TW201136215A - Traffic-to-pilot ratio estimation for MIMO-OFDM system - Google Patents

Traffic-to-pilot ratio estimation for MIMO-OFDM system Download PDF

Info

Publication number
TW201136215A
TW201136215A TW099113748A TW99113748A TW201136215A TW 201136215 A TW201136215 A TW 201136215A TW 099113748 A TW099113748 A TW 099113748A TW 99113748 A TW99113748 A TW 99113748A TW 201136215 A TW201136215 A TW 201136215A
Authority
TW
Taiwan
Prior art keywords
spaced
energy
channel matrix
received signal
whitened
Prior art date
Application number
TW099113748A
Other languages
Chinese (zh)
Inventor
yu-heng Huang
Brian Clarke Banister
Original Assignee
Qualcomm Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Inc filed Critical Qualcomm Inc
Publication of TW201136215A publication Critical patent/TW201136215A/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0426Power distribution
    • H04B7/0434Power distribution using multiple eigenmodes

Abstract

A method for estimating a traffic-to-pilot ratio (TPR) for a received signal is disclosed. The received signal is despatialized to obtain a despatialized received signal. A channel matrix is despatialized to obtain a despatialized channel matrix. The despatialized received signal is whitened to obtain a pre-whitened despatialized received signal. The despatialized channel matrix is whitened to obtain a pre-whitened despatialized channel matrix. The estimated TPR for the received signal is determined using the pre-whitened despatialized received signal and one or more pre-whitened despatialized channel estimation coefficients.

Description

201136215 六、發明說明: 優先權聲明 本案係關於並請求於2009年4月29日提出申請的、標201136215 VI. INSTRUCTIONS: PRIORITY STATEMENT This case is related to and requests the application for the application on April 29, 2009.

題爲「Traffic-to-pilot ratio estimation for MIMO-OFDM system」、第61/173,696號的美國臨時專利申請案的優先 權’該美國臨時專利申請案以引用之方式併入本文。 【發明所屬之技術領域】 本發明大體而言係關於通訊系統。更特定言之,本發明 係關於用於MIMO-OFDM系統的訊務引導頻比估計的系統 和方法。 【先前技術】 已廣泛使用了無線通訊系統來提供諸如語音、視訊、資 料等各種類型的通訊内容。該等系統可以是能夠支援多個 終端同時與一或多個基地台進行通訊的多工存取系統。 如本文所使用’術語「行動設備」代表可用於在無線通 訊網路上進行語音及/或資料通訊的電子設備。行動設備的 實例包括蜂巢式電話、個人數位助理(PDAs )、手持設備、 無線數據機、膝上型電腦、個人電腦等。或者,行動設備 亦可以稱爲存取終端、行動終端、用戶站、行動站、遠端 站、使用者終端、終端、用戶單元、使用者裝置等。 無線通訊網路可以爲若干行動設備提供通訊,每個行動 設備可以由基地台對其服務。或者,基地台亦可以稱爲存 取點、郎點B、或者一些其他術語。 4 201136215Priority is entitled "Traffic-to-pilot ratio estimation for MIMO-OFDM system", U.S. Provisional Patent Application Serial No. 61/173,696, which is incorporated herein by reference. TECHNICAL FIELD OF THE INVENTION The present invention generally relates to communication systems. More particularly, the present invention relates to systems and methods for traffic pilot frequency ratio estimation for MIMO-OFDM systems. [Prior Art] A wireless communication system has been widely used to provide various types of communication contents such as voice, video, and materials. The systems may be multiplex access systems capable of supporting multiple terminals to communicate with one or more base stations simultaneously. As used herein, the term "mobile device" refers to an electronic device that can be used for voice and/or data communication over a wireless communication network. Examples of mobile devices include cellular phones, personal digital assistants (PDAs), handheld devices, wireless data devices, laptops, personal computers, and the like. Alternatively, the mobile device may also be referred to as an access terminal, a mobile terminal, a subscriber station, a mobile station, a remote station, a user terminal, a terminal, a subscriber unit, a user device, and the like. A wireless communication network can provide communication for a number of mobile devices, each of which can be served by a base station. Alternatively, the base station may also be referred to as an access point, a point B, or some other terminology. 4 201136215

可能需要行動設備以估計該行動設備的關鍵功能的訊 務引導頻比(traffic-to-pilot ratio,TPR)。例如,行動設 備可以估計TPR以用於線性最小均方誤差(LMMSE)等 化器係數的計算、用於高階群集的解調、或者用於對數概 度比(LLR)的計算。習知的TPR估計演算法使用原始接 收信號。利用預白化的接收信號和有效通道可能使得TPR 估計的效能提高,尤其是當多個接收天線之間存在顯著相 關時亦是如此。 【發明内容】 本案揭示_____抄獨立項。 【實施方式】 本發明描述了 一種估計接收信號的訊務引導頻比(TpR ) 的方法。對接收信號進行去空間化,以得到去空間化的接 收信號。對通道矩陣進行去空間化,以得到去空間化的通 道矩陣。對去空間化的接收信號進行白化,以得到預白化 的去空間化接收信號。對去空間化的通道矩陣進行白化, 以得到預白化的去空間化通道矩陣。利用預白化的去空間 化接收信號以及一或多個預白化的去空間化通道估計係 數來決定接收信號的估計TPR。 決定接收信號的估計TPR可以包括估計預白化的去空 間化接收信號的訊務能量。可 J Μ彳古5十預白化的去空間化通 道矩陣的引導頻能量。可以利用 ^ 4⑺所估叶的訊務能量和所估 s十的引導頻能量來決定估計TPR。 201136215 估計訊務能直可包括決定總接收能量《可以決定總接收 能量中的雜訊分量。可以利用總接收能量和總接收能量中 的雜訊分量來決定訊務能量估計。可以對每個子訊框執行 決定訊務能量估計。 " 估計訊務能量可包括對實體下行鏈路控制通道 (PDCCH )進行解碼。亦可以決定資源區塊(rb )分配。 可以建立訊務能量估計的任務。可以從音調隨機存取記憶 體(RAM )中讀取所選擇的符號。可以利用白化器處理所 選擇的符號,以得到預白化的符號。可以利用預白化的符 说來估計訊務能量。 估計引導頻能量可包括將通道矩陣乘以預編碼矩陣,以 得到去空間化的通道矩陣。可以將去空間化的通道矩陣乘 以白化矩陣,以得到預白化的去空間化通道矩陣。可以利 用預白化的去空間化通道矩陣來決定引導頻能量估計。可 以對每個子訊框執行決定引導頻能量估計。 估计引導頻能量可包括對實體下行鏈路控制通道 (PDCCH )進行解碼。可以決定預編碼矩陣。可以建立引 導頻忐量估计的任務。可以將所估計的通道矩陣乘以預編 碼矩陣,並乘1 • 聚以白化矩陣’以產生預白化的有效通道矩 可以利用預白化的有效通道矩陣來估計引導頻能量。 車可以是所估計的通道矩陣。可以利用行動設備來 執行該方法。兮紅4 ^ _ 这仃動設備可以經配置以在多輸入多輸出 (ΜΙΜΟ )正交分頻多工(〇fdm )系統中工作。 本發B月亦p、+、 田延了 一種無線設備,其經配置以估計接收信 6 201136215 號的訊務引導頻比(TPR)。該無線設備包括處理器、與該 處理器進行電子通訊的記憶體’以及儲存在記憶體中的指 令。該專指令可由處理器執行來對接收信號進行去空間 化,以得到去空間化的接收信號。該等指令亦可由處理器 執行來對通道矩陣進行去空間化,以得到去空間化的通道 矩陣。該等指令可進一步由處理器執行來對去空間化的接 收信號進行白化,以得到預白化的去空間化接收信號。該 等指令亦可由處理器執行來對去空間化的通道矩陣進行 白化,以得到預白化的去空間化通道矩陣。該等指令可進 步由處理器執行來利用預白化的去空間化接收信號以 及一或多個預白化的去空間化通道估計係數來決定接收 信號的估計TPR。 本發明描述了 一種無線設備,其經配置以估計接收信號 的訊務引導頻tb(TPR)。該無線設備包括用於對接收信號 進行去空間化以得到去空間化的接收信號的構件。該無線 設備亦包括用於對通道矩陣進行去空間化以得到去空間 化的通道矩陣的構件。該無線設備進—步包括用於對該去 空間化的接收信號進行白化以得到預白化的去空間化接 收L號的構件。該無線設備亦包括用於對該去空間化的通 道矩陣進行白化以得到預白化的去空間化通道矩陣的構 件。該無線設備進-步包括用於利用該預白化的去空間化 接收信號以及一或多個預白化的去空間化通道估計係數 來決定接收信號的估計TpR的構件。 本發明亦描述了-種估計接收信號的訊務引導頻比 201136215 (ΤΡΙΟ @電腦程式産品。該電腦程式產品包括其上具有 指令的電腦可讀取媒體。該等指令包括用於對接收信號進 行去二間化以得到去空間化的接收信號的代碼。該等指令 亦包括用&對通道矩陣進行去空間化以得到去空間化的 通道矩陣的代碼。該等指令進—步包括用於對該去空間化 的接收信號進行白化以得到預白化的去空間化接收信號 的代碼m旨令亦包括用於對該去空間化的通道矩陣進 行白化以得到預白化的去空間化通道矩陣的代碼。該等指 令進一步包括用於利用該預白化的去空間化接收信號以 及一或多個預白化的去空間化通道估計係數來決定接收 #號的估計TPR的代碼。 圖1圖示一種具有多個無線設備的無線通訊系統1〇〇。 無線設備可以是基地台102、行動設備104等。基地台102 是與一或多個行動設備104進行通訊的站。基地台102亦 可以稱爲存取點、廣播發射機、 卽點B、演進型節點B等 並且可以包括存取點、廣播發射機、節點B、演進型節點 B等的一些或者全部功能。各基地台1〇2爲特定地理區域 提供通訊覆蓋《術語「細胞服務區」可以代表基地台 及/或其覆蓋區域,此取決於使用術語的上下文。 行動設備104亦可以稱爲終端、存取終端、使用者裝置 (UE)、用戶單元、站等並且可包括終端、存取終端、使 用者裝置(UE)、用戶單元、站等的一些或全部功能。行 動知備104可以是蜂巢式電話、個人數位助理(pda )、無 線設備、無線數據機、手持設備、膝上型電腦等。行動設 201136215 備104可以在任何給疋時刻在下行鍵路(⑽及/或上 行鏈路(UL) 106上與零個、一個或多個基地㈠進行 通訊°下㈣路1G8 (或前向鍵路)代表從基地台102到 行動設備1〇4的通訊鏈路,而上行鏈路1〇6(或反向鏈路) 代表從行動設備104到基地台1〇2的通訊鏈路。 無線通訊系統可以是能_由共享可用的系統資源(例 如,頻寬和發射功率)來支援與多個使用者進行通訊的多 工存取线。料多卫存取系㈣實例包括分碼多工存取 (CDMA)系統、分時多工存取(tdma)系統分頻多 工存取(FDMA)系統,正交分頻多工存取(〇fdma)系 統、以及分空間多1存取(SDMA)系統。在一種配置中, 該無線通訊系統可以是正交分頻多玉⑽dm)系統。 無線通訊系統1〇〇可以使用MIM〇。術語「多輸入多輸 出」(M!MG)代表在發射機和接收機處使用多個天線以改 進通訊效此。在發射機處,可以從不同的天線發射資料串 流的各個部分。在接收機處,可以藉由不同的天線接收資 料串流的不同部分,然後進行組合。術語「資料申流」和 「層」在本文中可以互換使用。 可以經由由前向鏈路和反向鏈路組成的無線鏈路上的 傳輸來進行無_(例如,多工存取“)中的行 動設備1G4和基地台1()2之間的通訊經由單輸入單 輸出(siso)、多輸入單輸出(MIS〇)、或者多輸入多輸 出(ΜΙΜΟ )系統建立該通訊鍵路。MIMQ系統包括分別 配備有多個(Μτ個)發射天線和多個(Mr個)接收天線 201136215 的發射機和接收機,以用於資料傳輸。SISO和MISO系統 是ΜΙΜΟ系統的特殊實例。若使用由多個發射和接收天線 建立的其他維度,該ΜΙΜΟ系統則可以提供改進的效能(例 如,更高的吞吐量、更大的容量、或者改進的可靠性)。 行動設備104可包括訊務引導頻比(TPR )估計模組 110。行動設備104可以使用訊務引導頻比(TPR )估計模 組11 0來估計TPR。行動設備1 04的若干關鍵功能皆需要 TPR。TPR對於計算線性最小均方誤差(LMMSE )等化器 係數可能是必需的。TPR對於高階群集(例如,1 6正交幅 度調制(QAM )和64-QAM )的解調亦可能是必需的。TPR 對於計算對數概度比(LLR )亦可能是必需的。LLR可以 用於渦輪解碼。 以下表 1總結了與諸如實體下行鏈路共享通道 (PDSCH)、實體下行鏈路控制通道(PDCCH)、實體混合 自動重發請求指示符通道(PHICH)、實體廣播通道(PBCH) 以及實體控制格式指示符通道(PCFICH)之類的所有實體 下行鏈路通道的TPR相關的編碼、調制以及ΜΙΜΟ傳輸模 式。該PDSCH與LMMSE、QAM及LLR的TPR密切相關。 因此,該PDSCH可能需要估計TPR。ΜΙΜΟ模式可能包括A mobile device may be required to estimate the traffic-to-pilot ratio (TPR) of the key functions of the mobile device. For example, the mobile device can estimate the TPR for calculation of linear minimum mean square error (LMMSE) equalizer coefficients, for high-order cluster demodulation, or for log-probability ratio (LLR) calculations. The conventional TPR estimation algorithm uses the original received signal. Utilizing pre-whitened received signals and active channels may increase the performance of the TPR estimate, especially when there is a significant correlation between multiple receive antennas. SUMMARY OF THE INVENTION This case reveals _____ copying independent items. [Embodiment] The present invention describes a method of estimating a traffic pilot frequency ratio (TpR) of a received signal. The received signal is de-spaced to obtain a de-spaced received signal. The channel matrix is de-spaced to obtain a de-spaced channel matrix. The de-spaced received signal is whitened to obtain a pre-whitened de-spaced received signal. The de-spaced channel matrix is whitened to obtain a pre-whitened de-spaced channel matrix. The estimated TPR of the received signal is determined using a pre-whitened de-spaced received signal and one or more pre-whitened de-spaced channel estimation coefficients. Determining the estimated TPR of the received signal may include estimating the traffic energy of the pre-whitened de-spaced received signal. The guiding frequency energy of the de-spatialized channel matrix of J. The estimated TPR can be determined by using the traffic energy of the estimated leaf of ^ 4(7) and the estimated pilot energy of s ten. 201136215 Estimating the traffic can directly include determining the total received energy "can determine the noise component of the total received energy. The traffic energy estimate can be determined using the total received energy and the noise component of the total received energy. A decision traffic energy estimate can be performed for each subframe. " Estimating traffic energy may include decoding a physical downlink control channel (PDCCH). It is also possible to determine the resource block (rb) allocation. The task of estimating traffic energy can be established. The selected symbol can be read from the tone random access memory (RAM). The selected symbol can be processed with a whitezer to obtain a pre-whitened symbol. The pre-whitened character can be used to estimate the energy of the traffic. Estimating the pilot energy can include multiplying the channel matrix by a precoding matrix to obtain a de-spaced channel matrix. The de-spaced channel matrix can be multiplied by a whitening matrix to obtain a pre-whitened de-spaced channel matrix. The pre-whitened de-spaced channel matrix can be used to determine the pilot energy estimate. A decision pilot energy estimate can be performed for each subframe. Estimating the pilot energy may include decoding the physical downlink control channel (PDCCH). The precoding matrix can be determined. A task can be established to estimate the pilot frequency. The estimated channel matrix can be multiplied by the precoding matrix and multiplied by 1 • Gathered to whiten the matrix ' to produce a pre-whitened effective channel moment. The pre-whitened effective channel matrix can be used to estimate the pilot frequency energy. The car can be the estimated channel matrix. This method can be performed using a mobile device. Blush 4 ^ _ This tilting device can be configured to operate in a multiple input multiple output (ΜΙΜΟ) orthogonal frequency division multiplexing (〇fdm) system. The B-month also p, +, and Tian Yan have a wireless device configured to estimate the traffic steering frequency ratio (TPR) of the received signal 6 201136215. The wireless device includes a processor, a memory for electronic communication with the processor, and instructions stored in the memory. The dedicated instruction is executable by the processor to de-space the received signal to obtain a de-spaced received signal. The instructions may also be executed by the processor to de-space the channel matrix to obtain a de-spaced channel matrix. The instructions are further executable by the processor to whiten the de-spaced received signal to obtain a pre-whitened de-spaced received signal. The instructions may also be executed by the processor to whiten the de-spaced channel matrix to obtain a pre-whitened de-spaced channel matrix. The instructions are further executable by the processor to determine the estimated TPR of the received signal using the pre-whitened de-spaced received signal and one or more pre-whitened de-spaced channel estimation coefficients. The present invention describes a wireless device configured to estimate a traffic pilot frequency tb (TPR) of a received signal. The wireless device includes means for de-spatializing the received signal to obtain a de-spaced received signal. The wireless device also includes means for de-spatializing the channel matrix to obtain a de-spaced channel matrix. The wireless device further includes means for whitening the de-spaced received signal to obtain a pre-whitened de-spaced receive L number. The wireless device also includes means for whitening the de-spaced channel matrix to obtain a pre-whitened de-spaced channel matrix. The wireless device further includes means for determining an estimated TpR of the received signal using the pre-whitened de-spaced received signal and one or more pre-whitened de-spatialized channel estimation coefficients. The present invention also describes a traffic pilot frequency ratio 201136215 for estimating received signals (ΤΡΙΟ@电脑程序产品. The computer program product includes computer readable media having instructions thereon. The instructions include for receiving signals Deblocking to obtain a code for de-spaced received signals. The instructions also include code for de-spatializing the channel matrix to obtain a de-spaced channel matrix. The instructions are further included for The code m for whitening the de-spaced received signal to obtain a pre-whitened de-spaced received signal also includes a de-spaced channel matrix for whitening the de-spaced channel matrix to obtain a pre-whitened The instructions further include code for determining an estimated TPR for receiving the ## using the pre-whitened de-spaced received signal and one or more pre-whitened de-spaced channel estimation coefficients. A wireless communication system of a plurality of wireless devices. The wireless device may be a base station 102, a mobile device 104, etc. The base station 102 is associated with one or more The station that the mobile device 104 is communicating with. The base station 102 may also be referred to as an access point, a broadcast transmitter, a defect B, an evolved Node B, etc. and may include an access point, a broadcast transmitter, a Node B, and an evolved Node B. Some or all of the functions, etc. Each base station provides a communication coverage for a specific geographic area. The term "cell service area" may refer to a base station and/or its coverage area, depending on the context in which the term is used. It may be referred to as a terminal, an access terminal, a User Equipment (UE), a subscriber unit, a station, etc. and may include some or all of the functions of a terminal, an access terminal, a User Equipment (UE), a subscriber unit, a station, etc. The device 104 can be a cellular phone, a personal digital assistant (PDA), a wireless device, a wireless data device, a handheld device, a laptop computer, etc. The mobile device 201136215 can be used at any given time in the downlink mode ((10) and/or Or communicating with zero, one or more bases (1) on the uplink (UL) 106. The (4) way 1G8 (or forward link) represents the pass from the base station 102 to the mobile device 1〇4. The link, while the uplink 1〇6 (or reverse link) represents the communication link from the mobile device 104 to the base station 1〇2. The wireless communication system can be capable of sharing the available system resources (eg, frequency Wide and transmit power) to support multiplexed access lines for communication with multiple users. Examples of multiple access systems (4) include code division multiplex access (CDMA) systems, time-division multiplex access (tdma) System frequency division multiplexing access (FDMA) system, orthogonal frequency division multiplexing access (〇dfd) system, and subspace multiple 1 access (SDMA) system. In one configuration, the wireless communication system can be positive Crossover frequency jade (10)dm) system. Wireless communication system can use MIM〇. The term “multiple input multiple output” (M! MG) stands for multiple antennas at the transmitter and receiver to improve communication efficiency. At the transmitter, various portions of the data stream can be transmitted from different antennas. At the receiver, different portions of the data stream can be received by different antennas and then combined. The terms "data flow" and "layer" are used interchangeably herein. The communication between the mobile device 1G4 and the base station 1() 2 in the _ (eg, multiplex access) can be performed via the transmission on the wireless link consisting of the forward link and the reverse link. The input single output (siso), multiple input single output (MIS〇), or multiple input multiple output (ΜΙΜΟ) system establishes the communication key. The MIMQ system includes multiple (Μτ) transmit antennas and multiple (Mr) The transmitter and receiver of the receiving antenna 201136215 for data transmission. The SISO and MISO systems are special examples of the system. If other dimensions established by multiple transmitting and receiving antennas are used, the system can provide improvements. Performance (eg, higher throughput, greater capacity, or improved reliability) The mobile device 104 can include a traffic steering frequency ratio (TPR) estimation module 110. The mobile device 104 can use traffic pilot frequencies The TPR is estimated by the TPR estimation module 110. Some key functions of the mobile device 104 require a TPR. The TPR may be necessary to calculate a linear minimum mean square error (LMMSE) equalizer coefficient. TPR may also be necessary for high-order clustering (eg, 16 Quadrature Amplitude Modulation (QAM) and 64-QAM) demodulation. TPR may also be necessary to calculate the Logarithmic Probability Ratio (LLR). LLR can be used for Turbo decoding. Table 1 below summarizes with, for example, the Physical Downlink Shared Channel (PDSCH), the Physical Downlink Control Channel (PDCCH), the Physical Hybrid Automatic Repeat Request Indicator Channel (PHICH), the Physical Broadcast Channel (PBCH), and The TPR-related coding, modulation, and chirp transmission modes of all physical downlink channels, such as the Entity Control Format Indicator Channel (PCFICH). The PDSCH is closely related to the TPR of LMMSE, QAM, and LLR. Therefore, the PDSCH may need to be estimated. TPR. This mode may include

空間多工b 空頻區塊編碼(SFBC ) ΜΙΜΟ。 下行鏈 路通道 編碼 調制 ΜΙΜΟ 模式 對UE的 功率控 制 TPR 影 響 PDSCH 渦輪 QPSK,1 空間多 是 LMMSE 10 201136215 6-QAM, 64-QAM 工 , SFBC ,QAM,L LR PDCCH 迴旋 QPSK SFBC 是 LMMSE ,LLR [LLR 位 元寬度] PHICH (3,1)重 複 BSKP SFBC 是 LMMSE PBCH 迴旋 QPSK SFBC 希 望 TPR 接 近 於 OdB LMMSE ,LLR [LLR 位 元寬度] PCFICH (32,2)區 塊 QPSK SFBC 希 望 TPR接 近 於 OdB LMMSE 表1 由於PDSCH對於LMMSE、QAM和LLR具有TPR影響, 所以PDSCH可能需要估計TPR。對於每個行動設備104,Spatial multiplex b Space Frequency Block Coding (SFBC) ΜΙΜΟ. Downlink channel coding modulation ΜΙΜΟ Mode power control TPR for UE affects PDSCH Turbo QPSK, 1 space is mostly LMMSE 10 201136215 6-QAM, 64-QAM, SFBC, QAM, L LR PDCCH Cyclotron QPSK SFBC is LMMSE, LLR [ LLR bit width] PHICH (3,1) Repeat BSKP SFBC is LMMSE PBCH Cyclotron QPSK SFBC Hope TPR is close to OdB LMMSE, LLR [LLR bit width] PCFICH (32,2) Block QPSK SFBC Hope TPR is close to OdB LMMSE Table 1 Since the PDSCH has a TPR impact on LMMSE, QAM, and LLR, the PDSCH may need to estimate the TPR. For each mobile device 104,

在所有OFDM符號中的不包含參考信號(RS)的PDSCH 資源元素(RE)中,PDSCH與RS的每資源元素能量(EPRE) 的比可以相等,並可用〜表示。對於每個行動設備104,In a PDSCH resource element (RE) that does not include a reference signal (RS) in all OFDM symbols, the ratio of PDSCH to RS per resource element energy (EPRE) may be equal and may be represented by 〜. For each mobile device 104,

在所有OFDM符號中的包含RS的PDSCH RE中,PDSCH 與RS EPRE的比可以相等,並可用屻表示。可以用更高層In PDSCH REs including RSs in all OFDM symbols, the ratio of PDSCH to RS EPRE may be equal and may be represented by 屻. Can use higher layers

Pb/ 來信號表示細胞服務區特定的比/心。 11 201136215 圖2是圖示用於本系統和方法的UE 204的方塊圖。圖2 的UE 204可以是圖1的行動設備1〇4的一種配置。UE 204 可以包括PDSCH與RS EPRE的比212。UE 204可包括參 考信號(RS) 216。RS 216亦可以稱爲引導頻信號。 UE 204亦可以包括接收信號2 1 8。接收信號2 1 8可以表 示爲,其中A:是OFDM符號内部的音調索引,且/是 子訊框内部的OFDM符號索引。 UE 204可以包括估計的通道矩陣220。訊務引導頻比估 計模組2 1 0可利用接收信號21 8和估計的通道矩陣220產 生訊務引導頻比估計222。圖2的訊務引導頻比估計模組 21 0可以是圖1的訊務引導頻比估計模組丨丨〇的一種配置。 圖3是圖示訊務引導頻比估計模組31〇的方塊圖。圖3 的訊務引導頻比估計模組3 10可以是圖1的訊務引導頻比 估計模組110的一種配置。訊務引導頻比估計模組31〇可 以使用接收信號3 1 8 3;和通道矩陣324丑來估計訊務引導 頻比348。'可以對每個子訊框執行訊務能量估計。對於子 訊框内部的第個次載波和第/個〇FDM符號,可以利用 等式(1)來表示通道模型: y[k, I] = ^H[k, l]P[k, />[Α:3 /] + V[k, l] =IK /] + V[k, l] 。 (1) 在等式(1 )中,狀/]是Zxl的發射信號,其中 £(啦’/> [A:,/])-/,爪,η是%χ1的接收信號318,以及_,/]是 具有相關向量的Αχ1雜訊向量。孖[免,/]是的通道 矩陣324,户[怂/]是[的預編碼矩陣,以及丑价队^是 12 201136215 乂^的有效通道矩陣330。可利用等式(2)來定義五s : 當(Α:,/)€Φβ辟J。 (2) 在等式(2)中,心是具有訊務引導頻比心的資源元素 的索引對(灸,/)的集合。在等式(2)中,φβ是具有訊務引 導頻比心的資源元素的索引對队〇的集合。可以經由更高 εβ/ =Ρβ/ 層來表示/足4 7Pa 〇 在種配置中’原始接收信號少[灸,/] 3 1 8可以被預白 化,且然後用於訊務能量估計。可利用白化器332對原始 接收k號少〇,/] 318進行預白化。在一種配置中,在白化 器3 32進行白化之前可以利用去空間化器326對原始接收 佗號3 1 8進行去空間化,以得到去空間化的接收信號 328。去空間化的接收信號328亦可以稱爲有效接收信銳。 白化器332的輪出可以稱爲預白化的去空間化接收信號 (少pw) 334在等式(3)中提供預白化的去空間化接收信 號 334 : ypwn L^j »] = Rnn /] (3 =^Rnn2^eff[k,l]s[kJ] + R^\k,l] =7^_[^:,/]狀/] +The Pb/ signal indicates the specific ratio/heart of the cell service area. 11 201136215 FIG. 2 is a block diagram illustrating a UE 204 for use with the present systems and methods. The UE 204 of FIG. 2 may be one configuration of the mobile device 1〇4 of FIG. UE 204 may include a ratio 212 of PDSCH to RS EPRE. UE 204 may include a reference signal (RS) 216. RS 216 may also be referred to as a pilot frequency signal. The UE 204 may also include a receive signal 2 1 8 . The received signal 2 1 8 can be expressed as where A: is the tone index inside the OFDM symbol and / is the OFDM symbol index inside the subframe. The UE 204 can include an estimated channel matrix 220. The traffic steering frequency ratio estimation module 210 can generate a traffic steering frequency ratio estimate 222 using the received signal 21 8 and the estimated channel matrix 220. The traffic guidance frequency ratio estimation module 210 of FIG. 2 may be a configuration of the traffic guidance frequency ratio estimation module 图 of FIG. FIG. 3 is a block diagram showing the traffic guidance frequency ratio estimation module 31A. The traffic guidance frequency ratio estimation module 3 10 of FIG. 3 may be one configuration of the traffic guidance frequency ratio estimation module 110 of FIG. The traffic steering frequency ratio estimation module 31 can estimate the traffic steering frequency ratio 348 using the received signal 3 1 8 3; and the channel matrix 324 ugly. 'A traffic energy estimate can be performed for each subframe. For the first subcarrier and the /th 〇FDM symbol inside the sub-frame, equation (1) can be used to represent the channel model: y[k, I] = ^H[k, l]P[k, /&gt ;[Α:3 /] + V[k, l] =IK /] + V[k, l] . (1) In equation (1), the shape /] is the emission signal of Zxl, where £(啦'/> [A:, /])-/, claw, η is the received signal 318 of %χ1, and _, /] is a Αχ1 noise vector with a correlation vector.孖[Free, /] is the channel matrix 324, the household [怂/] is [the precoding matrix, and the ugly team ^ is 12 201136215 乂 ^ effective channel matrix 330. Equation (2) can be used to define five s: when (Α:, /) € Φβ. (2) In equation (2), the heart is a collection of index pairs (moxibus, /) of resource elements with traffic steering frequency ratios. In equation (2), φβ is a set of index pairs of resource elements having a traffic pilot ratio. It can be represented by a higher εβ/=Ρβ/ layer/foot 4 7Pa 〇 In the configuration, 'the original received signal is less [mox, /] 3 1 8 can be pre-whitened and then used for traffic energy estimation. The whitezer 332 can be used to pre-whiten the original received k number. In one configuration, the de-spatializer 326 may be used to de-space the original received apostrophe 3 1 8 prior to whitening of the white 332 to obtain a de-spaced received signal 328. The de-spaced received signal 328 may also be referred to as an active receive signal. The rounding of the whitezer 332 may be referred to as a pre-whitened de-spaced received signal (less pw) 334 providing a pre-whitened de-spaced received signal 334 in equation (3): ypwn L^j »] = Rnn /] (3 =^Rnn2^eff[k,l]s[kJ] + R^\k,l] =7^_[^:,/] shape/] +

O 在等式(3)中,C1/2县白外势Μ Μ 疋白化器3 3 2使用的八r χ八r的白化 η \k,n 預白化的去空間化接收信號334,O In equation (3), C1/2 county white external potential Μ 疋 疋 whitezer 3 3 2 used 8 r χ 8 r whitening η \k, n pre-whitened de-spaced receive signal 334,

Hp.n[k,lU Nr,L^ 的乂义的雜訊向量,而 ώ預白化的去空間化通道矩陣336。在等式 (4)中提供對^内的 ^ 有資源7L素相加得到的總接收能 13 (4) 201136215 量(包括信號和干擾): ypwn ^]|| ΤΛ= Σ Nf!\ypWn[kJ,qf= ΣHp.n[k, lU Nr, L^'s ambiguous noise vector, and ώ pre-whitened de-spaced channel matrix 336. In Equation (4), the total received energy 13 (4) 201136215 (including signal and interference) obtained by summing the resources 7L is provided in the equation: ypwn ^]|| ΤΛ= Σ Nf!\ypWn[ kJ,qf= Σ

ΜβΦΑ q^O (k,l)^A τβ= Σ Σ (Α:,/)εΦ5 q " 在等式(4)中,_ypvv/l[A:, /,分]是第《個接收天線處的預白 化符號。與等式(4)類似,在等式(5)中提供對内的 所有資源元素相加得到的總接收能量: 5) \^Φ^ηίΚΙ][ ^以直接推導出等式(6): ^VA\^pw„[k,l]) = (丑,队/]狀 /]5[灸,/])] + Σ+如,_,/])] (ΚΙ)^φα =Εα(„ (&、 (k9l)e〇A /J ( 6 ) Έυ (ί,/)εΦΑ =%,1^[卜,[《]+|φΐ 在等式⑷中,W是φ锡基數。與等式 可以推導出等式(7): ^(Tb ^pwn [^> ^]) = 2] 〇 (7) 然後可以利用箅式f R、#人+ i π用寻式C8)結合來自等式 自等式(5)的Τβ: 的ΤΑ和來 Γ = 7Ά。 將等式(6)、等式(7)和等 (8) (9): 弋(8)進行組合得到等式 (*,/)εΦ5 201136215 ^Kn[k,i^EA Σ [κη[^/]||:] {kJ)e0A L 」 +'基’,,/]||;]+恤丨+M ( 9) = Em + Em 在等式(9)中,可以利用等式(10)定義訊務分量Ew + (ίο) 在等式(9)中,可以利用等式(11)定義雜訊分量Ε» (11) 〜新喝(Ιφ」+|φβ|)。 理想地’ E w *的估計量將是Τ - E «。然而,當總干擾ΜβΦΑ q^O (k,l)^A τβ= Σ Σ (Α:, /)εΦ5 q " In equation (4), _ypvv/l[A:, /, minute] is the "receiving antenna" Pre-whitening symbol at the place. Similar to equation (4), the total received energy obtained by adding all the resource elements in the pair is given in equation (5): 5) \^Φ^ηίΚΙ][ ^ to directly derive equation (6): ^VA\^pw„[k,l]) = (ugly, team/] shape/]5[moxibustion, /])] + Σ+如,_,/])] (ΚΙ)^φα =Εα(„ (&, (k9l)e〇A /J ( 6 ) Έυ (ί,/)εΦΑ =%,1^[卜,["]+|φΐ In equation (4), W is the φ tin base. Equation (7): ^(Tb ^pwn [^> ^]) = 2] 〇(7) Then we can use the formula f R, #人+ i π with the search C8) Τβ of the equation (5): ΤΑ and Γ = 7Ά. Combine equation (6), equation (7), and etc. (8) (9): 弋(8) to obtain the equation (* , /)εΦ5 201136215 ^Kn[k,i^EA Σ [κη[^/]||:] {kJ)e0A L ” +'base',,/]||;]+shirt+M ( 9) = Em + Em In equation (9), the traffic component Ew + (ίο) can be defined using equation (10). In equation (9), the noise component Ε» can be defined using equation (11). 11) ~ New drink (Ιφ"+|φβ|). Ideally the estimate of ' E w * would be Τ - E «. However, when the total interference

較大時,或者當沒有足夠的音調進行平均時,估計量T-E “將産生一個無效的負值。該問題可以藉由利用等式(12) 設置來自訊務能量估計器338的訊務能量估計左黯342來 解決:Larger, or when there are not enough tones to average, the estimator TE "will produce an invalid negative value. This problem can be solved by using equation (12) to set the traffic energy estimate from the traffic energy estimator 338. Left 黯 342 to solve:

T 雜訊, (12) 可以利用引導頻能量估計器340使用預白化的有效通道 矩陣336來估計引導頻能量344。可以對每個子訊框估計 引導頻能量344。對於子訊框内部的第灸個次載波和第; 個_M符號’在等式(13)中提供從通道估計器得到的 估計通道矩陣324 : 所 雕,/]+概/])。 〜 (13) 在等式U3)中,_代表通道估計誤差矩陣。可以假 15 201136215 刹 〃有零均值’且其獨立於實際通道观/]。可以 J用預編碼矩陣在去空間化器326 通道矩陣324 no #等式(13)的估計 Η , j去二間化的估計通道 有I通化的估計通道矩陣33g亦可以稱爲 首2道料1後利用白化器332對去空間化的估計通 =陣330進行白化,以得到預白化的去空間化话計通道 P 336。預白化的去空間化估計通道矩陣州亦可以稱 爲預白化的有效通道矩m利用等式(14)表示預白 化,去空間化估計通道矩陣336 :T noise, (12) The pilot energy estimator 340 can be utilized to estimate the pilot frequency energy 344 using the pre-whitened active channel matrix 336. The pilot frequency energy 344 can be estimated for each subframe. The estimated channel matrix 324 obtained from the channel estimator is provided in the equation (13) for the moxibustion subcarrier and the _M symbol ' inside the sub-frame: /, + / / /). ~ (13) In Equation U3), _ represents the channel estimation error matrix. It can be false 15 201136215 There is a zero mean ' and it is independent of the actual channel view /]. It is possible to use the precoding matrix in the de-spacer 326 channel matrix 324 no # equation (13) estimation Η, j to the two-interval estimation channel I-imported estimation channel matrix 33g can also be called the first two materials After 1 , the de-spaced estimated pass-to-array 330 is whitened by the whitezer 332 to obtain a pre-whitened de-spaced talker channel P 336. Pre-whitening de-spaced estimation channel matrix states can also be referred to as pre-whitening effective channel moments m using equation (14) to represent pre-whitening, de-spaced estimation channel matrix 336:

Hpwn[k,l] - R^/2H[k,l]P[k] =柯及:1/2·,/剛 M:2%,/剛) = ^{Hpwn[k,l] + Hpwn[k,I]) ( 14 ) 〇 可以利用等式(15)表示引導頻能量估計344 : Ρ = . Σ.. Hmn[kJ] (15) 在等式(16)中釅示引導頻能量估計户344對通道矩陣 3 24 //[&, /]的條件均值: :¾ Σ (Α,ΟεΦ^υΦ^ 項 當^道估計誤差足夠小時,可以忽略等式(16)的偏差 然後 |2 可使用等式(15 作爲 ⑻_5U〜l 丨丨-」的估計量_ 然後可使用訊務引導頻比(TPR)計算器346決定訊務 引導頻比估計A 348。TPR計算器346可從訊務能量估計 201136215 器3:38接收以上等式(〇的訊務能量估計342 ,並 可從引導頻能量估計器34〇接收以上等式(15)的引導頻Hpwn[k,l] - R^/2H[k,l]P[k] =Ke and 1/2·, / just M:2%, / just) = ^{Hpwn[k,l] + Hpwn [k,I]) ( 14 ) 引导You can use the equation (15) to represent the pilot energy estimate 344 : Ρ = . Σ.. Hmn[kJ] (15) Show the pilot energy estimate in equation (16) The average value of the condition of the channel matrix 3 24 //[&, /]: :3⁄4 Σ (Α,ΟεΦ^υΦ^ When the estimation error of the channel is small enough, the deviation of the equation (16) can be ignored and then |2 The equation (15 can be used as the estimator of (8)_5U~l 丨丨-" _ then the traffic pilot frequency ratio (TPR) calculator 346 can be used to determine the traffic pilot frequency ratio estimate A 348. The TPR calculator 346 can be slaved to the traffic. The energy estimate 201136215 3:38 receives the above equation (〇's traffic energy estimate 342 and can receive the pilot frequency of equation (15) above from the pilot frequency energy estimator 34〇

/V 能置估計p 344。可以利用訊務能量估計342和引導頻能 量估計344的一或多個係數來決定訊務引導頻比估計 348 \可以利用等式(17)計算訊務引導頻比估計348 : Ρ = ^β- Ρ。 ( 17) 等式17可以表示心和的混合。在等式(18)中提供 訊務引導頻比348的Α和心的最終估計:/V can estimate p 344. The traffic pilot frequency ratio estimate 348 can be determined using one or more coefficients of the traffic energy estimate 342 and the pilot energy estimate 344. The traffic pilot frequency ratio estimate 348 can be calculated using equation (17): Ρ = ^β- Hey. (17) Equation 17 can represent a mixture of hearts and sums. The final estimate of the heart and heart of the traffic pilot frequency ratio 348 is provided in equation (18):

Pa=P-Ca 卜cb。 r 1R、 可以利用等式(19 )計算係數Ca和cB : CA=~~~!__ α + (1-α)^·Pa = P-Ca Bu cb. r 1R, the coefficients Ca and cB can be calculated using equation (19): CA=~~~!__ α + (1-α)^·

PaPa

Pb (19) CB =--^- a + (\-a)^-Pa 〇 如以上根據圖1所論述,可以藉由更高層來信號表示 b Pb/ 、、,田胞服務區特定的比/Αί。可以利用等式(2〇 )來得出變 數α : a |φ^|Ν+ΚΪ (20)Pb (19) CB =--^- a + (\-a)^-Pa As described above with reference to Figure 1, the higher ratio can be used to signal b Pb / , ,, cell service area specific ratio /Αί. The equation α (2〇) can be used to derive the variable α: a |φ^|Ν+ΚΪ (20)

圖4是圖示用於估計接收信號218的訊務引導頻比 (TPR ) 222的方法400的流程圖。可以利用行動設備1 〇4 執仃該方法400。在一種配置中,行動設備1〇4可以是UE 17 201136215 204。行動設備104可以對接收信號218進行去空間化 (402 )。行動設備丨〇4亦可以對通道矩陣22〇進行去空間 化(404 )。通道矩陣22〇可以是估計的通道矩陣。在一種 配置中,可以在去空間化之前,在記憶體中儲存接收信號 218和通道矩陣22〇。或者,可以在接收期間對接收信號 218和通道矩陣22〇連續進行去空間化。 然後,行動設備1〇4可以對去空間化的接收信號328進 行白化(406)。行動設備1〇4亦可以對去空間化的通道矩 陣330進行白化(4〇8)。接著,行動設備1〇4對預白化的 去空間化接收信號334的訊務能量342進行估計(410)。 行動設備104亦可以對預白化的去空間化通道矩陣336的 引導頻能量344進行估計(412)。在一種配置中,行動設 備104可以同時對訊務能量342和引導頻能量344進行估 叶(412)。一旦行動設備1〇4已經對訊務能量342和引導 頻能量344進行了估計,則行動設備ι〇4可以對接收信號 218的訊務引導頻比(TPR) 348進行決定(414)。訊務引 導頻比348可以是一種估計。 可以利用對應於圖5所示的手段功能方塊5〇〇的各種硬 體及/或軟體元件及/或模組來執行以上圖4所述的方法 400 °換言之,圖4所示的方塊402至方塊414對應於圖5 中所示的手段功能方塊502至手段功能方塊5 14。 圖6是圖示決定訊務能量估計342的方法600的流程 圖°行動設備104可以決定總接收能量(6〇2)。行動設備 104亦可以決定總接收能量中的雜訊分量(604 )。然後’ 18 201136215 行動設備104可以利用總接收能量和總接收能量中的雜訊 分量決定訊務能量估計342 ( 606 )。 可以利用對應於圖7所示的手段功能方塊700的各種硬 體及/或軟體元件及/或模組來執行以上圖6所述的方法 600。換言之’圖6所示的方塊602至方塊606對應於圖7 中所示的手段功能方塊702至手段功能方塊706。 圖8是圖示決定訊務能量估計342的另一種方法800的 流程圖。行動設備104可以對實體下行鏈路控制通道 (PDCCH)進行解碼(802)。然後,行動設備1〇4可以解 碼RB分配(804 )。接著,數位信號處理器(DSP )可以 建立訊務能量估計的任務(806 )。行動設備1 04可以從音 調RAM中讀取所選擇的符號(8〇8 )。行動設備1〇4可以 利用白化器332對所選擇的符號進行處理(81〇)。行動設 備104可以利用預白化的符號來對訊務能量進行估計 (812)。 可以定義基線選擇規則來將所有可獲得的OFDM符號用 於訊務能量估計。爲了降低複雜度,可以使用簡化選擇規 則。在以下表2中圖示簡化的選擇規則。在表2中,cp 表示循環字首》 所分配的RB 數 OFDM符號 索引(普通 CP) OFDM符號 索引(擴展 CP) 類型 110-56 3 4 基於時槽 55-28 3,10 4,10 基於子訊框 19 201136215 27-14 3,5,10,12 4,5,10,11 基於子訊框 13~7 3,5,6,10,12,1 3 3,4,5,9,1〇,11 基於子訊框 6〜1 所有可獲得 的 所有可獲得 的 基於子訊框 表2 表2的簡化選擇規則可以顯著減少用於訊務能量估計的 資源元素的數量。此是由於最多使用了 110(RB)xl(Symb)xl2(Tone) = l320 個音調。 可以利用對應於圖9所示的手段功能方塊9〇〇的各種硬 體及/或軟體元件及/或模組來執行以上圖8所述的方法 800。換言之,圖8所示的方塊802至方塊812對應於圖9 中所示的手段功能方塊902至手段功能方塊9丨2。 圖1 〇是圖示引導頻能量的估計1 〇〇〇的方塊圖。可以將 通道矩陣(//) 1024乘以預編碼矩陣ι〇5〇以得到去空間化 的通道矩陣(7/e//) 1 030。然後,可以將去空間化的通道矩 陣1030乘以白化矩陣1052以得到預白化的去空間化通道 矩陣1036。然後,可以利用預白化的去空間化通道 矩陣1036決定引導頻能量估計1〇44 ( 1〇54)。 圖π是圖示用於引導頻能量估計的另一種方法11〇〇的 流程圖。行動設備104可以對實體下行鏈路控制通道 (PDCCH)進行解碼(11G2)e行動設備1()4然後可決定 預編碼矩陣刪(1104)。DSP可以建立引導頻能量估計 的任務(1106)。對於-組選定的資源元素,可以㈣估計 20 201136215 的通道矩陣1024乘以預編碼矩陣1050並乘以白化矩陣 1052 ( 1108 ),以產生預白化的去空間化通道矩陣1〇36。 然後,行動設備1 04可以利用預白化的去空間化通道矩陣 1036對引導頻能量進行估計(1110)。 爲了降低複雜度,可以利用符號選擇規則和音調選擇規 則來選擇用於引導頻能量估計的資源元素。在該符號選擇 規則中’若訊務能量估計是基於子訊框的,則對於兩個時 槽’可以使用無限脈衝回應(IIR )濾波之後、但時域内插 之前的通道估計結果。該組通道估計可以對應於彼時槽内 的某一時槽(群延遲補償之後)。該組通道估計亦可能覆 蓋頻域中的所有次載波》在該符號選擇規則中,若訊務能 量估計是基於時槽的,則可僅在第一個時槽中使用IIR濾 波之後、但時域内插之前的通道估計結果。 在該音調選擇規則中,僅使用分配給行動設備104的彼 等資源區塊中的兩個音調。在一種配置中,可能選擇音調 〇和音調6作爲所使用的音調❶該符號選擇規則和音調選 擇規則可以顯著降低用於引導頻能量估計的資源元素的 數量。例如,可以僅使用 110(RB)xl(Symb)x2(Tone)=220 個通道矩陣。使用該等選擇規則是因爲兩個原因。首先, 在該等通道估計所得中可能已經對雜訊進行了充分地抑 制。因此,可能不必爲了處理增益而在大量資源元素上進 行平均。其次,所選擇的資源元素可能已經很好地捕捉了 時域和頻域中的通道變化。 可以利用對應於圖12所示的手段功能方塊12〇〇的各種 21 201136215 硬體及/或軟體元件及/或模組來執行以上圖Η所述的方法 11〇〇。換言之,圖11所示的方塊1102至方塊1110對應於 圖12中所示的手段功能方塊12〇2至手段功能方塊121〇。 圖13是ΜΙΜΟ系統13〇〇中的發射機系統131〇和接收 機系統1 3 5 0的方塊圖。在一種配置中可以利用基地台 來實現發射機系統131〇,並且可以利用行動設備來實現接 收機系統1 3 5 0 »或者,可以利用行動設備來實現發射機系 統1310 ’並且可以利用基地台來實現該接收機系統。在發 射機系統1310處,可以從資料源1312向發射(τχ)資料 處理器1314提供若干資料串流的訊務資料。 在種配置中,可以在各自的發射天線上發射各個資料 串流。τχ資料處理器1314可以基於爲每個資料串流選擇 的特定編碼方案對該資料串流的訊務資料進行格式化、編 碼以及交錯,以提供編碼資料。 可以利用OFDM技術將各個資料串流的編碼資料與引導 頻資料進行多工處理。該引導頻資料通常是以已知方式處 理的已知資料模式,並且可以在接收機系統處使用來估計 通道回應。H ’可以基於爲每個資料串流選擇的特定調 制方案(例如,正交移相鍵控(QpSK )、八相移相鍵控 (8PSK)、16正交幅度調制(16QAM)、64qam)對該資 料串流的經過多工的引導頻和編碼資料進行調帝“亦即, 符號映射)’以提供調制符號^可以藉由處理器執行 的指令來決定各個^料串流^料速率、編碼以及調制。 然後’可將所有資料串流的調制符號提供給TX mimo 22 201136215 處理器1320,其可進一步處理調制符號(例如,對於 OFDM)。然後,τχ MIMO處理器132〇向個發射機 (TMTR) 1322a至發射機1322t提供%個調制符號。在 一些配置中,ΤΧ ΜΙΜΟ處理器1320可以將波束成形權重 施加到資料串流的符號上以及正在發射符號的天線上。 各個發射機1322可以接收並處理各自的符號串流,以 提供一或多個類比信號,並且進一步調整(例如,放大、 濾波以及升頻轉換)該等類比信號,以提供適於在μιμ〇 通道上傳輸的調制信號。然後,可以將來自發射機丄 至發射機1322t的個調制信號分別從…個天線1324& 至天線1324t發射。 在接收機系統1350處,所發射的調制信號可以由%個 天線1352a至天線I352r接收,並且可以將來自各個天線 1352的接收信號提供給各自的接收機(rcvr) 至 接收機1354Γ。各個接收機1354可以調整(例如,濾波、 放大以及降踴轉換.)各自的接收信號,對經過調整的信號 進行數位化以提供取樣,並且進一步處理該等取樣以提供 對應的「接收」符號串流。 然後,RX資料處理冑136〇可以接收並基於特定的接收 機處理技術處理來自^個接收機1354的〜個接收符號串 1 &供個「偵測到的」符號串流。然後,資料 處理器1360可以對各個所债測到的符號串流進行解調、 解交錯以及解碼,以恢復資料串流的訊資料 器13 60的處理可以與發射機系統131〇處的丁又^11^〇 23 201136215 處理器1320和TX資料處理器1314所執行的處理互補。 處理器1370可以週期性地決定將使用哪個預編碼矩陣 (以下將論述)。處理器137〇亦可以表示包括矩陣索引部 分和秩數值部分的反向鍵路訊息。 該反向鏈路訊息可以包括關於通訊鏈路及/或接收資料 串流的各種類型的資訊。該反向鏈路訊息然後可以由 資料處理器1338處理、由調制器138〇調制、由發射機 1354a至發射機1354r調整,並被發射回發射機系統131〇, 其中TX資料處理器1338亦可以從資料源1336接收若干 資料串流的訊務資料。 在發射機系統1310處,來自接收機系統135〇的調制信 號可由天線1324接收、由接收機1322調整、由解調器134〇 解調,並由RX資料處理器1342進行處理,以提取接收機 系統1350所發射的反向鏈路訊息。然後,處理器133〇可 以決定將使用哪個預編碼矩陣,以決定波束成形權重,且 然後處理所提取的訊息。 處理器1330、處理器137〇可以與儲存資料或指令的記4 is a flow chart illustrating a method 400 for estimating a traffic steering frequency ratio (TPR) 222 of a received signal 218. The method 400 can be performed using the mobile device 1 〇4. In one configuration, the mobile device 1〇4 may be UE 17 201136215 204. The mobile device 104 can de-spatialize the received signal 218 (402). The mobile device 丨〇4 can also de-space (404) the channel matrix 22〇. The channel matrix 22〇 can be an estimated channel matrix. In one configuration, the received signal 218 and the channel matrix 22A can be stored in memory prior to de-spatialization. Alternatively, receive signal 218 and channel matrix 22A may be de-spaced continuously during reception. The mobile device 1〇4 can then whiten the de-spaced received signal 328 (406). The mobile device 1〇4 can also whiten (4〇8) the de-spaced channel matrix 330. Next, the mobile device 1〇4 estimates the traffic energy 342 of the pre-whitened de-spaced received signal 334 (410). The mobile device 104 can also estimate (412) the pilot frequency energy 344 of the pre-whitened de-spaced channel matrix 336. In one configuration, the mobile device 104 can simultaneously evaluate the traffic energy 342 and the pilot energy 344 (412). Once the mobile device 342 has estimated the traffic energy 342 and the pilot frequency energy 344, the mobile device ι4 can determine the traffic steering frequency ratio (TPR) 348 of the received signal 218 (414). The traffic pilot frequency ratio 348 can be an estimate. The method described above with respect to FIG. 4 can be performed using various hardware and/or software components and/or modules corresponding to the functional blocks 5 of FIG. 5, in other words, block 402 shown in FIG. Block 414 corresponds to means function block 502 to means function block 514 shown in FIG. 6 is a flow diagram illustrating a method 600 of determining a traffic energy estimate 342. The mobile device 104 can determine the total received energy (6〇2). The mobile device 104 can also determine the noise component (604) in the total received energy. Then, the mobile device 104 can determine the traffic energy estimate 342 ( 606 ) using the total received energy and the noise component of the total received energy. The method 600 described above with respect to FIG. 6 may be performed using various hardware and/or software components and/or modules corresponding to the means of function blocks 700 illustrated in FIG. In other words, blocks 602 through 606 shown in FIG. 6 correspond to means function block 702 to means function block 706 shown in FIG. FIG. 8 is a flow chart illustrating another method 800 of determining a traffic energy estimate 342. The mobile device 104 can decode (802) a physical downlink control channel (PDCCH). The mobile device 1〇4 can then decode the RB allocation (804). Next, a digital signal processor (DSP) can establish a task for the energy estimation of the energy (806). The mobile device 104 can read the selected symbol (8〇8) from the tone RAM. The mobile device 1〇4 can process the selected symbol using the whitezer 332 (81〇). The mobile device 104 can utilize the pre-whitened symbols to estimate the energy of the traffic (812). A baseline selection rule can be defined to use all available OFDM symbols for traffic energy estimation. To reduce complexity, you can use simplified selection rules. A simplified selection rule is illustrated in Table 2 below. In Table 2, cp represents the number of RBs allocated by the cyclic prefix OFDM symbol index (normal CP) OFDM symbol index (extended CP) type 110-56 3 4 based on time slot 55-28 3,10 4,10 based on sub- Frame 19 201136215 27-14 3,5,10,12 4,5,10,11 Based on subframe 13~7 3,5,6,10,12,1 3 3,4,5,9,1〇 , 11 Based on the sub-frames 6~1 All available available sub-frames according to Table 2 The simplified selection rules of Table 2 can significantly reduce the number of resource elements used for traffic energy estimation. This is due to the use of up to 110 (RB) xl (Symb) xl2 (Tone) = l320 tones. The method 800 described above with respect to FIG. 8 can be performed using various hardware and/or software components and/or modules corresponding to the functional blocks 9 of FIG. In other words, blocks 802 through 812 shown in FIG. 8 correspond to means function block 902 to means function block 9丨2 shown in FIG. Figure 1 is a block diagram showing an estimate of the pilot energy of 1 〇〇〇. The channel matrix (//) 1024 can be multiplied by the precoding matrix ι〇5〇 to obtain the de-spaced channel matrix (7/e//) 1 030. The de-spaced channel matrix 1030 can then be multiplied by the whitening matrix 1052 to obtain a pre-whitened de-spaced channel matrix 1036. Then, the pre-whitened de-spaced channel matrix 1036 can be used to determine the pilot frequency energy estimate 1〇44 (1〇54). Figure π is a flow chart illustrating another method 11 for piloting frequency energy estimation. The mobile device 104 can decode the physical downlink control channel (PDCCH) (11G2) e mobile device 1() 4 can then determine the precoding matrix deletion (1104). The DSP can establish a task of pilot energy estimation (1106). For the selected resource element of the group, the channel matrix 1024 of the estimated 2011201115 may be multiplied by the precoding matrix 1050 and multiplied by the whitening matrix 1052 (1108) to produce a pre-whitened de-spaced channel matrix 1〇36. The mobile device 104 can then estimate the pilot frequency energy using the pre-whitened de-spaced channel matrix 1036 (1110). To reduce complexity, symbol selection rules and tone selection rules can be utilized to select resource elements for pilot frequency energy estimation. In the symbol selection rule, 'if the traffic energy estimate is based on the sub-frame, the channel estimation result after the infinite impulse response (IIR) filtering but before the time domain interpolation can be used for the two slots. The set of channel estimates may correspond to a time slot within the time slot (after group delay compensation). The set of channel estimates may also cover all subcarriers in the frequency domain. In the symbol selection rule, if the traffic energy estimate is based on time slots, then only after the IIR filtering is used in the first time slot, but only The channel estimation result before the domain interpolation. In the tone selection rule, only two tones in the resource blocks assigned to the mobile device 104 are used. In one configuration, it is possible to select pitch 音 and pitch 6 as the pitch used. The symbol selection rule and pitch selection rules can significantly reduce the number of resource elements used to guide the frequency energy estimation. For example, only 110 (RB) x 1 (Symb) x 2 (Tone) = 220 channel matrices can be used. These selection rules are used for two reasons. First, noise may have been adequately suppressed in the estimates of these channels. Therefore, it may not be necessary to average on a large number of resource elements in order to process the gain. Second, the selected resource elements may have captured channel variations in the time and frequency domains well. The method 11 以上 described above may be performed using various 21 201136215 hardware and/or software components and/or modules corresponding to the means of function blocks 12 图 shown in FIG. In other words, the blocks 1102 to 1110 shown in Fig. 11 correspond to the means function block 12〇2 to the means function block 121A shown in Fig. 12. Figure 13 is a block diagram of the transmitter system 131A and the receiver system 1 3 50 in the UI system 13A. In one configuration, the base station can be utilized to implement the transmitter system 131, and the mobile device can be utilized to implement the receiver system 1 3 50 » or the mobile device can be implemented using the mobile device 1310 ' and can utilize the base station Implement the receiver system. At the transmitter system 1310, a plurality of data streams of traffic data can be provided from the data source 1312 to the transmitting (τχ) data processor 1314. In this configuration, individual data streams can be transmitted on their respective transmit antennas. The τ data processor 1314 can format, encode, and interleave the traffic data for the data stream based on a particular encoding scheme selected for each data stream to provide encoded data. The OFDM technology can be used to multiplex the encoded data of each data stream with the pilot frequency data. The pilot data is typically a known data pattern that is processed in a known manner and can be used at the receiver system to estimate channel response. H ' may be based on a particular modulation scheme selected for each data stream (eg, Quadrature Phase Shift Keying (QpSK), Eight Phase Phase Shift Keying (8PSK), 16 Quadrature Amplitude Modulation (16QAM), 64qam) pairs The multiplexed pilot and encoded data of the data stream is tuned "that is, symbol mapped" to provide modulation symbols. The instructions executed by the processor can determine the stream rate and encoding of each stream. And modulation. Then all modulation streams of the data stream can be provided to the TX mimo 22 201136215 processor 1320, which can further process the modulation symbols (eg, for OFDM). Then, the τ MIMO processor 132 is directed to the transmitter ( The TMTR) 1322a to the transmitter 1322t provides % modulation symbols. In some configurations, the ΜΙΜΟ processor 1320 can apply beamforming weights to the symbols of the data stream and to the antenna on which the symbol is being transmitted. Each transmitter 1322 can receive And processing respective symbol streams to provide one or more analog signals, and further adjusting (eg, amplifying, filtering, and upconverting) the analog signals to A modulated signal suitable for transmission over the μιμ channel is provided. The modulated signals from the transmitter to the transmitter 1322t can then be transmitted from the antennas 1324& to the antenna 1324t, respectively. At the receiver system 1350, the transmitted The modulated signal can be received by the % antenna 1352a to the antenna I352r, and the received signals from the respective antennas 1352 can be provided to the respective receivers (rcvr) to the receiver 1354. Each of the receivers 1354 can be adjusted (eg, filtered, amplified) And the respective received signals of the hail conversion. The digitized signals are digitized to provide samples, and the samples are further processed to provide a corresponding "received" symbol stream. RX data processing 胄 〇 〇 can then receive and process ~ received symbol strings 1 & for a "detected" symbol stream based on a particular receiver processing technique. Then, the data processor 1360 can demodulate, deinterleave, and decode the symbol streams detected by each of the debts to recover the data stream. The processing of the data stream 136 can be performed with the transmitter system 131. ^11^〇23 201136215 Processor 1320 and TX data processor 1314 perform complementary processing. The processor 1370 can periodically decide which precoding matrix to use (discussed below). Processor 137A may also represent reverse link information including a matrix index portion and a rank value portion. The reverse link message may include various types of information regarding the communication link and/or the received data stream. The reverse link message can then be processed by data processor 1338, modulated by modulator 138, adjusted by transmitter 1354a to transmitter 1354r, and transmitted back to transmitter system 131, where TX data processor 1338 can also A plurality of data streams of the traffic data are received from the data source 1336. At transmitter system 1310, the modulated signal from receiver system 135A can be received by antenna 1324, adjusted by receiver 1322, demodulated by demodulator 134, and processed by RX data processor 1342 to extract the receiver. The reverse link message transmitted by system 1350. Processor 133 can then determine which precoding matrix to use to determine the beamforming weights and then process the extracted messages. The processor 1330 and the processor 137 can record with the stored data or instructions.

憶體進行電子通訊y列如,處理器133〇可以與記憶體UK 進行電子通訊,而處理器137〇可以與記憶體1372進行電 子通訊。 圖14圖不可以包含在無線設備14〇1内的某些元件。無 線設備1401可以是行動設備1〇4或基地台1〇2。 無線設備1401包括處理器14〇3。處理器14〇3可以是通 用的單晶片或多晶片微處理器(例如,ARM)、專用微處 24 201136215 理器(例如,激·办产姑老 數位化號處理器(DSP))、微控制器、可 式:陣列等。在-種配置中,除了處理器1403之外,無 線认備1401亦可包括單獨的DSP142卜處理器14G3可以 稱爲中央處理單元(CPU)。儘管在圖14的無線㈣1401 中僅圖示單個處理器14〇3,但是,在替代性配置中,可以 使用處理器(例如,ARM和Dsp)的組合。 無線设備1401亦包括記憶體14〇5。記憶體14〇5可以是 能夠儲存電子資訊的任何電子元件。記憶豸14〇5可以體 現爲隨機存取記憶體(RAM)、唯讀記憶體(R〇M)、磁碟 儲存媒體、光學儲存媒體、RAM中的快閃記憶體設備、處 理器内包含的機載記憶體、EPROM t己憶體、EEPROM記 憶體、暫存器等,包括以上各項的組合。 〇 可以在記憶體1405中儲存資料14〇7和指令1409。指令 1409可由處理器14〇3執行來實施本文所揭示的方法。執 行指令1409可能涉及使用記憶體1405中儲存的資料 1407。當處理器14〇3執行指令14〇7時,可以將指令14〇7& 的各個部分載入到處理器14〇3上,並且可以將各種資料 1409a載入到處理器14〇3上。 無線設備1401亦可以包括發射機1411和接收機i413, 以使得能夠向無線設備14〇1發射信號以及從無線設備 1401接收信號。發射機1411和^收機1413可以統稱爲收 發機1415。可以將天線ι417電氣連接到收發機1415 ^無 線設備1401亦可以包括多個發射機、多個接收機、多個 收發機及/或多個天線1417a、天線1417b。 25 201136215 可以利用一或多個匯流排將無線設備140 1的各個元件 耦合到一起,該一或多個匯流排可以包括功率匯流排、控 制信號匯流排、狀態信號匯排、資料匯流排等。爲簡明起 見,在圖14中將各種匯流排示爲匯流排系統1419。 本文描述的技術可以用於各種通訊系統,包括基於正交 多工方案的通訊系統。該等通訊系統的實例包括正交分頻 多工存取(OFDMA )系統、單載波分頻多工存取 (SC-FDMA )系統專。OFDMA系統使用正交分頻多工 (OFDM ),此種調制技術將整個系統頻寬劃分爲多個正交 次載波。該等次載波亦可以稱爲音調(t〇ne)、頻段(Μη) 等。利用OFDM,可以單獨地將各個次載波與資料進行調 制。SC-FDMA系統可以使用交錯的FDMA ( ifdma )在 为佈在系統頻寬上的次載波上進行發射 可以使用局部 FDMA (LFDMA)在相鄰次載波的區塊上進行發射, 使用增強型FDMA ( EFFiMA、士女*…一、 射,或者 i塊上The memory is electronically communicated, for example, the processor 133A can be in electronic communication with the memory UK, and the processor 137 can be in electronic communication with the memory 1372. Figure 14 illustrates certain elements that may be included within the wireless device 14〇1. The wireless device 1401 may be the mobile device 1〇4 or the base station 1〇2. The wireless device 1401 includes a processor 14〇3. The processor 14〇3 may be a general-purpose single-chip or multi-chip microprocessor (for example, ARM), a dedicated micro-processor 24 201136215 (for example, a singularly-produced digital processor (DSP)), and a micro Controller, can be: array, etc. In a configuration, in addition to the processor 1403, the wireless subscriber 1401 may also include a separate DSP 142. The processor 14G3 may be referred to as a central processing unit (CPU). Although only a single processor 14〇3 is illustrated in the wireless (four) 1401 of Fig. 14, in an alternative configuration, a combination of processors (e.g., ARM and Dsp) may be used. The wireless device 1401 also includes a memory 14〇5. The memory 14〇5 can be any electronic component capable of storing electronic information. Memory 豸14〇5 can be embodied as random access memory (RAM), read-only memory (R〇M), disk storage media, optical storage media, flash memory devices in RAM, and included in the processor. On-board memory, EPROM t memory, EEPROM memory, scratchpad, etc., including combinations of the above.资料 Data 14〇7 and instruction 1409 can be stored in the memory 1405. The instructions 1409 can be executed by the processor 14〇3 to implement the methods disclosed herein. Execution command 1409 may involve the use of data 1407 stored in memory 1405. When the processor 14〇3 executes the instructions 14〇7, the various portions of the instructions 14〇7& can be loaded onto the processor 14〇3, and various materials 1409a can be loaded onto the processor 14〇3. The wireless device 1401 may also include a transmitter 1411 and a receiver i413 to enable transmission of signals to and from the wireless device 1401. Transmitter 1411 and receiver 1413 may be collectively referred to as transceiver 1415. The antenna ι417 can be electrically connected to the transceiver 1415. The wireless device 1401 can also include a plurality of transmitters, a plurality of receivers, a plurality of transceivers, and/or a plurality of antennas 1417a, 1417b. 25 201136215 The various elements of the wireless device 140 1 may be coupled together using one or more bus bars, which may include a power bus, a control signal bus, a status signal queue, a data bus, and the like. For the sake of simplicity, the various confluences are illustrated in Figure 14 as a busbar system 1419. The techniques described herein can be used in a variety of communication systems, including communication systems based on orthogonal multiplexing schemes. Examples of such communication systems include Orthogonal Frequency Division Multiple Access (OFDMA) systems, Single-Carrier Frequency Division Multiple Access (SC-FDMA) systems. The OFDMA system uses orthogonal frequency division multiplexing (OFDM), which divides the overall system bandwidth into multiple orthogonal subcarriers. The secondary carriers may also be referred to as tones (t〇ne), frequency bands (Μη), and the like. With OFDM, each subcarrier and data can be individually modulated. SC-FDMA systems can use interleaved FDMA (ifdma) to transmit on subcarriers that are spread over the system bandwidth. Local FDMA (LFDMA) can be used to transmit on adjacent subcarrier blocks, using enhanced FDMA ( EFFiMA, ladies*...one, shot, or i block

除非另外明確指出, ’否則短語「基於 並不意謂「僅基 26 201136215 於」換5之,短語「基於」同時描述了「僅基於 少基於」。 術浯「處理器」可以廣義地理解爲包括通用處理器、中 央處理單元(CPU)、微處理器 '數位信號處理器(朦)、 控制器、微控制器、狀態機等。在一些情況下,「處理器J 可以代表特殊應用積體電路(ASIC)、可程式邏輯設備 (PLD)、現場可程式閘陣列(FpGA)等。術語「處理器」 可以代表處理設備的組合,例如,Dsp和微處理器的组厶、 複數個微處理器、-或多個微處理器與請核心的結:, 或者任何其他此種配置。 術語「記憶體」可以廣義地理解爲包括能夠儲存電子資 訊的任何電子元件。術語「記憶體」彳以代表各種類型之 處理器可讀取媒體,諸如隨機存取記憶體(r則、唯讀 記憶體(ROM)、非揮發性隨機存取記憶體(nvram)、 可程式唯讀記憶體(_)、可抹除可程式唯讀記憶體 (EPROM )、電子可抹除PR〇M ( EEpR〇M )、快閃記憶體、 磁性或光學資料儲存器、暫存器等。若處理器㈣從記憶 體中讀取資訊’並且/或者向記憶體寫人資訊,則稱記憶體 與處理器進行電子通訊。整合到處理器中的記㈣與該處 理器進行電子通訊。 術語「指令」和「代碼」可以廣義理解爲包括任何類型 的電腦可讀取的語句。例如,術語「指令」和「代碼」可 以代表-或多個程式、常式、子常式、函數、程序等。「指 令」和「代碼」可以包括單個電腦可讀取語句或多個電腦 27 201136215 可讀取語句》 可以用硬體、軟體、勒體或者其之任何組合來實現本文 述的力食b力以軟體實玉見,則彳以將功能作爲電腦可讀 取媒體上的-或多個指令進行儲存。術語「電腦可讀取媒 體」或者電腦程式産品」代表任何可以獲取的可由電腦 的媒體|例而吕(而非限制),電腦可讀取媒體可 包括RAM、R〇M、EEp職、cd她或者其他光碟儲存 媒體、磁碟儲存媒體或者其他磁性儲存設備,或者是可以 用來以指令或資料結構形式攜帶或儲存期望的程式碼並 由電腦進行存取㈣何其他媒體。本文使用的磁碟和 =括壓縮光碟(CD)、雷射光碟、光碟、數位多功能 十五_VD) *碟和藍光®光碟,其中磁碟通常以磁性方 資料,而光碟利用雷射以光學方式再現資料。 軸=以Γ由傳輸媒體發射軟體或指令。例如,若利用同 :、纖電纜、雙絞線、數位用戶線路(職),或者 二線、無線電和微波的無線技術從網站、词 線、峨,或者諸如"二 電缓、光纖電規、雙絞 含在傳幹媒t無線電和微波的無線技術包 s仕得輸媒體的定義中。 本文揭示的方法白— 驟或動作坊哲 括用於霄現上述方法的一或多個步 項的保護範 要求特定的步驟或㈣次::播述的方法的適當操作 /或動作的次序及/ 丨T以修改特定步驟及 或使用而不脱離請求項的保護範圍。 28 201136215 此外,應當理解,設備可以藉由下載及/或其他方式獲取 執行本文所述方法和技術的模組及/或其他適當構件諸如 圖4、圖6、® 8和圖"所示的彼等方法和技術。例如, 可將設備麵合到伺服器’以有助於用於執行本文所述方法 的構件的傳送。或者,可以經由儲存構件(例如,隨機存 取記憶體(RAM)、唯讀記憶體(R〇M)、諸如壓縮光碟(CD) 或軟碟的實體儲存媒體等)提供本文所述的各種方法,從 而在耦合到設備或向設備提供該儲存構件之後,該設備可 以獲取各種方法。此外,可以採用任何其他適當的技術, 來向设備提供本文描述的方法和技術。 應當理解,請求項不限於上述精確的配置和元件。在不 脫離請求項的㈣範圍&基礎上,彳以對本文所述的系 統、方法和器件的安排、操作和細節進行各種修改、改變 和變化。 【圖式簡單說明】 圖1圖示具有多個無線設備的無線通訊系統; 圖2是圖示用於本系統和方法的使用者裝置的方 塊圖; 圖3是圖示訊務引導頻比估計模組的方塊圖; 圖4是圖示決定接收信號的訊務引導頻比(TpR )的方 法的流程圖; 圖5圖示對應於圖4的方法的手段功能方塊; 圖6是圖示決定訊務能量估計的方法的流程圖; 圖7圖示對應於圖6的方法的手段功能方塊; 29 201136215 圖8是圖示決定訊務能量估計的另一種方法的流程圖; 圖9圖示對應於圖8的方法的手段功能方塊; 圖1〇是圖示引導頻能量估計的方塊圖; 圖11是圖不引導頻能量估計的另一種方法的流程圖; 圖12圖示對應於圖1 i的方法的手段功能方塊; 圖13是ΜΙΜΟ系統中的發射機系統和接收機系統的方 塊圖;及 圖14圖示包含在根據本發明配置的無線設備内的某些 元件。 【主要元件符號說明】 100 無線通訊系統 102 基地台 104 行動設備 106 上行鏈路(UL) 108 下行鏈路(DL) 110 訊務引導頻比(TPR)估計模組 204 UE 210 訊務引導頻比估計模組 212 PDSCH 與 RS EPRE 的比 216 參考信號(RS) 218 接收信號 220 估計的通道矩陣 222 訊務引導頻比估計 30 201136215 3 10 訊務引導頻比估計模組 318 接收信號 324 通道矩陣 326 去空間化器 3 2 8 去空間化的接收信號 330 去空間化的估計通道矩陣/有效通道矩陣 332 白化器 334 預白化的去空間化接收信號 336預白化的去空間化通道矩陣/預白化的有效通道 矩陣 338 訊務能量估計器 340 引導頻能量估計器 342 訊務能量估計 344 引導頻能量估計/引導頻能量 346 訊務引導頻比(TPR)計算器 348 訊務引導頻比/訊務引導頻比估計 400 方法 402 方塊 404 方塊 406 方塊 • 408 方塊 410 方塊 412 方塊 414 方塊 31 201136215 500 手段功能方塊 502 手段功能方塊 504 手段功能方塊 506 手段功能方塊 508 手段功能方塊 510 手段功能方塊 512 手段功能方塊 514 手段功能方塊 600 方法 602 方塊 604 方塊 606 方塊 700 手段功能方塊 702 手段功能方塊 704 手段功能方塊 706 手段功能方塊 800 方法 802 方塊 804 方塊 806 方塊 808 方塊 810 方塊 812 方塊 900 手段功能方塊 32 201136215 902 手段功能方塊 904 手段功能方塊 906 手段功能方塊 908 手段功能方塊 910 手段功能方塊 912 手段功能方塊 1000 引導頻能量的估計 1024 通道矩陣 1030 去空間化的通道矩陣 1036 預白化的去空間化通道矩陣 1044 引導頻能量估計 1050 預編碼矩陣 1052 白化矩陣 1054 方塊 1100 方法 1102 方塊 1104 方塊 1106 方塊 1108 方塊 1110 方塊 1200 手段功能方塊 1202 手段功能方塊 1204 手段功能方塊 1206 手段功能方塊 33 201136215 1208 手段功能方塊 1210 手段功能方塊 1300 ΜΙΜΟ系統 1310 發射機系統 1312 資料源 1314 發射(ΤΧ )資料處理器 1320 ΤΧ ΜΙΜΟ處理器 1322a 發射機 1322t 發射機 1324a 天線 1324t 天線 1330 處理器 1332 記憶體 1336 資料源 1338 ΤΧ資料處理器 1340 解調器 1342 RX資料處理器 1350 接收機系統 1352a 天線 1352r 天線 1354a 接收機 1354r 接收機 1360 RX資料處理器 1370 處理器 34 201136215 1372 記憶體 1380 調制器 1401 無線設備 1403 處理器 1405 記憶體 1407 資料 1407a 指令 1409 指令 1409a 資料 1411 發射機 1413 接收機 1415 收發機 1417a 天線 1417b 天線 1419 匯流排系統 1421Unless otherwise explicitly stated, 'the phrase "based on does not mean that only "base 26 201136215" is replaced by 5, the phrase "based on" also describes "based only on less based". The "processor" can be broadly understood to include a general purpose processor, a central processing unit (CPU), a microprocessor 'digital signal processor (朦), a controller, a microcontroller, a state machine, and the like. In some cases, "Processor J may represent a special application integrated circuit (ASIC), programmable logic device (PLD), field programmable gate array (FpGA), etc. The term "processor" may refer to a combination of processing devices. For example, a group of Dsp and microprocessors, a plurality of microprocessors, or a plurality of microprocessors with a core of the core:, or any other such configuration. The term "memory" can be broadly understood to include any electronic component capable of storing electronic information. The term "memory" is used to represent various types of processor readable media, such as random access memory (r, read only memory (ROM), non-volatile random access memory (nvram), programmable Read-only memory (_), erasable programmable read-only memory (EPROM), electronically erasable PR〇M (EEpR〇M), flash memory, magnetic or optical data storage, scratchpad, etc. If the processor (4) reads information from the memory 'and/or writes information to the memory, the memory is said to be in electronic communication with the processor. The memory (4) integrated into the processor is in electronic communication with the processor. The terms "instruction" and "code" are used broadly to include any type of computer-readable statement. For example, the terms "instruction" and "code" may mean - or more than one program, routine, sub-routine, function, Programs, etc. "Instructions" and "Codes" may include a single computer readable statement or multiple computers. 27 201136215 Readable Statements" Hardware, software, orthography, or any combination thereof may be used to implement the foods described herein. b force to soft In fact, you can store the function as a computer-readable media - or multiple instructions. The term "computer readable media" or computer program product" means any computer-readable media available. Lu (not limited), computer readable media may include RAM, R〇M, EEp jobs, cd her or other CD storage media, disk storage media or other magnetic storage devices, or may be used to command or data The structure takes or stores the desired code and is accessed by the computer. (4) Other media. The disk and the compressed disk (CD), laser disc, CD, digital multi-function fifteen _VD) And Blu-ray® discs, where the disc is usually magnetic, and the disc uses lasers to optically reproduce the data. Axis = to transmit software or instructions from the transmission medium. For example, if you use the same:, fiber cable, twisted pair, digital subscriber line (job), or second-line, radio and microwave wireless technology from the website, word line, 峨, or such as "two electric slow, fiber optic regulations The twisted pair is included in the definition of the wireless technology package for transmitting dry media t radio and microwave. The method disclosed herein includes a specific step or (four) times of the protection of one or more of the steps of the method described above: the appropriate operation of the method of the description and/or the sequence of actions and / 丨T to modify specific steps and or use without departing from the scope of protection of the request. 28 201136215 In addition, it should be understood that the device can be obtained by downloading and/or otherwise obtaining modules and/or other suitable components for performing the methods and techniques described herein, such as those illustrated in Figures 4, 6, 8, and " Their methods and techniques. For example, the device can be surfaced to a server' to facilitate the transfer of components for performing the methods described herein. Alternatively, the various methods described herein may be provided via storage means (eg, random access memory (RAM), read only memory (R〇M), physical storage media such as compact discs (CDs) or floppy disks, etc.) Thus, after coupling to or providing the storage component to the device, the device can acquire various methods. Moreover, any other suitable technique may be employed to provide the methods and techniques described herein to a device. It should be understood that the claim is not limited to the precise configuration and elements described above. Various modifications, changes and variations are made in the arrangement, operation and details of the systems, methods and devices described herein without departing from the scope of the claims. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 illustrates a wireless communication system having a plurality of wireless devices; FIG. 2 is a block diagram illustrating a user device for use in the present system and method; FIG. 3 is a diagram illustrating traffic guidance frequency ratio estimation. Figure 4 is a flow chart illustrating a method of determining a traffic steering frequency ratio (TpR) of a received signal; Figure 5 illustrates a means function block corresponding to the method of Figure 4; Figure 6 is a graphical representation Flowchart of a method of traffic energy estimation; FIG. 7 illustrates a means function block corresponding to the method of FIG. 6; 29 201136215 FIG. 8 is a flow chart illustrating another method of determining traffic energy estimation; FIG. FIG. 1 is a block diagram illustrating pilot frequency energy estimation; FIG. 11 is a flow chart illustrating another method of pilot frequency energy estimation; FIG. 12 is a diagram corresponding to FIG. Means of the method blocks; Figure 13 is a block diagram of a transmitter system and a receiver system in a system; and Figure 14 illustrates certain elements included in a wireless device configured in accordance with the present invention. [Main component symbol description] 100 Wireless communication system 102 Base station 104 Mobile device 106 Uplink (UL) 108 Downlink (DL) 110 Traffic pilot frequency ratio (TPR) estimation module 204 UE 210 Traffic pilot frequency ratio Estimation module 212 PDSCH to RS EPRE ratio 216 Reference signal (RS) 218 Receive signal 220 Estimated channel matrix 222 Traffic pilot frequency ratio estimate 30 201136215 3 10 Traffic pilot frequency ratio estimation module 318 Receive signal 324 Channel matrix 326 De-spacer 3 2 8 De-spaced received signal 330 De-spaced estimated channel matrix / effective channel matrix 332 Whiteder 334 Pre-whitened de-spaced received signal 336 pre-whitened de-spaced channel matrix / pre-whitened Effective Channel Matrix 338 Traffic Energy Estimator 340 Pilot Energy Estimator 342 Traffic Energy Estimation 344 Pilot Frequency Energy Estimation / Pilot Frequency Energy 346 Traffic Pilot Frequency Ratio (TPR) Calculator 348 Traffic Pilot Frequency Ratio / Traffic Guidance Frequency Ratio Estimation 400 Method 402 Block 404 Block 406 Block • 408 Block 410 Block 412 Block 414 Block 31 201136215 500 Means Function Block 502 means function block 504 means function block 506 means function block 508 means function block 510 means function block 512 means function block 514 means function block 600 method 602 block 604 block 606 block 700 means function block 702 means function block 704 means function block 706 Means function block 800 method 802 block 804 block 806 block 808 block 810 block 812 block 900 means function block 32 201136215 902 means function block 904 means function block 906 means function block 908 means function block 910 means function block 912 means function block 1000 boot frequency Energy Estimation 1024 Channel Matrix 1030 Despaced Channel Matrix 1036 Pre-whitened De-spaced Channel Matrix 1044 Pilot Energy Estimation 1050 Precoding Matrix 1052 Whitening Matrix 1054 Block 1100 Method 1102 Block 1104 Block 1106 Block 1108 Block 1110 Block 1200 Means Function block 1202 means function block 1204 means function block 1206 means function block 33 201136215 1208 means function block 1210 means function Block 1300 ΜΙΜΟ System 1310 Transmitter System 1312 Data Source 1314 Transmit (ΤΧ) Data Processor 1320 ΜΙΜΟ ΜΙΜΟ Processor 1322a Transmitter 1322t Transmitter 1324a Antenna 1324t Antenna 1330 Processor 1332 Memory 1336 Source 1338 ΤΧ Data Processor 1340 Solution Tuner 1342 RX Data Processor 1350 Receiver System 1352a Antenna 1352r Antenna 1354a Receiver 1354r Receiver 1360 RX Data Processor 1370 Processor 34 201136215 1372 Memory 1380 Modulator 1401 Wireless Device 1403 Processor 1405 Memory 1407 Data 1407a Instruction 1409 command 1409a data 1411 transmitter 1413 receiver 1415 transceiver 1417a antenna 1417b antenna 1419 bus system 1421

DSPDSP

Claims (1)

201136215 七、申請專利範圍: 1. 一種估計一接收信號的一訊務引導頻比(TPR)的方 法,該方法包括以下步驟: 對該接收信號進行去空間化,以得到一去空間化的接收信 號; 對一通道矩陣進行去空間化,以得到一去空間化的通道矩 陣; 對該去空間化的接收信號進行白化,以得到一預白化的去 空間化接收信號; 對該去空間化的通道矩陣進行白化,以得到一預白化的去 空間化通道矩陣;及 利用該預白化的去空間化接收信號以及一或多個預白化 的去空間化通道估計係數來決定該接收信號的一估計 TPR 〇 2 , 4束 •如請求項1之方法,其中決定該接收信號的該估計TPR 之步驟包括以下步驟: 估計該預白化的去空間化接收信號的訊務能量; 估汁該預白化的去空間化通道矩陣的引導頻能量;及 利用所估計的訊務能量和所估計的引導頻能量來決定該 估計TPR。 3.如請求項2之方法,其中估計訊務能量之步驟包括以 36 201136215 下步驟: · 決定一總接收能量; 決定該總接收能量中的一雜訊分量;及 利用該總接收能量和該總接收能量中的該雜訊分量來決 定一訊務能量估計。 4.如請求項3之方法,其中對每個子訊框執行決定一訊 務能量估計之步驟。 5·如請求項2之方法,其中估計訊務能量之步驟包括以 下步驟: 對一實體下行鏈路控制通道(PDCCH)進行解碼; 決定一資源區塊(RB )分配; 建立訊務能量估計的一任務; 從一音調隨機存取記憶體(RAM)中讀取選擇的符號; 利用一白化器處理該等所選擇的符號,以得到預白化的符 號;及 利用該等預白化的符號來估計該訊務能量。 6.如請求項2之方法,其中估計引導頻能量之步驟包括 以下步驟: 將該通道矩陣乘以一預編碼矩陣,以得到一去空間化的通 道矩陣; 將該去空間化的通道矩陣乘以一白化矩陣,以得到一預白 37 201136215 化的去空間化通道矩陣;及 弓丨導頻能量 利用該預白化的去空間化通道矩 估計。 導頻能量估計之步驟。 如請求項6之方法,其中對每個子訊框執行決定—弓丨 I ^項2之方法,其中估計引導頻能量之步驟包括 以下步驟: …〇枯 對一實體下行鏈路控制通道(PDCCH)進行解碼. 決疋 預編碼矩陣; 建立引導頻能量估計的一任務; 將一估叶的通道矩陣乘以該預編 陳,以產峰一益人 卫孓以—白化矩 預白化的有效通道矩陣;及 利用該預白化的有效通道矩陣來估計該引導頻能量。 9.如請求項1 > 、+ ^ . 矩陣。方法,其中該通道矩陣是-估計的通道 10.如請求項 方法 方法,其中利用一行動設備執行該 11.如言月求項10 ^ . 法’八中該行動設備經配置以在一個 多輸入夕輪出(ΜΙΜΟ) τ丄\ V ΙΜΟ)正父分頻多工(〇FDM) 工 作。 38 201136215 12. —種無線設備,其經配置以估計一接收信號的一訊務 引導頻比(TPR),該無線設備包括: 一處理器; 與該處理器進行電子通訊的記憶體; 儲存在該s己憶體中的指令,該等指令可由該處理器執行 以: 對該接收信號進行去空間化,以得到一去空間化的接收信 號; 對一通道矩陣進行去空間化,以得到一去空間化的通道矩 陣; 對該去空間化的接收信號進行白化,以得到一預白化的去 空間化接收信號; 對該去空間化的通道矩陣進行白化,以得到一預白化的去 空間化通道矩陣;及 利用該預白化的去空間化接收信號以及一或多個預白化 的去空間化通道估計係數來決定該接收信號的一估計 TPR。 13.如請求項12之無線設備’其中決定該接收信號的該估 計TPR包括: 估汁該預白化的去空間化接收信號的訊務能量; 估汁該預白化的去空間化通道矩陣的引導頻能量;及 利用該所估计的訊務能量和該所估計的引導頻能量來決 39 201136215 定該估計TPR。 14. 如請求項1 3之無線設備’其中估計訊務能量包括: 決定一總接收能量; 決定該總接收能量中的一雜訊分量;及 利用該總接收能量和該總接收能量中的該雜訊分量來決 定一訊務能量估計。 15. 如請求項14之無線設備,其中對每個子訊框執行決定 一訊務能量估計。 16·如請求項13之無線設備,其中估計訊務能量包括: 對一實體下行鏈路控制通道(PDCCH)進行解碼; 決定一資源區塊(RB )分配; 建立訊務能量估計的一任務; 從一音調隨機存取記憶體(RAM )中讀取選擇的符號; 利用一白化器處理該等所選擇的符號,以得到預白化的符 號;及 利用該等預白化的符號來估計該訊務能量。 17·如請求項13之無線設備,其中估計引導頻能量包括: 將該通道矩陣乘以一預編碼矩陣,以得到一去空間化的通 道矩陣; 將該去空間化的通道矩陣乘以一白化矩陣,以得到一預白 201136215 化的去空間化通道矩陣;及 利用該預白化的去空間化通道矩陣來決定—引敗 曰 7丨斧頭能置 估計。 I8·如請求項17之無線設備,其中對每個子訊框執行決定 一引導頻能量估計。 19.如請求項13之無線設備,其中估計引導頻能量包括. 對一實體下行鏈路控制通道(PDCCH)進行解碼; 決定一預編碼矩陣; 建立引導頻能量估計的一任務; 片字一 上 —估計的通道矩陣乘以該預編碼矩陣,並乘以—白化矩 陳 J ' 女 ’以產生一預白化的有效通道矩陣;及 利用該預白化的有效通道矩陣來估計該引導頻能量。 2〇.如請求項12之無線設備,其中該通道矩陣是一估計的 通道矩陣。 21·如請求項12之無線設備,其中該無線設備是一行動設 備。 2.如清求項21之無線設備,其中該行動設備經配置以在 個多輸入多輸出(ΜΙΜΟ )正交分頻多工(OFDM )系統 中工作。 41 201136215 23· —種無線設備,其經配置以估計一接收信號的一訊務 引導頻比(TPR),該無線設備包括: 用於對該接收信號進行去空間化以得到一去空間化的接 收信號的構件; 用於對一通道矩陣進行去空間化以得到一去空間化的通 道矩陣的構件; 用於對該去空間化的接收信號進行白化以得到一預白化 的去空間化接收信號的構件; 用於對該去空間化的通道矩陣進行白化以得到一預白化 的去空間化通道矩陣的構件;及 用於利用該預白化的去空間化接收信號以及一或多個預 白化的去空間化通道估計係數來決定該接收信號的一估 計TPR的構件。 24.—種用於估計-接收信t的一訊務引導頻比(TPR)的 電腦程式産品’該電腦程式産品包括其上具有指令的一電 腦可讀取媒體,該等指令包括: 用於對該接收信號進行去空間化 ,.a | j π u侍到一去空間化的接 收信號的代碼; 用於對一通道矩陣進行去空間化 ϋ Μ侍到一去空間化的通 道矩陣的代碼; 用於對該去空間化的接收信號進行白化以得到一預白化 的去空間化接收信號的代碼; 42 201136215 用於對 的去空 用於利 白4匕的 計TPR 該去空間化的通道矩陣進行白化以得到一 間化通道矩陣的代碼;及 用該預白化的去空間化接收信號以及一或 去空間化通道估計係數來決定該接收信號 的代碼。 預白化 多個預 的一估 43201136215 VII. Patent Application Range: 1. A method for estimating a traffic steering frequency ratio (TPR) of a received signal, the method comprising the steps of: de-spatializing the received signal to obtain a de-spaced reception Signaling; de-spatializing a channel matrix to obtain a de-spaced channel matrix; whitening the de-spaced received signal to obtain a pre-whitened de-spaced received signal; The channel matrix is whitened to obtain a pre-whitened de-spaced channel matrix; and the pre-whitened de-spaced received signal and one or more pre-whitened de-spaced channel estimation coefficients are used to determine an estimate of the received signal The method of claim 1, wherein the step of determining the estimated TPR of the received signal comprises the steps of: estimating a traffic energy of the pre-whitened de-spaced received signal; estimating the pre-whitened De-scaling the pilot frequency energy of the channel matrix; and using the estimated traffic energy and the estimated pilot energy to determine the estimate TPR. 3. The method of claim 2, wherein the step of estimating the traffic energy comprises the steps of: 36 201136215: determining a total received energy; determining a noise component of the total received energy; and utilizing the total received energy and the The noise component in the total received energy determines a traffic energy estimate. 4. The method of claim 3, wherein the step of determining a traffic energy estimate is performed for each subframe. 5. The method of claim 2, wherein the step of estimating the traffic energy comprises the steps of: decoding a physical downlink control channel (PDCCH); determining a resource block (RB) allocation; establishing a traffic energy estimate. a task; reading selected symbols from a tone random access memory (RAM); processing the selected symbols with an whiteder to obtain pre-whitened symbols; and estimating by using the pre-whitened symbols The traffic energy. 6. The method of claim 2, wherein the step of estimating the pilot energy comprises the steps of: multiplying the channel matrix by a precoding matrix to obtain a de-spaced channel matrix; multiplying the de-spaced channel matrix A whitening matrix is used to obtain a pre-whitening channel matrix of pre-whitening 37 201136215; and the bowing pilot energy is estimated by using the pre-whitening de-spaced channel moment. The step of pilot energy estimation. The method of claim 6, wherein the method of determining a reference to each sub-frame is performed, wherein the step of estimating the pilot energy comprises the steps of: ... abounding to a physical downlink control channel (PDCCH) Decoding. Determine the precoding matrix; establish a task of pilot frequency energy estimation; multiply the channel matrix of an estimated leaf by the pre-compilation, to produce a valid channel matrix with whitening moment pre-whitening And using the pre-whitened effective channel matrix to estimate the pilot frequency energy. 9. As requested by item 1 > , + ^ . matrix. The method, wherein the channel matrix is an estimated channel 10. The method of claim method method, wherein the actuating device is performed using a mobile device. The method is configured to be in a multiple input.夕轮出(ΜΙΜΟ) τ丄\ V ΙΜΟ) Positive parent frequency division multiplexing (〇FDM) work. 38 201136215 12. A wireless device configured to estimate a traffic steering frequency ratio (TPR) of a received signal, the wireless device comprising: a processor; a memory for electronic communication with the processor; The instructions in the suffix, the instructions being executable by the processor to: de-spatialize the received signal to obtain a de-spaced received signal; de-spatializing a channel matrix to obtain a De-spatialized channel matrix; whitening the de-spaced received signal to obtain a pre-whitened de-spaced received signal; whitening the de-spaced channel matrix to obtain a pre-whitened de-spaced a channel matrix; and using the pre-whitened de-spaced received signal and one or more pre-whitened de-spaced channel estimation coefficients to determine an estimated TPR of the received signal. 13. The wireless device of claim 12, wherein the estimated TPR of the received signal comprises: estimating a traffic energy of the pre-whitened de-spaced received signal; estimating the guidance of the pre-whitened de-spaced channel matrix Frequency energy; and using the estimated traffic energy and the estimated pilot energy to determine the estimated TPR. 14. The wireless device of claim 13 wherein the estimated traffic energy comprises: determining a total received energy; determining a noise component of the total received energy; and utilizing the total received energy and the total received energy The noise component determines a traffic energy estimate. 15. The wireless device of claim 14, wherein the determining a traffic energy estimate is performed for each subframe. 16. The wireless device of claim 13, wherein the estimated traffic energy comprises: decoding a physical downlink control channel (PDCCH); determining a resource block (RB) allocation; establishing a task of traffic energy estimation; Reading selected symbols from a tone random access memory (RAM); processing the selected symbols with an whiteder to obtain pre-whitened symbols; and estimating the traffic using the pre-whitened symbols energy. 17. The wireless device of claim 13, wherein estimating the pilot frequency energy comprises: multiplying the channel matrix by a precoding matrix to obtain a de-spaced channel matrix; multiplying the de-spaced channel matrix by a whitening The matrix is used to obtain a pre-whitening 201136215 de-spaced channel matrix; and the pre-whitening de-spaced channel matrix is used to determine - the 丨7丨 axe can be estimated. I8. The wireless device of claim 17, wherein the determining a pilot frequency energy estimate is performed for each subframe. 19. The wireless device of claim 13, wherein estimating the pilot frequency energy comprises: decoding a physical downlink control channel (PDCCH); determining a precoding matrix; establishing a task of pilot energy estimation; The estimated channel matrix is multiplied by the precoding matrix and multiplied by a whitening moment J 'female' to produce a pre-whitened effective channel matrix; and the pre-whitened effective channel matrix is used to estimate the pilot frequency energy. 2. The wireless device of claim 12, wherein the channel matrix is an estimated channel matrix. 21. The wireless device of claim 12, wherein the wireless device is a mobile device. 2. The wireless device of claim 21, wherein the mobile device is configured to operate in a multiple input multiple output (MIMO) orthogonal frequency division multiplexing (OFDM) system. 41 201136215 23 - A wireless device configured to estimate a traffic steering frequency ratio (TPR) of a received signal, the wireless device comprising: for de-spatializing the received signal to obtain a de-spaced a component for receiving a signal; a component for de-spatializing a channel matrix to obtain a de-spaced channel matrix; for whitening the de-spaced received signal to obtain a pre-whitened de-spaced received signal Means for whitening the de-spaced channel matrix to obtain a pre-whitened de-spaced channel matrix; and for de-spatializing the received signal and one or more pre-whitening using the pre-whitening De-spatializing the channel estimation coefficients to determine an estimate of the TPR of the received signal. 24. A computer program product for estimating a received traffic frequency ratio (TPR) of a received message t. The computer program product comprises a computer readable medium having instructions thereon, the instructions comprising: De-spatializing the received signal, .a | j π u is a code for de-spatialized received signal; code for de-spatializing a channel matrix ϋ Μ to a spatialized channel matrix a code for whitening the de-spaced received signal to obtain a pre-whitened de-spaced received signal; 42 201136215 for de-empty of the pair for the white T-counter TPR the de-spaced channel The matrix is whitened to obtain a code for the channel matrix; and the pre-whitened de-spaced received signal and one or de-spaced channel estimate coefficients are used to determine the code of the received signal. Pre-whitening multiple pre-assessments 43
TW099113748A 2009-04-29 2010-04-29 Traffic-to-pilot ratio estimation for MIMO-OFDM system TW201136215A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US17369609P 2009-04-29 2009-04-29
US12/768,305 US8306165B2 (en) 2009-04-29 2010-04-27 Traffic-to-pilot ratio estimation for MIMO-OFDM system

Publications (1)

Publication Number Publication Date
TW201136215A true TW201136215A (en) 2011-10-16

Family

ID=43030325

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099113748A TW201136215A (en) 2009-04-29 2010-04-29 Traffic-to-pilot ratio estimation for MIMO-OFDM system

Country Status (3)

Country Link
US (1) US8306165B2 (en)
TW (1) TW201136215A (en)
WO (1) WO2010127031A2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9350475B2 (en) 2010-07-26 2016-05-24 Qualcomm Incorporated Physical layer signaling to user equipment in a wireless communication system
US9515773B2 (en) 2010-04-13 2016-12-06 Qualcomm Incorporated Channel state information reporting in a wireless communication network
US9307431B2 (en) 2010-04-13 2016-04-05 Qualcomm Incorporated Reporting of channel properties in heterogeneous networks
US20110250919A1 (en) 2010-04-13 2011-10-13 Qualcomm Incorporated Cqi estimation in a wireless communication network
US8886250B2 (en) 2010-06-18 2014-11-11 Qualcomm Incorporated Channel quality reporting for different types of subframes
CN101867533B (en) * 2010-05-27 2012-10-24 东南大学 Method for estimating pilot frequency and communication channel of space division multiple access (SDMA) multi-antenna transmission down link
US9136953B2 (en) 2010-08-03 2015-09-15 Qualcomm Incorporated Interference estimation for wireless communication
US8855000B2 (en) 2011-04-28 2014-10-07 Qualcomm Incorporated Interference estimation using data traffic power and reference signal power
US20130201917A1 (en) * 2012-02-08 2013-08-08 Qualcomm Incorporated Dynamic indication of traffic to pilot (t/p) ratios
US9525522B2 (en) * 2014-02-05 2016-12-20 Qualcomm Incorporated Systems and methods for improved communication efficiency in high efficiency wireless networks
US9564955B2 (en) * 2014-09-03 2017-02-07 Samsung Electronics Co., Ltd Method and apparatus for canceling interference signal of UE in wireless communication system
KR102381442B1 (en) * 2015-01-23 2022-04-01 삼성전자주식회사 Scheme for blind detecting transmission mode for interference cancellation
CN105827354B (en) * 2015-01-23 2019-07-05 三星电子株式会社 For interfering the method and apparatus for carrying out blind Detecting to transmission mode eliminated
US10420116B1 (en) 2018-04-05 2019-09-17 Qualcomm Incorporated Fast joint traffic-to-pilot ratio and spatial scheme detection

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6859505B2 (en) * 2003-07-01 2005-02-22 Motorola, Inc. Method, apparatus and system for use in determining pilot-to-data power ratio in wireless communication
WO2008154653A2 (en) * 2007-06-14 2008-12-18 Telefonaktiebolaget Lm Ericsson (Publ) Efficient method for forming and sharing impairment covariance matrix
US7929629B2 (en) * 2008-02-07 2011-04-19 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for improved channel estimation for communications signal processing

Also Published As

Publication number Publication date
WO2010127031A2 (en) 2010-11-04
US8306165B2 (en) 2012-11-06
WO2010127031A3 (en) 2011-01-27
US20100278290A1 (en) 2010-11-04

Similar Documents

Publication Publication Date Title
TW201136215A (en) Traffic-to-pilot ratio estimation for MIMO-OFDM system
CN114614960B (en) Method and apparatus for reference signal signaling for advanced wireless communication
EP2520032B1 (en) Uplink demodulation reference signal design for mimo transmission
TWI705683B (en) Communication device and communication method
US10153851B2 (en) Transmission method and apparatus
TWI590608B (en) Parallel channel training in multi-user multiple-input and multiple-output system
JP5635183B2 (en) Method and apparatus for optimizing the distribution of power between symbols
CN102224687B (en) Method and system for space code transmit diversity of pucch
WO2018199626A1 (en) Method and apparatus for higher rank csi reporting in advanced wireless communication systems
JP7039864B2 (en) Transmitter, receiver, method and recording medium
WO2013029482A1 (en) Method and device for transmitting downlink control information
WO2011126341A2 (en) Signal transmission method and apparatus using codebook in wireless communication system supporting multiple antennas
CN104604152B (en) The method and apparatus that multiple antennas strengthens are provided using multiple processing units
EP2751938A2 (en) Method and device for suppressing interference in communication networks using frequency switched transmit diversity coding
US11888557B2 (en) Method and apparatus for port selection in wireless communication systems
CN107113271A (en) Single TTI transmission of control data in radio communication
WO2012155506A1 (en) Method and base station for interacting the information of uplink demodulation reference signal among cells
CN110999117B (en) Method and apparatus for beam selection for CSI reporting in advanced wireless communication systems
CN110120859A (en) A kind of user equipment that be used to wirelessly communicate, the method and apparatus in base station
CN110612736A (en) Communication apparatus, base station, method, and recording medium
TW200937918A (en) Methods and apparatus for diversity combining of repeated signals in OFDMA systems
TW201216655A (en) Method of handling antipodal parauitary precoding for MIMO OFDM and related communication device
CN110350955B (en) Method and device used in user equipment and base station for wireless communication
KR102409636B1 (en) Method and apparatus for transmitting and receiving a signal for low peak-to-average power ratio signal in wireless communications systems
US10911280B2 (en) Method for adapting the length of null cyclic prefix for a frequency-domain null cyclic prefix single carrier communication system