WO2014205637A1 - Mimo发射信号加权方法、设备及系统 - Google Patents

Mimo发射信号加权方法、设备及系统 Download PDF

Info

Publication number
WO2014205637A1
WO2014205637A1 PCT/CN2013/077830 CN2013077830W WO2014205637A1 WO 2014205637 A1 WO2014205637 A1 WO 2014205637A1 CN 2013077830 W CN2013077830 W CN 2013077830W WO 2014205637 A1 WO2014205637 A1 WO 2014205637A1
Authority
WO
WIPO (PCT)
Prior art keywords
matrix
codebook
weighting
channel
transmitter
Prior art date
Application number
PCT/CN2013/077830
Other languages
English (en)
French (fr)
Inventor
阙程晟
王智鹰
徐波
蒋培刚
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201380001022.3A priority Critical patent/CN104604153B/zh
Priority to PCT/CN2013/077830 priority patent/WO2014205637A1/zh
Publication of WO2014205637A1 publication Critical patent/WO2014205637A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0636Feedback format
    • H04B7/0639Using selective indices, e.g. of a codebook, e.g. pre-distortion matrix index [PMI] or for beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0652Feedback error handling

Definitions

  • MIMO transmit signal weighting method device and system
  • the present invention relates to the field of communications, and in particular, to a MIMO (Multiple Input Multiple Output) transmit signal weighting method, device, and system.
  • MIMO Multiple Input Multiple Output
  • a multiple-input multiple-output (MIMO) system allows multiple antennas to simultaneously transmit and receive multiple spatial streams, and is capable of distributing signals to or from different spatial orientations.
  • MIMO multiple-input multiple-output
  • the use of a MIMO system in a transmitter or receiver enables multiple parallel data streams to be transmitted simultaneously, improving channel capacity (spatial multiplexing gain), while using a MIMO system at the transmitting or receiving end can significantly overcome channel fading and reduce errors. Rate (diversity gain).
  • the prior art proposes a closed-loop MIMO method, in which a base station sends a sounding reference signal to a mobile terminal, and after receiving the sounding reference signal, the mobile terminal estimates the channel and selects a codebook that is closest to the true state of the channel. And returning the codebook index corresponding to the codebook to the base station, after receiving the codebook index, the base station locally searches for the codebook corresponding to the codebook, and uses the codebook to weight the transmitted signal. Since the base station stores a plurality of codebooks, and each codebook corresponds to a codebook index that is much smaller than the codebook, the mobile terminal also stores the same codebook, and each codebook also corresponds to a same codebook.
  • the codebook itself may be fed back to the base station, and the smaller codebook index is fed back to the base station, and the base station locally finds the corresponding codebook according to the codebook index, thereby reducing Occupancy of wireless transmission resources.
  • Each codebook in the mobile terminal or the base station represents a situation of the channel. Therefore, the feedback of the codebook to the base station enables feedback of important channel information to the base station, so that the base station can adjust according to the channel condition, thereby improving spatial multiplexing. Gain and diversity gain.
  • the number of codebooks in a mobile terminal or base station is limited, and the possible conditions of the channel are endless. Therefore, the infinite endless channel condition is represented by a limited codebook, and the codebook is inevitably introduced. Quantification Error.
  • the technical problem to be solved by the present invention is to provide a MIMO transmission signal weighting method, device and system, which can reduce the impact of codebook quantization error.
  • M is the number of the codebook matrix
  • M ⁇ is the eigenvector matrix
  • Yj H is the conjugate transposed matrix of the eigenvector matrix
  • N is the number of the eigenvector matrices, ⁇ ⁇ , ⁇ , and b
  • the number of the channel matrix is multiple, and different channel matrices correspond to different time slots, different frequency bands, or different time slots, and frequency band.
  • the number of the code matrix is multiple, and different codebook matrices are corresponding to Different sub-bands.
  • a second aspect of the present invention provides a transmitter, including: a receiving module, a calculating module, and a weighting module, where the receiving module is configured to receive a codebook index fed back by a receiver to obtain a codebook matrix. And obtaining a channel matrix according to the reciprocal characteristics of the uplink and downlink channels, and calculating a feature vector of the channel matrix to obtain a feature vector matrix, wherein the receiving module maps the codebook matrix and the feature vector matrix to the The calculation module is configured to send, the calculation module is configured to receive the codebook matrix and the feature vector matrix, according to a formula
  • W Performing a calculation, and calculating a feature vector of R to obtain a weighting matrix, wherein, for the codebook matrix, a conjugate transposed matrix of the codebook matrix, 0 ⁇ j ⁇ Ml, M is the number of the codebook matrix, M ⁇ 0, is the eigenvector matrix, is the conjugate transposed matrix of the eigenvector matrix, Q ⁇ j ⁇ N - 1, N is The number of the feature vector matrices, ⁇ ⁇ , and b ; is a weight coefficient, and the spatial dimension is equal to the spatial dimension of y, i, and the calculation module sends the weighting matrix to the weighting module; The module is configured to receive the weighting matrix, weight the transmitted signal with the weighting matrix, and transmit the transmitted signal.
  • the number of the channel matrix is multiple, and different channel matrices correspond to different time slots, different frequency bands, or different time slots, and frequency band.
  • the number of the code matrix is multiple, and different codebook matrices are corresponding to Different sub-bands.
  • a third aspect of the present invention provides a transmitter, including: a receiver, a processor, and a transmitter, where the receiver is configured to receive a codebook index fed back by a receiver to obtain a codebook matrix, The receiver sends the codebook matrix to the processor; the processor is configured to obtain a channel matrix according to an uplink and downlink channel reciprocity characteristic, and calculate a feature vector of the channel matrix to obtain a feature vector matrix, According to the formula R y y
  • JJJ performs calculation, and calculates a feature vector of w to obtain a weighting matrix
  • M is The number of codebook matrices, M ⁇ 0, ; ⁇ is the eigenvector matrix, 7 is the conjugate transposed matrix of the eigenvector matrix, 0 ⁇ j ⁇ N_l, N is the number of the eigenvector matrices, ⁇ ⁇ 1, and for the weight coefficient, the spatial dimension of X, X and!
  • the spatial dimensions of ⁇ are equal in size, and the transmitted signal is weighted by the weighting matrix, the processor transmitting the transmitted signal to the transmitter; the transmitter is configured to transmit a transmit signal.
  • the number of the channel matrix is multiple, and different channel matrices correspond to different time slots, different frequency bands, or different time slots, and frequency band.
  • the number of the code matrix is multiple, and different codebooks The matrix corresponds to different subbands.
  • a fourth aspect of the present invention provides a MIMO transmission signal weighting system including a transmitter and a receiver, wherein the transmitter and the receiver are capable of communication, wherein the transmitter is A transmitter as claimed in any of the preceding claims.
  • the above scheme obtains the channel matrix by the reciprocity characteristics of the uplink and downlink channels, calculates the eigenvector matrix according to the channel matrix, and combines according to the eigenvector matrix and the codebook matrix, thereby utilizing the prior information of the channel matrix to quantize the codebook matrix. Make corrections to reduce the impact of codebook quantization errors.
  • FIG. 1 is a schematic structural diagram of an embodiment of a MIMO transmission signal weighting system according to the present invention
  • FIG. 2 is a flowchart of an embodiment of a MIMO transmission signal weighting method according to the present invention
  • FIG. 3 is a schematic structural view of an embodiment of a transmitter of the present invention.
  • FIG. 4 is a schematic structural view of another embodiment of a transmitter of the present invention.
  • Figure 1 is a block diagram showing an embodiment of a MIMO transmit signal weighting system.
  • This embodiment includes: a transmitter 110 and a receiver 120. Data transmission between the transmitter 110 and the receiver 120 is performed wirelessly.
  • the transmitter 110 is provided with a plurality of antennas, and the receiver 120 is also provided with a plurality of antennas.
  • the transmitter 110 is defined to transmit data to the receiver 120 in the downstream direction, and the receiver 120 transmits the data to the transmitter 110 in the upstream direction.
  • FIG. 2 is a flow diagram of an embodiment of a MIMO transmit signal weighting method in accordance with the present invention.
  • the MIMO transmit signal weighting method of this embodiment includes the following steps:
  • the transmitter receives the codebook index fed back by the receiver to obtain a codebook matrix, and, Obtaining a channel matrix according to the reciprocal characteristics of the uplink and downlink channels, and calculating a feature vector of the channel matrix to obtain a feature vector matrix.
  • the receiver estimates the channel according to the sounding reference signal sent by the transmitter, selects a codebook that is closest to the true state of the channel, and transmits the codebook index of the codebook to the transmitter.
  • the transmitter receives the codebook index fed back by the receiver, searches locally, and finds the codebook corresponding to the codebook index (ie, the codebook matrix).
  • the number of codebooks can be set according to the needs of the system. For example, one sub-band can be set to one codebook, or one sub-band can be set to one codebook, and even all sub-bands should correspond to one codebook.
  • the receiver transmits a sounding reference signal to the transmitter, and the transmitter obtains a channel matrix of the uplink channel based on the sounding reference signal.
  • the transmitter obtains a channel matrix of the downlink channel according to the reciprocity characteristics of the uplink and downlink channels.
  • the number of channel matrices may be set according to the needs of the system, for example, multiple different channel matrices are acquired in different time slots, or only one channel matrix is acquired.
  • different channel matrices may be acquired to be acquired in different time slots, different channel matrices may be acquired in different frequency bands, or different channel matrices may be acquired in different time slots and frequency bands.
  • TDD time division duplex
  • different channel matrices are acquired in different time slots.
  • the first r eigenvectors are obtained according to the channel matrix, and the first r eigenvectors are formed into a eigenvector matrix.
  • the transmitter calculates according to the formula ⁇ , + ⁇ , ⁇ , and calculates
  • the eigenvector of R to obtain a weighting matrix.
  • the codebook matrix is a conjugate transposed matrix of the codebook matrix, Q ⁇ ⁇ M - 1 , M is the number of the codebook matrix, M ⁇ 0, ; ⁇ is the eigenvector a matrix, F is a conjugate transposed matrix of the eigenvector matrix, Q ⁇ j ⁇ N _ l , N is the number of the eigenvector matrices, ⁇ ⁇ ⁇ , and is a weight coefficient, which can be ⁇ according to actual needs.
  • the spatial dimension of X is equal to the spatial dimension of y.
  • FIG. 3 is a schematic structural diagram of an embodiment of a transmitter of the present invention.
  • the transmitter of this embodiment includes: a receiving module 310, a calculating module 320, and a weighting module 330.
  • the receiving module 310 is configured to receive a codebook index fed back by the receiver to obtain a codebook matrix, and obtain a channel matrix according to the reciprocal characteristics of the uplink and downlink channels, and calculate a feature vector of the channel matrix to obtain a feature vector matrix.
  • the receiver estimates the channel according to the sounding reference signal sent by the transmitter, and selects a codebook that is closest to the true state of the channel, and sends the codebook index of the codebook to the transmitter.
  • the receiving module 310 receives the codebook index fed back by the receiver, searches locally, and finds the codebook corresponding to the codebook index (ie, the codebook matrix).
  • the number of codebooks may be set according to the needs of the system. For example, one codebook may be set for each subband, or one codebook corresponding to one subband may be set, and even all subbands correspond to one codebook.
  • the receiver transmits a sounding reference signal to the transmitter, and the receiving module 310 obtains a channel matrix of the uplink channel according to the sounding reference signal.
  • the receiving module 310 obtains a channel matrix of the downlink channel according to the reciprocal characteristics of the uplink and downlink channels.
  • the number of channel matrices may be set according to the needs of the system, for example, multiple different channel matrices are acquired in different time slots, or only one channel matrix is acquired.
  • different channel matrices may be acquired to be acquired in different time slots, different channel matrices may be acquired in different frequency bands, or different channel matrices may be acquired in different time slots and frequency bands. For example, in a time division duplex (TDD) system, different channel matrices are acquired in different time slots.
  • TDD time division duplex
  • the receiving module 310 transmits the codebook matrix and the feature vector matrix to the computing module 320.
  • X is a codebook matrix, which is a conjugate transposed matrix of the codebook matrix, 0 ⁇ ⁇ M - 1 , where M is the number of codebook matrices, M ⁇ O, ; ⁇ is the eigenvector matrix, y is the eigenvector
  • the conjugate transposed matrix of the matrix, 0 ⁇ ⁇ N -l , N is the number of eigenvector matrices, ⁇ ⁇ ⁇ , and is the weight coefficient, which can be set according to actual needs, and the spatial dimension of X, X and The spatial dimensions of J are equal in size.
  • the calculation module 320 calculates the matrix R, the first r eigenvectors of the matrix R are calculated, and the first r eigenvectors are combined into a weighting matrix.
  • the calculation module 320 transmits the weighting matrix to the weighting module 330.
  • the weighting module 330 is configured to receive the weighting matrix, weight the transmitted signal with a weighting matrix, and transmit the transmitted signal.
  • FIG. 4 is a block diagram showing another embodiment of the transmitter of the present invention.
  • the transmitter of this embodiment includes: a receiver 410, a processor 420, a transmitter 430, a random access memory 440, a read only memory 450, and a bus 460.
  • the processor 420 is coupled to the receiver 410, the transmitter 430, the random access memory 440, and the read only memory 450 via the bus 460.
  • the bootloader booting system in the basic input/output system or the embedded system that is solidified in the read-only memory 450 is booted to boot the transmitter into a normal operating state.
  • the application and operating system are run in random access memory 440 such that:
  • the receiver 410 is configured to receive a codebook index fed back by the receiver to obtain a codebook matrix. For example, the receiver estimates the channel according to the sounding reference signal sent by the transmitter, and selects a codebook that is closest to the true state of the channel, and sends the codebook index of the codebook to the transmitter.
  • the receiver 410 receives the codebook index fed back by the receiver, searches locally, and finds the codebook corresponding to the codebook index (ie, the codebook matrix).
  • the number of the codebooks may be set according to the needs of the system. For example, one codebook may be set for each subband, or one codebook may be set for each subband, or even all the subbands correspond to one codebook.
  • Receiver 410 transmits the codebook matrix to processor 420.
  • the processor 420 is configured to obtain a channel matrix according to the reciprocity characteristics of the uplink and downlink channels, and calculate a feature vector of the channel matrix to obtain a feature vector matrix, according to a formula.
  • W A calculation is performed, and a feature vector of R is calculated to obtain a weighting matrix, and the transmitted signal is weighted by the weighting matrix.
  • the receiver transmits a sounding reference signal to the transmitter, and the processor 420 obtains a channel matrix of the uplink channel according to the sounding reference signal. Then, the processor 420 obtains a channel matrix of the downlink channel according to the reciprocal characteristics of the uplink and downlink channels.
  • the number of channel matrices may be set according to the needs of the system, for example, multiple different channel matrices are acquired in different time slots, or only one channel matrix is acquired.
  • different channel matrices may be acquired to be acquired in different time slots, different channel matrices may be acquired in different frequency bands, or different channel matrices may be acquired in different time slots and frequency bands.
  • TDD time division duplex
  • different channel matrices are acquired in different time slots.
  • the conjugate transposed matrix of the codebook matrix 0 ⁇ ⁇ M - 1 , M is the number of codebook matrices, M ⁇ 0, eigenvector matrix, F is the conjugate transposed matrix of the eigenvector matrix, 0 ⁇ ⁇ Nl , N is the number of eigenvector matrices, ⁇ ⁇ 1 , and is the weight coefficient, which can be set according to the actual needs and the spatial dimension of! The spatial dimensions of ⁇ are equal in size.
  • the processor 420 calculates the matrix R, the first r eigenvectors of the matrix R are calculated, and the first r eigenvectors are grouped into a weighting matrix.
  • the processor 420 transmits the transmitted signal to the transmitter 430.
  • Transmitter 430 is used to transmit a transmit signal.
  • the present invention also provides a MIMO transmission signal weighting system, comprising: a transmitter and a receiver, wherein the transmitter and the receiver can communicate with each other, as shown in FIG. 1 and related Description, details are not repeated here.
  • the above scheme obtains the channel matrix by the reciprocity characteristics of the uplink and downlink channels, calculates the eigenvector matrix according to the channel matrix, and combines according to the eigenvector matrix and the codebook matrix, thereby utilizing the prior information of the channel matrix to quantize the codebook matrix. Make corrections to reduce the impact of codebook quantization errors.
  • the disclosed system, apparatus and method may be implemented in other ways.
  • the device implementations described above are merely illustrative.
  • the division of the modules or units is only a logical function division.
  • there may be another division manner for example, multiple units or components may be used. Combined or can be integrated into another system, or some features can be ignored, or not executed.
  • the coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be electrical, mechanical or otherwise.
  • the units described as separate components may or may not be physically separate, and the components displayed as units may or may not be physical units, i.e., may be located in one place, or may be distributed over multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the present embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or may be integrated by two or more units. In one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium. Based on such understanding, the technical solution of the present invention may contribute to the prior art or all or part of the technical solution may be embodied in the form of a software product stored in a storage medium.
  • the instructions include a plurality of instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) or a processor to perform all or part of the steps of the methods of the various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a removable hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk or an optical disk, and the like, which can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Radio Transmission System (AREA)

Abstract

本发明公开了多输入多输出MIMO发射信号加权方法、设备以及系统。其中,所述方法包括:接收接收机所反馈的码本索引,以得到码本矩阵,以及,根据上下行信道互易特性得到信道矩阵,并计算出信道矩阵的特征向量,以得到特征向量矩阵;根据公式式i进行计算,并计算出R的特征向量,以得到加权矩阵,其中, X i 为码本矩阵,式ii为码本矩阵的共轭转置矩阵, 0≤i≤M-1,M为码本矩阵的数量,M ≥1,Y j 为特征向量矩阵,式iii为特征向量矩阵的共轭转置矩阵,0≤j≤N-1,N为特征向量矩阵的数量, N≥1,a i 以及bj为权重系数,可根据实际需要对a i 以及bj进行设置,式iv的空间维度与式v 的空间维度大小相等;用加权矩阵对发射信号进行加权,并发送发射信号。

Description

MIMO发射信号加权方法、 设备及系统
【技术领域】 本发明涉及通信领域, 特别是涉及 MIMO ( Multiple-Input Multiple-Output, 多输入多输出 )发射信号加权方法、 设备及系统。
【背景技术】 多输入多输出 (MIMO, Multiple-Input Multiple- Output ) 系统允许多个 天线同时发送和接收多个空间流, 并能够区分发往或来自不同空间方位的 信号。在发送机或接收机使用 MIMO系统能够使得多个并行数据流可以同时 传送,提高信道容量(空间复用增益), 同时,在发送端或接收端使用 MIMO 系统可以显著克服信道的衰落, 降低误码率 (分集增益) 。
传统开环 MIMO方法中,移动终端和基站之间不会进行往复通信, 不能 将重要的信道信息反馈给基站,使得开环 MIMO系统无法完全利用信道的分 集或容量。
于是,现有技术提出了一种闭环 MIMO方法,基站向移动终端发送探测 参考信号, 移动终端在接收到探测参考信号后, 对信道进行预估, 并选择 出一个最接近信道真实状况的码本, 并把该码本所对应的码本索引返回给 基站, 基站在接收到码本索引后, 在本地搜索到该码本所对应的码本, 并 利用码本对发射信号进行加权。 由于基站内部存储有多个码本, 而且, 每 个码本对应一个远比码本小的码本索引, 移动终端也存储有相同的码本, 而且每个码本也对应一个相同的码本索引, 所以, 移动终端反馈码本时, 可以无需将码本本身反馈给基站, 而是将较小的码本索引反馈给基站, 基 站根据码本索引在本地查找到相应的码本, 从而减少对无线传输资源的占 用。 移动终端或基站中的每个码本表示信道的一种情况, 所以将码本反馈 给基站即实现将重要的信道信息反馈给基站, 使得基站可以根据信道的情 况进行调整, 从而提高空间复用增益和分集增益。 但是, 移动终端或基站 中的码本的数量是有限的, 而信道可能出现的状况是无穷无尽的, 所以, 将无穷无尽的信道状况用有限的码本来表现, 无可避免地引入了码本量化 误差。
【发明内容】 本发明主要解决的技术问题是提供 MIMO发射信号加权方法、设备及系 统, 能够降低码本量化误差所造成的影响。
为解决上述技术问题, 本发明第一方面提出了一种多输入多输出 MIMO发射信号加权方法, 包括如下步骤: 接收接收机所反馈的码本索引, 以得到码本矩阵, 以及, 根据上下行信道互易特性得到信道矩阵, 并计算 出所述信道矩阵的特征向量, 以得到特征向量矩阵; 根据公式 W = " 进行计算, 并计算出 R的特征向量, 以得到加权 矩阵, 其中, ^为所述码本矩阵, 为所述码本矩阵的共轭转置矩阵,
0 < j≤M - l , M为所述码本矩阵的数量, M≥0 , 为所述特征向量矩阵, YjH 为所述特征向量矩阵的共轭转置矩阵, 0≤j≤N _ l , N为所述特征向量矩阵 的数量, Ν≥ , Ω,以及 b;为权重系数, X,J 的空间维度与 y,J 的空间维度 大小相等; 用所述加权矩阵对发射信号进行加权, 并发送发射信号。
结合第一方面, 本发明第一方面的第一种可能的实施方式中, 所述信 道矩阵的数量为多个, 且不同的信道矩阵对应不同的时隙、 不同的频带或 者不同的时隙以及频带。
结合第一方面或第一方面的第一种可能的实施方式, 本发明第一方面 的第二种可能的实施方式中, 所述码本矩阵的数量为多个, 且不同的码本 矩阵对应不同子带。
为解决上述技术问题, 本发明第二方面提出了一种发射机, 包括: 接 收模块、 计算模块以及加权模块, 所述接收模块用于接收接收机所反馈的 码本索引, 以得到码本矩阵, 以及, 根据上下行信道互易特性得到信道矩 阵, 并计算出所述信道矩阵的特征向量, 以得到特征向量矩阵, 所述接收 模块将所述码本矩阵以及所述特征向量矩阵向所述计算模块发送; 所述计 算模块用于接收所述码本矩阵以及所述特征向量矩阵, 根据公式
W
Figure imgf000004_0001
进行计算, 并计算出 R的特征向量, 以得到加权 矩阵, 其中, 为所述码本矩阵, 为所述码本矩阵的共轭转置矩阵, 0<j≤M-l, M为所述码本矩阵的数量, M≥0 , 为所述特征向量矩阵, 为所述特征向量矩阵的共轭转置矩阵, Q≤j≤N - 1, N为所述特征向量矩阵 的数量, Ν≥ , 以及 b;为权重系数, 的空间维度与 y,i 的空间维度 大小相等, 所述计算模块将所述加权矩阵向所述加权模块发送; 所述加权 模块用于接收所述加权矩阵, 用所述加权矩阵对发射信号进行加权, 并发 送发射信号。
结合第二方面, 本发明第二方面的第一种可能的实施方式中, 所述信 道矩阵的数量为多个, 且不同的信道矩阵对应不同的时隙、 不同的频带或 者不同的时隙以及频带。
结合第二方面或第二方面的第一种可能的实施方式, 本发明第二方面 的第二种可能的实施方式中, 所述码本矩阵的数量为多个, 且不同的码本 矩阵对应不同子带。
为解决上述技术问题, 本发明第三方面提出了一种发射机, 包括: 接 收器、 处理器以及发送器, 所述接收器用于接收接收机所反馈的码本索引, 以得到码本矩阵, 所述接收器将所述码本矩阵向所述处理器发送; 所述处 理器用于根据上下行信道互易特性得到信道矩阵, 并计算出所述信道矩阵 的特征向量, 以得到特征向量矩阵, 根据公式 R yy
Figure imgf000005_0001
J J J 进 行计算, 并计算出 w的特征向量, 以得到加权矩阵, 其中, 为所述码本 矩阵, 为所述码本矩阵的共轭转置矩阵, Q≤ ≤M-1, M为所述码本矩 阵的数量, M≥0 , ; ^为所述特征向量矩阵, 7 为所述特征向量矩阵的共轭 转置矩阵, 0<j<N_l, N为所述特征向量矩阵的数量, Ν≥1, 以及 为 权重系数, X,X 的空间维度与!^^的空间维度大小相等, 以及用所述加权 矩阵对发射信号进行加权, 所述处理器将所述发射信号向所述发送器发送; 所述发送器用于发送发射信号。
结合第三方面, 本发明第三方面的第一种可能的实施方式中, 所述信 道矩阵的数量为多个, 且不同的信道矩阵对应不同的时隙、 不同的频带或 者不同的时隙以及频带。
结合第三方面或第三方面的第一种可能的实施方式, 本发明第三方面 的第二种可能的实施方式中, 所述码本矩阵的数量为多个, 且不同的码本 矩阵对应不同子带。
为解决上述技术问题,本发明第四方面提出了一种 MIMO发射信号加权 系统, 包括发射机和接收机, 所述发射机和所述接收机之间能够进行通信, 其中, 所述发射机为如上述任一项所述的发射机。
上述方案通过上下行信道互易特性得到信道矩阵, 根据信道矩阵计算 得到特征向量矩阵, 并根据特征向量矩阵以及码本矩阵进行合并, 从而利 用信道矩阵中的先验信息对码本矩阵的量化误差进行修正, 降低码本量化 误差所造成的影响。
【附图说明】 图 1是本发明一种 MIMO发射信号加权系统一实施方式的结构示意图; 图 2是本发明 MIMO发射信号加权方法一实施方式的流程图;
图 3是本发明发射机一实施方式的结构示意图;
图 4是本发明发射机另一实施方式的结构示意图。
【具体实施方式】 以下描述中, 为了说明而不是为了限定, 提出了诸如特定系统结构、 接口、 技术之类的具体细节, 以便透彻理解本发明。 然而, 本领域的技术 在其它情况中, 省略对众所周知的装置、 电路以及方法的详细说明, 以免 不必要的细节妨碍本发明的描述。
参阅图 1 , 图 1是一种 MIMO发射信号加权系统一实施方式的结构示 意图。 本实施方式包括: 发射机 110以及接收机 120。 发射机 110与接收机 120之间通过无线的方式进行数据传输。其中,发射机 110设置有多根天线, 接收机 120也设置有多根天线。 定义发射机 110向接收机 120发送数据为 下行方向, 而接收机 120向发射机 110发送数据为上行方向。
参阅图 2, 图 2是本发明 MIMO发射信号加权方法一实施方式的流程 图。 本实施方式的 MIMO发射信号加权方法包括如下步骤:
S201: 发射机接收接收机所反馈的码本索引, 以得到码本矩阵, 以及, 根据上下行信道互易特性得到信道矩阵, 并计算出所述信道矩阵的特征向 量, 以得到特征向量矩阵。
接收机根据发射机所发送的探测参考信号对信道进行预估, 并选择出 一个最接近信道真实状况的码本, 并将该码本的码本索引向发射机发送。 发射机接收接收机所反馈的码本索引, 并在本地进行搜索, 并查找到与该 码本索引所对应的码本(即码本矩阵)。 其中, 可根据系统的需要设置码本 的数量, 例如, 可以设置每个子带对应一个码本, 也可以设置隔一个子带 对应一个码本, 甚至所有子带对应一个码本等等。 接收机向发射机发射探 测参考信号, 发射机根据探测参考信号获得上行信道的信道矩阵。 然后, 发射机根据上下行信道互易特性得到下行信道的信道矩阵。 其中, 可根据 系统的需要设置信道矩阵的数量, 例如, 在不同的时隙采集得到多个不同 的信道矩阵, 或只采集得到一个信道矩阵等等。 而且, 根据系统的不同, 可以设置为在不同的时隙采集得到不同的信道矩阵, 在不同的频带采集得 到不同的信道矩阵, 或者在不同的时隙以及频带采集得到不同的信道矩阵。 例如, 在时分双工 (TDD ) 系统中采用在不同的时隙采集得到不同的信道 矩阵。 在得到信道矩阵后, 根据信道矩阵进行计算, 得到前 r个特征向量, 并将前 r个特征向量组成特征向量矩阵。
S202: 发射机根据公式^ ^Χ, + ^,}^进行计算, 并计算出
R的特征向量, 以得到加权矩阵。
发射机根据公式 R = M— ^j^ ^j^ 进行计算。其中, 为所述 码本矩阵, 为所述码本矩阵的共轭转置矩阵, Q≤ ≤M - 1 , M为所述码 本矩阵的数量, M≥0 , ; ^为所述特征向量矩阵, F 为所述特征向量矩阵的 共轭转置矩阵, Q≤j≤N _ l , N为所述特征向量矩阵的数量, Ν≥\ , 以及 为权重系数, 可根据实际需要对 α,以及 进行设置, X 的空间维度与 y 的空间维度大小相等。 在计算出矩阵 R后, 再计算出矩阵 R的前 r个特 征向量, 并将前 r个特征向量组成加权矩阵。
S203: 发射机用加权矩阵对发射信号进行加权, 并发送发射信号。 参阅图 3 , 图 3是本发明发射机一实施方式的结构示意图。 本实施方式 的发射机包括: 接收模块 310、 计算模块 320以及加权模块 330。 接收模块 310用于接收接收机所反馈的码本索引, 以得到码本矩阵, 以及, 根据上下行信道互易特性得到信道矩阵, 并计算出信道矩阵的特征 向量, 以得到特征向量矩阵。 比如: 接收机根据发射机所发送的探测参考 信号对信道进行预估, 并选择出一个最接近信道真实状况的码本, 并将该 码本的码本索引向发射机发送。 接收模块 310接收接收机所反馈的码本索 引, 并在本地进行搜索, 并查找到与该码本索引所对应的码本(即码本矩 阵)。 其中, 可根据系统的需要设置码本的数量, 例如, 可以设置每个子带 对应一个码本, 也可以设置隔一个子带对应一个码本, 甚至所有子带对应 一个码本等等。 接收机向发射机发射探测参考信号, 接收模块 310根据探 测参考信号获得上行信道的信道矩阵。 然后, 接收模块 310根据上下行信 道互易特性得到下行信道的信道矩阵。 其中, 可根据系统的需要设置信道 矩阵的数量, 例如, 在不同的时隙采集得到多个不同的信道矩阵, 或只采 集得到一个信道矩阵等等。 而且, 根据系统的不同, 可以设置为在不同的 时隙采集得到不同的信道矩阵, 在不同的频带采集得到不同的信道矩阵, 或者在不同的时隙以及频带采集得到不同的信道矩阵。 例如, 在时分双工 ( TDD ) 系统中采用在不同的时隙采集得到不同的信道矩阵。 在得到信道 矩阵后, 根据信道矩阵进行计算, 得到前 r个特征向量, 并将前 r个特征向 量组成特征向量矩阵。 接收模块 310将码本矩阵以及特征向量矩阵向计算 模块 320发送。
计算模块 320 用于接收码本矩阵以及特征向量矩阵, 根据公式 W
Figure imgf000008_0001
进行计算, 并计算出 R的特征向量, 以得到加权 矩阵。 比如: 计算模块320根据公式^ =∑;;。 ^,// +∑^ //进行计算。 其中, X,为码本矩阵, 为码本矩阵的共轭转置矩阵, 0≤ ≤M - 1 , M为 码本矩阵的数量, M≥O , ; ^为特征向量矩阵, y 为特征向量矩阵的共轭转 置矩阵, 0≤ ≤N -l , N为特征向量矩阵的数量, Ν≥\ , 以及 为权重系 数, 可根据实际需要对 a,以及 进行设置, X,X 的空间维度与 J 的空间 维度大小相等。 在计算模块 320计算出矩阵 R后, 再计算出矩阵 R的前 r个 特征向量, 并将前 r个特征向量组成加权矩阵。 计算模块 320将加权矩阵向 加权模块 330发送。 加权模块 330用于接收加权矩阵, 用加权矩阵对发射信号进行加权, 并发送发射信号。
参阅图 4, 图 4是本发明发射机另一实施方式的结构示意图。 本实施方 式的发射机包括: 接收器 410、 处理器 420、 发送器 430、 随机存取存储器 440、 只读存储器 450以及总线 460。 其中, 处理器 420通过总线 460分别 耦接接收器 410、 发送器 430、 随机存取存储器 440以及只读存储器 450。 其中, 当需要运行发射机时, 通过固化在只读存储器 450 中的基本输入输 出系统或者嵌入式系统中的 bootloader引导系统进行启动,引导发射机进入 正常运行状态。 在发射机进入正常运行状态后, 在随机存取存储器 440 中 运行应用程序和操作系统, 使得:
接收器 410用于接收接收机所反馈的码本索引, 以得到码本矩阵。 比 如: 接收机根据发射机所发送的探测参考信号对信道进行预估, 并选择出 一个最接近信道真实状况的码本, 并将该码本的码本索引向发射机发送。 接收器 410接收接收机所反馈的码本索引, 并在本地进行搜索, 并查找到 该码本索引所对应的码本(即码本矩阵)。 其中, 可 ^据系统的需要设置码 本的数量, 例如, 可以设置每个子带对应一个码本, 也可以设置隔一个子 带对应一个码本, 甚至所有子带对应一个码本等等。 接收器 410将码本矩 阵向处理器 420发送。
处理器 420用于根据上下行信道互易特性得到信道矩阵, 并计算出所 述信道矩阵的特征向量, 以得到特征向量矩阵, 根据公式
W
Figure imgf000009_0001
进行计算, 并计算出 R的特征向量, 以得到加权 矩阵, 以及用所述加权矩阵对发射信号进行加权。 比如: 接收机向发射机 发射探测参考信号, 处理器 420根据探测参考信号获得上行信道的信道矩 阵。 然后, 处理器 420根据上下行信道互易特性得到下行信道的信道矩阵。 其中, 可根据系统的需要设置信道矩阵的数量, 例如, 在不同的时隙采集 得到多个不同的信道矩阵, 或只采集得到一个信道矩阵等等。 而且, 根据 系统的不同, 可以设置为在不同的时隙采集得到不同的信道矩阵, 在不同 的频带采集得到不同的信道矩阵, 或者在不同的时隙以及频带采集得到不 同的信道矩阵。 例如, 在时分双工 (TDD ) 系统中采用在不同的时隙采集 得到不同的信道矩阵。 在得到信道矩阵后, 根据信道矩阵进行计算, 得到 前 r个特征向量, 并将前 r个特征向量组成特征向量矩阵。然后,处理器 420 根据公式 W 为
Figure imgf000010_0001
码本矩阵的共轭转置矩阵, 0≤ ≤M - 1 , M为码本矩阵的数量, M≥0 , 特征向量矩阵, F 为特征向量矩阵的共轭转置矩阵, 0≤ ≤ N-l , N为特征 向量矩阵的数量, Ν≥1 , 以及 为权重系数, 可根据实际需要对 以及 进行设置, 的空间维度与!^^的空间维度大小相等。 在处理器 420计 算出矩阵 R后, 再计算出矩阵 R的前 r个特征向量, 并将前 r个特征向量组 成加权矩阵。 处理器 420将发射信号向发送器 430发送。
发送器 430用于发送发射信号。
基于上述的发射机, 本发明还提出了一种 MIMO发射信号加权系统, 包括: 包括发射机和接收机, 所述发射机和所述接收机之间能够进行通信, 具体请参阅图 1及相关描述, 此处不重复赘述。
上述方案通过上下行信道互易特性得到信道矩阵, 根据信道矩阵计算 得到特征向量矩阵, 并根据特征向量矩阵以及码本矩阵进行合并, 从而利 用信道矩阵中的先验信息对码本矩阵的量化误差进行修正, 降低码本量化 误差所造成的影响。
在本发明所提供的几个实施方式中, 应该理解到, 所揭露的系统, 装 置和方法, 可以通过其它的方式实现。 例如, 以上所描述的装置实施方式 仅仅是示意性的, 例如, 所述模块或单元的划分, 仅仅为一种逻辑功能划 分, 实际实现时可以有另外的划分方式, 例如多个单元或组件可以结合或 者可以集成到另一个系统, 或一些特征可以忽略, 或不执行。 另一点, 所 显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接 口, 装置或单元的间接耦合或通信连接, 可以是电性, 机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的, 作为单元显示的部件可以是或者也可以不是物理单元, 即可以位于一个地 方, 或者也可以分布到多个网络单元上。 可以根据实际的需要选择其中的 部分或者全部单元来实现本实施方式方案的目的。
另外, 在本发明各个实施方式中的各功能单元可以集成在一个处理单 元中, 也可以是各个单元单独物理存在, 也可以两个或两个以上单元集成 在一个单元中。 上述集成的单元既可以采用硬件的形式实现, 也可以采用 软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销 售或使用时, 可以存储在一个计算机可读取存储介质中。 基于这样的理解, 本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方 案的全部或部分可以以软件产品的形式体现出来, 该计算机软件产品存储 在一个存储介质中, 包括若干指令用以使得一台计算机设备(可以是个人 计算机, 服务器, 或者网络设备等)或处理器(processor )执行本发明各个 实施方式所述方法的全部或部分步骤。 而前述的存储介质包括: U盘、 移 动硬盘、只读存储器(ROM, Read-Only Memory )、随机存取存储器(RAM, Random Access Memory ), 磁碟或者光盘等各种可以存储程序代码的介质。

Claims

权利要求
1.一种多输入多输出 MIM0发射信号加权方法, 其特征在于, 包括如 下步骤:
接收接收机所反馈的码本索引, 以得到码本矩阵, 以及, 根据上下行 信道互易特性得到信道矩阵, 并计算出所述信道矩阵的特征向量, 以得到 特征向量矩阵;
根据公式^ ^,^
Figure imgf000012_0001
进行计算, 并计算出 R的特征向 量, 以得到加权矩阵, 其中, X,为所述码本矩阵, 为所述码本矩阵的共 轭转置矩阵, 0≤ ≤M-1 , Μ为所述码本矩阵的数量, Μ≥0 , ; ^为所述特 征向量矩阵, i 为所述特征向量矩阵的共轭转置矩阵, 0≤j≤N_l , N为所 述特征向量矩阵的数量, Ν≥1, 以及 为权重系数, 的空间维度与 y 的空间维度大小相等;
用所述加权矩阵对发射信号进行加权, 并发送发射信号。
2.根据权利要求 1所述的方法, 其特征在于, 所述信道矩阵的数量为多 个, 且不同的信道矩阵对应不同的时隙、 不同的频带或者不同的时隙以及 频带。
3.根据权利要求 1所述的方法, 其特征在于, 所述码本矩阵的数量为多 个, 且不同的码本矩阵对应不同子带。
4.一种发射机,其特征在于, 包括:接收模块、计算模块以及加权模块, 所述接收模块用于接收接收机所反馈的码本索引, 以得到码本矩阵, 以及, 根据上下行信道互易特性得到信道矩阵, 并计算出所述信道矩阵的 特征向量, 以得到特征向量矩阵, 所述接收模块将所述码本矩阵以及所述 特征向量矩阵向所述计算模块发送;
所述计算模块用于接收所述码本矩阵以及所述特征向量矩阵, 根据公 式^ =∑ ^^/+∑^¾ "进行计算, 并计算出 W的特征向量, 以得到加 权矩阵, 其中, X,为所述码本矩阵, 为所述码本矩阵的共轭转置矩阵, 0<j≤M-l, M为所述码本矩阵的数量, M≥0 , ; ^为所述特征向量矩阵, YjH 为所述特征向量矩阵的共轭转置矩阵, 0≤j≤N_l , N为所述特征向量矩阵 的数量, N≥l , 以及 b,.为权重系数, x,x 的空间维度与 y,j 的空间维度 大小相等, 所述计算模块将所述加权矩阵向所述加权模块发送;
所述加权模块用于接收所述加权矩阵, 用所述加权矩阵对发射信号进 行加权, 并发送发射信号。
5.根据权利要求 4所述的发射机, 其特征在于, 所述信道矩阵的数量为 多个, 且不同的信道矩阵对应不同的时隙、 不同的频带或者不同的时隙以 及频带。
6.根据权利要求 4所述的发射机, 其特征在于, 所述码本矩阵的数量为 多个, 且不同的码本矩阵对应不同子带。
7.—种发射机, 其特征在于, 包括: 接收器、 处理器以及发送器, 所述接收器用于接收接收机所反馈的码本索引, 以得到码本矩阵, 所 述接收器将所述码本矩阵向所述处理器发送;
所述处理器用于根据上下行信道互易特性得到信道矩阵, 并计算出所 述信道矩阵的特征向量, 以得到特征向量矩阵, 根据公式 R = ΤΜ-1 αι ΧιΧ^ +∑Ν'^ ΥΥ" 并计算出 R的特征向量, 以得到加权 矩阵, 其中, X,为所述码本矩阵, 为所述码本矩阵的共轭转置矩阵,
0≤ ≤Μ - 1 , M为所述码本矩阵的数量, M≥0 , ; ^为所述特征向量矩阵, YjH 为所述特征向量矩阵的共轭转置矩阵, Q≤j≤N - 1 , N为所述特征向量矩阵 的数量, Ν≥\ , 以及 b,.为权重系数, X,X 的空间维度与 y,J 的空间维度 大小相等, 以及用所述加权矩阵对发射信号进行加权, 所述处理器将所述 发射信号向所述发送器发送;
所述发送器用于发送发射信号。
8.根据权利要求 7所述的发射机, 其特征在于, 所述信道矩阵的数量为 多个, 且不同的信道矩阵对应不同的时隙、 不同的频带或者不同的时隙以 及频带。
9.根据权利要求 7所述的发射机, 其特征在于, 所述码本矩阵的数量为 多个, 且不同的码本矩阵对应不同子带。
10.—种 MIMO发射信号加权系统,其特征在于,包括发射机和接收机, 所述发射机和所述接收机之间能够进行通信, 其中, 所述发射机为如权利 要求 4-9任一权利要求所述的发射机 ε
PCT/CN2013/077830 2013-06-25 2013-06-25 Mimo发射信号加权方法、设备及系统 WO2014205637A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201380001022.3A CN104604153B (zh) 2013-06-25 2013-06-25 Mimo发射信号加权方法、设备及系统
PCT/CN2013/077830 WO2014205637A1 (zh) 2013-06-25 2013-06-25 Mimo发射信号加权方法、设备及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/077830 WO2014205637A1 (zh) 2013-06-25 2013-06-25 Mimo发射信号加权方法、设备及系统

Publications (1)

Publication Number Publication Date
WO2014205637A1 true WO2014205637A1 (zh) 2014-12-31

Family

ID=52140759

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/077830 WO2014205637A1 (zh) 2013-06-25 2013-06-25 Mimo发射信号加权方法、设备及系统

Country Status (2)

Country Link
CN (1) CN104604153B (zh)
WO (1) WO2014205637A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018032492A1 (zh) * 2016-08-19 2018-02-22 华为技术有限公司 一种下行传输方法及网络设备

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110754111B (zh) * 2019-01-20 2021-01-19 Oppo广东移动通信有限公司 一种码本处理方法及装置、终端、网络设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101374034A (zh) * 2007-08-20 2009-02-25 中兴通讯股份有限公司 下行与上行多用户多输入多输出的预编码方法及其码本
CN102223171A (zh) * 2011-06-17 2011-10-19 电信科学技术研究院 一种信道信息获取和反馈方法、系统及装置
CN102474320A (zh) * 2009-07-06 2012-05-23 英特尔公司 使用基础码本和差分码本的波束成形
CN102763447A (zh) * 2010-02-17 2012-10-31 捷讯研究有限公司 用于采用了多输入多输出(mimo)传输的无线通信系统中的信道状态信息反馈的系统和方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101471707B (zh) * 2007-12-28 2013-09-11 华为技术有限公司 时分双工多输入多输出的下行波束形成方法、装置和系统
CN101217304B (zh) * 2008-01-10 2013-01-30 北京邮电大学 一种多子信道的多输入多输出预编码处理方法
CN101577968B (zh) * 2008-05-05 2011-08-03 华为技术有限公司 一种获取下行信道信息的方法、系统和装置
CN101615937B (zh) * 2008-06-27 2013-08-07 中兴通讯股份有限公司 一种多天线发射方法及多天线发射装置
CN101626265A (zh) * 2008-07-10 2010-01-13 中兴通讯股份有限公司 一种无线通信系统中实现下行波束赋形的方法
EP2343847A1 (en) * 2008-10-28 2011-07-13 Hitachi, Ltd. Multi-user mimo wireless communication method and multi-user mimo wireless communication device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101374034A (zh) * 2007-08-20 2009-02-25 中兴通讯股份有限公司 下行与上行多用户多输入多输出的预编码方法及其码本
CN102474320A (zh) * 2009-07-06 2012-05-23 英特尔公司 使用基础码本和差分码本的波束成形
CN102763447A (zh) * 2010-02-17 2012-10-31 捷讯研究有限公司 用于采用了多输入多输出(mimo)传输的无线通信系统中的信道状态信息反馈的系统和方法
CN102223171A (zh) * 2011-06-17 2011-10-19 电信科学技术研究院 一种信道信息获取和反馈方法、系统及装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018032492A1 (zh) * 2016-08-19 2018-02-22 华为技术有限公司 一种下行传输方法及网络设备

Also Published As

Publication number Publication date
CN104604153A (zh) 2015-05-06
CN104604153B (zh) 2018-05-29

Similar Documents

Publication Publication Date Title
US11251843B2 (en) Methods and devices for determining precoder parameters in a wireless communication network
CN111656742B (zh) 一种信道估计方法和装置
CN111314034B (zh) 用于csi报告和使用的增强频率压缩的方法和装置
US8594161B2 (en) Method and system for beamforming in a multiple user multiple input multiple output (MIMO) communication system using a codebook
JP5438829B2 (ja) プリコーディング方法、チャンネル情報フィードバック方法、発信部、受信部、及びプリコーディングコードブックの構造方法
CN110034797B (zh) 一种预编码矩阵指示的反馈方法及装置
JP7413544B2 (ja) チャネル相反性に基づくプリコーディングマトリックスの構成方法および装置
JP2013502111A5 (zh)
JP5391335B2 (ja) 多入力多出力ビーム形成のデータ送信方法及び装置
CN102356566B (zh) 在使用预编码的多用户网络中的通信方法及其设备
CN106160938B (zh) 一种信道信息的获取方法和装置
JP6556244B2 (ja) コードブック確定方法及び装置
WO2012022208A1 (zh) 信道信息的发送方法、终端、基站及lte-a系统
JP5507001B2 (ja) 変換装置および方法
WO2011110123A2 (zh) 数据传输方法和装置
CN107615676A (zh) 多输入多输出传输方法、终端及基站
WO2014205637A1 (zh) Mimo发射信号加权方法、设备及系统
US11496188B2 (en) Electronic device, communication method and medium
CN111713054A (zh) 通信方法、通信装置和系统
WO2017107671A1 (zh) 信道信息的发送、接收方法及装置、终端和基站
CN106537805B (zh) 一种码本、基于该码本生成预编码器的方法与装置
CN106716859A (zh) 用户装置和基站
CN112119617B (zh) 基于特征值的信道硬化和显式反馈
EP3183823B1 (en) Kronecker approximation and scalar quantization of transmit weight vectors
WO2023174551A1 (en) Port-group specific precoding parameter sets for cjt with m-trp

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13888455

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13888455

Country of ref document: EP

Kind code of ref document: A1