WO2014203829A1 - Transparent conductive film composition, transparent electrode, semiconductor light-emitting element, solar cell - Google Patents

Transparent conductive film composition, transparent electrode, semiconductor light-emitting element, solar cell Download PDF

Info

Publication number
WO2014203829A1
WO2014203829A1 PCT/JP2014/065772 JP2014065772W WO2014203829A1 WO 2014203829 A1 WO2014203829 A1 WO 2014203829A1 JP 2014065772 W JP2014065772 W JP 2014065772W WO 2014203829 A1 WO2014203829 A1 WO 2014203829A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
semiconductor layer
nitride semiconductor
light emitting
transparent electrode
Prior art date
Application number
PCT/JP2014/065772
Other languages
French (fr)
Japanese (ja)
Inventor
晃平 三好
月原 政志
杉山 徹
Original Assignee
ウシオ電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ウシオ電機株式会社 filed Critical ウシオ電機株式会社
Priority to KR1020157035290A priority Critical patent/KR20160006787A/en
Publication of WO2014203829A1 publication Critical patent/WO2014203829A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/40Materials therefor
    • H01L33/42Transparent materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1884Manufacture of transparent electrodes, e.g. TCO, ITO
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/40Materials therefor
    • H01L33/405Reflective materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a composition for a transparent conductive film mainly containing Al and Ga, a transparent electrode comprising the composition, a semiconductor light emitting device, and a solar cell.
  • a light-transmitting conductive material (hereinafter referred to as “transparent conductive film”) is excellent in conductivity and light transmittance, and is therefore used as a transparent electrode in various devices.
  • transparent conductive film tin oxide (SnO 2 ) containing antimony (Sb) or fluorine (F) as a dopant, zinc oxide (ZnO) containing aluminum (Al) or gallium (Ga) as a dopant, And oxides such as indium oxide (In 2 O 3 ) containing Sn as a dopant are known.
  • an indium oxide film containing Sn as a dopant is called an ITO (Indium-Tin-Oxide) film, and is widely used because a low-resistance oxide transparent conductive film can be easily obtained (for example, Patent Document 1).
  • ITO Indium-Tin-Oxide
  • a direct current sputtering method is used to form the ITO film.
  • An ITO film formed at room temperature exhibits a low specific resistance of about 5 ⁇ 10 ⁇ 4 ⁇ ⁇ cm.
  • the ITO film has good light transmittance in the visible region, and exhibits an average light transmittance of 80% or more. Moreover, it is excellent in chemical and thermal stability.
  • light emitting materials and light emitting devices for example, LEDs, lasers, organic or inorganic EL
  • functions of blue light emission and near ultraviolet light emission for example, wavelength 300 to 400 nm
  • These electronic devices require transparent electrodes.
  • conventional transparent oxide conductive films such as ITO films have excellent average transmittance in the visible light range of 400 to 800 nm, but near ultraviolet light having a wavelength of around 400 nm or near ultraviolet light having a shorter wavelength. Absorption occurs with respect to light and deep ultraviolet light, and thus cannot be sufficiently transmitted. Therefore, when a conventional oxide transparent conductive film is used as an electrode of a device that emits light of such a wavelength, light absorption occurs at this electrode, and the light extraction efficiency is greatly reduced.
  • ITO which is a rare metal
  • the price of In is rising and the supply is unstable due to the influence of social conditions in resource-rich countries. . Therefore, there is a possibility that a transparent conductive film not using In will be required in the future.
  • an object of the present invention is to realize a transparent conductive film excellent in light transmittance at a short wavelength without using In. Moreover, an object of this invention is to implement
  • composition for transparent conductive films of the present invention is represented by the following formula (1).
  • Al x Ga y B z M 1-xyz N (formula 1)
  • M is either Si or Ge Including one or more.
  • a transparent conductive film having a small specific resistance that is, a high conductivity can be realized without containing In.
  • the absorption edge can be set in the near ultraviolet region or the deep ultraviolet region depending on the composition ratio of Al.
  • permeability exceeding 90% can be implement
  • the composition ratio of Si or Ge may be 0.005 or more and 0.05 or less. By setting the composition ratio within this range, extremely high conductivity can be realized.
  • the transparent electrode of the present invention is characterized by comprising the above composition for transparent conductive film.
  • the semiconductor light emitting device of the present invention is characterized by comprising the above transparent electrode. Thereby, it can function as an electrode for supplying current while suppressing absorption of light emitted from the light emitting element.
  • the semiconductor light-emitting device of the present invention comprises the above-described composition for a transparent conductive film, and is characterized by being configured as a light-emitting device having a short wavelength of 400 nm or less.
  • a light-emitting device having a short wavelength of 400 nm or less As the specific configuration, various configurations are assumed.
  • the semiconductor light emitting device of the present invention has a light emitting layer between an n-type nitride semiconductor layer and a p-type nitride semiconductor layer, A transparent electrode formed on the p-type nitride semiconductor layer, the transparent electrode comprising the transparent conductive film composition; A reflective electrode formed on an upper layer of the transparent electrode;
  • the light emitting layer may be composed of a nitride semiconductor layer having an emission peak wavelength of 400 nm or less.
  • the semiconductor light emitting device of the present invention has a light emitting layer between an n-type nitride semiconductor layer and a p-type nitride semiconductor layer, A transparent electrode formed on the entire upper surface of the n-type nitride semiconductor layer, the transparent electrode comprising the composition for transparent conductive film, A power supply terminal formed on the upper layer of the transparent electrode,
  • the light emitting layer can be formed of a nitride semiconductor layer having an emission peak wavelength of 400 nm or less.
  • a transparent electrode including the composition for transparent conductive film By forming a transparent electrode including the composition for transparent conductive film, a transparent electrode having a small specific resistance can be realized. As a result, ohmic connection is realized even if an In-free transparent electrode is formed on the p-type nitride semiconductor layer or the n-type nitride semiconductor layer, so that light-emitting elements in which absorption of light of short wavelengths is suppressed Can be realized.
  • the semiconductor light emitting device of the present invention has a light emitting layer between an n-type nitride semiconductor layer and a p-type nitride semiconductor layer, and the n-type nitride semiconductor layer is the transparent conductive film.
  • the composition for use can be constituted.
  • the n-type nitride semiconductor layer is configured by including the composition for the transparent conductive film, the n-type nitride semiconductor layer can be realized with a low specific resistance value, and can emit light even at a low operating voltage. A necessary amount of current can be passed through the light emitting layer, and the light emission efficiency can be improved. Further, even if the upper surface of the n-type nitride semiconductor layer is formed of an electrode made of a metal material (for example, Ni) having a relatively large work function, ohmic connection can be realized by non-annealing. This eliminates the need for annealing at a temperature exceeding the melting point of the solder even in a vertical semiconductor light emitting element that requires a substrate bonding process via solder such as an Au—Sn alloy in the manufacturing process.
  • a metal material for example, Ni
  • composition for transparent conductive film of the present invention it is possible to realize a transparent conductive film particularly excellent in light transmittance at a short wavelength without using In.
  • FIG. 1 is a graph showing the relationship between the Si composition ratio and the specific resistance of Al X Ga y Si 1-xy N (0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1). The specific resistance was measured while changing the composition ratio of Si by fixing the Al composition to 6% and 40% and adjusting the ratio of Ga and Si. The specific resistance is measured using a Hall measuring device.
  • GaN generally used as a nitride semiconductor material is also doped with Si at a high concentration in order to reduce its specific resistance.
  • concentration of dopant implanted into GaN is 1 ⁇ 10 19 / cm 3 or more
  • film roughness occurs due to the deterioration of the state of atomic bonds.
  • the specific resistance is 5 ⁇ 10 ⁇ 3 ⁇ ⁇ cm. That is, it can be said that the specific resistance of about 5 ⁇ 10 ⁇ 3 ⁇ ⁇ cm is the lower limit value in Ga y Si 1-y N formed by doping Si with GaN.
  • the Al composition is fixed at 40% and the Si composition is 0.5% and 5%, that is, Al 0.4 Ga 0.595 Si 0.005 N and Al.
  • the specific resistance in 0.4 Ga 0.55 Si 0.05 N is also shown.
  • the specific resistance is about 1 ⁇ 10 ⁇ 3 ⁇ ⁇ cm
  • Al 0.4 Ga 0.55 Si 0.05 N the specific resistance is about 1.5. ⁇ 10 ⁇ 4 ⁇ ⁇ cm.
  • the specific resistance is 6.5 ⁇ when the Si composition is 10%, that is, Al 0.06 Ga 0.84 Si 0.1 N. 10 ⁇ 5 ⁇ ⁇ cm, and the resistivity is slightly higher than when the Si composition is 5%, that is, Al 0.06 Ga 0.89 Si 0.05 N.
  • This is presumed to be caused by the same phenomenon that the crystallinity deteriorates and the specific resistance increases when the Si concentration in GaN is increased. That is, if the Si composition of Al X Ga y Si 1-xy N is further increased to more than 10%, the specific resistance is expected to increase further than Al 0.06 Ga 0.84 Si 0.1 N. .
  • the composition of at least Si is not less than 0.1% and not more than 10%, that is, Al X Ga y Si 1-xy N (0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, 0. If 001 ⁇ 1-xy ⁇ 0.1), it can be seen that an element having a specific resistance smaller than that of the conventional GaN can be realized.
  • the composition of Si is 0.5% or more and 5% or less, that is, Al X Ga y Si 1-xy N (0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, 0.005 ⁇ 1-xy ⁇ 0.05), it can be seen that an element having a specific resistance much smaller than that of conventional GaN can be realized.
  • FIG. 2 is a graph showing the relationship between the Al composition ratio of Al x Ga y Si 1-xy N and the absorption edge.
  • the absorption edge was obtained while changing the Al composition ratio by fixing the Si composition at 1% and adjusting the ratio of Al to Ga.
  • the absorption edge is derived by calculation using the Vegard law.
  • FIG. 2 shows that the absorption edge can be shifted to the short wavelength side by increasing the Al composition ratio.
  • the Al composition ratio is 0.06
  • the absorption edge is about 350 nm
  • the composition ratio is 0.4
  • the absorption edge is about 300 nm. That is, according to Al x Ga y Si 1-xy N, by adjusting the Al composition ratio according to the wavelength of light to be transmitted, a material in which absorption of light of a short wavelength is suppressed can be realized. .
  • the absorption edge has a wavelength far away from the visible light region, extremely high translucency can be achieved for light in the visible light region as compared with ITO or the like.
  • the Al x Ga y Si 1-xy N of the present invention can realize a conductive material excellent in light transmittance at a short wavelength without using In.
  • Al 0 whose Al composition is 40% than Al 0.06 Ga y Si 0.94-yN whose Al composition is 6%. .4 Ga y Si 0.6-y N has a higher specific resistance value. This suggests that, when the Si ratio is constant, the absorption edge can be shifted to the short wavelength side by increasing the Al composition, while the specific resistance increases.
  • the value is lower than the minimum value of the specific resistance of GaN. 1 ⁇ 10 ⁇ 3 ⁇ ⁇ cm, the absorption edge can be about 300 nm, and both high transparency to deep ultraviolet light and low specific resistance are compatible. In order to further reduce the specific resistance, the composition ratio of Si may be increased.
  • the Al X Ga y Si 1-x -y N boron respect (B) is formed by addition of, Al x Ga y B z Si 1-x-y-z N (0 ⁇ x ⁇ 1,0 ⁇ Y ⁇ 1, 0 ⁇ z ⁇ 1, 0.001 ⁇ 1-xyz ⁇ 0.1) can also realize a specific resistance smaller than that of conventional GaN.
  • the mobility ⁇ increases, so it is considered that the specific resistance 1 / ⁇ has decreased.
  • Si and Ge are preferable because of low activation energy as a donor, and Si is particularly preferable.
  • FIG. 3 is a schematic cross-sectional view of the semiconductor light emitting device of the first embodiment.
  • the dimensional ratios in the drawings do not necessarily match the actual dimensional ratios.
  • the semiconductor light emitting device 1 includes a support substrate 11, an undoped layer 13, a semiconductor layer 20, a transparent electrode 21, a transparent electrode 23, a power supply terminal 25, a power supply terminal 27, a reflective electrode 31, and a reflective electrode 33.
  • the semiconductor layer 20 is formed by laminating an n-type nitride semiconductor layer 15, a light emitting layer 17, and a p-type nitride semiconductor layer 19 in this order from the bottom.
  • the transparent electrode 21 and the transparent electrode 23 are formed of an Al x Ga y Si 1-xy N layer.
  • a power supply terminal 25 is formed on the transparent electrode 21 via a reflective electrode 31.
  • a power supply terminal 27 is formed above the transparent electrode 23 via a reflective electrode 33.
  • the semiconductor light emitting element 1 shown in FIG. 3 is an element assumed to extract light downward in the drawing.
  • the light traveling upward is applied to the reflective electrode 33 through the transparent electrode 23, reflected from the reflective electrode 33, and emitted toward the support substrate 11.
  • a part of the light is not emitted from the support substrate 11 to the outside, but is reflected at the interface thereof, and the inside of the semiconductor light emitting device 1 Repeat multiple reflection at.
  • part of the light travels to the transparent electrode 21 side.
  • the light transmitted through the transparent electrode 21 is irradiated to the reflective electrode 31, it can be reflected from the reflective electrode 31 and guided again to the support substrate 11 side.
  • FIG. 4 is a schematic cross-sectional view of a conventional semiconductor light emitting device.
  • a conventional semiconductor light emitting device 90 includes contact electrodes 91 and 93 made of ITO. This is because when a reflective electrode 33 made of a highly reflective metal material is directly formed on the upper surface of the p-type nitride semiconductor layer 19, a good contact resistance is not formed, so that a degenerate semiconductor is used for the purpose of improving contact characteristics.
  • ITO or Ni as a thin film contact electrode 93 is provided, and a reflective electrode 33 made of Ag or Al is further provided on the contact electrode 93. The same applies to the contact electrode 91.
  • the semiconductor light emitting device 1 shown in FIG. 3 includes the transparent electrodes 21 and 23 formed of the Al X Ga y Si 1-xy N layer, thereby realizing a low specific resistance.
  • the light extraction efficiency on the shorter wavelength side can be particularly improved.
  • the support substrate 11 is composed of a sapphire substrate. In addition to sapphire, Si, SiC, GaN, YAG, or the like may be used.
  • the reflective electrode 31 and the reflective electrode 33 are made of, for example, an Ag-based metal, Al, Rh, or the like.
  • the undoped layer 13 is made of, for example, GaN. More specifically, it is formed of a low-temperature buffer layer made of GaN and an underlying layer made of GaN on the upper layer.
  • the transparent electrode 21 and the transparent electrode 23 are formed of an Al x Ga y Si 1-xy N layer. As shown in FIG. 3, the transparent electrode 21 and the transparent electrode 23 are arranged with a gap 5 in the horizontal direction. Thereby, the effect which suppresses that a leak current flows into the horizontal direction between the transparent electrode 23 and the transparent electrode 21 is acquired.
  • the transparent electrode 23 is formed on the p-type nitride semiconductor layer 19, the p-type nitride semiconductor layer 19 is formed on the light emitting layer 17, and the light emitting layer 17 is n-type nitrided like the transparent electrode 21. It is formed in the upper layer of the physical semiconductor layer 15. Therefore, as shown in FIG. 3, the light emitting layer 17 and the transparent electrode 21 are formed in the upper layer of the n-type nitride semiconductor layer 15 with a gap 5 in the horizontal direction.
  • the feeding terminal 25 is formed in the upper layer of the reflective electrode 31, and the feeding terminal 27 is formed in the upper layer of the reflective electrode 33, and is made of, for example, Cr—Au.
  • the power supply terminal 25 is electrically connected to the substrate 41 via the bonding metal 37, and the power supply terminal 27 is electrically connected to the substrate 41 via the bonding metal 39.
  • the semiconductor layer 20 is formed by laminating an n-type nitride semiconductor layer 15, a light emitting layer 17, and a p-type nitride semiconductor layer 19 in this order from the bottom.
  • the n-type nitride semiconductor layer 15 is made of GaN or AlGaN, and may have a multilayer structure thereof.
  • a layer (protective layer) composed of GaN is included in a region in contact with the undoped layer 13, and a layer composed of Al n Ga 1-n N (0 ⁇ n ⁇ 1) in a region in contact with the transparent electrode 21 ( A multilayer structure including an electron supply layer).
  • At least the protective layer is doped with an n-type impurity such as Si, Ge, S, Se, Sn, or Te, and is preferably doped with Si.
  • the light emitting layer 17 is formed of a semiconductor layer having a multiple quantum well structure in which, for example, a well layer made of InGaN and a barrier layer made of AlGaN are repeated. These layers may be non-doped or p-type or n-type doped.
  • the p-type nitride semiconductor layer 19 is made of, for example, GaN or AlGaN, and is doped with p-type impurities such as Mg, Be, Zn, and C.
  • Step S1 As shown in FIG. 5A, the semiconductor layer 20 is formed on the support substrate 11. In more detail, it is as follows.
  • a sapphire substrate is used as the support substrate 11
  • the c-plane sapphire substrate is cleaned. More specifically, for this cleaning, for example, a c-plane sapphire substrate is placed in a processing furnace of a MOCVD (Metal Organic Chemical Vapor Deposition) apparatus, and hydrogen gas with a flow rate of 10 slm is placed in the processing furnace. The temperature in the furnace is raised to, for example, 1150 ° C. while flowing.
  • MOCVD Metal Organic Chemical Vapor Deposition
  • a low-temperature buffer layer made of GaN is formed on the surface of the support substrate 11 (c-plane sapphire substrate), and a base layer made of GaN is further formed thereon. These low-temperature buffer layer and underlayer correspond to the undoped layer 13.
  • a more specific method of forming the undoped layer 13 is as follows. First, the furnace pressure of the ⁇ CVD apparatus is 100 kPa, and the furnace temperature is 480 ° C. Then, while flowing nitrogen gas and hydrogen gas with a flow rate of 5 slm respectively as carrier gas into the processing furnace, trimethylgallium (TMG) with a flow rate of 50 ⁇ mol / min and ammonia with a flow rate of 250,000 ⁇ mol / min are used as the raw material gas in the processing furnace. For 68 seconds. Thereby, a low-temperature buffer layer made of GaN having a thickness of 20 nm is formed on the surface of the support substrate 11.
  • TMG trimethylgallium
  • the furnace temperature of the MOCVD apparatus is raised to 1150 ° C. Then, while flowing nitrogen gas having a flow rate of 20 slm and hydrogen gas having a flow rate of 15 slm as a carrier gas in the processing furnace, TMG having a flow rate of 100 ⁇ mol / min and ammonia having a flow rate of 250,000 ⁇ mol / min are introduced into the processing furnace as source gases. Feed for 30 minutes. As a result, a base layer made of GaN having a thickness of 1.7 ⁇ m is formed on the surface of the first buffer layer.
  • n-type Nitride Semiconductor Layer 15 Next, an electron supply layer having a composition of Al n Ga 1-n N (0 ⁇ n ⁇ 1) is formed on the undoped layer 13. This electron supply layer corresponds to the n-type nitride semiconductor layer 15.
  • a more specific method for forming the n-type nitride semiconductor layer 15 is, for example, as follows. Subsequently, the furnace pressure of the MOCVD apparatus is set to 30 kPa in a state where the furnace temperature is 1150 ° C.
  • TMG having a flow rate of 94 ⁇ mol / min
  • TMA trimethylaluminum
  • Ammonia with a flow rate of 250,000 ⁇ mol / min
  • tetraethylsilane with a flow rate of 0.025 ⁇ mol / min
  • the n-type nitride semiconductor layer 15 (electron supply layer) having a composition of Al 0.06 Ga 0.94 N, a Si concentration of 3 ⁇ 10 19 / cm 3 and a thickness of 2 ⁇ m is formed of the undoped layer 13. It is formed in the upper layer.
  • a light emitting layer 17 having a multiple quantum well structure in which a well layer made of InGaN and a barrier layer made of n-type AlGaN are periodically repeated is formed on the n-type nitride semiconductor layer 15.
  • a more specific method for forming the light emitting layer 17 is as follows. First, the furnace pressure of the MOCVD apparatus is 100 kPa, and the furnace temperature is 830 ° C. Then, while flowing nitrogen gas having a flow rate of 15 slm and hydrogen gas having a flow rate of 1 slm as a carrier gas in the processing furnace, TMG having a flow rate of 10 ⁇ mol / min, trimethylindium (TMI) having a flow rate of 12 ⁇ mol / min, and A step of supplying ammonia at a flow rate of 300,000 ⁇ mol / min into the processing furnace for 48 seconds is performed.
  • TMG having a flow rate of 10 ⁇ mol / min
  • TMA having a flow rate of 1.6 ⁇ mol / min
  • tetraethylsilane having a flow rate of 0.002 ⁇ mol / min
  • ammonia having a flow rate of 300,000 ⁇ mol / min
  • the light-emitting layer 17 having a 15-cycle multiple quantum well structure composed of a well layer made of InGaN having a thickness of 2 nm and a barrier layer made of n-type AlGaN having a thickness of 7 nm is obtained as an n-type. It is formed on the upper surface of the nitride semiconductor layer 15.
  • a hole supply layer having a composition of, for example, Al m Ga 1-m N (0 ⁇ m ⁇ 1) is formed on the light emitting layer 17. This hole supply layer corresponds to the p-type nitride semiconductor layer 19.
  • a more specific method for forming the p-type nitride semiconductor layer 19 is, for example, as follows. First, the furnace pressure of the MOCVD apparatus is maintained at 100 kPa, and the furnace temperature is raised to 1025 ° C. while nitrogen gas having a flow rate of 15 slm and hydrogen gas having a flow rate of 25 slm are allowed to flow into the processing furnace. Thereafter, as source gases, TMG with a flow rate of 35 ⁇ mol / min, TMA with a flow rate of 20 ⁇ mol / min, ammonia with a flow rate of 250,000 ⁇ mol / min, and biscyclopentadiene with a flow rate of 0.1 ⁇ mol / min for doping p-type impurities.
  • Enilmagnesium is fed into the processing furnace for 60 seconds. Thereby, a hole supply layer having a composition of Al 0.3 Ga 0.7 N having a thickness of 20 nm is formed on the surface of the light emitting layer 17. After that, by changing the flow rate of TMG to 9 ⁇ mol / min and supplying the source gas for 360 seconds, a hole supply layer having a composition of Al 0.13 Ga 0.87 N having a thickness of 120 nm is formed. A p-type nitride semiconductor layer 19 is formed by these hole supply layers.
  • the flow rate of biscyclopentadienyl magnesium is changed to 0.2 ⁇ mol / min and a source gas is supplied for 20 seconds to form a high-concentration layer (contact layer) made of p-type GaN having a thickness of 5 nm. .
  • Mg is used as the p-type impurity
  • Be, Zn, C, or the like can be used as another impurity.
  • Step S2 an activation process is performed on the wafer obtained in step S1. More specifically, activation is performed at 650 ° C. for 15 minutes in a nitrogen atmosphere using an RTA (Rapid Thermal Anneal) device.
  • RTA Rapid Thermal Anneal
  • Step S3 As shown in FIG. 5B, the p-type nitride semiconductor layer 19 and the light emitting layer 17 are removed by dry etching using an ICP device until a partial upper surface of the n-type nitride semiconductor layer 15 is exposed.
  • Step S4 As shown in FIG. 5C, a resist 35 is formed on the upper surface of the n-type nitride semiconductor layer 15 in the region where the reflective electrode is not formed.
  • Step S5 As shown in FIG. 5D, an Al X Ga y Si 1-xy N layer 26 is formed on the entire surface.
  • the Al 0.1 Ga 0.89 Si 0.01 N layer 26 having a thickness of 50 nm is formed using reactive sputtering.
  • the resist and the Al x Ga y B z M 1-xyz N layer 26 located immediately above the resist are removed by lift-off of the resist using a chemical such as acetone.
  • a chemical such as acetone.
  • the Al x Ga y B z M 1-xyz N layer 26 is separated into two, and the transparent electrode 21 and the transparent electrode 23 are formed.
  • a gap 5 in the horizontal direction is formed between the transparent electrode 21 and the transparent electrode 23.
  • Step S6 Using an electron beam evaporation apparatus (EB apparatus), a reflective electrode 31 made of Al or Ag is formed on the upper surface of the transparent electrode 21, and a reflective electrode 33 made of Al or Ag is formed on the upper surface of the transparent electrode 23, for example, with a film thickness of about 120 nm. Evaporate (see FIG. 5F).
  • EB apparatus electron beam evaporation apparatus
  • Step S7 The power supply terminal 25 is formed on the upper surface of the reflective electrode 31, and the power supply terminal 27 is formed on the upper surface of the reflective electrode 33 by forming a material film made of Cr having a thickness of 100 nm and Au having a thickness of 3 ⁇ m (see FIG. 5G). Thereafter, the power supply terminal 25 and the support substrate 41 are connected by the bonding metal 37, and the power supply terminal 27 and the support substrate 41 are connected by the bonding metal 39. Thereby, the semiconductor light emitting device 1 shown in FIG. 3 is formed.
  • FIG. 6 is a schematic cross-sectional view of the semiconductor light emitting device of the second embodiment.
  • the semiconductor light emitting element 1 a includes a support substrate 12, a conductive layer 44, an insulating layer 48, a semiconductor layer 20, and a power supply terminal 42.
  • the semiconductor layer 20 is formed by stacking a p-type nitride semiconductor layer 19, a light emitting layer 17, and an n-type nitride semiconductor layer 16 in this order from the bottom.
  • the n-type nitride semiconductor layer 16 is formed of an Al x Ga y Si 1-xy N layer.
  • the Al X Ga y Si 1-xy N layer can realize an extremely low specific resistance, the resistance value of the n layer can be lowered as compared with the light emitting element of the conventional configuration, and the operating voltage is low. Also, the amount of current required for light emission can be passed through the light emitting layer, and the light emission efficiency is improved.
  • the support substrate 12 is made of, for example, a conductive substrate such as CuW, W, or Mo, or a semiconductor substrate such as Si.
  • a conductive layer 44 having a multilayer structure is formed on the support substrate 12.
  • the conductive layer 44 includes a solder layer 43, a protective layer 45, and a reflective electrode 47.
  • the solder layer 43 is made of, for example, Au—Sn, Au—In, Au—Cu—Sn, Cu—Sn, Pd—Sn, Sn, or the like.
  • the solder layer 43 is used when the sapphire substrate and the support substrate 12 are bonded as described later in the section of the manufacturing method.
  • the protective layer 45 is made of, for example, a Pt-based metal (an alloy of Ti and Pt), W, Mo, Ni, or the like. As will be described later, when two substrates are bonded to each other through a solder layer during the process, the material constituting the solder diffuses to the reflective electrode 47 side, which will be described later, and prevents a decrease in luminous efficiency due to a drop in reflectance. Plays a function.
  • the reflective electrode 47 is made of, for example, an Ag-based metal, Al, Rh, or the like. It is assumed that the semiconductor light emitting element 1a takes out the light emitted from the light emitting layer 17 in the upward direction of FIG. 6 (on the n-type nitride semiconductor layer 16 side), and the reflective electrode 47 faces downward from the light emitting layer 17. It has the function of increasing the light emission efficiency by reflecting the light emitted to the top upward.
  • the conductive layer 44 is partially in contact with the semiconductor layer 20, more specifically the p-type nitride semiconductor layer 19, and when a voltage is applied between the support substrate 12 and the power supply terminal 42, the support substrate 44 12, a current path that flows to the power supply terminal 42 through the conductive layer 44 and the semiconductor layer 20 is formed.
  • Insulating layer 48 is composed for example SiO 2, SiN, Zr 2 O 3, AlN, etc. Al 2 O 3.
  • the insulating layer 48 is in contact with the bottom surface of the p-type nitride semiconductor layer 19 at the top surface.
  • the insulating layer 48 has a function as an etching stopper layer at the time of element isolation, and also has a function of spreading current in a direction parallel to the substrate surface of the support substrate 12.
  • the power supply terminal 42 is formed on the upper surface of the n-type nitride semiconductor layer 16 and is made of, for example, Cr—Au.
  • the power supply terminal 42 is connected to a wire made of, for example, Au or Cu (not shown), and the other wire is connected to a power supply pattern on the substrate on which the semiconductor light emitting element 1a is disposed. (Not shown).
  • Step S11 As shown in FIG. 7A, the semiconductor layer 20 is formed on the sapphire substrate 11. In more detail, it is as follows.
  • the undoped layer 13 is formed on the sapphire substrate 11 as in step S1 of the first embodiment. Thereafter, an n-type nitridation composed of an Al X Ga y Si 1-xy N layer is performed in the same manner as the Al X Ga y Si 1-xy N layer 26 is formed in step S5 of the first embodiment.
  • the physical semiconductor layer 16 is formed.
  • the furnace pressure of the MOCVD apparatus is set to 30 kPa in a state where the furnace temperature is 1150 ° C. Then, while flowing nitrogen gas having a flow rate of 20 slm and hydrogen gas having a flow rate of 15 slm as a carrier gas into the processing furnace, TMG having a flow rate of 94 ⁇ mol / min, trimethylaluminum (TMA) having a flow rate of 6 ⁇ mol / min, A step of supplying ammonia having a flow rate of 250,000 ⁇ mol / min and tetraethylsilane having a flow rate of 3.5 ⁇ mol / min into the processing furnace for 30 minutes is performed. As a result, an Al 0.1 Ga 0.89 Si 0.01 N n-type nitride semiconductor layer 16 having a thickness of 1000 nm is formed.
  • the light emitting layer 17 and the p-type nitride semiconductor layer 19 are formed by the same method as in the first embodiment.
  • Step S12 The activation process similar to step S2 of the first embodiment is performed.
  • an insulating layer 48 is formed at a predetermined position on the p-type nitride semiconductor layer 19. More specifically, it is preferable to form the insulating layer 48 at a position located below a region where the power supply terminal 42 is formed in a later step.
  • the insulating layer 48 for example, SiO 2 is formed to a thickness of about 200 nm.
  • the material for forming the film may be an insulating material, such as SiN or Al 2 O 3 .
  • Step S14 As shown in FIG. 7C, the conductive layer 44 is formed so as to cover the upper surfaces of the p-type nitride semiconductor layer 19 and the insulating layer 48.
  • the conductive layer 44 having a multilayer structure including the reflective electrode 47, the protective layer 45, and the solder layer 43 is formed.
  • a more specific method for forming the conductive layer 44 is as follows. First, a reflective electrode 47 is formed by depositing 0.7 nm-thickness Ni and 120 nm-thickness Ag on the entire surface so as to cover the upper surfaces of the p-type nitride semiconductor layer 19 and the insulating layer 48 by a sputtering apparatus. To do. Next, contact annealing is performed at 400 ° C. for 2 minutes in a dry air atmosphere using an RTA apparatus.
  • the protective layer 45 is formed by depositing 100 nm of Ti and 200 nm of Pt on the upper surface (Ag surface) of the reflective electrode 47 with an electron beam evaporation apparatus (EB apparatus) for three periods. . Further, after depositing Ti with a thickness of 10 nm on the upper surface (Pt surface) of the protective layer 45, Au-Sn solder composed of Au 80% Sn 20% is deposited with a thickness of 3 ⁇ m to form the solder layer 43. Form.
  • the solder layer 46 may be formed on the upper surface of the support substrate 12 prepared separately from the sapphire substrate 11.
  • This solder layer may be made of the same material as the solder layer 43.
  • CuW is used as the support substrate 12 as described above.
  • Step S15 Next, as shown in FIG. 7E, the sapphire substrate 11 and the support substrate 12 are bonded together. More specifically, the solder layer 43 and the support substrate 12 are bonded together at a temperature of 280 ° C. and a pressure of 0.2 MPa.
  • the sapphire substrate 11 is peeled off. More specifically, the interface between the sapphire substrate 11 and the semiconductor layer 20 is decomposed by irradiating a KrF excimer laser from the sapphire substrate 11 side with the sapphire substrate 11 facing upward and the support substrate 12 facing downward.
  • the sapphire substrate is peeled off. While sapphire passes through the laser, GaN (undoped layer) under the sapphire absorbs the laser, and this interface is heated to decompose GaN. As a result, the sapphire substrate 11 is peeled off.
  • GaN (undoped layer) remaining on the wafer is removed by wet etching using hydrochloric acid or the like, and dry etching using an ICP apparatus, and the n-type nitride semiconductor layer 16 is exposed.
  • Step S17 Next, as shown in FIG. 7G, adjacent elements are separated from each other. Specifically, the semiconductor layer 20 is etched using an ICP device until the upper surface of the insulating layer 48 is exposed to the boundary region with the adjacent element. Thereby, the semiconductor layers 20 in the adjacent regions are separated from each other. At this time, the insulating layer 48 functions as an etching stopper layer.
  • the side surface of the element is not vertical but is an inclined surface having a taper angle of 10 ° or more.
  • an uneven surface may be formed on the upper surface of the semiconductor layer 20 with an alkaline solution such as KOH.
  • an alkaline solution such as KOH.
  • Step S18 the power supply terminal 42 is formed on the upper surface of the n-type nitride semiconductor layer 16. More specifically, the power supply terminal 42 made of Ni having a thickness of 10 nm and Au having a thickness of 10 nm is formed. As described above, since the n-type nitride semiconductor layer 16 is formed of an Al x Ga y Si 1-xy N layer having a small specific resistance, the annealing process is not performed after this step. An ohmic connection is formed between the n-type nitride semiconductor layer 16 and the power supply terminal 42. Thereby, the semiconductor light emitting element 1a shown in FIG. 6 is formed.
  • the exposed device side surface and the device upper surface other than the power supply terminal 42 may be covered with an insulating layer. More specifically, an SiO 2 film is formed by an EB apparatus. An SiN film may be formed. Then, the elements are separated from each other by, for example, a laser dicing apparatus, the back surface of the support substrate 11 is joined to the package by, for example, Ag paste, and wire bonding is performed to the power supply terminal 42.
  • FIG. 8 is a schematic cross-sectional view of the semiconductor light emitting device of the third embodiment.
  • the semiconductor light emitting element 1 b includes a support substrate 12, a conductive layer 44, an insulating layer 48, a semiconductor layer 20, a transparent electrode 24, and a power supply terminal 42.
  • the semiconductor layer 20 is formed by stacking a p-type nitride semiconductor layer 19, a light emitting layer 17, and an n-type nitride semiconductor layer 15 in this order from the bottom.
  • a transparent electrode 24 formed of an Al X Ga y Si 1-xy N layer is provided on the upper surface of the n-type nitride semiconductor layer 15 having the same configuration as that of the first embodiment, and the upper surface thereof is provided.
  • the power supply terminal 42 is formed.
  • FIG. 9 is a diagram for explaining the ohmic property between the n-type nitride semiconductor layer 15 and the transparent electrode 24.
  • FIG. 9A is a diagram showing the configuration of the evaluation element.
  • An undoped layer 13 and an n-type nitride semiconductor layer 15 are formed on the sapphire substrate 11, and 2 on the upper surface of the n-type nitride semiconductor layer 15.
  • a transparent electrode 24 made of an Al X Ga y Si 1-xy N layer is formed at a location.
  • FIG. 9B is a graph showing the current-voltage characteristics (IV characteristics) obtained by applying a prober to the transparent electrodes 24 at two locations and applying current to the evaluation element of FIG. 9A. It is a thing.
  • FIG. 9B an evaluation element (Example 1) in which the transparent electrode 24 is formed of Al 0.06 Ga 0.935 Si 0.005 N with a Si composition of 0.5%, and the Si composition IV characteristics were measured for the evaluation element (Example 2) in which the transparent electrode 24 was formed of Al 0.06 Ga 0.89 Si 0.05 N with 5% of Al.
  • the IV characteristic shows a linear shape, and good ohmic characteristics can be realized.
  • the n-type nitride having the same configuration as that of the first embodiment is used instead of the n-type nitride semiconductor layer 16 formed by the Al X Ga y Si 1-xy N layer.
  • the semiconductor light emitting device 1a of the second embodiment except that the semiconductor layer 15 is used, and that the transparent electrode 24 formed of an Al X Ga y Si 1-xy N layer is provided on the entire upper surface of the semiconductor layer 15. Because it is almost the same, I will omit the explanation.
  • Al X is formed on the entire upper surface of the n-type nitride semiconductor layer 15 by the same method as in step S5 of the first embodiment.
  • the transparent electrode 24 formed of the Ga y Si 1-xy N layer is formed, and the power supply terminal 42 is formed on the upper surface of the transparent electrode 24 by the same method as Step S18 of the second embodiment.
  • the subsequent steps are the same as in the second embodiment.
  • [Solar cell] Composition of the Invention Al x Ga y B z M 1-xyz N (0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, 0 ⁇ z ⁇ 1, 0.001 ⁇ 1-xyz)
  • An embodiment of a solar cell including ⁇ 0.1 and M including one or more of Si and Ge will be described with reference to the drawings.
  • a layer composed of this composition will be referred to as an “Al X Ga y Si 1-xy N layer”.
  • FIG. 10 is a cross-sectional view showing a schematic configuration of a solar battery cell.
  • the solar cell 2 includes a glass substrate 71, a transparent electrode 29 formed of an Al X Ga y Si 1-xy N layer, a semiconductor layer 75, and a back electrode 76.
  • a pin diode type including p-type amorphous silicon 72, i-type amorphous silicon 73, and n-type amorphous silicon 74 is employed as the semiconductor layer 75.
  • Conventional solar cells used ITO as a transparent electrode. As shown in FIG. 10, by using the solar battery cell 2 including the transparent electrode 29 formed of an Al X Ga y Si 1-xy N layer, the visible light transmission efficiency can be improved as compared with ITO. Therefore, the amount of light that irradiates the semiconductor layer 75 with visible light incident through the glass substrate 71 is increased, and the power generation efficiency is improved.
  • the transparent electrode 29 may be formed by depositing an Al X Ga y Si 1-xy N layer on the glass substrate 71 by a sputtering method. Thereafter, amorphous silicon is grown on the upper surface of the transparent electrode 29 to form the semiconductor layer 75, and then a back electrode 76 made of Al or the like is formed on the upper surface of the semiconductor layer 75 and patterned into a predetermined circuit pattern.
  • the structure of the photovoltaic cell 2 shown in FIG. 10 is an example to the last.
  • the transparent electrode comprising the Al x Ga y Si 1-xy N layer of the present invention should be used where the ITO film has been conventionally used as the transparent conductive film. Therefore, power generation efficiency is expected to improve.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Led Devices (AREA)
  • Photovoltaic Devices (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

Provided is a transparent conductive film that has excellent short wavelength light transmissivity without using In. This transparent conductive film composition is characterized by being represented by formula (1) below. AlxGayBzM1-x-y-zN (Formula 1) Herein, 0 < x < 1, 0 < y < 1, 0 ≦ z < 1, 0.001 ≦ 1-x-y-z ≦ 0.1, and M includes any one or more of Si and Ge.

Description

透明導電膜用組成物、透明電極、半導体発光素子、太陽電池Composition for transparent conductive film, transparent electrode, semiconductor light emitting device, solar cell
 本発明は主としてAlとGaを含む透明導電膜用組成物、これを含んで構成される透明電極、半導体発光素子、及び太陽電池に関する。 The present invention relates to a composition for a transparent conductive film mainly containing Al and Ga, a transparent electrode comprising the composition, a semiconductor light emitting device, and a solar cell.
 透光性を有する導電材料(以下、「透明導電膜」という。)は、導電性及び光透過性に優れるため、種々のデバイスの透明電極として使用されている。従来、このような透明導電膜としては、アンチモン(Sb)やフッ素(F)をドーパントとして含む酸化スズ(SnO)、アルミニウム(Al)やガリウム(Ga)をドーパントとして含む酸化亜鉛(ZnO)、及びSnをドーパントとして含む酸化インジウム(In)などの酸化物が知られている。なかでも、Snをドーパントとして含む酸化インジウム膜は、ITO(Indium-Tin-Oxide)膜と称され、低抵抗の酸化物透明導電膜が容易に得られることから、広範に利用されている(例えば特許文献1参照)。 A light-transmitting conductive material (hereinafter referred to as “transparent conductive film”) is excellent in conductivity and light transmittance, and is therefore used as a transparent electrode in various devices. Conventionally, as such a transparent conductive film, tin oxide (SnO 2 ) containing antimony (Sb) or fluorine (F) as a dopant, zinc oxide (ZnO) containing aluminum (Al) or gallium (Ga) as a dopant, And oxides such as indium oxide (In 2 O 3 ) containing Sn as a dopant are known. Among them, an indium oxide film containing Sn as a dopant is called an ITO (Indium-Tin-Oxide) film, and is widely used because a low-resistance oxide transparent conductive film can be easily obtained (for example, Patent Document 1).
 ITO膜の形成には、一般的に直流スパッタリング法が用いられる。室温で成膜したITO膜は、5×10-4Ω・cm程度の低い比抵抗を示す。ITO膜は、可視域の光透過率についても良好であり、平均80%以上の光透過率を示す。また、化学的及び熱安定性に優れている。 In general, a direct current sputtering method is used to form the ITO film. An ITO film formed at room temperature exhibits a low specific resistance of about 5 × 10 −4 Ω · cm. The ITO film has good light transmittance in the visible region, and exhibits an average light transmittance of 80% or more. Moreover, it is excellent in chemical and thermal stability.
 ところで、近年、例えば青色発光や近紫外発光(例えば、波長300~400nm)の機能を有する発光材料や発光デバイス(例えばLED、レーザ、有機又は無機EL)が普及し、開発が進められている。これらの電子デバイスには透明電極が必要とされる。 By the way, in recent years, for example, light emitting materials and light emitting devices (for example, LEDs, lasers, organic or inorganic EL) having functions of blue light emission and near ultraviolet light emission (for example, wavelength 300 to 400 nm) have become widespread and are being developed. These electronic devices require transparent electrodes.
特開2007-113026号公報JP 2007-1113026 A
 しかしながら、ITO膜をはじめとする従来の酸化物透明導電膜は、波長400~800nmの可視光域の平均透過率は優れているものの、波長400nm付近の近紫外光や、より短波長の近紫外光や深紫外光に対しては吸収が起こるため、十分に透過させることができない。よって、このような波長の光を発光するデバイスの電極として、従来の酸化物透明導電膜を用いた場合、この電極で光の吸収が生じ、光の取り出し効率が大きく低下してしまう。 However, conventional transparent oxide conductive films such as ITO films have excellent average transmittance in the visible light range of 400 to 800 nm, but near ultraviolet light having a wavelength of around 400 nm or near ultraviolet light having a shorter wavelength. Absorption occurs with respect to light and deep ultraviolet light, and thus cannot be sufficiently transmitted. Therefore, when a conventional oxide transparent conductive film is used as an electrode of a device that emits light of such a wavelength, light absorption occurs at this electrode, and the light extraction efficiency is greatly reduced.
 また、別の問題として、ITO膜にはレアメタルであるInが必要となるが、Inの価格が高騰化していると共に、資源国の社会情勢などの影響を受けて供給が不安定な状況にある。よって、Inを用いない透明導電膜が将来的に必要となる可能性がある。 Another problem is that ITO, which is a rare metal, is required for the ITO film, but the price of In is rising and the supply is unstable due to the influence of social conditions in resource-rich countries. . Therefore, there is a possibility that a transparent conductive film not using In will be required in the future.
 本発明は上記の課題に鑑み、Inを用いることなく、短波長の光透過性に優れた透明導電膜を実現することを目的とする。また、本発明は、このような透明導電膜を含む透明電極、半導体発光素子、及び太陽電池を実現することを目的とする。 In view of the above problems, an object of the present invention is to realize a transparent conductive film excellent in light transmittance at a short wavelength without using In. Moreover, an object of this invention is to implement | achieve the transparent electrode, semiconductor light-emitting device, and solar cell containing such a transparent conductive film.
 本発明の透明導電膜用組成物は、下記式(1)で表されることを特徴とする。
 AlGa1-x-y-zN (式1)
 ただし、式中において、0<x<1、0<y<1、0≦z<1、0.001≦1-x-y-z≦0.1であり、MはSi、Geの何れか一種以上を含む。
The composition for transparent conductive films of the present invention is represented by the following formula (1).
Al x Ga y B z M 1-xyz N (formula 1)
However, in the formula, 0 <x <1, 0 <y <1, 0 ≦ z <1, 0.001 ≦ 1-xyz ≦ 0.1, and M is either Si or Ge Including one or more.
 上記の透明導電膜用組成物によれば、Inを含むことなく、比抵抗の小さいすなわち導電性の高い透明導電膜が実現できる。また、「発明を実施するための形態」の項で後述するように、Alの組成比に応じて近紫外域や深紫外域に吸収端を設定することができるため、デバイスの発光波長に応じて、近紫外光や深紫外光といった短波長の光に対しても高い透過性が確保できる。また、可視光に対する透過性に関しても、90%を超える透過率が実現できるため、ITO膜を用いる場合より高い透過性が確保できる。 According to the composition for a transparent conductive film, a transparent conductive film having a small specific resistance, that is, a high conductivity can be realized without containing In. In addition, as will be described later in the “Mode for Carrying Out the Invention” section, the absorption edge can be set in the near ultraviolet region or the deep ultraviolet region depending on the composition ratio of Al. Thus, high transparency can be secured even for short-wavelength light such as near ultraviolet light and deep ultraviolet light. Moreover, since the transmittance | permeability exceeding 90% can be implement | achieved also about the transmittance | permeability with respect to visible light, the high transmittance | permeability can be ensured compared with the case where an ITO film | membrane is used.
 なお、ホウ素(B)は含まれていなくても、一定程度含有されていても、上記透明導電膜用組成物による透明導電膜によれば、高い透光性と導電性がInフリーで実現できる。 Even if boron (B) is not contained or contained to a certain extent, according to the transparent conductive film made of the composition for transparent conductive film, high translucency and conductivity can be realized in an In-free manner. .
 上記の透明導電膜用組成物において、Si又はGeの組成比を特に0.005以上0.05以下としてもよい。この範囲内の組成比にすることで、極めて高い導電性が実現できる。 In the above composition for transparent conductive film, the composition ratio of Si or Ge may be 0.005 or more and 0.05 or less. By setting the composition ratio within this range, extremely high conductivity can be realized.
 本発明の透明電極は、上記の透明導電膜用組成物を含んで構成されることを特徴とする。 The transparent electrode of the present invention is characterized by comprising the above composition for transparent conductive film.
 また、本発明の半導体発光素子は、上記の透明電極を備えたことを特徴とする。これにより、発光素子から放射される光の吸収を抑制しながら、電流を供給するための電極として機能させることができる。 Further, the semiconductor light emitting device of the present invention is characterized by comprising the above transparent electrode. Thereby, it can function as an electrode for supplying current while suppressing absorption of light emitted from the light emitting element.
 本発明の半導体発光素子は、上記の透明導電膜用組成物を含み、発光波長が400nm以下の短波長の発光素子として構成されることを特徴とする。その具体的な構成としては、種々の構成が想定される。 The semiconductor light-emitting device of the present invention comprises the above-described composition for a transparent conductive film, and is characterized by being configured as a light-emitting device having a short wavelength of 400 nm or less. As the specific configuration, various configurations are assumed.
 一例として、本発明の半導体発光素子は、n型窒化物半導体層とp型窒化物半導体層の間に発光層を有し、
 前記p型窒化物半導体層の上層に形成された、上記の透明導電膜用組成物を含んで構成された透明電極と、
 前記透明電極の上層に形成された反射電極を備え、
 前記発光層を、発光ピーク波長が400nm以下を示す窒化物半導体層で構成することができる。
As an example, the semiconductor light emitting device of the present invention has a light emitting layer between an n-type nitride semiconductor layer and a p-type nitride semiconductor layer,
A transparent electrode formed on the p-type nitride semiconductor layer, the transparent electrode comprising the transparent conductive film composition;
A reflective electrode formed on an upper layer of the transparent electrode;
The light emitting layer may be composed of a nitride semiconductor layer having an emission peak wavelength of 400 nm or less.
 また、別の一例として、本発明の半導体発光素子は、n型窒化物半導体層とp型窒化物半導体層の間に発光層を有し、
 前記n型窒化物半導体層の上層の全面に形成された、上記の透明導電膜用組成物を含んで構成された透明電極と、
 前記透明電極の上層に形成された給電端子を備え、
 前記発光層は、発光ピーク波長が400nm以下を示す窒化物半導体層で構成することができる。
As another example, the semiconductor light emitting device of the present invention has a light emitting layer between an n-type nitride semiconductor layer and a p-type nitride semiconductor layer,
A transparent electrode formed on the entire upper surface of the n-type nitride semiconductor layer, the transparent electrode comprising the composition for transparent conductive film,
A power supply terminal formed on the upper layer of the transparent electrode,
The light emitting layer can be formed of a nitride semiconductor layer having an emission peak wavelength of 400 nm or less.
 上記の透明導電膜用組成物を含んで透明電極を構成したことにより、比抵抗の小さい透明電極が実現できる。これにより、p型窒化物半導体層やn型窒化物半導体層の上層に、Inフリーの透明電極を形成してもオーミック接続が実現されるので、短波長の光の吸収が抑制された発光素子が実現できる。 By forming a transparent electrode including the composition for transparent conductive film, a transparent electrode having a small specific resistance can be realized. As a result, ohmic connection is realized even if an In-free transparent electrode is formed on the p-type nitride semiconductor layer or the n-type nitride semiconductor layer, so that light-emitting elements in which absorption of light of short wavelengths is suppressed Can be realized.
 また、別の一例として、本発明の半導体発光素子は、n型窒化物半導体層とp型窒化物半導体層の間に発光層を有し、前記n型窒化物半導体層を上記の透明導電膜用組成物を含んで構成することができる。 As another example, the semiconductor light emitting device of the present invention has a light emitting layer between an n-type nitride semiconductor layer and a p-type nitride semiconductor layer, and the n-type nitride semiconductor layer is the transparent conductive film. The composition for use can be constituted.
 この構成によれば、上記の透明導電膜用組成物を含んでn型窒化物半導体層を構成したため、n型窒化物半導体層を低い比抵抗の値で実現でき、低い動作電圧によっても発光に必要な電流量を発光層に流すことができ、発光効率を向上させることができる。また、このn型窒化物半導体層の上面に仕事関数の比較的大きい金属材料(例えばNiなど)で構成される電極で形成しても、ノンアニールによってオーミック接続が実現できる。これにより、製造プロセスにおいてAu-Sn合金などのハンダを介して基板の接合処理が必要な縦型の半導体発光素子においても、ハンダの融点を超える温度でのアニール処理が不要となる。 According to this configuration, since the n-type nitride semiconductor layer is configured by including the composition for the transparent conductive film, the n-type nitride semiconductor layer can be realized with a low specific resistance value, and can emit light even at a low operating voltage. A necessary amount of current can be passed through the light emitting layer, and the light emission efficiency can be improved. Further, even if the upper surface of the n-type nitride semiconductor layer is formed of an electrode made of a metal material (for example, Ni) having a relatively large work function, ohmic connection can be realized by non-annealing. This eliminates the need for annealing at a temperature exceeding the melting point of the solder even in a vertical semiconductor light emitting element that requires a substrate bonding process via solder such as an Au—Sn alloy in the manufacturing process.
 本発明の透明導電膜用組成物によれば、Inを用いることなく、特に短波長の光透過性に優れた透明導電膜が実現できる。 According to the composition for transparent conductive film of the present invention, it is possible to realize a transparent conductive film particularly excellent in light transmittance at a short wavelength without using In.
AlGaSi1-x-yNのSi組成比と比抵抗の関係を示すグラフである。Is a graph showing the Al X Ga y Si 1-x -y N Si composition ratio of the specific resistance relationship. AlGaSi1-x-yNのAl組成比と吸収端の関係を示すグラフである。Is a graph showing the relationship between the Al x Ga y Si 1-x -y N of the Al composition ratio and the absorption edge. 第1実施形態の半導体発光素子の概略断面図である。It is a schematic sectional drawing of the semiconductor light-emitting device of 1st Embodiment. 従来の半導体発光素子の概略断面図である。It is a schematic sectional drawing of the conventional semiconductor light-emitting device. 第1実施形態の半導体発光素子の製造方法を説明するための工程断面図の一部である。It is a part of process sectional drawing for demonstrating the manufacturing method of the semiconductor light-emitting device of 1st Embodiment. 第1実施形態の半導体発光素子の製造方法を説明するための工程断面図の一部である。It is a part of process sectional drawing for demonstrating the manufacturing method of the semiconductor light-emitting device of 1st Embodiment. 第1実施形態の半導体発光素子の製造方法を説明するための工程断面図の一部である。It is a part of process sectional drawing for demonstrating the manufacturing method of the semiconductor light-emitting device of 1st Embodiment. 第1実施形態の半導体発光素子の製造方法を説明するための工程断面図の一部である。It is a part of process sectional drawing for demonstrating the manufacturing method of the semiconductor light-emitting device of 1st Embodiment. 第1実施形態の半導体発光素子の製造方法を説明するための工程断面図の一部である。It is a part of process sectional drawing for demonstrating the manufacturing method of the semiconductor light-emitting device of 1st Embodiment. 第1実施形態の半導体発光素子の製造方法を説明するための工程断面図の一部である。It is a part of process sectional drawing for demonstrating the manufacturing method of the semiconductor light-emitting device of 1st Embodiment. 第1実施形態の半導体発光素子の製造方法を説明するための工程断面図の一部である。It is a part of process sectional drawing for demonstrating the manufacturing method of the semiconductor light-emitting device of 1st Embodiment. 第2実施形態の半導体発光素子の概略断面図である。It is a schematic sectional drawing of the semiconductor light-emitting device of 2nd Embodiment. 第2実施形態の半導体発光素子の製造方法を説明するための工程断面図の一部である。It is a part of process sectional drawing for demonstrating the manufacturing method of the semiconductor light-emitting device of 2nd Embodiment. 第2実施形態の半導体発光素子の製造方法を説明するための工程断面図の一部である。It is a part of process sectional drawing for demonstrating the manufacturing method of the semiconductor light-emitting device of 2nd Embodiment. 第2実施形態の半導体発光素子の製造方法を説明するための工程断面図の一部である。It is a part of process sectional drawing for demonstrating the manufacturing method of the semiconductor light-emitting device of 2nd Embodiment. 第2実施形態の半導体発光素子の製造方法を説明するための工程断面図の一部である。It is a part of process sectional drawing for demonstrating the manufacturing method of the semiconductor light-emitting device of 2nd Embodiment. 第2実施形態の半導体発光素子の製造方法を説明するための工程断面図の一部である。It is a part of process sectional drawing for demonstrating the manufacturing method of the semiconductor light-emitting device of 2nd Embodiment. 第2実施形態の半導体発光素子の製造方法を説明するための工程断面図の一部である。It is a part of process sectional drawing for demonstrating the manufacturing method of the semiconductor light-emitting device of 2nd Embodiment. 第2実施形態の半導体発光素子の製造方法を説明するための工程断面図の一部である。It is a part of process sectional drawing for demonstrating the manufacturing method of the semiconductor light-emitting device of 2nd Embodiment. 第3実施形態の半導体発光素子の概略断面図である。It is a schematic sectional drawing of the semiconductor light-emitting device of 3rd Embodiment. 窒化物半導体層とAlGaSi1-x-yN層の間のオーミック特性を説明するための図である。Is a diagram for explaining ohmic characteristics between the nitride semiconductor layer and the Al x Ga y Si 1-x -y N layer. 太陽電池セルの模式的な構成を示す断面図である。It is sectional drawing which shows the typical structure of a photovoltaic cell.
 [透明導電膜用組成物]
 図1は、AlGaSi1-x-yN(0<x<1、0<y<1)のSi組成比と比抵抗の関係を示すグラフである。なお、Alの組成を6%、40%と固定し、GaとSiの比率を調整することで、Siの組成比を変化させながら比抵抗を測定した。なお、比抵抗は、ホール測定装置を用いて測定されたものである。
[Composition for transparent conductive film]
FIG. 1 is a graph showing the relationship between the Si composition ratio and the specific resistance of Al X Ga y Si 1-xy N (0 <x <1, 0 <y <1). The specific resistance was measured while changing the composition ratio of Si by fixing the Al composition to 6% and 40% and adjusting the ratio of Ga and Si. The specific resistance is measured using a Hall measuring device.
 図1によれば、Al0.06GaSi0.94-yNにおいて、Si組成を0.16%、すなわち、Al0.06Ga0.9384Si0.0016Nとした場合には略1×10-3Ω・cmであり、Si組成比を高めるほど、その比抵抗は減少していることが分かる。例えば、Si組成を0.5%、すなわち、Al0.06Ga0.935Si0.005Nとした場合には比抵抗が4×10-4Ω・cmであり、Si組成を5%、すなわち、Al0.06Ga0.89Si0.05Nとした場合には比抵抗が6×10-5Ω・cmである。 According to FIG. 1, in Al 0.06 Ga y Si 0.94-y N, when the Si composition is 0.16%, that is, Al 0.06 Ga 0.9384 Si 0.0016 N, it is substantially omitted. It is 1 × 10 −3 Ω · cm, and it can be seen that the specific resistance decreases as the Si composition ratio increases. For example, when the Si composition is 0.5%, that is, Al 0.06 Ga 0.935 Si 0.005 N, the specific resistance is 4 × 10 −4 Ω · cm, the Si composition is 5%, That is, when Al 0.06 Ga 0.89 Si 0.05 N is used, the specific resistance is 6 × 10 −5 Ω · cm.
 ところで、窒化物半導体材料として一般的に用いられているGaNにおいても、その比抵抗を小さくする目的で、Siを高濃度にドープすることがなされている。しかし、このGaNに対して注入するドーパントの濃度を1×1019/cm以上にすると、原子結合の状態が悪化するなどの原因により、膜荒れが発生してしまうという現象が知られている(例えば、上記非特許文献1参照)。この膜荒れに起因した結晶状態の悪化により、極めて高濃度にSiをドープしても、比抵抗が十分に低下しないばかりか、表面が荒れ、白濁化する。 By the way, GaN generally used as a nitride semiconductor material is also doped with Si at a high concentration in order to reduce its specific resistance. However, it is known that when the concentration of dopant implanted into GaN is 1 × 10 19 / cm 3 or more, film roughness occurs due to the deterioration of the state of atomic bonds. (See, for example, Non-Patent Document 1 above). Due to the deterioration of the crystal state caused by the film roughness, even if Si is doped at an extremely high concentration, the specific resistance is not sufficiently lowered, and the surface becomes rough and clouded.
 GaNに対し、Siドープ濃度を膜荒れが生じない上限値である1×1019/cmのほぼ近傍の9×1018/cmとした場合、その比抵抗は5×10-3Ω・cmであった。つまり、GaNにSiをドープして形成したGaSi1-yNにおいては、5×10-3Ω・cm程度の比抵抗が下限値であるといえる。 For GaN, when the Si doping concentration is 9 × 10 18 / cm 3, which is almost in the vicinity of 1 × 10 19 / cm 3 , which is the upper limit value that does not cause film roughness, the specific resistance is 5 × 10 −3 Ω · cm. That is, it can be said that the specific resistance of about 5 × 10 −3 Ω · cm is the lower limit value in Ga y Si 1-y N formed by doping Si with GaN.
 これに対し、図1に示すように、Al0.06GaSi0.94-yNとした場合、Si組成を0.16%(Si組成比0.0016)から10%(Si組成比0.1)まで増加させても、GaSi1-yNの場合より低い比抵抗が実現できていることが分かる。 On the other hand, as shown in FIG. 1, when Al 0.06 Ga y Si 0.94-y N is used, the Si composition is changed from 0.16% (Si composition ratio 0.0016) to 10% (Si composition ratio). It can be seen that even when the voltage is increased to 0.1), a specific resistance lower than that of Ga y Si 1-y N can be realized.
 図1においては、Alの組成を40%と固定し、Siの組成を0.5%にした場合と5%にした場合、すなわち、Al0.4Ga0.595Si0.005NとAl0.4Ga0.55Si0.05Nにおける比抵抗も併せて示している。Al0.4Ga0.595Si0.005Nでは比抵抗が略1×10-3Ω・cmであり、Al0.4Ga0.55Si0.05Nでは比抵抗が略1.5×10-4Ω・cmであった。これにより、Alの組成を異ならせた場合であっても、Siの組成を高めることでその比抵抗を小さくできており、GaSi1-yNの場合より低い比抵抗が実現できていることが分かる。つまり、Alの組成に関わらず、AlGaSi1-x-yNのSi組成を高めることでその比抵抗の値を低くできることが裏付けられる。 In FIG. 1, the Al composition is fixed at 40% and the Si composition is 0.5% and 5%, that is, Al 0.4 Ga 0.595 Si 0.005 N and Al. The specific resistance in 0.4 Ga 0.55 Si 0.05 N is also shown. In Al 0.4 Ga 0.595 Si 0.005 N, the specific resistance is about 1 × 10 −3 Ω · cm, and in Al 0.4 Ga 0.55 Si 0.05 N, the specific resistance is about 1.5. × 10 −4 Ω · cm. As a result, even when the Al composition is varied, the specific resistance can be reduced by increasing the Si composition, and a specific resistance lower than that of Ga y Si 1-y N can be realized. I understand that. That is, it is supported that the specific resistance value can be lowered by increasing the Si composition of Al X Ga y Si 1-xy N regardless of the Al composition.
 なお、図1において、Alの組成を6%とした場合に、Si組成を10%、すなわち、Al0.06Ga0.84Si0.1Nとした場合には比抵抗が6.5×10-5Ω・cmであり、Si組成を5%、すなわち、Al0.06Ga0.89Si0.05Nとした場合よりも比抵抗が少し上昇している。これは、GaNにおいてSiを高濃度にした場合に結晶性が悪化して比抵抗が上昇するのと同様の現象が生じているものと推察される。つまり、AlGaSi1-x-yNのSi組成を10%よりも更に高めると、Al0.06Ga0.84Si0.1Nより比抵抗が更に上昇することが予想される。 In FIG. 1, when the Al composition is 6%, the specific resistance is 6.5 × when the Si composition is 10%, that is, Al 0.06 Ga 0.84 Si 0.1 N. 10 −5 Ω · cm, and the resistivity is slightly higher than when the Si composition is 5%, that is, Al 0.06 Ga 0.89 Si 0.05 N. This is presumed to be caused by the same phenomenon that the crystallinity deteriorates and the specific resistance increases when the Si concentration in GaN is increased. That is, if the Si composition of Al X Ga y Si 1-xy N is further increased to more than 10%, the specific resistance is expected to increase further than Al 0.06 Ga 0.84 Si 0.1 N. .
 よって、図1によれば、少なくともSiの組成を0.1%以上10%以下、すなわち、AlGaSi1-x-yN(0<x<1、0<y<1、0.001≦1-x-y≦0.1)とすれば、従来のGaNよりも小さい比抵抗の素子が実現できることが分かる。特に、Siの組成を0.5%以上5%以下、すなわちAlGaSi1-x-yN(0<x<1、0<y<1、0.005≦1-x-y≦0.05)とすれば、従来のGaNよりも極めて小さい比抵抗の素子が実現できることが分かる。 Therefore, according to FIG. 1, the composition of at least Si is not less than 0.1% and not more than 10%, that is, Al X Ga y Si 1-xy N (0 <x <1, 0 <y <1, 0. If 001 ≦ 1-xy ≦ 0.1), it can be seen that an element having a specific resistance smaller than that of the conventional GaN can be realized. In particular, the composition of Si is 0.5% or more and 5% or less, that is, Al X Ga y Si 1-xy N (0 <x <1, 0 <y <1, 0.005 ≦ 1-xy ≦ 0.05), it can be seen that an element having a specific resistance much smaller than that of conventional GaN can be realized.
 図2は、AlGaSi1-x-yNのAl組成比と吸収端の関係を示すグラフである。なお、図2では、Siの組成を1%と固定し、AlとGaの比率を調整することで、Alの組成比を変化させながら吸収端を求めた。なお、吸収端は、ベガード則を用いて演算により導出されたものである。 FIG. 2 is a graph showing the relationship between the Al composition ratio of Al x Ga y Si 1-xy N and the absorption edge. In FIG. 2, the absorption edge was obtained while changing the Al composition ratio by fixing the Si composition at 1% and adjusting the ratio of Al to Ga. The absorption edge is derived by calculation using the Vegard law.
 図2によれば、Alの組成比を高めることで吸収端を短波長側にシフトできることが分かる。例えば、Alの組成比を0.06とすると吸収端は約350nmであり、組成比を0.4とすると吸収端は約300nmである。つまり、AlGaSi1-x-yNによれば、透過させたい光の波長に応じてAlの組成比を調整することで、短波長の光の吸収が抑制された材料が実現できる。また、吸収端が可視光域から大きく離れた波長となるため、可視光域の光についてもITOなどより極めて高い透光性が実現できる。 FIG. 2 shows that the absorption edge can be shifted to the short wavelength side by increasing the Al composition ratio. For example, if the Al composition ratio is 0.06, the absorption edge is about 350 nm, and if the composition ratio is 0.4, the absorption edge is about 300 nm. That is, according to Al x Ga y Si 1-xy N, by adjusting the Al composition ratio according to the wavelength of light to be transmitted, a material in which absorption of light of a short wavelength is suppressed can be realized. . In addition, since the absorption edge has a wavelength far away from the visible light region, extremely high translucency can be achieved for light in the visible light region as compared with ITO or the like.
 つまり、図1及び図2によれば、本発明のAlGaSi1-x-yNによって、Inを用いることなく、短波長の光透過性にも優れた導電性材料が実現できる。なお、図1において、Si組成を同じとした場合においても、Alの組成が6%であるAl0.06GaSi0.94-yNよりも、Alの組成が40%であるAl0.4GaSi0.6-yNの方が比抵抗の値は大きくなっている。これにより、Siの比率を一定とした場合には、Alの組成を高めることで吸収端は短波長側にシフトできる一方で、比抵抗は高くなることが示唆される。しかし、Alの組成を40%、Siの組成を0.5%として形成したAl0.4Ga0.595Si0.005Nによれば、GaNの比抵抗の最小値よりも低い値である、1×10-3Ω・cmであり、吸収端を約300nmとすることができており、深紫外光に対する高い透過性と低い比抵抗が両立できている。更に比抵抗を小さくするためには、Siの組成比を高めればよい。 That is, according to FIGS. 1 and 2, the Al x Ga y Si 1-xy N of the present invention can realize a conductive material excellent in light transmittance at a short wavelength without using In. In FIG. 1, even when the Si composition is the same, Al 0 whose Al composition is 40% than Al 0.06 Ga y Si 0.94-yN whose Al composition is 6%. .4 Ga y Si 0.6-y N has a higher specific resistance value. This suggests that, when the Si ratio is constant, the absorption edge can be shifted to the short wavelength side by increasing the Al composition, while the specific resistance increases. However, according to Al 0.4 Ga 0.595 Si 0.005 N formed with an Al composition of 40% and an Si composition of 0.5%, the value is lower than the minimum value of the specific resistance of GaN. 1 × 10 −3 Ω · cm, the absorption edge can be about 300 nm, and both high transparency to deep ultraviolet light and low specific resistance are compatible. In order to further reduce the specific resistance, the composition ratio of Si may be increased.
 なお、上記の説明は、AlGaSi1-x-yNという4元系の化合物を想定して説明したが、比抵抗に影響を与えない程度に不純物が混在されることで5元系以上の化合物を構成した場合であっても成立するものである。すなわち、上記AlGaSi1-x-yNに対してホウ素(B)が添加されてなる、AlGaSi1-x-y-zN(0<x<1、0<y<1、0≦z<1、0.001≦1-x-y-z≦0.1)においても、同様に従来のGaNよりも小さい比抵抗が実現できる。 Although the above description has been made assuming a quaternary compound of Al X Ga y Si 1-xy N, impurities are mixed to such an extent that the specific resistance is not affected. This is true even when a compound of a system or higher is constituted. That is, the Al X Ga y Si 1-x -y N boron respect (B) is formed by addition of, Al x Ga y B z Si 1-x-y-z N (0 <x <1,0 <Y <1, 0 ≦ z <1, 0.001 ≦ 1-xyz ≦ 0.1) can also realize a specific resistance smaller than that of conventional GaN.
 更に、上記の説明では、化合物にSiを含むAlGaSi1-x-yNを想定して説明したが、化学的にSiと性質の近似するGeをSiの代わりに用いることで、AlGaGe1-x-yNを実現した場合であっても、同様の議論が可能である。つまり、この場合、Geの組成比を高めることでその比抵抗を低下させることができる。更に、SiとGeの両者を含む化合物であっても構わない。この場合には、SiとGeの両者の組成比の合計を高めることでその比抵抗を低下させることができるものと考えられる。 Furthermore, in the above description, the description has been made assuming Al X Ga y Si 1-xy N containing Si in the compound, but by using Ge instead of Si, which is chemically similar to Si, Similar discussion is possible even when Al X Ga y Ge 1-xy N is realized. That is, in this case, the specific resistance can be reduced by increasing the Ge composition ratio. Furthermore, a compound containing both Si and Ge may be used. In this case, it is considered that the specific resistance can be reduced by increasing the total composition ratio of both Si and Ge.
 すなわち、電気伝導率σ及び抵抗率ρは、移動度μ、キャリア密度n、キャリア電荷によって、σ=1/ρ=qnμで表されることから、3価元素であるAl及びGaに対し4価元素のうちSi、Geの何れかを含む元素をドープすることにより、移動度μが上昇するため、比抵抗1/ρが小さくなったものと考えられる。4価元素のうち、ドナーとなる活性化エネルギーが小さいという理由でSi、Geが好ましく、特にSiを使用することが好ましい。 That is, the electrical conductivity σ and the resistivity ρ are expressed by σ = 1 / ρ = qnμ depending on the mobility μ, the carrier density n, and the carrier charge, and therefore, tetravalent with respect to the trivalent elements Al and Ga. By doping an element containing either Si or Ge among the elements, the mobility μ increases, so it is considered that the specific resistance 1 / ρ has decreased. Of the tetravalent elements, Si and Ge are preferable because of low activation energy as a donor, and Si is particularly preferable.
 以上をまとめると、本発明の組成物AlGa1-x-y-zN(0<x<1、0<y<1、0≦z<1、0.001≦1-x-y-z≦0.1であり、MはSi、Geの何れか一種以上を含む)によれば、Inを用いることなく、短波長の光透過性にも優れた導電性材料が実現できる。 In summary, the composition of the present invention is Al x Ga y B z M 1-xyz N (0 <x <1, 0 <y <1, 0 ≦ z <1, 0.001 ≦ 1- xyz = 0.1, and M includes at least one of Si and Ge), and without using In, a conductive material having excellent light transmittance at a short wavelength is realized. it can.
 [発光素子]
 上述した本発明の組成物AlGa1-x-y-zN(0<x<1、0<y<1、0≦z<1、0.001≦1-x-y-z≦0.1であり、MはSi、Geの何れか一種以上を含む)を含む発光素子の実施形態について、図面を参照して説明する。なお、以下では、この組成物で構成された層を「AlGaSi1-x-yN層」と呼ぶ。
[Light emitting element]
The composition of the present invention described above Al x Ga y B z M 1-xyz N (0 <x <1, 0 <y <1, 0 ≦ z <1, 0.001 ≦ 1-xy) An embodiment of a light-emitting element including -z ≦ 0.1 and M includes one or more of Si and Ge will be described with reference to the drawings. In the following, a layer composed of this composition is referred to as an “Al X Ga y Si 1-xy N layer”.
 (第1実施形態)
 半導体発光素子の第1実施形態について図面を参照して説明する。図3は、第1実施形態の半導体発光素子の概略断面図である。なお、以下の各図において図面の寸法比と実際の寸法比は必ずしも一致しない。
(First embodiment)
A first embodiment of a semiconductor light emitting device will be described with reference to the drawings. FIG. 3 is a schematic cross-sectional view of the semiconductor light emitting device of the first embodiment. In the following drawings, the dimensional ratios in the drawings do not necessarily match the actual dimensional ratios.
 半導体発光素子1は、支持基板11、アンドープ層13、半導体層20、透明電極21、透明電極23、給電端子25、給電端子27、反射電極31、及び反射電極33を備える。また、半導体層20は、n型窒化物半導体層15、発光層17、及びp型窒化物半導体層19が下からこの順に積層されて形成されている。 The semiconductor light emitting device 1 includes a support substrate 11, an undoped layer 13, a semiconductor layer 20, a transparent electrode 21, a transparent electrode 23, a power supply terminal 25, a power supply terminal 27, a reflective electrode 31, and a reflective electrode 33. The semiconductor layer 20 is formed by laminating an n-type nitride semiconductor layer 15, a light emitting layer 17, and a p-type nitride semiconductor layer 19 in this order from the bottom.
 そして、透明電極21及び透明電極23は、AlGaSi1-x-yN層によって形成されている。透明電極21の上層には反射電極31を介して給電端子25が形成されている。同様に、透明電極23の上層には反射電極33を介して給電端子27が形成されている。 The transparent electrode 21 and the transparent electrode 23 are formed of an Al x Ga y Si 1-xy N layer. A power supply terminal 25 is formed on the transparent electrode 21 via a reflective electrode 31. Similarly, a power supply terminal 27 is formed above the transparent electrode 23 via a reflective electrode 33.
 図3に示す半導体発光素子1は、紙面下向きに光を取り出すことが想定された素子である。発光層17から放射された光のうち、上方に進行した光は透明電極23を介して反射電極33に照射され、反射電極33から反射されて支持基板11側へと出射される。ここで、サファイアなどで実現される支持基板11と空気の屈折率の差の影響を受け、一部の光が支持基板11から外部に放射されず、その界面で反射され、半導体発光素子1内にて多重反射を繰り返す。このとき、その一部の光は透明電極21側へと進行する。ここで、透明電極21を透過した光が反射電極31に照射されるため、この反射電極31から反射されて支持基板11側へと再び導くことができる。 The semiconductor light emitting element 1 shown in FIG. 3 is an element assumed to extract light downward in the drawing. Of the light emitted from the light emitting layer 17, the light traveling upward is applied to the reflective electrode 33 through the transparent electrode 23, reflected from the reflective electrode 33, and emitted toward the support substrate 11. Here, under the influence of the difference in refractive index between the support substrate 11 and air realized by sapphire or the like, a part of the light is not emitted from the support substrate 11 to the outside, but is reflected at the interface thereof, and the inside of the semiconductor light emitting device 1 Repeat multiple reflection at. At this time, part of the light travels to the transparent electrode 21 side. Here, since the light transmitted through the transparent electrode 21 is irradiated to the reflective electrode 31, it can be reflected from the reflective electrode 31 and guided again to the support substrate 11 side.
 図4は、従来の半導体発光素子の概略断面図である。従来の半導体発光素子90は、ITOで形成されたコンタクト電極91及び93を備えている。これは、p型窒化物半導体層19の上面に高い反射性を有する金属材料からなる反射電極33を直接形成すると、良好なコンタクト抵抗が形成されないことから、コンタクト特性を向上させる目的で、縮退半導体であるITO又はNiを薄膜のコンタクト電極93として設け、更にこのコンタクト電極93上にAgやAlで形成された反射電極33を設けた構成を採用している。コンタクト電極91についても同様である。 FIG. 4 is a schematic cross-sectional view of a conventional semiconductor light emitting device. A conventional semiconductor light emitting device 90 includes contact electrodes 91 and 93 made of ITO. This is because when a reflective electrode 33 made of a highly reflective metal material is directly formed on the upper surface of the p-type nitride semiconductor layer 19, a good contact resistance is not formed, so that a degenerate semiconductor is used for the purpose of improving contact characteristics. In this case, ITO or Ni as a thin film contact electrode 93 is provided, and a reflective electrode 33 made of Ag or Al is further provided on the contact electrode 93. The same applies to the contact electrode 91.
 しかし、ITOは365nm付近に吸収端を有し、NiはITOよりも長波長側に吸収端を有する。従って、ITOやNiからなるコンタクト電極91、93は、短波長の光を吸収するものであるため、短波長の光取り出し効率が低下してしまう。これに対し、図3に示す半導体発光素子1によれば、AlGaSi1-x-yN層で形成された透明電極21及び23を備えたことで、低い比抵抗を実現しながらも、吸収端がITOやNiよりも短波長側に位置する材料を用いることができるため、短波長側の光取り出し効率を特に向上させることができる。 However, ITO has an absorption edge near 365 nm, and Ni has an absorption edge on the longer wavelength side than ITO. Therefore, since the contact electrodes 91 and 93 made of ITO or Ni absorb short wavelength light, the light extraction efficiency of short wavelength is lowered. On the other hand, the semiconductor light emitting device 1 shown in FIG. 3 includes the transparent electrodes 21 and 23 formed of the Al X Ga y Si 1-xy N layer, thereby realizing a low specific resistance. However, since a material whose absorption edge is located on the shorter wavelength side than ITO or Ni can be used, the light extraction efficiency on the shorter wavelength side can be particularly improved.
 以下、図3に示す半導体発光素子1の詳細な構成及びその製造方法について説明する。なお、以下の説明はあくまで一例である。 Hereinafter, a detailed configuration of the semiconductor light emitting device 1 shown in FIG. 3 and a manufacturing method thereof will be described. The following description is merely an example.
 支持基板11は、サファイア基板で構成される。なお、サファイアの他、Si、SiC、GaN、YAGなどで構成しても構わない。反射電極31及び反射電極33は、例えばAg系の金属、Al、Rhなどで構成される。 The support substrate 11 is composed of a sapphire substrate. In addition to sapphire, Si, SiC, GaN, YAG, or the like may be used. The reflective electrode 31 and the reflective electrode 33 are made of, for example, an Ag-based metal, Al, Rh, or the like.
 アンドープ層13は、例えばGaNにて形成される。より具体的には、GaNよりなる低温バッファ層と、その上層にGaNよりなる下地層によって形成される。 The undoped layer 13 is made of, for example, GaN. More specifically, it is formed of a low-temperature buffer layer made of GaN and an underlying layer made of GaN on the upper layer.
 透明電極21及び透明電極23は、AlGaSi1-x-yN層によって形成されている。なお、図3に示すように、透明電極21と透明電極23は、水平方向に間隙5を有して配置されている。これにより、透明電極23と透明電極21の間で水平方向にリーク電流が流れるのを抑制する効果が得られる。なお、透明電極23はp型窒化物半導体層19の上層に形成され、p型窒化物半導体層19は発光層17の上層に形成され、発光層17は、透明電極21と同様にn型窒化物半導体層15の上層に形成されている。このため、図3に示すように、発光層17と透明電極21が、相互に水平方向に間隙5を有した状態でn型窒化物半導体層15の上層に形成される構成となっている。 The transparent electrode 21 and the transparent electrode 23 are formed of an Al x Ga y Si 1-xy N layer. As shown in FIG. 3, the transparent electrode 21 and the transparent electrode 23 are arranged with a gap 5 in the horizontal direction. Thereby, the effect which suppresses that a leak current flows into the horizontal direction between the transparent electrode 23 and the transparent electrode 21 is acquired. The transparent electrode 23 is formed on the p-type nitride semiconductor layer 19, the p-type nitride semiconductor layer 19 is formed on the light emitting layer 17, and the light emitting layer 17 is n-type nitrided like the transparent electrode 21. It is formed in the upper layer of the physical semiconductor layer 15. Therefore, as shown in FIG. 3, the light emitting layer 17 and the transparent electrode 21 are formed in the upper layer of the n-type nitride semiconductor layer 15 with a gap 5 in the horizontal direction.
 給電端子25は反射電極31の上層に、給電端子27は反射電極33の上層にそれぞれ形成され、例えばCr-Auで構成される。給電端子25はボンディングメタル37を介して、給電端子27はボンディングメタル39を介して基板41に電気的に接続されている。 The feeding terminal 25 is formed in the upper layer of the reflective electrode 31, and the feeding terminal 27 is formed in the upper layer of the reflective electrode 33, and is made of, for example, Cr—Au. The power supply terminal 25 is electrically connected to the substrate 41 via the bonding metal 37, and the power supply terminal 27 is electrically connected to the substrate 41 via the bonding metal 39.
 半導体層20は、n型窒化物半導体層15、発光層17、及びp型窒化物半導体層19が下からこの順に積層されて形成される。 The semiconductor layer 20 is formed by laminating an n-type nitride semiconductor layer 15, a light emitting layer 17, and a p-type nitride semiconductor layer 19 in this order from the bottom.
 n型窒化物半導体層15は、GaN又はAlGaNにて構成され、これらの多層構造であってもよい。例えばアンドープ層13に接触する領域にGaNで構成される層(保護層)を含み、透明電極21に接触する領域にAlGa1-nN(0<n≦1)で構成される層(電子供給層)を含む多層構造とすることができる。少なくとも保護層には、Si、Ge、S、Se、Sn、Teなどのn型不純物がドープされており、特にSiがドープされているのが好ましい。 The n-type nitride semiconductor layer 15 is made of GaN or AlGaN, and may have a multilayer structure thereof. For example, a layer (protective layer) composed of GaN is included in a region in contact with the undoped layer 13, and a layer composed of Al n Ga 1-n N (0 <n ≦ 1) in a region in contact with the transparent electrode 21 ( A multilayer structure including an electron supply layer). At least the protective layer is doped with an n-type impurity such as Si, Ge, S, Se, Sn, or Te, and is preferably doped with Si.
 発光層17は、例えばInGaNからなる井戸層とAlGaNからなる障壁層が繰り返されてなる多重量子井戸構造を有する半導体層で形成される。これらの層はノンドープでもp型又はn型にドープされていても構わない。 The light emitting layer 17 is formed of a semiconductor layer having a multiple quantum well structure in which, for example, a well layer made of InGaN and a barrier layer made of AlGaN are repeated. These layers may be non-doped or p-type or n-type doped.
 p型窒化物半導体層19は、例えばGaNやAlGaNで構成され、Mg、Be、Zn、Cなどのp型不純物がドープされている。 The p-type nitride semiconductor layer 19 is made of, for example, GaN or AlGaN, and is doped with p-type impurities such as Mg, Be, Zn, and C.
 次に、図3に示す半導体発光素子1の製造方法の一例につき、図5A~図5Gの工程断面図を参照して説明する。 Next, an example of a method for manufacturing the semiconductor light emitting device 1 shown in FIG. 3 will be described with reference to the process cross-sectional views of FIGS. 5A to 5G.
  (ステップS1)
 図5Aに示すように、支持基板11上に半導体層20を形成する。より詳細には、以下のとおりである。
(Step S1)
As shown in FIG. 5A, the semiconductor layer 20 is formed on the support substrate 11. In more detail, it is as follows.
   〈支持基板11の準備〉
 まず、支持基板11としてサファイア基板を用いる場合、c面サファイア基板のクリーニングを行う。このクリーニングは、より具体的には、例えばMOCVD(Metal Organic Chemical Vapor Deposition:有機金属化学気相蒸着)装置の処理炉内にc面サファイア基板を配置し、処理炉内に流量が10slmの水素ガスを流しながら、炉内温度を例えば1150℃に昇温することにより行われる。
<Preparation of support substrate 11>
First, when a sapphire substrate is used as the support substrate 11, the c-plane sapphire substrate is cleaned. More specifically, for this cleaning, for example, a c-plane sapphire substrate is placed in a processing furnace of a MOCVD (Metal Organic Chemical Vapor Deposition) apparatus, and hydrogen gas with a flow rate of 10 slm is placed in the processing furnace. The temperature in the furnace is raised to, for example, 1150 ° C. while flowing.
   〈アンドープ層13の形成〉
 次に、支持基板11(c面サファイア基板)の表面に、GaNよりなる低温バッファ層を形成し、更にその上層にGaNよりなる下地層を形成する。これら低温バッファ層及び下地層がアンドープ層13に対応する。
<Formation of undoped layer 13>
Next, a low-temperature buffer layer made of GaN is formed on the surface of the support substrate 11 (c-plane sapphire substrate), and a base layer made of GaN is further formed thereon. These low-temperature buffer layer and underlayer correspond to the undoped layer 13.
 アンドープ層13のより具体的な形成方法は例えば以下の通りである。まず、МОCVD装置の炉内圧力を100kPa、炉内温度を480℃とする。そして、処理炉内にキャリアガスとして流量がそれぞれ5slmの窒素ガス及び水素ガスを流しながら、原料ガスとして、流量が50μmol/minのトリメチルガリウム(TMG)及び流量が250000μmol/minのアンモニアを処理炉内に68秒間供給する。これにより、支持基板11の表面に、厚みが20nmのGaNよりなる低温バッファ層を形成する。 For example, a more specific method of forming the undoped layer 13 is as follows. First, the furnace pressure of the МОCVD apparatus is 100 kPa, and the furnace temperature is 480 ° C. Then, while flowing nitrogen gas and hydrogen gas with a flow rate of 5 slm respectively as carrier gas into the processing furnace, trimethylgallium (TMG) with a flow rate of 50 μmol / min and ammonia with a flow rate of 250,000 μmol / min are used as the raw material gas in the processing furnace. For 68 seconds. Thereby, a low-temperature buffer layer made of GaN having a thickness of 20 nm is formed on the surface of the support substrate 11.
 次に、MOCVD装置の炉内温度を1150℃に昇温する。そして、処理炉内にキャリアガスとして流量が20slmの窒素ガス及び流量が15slmの水素ガスを流しながら、原料ガスとして、流量が100μmol/minのTMG及び流量が250000μmol/minのアンモニアを処理炉内に30分間供給する。これにより、第1バッファ層の表面に、厚みが1.7μmのGaNよりなる下地層を形成する。 Next, the furnace temperature of the MOCVD apparatus is raised to 1150 ° C. Then, while flowing nitrogen gas having a flow rate of 20 slm and hydrogen gas having a flow rate of 15 slm as a carrier gas in the processing furnace, TMG having a flow rate of 100 μmol / min and ammonia having a flow rate of 250,000 μmol / min are introduced into the processing furnace as source gases. Feed for 30 minutes. As a result, a base layer made of GaN having a thickness of 1.7 μm is formed on the surface of the first buffer layer.
   〈n型窒化物半導体層15の形成〉
 次に、アンドープ層13の上層にAlGa1-nN(0<n≦1)の組成からなる電子供給層を形成する。この電子供給層がn型窒化物半導体層15に対応する。
<Formation of n-type Nitride Semiconductor Layer 15>
Next, an electron supply layer having a composition of Al n Ga 1-n N (0 <n ≦ 1) is formed on the undoped layer 13. This electron supply layer corresponds to the n-type nitride semiconductor layer 15.
 n型窒化物半導体層15のより具体的な形成方法は例えば以下の通りである。引き続き炉内温度を1150℃とした状態で、MOCVD装置の炉内圧力を30kPaとする。そして、処理炉内にキャリアガスとして流量が20slmの窒素ガス及び流量が15slmの水素ガスを流しながら、原料ガスとして、流量が94μmol/minのTMG、流量が6μmol/minのトリメチルアルミニウム(TMA)、流量が250000μmol/minのアンモニア及び流量が0.025μmol/minのテトラエチルシランを処理炉内に60分間供給する。これにより、Al0.06Ga0.94Nの組成を有し、Si濃度が3×1019/cmで厚みが2μmのn型窒化物半導体層15(電子供給層)がアンドープ層13の上層に形成される。 A more specific method for forming the n-type nitride semiconductor layer 15 is, for example, as follows. Subsequently, the furnace pressure of the MOCVD apparatus is set to 30 kPa in a state where the furnace temperature is 1150 ° C. Then, while flowing nitrogen gas having a flow rate of 20 slm and hydrogen gas having a flow rate of 15 slm as a carrier gas into the processing furnace, TMG having a flow rate of 94 μmol / min, trimethylaluminum (TMA) having a flow rate of 6 μmol / min, Ammonia with a flow rate of 250,000 μmol / min and tetraethylsilane with a flow rate of 0.025 μmol / min are supplied into the treatment furnace for 60 minutes. Thereby, the n-type nitride semiconductor layer 15 (electron supply layer) having a composition of Al 0.06 Ga 0.94 N, a Si concentration of 3 × 10 19 / cm 3 and a thickness of 2 μm is formed of the undoped layer 13. It is formed in the upper layer.
 なお、この後、TMAの供給を停止すると共に、それ以外の原料ガスを6秒間供給することにより、電子供給層の上層に厚みが5nmのn型GaNよりなる保護層を形成するものとしてもよい。 Thereafter, the supply of TMA is stopped, and another source gas is supplied for 6 seconds to form a protective layer made of n-type GaN having a thickness of 5 nm on the electron supply layer. .
 上記の例では、n型不純物としてはSiを用いる場合を説明したが、他の不純物としてGe、S、Se、Sn及びTeなどを用いることができる。 In the above example, the case where Si is used as the n-type impurity has been described, but other impurities such as Ge, S, Se, Sn, and Te can be used.
   〈発光層17の形成〉
 次に、n型窒化物半導体層15の上層にInGaNで構成される井戸層及びn型AlGaNで構成される障壁層が周期的に繰り返される多重量子井戸構造を有する発光層17を形成する。
<Formation of the light emitting layer 17>
Next, a light emitting layer 17 having a multiple quantum well structure in which a well layer made of InGaN and a barrier layer made of n-type AlGaN are periodically repeated is formed on the n-type nitride semiconductor layer 15.
 発光層17のより具体的な形成方法は例えば以下の通りである。まず、MOCVD装置の炉内圧力を100kPa、炉内温度を830℃とする。そして、処理炉内にキャリアガスとして流量が15slmの窒素ガス及び流量が1slmの水素ガスを流しながら、原料ガスとして、流量が10μmol/minのTMG、流量が12μmol/minのトリメチルインジウム(TMI)及び流量が300000μmol/minのアンモニアを処理炉内に48秒間供給するステップを行う。その後、流量が10μmol/minのTMG、流量が1.6μmol/minのTMA、0.002μmol/minのテトラエチルシラン及び流量が300000μmol/minのアンモニアを処理炉内に120秒間供給するステップを行う。以下、これらの2つのステップを繰り返すことにより、厚みが2nmのInGaNよりなる井戸層及び厚みが7nmのn型AlGaNよりなる障壁層による15周期の多重量子井戸構造を有する発光層17が、n型窒化物半導体層15の上面に形成される。 For example, a more specific method for forming the light emitting layer 17 is as follows. First, the furnace pressure of the MOCVD apparatus is 100 kPa, and the furnace temperature is 830 ° C. Then, while flowing nitrogen gas having a flow rate of 15 slm and hydrogen gas having a flow rate of 1 slm as a carrier gas in the processing furnace, TMG having a flow rate of 10 μmol / min, trimethylindium (TMI) having a flow rate of 12 μmol / min, and A step of supplying ammonia at a flow rate of 300,000 μmol / min into the processing furnace for 48 seconds is performed. Thereafter, TMG having a flow rate of 10 μmol / min, TMA having a flow rate of 1.6 μmol / min, tetraethylsilane having a flow rate of 0.002 μmol / min, and ammonia having a flow rate of 300,000 μmol / min are supplied into the processing furnace for 120 seconds. Hereinafter, by repeating these two steps, the light-emitting layer 17 having a 15-cycle multiple quantum well structure composed of a well layer made of InGaN having a thickness of 2 nm and a barrier layer made of n-type AlGaN having a thickness of 7 nm is obtained as an n-type. It is formed on the upper surface of the nitride semiconductor layer 15.
   〈p型窒化物半導体層19の形成〉
 次に、発光層17の上層に、例えばAlGa1-mN(0≦m<1)の組成からなる正孔供給層を形成する。この正孔供給層がp型窒化物半導体層19に対応する。
<Formation of p-type nitride semiconductor layer 19>
Next, a hole supply layer having a composition of, for example, Al m Ga 1-m N (0 ≦ m <1) is formed on the light emitting layer 17. This hole supply layer corresponds to the p-type nitride semiconductor layer 19.
 p型窒化物半導体層19のより具体的な形成方法は例えば以下の通りである。まず、MOCVD装置の炉内圧力を100kPaに維持し、処理炉内にキャリアガスとして流量が15slmの窒素ガス及び流量が25slmの水素ガスを流しながら、炉内温度を1025℃に昇温する。その後、原料ガスとして、流量が35μmol/minのTMG、流量が20μmol/minのTMA、流量が250000μmol/minのアンモニア及びp型不純物をドープするための流量が0.1μmol/minのビスシクロペンタジエニルマグネシウムを処理炉内に60秒間供給する。これにより、発光層17の表面に、厚みが20nmのAl0.3Ga0.7Nの組成を有する正孔供給層を形成する。その後、TMGの流量を9μmol/minに変更して原料ガスを360秒間供給することにより、厚みが120nmのAl0.13Ga0.87Nの組成を有する正孔供給層を形成する。これらの正孔供給層によりp型窒化物半導体層19が形成される。 A more specific method for forming the p-type nitride semiconductor layer 19 is, for example, as follows. First, the furnace pressure of the MOCVD apparatus is maintained at 100 kPa, and the furnace temperature is raised to 1025 ° C. while nitrogen gas having a flow rate of 15 slm and hydrogen gas having a flow rate of 25 slm are allowed to flow into the processing furnace. Thereafter, as source gases, TMG with a flow rate of 35 μmol / min, TMA with a flow rate of 20 μmol / min, ammonia with a flow rate of 250,000 μmol / min, and biscyclopentadiene with a flow rate of 0.1 μmol / min for doping p-type impurities. Enilmagnesium is fed into the processing furnace for 60 seconds. Thereby, a hole supply layer having a composition of Al 0.3 Ga 0.7 N having a thickness of 20 nm is formed on the surface of the light emitting layer 17. After that, by changing the flow rate of TMG to 9 μmol / min and supplying the source gas for 360 seconds, a hole supply layer having a composition of Al 0.13 Ga 0.87 N having a thickness of 120 nm is formed. A p-type nitride semiconductor layer 19 is formed by these hole supply layers.
 更にその後、ビスシクロペンタジエニルマグネシウムの流量を0.2μmol/minに変更して原料ガスを20秒間供給することにより、厚みが5nmのp型GaNよりなる高濃度層(コンタクト層)を形成する。 Thereafter, the flow rate of biscyclopentadienyl magnesium is changed to 0.2 μmol / min and a source gas is supplied for 20 seconds to form a high-concentration layer (contact layer) made of p-type GaN having a thickness of 5 nm. .
 上記の例では、p型不純物としてMgを用いる場合を説明したが、他の不純物としてBe、Zn、Cなどを用いることができる。 In the above example, the case where Mg is used as the p-type impurity has been described. However, Be, Zn, C, or the like can be used as another impurity.
  (ステップS2)
 次に、ステップS1で得られたウェハに対して活性化処理を行う。より具体的には、RTA(Rapid Thermal Anneal:急速加熱)装置を用いて、窒素雰囲気下中650℃で15分間の活性化処理を行う。
(Step S2)
Next, an activation process is performed on the wafer obtained in step S1. More specifically, activation is performed at 650 ° C. for 15 minutes in a nitrogen atmosphere using an RTA (Rapid Thermal Anneal) device.
  (ステップS3)
 図5Bに示すように、n型窒化物半導体層15の一部上面が露出するまで、p型窒化物半導体層19及び発光層17を、ICP装置を用いたドライエッチングによって除去する。
(Step S3)
As shown in FIG. 5B, the p-type nitride semiconductor layer 19 and the light emitting layer 17 are removed by dry etching using an ICP device until a partial upper surface of the n-type nitride semiconductor layer 15 is exposed.
  (ステップS4)
 図5Cに示すように、反射電極の非形成領域に係る、n型窒化物半導体層15の上面にレジスト35を形成する。
(Step S4)
As shown in FIG. 5C, a resist 35 is formed on the upper surface of the n-type nitride semiconductor layer 15 in the region where the reflective electrode is not formed.
  (ステップS5)
 図5Dに示すように、AlGaSi1-x-yN層26を全面に形成する。
(Step S5)
As shown in FIG. 5D, an Al X Ga y Si 1-xy N layer 26 is formed on the entire surface.
 具体的には、反応性スパッタリングを用いて、厚みが50nmのAl0.1Ga0.89Si0.01N層26を形成する。 Specifically, the Al 0.1 Ga 0.89 Si 0.01 N layer 26 having a thickness of 50 nm is formed using reactive sputtering.
 その後、アセトンなどの薬品を用いたレジストのリフトオフにより、レジスト及びその直上に位置するAlGa1-x-y-zN層26を除去する。これにより、図5Eに示すように、AlGa1-x-y-zN層26が2つに分離され、透明電極21と透明電極23が形成される。このとき、透明電極21と透明電極23の間に水平方向に関する間隙5が形成される。 Thereafter, the resist and the Al x Ga y B z M 1-xyz N layer 26 located immediately above the resist are removed by lift-off of the resist using a chemical such as acetone. As a result, as shown in FIG. 5E, the Al x Ga y B z M 1-xyz N layer 26 is separated into two, and the transparent electrode 21 and the transparent electrode 23 are formed. At this time, a gap 5 in the horizontal direction is formed between the transparent electrode 21 and the transparent electrode 23.
  (ステップS6)
 電子線蒸着装置(EB装置)を用いて、透明電極21の上面にAl又はAgからなる反射電極31を、透明電極23の上面にAl又はAgからなる反射電極33を、それぞれ例えば膜厚120nm程度蒸着する(図5F参照)。
(Step S6)
Using an electron beam evaporation apparatus (EB apparatus), a reflective electrode 31 made of Al or Ag is formed on the upper surface of the transparent electrode 21, and a reflective electrode 33 made of Al or Ag is formed on the upper surface of the transparent electrode 23, for example, with a film thickness of about 120 nm. Evaporate (see FIG. 5F).
  (ステップS7)
 反射電極31の上面に給電端子25を、反射電極33の上面に給電端子27をそれぞれ膜厚100nmのCrと膜厚3μmのAuからなる材料膜の成膜によって形成する(図5G参照)。その後、ボンディングメタル37によって給電端子25と支持基板41を接続し、ボンディングメタル39によって給電端子27と支持基板41を接続する。これにより、図3に示す半導体発光素子1が形成される。
(Step S7)
The power supply terminal 25 is formed on the upper surface of the reflective electrode 31, and the power supply terminal 27 is formed on the upper surface of the reflective electrode 33 by forming a material film made of Cr having a thickness of 100 nm and Au having a thickness of 3 μm (see FIG. 5G). Thereafter, the power supply terminal 25 and the support substrate 41 are connected by the bonding metal 37, and the power supply terminal 27 and the support substrate 41 are connected by the bonding metal 39. Thereby, the semiconductor light emitting device 1 shown in FIG. 3 is formed.
 なお、上記の例では、p型窒化物半導体層19の上面に形成される透明電極23と、n型窒化物半導体層15の上面に形成される透明電極21の双方を備える場合について説明したが、透明電極23のみを備える構成としても構わない。 In the above example, the case where both the transparent electrode 23 formed on the upper surface of the p-type nitride semiconductor layer 19 and the transparent electrode 21 formed on the upper surface of the n-type nitride semiconductor layer 15 has been described. A configuration including only the transparent electrode 23 may be used.
  (第2実施形態)
 半導体発光素子の第2実施形態について図面を参照して説明する。なお、以下の実施形態では、第1実施形態と共通する箇所については、同一の符号を付してその説明を割愛することがある。
(Second Embodiment)
A second embodiment of the semiconductor light emitting device will be described with reference to the drawings. In the following embodiments, portions that are the same as those in the first embodiment may be denoted by the same reference numerals and description thereof may be omitted.
 図6は、第2実施形態の半導体発光素子の概略断面図である。半導体発光素子1aは、支持基板12、導電層44、絶縁層48、半導体層20及び給電端子42を含んで構成される。半導体層20は、p型窒化物半導体層19、発光層17、及びn型窒化物半導体層16が下からこの順に積層されて形成されている。 FIG. 6 is a schematic cross-sectional view of the semiconductor light emitting device of the second embodiment. The semiconductor light emitting element 1 a includes a support substrate 12, a conductive layer 44, an insulating layer 48, a semiconductor layer 20, and a power supply terminal 42. The semiconductor layer 20 is formed by stacking a p-type nitride semiconductor layer 19, a light emitting layer 17, and an n-type nitride semiconductor layer 16 in this order from the bottom.
 本実施形態では、n型窒化物半導体層16がAlGaSi1-x-yN層によって形成されている。上述したように、AlGaSi1-x-yN層は極めて低い比抵抗が実現できるため、従来構成の発光素子よりもn層の抵抗値を低下させることが可能となり、低い動作電圧によっても発光に必要な電流量を発光層に流すことができ、発光効率が向上される。 In the present embodiment, the n-type nitride semiconductor layer 16 is formed of an Al x Ga y Si 1-xy N layer. As described above, since the Al X Ga y Si 1-xy N layer can realize an extremely low specific resistance, the resistance value of the n layer can be lowered as compared with the light emitting element of the conventional configuration, and the operating voltage is low. Also, the amount of current required for light emission can be passed through the light emitting layer, and the light emission efficiency is improved.
 以下、図6に示す半導体発光素子1の詳細な構成及びその製造方法について説明する。なお、以下の説明はあくまで一例である。 Hereinafter, a detailed configuration of the semiconductor light emitting device 1 shown in FIG. 6 and a manufacturing method thereof will be described. The following description is merely an example.
 支持基板12は、例えばCuW、W、Moなどの導電性基板、又はSiなどの半導体基板で構成される。支持基板12の上層には、多層構造からなる導電層44が形成されている。この導電層44は、本実施形態では、ハンダ層43、保護層45及び反射電極47を含む。 The support substrate 12 is made of, for example, a conductive substrate such as CuW, W, or Mo, or a semiconductor substrate such as Si. A conductive layer 44 having a multilayer structure is formed on the support substrate 12. In the present embodiment, the conductive layer 44 includes a solder layer 43, a protective layer 45, and a reflective electrode 47.
 ハンダ層43は、例えばAu-Sn、Au-In、Au-Cu-Sn、Cu-Sn、Pd-Sn、Snなどで構成される。ハンダ層43は、製造方法の項で後述されるように、サファイア基板と支持基板12を接合する際に利用される。 The solder layer 43 is made of, for example, Au—Sn, Au—In, Au—Cu—Sn, Cu—Sn, Pd—Sn, Sn, or the like. The solder layer 43 is used when the sapphire substrate and the support substrate 12 are bonded as described later in the section of the manufacturing method.
 保護層45は、例えばPt系の金属(TiとPtの合金)、W、Mo、Niなどで構成される。後述するように、プロセス時においてハンダ層を介した2基板の貼り合わせを行う際、ハンダを構成する材料が後述する反射電極47側に拡散し、反射率が落ちることによる発光効率の低下を防止する機能を果たしている。 The protective layer 45 is made of, for example, a Pt-based metal (an alloy of Ti and Pt), W, Mo, Ni, or the like. As will be described later, when two substrates are bonded to each other through a solder layer during the process, the material constituting the solder diffuses to the reflective electrode 47 side, which will be described later, and prevents a decrease in luminous efficiency due to a drop in reflectance. Plays a function.
 反射電極47は、例えばAg系の金属、Al、Rhなどで構成される。半導体発光素子1aは、発光層17から放射された光を、図6の上方向(n型窒化物半導体層16側)に取り出すことを想定しており、反射電極47は、発光層17から下向きに放射された光を上向きに反射させることで発光効率を高める機能を果たしている。 The reflective electrode 47 is made of, for example, an Ag-based metal, Al, Rh, or the like. It is assumed that the semiconductor light emitting element 1a takes out the light emitted from the light emitting layer 17 in the upward direction of FIG. 6 (on the n-type nitride semiconductor layer 16 side), and the reflective electrode 47 faces downward from the light emitting layer 17. It has the function of increasing the light emission efficiency by reflecting the light emitted to the top upward.
 なお、導電層44は、一部において半導体層20、より詳細にはp型窒化物半導体層19と接触しており、支持基板12と給電端子42の間に電圧が印加されると、支持基板12、導電層44、半導体層20を介して給電端子42へと流れる電流経路が形成される。 The conductive layer 44 is partially in contact with the semiconductor layer 20, more specifically the p-type nitride semiconductor layer 19, and when a voltage is applied between the support substrate 12 and the power supply terminal 42, the support substrate 44 12, a current path that flows to the power supply terminal 42 through the conductive layer 44 and the semiconductor layer 20 is formed.
 絶縁層48は、例えばSiO2、SiN、Zr、AlN、Alなどで構成される。この絶縁層48は、上面がp型窒化物半導体層19の底面と接触している。なお、この絶縁層48は、後述するように素子分離時におけるエッチングストッパー層としての機能を有すると共に、支持基板12の基板面に平行な方向に電流を拡げる機能も有する。 Insulating layer 48 is composed for example SiO 2, SiN, Zr 2 O 3, AlN, etc. Al 2 O 3. The insulating layer 48 is in contact with the bottom surface of the p-type nitride semiconductor layer 19 at the top surface. As will be described later, the insulating layer 48 has a function as an etching stopper layer at the time of element isolation, and also has a function of spreading current in a direction parallel to the substrate surface of the support substrate 12.
 給電端子42はn型窒化物半導体層16の上面に形成され、例えばCr-Auで構成される。この給電端子42は、例えばAu、Cuなどで構成されるワイヤが連絡されており(不図示)、このワイヤの他方は、半導体発光素子1aが配置されている基板の給電パターンなどに接続される(不図示)。 The power supply terminal 42 is formed on the upper surface of the n-type nitride semiconductor layer 16 and is made of, for example, Cr—Au. The power supply terminal 42 is connected to a wire made of, for example, Au or Cu (not shown), and the other wire is connected to a power supply pattern on the substrate on which the semiconductor light emitting element 1a is disposed. (Not shown).
 次に、図6に示す半導体発光素子1aの製造方法につき、図7A~図7Gの工程断面図を参照して説明する。 Next, a method for manufacturing the semiconductor light emitting device 1a shown in FIG. 6 will be described with reference to process cross-sectional views in FIGS. 7A to 7G.
  (ステップS11)
 図7Aに示すように、サファイア基板11上に半導体層20を形成する。より詳細には、以下のとおりである。
(Step S11)
As shown in FIG. 7A, the semiconductor layer 20 is formed on the sapphire substrate 11. In more detail, it is as follows.
 まず、第1実施形態のステップS1と同様、サファイア基板11上にアンドープ層13を形成する。その後、第1実施形態のステップS5でAlGaSi1-x-yN層26を形成したのと同様の方法により、AlGaSi1-x-yN層からなるn型窒化物半導体層16を形成する。 First, the undoped layer 13 is formed on the sapphire substrate 11 as in step S1 of the first embodiment. Thereafter, an n-type nitridation composed of an Al X Ga y Si 1-xy N layer is performed in the same manner as the Al X Ga y Si 1-xy N layer 26 is formed in step S5 of the first embodiment. The physical semiconductor layer 16 is formed.
 より詳細には、炉内温度を1150℃とした状態で、MOCVD装置の炉内圧力を30kPaとする。そして、処理炉内にキャリアガスとして流量が20slmの窒素ガス及び流量が15slmの水素ガスを流しながら、原料ガスとして、流量が94μmol/minのTMG、流量が6μmol/minのトリメチルアルミニウム(TMA)、流量が250000μmol/minのアンモニア及び流量が3.5μmol/minのテトラエチルシランを処理炉内に30分間供給するステップを行う。これにより、厚みが1000nmのAl0.1Ga0.89Si0.01Nのn型窒化物半導体層16が形成される。 More specifically, the furnace pressure of the MOCVD apparatus is set to 30 kPa in a state where the furnace temperature is 1150 ° C. Then, while flowing nitrogen gas having a flow rate of 20 slm and hydrogen gas having a flow rate of 15 slm as a carrier gas into the processing furnace, TMG having a flow rate of 94 μmol / min, trimethylaluminum (TMA) having a flow rate of 6 μmol / min, A step of supplying ammonia having a flow rate of 250,000 μmol / min and tetraethylsilane having a flow rate of 3.5 μmol / min into the processing furnace for 30 minutes is performed. As a result, an Al 0.1 Ga 0.89 Si 0.01 N n-type nitride semiconductor layer 16 having a thickness of 1000 nm is formed.
 その後、第1実施形態と同様の方法により、発光層17及びp型窒化物半導体層19を形成する。 Thereafter, the light emitting layer 17 and the p-type nitride semiconductor layer 19 are formed by the same method as in the first embodiment.
  (ステップS12)
 第1実施形態のステップS2と同様の活性化処理を行う。
(Step S12)
The activation process similar to step S2 of the first embodiment is performed.
  (ステップS13)
 図7Bに示すように、p型窒化物半導体層19の上層の所定箇所に絶縁層48を形成する。より具体的には、後の工程で給電端子42を形成する領域の下方に位置する箇所に絶縁層48を形成するのが好ましい。絶縁層48としては、例えばSiOを膜厚200nm程度成膜する。なお成膜する材料は絶縁性材料であればよく、例えばSiN、Alでも良い。
(Step S13)
As shown in FIG. 7B, an insulating layer 48 is formed at a predetermined position on the p-type nitride semiconductor layer 19. More specifically, it is preferable to form the insulating layer 48 at a position located below a region where the power supply terminal 42 is formed in a later step. As the insulating layer 48, for example, SiO 2 is formed to a thickness of about 200 nm. Note that the material for forming the film may be an insulating material, such as SiN or Al 2 O 3 .
  (ステップS14)
 図7Cに示すように、p型窒化物半導体層19及び絶縁層48の上面を覆うように、導電層44を形成する。ここでは、反射電極47、保護層45、及びハンダ層43を含む多層構造の導電層44を形成する。
(Step S14)
As shown in FIG. 7C, the conductive layer 44 is formed so as to cover the upper surfaces of the p-type nitride semiconductor layer 19 and the insulating layer 48. Here, the conductive layer 44 having a multilayer structure including the reflective electrode 47, the protective layer 45, and the solder layer 43 is formed.
 導電層44のより具体的な形成方法は例えば以下の通りである。まず、スパッタ装置にてp型窒化物半導体層19及び絶縁層48の上面を覆うように、膜厚0.7nmのNi及び膜厚120nmのAgを全面に成膜して、反射電極47を形成する。次に、RTA装置を用いてドライエアー雰囲気中で400℃、2分間のコンタクトアニールを行う。 For example, a more specific method for forming the conductive layer 44 is as follows. First, a reflective electrode 47 is formed by depositing 0.7 nm-thickness Ni and 120 nm-thickness Ag on the entire surface so as to cover the upper surfaces of the p-type nitride semiconductor layer 19 and the insulating layer 48 by a sputtering apparatus. To do. Next, contact annealing is performed at 400 ° C. for 2 minutes in a dry air atmosphere using an RTA apparatus.
 次に、電子線蒸着装置(EB装置)にて反射電極47の上面(Ag表面)に、膜厚100nmのTiと膜厚200nmのPtを3周期成膜することで、保護層45を形成する。更にその後、保護層45の上面(Pt表面)に、膜厚10nmのTiを蒸着させた後、Au80%Sn20%で構成されるAu-Snハンダを膜厚3μm蒸着させることで、ハンダ層43を形成する。 Next, the protective layer 45 is formed by depositing 100 nm of Ti and 200 nm of Pt on the upper surface (Ag surface) of the reflective electrode 47 with an electron beam evaporation apparatus (EB apparatus) for three periods. . Further, after depositing Ti with a thickness of 10 nm on the upper surface (Pt surface) of the protective layer 45, Au-Sn solder composed of Au 80% Sn 20% is deposited with a thickness of 3 μm to form the solder layer 43. Form.
 なお、このハンダ層43の形成ステップにおいて、図7Dに示すように、サファイア基板11とは別に準備された支持基板12の上面にもハンダ層46を形成するものとして構わない。このハンダ層は、ハンダ層43と同一の材料で構成されるものとしてよい。なお、この支持基板12としては、上述したように例えばCuWが用いられる。 In the step of forming the solder layer 43, as shown in FIG. 7D, the solder layer 46 may be formed on the upper surface of the support substrate 12 prepared separately from the sapphire substrate 11. This solder layer may be made of the same material as the solder layer 43. For example, CuW is used as the support substrate 12 as described above.
  (ステップS15)
 次に、図7Eに示すように、サファイア基板11と支持基板12とを貼り合せる。より具体的には、280℃の温度、0.2MPaの圧力下で、ハンダ層43と支持基板12を貼り合わせる。
(Step S15)
Next, as shown in FIG. 7E, the sapphire substrate 11 and the support substrate 12 are bonded together. More specifically, the solder layer 43 and the support substrate 12 are bonded together at a temperature of 280 ° C. and a pressure of 0.2 MPa.
  (ステップS16)
 次に、図7Fに示すように、サファイア基板11を剥離する。より具体的には、サファイア基板11を上に、支持基板12を下に向けた状態で、サファイア基板11側からKrFエキシマレーザを照射して、サファイア基板11と半導体層20の界面を分解させることでサファイア基板の剥離を行う。サファイアはレーザが通過する一方、その下層のGaN(アンドープ層)はレーザを吸収するため、この界面が高温化してGaNが分解される。これによってサファイア基板11が剥離される。
(Step S16)
Next, as shown in FIG. 7F, the sapphire substrate 11 is peeled off. More specifically, the interface between the sapphire substrate 11 and the semiconductor layer 20 is decomposed by irradiating a KrF excimer laser from the sapphire substrate 11 side with the sapphire substrate 11 facing upward and the support substrate 12 facing downward. The sapphire substrate is peeled off. While sapphire passes through the laser, GaN (undoped layer) under the sapphire absorbs the laser, and this interface is heated to decompose GaN. As a result, the sapphire substrate 11 is peeled off.
 その後、ウェハ上に残存しているGaN(アンドープ層)を、塩酸などを用いたウェットエッチング、ICP装置を用いたドライエッチングによって除去し、n型窒化物半導体層16を露出させる。 Thereafter, GaN (undoped layer) remaining on the wafer is removed by wet etching using hydrochloric acid or the like, and dry etching using an ICP apparatus, and the n-type nitride semiconductor layer 16 is exposed.
 (ステップS17)
 次に、図7Gに示すように、隣接する素子同士を分離する。具体的には、隣接素子との境界領域に対し、ICP装置を用いて絶縁層48の上面が露出するまで半導体層20をエッチングする。これにより、隣接領域の半導体層20同士が分離される。なお、このとき絶縁層48はエッチングストッパー層として機能する。
(Step S17)
Next, as shown in FIG. 7G, adjacent elements are separated from each other. Specifically, the semiconductor layer 20 is etched using an ICP device until the upper surface of the insulating layer 48 is exposed to the boundary region with the adjacent element. Thereby, the semiconductor layers 20 in the adjacent regions are separated from each other. At this time, the insulating layer 48 functions as an etching stopper layer.
 なお、このエッチング工程では、素子側面を垂直でなく、10°以上のテーパ角を有する傾斜面とするのが好ましい。このようにすることで、後の工程で絶縁層を形成する際、半導体層20の側面に絶縁層が付着しやすくなり、電流リークを防ぐことができる。 In this etching step, it is preferable that the side surface of the element is not vertical but is an inclined surface having a taper angle of 10 ° or more. By doing in this way, when forming an insulating layer in a later process, the insulating layer is easily attached to the side surface of the semiconductor layer 20, and current leakage can be prevented.
 また、ステップS17の後、半導体層20の上面にKOH等のアルカリ溶液で凹凸面を形成するものとしても構わない。これにより、光取り出し面積が増大し、光取り出し効率を向上させることができる。 Further, after step S17, an uneven surface may be formed on the upper surface of the semiconductor layer 20 with an alkaline solution such as KOH. Thereby, the light extraction area can be increased and the light extraction efficiency can be improved.
  (ステップS18)
 次に、n型窒化物半導体層16の上面に給電端子42を形成する。より具体的には、膜厚10nmのNiと膜厚10nmのAuからなる給電端子42を形成する。上述したように、n型窒化物半導体層16は、比抵抗の小さいAlGaSi1-x-yN層で形成されているため、この工程の後、アニール処理を行わなくても、n型窒化物半導体層16と給電端子42の間にはオーミック接続が形成される。これにより、図6に示す半導体発光素子1aが形成される。
(Step S18)
Next, the power supply terminal 42 is formed on the upper surface of the n-type nitride semiconductor layer 16. More specifically, the power supply terminal 42 made of Ni having a thickness of 10 nm and Au having a thickness of 10 nm is formed. As described above, since the n-type nitride semiconductor layer 16 is formed of an Al x Ga y Si 1-xy N layer having a small specific resistance, the annealing process is not performed after this step. An ohmic connection is formed between the n-type nitride semiconductor layer 16 and the power supply terminal 42. Thereby, the semiconductor light emitting element 1a shown in FIG. 6 is formed.
 なお、図6に示す半導体発光素子1aには図示していないが、その後の工程として、露出されている素子側面、及び給電端子42以外の素子上面を絶縁層で覆うものとしてもよい。より具体的には、EB装置にてSiO膜を形成する。なおSiN膜を形成しても構わない。そして、各素子同士を例えばレーザダイシング装置によって分離し、支持基板11の裏面を例えばAgペーストにてパッケージと接合して給電端子42に対してワイヤボンディングを行う。 Although not shown in the semiconductor light emitting device 1a shown in FIG. 6, as a subsequent process, the exposed device side surface and the device upper surface other than the power supply terminal 42 may be covered with an insulating layer. More specifically, an SiO 2 film is formed by an EB apparatus. An SiN film may be formed. Then, the elements are separated from each other by, for example, a laser dicing apparatus, the back surface of the support substrate 11 is joined to the package by, for example, Ag paste, and wire bonding is performed to the power supply terminal 42.
  (第3実施形態)
 半導体発光素子の第3実施形態について図面を参照して説明する。図8は、第3実施形態の半導体発光素子の概略断面図である。半導体発光素子1bは、支持基板12、導電層44、絶縁層48、半導体層20、透明電極24及び給電端子42を含んで構成される。半導体層20は、p型窒化物半導体層19、発光層17、及びn型窒化物半導体層15が下からこの順に積層されて形成されている。
(Third embodiment)
A semiconductor light emitting device according to a third embodiment will be described with reference to the drawings. FIG. 8 is a schematic cross-sectional view of the semiconductor light emitting device of the third embodiment. The semiconductor light emitting element 1 b includes a support substrate 12, a conductive layer 44, an insulating layer 48, a semiconductor layer 20, a transparent electrode 24, and a power supply terminal 42. The semiconductor layer 20 is formed by stacking a p-type nitride semiconductor layer 19, a light emitting layer 17, and an n-type nitride semiconductor layer 15 in this order from the bottom.
 本実施形態では、第1実施形態の同一の構成のn型窒化物半導体層15の上面に、AlGaSi1-x-yN層によって形成された透明電極24を備え、その上面に給電端子42が形成された構成である。このような透明電極24を備えたことで、高い透光性と低い比抵抗が両立できる。これにより、n型窒化物半導体層15の上面全面に形成しても、光の取り出し効率が低下することがなく、支持基板12の基板面に水平な方向に関して電流経路を拡げることができるため、発光層17の広い領域に電流を流すことができ、広い発光領域が実現される。 In the present embodiment, a transparent electrode 24 formed of an Al X Ga y Si 1-xy N layer is provided on the upper surface of the n-type nitride semiconductor layer 15 having the same configuration as that of the first embodiment, and the upper surface thereof is provided. The power supply terminal 42 is formed. By providing such a transparent electrode 24, both high translucency and low specific resistance can be achieved. Thereby, even if it is formed on the entire upper surface of the n-type nitride semiconductor layer 15, the light extraction efficiency is not lowered, and the current path can be expanded in the horizontal direction on the substrate surface of the support substrate 12. A current can be passed through a wide area of the light emitting layer 17 to realize a wide light emitting area.
 また、上述したように、AlGaSi1-x-yN層は比抵抗が極めて小さいため、n型窒化物半導体層15と透明電極24の間は、良好なオーミック特性が実現できる。図9は、n型窒化物半導体層15と透明電極24の間のオーミック性を説明するための図である。 Further, as described above, since the Al X Ga y Si 1-xy N layer has a very small specific resistance, good ohmic characteristics can be realized between the n-type nitride semiconductor layer 15 and the transparent electrode 24. FIG. 9 is a diagram for explaining the ohmic property between the n-type nitride semiconductor layer 15 and the transparent electrode 24.
 図9(a)は評価用素子の構成を示す図であり、サファイア基板11の上層に、アンドープ層13及びn型窒化物半導体層15を形成し、n型窒化物半導体層15の上面の2箇所にAlGaSi1-x-yN層からなる透明電極24を形成したものである。図9(b)は、図9(a)の評価用素子に対し、2箇所の透明電極24にプローバーを当てて電流を流して、得られた電流電圧特性(I-V特性)をグラフ化したものである。 FIG. 9A is a diagram showing the configuration of the evaluation element. An undoped layer 13 and an n-type nitride semiconductor layer 15 are formed on the sapphire substrate 11, and 2 on the upper surface of the n-type nitride semiconductor layer 15. A transparent electrode 24 made of an Al X Ga y Si 1-xy N layer is formed at a location. FIG. 9B is a graph showing the current-voltage characteristics (IV characteristics) obtained by applying a prober to the transparent electrodes 24 at two locations and applying current to the evaluation element of FIG. 9A. It is a thing.
 なお、図9(b)では、Si組成を0.5%としたAl0.06Ga0.935Si0.005Nで透明電極24を形成した評価用素子(実施例1)と、Si組成を5%としたAl0.06Ga0.89Si0.05Nで透明電極24を形成した評価用素子(実施例2)について、I-V特性を測定した。図9(b)によれば、実施例1及び実施例2の双方において、I-V特性が線形形状を示しており、良好なオーミック性が実現できていることが分かる。 In FIG. 9B, an evaluation element (Example 1) in which the transparent electrode 24 is formed of Al 0.06 Ga 0.935 Si 0.005 N with a Si composition of 0.5%, and the Si composition IV characteristics were measured for the evaluation element (Example 2) in which the transparent electrode 24 was formed of Al 0.06 Ga 0.89 Si 0.05 N with 5% of Al. According to FIG. 9B, it can be seen that in both Example 1 and Example 2, the IV characteristic shows a linear shape, and good ohmic characteristics can be realized.
 本実施形態の詳細な構成については、AlGaSi1-x-yN層によって形成されたn型窒化物半導体層16に代えて、第1実施形態の同一の構成のn型窒化物半導体層15を用いた点、及びその上面全面にAlGaSi1-x-yN層で形成された透明電極24を備えた点を除いては、第2実施形態の半導体発光素子1aとほぼ同じであるため、その説明を割愛する。 Regarding the detailed configuration of the present embodiment, the n-type nitride having the same configuration as that of the first embodiment is used instead of the n-type nitride semiconductor layer 16 formed by the Al X Ga y Si 1-xy N layer. The semiconductor light emitting device 1a of the second embodiment except that the semiconductor layer 15 is used, and that the transparent electrode 24 formed of an Al X Ga y Si 1-xy N layer is provided on the entire upper surface of the semiconductor layer 15. Because it is almost the same, I will omit the explanation.
 製造方法については、第2実施形態で上述したステップS11~S17と同様の方法を経た後、第1実施形態のステップS5と同様の方法で、n型窒化物半導体層15の上面全面にAlGaSi1-x-yN層で形成された透明電極24を形成し、第2実施形態のステップS18と同様の方法で透明電極24の上面に給電端子42を形成する。その後は第2実施形態と共通である。 As for the manufacturing method, after passing through the same method as steps S11 to S17 described in the second embodiment, Al X is formed on the entire upper surface of the n-type nitride semiconductor layer 15 by the same method as in step S5 of the first embodiment. The transparent electrode 24 formed of the Ga y Si 1-xy N layer is formed, and the power supply terminal 42 is formed on the upper surface of the transparent electrode 24 by the same method as Step S18 of the second embodiment. The subsequent steps are the same as in the second embodiment.
 [太陽電池]
 本発明の組成物AlGa1-x-y-zN(0<x<1、0<y<1、0≦z<1、0.001≦1-x-y-z≦0.1であり、MはSi、Geの何れか一種以上を含む)を含む太陽電池の実施形態について、図面を参照して説明する。なお、以下でも、この組成物で構成された層を「AlGaSi1-x-yN層」と呼ぶ。
[Solar cell]
Composition of the Invention Al x Ga y B z M 1-xyz N (0 <x <1, 0 <y <1, 0 ≦ z <1, 0.001 ≦ 1-xyz) An embodiment of a solar cell including ≦ 0.1 and M including one or more of Si and Ge will be described with reference to the drawings. In the following, a layer composed of this composition will be referred to as an “Al X Ga y Si 1-xy N layer”.
 図10は、太陽電池セルの模式的な構成を示す断面図である。太陽電池セル2は、ガラス基板71、AlGaSi1-x-yN層で形成した透明電極29、半導体層75、及び裏面電極76を備える。本実施例では、半導体層75として、p型アモルファスシリコン72、i型アモルファスシリコン73、及びn型アモルファスシリコン74を含むpinダイオード型を採用している。 FIG. 10 is a cross-sectional view showing a schematic configuration of a solar battery cell. The solar cell 2 includes a glass substrate 71, a transparent electrode 29 formed of an Al X Ga y Si 1-xy N layer, a semiconductor layer 75, and a back electrode 76. In this embodiment, a pin diode type including p-type amorphous silicon 72, i-type amorphous silicon 73, and n-type amorphous silicon 74 is employed as the semiconductor layer 75.
 従来の太陽電池セルは透明電極としてITOを用いていた。図10のように、AlGaSi1-x-yN層で形成した透明電極29を備えた太陽電池セル2とすることで、ITOよりも可視光の透過効率を向上させることができるため、ガラス基板71を介して入射された可視光を半導体層75に照射させる光量が増加し、発電効率が向上する。 Conventional solar cells used ITO as a transparent electrode. As shown in FIG. 10, by using the solar battery cell 2 including the transparent electrode 29 formed of an Al X Ga y Si 1-xy N layer, the visible light transmission efficiency can be improved as compared with ITO. Therefore, the amount of light that irradiates the semiconductor layer 75 with visible light incident through the glass substrate 71 is increased, and the power generation efficiency is improved.
 図10に示す太陽電池セル2を製造する場合には、ガラス基板71上に、スパッタリング法によってAlGaSi1-x-yN層を堆積させて透明電極29を形成すればよい。その後、透明電極29の上面にアモルファスシリコンを成長させて半導体層75を形成した後、半導体層75の上面にAlなどで形成された裏面電極76を形成して、所定の回路パターンにパターニングする。 When the solar battery cell 2 shown in FIG. 10 is manufactured, the transparent electrode 29 may be formed by depositing an Al X Ga y Si 1-xy N layer on the glass substrate 71 by a sputtering method. Thereafter, amorphous silicon is grown on the upper surface of the transparent electrode 29 to form the semiconductor layer 75, and then a back electrode 76 made of Al or the like is formed on the upper surface of the semiconductor layer 75 and patterned into a predetermined circuit pattern.
 また、図10に示した太陽電池セル2の構造は、あくまで一例である。どのような形式の太陽電池であっても、従来透明導電膜としてITO膜が利用されていた箇所に、本発明のAlGaSi1-x-yN層からなる透明電極を利用することで、発電効率が向上することが期待される。 Moreover, the structure of the photovoltaic cell 2 shown in FIG. 10 is an example to the last. Regardless of the type of solar cell, the transparent electrode comprising the Al x Ga y Si 1-xy N layer of the present invention should be used where the ITO film has been conventionally used as the transparent conductive film. Therefore, power generation efficiency is expected to improve.
    1、1a、1b   :  半導体発光素子
    2   :  太陽電池セル
    5   :  間隙
   11   :  支持基板(サファイア基板)
   12   :  支持基板
   13   :  アンドープ層
   15   :  n型窒化物半導体層
   16   :  AlGa1-x-y-zNで形成されたn型窒化物半導体層
   17   :  発光層
   19   :  p型窒化物半導体層
   20   :  半導体層
   21   :  AlGa1-x-y-zNで形成された透明電極
   23   :  AlGa1-x-y-zNで形成された透明電極
   24   :  AlGa1-x-y-zNで形成された透明電極
   25   :  給電端子
   26   :  AlGa1-x-y-zN層
   27   :  給電端子
   29   :  AlGa1-x-y-zNで形成された透明電極
   31   :  反射電極
   33   :  反射電極
   35   :  レジスト
   37   :  ボンディングメタル
   39   :  ボンディングメタル
   41   :  基板
   42   :  給電端子
   43   :  ハンダ層
   44   :  導電層
   45   :  保護層
   46   :  ハンダ層
   47   :  反射電極
   48   :  絶縁層
   71   :  ガラス基板
   72   :  p型アモルファスシリコン
   73   :  i型アモルファスシリコン
   74   :  n型アモルファスシリコン
   75   :  半導体層
   76   :  裏面電極
   90   :  従来の半導体発光素子
   91   :  ITOで形成されたコンタクト電極
   93   :  ITOで形成されたコンタクト電極
1, 1a, 1b: Semiconductor light emitting element 2: Solar battery cell 5: Gap 11: Support substrate (sapphire substrate)
12: support substrate 13: undoped layer 15: n-type nitride semiconductor layer 16: n-type nitride semiconductor layer formed of Al x Ga y B z M 1-xyz N 17: light emitting layer 19: p type nitride semiconductor layer 20: semiconductor layer 21: in Al x Ga y B z M 1 -x-y-z N: Al x Ga y B z M 1-x-y-z N the formed transparent electrodes 23 Formed transparent electrode 24: Transparent electrode formed of Al x Ga y B z M 1-xyz N 25: Feed terminal 26: Al x Ga y B z M 1-xyz N layer 27: power supply terminals 29: Al x Ga y B z M 1-x-y-z N transparent formed in the electrode 31: reflection electrode 33: reflection electrode 35: resist 37: Bonde Metal 39: Bonding metal 41: Substrate 42: Feeding terminal 43: Solder layer 44: Conductive layer 45: Protective layer 46: Solder layer 47: Reflective electrode 48: Insulating layer 71: Glass substrate 72: p-type amorphous silicon 73: i-type Amorphous silicon 74: n-type amorphous silicon 75: semiconductor layer 76: back electrode 90: conventional semiconductor light emitting device 91: contact electrode made of ITO 93: contact electrode made of ITO

Claims (8)

  1.  下記式(1)
     AlGa1-x-y-zN (式1)
     (式中、0<x<1、0<y<1、0≦z<1、0.001≦1-x-y-z≦0.1であり、MはSi、Geの何れか一種以上を含む)で表されることを特徴とする透明導電膜用組成物。
    Following formula (1)
    Al x Ga y B z M 1-xyz N (formula 1)
    (Wherein 0 <x <1, 0 <y <1, 0 ≦ z <1, 0.001 ≦ 1-xyz ≦ 0.1, and M is one or more of Si and Ge) The composition for transparent conductive films characterized by being represented by these.
  2.  前記式(1)において、0.005≦1-x-y-z≦0.05であることを特徴とする請求項1に記載の透明導電膜用組成物。 The composition for transparent conductive film according to claim 1, wherein 0.005 ≦ 1-xyz ≦ 0.05 in the formula (1).
  3.  請求項1又は2に記載の前記透明導電膜用組成物を含んで構成されることを特徴とする透明電極。 A transparent electrode comprising the transparent conductive film composition according to claim 1 or 2.
  4.  請求項3に記載の前記透明電極を備えたことを特徴とする半導体発光素子。 A semiconductor light emitting device comprising the transparent electrode according to claim 3.
  5.  n型窒化物半導体層とp型窒化物半導体層の間に発光層を有する半導体発光素子であって、
     前記p型窒化物半導体層の上層に形成された、請求項2に記載の前記透明導電膜用組成物を含んで構成された透明電極と、
     前記透明電極の上層に形成された反射電極を備え、
     前記発光層は、発光ピーク波長が400nm以下を示す窒化物半導体層で構成されていることを特徴とする半導体発光素子。
    A semiconductor light emitting device having a light emitting layer between an n type nitride semiconductor layer and a p type nitride semiconductor layer,
    A transparent electrode comprising the transparent conductive film composition according to claim 2, wherein the transparent electrode is formed on an upper layer of the p-type nitride semiconductor layer.
    A reflective electrode formed on an upper layer of the transparent electrode;
    The light emitting layer is composed of a nitride semiconductor layer having an emission peak wavelength of 400 nm or less.
  6.  n型窒化物半導体層とp型窒化物半導体層の間に発光層を有する半導体発光素子であって、
     前記n型窒化物半導体層の上層の全面に形成された、請求項2に記載の前記透明導電膜用組成物を含んで構成された透明電極と、
     前記透明電極の上層に形成された給電端子を備え、
     前記発光層は、発光ピーク波長が400nm以下を示す窒化物半導体層で構成されていることを特徴とする半導体発光素子。
    A semiconductor light emitting device having a light emitting layer between an n type nitride semiconductor layer and a p type nitride semiconductor layer,
    A transparent electrode comprising the transparent conductive film composition according to claim 2, wherein the transparent electrode is formed on the entire upper surface of the n-type nitride semiconductor layer.
    A power supply terminal formed on the upper layer of the transparent electrode,
    The light emitting layer is composed of a nitride semiconductor layer having an emission peak wavelength of 400 nm or less.
  7.  n型窒化物半導体層とp型窒化物半導体層の間に発光層を有する半導体発光素子であって、
     前記n型窒化物半導体層は請求項2に記載の前記透明導電膜用組成物を含んで構成されていることを特徴とする半導体発光素子。
    A semiconductor light emitting device having a light emitting layer between an n type nitride semiconductor layer and a p type nitride semiconductor layer,
    The said n-type nitride semiconductor layer is comprised including the said composition for transparent conductive films of Claim 2, The semiconductor light-emitting device characterized by the above-mentioned.
  8.  請求項3に記載の前記透明電極を備えたことを特徴とする太陽電池。 A solar cell comprising the transparent electrode according to claim 3.
PCT/JP2014/065772 2013-06-17 2014-06-13 Transparent conductive film composition, transparent electrode, semiconductor light-emitting element, solar cell WO2014203829A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020157035290A KR20160006787A (en) 2013-06-17 2014-06-13 Transparent conductive film composition, transparent electrode, semiconductor light-emitting element, solar cell

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-126816 2013-06-17
JP2013126816A JP2015002290A (en) 2013-06-17 2013-06-17 Composition for transparent conductive film, transparent electrode, semiconductor light-emitting element, and solar cell

Publications (1)

Publication Number Publication Date
WO2014203829A1 true WO2014203829A1 (en) 2014-12-24

Family

ID=52104564

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/065772 WO2014203829A1 (en) 2013-06-17 2014-06-13 Transparent conductive film composition, transparent electrode, semiconductor light-emitting element, solar cell

Country Status (4)

Country Link
JP (1) JP2015002290A (en)
KR (1) KR20160006787A (en)
TW (1) TW201511042A (en)
WO (1) WO2014203829A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10861834B2 (en) 2018-03-08 2020-12-08 Kunshan New Flat Panel Display Technology Center Co., Ltd. Micro-LED chips, display screens and methods of manufacturing the same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110246931B (en) * 2018-03-08 2021-03-26 成都辰显光电有限公司 Micro-LED chip, display screen and preparation method
JP2020126995A (en) * 2019-02-06 2020-08-20 シャープ株式会社 Semiconductor laser element and manufacturing method of the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010161311A (en) * 2009-01-09 2010-07-22 Dowa Electronics Materials Co Ltd Nitride semiconductor light-emitting element and manufacturing method thereof
JP2012089754A (en) * 2010-10-21 2012-05-10 Uv Craftory Co Ltd Nitride semiconductor ultraviolet light-emitting element
JP2012186294A (en) * 2011-03-04 2012-09-27 Sharp Corp Normally-off heterojunction field effect transistor
WO2012127660A1 (en) * 2011-03-23 2012-09-27 創光科学株式会社 Nitride semiconductor ultraviolet light-emitting element

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4687374B2 (en) 2005-10-18 2011-05-25 住友金属鉱山株式会社 Transparent conductive film and transparent conductive substrate containing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010161311A (en) * 2009-01-09 2010-07-22 Dowa Electronics Materials Co Ltd Nitride semiconductor light-emitting element and manufacturing method thereof
JP2012089754A (en) * 2010-10-21 2012-05-10 Uv Craftory Co Ltd Nitride semiconductor ultraviolet light-emitting element
JP2012186294A (en) * 2011-03-04 2012-09-27 Sharp Corp Normally-off heterojunction field effect transistor
WO2012127660A1 (en) * 2011-03-23 2012-09-27 創光科学株式会社 Nitride semiconductor ultraviolet light-emitting element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10861834B2 (en) 2018-03-08 2020-12-08 Kunshan New Flat Panel Display Technology Center Co., Ltd. Micro-LED chips, display screens and methods of manufacturing the same

Also Published As

Publication number Publication date
TW201511042A (en) 2015-03-16
JP2015002290A (en) 2015-01-05
KR20160006787A (en) 2016-01-19

Similar Documents

Publication Publication Date Title
JP4999696B2 (en) GaN-based compound semiconductor light emitting device and manufacturing method thereof
JP5732140B2 (en) Nitride semiconductor device and manufacturing method thereof
KR100670928B1 (en) GaN compound semiconductor light emitting element and method of manufacturing the same
KR100601945B1 (en) Top emitting light emitting device and method of manufacturing thereof
KR100910964B1 (en) Ohmic electrode and method for forming the same
JPWO2006038665A1 (en) Nitride semiconductor light emitting device and manufacturing method thereof
US20130203194A1 (en) Method for producing group iii nitride semiconductor light-emitting device
KR20100103866A (en) High-performance heterostructure light emitting devices and methods
JP6094819B2 (en) Semiconductor light emitting device and manufacturing method thereof
TWI488333B (en) LED element and manufacturing method thereof
JP2011066073A (en) Semiconductor light-emitting element
JP5798035B2 (en) Optoelectronic semiconductor components
WO2014203829A1 (en) Transparent conductive film composition, transparent electrode, semiconductor light-emitting element, solar cell
JP2011238744A (en) Semiconductor light-emitting element and light-emitting device
KR101534846B1 (en) fabrication of vertical structured light emitting diodes using group 3 nitride-based semiconductors and its related methods
KR101499954B1 (en) fabrication of vertical structured light emitting diodes using group 3 nitride-based semiconductors and its related methods
KR100751632B1 (en) Light emitting device
JP2014528179A (en) Photoelectric semiconductor chip and method for manufacturing photoelectric semiconductor chip
JP2017069282A (en) Semiconductor light-emitting element and method for manufacturing the same
KR100691264B1 (en) Vertical structured nitride based semiconductor light emitting device
KR100998007B1 (en) Nitride semiconductor light emitting device
KR20160003845A (en) Nitride semiconductor light emitting element and method for manufacturing same
JP2016092235A (en) Semiconductor light emitting element
KR20090103343A (en) Fabrication of vertical structured light emitting diodes using group 3 nitride-based semiconductors and its related methods
TWI535062B (en) LED components

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14813043

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157035290

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14813043

Country of ref document: EP

Kind code of ref document: A1