方法考虑到实际场景下的信道状况,给出的信道模型与实际信道接近,从而提高了PUCCH的检测性能。
Description
一种检测上行控制信道上发送的信号的方法、 装置和设备 技术领域
本发明涉及移动通信领域,尤其涉及一种检测上行控制信道上发送的信号 的方法、 装置和设备。
背景技术
长期演进( Long Term Evolution, LTE )系统的物理上行控制信道( Physical Uplink Control CHannel, PUCCH )承载两种信息, 一种是非确认 /确认( Non ACKnowledge/ ACKnowledge , NACK/ACK )信号, 3GPP协议称之为 formatl , 一种是信道质量指示 (Channel Quality Indication, CQI ) 和预编码矩阵索引 ( Precoding Matrix Index, PMI )等信号, 3GPP协议称之为 format2信号。 format2 信号在两个时隙 (slot ) 内发送, 两个时隙分別处于不同频带。 每个时隙有两 个导频符号,其他符号为数据符号。编码后的信号用正交相移键控(Orthogonal Phase Shift Key , QPSK ) 调制到 10 个正交频分复用 ( Orthogonal Frequency-Division Multiplexing, OFDM )符号。 每个 OFDM符号有 12个子 载波, 通过计算机产生的序列 (例如, 随机序列)将信号或导频符号扩频到 12个子载波。在基站设备这一侧的接收机,通过对 PUCCH的检测,解出 format2 信号或 formatl信号。
现有技术提供的一种方法是假设在一个时隙之内信道是恒值即不随着子 载波发生变化, 基于这一假设, 使用 tensor描述用户设备(User Equipment, UE )从发射到接收的过程, 然后用迭代的方法去检测和解调 PUCCH。
由于用户通过衰落信道以及 UE同步不准时会造成 PUCCH干扰, 多用户 间正交性会遭到破坏。 因此, 按照上述现有技术提供的方法, 即仍然认为在一 个时隙内信道是恒值的, 通过 tensor的方法, 在接收端检测时, 本质上并没有 改善性能。
发明内容
本发明实施例提供一种检测上行控制信道上发送的信号的方法、装置和设 备, 以协调基站和用户设备的通信。
第一方面, 提供了一种检测上行控制信道上发送的信号的方法, 包括: 采 用与子载波相关的信道模型对空口接收到的信号 进行处理, 得到接收信号
Yt , 所述与子载波相关的信道模型是子载波索引的函数, 所述信号 包括至少 一个用户设备通过 PUCCH发送的信号 所述 ^为 Q阶对角矩阵, 所述 ^的 对角元素为所述至少一个用户设备中任意一个用户设备通过 PUCCH发送的信 号 X (g, Z) , 所述 /为正交频分复用 OFDM符号的索引, g为用户设备的索引; 对所述接收信号 进行迭代计算, 解出所述至少一个用户设备通过 PUCCH发送的信号 X,。
在第一方面的第一种可能的实现方式中,所述采用与子载波相关的信道模 型对空口接收到的信号 进行处理, 得到接收信号 包括:
采用矩阵^、 矩阵 和矩阵 r按照 对所述信号 ^进行矩阵运算, 得 ^} Yt = WXlPlT , 所述矩阵 W是由元素 构成的 N x Q阶矩阵, 所述矩阵 /^是 由元素 构成的 β χ 阶矩阵, 所述矩阵 Γ是由 r(fc)元素构成的 阶矩 阵, 所述 为所述子载波索引, 所述 /1为天线索引, 所述 是以 g为索引的 用户设备中索引为 的天线的信道值,所述 Ρ , W是以 g为索引的用户设备中索 引为 的子载波的导频序列, 所述 r(w是衰落信道以及时延引起的频选特性。
结合第一方面或第一方面的第一种可能的实现方式,在第一方面的第二种 可能的实现方式中, 所述对所述接收信号 进行迭代计算, 解出所述至少一个 用户设备通过 PUCCH发送的信号 包括:
对所述接收信号 采用最小二乘 LS算法进行迭代计算,解出所述至少一个 用户设备通过 PUCCH发送的信号 Xt。
结合第一方面或第一方面的第一种可能的实现方式,在第一方面的第三种 可能的实现方式中, 所述对所述接收信号 进行迭代计算, 解出所述至少一个 用户设备通过 PUCCH发送的信号 包括:
对所述接收信号 采用最小均值平方误差 MMSE算法进行迭代计算, 解出 所述至少一个用户设备通过 PUCCH发送的信号 Xt。
第二方面, 提供了一种检测上行控制信道上发送的信号的方法, 包括: 采 用与用户时延相关的信道模型对空口接收到的信号 进行处理,得到接收信号
Yt , 所述与用户时延相关的信道模型是用户设备的函数, 所述信号 包括至少 一个用户设备通过 PUCCH发送的信号 所述 ^为 Q阶对角矩阵, 所述 ^的 对角元素为所述至少一个用户设备中任意一个用户设备通过 PUCCH发送的信 号 X qJ) , 所述 /为正交频分复用 OFDM符号的索引, g为用户设备的索引; 对所述接收信号 进行迭代计算, 解出所述至少一个用户设备通过
PUCCH发送的信号 X,。
在第二方面的第一种可能的实现方式中,所述采用与用户时延相关的信道 模型对空口接收到的信号 进行处理, 得到接收信号 包括:
采用矩阵 W、 矩阵 和矩阵 T按照 o τ对所述信号 Xt进行矩阵运算, 得到 =wx^。r , 所述矩阵 w是由元素 构成的 NxQ阶矩阵, 所述矩阵/^ 是由元素 构成的 β χ 阶矩阵, 其中, 小区内所述矩阵/ ^中每行元素之间 正交, 小区间所述矩阵/ ^中每行元素之间相关性为 ι/>/ , 所述矩阵 r是由 r(g,W元素构成的 β χ 阶矩阵, 所述 为子载波索引, 所述 w为天线索引, 所 述 是以 g为索引的用户设备中索引为 "的天线的信道值,所述 P q, W是以 g为索引的用户设备中索引为 的子载波的导频序列,所述 7^, W是衰落信道以 及时延引起的频选特性。
结合第二方面或第二方面的第一种可能的实现方式,在第二方面的第二种 可能的实现方式中, 所述对所述接收信号 进行迭代计算, 解出所述至少一个 用户设备通过 PUCCH发送的信号 包括:
对所述接收信号 采用最小二乘 LS算法进行迭代计算,解出所述至少一个 用户设备通过 PUCCH发送的信号 Xt。
结合第二方面或第二方面的第一种可能的实现方式,在第二方面的第三种 可能的实现方式中, 所述对所述接收信号 进行迭代计算, 解出所述至少一个 用户设备通过 PUCCH发送的信号 包括:
对所述接收信号 采用最小均值平方误差 MMSE算法进行迭代计算, 解出 所述至少一个用户设备通过 PUCCH发送的信号 Xt。
第三方面, 提供了一种检测上行控制信道上发送的信号的装置, 包括: 第 一处理模块,用于采用与子载波相关的信道模型对空口接收到的信号 进行处
理, 得到接收信号 所述与子载波相关的信道模型是子载波索引的函数, 所 述信号 包括至少一个用户设备通过 PUCCH发送的信号 Xt , 所述 ^为 Q阶对 角矩阵, 所述 ^的对角元素为所述至少一个用户设备中任意一个用户设备通 过 PUCCH发送的信号 X (g, Z) ,所述 /为正交频分复用 OFDM符号的索引, g为用 户设备的索引;
第一迭代模块, 用于对所述接收信号 进行迭代计算, 解出所述至少一个 用户设备通过 PUCCH发送的信号 Xt。
在第三方面的第一种可能的实现方式中, 所述第一处理模块包括: 第一矩阵运算单元, 用于采用矩阵 w、 矩阵 和矩阵 r按照 w r对所述 信号 X,进行矩阵运算, 得到 =w¾^r , 所述矩阵 w是由元素 构成的 Nx2阶矩阵, 所述矩阵 /^是由元素 构成的 β χ 阶矩阵, 所述矩阵 Γ是由 r(w元素构成的 阶矩阵, 所述 为所述子载波索引, 所述 w为天线索引, 所述 n)是以 g为索引的用户设备中索引为 w的天线的信道值,所述 Ρ , k)是 以 g为索引的用户设备中索引为 的子载波的导频序列, 所述 r(w是衰落信道 以及时延引起的频选特性。
结合第三方面或第三方面的第一种可能的实现方式,在第三方面的第二种 可能的实现方式中, 所述第一迭代模块包括:
第一迭代计算单元,用于对所述接收信号 采用最小二乘 LS算法进行迭代 计算, 解出所述至少一个用户设备通过 PUCCH发送的信号 ^。
结合第三方面或第三方面的第一种可能的实现方式,在第三方面的第三种 可能的实现方式中, 所述第一迭代模块包括:
第二迭代计算单元, 用于对所述接收信号 采用最小均值平方误差 MMSE 算法进行迭代计算, 解出所述至少一个用户设备通过 PUCCH发送的信号 ^。
第四方面, 提供了一种检测上行控制信道上发送的信号的装置, 包括: 第 二处理模块,用于采用与用户时延相关的信道模型对空口接收到的信号 进行 处理, 得到接收信号 所述与用户时延相关的信道模型是用户设备的函数, 所述信号 包括至少一个用户设备通过 PUCCH发送的信号 ^ , 所述 ^为 Q阶 对角矩阵, 所述 的对角元素为所述至少一个用户设备中任意一个用户设备
通过 PUCCH发送的信号 X (g, Z) ,所述 /为正交频分复用 OFDM符号的索引, q为 用户设备的索引;
第二迭代模块, 用于对所述接收信号 进行迭代计算, 解出所述至少一个 用户设备通过 PUCCH发送的信号 Xt。
在第四方面的第一种可能的实现方式中, 所述第二处理模块包括: 第二矩阵运算单元, 用于采用矩阵 W、 矩阵 和矩阵 Γ按照 W¾^。r对所 述信号 ^进行矩阵运算,得到 = 。Γ , 所述矩阵 W是由元素 构成的 Nx2阶矩阵, 所述矩阵/ ^是由元素 构成的 阶矩阵, 其中, 小区内所 述矩阵 /^中每行元素之间正交, 小区间所述矩阵 /^中每行元素之间相关性为 , 所述矩阵 Γ是由 7^, w元素构成的 β χ 阶矩阵, 所述 为子载波索引, 所述《为天线索引,所述 是以 g为索引的用户设备中索引为《的天线的信 道值,所述 是以 g为索引的用户设备中索引为 的子载波的导频序列,所 述 7^, W是衰落信道以及时延引起的频选特性。
结合第四方面或第四方面的第一种可能的实现方式,在第四方面的第二种 可能的实现方式中, 所述第二迭代模块包括:
第三迭代计算单元,用于对所述接收信号 采用最小二乘 LS算法进行迭代 计算, 解出所述至少一个用户设备通过 PUCCH发送的信号 ^。
结合第四方面或第四方面的第一种可能的实现方式,在第四方面的第三种 可能的实现方式中, 所述第二迭代模块包括:
第四迭代计算单元, 用于对所述接收信号 采用最小均值平方误差 MMSE 算法进行迭代计算, 解出所述至少一个用户设备通过 PUCCH发送的信号 ^。
第五方面, 提供一种计算机存储介质, 所述计算机存储介质可存储有程 序,该程序执行时包括第一方面或第一方面的第一至第三任意种可能的实现方 式所述的步骤或第二方面或第二方面的第一至第三任一种可能的实现方式所 述的步骤。
第六方面, 提供了一种接收机, 包括: 输入装置、 输出装置、 存储器和处 理器; 其中, 所述处理器执行如下步骤: 采用与子载波相关的信道模型对空口 接收到的信号 进行处理, 得到接收信号 所述与子载波相关的信道模型是
子载波索引的函数, 所述信号 包括至少一个用户设备通过 PUCCH发送的信 号 所述 为 Q阶对角矩阵, 所述 的对角元素为所述至少一个用户设备 中任意一个用户设备通过 PUCCH发送的信号 X q, l、 , 所述 /为正交频分复用 OFDM符号的索引, g为用户设备的索引;
对所述接收信号 进行迭代计算, 解出所述至少一个用户设备通过
PUCCH发送的信号 X,。
第七方面, 提供了一种接收机, 包括: 输入装置、 输出装置、 存储器和处 理器; 其中, 所述处理器执行如下步骤: 采用与用户时延相关的信道模型对空 口接收到的信号 进行处理, 得到接收信号 所述与用户时延相关的信道模 型包括衰落信道以及时延引起的频选特性,所述信号 包括至少一个用户设备 通过 PUCCH发送的信号 ^进行处理, 得到接收信号 所述 ^为 Q阶对角矩 阵, 所述 ^的对角元素为所述至少一个用户设备中任意一个用户设备通过 PUCCH发送的信号 X (g, Z) ,所述 /为正交频分复用 OFDM符号的索引, g为用户 设备的索引;
对所述接收信号 进行迭代计算, 解出所述至少一个用户设备通过
PUCCH发送的信号 X,。
第八方面,提供一种基站, 包括第三方面或第三方面的第一至第三任一种 可能的实施方式或第四方面或第四方面的第一至第三任一种可能的实施方式 或第五方面所述的存储介质或第六方面或第七方面所述的接收机。
从上述本发明实施例可知, 由于对用户设备通过物理上行控制信道
PUCCH发送的信号的检测是基于信道与子载波或与用户时延相关的假设, 因 此, 与现有技术在检测 PUCCH时假设在一个时隙之内信道是恒值即不随着子 载波发生变化相比, 本发明实施例提供的方法考虑到实际场景下的信道状况, 给出的信道模型与实际信道接近, 从而提高了 PUCCH的检测性能。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对现有技术或实施例 描述中所需要使用的附图作筒单地介绍,显而易见地, 下面描述中的附图仅仅 是本发明的一些实施例,对于本领域技术人员来讲,还可以如这些附图获得其
他的附图。
图 1是本发明实施例提供的检测上行控制信道上发送的信号的方法流程示 意图;
图 2是本发明另一实施例提供的检测上行控制信道上发送的信号的方法流 程示意图;
图 3是本发明实施例提供的检测上行控制信道上发送的信号的装置结构示 意图;
图 4是本发明另一实施例提供的检测上行控制信道上发送的信号的装置结 构示意图;
图 5-a是本发明另一实施例提供的检测上行控制信道上发送的信号的装置 结构示意图;
图 5-b是本发明另一实施例提供的检测上行控制信道上发送的信号的装置 结构示意图;
图 6-a是本发明另一实施例提供的检测上行控制信道上发送的信号的装置 结构示意图;
图 6-b是本发明另一实施例提供的检测上行控制信道上发送的信号的装置 结构示意图;
图 7是本发明另一实施例提供的检测上行控制信道上发送的信号的装置结 构示意图;
图 8是本发明另一实施例提供的检测上行控制信道上发送的信号的装置结 构示意图;
图 9-a是本发明另一实施例提供的检测上行控制信道上发送的信号的装置 结构示意图;
图 9-b是本发明另一实施例提供的检测上行控制信道上发送的信号的装置 结构示意图;
图 10-a是本发明另一实施例提供的检测上行控制信道上发送的信号的装 置结构示意图;
图 10-b是本发明另一实施例提供的检测上行控制信道上发送的信号的装
置结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清 楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而不是 全部的实施例。基于本发明中的实施例, 本领域技术人员所获得的所有其他实 施例, 都属于本发明保护的范围。
请参阅附图 1 , 是本发明实施例提供的检测上行控制信道上发送的信号的 方法流程示意图, 其执行主体可以^^站、基站的接收机或者基站接收机中的 功能模块 /单元。 附图 1示例的方法主要包括步骤 S101和步骤 S102, 详细说明如 下:
S101 , 采用与子载波相关的信道模型对空口接收到的信号 进行处理,得 到接收信号
信号 是从用户设备发送、 经过无线信道传送到基站, 由其空口接收的信 号。基站空口接收到的信号 除了包含噪声信号以及导频信号之外, 主要包含 至少一个用户设备通过物理上行控制信道( Physical Uplink Control CHannel,
PUCCH )发送的信号 X,。
在本发明实施例中, 用户设备通过物理上行控制信道 PUCCH发送的信号 是 Q阶对角矩阵,其中, 的对角元素为所述至少一个用户设备中任意一个 用户设备通过 PUCCH发送的信号 Χ ) , 可以是 3GPP协议中的 formatl信号或 format2信号, 其调制方式是可以是正交相移键控 (Quadrature Phase Shift
Keying, QPSK ), X (q, l)中的 /为正交频分复用 ( Orthogonal Frequency Division
Multiplexing, OFDM )符号的索引, g为用户设备的索引。
与现有技术假设时隙内信道是恒值不同,在本发明实施例中,在解出信号 前, 所采用的信道模型是基于与子载波相关的信道模型这一假设, 即所假 设的与子载波相关的信道模型是子载波索引的函数。具体地,可以采用矩阵 W、 矩阵 和矩阵 Γ , 按照 w r对信号 ^进行矩阵运算, 得到 = ^Γ。 此处, 矩阵 W是由元素 «)构成的 N X β阶矩阵,矩阵 /^是由元素 Ρ , W构成的 β X 阶矩阵, 矩阵 Γ是由 Γ 元素构成的 阶矩阵, 而 为子载波索引, w为天
线索引, 是以 g为索引的用户设备中索引为 w的天线的信道值, ^, )是 以 g为索引的用户设备中索引为 的子载波的导频序列,矩阵 r中的元素 T(k)是 衰落信道以及时延引起的频选特性, 其与子载波有关, 而与用户设备、 天线无 关, 即所有用户设备和天线频选都是一样的。相对于现有技术认为所有用户设 备的信道与子载波无关, 本发明实施例中, 引入矩阵 Γ后有了本质的变化和改 进; 可以认为现有技术中的模型只是本发明实施例的一种特殊情况, 即矩阵 Γ 是单位阵。
S102, 对接收信号 进行迭代计算, 解出至少一个用户设备通过物理上行 控制信道发送的信号 。
作为本发明对接收信号 进行迭代计算, 解出至少一个用户设备通过 PUCCH发送的信号 X,的一个实施例, 可以对接收信号 采用最小二乘(Least Square, LS) 算法进行迭代计算, 解出至少一个用户设备通过 PUCCH发送的 信号 。 在说明这一方法前, 先对 PUCCH的时隙 (slot)做基本介绍。 一个 PUCCH的时隙内总共有 7个 OFDM符号, 编号为 2的 OFDM符号和编号为 6的 OFDM符号是指 PUCCH format2上的导频符号, 且是已知的符号。 基于在本 发明实施例中矩阵 Γ与用户设备无关的假设,接收机的接收处理电路域可以按 如下设计: H殳矩阵 Γ为单位阵, 可以得到 ^。和 W。, 其中, X,。和 W。的上角标 表 示 迭 代 次 数 , 0 代 表 初 始 值 , W。 = )/2 ,
X = diag (W °Ύι P* )diag (W °*W °* ) (F2 P* +Y6 )/2。
由获得的 ^。和 W。进行迭代计算, 即,使用 LS的方法不断更新迭代, 包括: 更新 Γ, 即 argmin Y-Wi lXi lPT 更新 W , 即 arg minllF -W'X!― 1 PT 1 更新 X, , 即 argmin Y-W'X'PT^
χ'
上述计算式中, "|| II " 是指矩阵元素的范数和(其中, 下标 "F" 是范数 的筒写), 右上标 2指范数为平方, arg是指寻找到矩阵 Γ使 F最小。 最后根据 迭代次数, 求出用户设备发送的信号 。
在实际系统中, 可以用具体的方法实现上述求解过程, 以交替最小二乘
( Alternating Least Square , ALS )算法为例进行说明如下:
更新矩阵 Γ , 即, 假设 Pt =W!- 1 X:- 1 Ρι , 贝1 J Γ!· = diag P*Y) / diag (^(^ )(^));
1=1 I 1=1
更新矩阵 w, 即, 假设 =x:- ^r, 则 =^^¾*/ ¾ ;
1=1 I 1=1
更新矩阵 X, ,即,假设 = ,则: = 0Τ·*1Τ·)。 , Rt = diagiW^Y^*) ,
Xt =ΜΤ 。 上述计算式中, "。,, 表示 Hadamard乘积。 作为本发明对接收信号 进行迭代计算, 解出至少一个用户设备通过 PUCCH发送的信号 Xt的另一实施例, 可以对所述接收信号 采用最小均值平 方误差( Minimum Mean Square Error, MMSE )算法进行迭代计算, 解出所述 至少一个用户设备通过 PUCCH发送的信号 ^。 由于采用 MMSE算法, PUCCH 检测工作点比较低, 在迭代过程中, 考虑噪声 /的影响因素:
X, =R,/(M, +A/)。 上述计算式中, "。,, 表示 Hadamard乘积, 是与噪声 /相关 的参数。
从上述本发明实施例提供的检测上行控制信道上发送的信号的方法可知, 由于对用户设备通过物理上行控制信道 PUCCH发送的信号的检测是基于信道 与子载波相关的假设, 因此, 与现有技术在检测 PUCCH时假设在一个时隙之 内信道是恒值即不随着子载波发生变化相比,本发明实施例提供的方法考虑到 实际场景下的信道状况,给出的信道模型与实际信道接近,从而提高了 PUCCH 的检测性能。
请参阅附图 2, 是本发明另一实施例提供的检测上行控制信道上发送的信 号的方法流程示意图, 其执行主体可以是基站、基站的接收机或者基站接收机 中的功能模块 /单元。 附图 2示例的方法主要包括步骤 S201和步骤 S202, 详细说
明如下:
S201 , 采用与用户时延相关的信道模型对空口接收到的信号 进行处理, 得到接收信号
与前述附图 1的示例类似, 在本实施例中, 信号 是从用户设备发送、 经 过无线信道传送到基站, 由其空口接收的信号。基站空口接收到的信号 除了 包含噪声信号以及导频信号之外,主要包含至少一个用户设备通过物理上行控 制信道( Physical Uplink Control CHannel, PUCCH )发送的信号 X,。 信号 X,是 Q阶对角矩阵, 其中, 的对角元素为所述至少一个用户设备中任意一个用户 设备通过 PUCCH发送的信号 X qJ、 , 可以是 3GPP协议中的 formatl信号或 format2信号, 其调制方式是 QPSK, 中的 /为 OFDM符号的索引, g为用 户设备的索引。
与现有技术假设时隙内信道是恒值不同,在本发明实施例中,在解出信号 前, 所采用的信道模型是基于与用户时延相关的信道模型这一假设, 即所 假设的与用户时延相关的信道模型是用户设备的函数。 具体地, 采用矩阵^、 矩阵 和矩阵 Γ按照 ^。 对信号 ^进行矩阵运算, 得到 = ws^。r。 此处, 矩阵 W是由元素 «)构成的 N X β阶矩阵, 元素 «)是以 g为索引的用户设 备中索引为 w的天线的信道值, 矩阵 /^是由元素 构成的 β χ 阶矩阵, 元 素 是以 g为索引的用户设备中索引为 的子载波的导频序列,其中, 小区 内矩阵 中每行元素之间正交, 小区间矩阵 中每行元素之间相关性为 1/V , 矩阵 r是由 r(g,w元素构成的 βχ 阶矩阵, r(g,w是衰落信道以及时延引起的 频选特性, 可以筒单地视为是用户设备的函数。 由于 是用户设备的函数 即与用户设备相关, 而每个用户设备的时延是不同的, 因此, 在本实施例中, 信道模型与用户时延相关。在上述矩阵的元素表达式中, 为子载波索引, n为 天线索引。
S202, 对接收信号 进行迭代计算, 解出至少一个用户设备通过 PUCCH 发送的信号 。
作为本发明对接收信号 进行迭代计算, 解出至少一个用户设备通过 PUCCH发送的信号 X,的一个实施例, 可以对接收信号 采用最小二乘(Least
Square, LS) 算法进行迭代计算, 解出至少一个用户设备通过 PUCCH发送的 信号 。 一个 PUCCH的时隙内总共有 7个 OFDM符号, 编号为 2的 OFDM符号 和编号为 6的 OFDM符号是指 PUCCH format2上的导频符号, 且是已知的符 号。 基于在本发明实施例中矩阵 Γ与用户设备及用户时延相关的假设, 接收机 的接收处理电路域可以按如下设计: 假设矩阵 Γ为单位阵, 可以得到 X,。和 W。, 其中, 。和 W。的上角标表示迭代次数, 0代表初始值, W。 =(;Τ2Ρ2* + ;Τ6Ρ6*)/2, Χ° = diag (W °Ύι P* )diag (W °*W °* ) (Y2 P* + )/2。
由获得的 ^。和 W。进行迭代计算, 即,使用 LS的方法不断更新迭代, 包括: 更新 Γ, 即 argmin Y-Wi lXi lPT 更新 W , 即 arg min|y _ W ! X !- 1 PT 1 更新 X, , 即 argmin| Y-W'X'P 上述计算式中, "H 是指矩阵元素的范数和, 其中, 下标 "F" 是范数 的筒写, 右上标 2指范数为平方, arg是指寻找到矩阵 Γ使 F最小。 最后根据迭代次数, 求出用户设备发送的信号 。 需要说明的是,本实施例中是假设每个用户的频域变化只是因为不同时延 引起的。 设每个用户的时延为 , 则每个用户 r(g,:) = [e ;'2 [M-1]]。 在更新矩阵 Γ 时, 假设 =wi-1xi-1pl, 通过非线性估计方法得到由于信道和时延引起的矩阵 i …… ½] = argmin(t( 。 - )°
...... 'a 1=1
在上述过程之后, 在实际系统中, 可以用具体的方法实现上述求解过程, 以 ALS算法为例进行说明如下:
更新矩阵 Γ , 即, tH9i P{ =W!- 1 X:- 1 Ρ{ , 贝' J Γ!· = diag P*Y) / diag (∑(^ )(^));
1=1 I 1=1 更新矩阵 w, 即, 4 i殳 =x:- ^r', 则 ιΤ =^^a*/ e ,;
1=1 I 1=1
更新矩阵 X, ,即, 殳设 =Ρ,Γ!·,贝1 J: Ml = T*W!)。( *), R{ =diag(Wi*YlP*) , Xl =M^R 上述计算式中, "。" 表示 Hadamard乘积。
作为本发明对接收信号 进行迭代计算, 解出至少一个用户设备通过
PUCCH发送的信号 的另一实施例, 可以对所述接收信号 采用 MMSE算法 进行迭代计算, 解出所述至少一个用户设备通过 PUCCH发送的信号 。 由于 采用 MMSE算法, PUCCH检测工作点比较低, 在迭代过程中, 考虑噪声 /的影 响因素:
更 新 矩 阵 Γ , 即 , 假 设 = w i-1 x i-1pl , 则
Γ! + I);
更新矩阵 即, 假设 = - ^r' , 则
1=1 I 1=1
Xl = Rl l{Ml + l) . 上述计算式中, "。" 表示 Hadamard乘积, 是与噪声 /相关 的参数。
需要说明的是, 在上述实施例中, 为了提升符号反馈的可靠性, 加快迭代 收敛的速度, 提升低信噪比情况下的检测性能, 在更新 ^这一步, 可以用 RM 译码反馈的方法, 重构 提升符号的可靠性。
从上述本发明实施例提供的检测上行控制信道上发送的信号的方法可知, 由于对用户设备通过物理上行控制信道 PUCCH发送的信号的检测是基于信道 与用户时延相关的假设, 因此, 与现有技术在检测 PUCCH时假设在一个时隙 之内信道是恒值即不随着子载波发生变化相比,本发明实施例提供的方法考虑 到实际场景下的信道状况, 给出的信道模型与实际信道接近, 从而提高了 PUCCH的检测性能。
请参阅附图 3, 是本发明实施例提供的检测上行控制信道上发送的信号的 装置结构示意图。 为了便于说明, 仅仅示出了与本发明实施例相关的部分。 附 图 3示例的检测上行控制信道上发送的信号的装置可以是基站或基站接收机或 者其中的功能模块, 其包括第一处理模块 301和第一迭代模块 302, 其中:
第一处理模块 301 , 用于采用与子载波相关的信道模型对空口接收到的信 号 进行处理, 得到接收信号
信号 是从用户设备发送、 经过无线信道传送到基站, 由其空口接收的信 号。基站空口接收到的信号 除了包含噪声信号以及导频信号之外, 主要包含
至少一个用户设备通过物理上行控制信道( Physical Uplink Control CHannel, PUCCH )发送的信号 ^。 用户设备通过物理上行控制信道 PUCCH发送的信号 是 Q阶对角矩阵,其中, 的对角元素为所述至少一个用户设备中任意一个 用户设备通过 PUCCH发送的信号 X q,n , 可以是 3GPP协议中的 formatl信号或 format2信号, 其调制方式是 QPSK, 中的 /为 OFDM符号的索引, g为用 户设备的索引。 与现有技术假设时隙内信道是恒值不同, 在本实施例中, 在解 出信号 ^前, 所采用的信道模型是基于与子载波相关的信道模型这一假设, 即所假设的与子载波相关的信道模型是子载波索引的函数。
第一迭代模块 302, 用于对所述接收信号 进行迭代计算, 解出所述至少 一个用户设备通过 PUCCH发送的信号 X,。
需要说明的是, 以上附图 3示例的检测上行控制信道上发送的信号的装置 的实施方式中, 各功能模块的划分仅是举例说明, 实际应用中可以根据需要, 例如相应硬件的配置要求或者软件的实现的便利考虑,而将上述功能分配由不 同的功能模块完成,即将所述检测上行控制信道上发送的信号的装置的内部结 构划分成不同的功能模块, 以完成以上描述的全部或者部分功能。 而且, 实际 应用中, 本实施例中的相应的功能模块可以是由相应的硬件实现,也可以由相 应的硬件执行相应的软件完成, 例如, 前述的第一处理模块, 可以是具有执行 前述采用与子载波相关的信道模型对所述多个用户设备通过 PUCCH发送的信 号 ^进行处理, 得到接收信号 功能的硬件, 例如第一处理器, 也可以是能够 执行相应计算机程序从而完成前述功能的一般处理器或者其他硬件设备;再如 前述的第一迭代模块, 可以是具有执行前述对所述接收信号 进行迭代计算, 解出所述至少一个用户设备通过 PUCCH发送的信号 ^功能的硬件, 例如第一 迭代器,也可以是能够执行相应计算机程序从而完成前述功能的一般处理器或 者其他硬件设备(本说明书提供的各个实施例都可应用上述描述原则)。
附图 3示例的第一处理模块 301可以包括第一矩阵运算单元 401 , 如附图 4 所示本发明另一实施例提供的检测上行控制信道上发送的信号的装置。第一矩 阵运算单元 401用于采用矩阵 W、 矩阵 Pi和矩阵 τ按照 w r对所述信号 xt进 行矩阵运算, 得到 = wx^r。 此处, 矩阵 W是由元素 构成的 Nx2阶矩
阵, 矩阵 /^是由元素 构成的 βχ 阶矩阵, 矩阵 Γ是由 r(fc)元素构成的 阶矩阵, 而 为子载波索引, 为天线索引, 是以 g为索引的用户 设备中索引为 的天线的信道值, P(q, k)是以 g为索引的用户设备中索引为 的 子载波的导频序列, 矩阵 Γ中的元素 r(w是衰落信道以及时延引起的频选特 性, 其与子载波有关, 而与用户设备、 天线无关, 即所有用户设备和天线频选 都是一样的。相对于现有技术认为所有用户设备的信道与子载波无关, 本实施 例中, 引入矩阵 Γ后有了本质的变化和改进; 可以认为现有技术中的模型只是 本实施例的一种特殊情况, 即矩阵 Γ是单位阵。
附图 3或附图 4示例的第一迭代模块 302可以包括第一迭代计算单元 501 ,如 附图 5-a或附图 5-b所示本发明另一实施例提供的检测上行控制信道上发送的信 号的装置。 第一迭代计算单元 501用于对所述接收信号 采用最小二乘 LS算法 进行迭代计算, 解出所述至少一个用户设备通过 PUCCH发送的信号 。 一个 PUCCH的时隙内总共有 7个 OFDM符号, 编号为 2的 OFDM符号和编号为 6的 OFDM符号是指 PUCCH format2上的导频符号, 且是已知的符号。 基于在本 实施例中矩阵 Γ与用户设备无关的假设,接收机的接收处理电路域可以按如下 设计: 支设矩阵 Γ为单位阵, 可以得到 和 W。, 其中, 和 W。的上角标表示 迭 代 次 数 , 0 代 表 初 始 值 , W。 = Ρ6* ) / 2 ,
X,0 = diag (W °Ύι P* )diag (W °*W °* ) (Y2 P* + )/ 2。
由获得的 。和 W。进行迭代计算, 即, 第一迭代计算单元 501使用 LS的方 法不断更新迭代, 包括:
更新 T , 即 arg mm Y - W !- 1 X !- 1 PT !
r
更新 W , 即 arg min|y _ W ! X !- 1 PT 1 更新 X, , 即 arg min Y - W' X 'PT1
χ'
上述计算式中, "|| II " 是指矩阵元素的范数和(其中, 下标 "F" 是范数 的筒写), 右上标 2指范数为平方, arg是指寻找到矩阵 Γ使 F最小。 最后根据 迭代次数, 求出用户设备发送的信号 X,。
在实际系统中, 第一迭代计算单元 501可以用具体的方法实现上述求解过 程, 以交替最小二乘( Alternating Least Square, ALS )算法为例进行说明如下: 更新矩阵 Γ , 即, 假设 Pt =W!- 1 X:- 1 Ρι , 贝1 J Γ!· = diag P*Y) I diag (^(P* )(P{));
1=1 I 1=1 更新矩阵 即, 4 i殳 = - ^r', 则 =^^¾*/ ¾ ;
1=1 I 1=1
更新矩阵 X, ,即,假设 ή = ,则: = 0Τ·*ίΤ·)。( ) , Rt = diagiW^Y^) ,
Xt =ΜΤ 。 上述计算式中, "。,, 表示 Hadamard乘积。
附图 3或附图 4示例的第一迭代模块 302可以包括第二迭代计算单元 601 ,如 附图 6-a或附图 6-b所示本发明另一实施例提供的检测上行控制信道上发送的信 号的装置。 第二迭代计算单元 601用于对接收信号 采用最小均值平方误差 MMSE算法进行迭代计算, 解出所述至少一个用户设备通过 PUCCH发送的信 号 。 由于采用 MMSE算法, PUCCH检测工作点比较低, 在第二迭代计算单 元 601的迭代过程中, 考虑噪声 /的影响因素:
更 新 矩 阵 Γ , 即 , 假 设 = wi-1xi-1pl , 则
Γ! + I);
更新矩阵 w , 即, 殳 = χί 'Ρ,τ' , 则 = +λΐ);
1=1 I 1=1
更新矩阵 X, ,即, 殳设 = ,则: Μι = (Wi*Wi)o(PlPl*) , R{ =diag(WiyiPl") , Xt =Rl/(Ml + I) 0 上述计算式中, "。" 表示 Hadamard乘积, 是与噪声 /相关 的参数。
请参阅附图 7, 是本发明实施例提供的检测上行控制信道上发送的信号的 装置结构示意图。 为了便于说明, 仅仅示出了与本发明实施例相关的部分。 附 图 7示例的检测上行控制信道上发送的信号的装置可以是基站或基站接收机或 者其中的功能模块, 其包括第二处理模块 701和第二迭代模块 702, 其中:
第二处理模块 701 , 用于采用与用户时延相关的信道模型对空口接收到的 信号 进行处理, 得到接收信号
与前述附图 3类似, 在本实施例中, 信号 是从用户设备发送、 经过无线 信道传送到基站, 由其空口接收的信号。基站空口接收到的信号 除了包含噪 声信号以及导频信号之外, 主要包含至少一个用户设备通过 PUCCH发送的信
号 。 用户设备通过 PUCCH发送的信号 ^是 Q阶对角矩阵, 其中, 的对角 元素为所述至少一个用户设备中任意一个用户设备通过 PUCCH发送的信号 X (g,/),可以是 3GPP协议中的 formatl信号或 format2信号,其调制方式是 QPSK, 中的 /为 OFDM符号的索引, g为用户设备的索引。
第二迭代模块 702, 用于对所述接收信号 进行迭代计算, 解出所述至少 一个用户设备通过 PUCCH发送的信号 Xt。
与现有技术假设时隙内信道是恒值不同,在本发明实施例中,在解出信号 前, 所采用的信道模型是基于与用户时延相关的信道模型这一假设, 即所 假设的与用户时延相关的信道模型是用户设备的函数。
附图 7示例的第二处理模块 701可以包括第二矩阵运算单元 801 , 如附图 8 所示本发明另一实施例提供的检测上行控制信道上发送的信号的装置。第二矩 阵运算单元 801用于采用矩阵 w、 矩阵 和矩阵 r按照 。r对信号 进行矩 阵运算, 得到 = 。r。 此处, 矩阵 w是由元素 构成的 Nx2阶矩阵, 元素 是以 g为索引的用户设备中索引为 的天线的信道值, 矩阵/ ^是由 元素 构成的 β χ 阶矩阵,元素 是以 g为索引的用户设备中索引为 的子载波的导频序列, 其中, 小区内矩阵 /^中每行元素之间正交, 小区间矩阵 中每行元素之间相关性为 ι/>/ , 矩阵 r是由 r(g,w元素构成的 βχ 阶矩阵,
T(q, k)是衰落信道以及时延弓 I起的频选特性, 可以筒单地视为是用户设备的函 数。 由于 是用户设备的函数即与用户设备相关, 而每个用户设备的时延 是不同的, 因此, 在本实施例中, 信道模型与用户时延相关。 在上述矩阵的元 素表达式中, 为子载波索引, 为天线索引。
附图 7或附图 8示例的第二迭代模块 702可以包括第三迭代计算单元 901 ,如 附图 9-a或附图 9-b所示本发明另一实施例提供的检测上行控制信道上发送的信 号的装置。第三迭代计算单元 901用于对接收信号 采用 LS算法进行迭代计算, 解出至少一个用户设备通过 PUCCH发送的信号 ^。一个 PUCCH的时隙内总共 有 7个 OFDM符号, 编号为 2的 OFDM符号和编号为 6的 OFDM符号是指 PUCCH format2上的导频符号, 且是已知的符号。基于在本实施例中矩阵 Γ与用户设备 及用户时延相关的假设,接收机的接收处理电路域可以按如下设计: 假设矩阵
Γ为单位阵, 可以得到 Χ,。和 W。, 其中, X,。和 W。的上角标表示迭代次数, 0代 表初始值, W。 = (F2 P* + Y6 Pi) 12 , X° = diag (W °Ύι P* )diag (W °*W °* ) (Y2 P* +Y6P*)/20 由获得的 。和 W。进行迭代计算, 即, 第三迭代计算单元 901使用 LS的方 法不断更新迭代, 包括:
更新 T , 即 arg mm Y-W !- 1 X !- 1 PT !
r
更新 W , 即 arg min|y _ W ! X !- 1 PT 1 更新 X, , arg mini Y-W'X'P 上述计算式中, 是指矩阵元素的范数和(其中, 下标 "F" 是范数 的筒写), 右上标 2指范数为平方, arg是指寻找到矩阵 Γ使 F最小。 最后根据 迭代次数, 求出用户设备发送的信号 X,。
需要说明的是,本实施例中是假设每个用户的频域变化只是因为不同时延 引起的。 设每个用户的时延为 , 则每个用户 Γ(^) = [ [ω-1]]。 第三迭代计算 单元 901在更新矩阵 r时, iii§iPl =wi-1xi-1Pl ,通过非线性估计方法得到由于信 道和时延引起的矩阵
[t, …… te] = argmin( (^。 - )°
...... ½ 1=1
在上述过程之后, 在实际系统中, 可以用具体的方法实现上述求解过程, 以 ALS算法为例进行说明如下:
更新矩阵 Γ , 即, 假设 Pt =W!- 1 X:- 1 Pt , 贝' J Γ!· = diag ( P*Y) / diag (^(^ )(^));
1=1 I 1=1 更新矩阵 w, 即, 殳 = - ^r', 则 =^^¾*/ ¾ ;
1=1 I 1=1
更新矩阵 X, ,即,假设 ή = ,则: = 0Τ·*ίΤ·)。( ) , Rt = diagiW^Y^) ,
Xl =M; 。 上述计算式中, "。,, 表示 Hadamard乘积。
附图 7或附图 8示例的第二迭代模块 703可以包括第四迭代计算单元 1001 , 如附图 10-a或附图 10-b所示本发明另一实施例提供的检测上行控制信道上发送 的信号的装置。 第四迭代计算单元 1001用于对接收信号 采用最小均值平方误 差 MMSE算法进行迭代计算, 解出所述至少一个用户设备通过 PUCCH发送的
信号 X,。 由于采用 MMSE算法, PUCCH检测工作点比较低, 第四迭代计算单 元 1001在迭代过程中, 考虑噪声 /的影响因素:
更新矩阵 X, ,即, 殳设 = ,则: Ml = {W i*W i ) o {PlP; ) , Rt = diag(Wi*YlP*) , Xl = Rl l{Ml + l) . 上述计算式中, "。" 表示 Hadamard乘积, 是与噪声 /相关 的参数。
需要说明的是, 上述装置各模块 /单元之间的信息交互、 执行过程等内容, 由于与本发明方法实施例基于同一构思,其带来的技术效果与本发明方法实施 例相同, 具体内容可参见本发明方法实施例中的叙述, 此处不再赘述。
本发明实施例还提供一种接收机, 包括: 输入装置、 输出装置、 存储器和 处理器; 其中, 所述处理器执行如下步骤: 采用与子载波相关的信道模型对空 口接收到的信号 进行处理, 得到接收信号 所述与子载波相关的信道模型 是子载波索引的函数, 所述信号 包括至少一个用户设备通过 PUCCH发送的 信号 所述 ^为 Q阶对角矩阵, 所述 ^的对角元素为所述至少一个用户设 备中任意一个用户设备通过 PUCCH发送的信号 , 所述 /为正交频分复用 OFDM符号的索引, g为用户设备的索引; 对所述接收信号 进行迭代计算, 解出所述至少一个用户设备通过 PUCCH发送的信号 ^。
本发明另一实施例还提供一种接收机, 包括: 输入装置、 输出装置、 存储 器和处理器; 其中, 所述处理器执行如下步骤: 采用与用户时延相关的信道模 型对空口接收到的信号 进行处理, 得到接收信号 对所述接收信号 进行 迭代计算, 解出所述至少一个用户设备通过 PUCCH发送的信号 。
本发明实施例还提供一种基站的接收机, 包括有输入装置、 输出装置、 存 储器和处理器, 以及一个或者一个以上的程序, 其中一个或者一个以上程序存 储于存储器中,且经配置以由一个或者一个以上处理器执行述一个或者一个以 上程序包含用于进行以下操作的指令:
采用与子载波相关的信道模型对空口接收到的信号 进行处理,得到接收 信号^ 所述与子载波相关的信道模型是子载波索引的函数, 所述信号 包括 至少一个用户设备通过 PUCCH发送的信号 Xt ,所述 ^为 Q阶对角矩阵,所述 ^ 的对角元素为所述至少一个用户设备中任意一个用户设备通过 PUCCH发送的 信号 X(g,/), 所述 /为正交频分复用 OFDM符号的索引, g为用户设备的索引; 对所述接收信号 进行迭代计算, 解出所述至少一个用户设备通过 PUCCH发送的信号 X,。
殳上述为第一种可能的实施方式,则在第一种可能的实施方式作为基石出 而提供的第二种可能的实施方式中, 所述终端的存储器中,还包含用于执行以 下操作的指令: 采用矩阵^、 矩阵 和矩阵 r按照 对所述信号 ^进行矩 阵运算, 得到 =wx^r , 所述矩阵 w是由元素 构成的 Nxe阶矩阵, 所 述矩阵 /^是由元素 P q, k)构 的 Q x K阶矩阵, 所述矩阵 Γ是由 r(fc)元素构成的 阶矩阵, 所述 为所述子载波索引, 所述 w为天线索引, 所述 是以 g为索引的用户设备中索引为 的天线的信道值, 所述 Ρ , W是以 g为索引的用 户设备中索引为 的子载波的导频序列, 所述 r(fc)是衰落信道以及时延引起的 频选特性。
假设上述为第二种可能的实施方式,则在第一种或第二种可能的实施方式 作为基础而提供的第三种可能的实施方式中, 所述终端的存储器中,还包含用 于执行以下操作的指令: 对所述接收信号 采用最小二乘 LS算法进行迭代计 算, 解出所述至少一个用户设备通过 PUCCH发送的信号 。
假设上述为第二种可能的实施方式,则在第一或者第二可能的实施方式作 为基石出而提供的第四种可能的实施方式中, 所述终端的存储器中,还包含用于 执行以下操作的指令: 对所述接收信号 采用最小均值平方误差 MMSE算法进 行迭代计算, 解出所述至少一个用户设备通过 PUCCH发送的信号 ^。
本发明实施例还提供一种基站的接收机, 包括有输入装置、 输出装置、 存 储器和处理器, 以及一个或者一个以上的程序, 其中一个或者一个以上程序存 储于存储器中,且经配置以由一个或者一个以上处理器执行述一个或者一个以 上程序包含用于进行以下操作的指令:
采用与用户时延相关的信道模型对空口接收到的信号 进行处理,得到接 收信号 所述与用户时延相关的信道模型是用户设备的函数, 所述信号 包 括至少一个用户设备通过 PUCCH发送的信号 所述 ^为 Q阶对角矩阵, 所 述 ^的对角元素为所述至少一个用户设备中任意一个用户设备通过 PUCCH发 送的信号 X(g,/), 所述 /为正交频分复用 OFDM符号的索引, g为用户设备的索 引;
对所述接收信号 进行迭代计算, 解出所述至少一个用户设备通过 PUCCH发送的信号 X,。
殳上述为第一种可能的实施方式,则在第一种可能的实施方式作为基石出 而提供的第二种可能的实施方式中, 所述终端的存储器中,还包含用于执行以 下操作的指令: 采用矩阵^、 矩阵 和矩阵 r按照 。r对所述信号 ^进行 矩阵运算, 得到 =wx^。r , 所述矩阵 w是由元素 构成的 Nx2阶矩阵, 所述矩阵/ ^是由元素 构成的 β χ 阶矩阵, 其中, 小区内所述矩阵/ ^中每 行元素之间正交, 小区间所述矩阵/ ^中每行元素之间相关性为 ι/>/ , 所述矩 阵 r是由 r(g, fc)元素构成的 βχ 阶矩阵,所述 为子载波索引,所述 M为天线索 引, 所述 是以 g为索引的用户设备中索引为 的天线的信道值, 所述 是以 g为索引的用户设备中索引为 的子载波的导频序列, 所述 r(g,w是 衰落信道以及时延引起的频选特性。
假设上述为第二种可能的实施方式,则在第一种或第二种可能的实施方式 作为基础而提供的第三种可能的实施方式中, 所述终端的存储器中,还包含用 于执行以下操作的指令: 对所述接收信号 采用最小二乘 LS算法进行迭代计 算, 解出所述至少一个用户设备通过 PUCCH发送的信号 ^。
支设上述为第二种可能的实施方式,则在第一或者第二可能的实施方式作 为基石出而提供的第四种可能的实施方式中, 所述终端的存储器中,还包含用于 执行以下操作的指令: 对所述接收信号 采用最小均值平方误差 MMSE算法进 行迭代计算, 解出所述至少一个用户设备通过 PUCCH发送的信号 ^。
作为另一方面, 本发明再一实施例还提供了一种计算机可读存储介质, 该 计算机可读存储介质可以是上述实施例中的存储器中所包含的计算机可读存
储介质; 也可以是单独存在, 未装配入终端中的计算机可读存储介质。 所述计 算机可读存储介质存储有一个或者一个以上程序,所述一个或者一个以上程序 被一个或者一个以上的处理器用来执行一个检测上行控制信道上发送的信号 的方法, 所述方法包括:
采用与子载波相关的信道模型对空口接收到的信号 进行处理,得到接收 信号^ 所述与子载波相关的信道模型是子载波索引的函数, 所述信号 包括 至少一个用户设备通过 PUCCH发送的信号 Xt ,所述 ^为 Q阶对角矩阵,所述 ^ 的对角元素为所述至少一个用户设备中任意一个用户设备通过 PUCCH发送的 信号 X(g,/), 所述 /为正交频分复用 OFDM符号的索引, g为用户设备的索引; 对所述接收信号 进行迭代计算, 解出所述至少一个用户设备通过
PUCCH发送的信号 X,。
殳上述为第一种可能的实施方式,则在第一种可能的实施方式作为基石出 而提供的第二种可能的实施方式中,所述采用与子载波相关的信道模型对所述 至少一个用户设备通过 PUCCH发送的信号 ^进行处理, 得到接收信号 包 括: 采用矩阵^、 矩阵 和矩阵 r按照 w^^r对所述信号 ^进行矩阵运算, 得 ^} Yt = WXlPlT , 所述矩阵 W是由元素 构成的 N x Q阶矩阵, 所述矩阵 /^是 由元素 构成的 β χ 阶矩阵, 所述矩阵 Γ是由 r(fc)元素构成的 阶矩 阵, 所述 为所述子载波索引, 所述 /1为天线索引, 所述 是以 g为索引的 用户设备中索引为 的天线的信道值,所述 ρ , W是以 g为索引的用户设备中索 引为 的子载波的导频序列, 所述 r(fc)是衰落信道以及时延引起的频选特性。
假设上述为第二种可能的实施方式,则在第一种或第二种可能的实施方式 作为基础而提供的第三种可能的实施方式中, 所述对所述接收信号 进行迭代 计算, 解出所述至少一个用户设备通过 PUCCH发送的信号 , 包括: 对所述 接收信号 采用最小二乘 LS算法进行迭代计算,解出所述至少一个用户设备通 过 PUCCH发送的信号 。
殳上述为第二种可能的实施方式,则在第一种或第二种可能的实施方式 作为基础而提供的第四种可能的实施方式中, 所述对所述接收信号 进行迭代 计算, 解出所述至少一个用户设备通过 PUCCH发送的信号 , 包括: 对所述
接收信号 采用最小均值平方误差 MMSE算法进行迭代计算, 解出所述至少一 个用户设备通过 PUCCH发送的信号 Xt。
作为又一方面, 本发明再一实施例还提供了一种计算机可读存储介质, 该 计算机可读存储介质可以是上述实施例中的存储器中所包含的计算机可读存 储介质; 也可以是单独存在, 未装配入终端中的计算机可读存储介质。 所述计 算机可读存储介质存储有一个或者一个以上程序,所述一个或者一个以上程序 被一个或者一个以上的处理器用来执行一个检测上行控制信道上发送的信号 的方法, 所述方法包括:
采用与用户时延相关的信道模型对空口接收到的信号 进行处理,得到接 收信号 所述与用户时延相关的信道模型是用户设备的函数, 所述信号 包 括至少一个用户设备通过 PUCCH发送的信号 所述 ^为 Q阶对角矩阵, 所 述 ^的对角元素为所述至少一个用户设备中任意一个用户设备通过 PUCCH发 送的信号 X(g,/), 所述 /为正交频分复用 OFDM符号的索引, g为用户设备的索 引;
对所述接收信号 进行迭代计算, 解出所述至少一个用户设备通过
PUCCH发送的信号 X,。
殳上述为第一种可能的实施方式,则在第一种可能的实施方式作为基石出 而提供的第二种可能的实施方式中,所述采用与用户时延相关的信道模型对所 述至少一个用户设备通过 PUCCH发送的信号 进行处理, 得到接收信号 , 包括: 采用矩阵^、 矩阵 和矩阵 r按照 w¾^。r对所述信号 ^进行矩阵运算, 得到 = 。Γ , 所述矩阵 w是由元素 构成的 N x Q阶矩阵, 所述矩阵/^ 是由元素 构成的 β χ 阶矩阵, 其中, 小区内所述矩阵/ ^中每行元素之间 正交, 小区间所述矩阵/ ^中每行元素之间相关性为 ι/>/ , 所述矩阵 r是由 r(g,w元素构成的 βχ 阶矩阵, 所述 为子载波索引, 所述 w为天线索引, 所 述 是以 g为索引的用户设备中索引为 M的天线的信道值,所述 P q, W是以 g为索引的用户设备中索引为 的子载波的导频序列,所述 是衰落信道以 及时延引起的频选特性。
假设上述为第二种可能的实施方式,则在第一种或第二种可能的实施方式
作为基础而提供的第三种可能的实施方式中, 所述对所述接收信号 进行迭代 计算, 解出所述至少一个用户设备通过 PUCCH发送的信号 , 包括: 对所述 接收信号 采用最小二乘 LS算法进行迭代计算,解出所述至少一个用户设备通 过 PUCCH发送的信号 Xt。
4 设上述为第二种可能的实施方式,则在第一种或第二种可能的实施方式 作为基础而提供的第四种可能的实施方式中, 所述对所述接收信号 进行迭代 计算, 解出所述至少一个用户设备通过 PUCCH发送的信号 , 包括: 对所述 接收信号 采用最小均值平方误差 MMSE算法进行迭代计算, 解出所述至少一 个用户设备通过 PUCCH发送的信号 Xt。
本发明实施例还提供一种基站, 其包括执行附图 1或附图 2示例的方法、 附 图 3至 10-b任意一个示例的检测上行控制信道上发送的信号的装置或者上述实 施例的计算机存储介质或的接收机。
本领域普通技术人员可以理解上述实施例的各种方法中的全部或部分步 骤是可以通过程序来指令相关的硬件来完成,该程序可以存储于一计算机可读 存储介质中, 存储介质可以包括: 只读存储器(ROM, Read Only Memory ) 、 随机存取存储器(RAM, Random Access Memory ) 、 磁盘或光盘等。
以上对本发明实施例提供的一种异制式系统下的干扰协调方法、装置和设 阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时, 对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围 上均会有改变之处, 综上所述, 本说明书内容不应理解为对本发明的限制。
Claims
1、 一种检测上行控制信道上发送的信号的方法, 其特征在于, 所述方法 包括:
采用与子载波相关的信道模型对空口接收到的信号 进行处理,得到接收 信号 所述与子载波相关的信道模型是子载波索引的函数, 所述信号 包括 至少一个用户设备通过 PUCCH发送的信号 Xt ,所述 ^为 Q阶对角矩阵,所述 ^ 的对角元素为所述至少一个用户设备中任意一个用户设备通过 PUCCH发送的 信号 X (g,/), 所述 /为正交频分复用 OFDM符号的索引, g为用户设备的索引; 对所述接收信号 进行迭代计算, 解出所述至少一个用户设备通过 PUCCH发送的信号 X,。
2、 如权利要求 1所述的方法, 其特征在于, 所述采用与子载波相关的信道 模型对空口接收到的信号 进行处理, 得到接收信号 包括:
采用矩阵^、 矩阵 和矩阵 r按照 对所述信号 ^进行矩阵运算, 得 ^} Yt = WXlPlT , 所述矩阵 W是由元素 构成的 N x Q阶矩阵, 所述矩阵 /^是 由元素 构成的 βχ 阶矩阵, 所述矩阵 r是由 r(fc)元素构成的 阶矩 阵, 所述 为所述子载波索引, 所述 /1为天线索引, 所述 是以 g为索引的 用户设备中索引为 的天线的信道值,所述 ρ , W是以 为索引的用户设备中索 引为 的子载波的导频序列, 所述 r(w是衰落信道以及时延引起的频选特性。
3、 如权利要求 1或 2所述的方法, 其特征在于, 所述对所述接收信号 进 行迭代计算, 解出所述至少一个用户设备通过 PUCCH发送的信号 ^包括: 对所述接收信号 采用最小二乘 LS算法进行迭代计算,解出所述至少一个 用户设备通过 PUCCH发送的信号 Xt。
4、 如权利要求 1或 2所述的方法, 其特征在于, 所述对所述接收信号 进 行迭代计算, 解出所述至少一个用户设备通过 PUCCH发送的信号 ^包括: 对所述接收信号 采用最小均值平方误差 MMSE算法进行迭代计算, 解出 所述至少一个用户设备通过 PUCCH发送的信号 Xt。
5、 一种检测上行控制信道上发送的信号的方法, 其特征在于, 所述方法 包括:
采用与用户时延相关的信道模型对空口接收到的信号 进行处理,得到接 收信号 所述与用户时延相关的信道模型是用户设备的函数, 所述信号 包 括至少一个用户设备通过 PUCCH发送的信号 所述 ^为 Q阶对角矩阵, 所 述 ^的对角元素为所述至少一个用户设备中任意一个用户设备通过 PUCCH发 送的信号 X(g,/), 所述 /为正交频分复用 OFDM符号的索引, g为用户设备的索 引;
对所述接收信号 进行迭代计算, 解出所述至少一个用户设备通过 PUCCH发送的信号 X,。
6、 如权利要求 5所述的方法, 其特征在于, 所述采用与用户时延相关的信 道模型对空口接收到的信号 进行处理, 得到接收信号 包括:
采用矩阵 w、 矩阵 和矩阵 τ按照 o τ对所述信号 xt进行矩阵运算, 得到 = 。Γ , 所述矩阵 w是由元素 构成的 Nx Q阶矩阵, 所述矩阵/^ 是由元素 构成的 β χ 阶矩阵, 其中, 小区内所述矩阵/ ^中每行元素之间 正交, 小区间所述矩阵/ ^中每行元素之间相关性为 ι/>/ , 所述矩阵 r是由 r(g,w元素构成的 βχ 阶矩阵, 所述 为子载波索引, 所述 w为天线索引, 所 述 是以 g为索引的用户设备中索引为"的天线的信道值,所述 P q, W是以 g为索引的用户设备中索引为 的子载波的导频序列,所述 是衰落信道以 及时延引起的频选特性。
7、 如权利要求 5或 6所述的方法, 其特征在于, 所述对所述接收信号 进 行迭代计算, 解出所述至少一个用户设备通过 PUCCH发送的信号 ^包括: 对所述接收信号 采用最小二乘 LS算法进行迭代计算,解出所述至少一个 用户设备通过 PUCCH发送的信号 Xt。
8、 如权利要求 5或 6所述的方法, 其特征在于, 所述对所述接收信号 进 行迭代计算, 解出所述至少一个用户设备通过 PUCCH发送的信号 ^包括: 对所述接收信号 采用最小均值平方误差 MMSE算法进行迭代计算, 解出 所述至少一个用户设备通过 PUCCH发送的信号 Xt。
9、 一种检测上行控制信道上发送的信号的装置, 其特征在于, 所述装置 包括:
第一处理模块,用于采用与子载波相关的信道模型对空口接收到的信号 进行处理, 得到接收信号 所述与子载波相关的信道模型是子载波索引的函 数, 所述信号 包括至少一个用户设备通过 PUCCH发送的信号 ^ , 所述 ^为
Q阶对角矩阵,所述 的对角元素为所述至少一个用户设备中任意一个用户设 备通过 PUCCH发送的信号 X(g,/),所述 /为正交频分复用 OFDM符号的索引, q 为用户设备的索引;
第一迭代模块, 用于对所述接收信号 进行迭代计算, 解出所述至少一个 用户设备通过 PUCCH发送的信号 Xt。
10、 如权利要求 9所述的装置, 其特征在于, 所述第一处理模块包括: 第一矩阵运算单元, 用于采用矩阵 w、 矩阵 和矩阵 r按照 w r对所述 信号 X,进行矩阵运算, 得到 = w¾^r , 所述矩阵 w是由元素 构成的
Nx2阶矩阵, 所述矩阵 /^是由元素 构成的 β χ 阶矩阵, 所述矩阵 Γ是由 r(w元素构成的 阶矩阵, 所述 为所述子载波索引, 所述 w为天线索引, 所述 n)是以 g为索引的用户设备中索引为 M的天线的信道值,所述 Ρ , k)是 以 g为索引的用户设备中索引为 的子载波的导频序列, 所述 r(fc)是衰落信道 以及时延引起的频选特性。
11、 如权利要求 9或 10所述的装置, 其特征在于, 所述第一迭代模块包括: 第一迭代计算单元,用于对所述接收信号 采用最小二乘 LS算法进行迭代 计算, 解出所述至少一个用户设备通过 PUCCH发送的信号 ^。
12、 如权利要求 9或 10所述的装置, 其特征在于, 所述第一迭代模块包括: 第二迭代计算单元, 用于对所述接收信号 采用最小均值平方误差 MMSE 算法进行迭代计算, 解出所述至少一个用户设备通过 PUCCH发送的信号 ^。
13、 一种检测上行控制信道上发送的信号的装置, 其特征在于, 所述装置 包括:
第二处理模块,用于采用与用户时延相关的信道模型对空口接收到的信号 进行处理, 得到接收信号 所述与用户时延相关的信道模型是用户设备的 函数,所述信号 包括至少一个用户设备通过 PUCCH发送的信号 Xt ,所述 ^为 Q阶对角矩阵,所述 的对角元素为所述至少一个用户设备中任意一个用户设
备通过 PUCCH发送的信号 X(g,/),所述 /为正交频分复用 OFDM符号的索引, q 为用户设备的索引;
第二迭代模块, 用于对所述接收信号 进行迭代计算, 解出所述至少一个 用户设备通过 PUCCH发送的信号 Xt。
14、 如权利要求 13所述的装置, 其特征在于, 所述第二处理模块包括: 第二矩阵运算单元, 用于采用矩阵 W、 矩阵 和矩阵 Γ按照 W¾^。r对所 述信号 ^进行矩阵运算,得到 = 。Γ , 所述矩阵 W是由元素 构成的 Nx2阶矩阵, 所述矩阵/ ^是由元素 构成的 阶矩阵, 其中, 小区内所 述矩阵 /^中每行元素之间正交, 小区间所述矩阵 /^中每行元素之间相关性为 , 所述矩阵 r是由 7^, w元素构成的 β χ 阶矩阵, 所述 为子载波索引, 所述 /1为天线索引,所述 是以 g为索引的用户设备中索引为 的天线的信 道值,所述 是以 g为索引的用户设备中索引为 的子载波的导频序列,所 述 7^, W是衰落信道以及时延引起的频选特性。
15、如权利要求 13或 14所述的装置,其特征在于,所述第二迭代模块包括: 第三迭代计算单元,用于对所述接收信号 采用最小二乘 LS算法进行迭代 计算, 解出所述至少一个用户设备通过 PUCCH发送的信号 ^。
16、如权利要求 13或 14所述的装置,其特征在于,所述第二迭代模块包括: 第四迭代计算单元, 用于对所述接收信号 采用最小均值平方误差 MMSE 算法进行迭代计算, 解出所述至少一个用户设备通过 PUCCH发送的信号 ^。
17、 一种计算机存储介质, 其特征在于, 所述计算机存储介质可存储有程 序,该程序执行时包括权利要求 1至 4任意一项所述的步骤或权利要求 5至 8任一 项所述的步骤。
18、 一种接收机, 其特征在于, 包括: 输入装置、 输出装置、 存储器和处 理器;
其中, 所述处理器执行如下步骤:
采用与子载波相关的信道模型对空口接收到的信号 进行处理,得到接收 信号^ 所述与子载波相关的信道模型是子载波索引的函数, 所述信号 包括 至少一个用户设备通过 PUCCH发送的信号 ,所述 ^为 Q阶对角矩阵,所述 ^
的对角元素为所述至少一个用户设备中任意一个用户设备通过 PUCCH发送的 信号 X (g,/), 所述 /为正交频分复用 OFDM符号的索引, g为用户设备的索引; 对所述接收信号 进行迭代计算, 解出所述至少一个用户设备通过 PUCCH发送的信号 X,。
19、 一种接收机, 其特征在于, 包括: 输入装置、 输出装置、 存储器和处 理器;
其中, 所述处理器执行如下步骤:
采用与用户时延相关的信道模型对空口接收到的信号 进行处理,得到接 收信号 所述与用户时延相关的信道模型包括衰落信道以及时延引起的频选 特性,所述信号 包括至少一个用户设备通过 PUCCH发送的信号 ^进行处理, 得到接收信号 所述 为 Q阶对角矩阵, 所述 的对角元素为所述至少一个 用户设备中任意一个用户设备通过 PUCCH发送的信号 Χ ) , 所述 /为正交频 分复用 OFDM符号的索引, g为用户设备的索引;
对所述接收信号 进行迭代计算, 解出所述至少一个用户设备通过 PUCCH发送的信号 X,。
20、 一种基站, 其特征在于, 包括权利要求 9至 12或者权利要求 13至 16任 意一项所述的装置或权利要求 17所述的计算机存储介质或权利要求 18或 19所 述的接收机。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2013/077859 WO2014205646A1 (zh) | 2013-06-25 | 2013-06-25 | 一种检测上行控制信道上发送的信号的方法、装置和设备 |
CN201380000561.5A CN104396175B (zh) | 2013-06-25 | 2013-06-25 | 一种检测上行控制信道上发送的信号的方法、装置和设备 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2013/077859 WO2014205646A1 (zh) | 2013-06-25 | 2013-06-25 | 一种检测上行控制信道上发送的信号的方法、装置和设备 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014205646A1 true WO2014205646A1 (zh) | 2014-12-31 |
Family
ID=52140768
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2013/077859 WO2014205646A1 (zh) | 2013-06-25 | 2013-06-25 | 一种检测上行控制信道上发送的信号的方法、装置和设备 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN104396175B (zh) |
WO (1) | WO2014205646A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115941118B (zh) * | 2022-11-22 | 2024-03-26 | 西安空间无线电技术研究所 | 一种用于控制信道的rm码轻量化迭代译码系统及方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101917381A (zh) * | 2010-08-20 | 2010-12-15 | 西安电子科技大学 | 协作多点传输系统中小区间延迟差补偿方法 |
WO2011014840A1 (en) * | 2009-07-30 | 2011-02-03 | Qualcomm Incorporated | Efficient control channel decoding in comp communications |
CN102611522A (zh) * | 2011-01-25 | 2012-07-25 | 中兴通讯股份有限公司 | 数据重构方法及装置 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007103183A2 (en) * | 2006-03-01 | 2007-09-13 | Interdigital Technology Corporation | Method and apparatus for channel estimation in an orthogonal frequency division multiplexing system |
US8428165B2 (en) * | 2010-12-30 | 2013-04-23 | Mitsubishi Electric Research Laboratories, Inc. | Method and system for decoding OFDM signals subject to narrowband interference |
US8873467B2 (en) * | 2011-12-05 | 2014-10-28 | Ofinno Technologies, Llc | Control channel detection |
-
2013
- 2013-06-25 CN CN201380000561.5A patent/CN104396175B/zh not_active Expired - Fee Related
- 2013-06-25 WO PCT/CN2013/077859 patent/WO2014205646A1/zh active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011014840A1 (en) * | 2009-07-30 | 2011-02-03 | Qualcomm Incorporated | Efficient control channel decoding in comp communications |
CN101917381A (zh) * | 2010-08-20 | 2010-12-15 | 西安电子科技大学 | 协作多点传输系统中小区间延迟差补偿方法 |
CN102611522A (zh) * | 2011-01-25 | 2012-07-25 | 中兴通讯股份有限公司 | 数据重构方法及装置 |
Also Published As
Publication number | Publication date |
---|---|
CN104396175B (zh) | 2017-11-17 |
CN104396175A (zh) | 2015-03-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9544171B2 (en) | Zero insertion for ISI free OFDM reception | |
CN111937331A (zh) | 用于在无线通信系统中解码数据的方法和设备 | |
CN106817194B (zh) | 参考信号发送方法、接收方法和设备 | |
CN104272691B (zh) | 支持高级无线接收器的信令以及相关设备和方法 | |
EP2950478B1 (en) | Signal sending method and signal sending device | |
CN110401520B (zh) | 解调参考信号配置方法、装置、基站及用户设备 | |
TW201136215A (en) | Traffic-to-pilot ratio estimation for MIMO-OFDM system | |
KR20160129628A (ko) | 무선 통신 시스템에서 하향링크 채널 추정 장치 및 방법 | |
EP2382718A1 (en) | Methods and systems for co-channel interference cancellation in wireless networks | |
EP3499825B1 (en) | Method for transmitting signal, network device and terminal device | |
US20220015111A1 (en) | User pairing method and related device | |
WO2015192359A1 (zh) | 数据发送、接收方法、装置及设备 | |
RU2471298C2 (ru) | Способы и системы для выбора циклических задержек в оfdm-системах с множеством антенн | |
WO2010000104A1 (zh) | 一种长期演进系统的公共导频跳频方法 | |
TW202249456A (zh) | 用於數位後失真輔助的增強型解調參考訊號 | |
WO2017167158A1 (zh) | 导频配置信息的传输方法、装置及系统 | |
CN107005322A (zh) | 与多个无线通信装置同时通信 | |
KR102204393B1 (ko) | 무선랜 단말기의 구동 방법 | |
WO2022068684A1 (zh) | 相位噪声补偿方法及装置 | |
CN111869120A (zh) | 用于特定stbc预编码的发送器及方法 | |
WO2013155908A1 (zh) | 一种re检测方法及装置 | |
WO2014153980A1 (zh) | 一种接收信号处理方法和信号接收设备 | |
WO2014205646A1 (zh) | 一种检测上行控制信道上发送的信号的方法、装置和设备 | |
CN109150438A (zh) | 频域位置配置方法、基站、计算机可读介质及系统 | |
WO2017116292A1 (en) | Method and receiving node for detecting signals transmitted by multiple users |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13888206 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13888206 Country of ref document: EP Kind code of ref document: A1 |