WO2014203643A1 - Solid cleaning agent composition - Google Patents

Solid cleaning agent composition Download PDF

Info

Publication number
WO2014203643A1
WO2014203643A1 PCT/JP2014/062412 JP2014062412W WO2014203643A1 WO 2014203643 A1 WO2014203643 A1 WO 2014203643A1 JP 2014062412 W JP2014062412 W JP 2014062412W WO 2014203643 A1 WO2014203643 A1 WO 2014203643A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
alkali metal
group
general formula
nonionic surfactant
Prior art date
Application number
PCT/JP2014/062412
Other languages
French (fr)
Japanese (ja)
Inventor
将基 森田
紗菜 伊藤
健 黒瀬
薫 朝日
Original Assignee
株式会社ニイタカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニイタカ filed Critical 株式会社ニイタカ
Priority to CN201480035170.1A priority Critical patent/CN105339480A/en
Priority to JP2015522653A priority patent/JPWO2014203643A1/en
Priority to KR1020157032441A priority patent/KR20160020414A/en
Publication of WO2014203643A1 publication Critical patent/WO2014203643A1/en
Priority to PH12015502789A priority patent/PH12015502789A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/66Non-ionic compounds
    • C11D1/72Ethers of polyoxyalkylene glycols
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/66Non-ionic compounds
    • C11D1/722Ethers of polyoxyalkylene glycols having mixed oxyalkylene groups; Polyalkoxylated fatty alcohols or polyalkoxylated alkylaryl alcohols with mixed oxyalkylele groups
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/06Powder; Flakes; Free-flowing mixtures; Sheets
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/02Inorganic compounds ; Elemental compounds
    • C11D3/04Water-soluble compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/02Inorganic compounds ; Elemental compounds
    • C11D3/04Water-soluble compounds
    • C11D3/044Hydroxides or bases
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/02Inorganic compounds ; Elemental compounds
    • C11D3/04Water-soluble compounds
    • C11D3/06Phosphates, including polyphosphates
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/02Inorganic compounds ; Elemental compounds
    • C11D3/04Water-soluble compounds
    • C11D3/08Silicates

Definitions

  • the present invention relates to a solid detergent composition.
  • a detergent composition for an automatic dishwasher As a detergent composition for an automatic dishwasher, a composition containing a surfactant is often used, but if a large amount of foam is generated during washing using an automatic dishwasher, the foam overflows and It may cause failure. Also, the cleaning power may be reduced due to the generation of bubbles. Therefore, low foaming property is calculated
  • Patent Document 1 In order to suppress the generation of bubbles, a method using a nonionic surfactant as described in Patent Document 1 is known.
  • the detergent composition described in Patent Document 1 includes a nonionic surfactant having a detergency such as permeation, emulsification, and dispersion with respect to dirt and low foaming properties, saponification of fats and oils, and chelating action of metal ions And an alkaline agent.
  • a nonionic surfactant having a detergency such as permeation, emulsification, and dispersion with respect to dirt and low foaming properties, saponification of fats and oils, and chelating action of metal ions And an alkaline agent.
  • Patent Document 2 discloses that 35a to 80% by weight of sodium carbonate as the component (a), 1 to 10% by weight of sodium bicarbonate as the component (b), 0.5 to 0.5% of the surfactant as the component (c).
  • a composition comprising 10% by weight, wherein the content ratio of component (a) and component (b) is in the range of 8: 1 to 20: 1 by weight, for an automatic dishwasher Detergents are described.
  • the cleaning composition as described above is inferior in cleaning power. Furthermore, when a carbonate such as sodium carbonate is used as an alkaline agent, the concentration of carbonate ions in the cleaning liquid increases, so that there is a problem that scale is likely to precipitate.
  • the inventors have changed the composition of the above-described cleaning composition and investigated the cause of poor cleaning power. As a result, it has been found that the cleaning power is improved by changing the alkaline agent.
  • the present invention has been made in order to solve the above-described problems, and is a solid detergent composition having a high detergency and low foaming property, and a solid detergent in which scale does not easily precipitate.
  • An object is to provide a composition.
  • the present inventors have recognized that it is a problem that a nonionic surfactant such as the surfactant described in Patent Document 1 has a hydroxyl group at the terminal, and pay attention to the structure of the terminal. And studied diligently. As a result, the hydroxyl group terminal is oxidized by an alkali agent and bubbles are generated by anionization. As a result of further investigation, the nonionic surfactant having an acetal structure containing an oxygen atom at the alkylene oxide terminal is It has been discovered that the low aeration property inherent to nonionic surfactants is maintained because the terminal acetal structure is not anionized by the alkali agent.
  • an alkali metal salt of silicic acid, an alkali metal salt of phosphoric acid, an alkali metal salt of carboxylic acid or the like as an alkali agent instead of sodium carbonate. Even if it exists, it discovered that low foaming property was hold
  • the present invention has been conceived by blending a nonionic surfactant having an acetal structure containing an oxygen atom at the end of alkylene oxide with a predetermined alkali agent.
  • the solid detergent composition of the present invention is characterized by containing the following components (A) and (B).
  • (A) Nonionic surfactant having the structure represented by the general formula (1) at the terminal (B) Alkali metal hydroxide, alkali metal salt of metasilicic acid, alkali metal salt of sesquisilicate, alkali of orthosilicate Selected from the group consisting of metal salts, alkali metal salts of orthophosphoric acid, alkali metal salts of pyrophosphoric acid, alkali metal salts of tetraphosphoric acid, alkali metal salts of pentaphosphoric acid, alkali metal salts of hexaphosphoric acid and alkali metal salts of carboxylic acid And at least one alkaline agent (Wherein R 1 is a hydrogen atom or an alkyl group, R 2 and R 3 are hydrocarbon groups that may contain an ether bond, R 2 and R 3 may form a ring, and AO is the same Or an oxyalkylene group which may be
  • the nonionic surfactant (A) has an acetal structure (AO—C (R 1 ) (R 2 ) —O—R 3 ) containing an oxygen atom at the end of the alkylene oxide at its terminal.
  • One of the two oxygen atoms constituting the acetal structure is an oxygen atom derived from a hydroxyl group present at the end of the alkylene oxide.
  • an alkaline agent when a hydroxyl group is present at the end of a nonionic surfactant, the hydroxyl group is oxidized, so that it exhibits properties similar to an anionic surfactant and has high foaming properties. The tendency to become is remarkable.
  • the solid detergent composition of the present invention is an alkaline agent. This has the advantageous effect that the foamability can be kept low even in the presence of. That is, the solid detergent composition of the present invention is a detergent composition that is stable even in the presence of an alkaline agent, is resistant to oil stains, and has low foaming properties, so that it is a detergent for an automatic dishwasher. It becomes a suitable detergent composition.
  • the acetal structure in this specification is a concept including both an acetal in which R 1 is a hydrogen atom and a ketal in which R 1 is an alkyl group.
  • the hydroxyl group may be oxidized by reaction with an alkaline agent to become a carboxyl group, resulting in discoloration. Since this reaction does not occur when is an acetal structure, discoloration is suppressed.
  • the alkali agent is an alkali metal hydroxide, an alkali metal salt of metasilicic acid, an alkali metal salt of sesquisilicic acid, an alkali metal salt of orthosilicate, an alkali metal salt of orthophosphoric acid, pyrroline It is desirable to be at least one selected from the group consisting of alkali metal salts of acids, alkali metal salts of tetraphosphoric acid, alkali metal salts of pentaphosphoric acid, alkali metal salts of hexaphosphoric acid, and alkali metal salts of carboxylic acid.
  • the nonionic surfactant has a structure represented by the general formula (2) at the terminal. (In the formula, m is an integer of 3 or more.)
  • the nonionic surfactant has a structure represented by the general formula (3) at the terminal.
  • the nonionic surfactant has a structure represented by the general formula (4) at the terminal.
  • X is an alcohol residue or an alkylphenol residue.
  • the solid detergent composition of the present invention further contains (C) a chlorine agent.
  • a chlorine agent is blended in the cleaning composition, both bleaching and bactericidal effects can be exhibited.
  • the nonionic surfactant (A) blended in the solid detergent composition of the present invention does not react with the chlorine agent, it does not deactivate the chlorine agent and has a high chlorine stability. It becomes a composition.
  • the chlorinating agent is sodium chlorinated isocyanurate, potassium chlorinated isocyanurate, trichloroisocyanuric acid, sodium hypochlorite, calcium hypochlorite and hypochlorous acid. It is desirable that it is at least one selected from the group consisting of potassium acid.
  • the nonionic surfactant is added to the hydroxyl group at the end of the alkylene oxide of the nonionic surfactant having the structure represented by the general formula (5) at the end. It is desirable that the acetal structure represented by the general formula (1) is provided at the terminal by performing the above.
  • the acetal structure can be generated by an addition reaction to the hydroxyl group at the end of the alkylene oxide, but since this addition reaction has a high reaction rate, the end can be blocked so that the hydroxyl group at the end of the alkylene oxide does not remain. Further, no by-product is generated. Therefore, it is unlikely that the surfactant contained in the cleaning composition contains a hydroxyl group at the end, and low foaming property can be reliably ensured.
  • the addition reaction is desirably a reaction in which dihydropyran is added to a hydroxyl group under an acid catalyst.
  • the dosage form of the solid detergent composition of the present invention is desirably a powder, granule, tablet, tablet, flake or block.
  • the solid detergent composition of the present invention has an effect that the foamability can be kept low, the detergency is high, and scale does not easily precipitate.
  • the solid detergent composition of the present invention is characterized by containing the following components (A) and (B).
  • (A) Nonionic surfactant having the structure represented by the general formula (1) at the terminal (B) Alkali metal hydroxide, alkali metal salt of metasilicic acid, alkali metal salt of sesquisilicate, alkali of orthosilicate Selected from the group consisting of metal salts, alkali metal salts of orthophosphoric acid, alkali metal salts of pyrophosphoric acid, alkali metal salts of tetraphosphoric acid, alkali metal salts of pentaphosphoric acid, alkali metal salts of hexaphosphoric acid and alkali metal salts of carboxylic acid And at least one alkaline agent (Wherein R 1 is a hydrogen atom or an alkyl group, R 2 and R 3 are hydrocarbon groups that may contain an ether bond, R 2 and R 3 may form a ring, and AO is the same Or an oxyalkylene group which may be
  • the structure represented by the general formula (1) is an acetal structure.
  • the acetal structure is a structure used as a protecting group for a hydroxyl group. By making the hydroxyl group terminal an acetal structure, the terminal structure does not react with an alkali agent to be anionized. Therefore, low foamability is maintained even in the presence of an alkaline agent.
  • the nonionic surfactant (A) is suitable for use in a detergent composition containing an alkali agent.
  • an acetal structure can be produced
  • Examples of the protecting group for protecting the hydroxyl group used in the field of organic synthesis include protecting groups other than the acetal structure (for example, methyl group, benzyl group, acetyl group, trimethylsilyl group, etc.).
  • the protecting group other than the acetal structure has a feature of “high stability in the presence of an alkali agent” which is a characteristic of the acetal structure, or “a hydroxyl group does not remain because it is formed by an addition reaction”. Since either of these is not satisfied, it is not suitable as a structure for blocking the hydroxyl group terminal.
  • the nonionic surfactant (A) having the hydroxyl group end blocked with an acetal structure is less “low in the presence of an alkali agent” than the surfactant having the hydroxyl group end blocked with another protecting group. It can be said that it is advantageous in order to exhibit the effect of “foaming property”.
  • R 2 in the general formula (1) is a hydrocarbon group that may contain an ether bond.
  • R 2 may be an alkylene group consisting only of carbon and hydrogen, or may be an alkylene group containing an ether bond.
  • R 2 itself may contain a cyclic structure, and examples of the cyclic structure include a cyclohexane ring, a benzene ring, a naphthalene ring and the like.
  • R 2 and R 3 may form a ring so that the terminal of the structure represented by the general formula (1) may be a condensed ring.
  • a desirable structure as an acetal structure contained in the general formula (1) is a structure represented by the following general formula (2).
  • m is an integer of 3 or more.
  • the structure represented by the general formula (2) is a structure in which R 2 and R 3 form a ring in the general formula (1).
  • the terminal has a structure represented by the general formula (3).
  • the structure represented by the general formula (3) is a structure in which m is 4 in the general formula (2).
  • a more desirable structure is a structure (tetrahydropyranyl ether) in which R 1 is H. Tetrahydropyranyl ether is preferable because it is highly stable in neutral and alkaline environments, and dihydropyran as a raw material for the acetal structure is inexpensive and easily available. As will be described later, this structure can be obtained by adding dihydropyran to a hydroxyl group under an acid catalyst.
  • dihydropyran means 3,4-dihydro-2H-pyran (DHP) represented by the following formula (6).
  • the structure represented by the formula (7) can be obtained by adding 2,3-dihydro-1,4-dioxin represented by the following formula (10) to the hydroxyl group under an acid catalyst.
  • the structure represented by the formula (8) can be obtained by adding 2,3-dihydrofuran represented by the following formula (11) to a hydroxyl group under an acid catalyst.
  • the structure represented by the formula (9) is an example of a structure in which, in the general formula (1), R 2 includes a cyclic structure in R 2 itself, and the terminal of the structure represented by the general formula (1) is a condensed ring. It is.
  • This structure can be obtained by adding 2,3-benzofuran represented by the following formula (12) to a hydroxyl group under an acid catalyst.
  • Examples of the acetal structure represented by the general formula (1) include a structure having no ring in addition to a structure having a ring.
  • a desirable structure when the acetal structure included in the general formula (1) does not have a ring is a structure in which R 1 in the general formula (1) is an alkyl group.
  • R 1 is not particularly limited as long as it is a linear or branched alkyl group, and examples thereof include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, and a hexyl group.
  • R 2 and R 3 in the general formula (1) are not particularly limited as long as R 1 is a hydrocarbon group, regardless of whether or not R 1 is an alkyl group, and are linear or branched alkyl groups. , Cyclic hydrocarbon groups, aromatic hydrocarbon groups and the like. Examples thereof include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, a cyclopentyl group, a cyclohexyl group, a phenyl group, and a benzyl group.
  • R 2 and R 3 may be a hydrocarbon group containing an ether bond.
  • the terminal has a structure represented by the following general formula (13).
  • the structure represented by the general formula (13) is a structure in which R 1 and R 2 are both methyl groups and R 3 is an ethyl group in the general formula (1).
  • the structure represented by the general formula (13) has a 2-ethoxypropyl group at the end, and can be obtained by adding 2-ethoxypropene to a hydroxyl group under an acid catalyst.
  • Examples of other specific structures include structures represented by the following general formulas (14) to (19).
  • the structure represented by the general formula (14) is a structure in which R 1 is a methyl group, R 2 is an ethyl group, and R 3 is a methyl group in the general formula (1).
  • the above structure is obtained by adding 2-methoxy-1-butene to a hydroxyl group under an acid catalyst.
  • the structure represented by the general formula (15) is a structure in which R 1 is a methyl group, R 2 is a pentyl group, and R 3 is a methyl group in the general formula (1).
  • the above structure is obtained by adding 2-methoxy-1-heptene to a hydroxyl group under an acid catalyst.
  • the structure represented by the general formula (16) is a structure in which R 1 is a methyl group, R 2 is a methyl group, and R 3 is a cyclohexyl group in the general formula (1).
  • the above structure can be obtained by adding 2-cyclohexyloxy-1-propene to a hydroxyl group under an acid catalyst.
  • the structure represented by the general formula (17) is a structure in which R 1 is a methyl group, R 2 is a methyl group, and R 3 is a phenyl group in the general formula (1).
  • the above structure is obtained by adding 2-phenoxy-1-propene to a hydroxyl group under an acid catalyst.
  • the structure represented by the general formula (18) is a structure in which R 1 , R 2 , and R 3 are all methyl groups in the general formula (1).
  • the above structure is obtained by adding 2-methoxypropene to a hydroxyl group under an acid catalyst.
  • the structure represented by the general formula (19) is a structure in which R 1 and R 2 are both methyl groups and R 3 is a benzyl group in the general formula (1).
  • the above structure can be obtained by adding benzylisopropenyl ether to a hydroxyl group under an acid catalyst.
  • the terminal has a structure represented by the general formula (20).
  • the structure represented by the general formula (20) is a structure in which R 1 is a hydrogen atom, R 2 is a methyl group, and R 3 is an ethyl group in the general formula (1).
  • the structure represented by the general formula (20) has an ethoxyethyl group at the end, and can be obtained by adding ethyl vinyl ether to a hydroxyl group under an acid catalyst.
  • AO oxyalkylene group
  • examples of AO include oxyethylene group (EO), oxypropylene group (PO), and oxybutylene group.
  • the nonionic surfactant (A) may contain only one type of oxyethylene group, oxypropylene group, or oxybutylene group, and a plurality of types thereof are included. Also good.
  • the unit of the repeating structure of the oxyethylene group, oxypropylene group, or oxybutylene group is not particularly limited.
  • the average added mole number n of AO in the nonionic surfactant (A) is 1 to 400, the preferred lower limit value of n is 3, more preferred lower limit value is 5, and the preferred upper limit value is 100, more preferred.
  • the upper limit value is 50, the more preferable upper limit value is 30, and the still more preferable upper limit value is 15.
  • Preferable examples of the range of n are 3 to 100, 5 to 50, 3 to 30, or 5 to 15.
  • the nonionic surfactant (A) is a mixture of a plurality of compounds having different addition mole numbers n of AO.
  • the added mole number of AO contained in each molecule of the nonionic surfactant (A) is an integer value
  • the measured value when the added mole number of AO is measured is that of the nonionic surfactant (A). Since it is measured as the average value of the number of moles of AO contained in each molecule, this is the average number of moles added.
  • the nonionic surfactant (A) may be a mixture of a plurality of compounds having different types of AO.
  • the nonionic surfactant (A) is characterized by having an acetal structure represented by the general formula (1) at the terminal, and the structure of the whole nonionic surfactant is represented by the following general formula (4). It is desirable to have the structure shown by these.
  • X is an alcohol residue or an alkylphenol residue.
  • preferred specific examples of the alcohol residue include octyl alcohol residue, 2-ethylhexyl alcohol residue, decyl alcohol residue, isodecyl alcohol residue, lauryl.
  • Residue of alcohol residue of dodecyl alcohol, residue of tridecyl alcohol, residue of myristyl alcohol, residue of tetradecyl alcohol, residue of pentadecyl alcohol, residue of cetyl alcohol, residue of hexadecyl alcohol , Isohexadecyl alcohol residue, heptadecyl alcohol residue, stearyl alcohol residue, octadecyl alcohol residue, isostearyl alcohol residue, elaidyl alcohol residue, oleyl alcohol residue, linoleyl Residue of alcohol, Elide Linoleil Resol residue, linolenyl alcohol residue, elide linolenyl alcohol residue, ricin
  • alkylphenol residue Preferable specific examples of the alkylphenol residue include nonylphenol residue, dodecylphenol residue, octylphenol residue, octylcresol residue and the like.
  • the nonionic surfactant (A) may be a compound having only one of these residues as X, or may be a mixture of a plurality of compounds having different X.
  • nonionic surfactant (A) may have an acetal structure at both ends, and may have a structure represented by the following general formula (21).
  • R 1 and R 4 are a hydrogen atom or an alkyl group
  • R 2 , R 3 , R 5 and R 6 are hydrocarbon groups which may contain an ether bond
  • R 2 and R 3 , R 5 and R Each of 6 may form a ring
  • AO is an oxyalkylene group which may be the same or different
  • n represents the average number of added moles of the oxyalkylene group and is a number from 1 to 400.
  • a nonionic surfactant having an acetal structure at both ends can be obtained by acetalizing the hydroxyl group of (poly) alkylene glycol having hydroxyl groups at both ends of the molecule.
  • the (poly) alkylene glycol include polyethylene glycol in which AO is an oxyethylene group, and polypropylene glycol in which AO is an oxypropylene group.
  • AO has a structure of HO— (PO) o1- (EO) p1- (PO) q1 —H (where o1, p1 and q1 are integers of 1 or more) (for example, Pluronic (BASF Japan) Co., Ltd.), HO- (EO) o2- (PO) p2- (EO) q2 -H (where o2, p2 and q2 are integers of 1 or more) (for example, Braunon ( Aoki Yushi Kogyo Co., Ltd.)) and the like.
  • the average addition mole number n of AO as a (poly) alkylene glycol having hydroxyl groups at both ends of the molecule is 1 to 400, preferably n is 3 to 300, and n is 5 to 200. Is more preferable.
  • the surfactant having the structure represented by the general formula (21) include a structure represented by the following formula (22) in which both ends are tetrahydropyranyl ethers. This structure is obtained by adding 2 mol of dihydropyran to 1 mol of a surfactant having hydroxyl groups at both ends, such as polyethylene glycol.
  • surfactant having the structure represented by the general formula (21) include a structure in which both ends are dioxanyl groups (see general formula (7)), and both ends are tetrahydrofuranyl ether (general formula (8)), a structure in which both ends are 2-ethoxyethyl groups (see general formula (20)), a structure in which both ends are 2-ethoxypropyl groups (see general formula (13)), etc. Can be mentioned.
  • a nonionic surfactant (A) is demonstrated.
  • a nonionic surfactant having a structure represented by the following general formula (5) is prepared as a starting material.
  • nonionic surfactant having the structure represented by the general formula (5) a commercially available surfactant can be used.
  • the product name “Emarumin” manufactured by Sanyo Chemical Industries
  • the product name “Wonder Surf” manufactured by Aoki Yushi Kogyo Co., Ltd.
  • the product name “Brownon” manufactured by Aoki Yushi Kogyo Co., Ltd.
  • the product name “Fine Surf” (Aoki Yushi Kogyo Co., Ltd.), trade name "Adekanol” (Adeka Co., Ltd.), trade name “Plurafuck” "Pluronic” (BASF Japan Ltd.), trade name "Neugen” (Daiichi Kogyo Seiyaku Co., Ltd.)
  • “Peletex” manufactured by Miyoshi Oil & Fat Co., Ltd.
  • the hydroxyl group is blocked by performing an addition reaction on the hydroxyl group at the end of the alkylene oxide of the nonionic surfactant to obtain an acetal structure represented by the general formula (1).
  • the specific procedure of the addition reaction varies depending on the acetal structure obtained by addition reaction to the hydroxyl group.
  • the structure represented by the general formula (3) and R 1 is H (tetrahydropyranyl ether) It can be obtained by reacting dihydropyran (DHP) at the hydroxyl group terminal of the surfactant with an acid catalyst in an organic solvent.
  • the acid catalyst examples include p-toluenesulfonic acid, benzenesulfonic acid, methanesulfonic acid, pyridinium p-toluenesulfonate, trifluoromethanesulfonic acid, sulfuric acid, hydrochloric acid, and an acidic ion exchange resin.
  • p-toluenesulfonic acid is desirable because it is easy to handle and inexpensive.
  • organic solvent used in the above reaction a general organic solvent can be used, and methylene chloride, chloroform, acetonitrile, tetrahydrofuran (THF), toluene, chlorobenzene, methyl tert-butyl ether and the like can be used.
  • the reaction is completed by neutralization of the acid catalyst.
  • Powder such as sodium hydrogencarbonate, sodium hydroxide, potassium hydroxide, or those solutions etc. can be used.
  • the reaction conditions can be appropriately determined depending on the type and amount of the starting material. For example, when reacting 60 to 70 g of polyoxyethylene lauryl ether as a nonionic surfactant in 25 to 100 ml of methylene chloride solution, Dihydropyran sufficient to react with all hydroxyl groups of ethylene lauryl ether (1-10 times molar ratio to polyoxyethylene lauryl ether) and 1-10 mol% p-toluenesulfonic acid as acid catalyst After stirring at room temperature for 0.5 hours to overnight (10 hours), sodium bicarbonate is added to terminate the reaction, and after filtration, the solvent and unreacted dihydropyran are distilled off. It is done.
  • the concentration of the nonionic surfactant (A) in the solid detergent composition of the present invention is not particularly limited, but is preferably 0.1 to 60% by weight, and preferably 0.5 to 40 More preferably, it is 0.5% by weight, and more preferably 0.5-30% by weight.
  • alkali agent (B) examples include alkali metal hydroxide, alkali metal salt of metasilicic acid, alkali metal salt of sesquisilicic acid, alkali metal salt of orthosilicate, alkali metal salt of orthophosphoric acid, alkali metal salt of pyrophosphoric acid, tetralin At least one selected from the group consisting of an alkali metal salt of acid, an alkali metal salt of pentaphosphoric acid, an alkali metal salt of hexaphosphoric acid, and an alkali metal salt of carboxylic acid is used. Moreover, 1 type in these alkaline agents may be used and 2 or more types may be used together.
  • the concentration of the alkaline agent (B) in the solid detergent composition of the present invention is not particularly limited, but is preferably 2 to 95% by weight, more preferably 30 to 95% by weight. 45 to 95% by weight is more desirable.
  • the concentration of the alkali agent is determined as a total value of the concentrations of the respective alkali agents.
  • the alkali agent (B) is an alkali metal hydroxide
  • it is preferably 2 to 95% by weight, more preferably 5 to 80% by weight, and preferably 10 to 80% by weight. More desirable.
  • the alkali agent (B) is an alkali metal salt of metasilicic acid, an alkali metal salt of sesquisilicic acid or an alkali metal salt of orthosilicic acid, it is preferably 2 to 95% by weight, and 10 to 95% by weight. More preferably, the content is 10 to 60% by weight.
  • the alkaline agent (B) is an alkali metal salt of orthophosphoric acid, pyrophosphoric acid, tetraphosphoric acid, pentaphosphoric acid and hexaphosphoric acid, it is preferably 2 to 95% by weight, and preferably 10 to 95% by weight. More desirably, the amount is 10 to 60% by weight.
  • the alkali agent (B) is an alkali metal salt of a carboxylic acid, it is preferably 2 to 95% by weight, more preferably 15 to 95% by weight, and 15 to 70% by weight. More desirable.
  • the alkaline agent in the present invention is not limited to those that exhibit alkalinity when dissolved in water, but includes compounds that exhibit acidity and neutrality to such an extent that the terminal acetal structure of the nonionic surfactant (A) does not decompose. Therefore, when the cleaning composition of the present invention is dissolved in water, the pH of the aqueous solution may be 7.0 or less.
  • the alkali agent (B) may be an anhydride or a hydrate.
  • alkali metal which comprises an alkaline agent (B)
  • lithium, sodium, and potassium are preferable, and sodium and potassium are more preferable.
  • the alkali metal hydroxide is preferably sodium hydroxide or potassium hydroxide.
  • M represents —Li, —Na or —K.
  • a and b are integers of 1 or more
  • c is an integer of 0 or more.
  • the alkali metal salts of phosphoric acid include sodium orthophosphate, potassium orthophosphate, sodium pyrophosphate, potassium pyrophosphate, sodium tetraphosphate, potassium tetraphosphate, sodium pentaphosphate, potassium pentaphosphate, hexalin And sodium acid phosphate and potassium hexaphosphate.
  • the alkali metal salt of phosphoric acid refers to a compound in which hydrogens of all hydroxyl groups are substituted with alkali metals.
  • sodium orthophosphate indicates trisodium orthophosphate and sodium pyrophosphate indicates tetrasodium pyrophosphate.
  • the carboxylate is not particularly limited in the number of carboxyl groups, and examples thereof include monovalent to pentavalent carboxylates.
  • the monovalent carboxylate include acetate, propionate, and gluconate.
  • the divalent carboxylate include malate, tartrate and hydroxyethyliminodiacetate.
  • the trivalent carboxylate include citrate, hydroxyethylethylenediamine triacetate, nitrilotriacetate, methylglycine diacetate and 2-phosphonobutane-1,2,4-tricarboxylate.
  • Examples of the tetravalent carboxylate include ethylenediamine tetraacetate, ethylenediamine disuccinate, glutamate diacetate, and aspartate diacetate.
  • Examples of the pentavalent carboxylic acid include ethylene triamine pentaacetate.
  • alkaline agent (B) a polyaspartic acid compound represented by the following formula (24), an iminodisuccinic acid compound represented by the following formula (25), and an iminodiacetic acid represented by the following formula (26) Also included are system compounds.
  • M is the same or different and is —H, —Li, —Na or —K, and at least one M is —Li, —Na or —K.
  • s and t are integers.
  • M is the same or different and is —H, —Li, —Na or —K, and at least one M is —Li, —Na or —K.
  • M is the same or different and is —H, —Li, —Na or —K, and at least one M is —Li, —Na or —K.
  • all carboxyl group hydrogens may be replaced with alkali metal ions, or some of the carboxyl group hydrogens may be replaced with alkali metal ions, From the viewpoint of force, it is preferable that all carboxyl group hydrogens are replaced with alkali metal ions.
  • Trivalent carboxylates include trisodium citrate, tripotassium citrate, trisodium hydroxyethylethylenediamine triacetate, tripotassium hydroxyethylethylenediamine triacetate, trisodium nitrilotriacetate, tripotassium nitrilotriacetate, methylglycine Trisodium acetate, tripotassium methylglycine diacetate, trisodium 2-phosphonobutane-1,2,4-tricarboxylate, tripotassium 2-phosphonobutane-1,2,4-tricarboxylate are preferred, Tetravalent carboxylates include ethylenediaminetetraacetic acid tetraso
  • the divalent or higher carboxylic acid salt may contain a plurality of types of alkali metal ions.
  • the tetravalent carboxylic acid salt disodium ethylenediaminetetraacetate or the like can be suitably used.
  • alkali metal salts of carboxylic acids from the viewpoint of detergency, ethylenediaminetetraacetic acid tetrasodium, ethylenediaminetetraacetic acid tetrapotassium, methylglycine diacetic acid trisodium, methylglycine diacetic acid tripotassium, nitrilotriacetic acid trisodium and nitrilotrimethyl Tripotassium acetate is particularly preferred.
  • the terminal acetal structure of the nonionic surfactant (A) contained in the solid detergent composition of the present invention is stable even in the presence of the alkali agent, and the nonionic surfactant is stably present. Therefore, it is possible to exhibit both the cleaning effect against oil stains due to alkali, the cleaning effect due to the nonionic surfactant, and the function as an antifoaming agent.
  • the pH when the solid detergent composition of the present invention is dissolved in water is not particularly limited, but from the viewpoint of the stability of the acetal structure at the end of the nonionic surfactant (A), it is neutral. It is desirable to be in an alkaline region.
  • the pH when the solid detergent composition is dissolved in water is a neutral detergent as the pH measured in a state where 10 g of the detergent composition is mixed with 90 g of water (the concentration of the detergent composition is 10% by weight).
  • the pH is desirably 6 or more and less than 9
  • the pH is desirably 9 or more and less than 12
  • the strongly alkaline detergent composition In this case, the pH is desirably 12 or more.
  • the pH may be measured using a commercially available pH meter or the like. For example, the pH can be measured using a model D-21 manufactured by Horiba, Ltd.
  • the solid detergent composition of the present invention may further contain a chlorinating agent (C).
  • the chlorinating agent (C) include chlorinated isocyanurates (chlorinated isocyanurate sodium, chlorinated isocyanuric acid). Potassium), trichloroisocyanuric acid, hypochlorite (sodium hypochlorite, potassium hypochlorite, calcium hypochlorite, etc.).
  • 1 type in these chlorine agents may be used, and 2 or more types may be used together.
  • the nonionic surfactant (A) contained in the solid detergent composition of the present invention does not have a hydroxyl group at the terminal and has an acetal structure, and the acetal structure does not react with the chlorine agent (C).
  • the concentration of the chlorine agent (C) in the cleaning composition is not particularly limited, but it is desirable that the concentration be 0 to 45% by weight as the effective chlorine concentration.
  • the concentration of the chlorinating agent is more preferably 0 to 50% by weight, and further preferably 2 to 50% by weight. When a plurality of types of chlorinating agents are used, the concentration of the chlorinating agent is determined as a total value of the concentration of each chlorinating agent.
  • the solid detergent composition of the present invention may contain other components blended in the detergent composition such as a polymer dispersant (D) and a process agent (E) as necessary. Moreover, you may contain surfactant other than nonionic surfactant (A).
  • the polymer dispersant (D) include polyacrylic acid, polyaconitic acid, polyitaconic acid, polycitraconic acid, polyfumaric acid, polymaleic acid, polymethaconic acid, poly- ⁇ -hydroxyacrylic acid, polyvinylphosphonic acid, and sulfonated polymaleic acid.
  • Olefin-maleic acid copolymer maleic anhydride diisobutylene copolymer, maleic anhydride styrene copolymer, maleic anhydride methyl vinyl ether copolymer, maleic anhydride ethylene copolymer, maleic anhydride ethylene crosslink copolymer Polymer, maleic anhydride acrylic acid copolymer, maleic anhydride vinyl acetate copolymer, maleic anhydride acrylonitrile copolymer, maleic anhydride acrylic ester copolymer, maleic anhydride butadiene copolymer, maleic anhydride Isoprene copolymer, anhydrous Poly- ⁇ -ketocarboxylic acid, itaconic acid ethylene copolymer, itaconic acid aconitic acid copolymer, itaconic acid maleic acid copolymer, itaconic acid acrylic acid copolymer, malonic acid derived from rain acid and carbon monoxide Examples include
  • the process agent (E) is a thickener or extender added to control the dosage form of the detergent composition, and preferably has a neutral pH, such as water, sodium sulfate, powdered silica, 12- Examples thereof include hydroxystearic acid.
  • oxygen-based bleaching agents such as sodium perborate may be included.
  • the dosage form of the solid detergent composition of the present invention is preferably a powder, granule, tablet, tablet, flake or block, etc., even if some of the components constituting the detergent composition are liquid.
  • the cleaning composition as a whole may be solid, such as impregnated in the components, and does not indicate that all the components are solid.
  • (Production Example 1) Production of (A-1) As a nonionic surfactant, a polyoxyalkylene alkyl ether having 1 to 400 oxyalkylene groups and having a hydroxyl group at the end of alkylene oxide (Co., Ltd.) 20 g of dihydropyran (DHP) and 1 mol% of paratoluenesulfonic acid as a catalyst were added to a solution of ADEKA, Adecanol B722 (140 g) in methylene chloride (50 ml), and the mixture was stirred overnight (10 hours) at room temperature. . Sodium bicarbonate was added to terminate the reaction, and after filtration, the solvent and unreacted dihydropyran were distilled off to obtain the desired product. The obtained product is a nonionic surfactant (A-1) having an acetal structure at the end, which is obtained by reacting the hydroxyl group at the end of the nonionic surfactant with DHP.
  • DHP dihydropyran
  • (Production Example 2) Production of (A-2) As a nonionic surfactant, a polyoxyalkylene alkyl ether having 1 to 400 oxyalkylene groups and having a hydroxyl group at the end of alkylene oxide (Co., Ltd.) To a methylene chloride solution (50 ml) of ADEKA, Adecanol BO-922) (110 g), 18 g of ethyl vinyl ether and 1 mol% of paratoluenesulfonic acid as a catalyst were added, and the mixture was stirred overnight (10 hours) at room temperature. Sodium bicarbonate was added to terminate the reaction, and after filtration, the solvent and unreacted ethyl vinyl ether were distilled off to obtain the desired product. The obtained product is a nonionic surfactant (A-2) having an acetal structure at the terminal, which is obtained by reacting the hydroxyl group at the terminal of the nonionic surfactant with ethyl vinyl ether.
  • the obtained product is a nonionic surfactant (A-3) having an acetal structure at the terminal, which is obtained by reacting the terminal hydroxyl group of the nonionic surfactant with 2,3-dihydrofuran. is there.
  • the resulting product is a nonionic surfactant having an acetal structure at the end (reaction of a hydroxyl group at the end of the nonionic surfactant with 2,3-dihydro-1,4-dioxin ( A-4).
  • the obtained target product is a nonionic surfactant (A-5) having an acetal structure at both molecular ends obtained by reacting hydroxyl groups at both molecular ends of the polyalkylene glycol with ethyl vinyl ether.
  • Production Example 6 (A-6) In Production Example 5, instead of polyalkylene glycol (trade name: Pluronic RPE 2520), another polyalkylene glycol (trade name: Blaunon P 174) was used instead of ethyl vinyl ether, except that DHP was used. The expected product is obtained.
  • the obtained target product is a nonionic surfactant (A-6) having an acetal structure at both molecular ends obtained by reacting hydroxyl groups at both molecular ends of the polyalkylene glycol with DHP.
  • Surfactant (A'-1) A polyoxyalkylene alkyl ether having an oxyalkylene group in the range of 1 to 400 and having a hydroxyl group at the end of the alkylene oxide (manufactured by ADEKA Corporation, Adecanol B722).
  • Surfactant (A'-2) A polyoxyalkylene alkyl ether having an oxyalkylene group in the range of 1 to 400 and having a hydroxyl group at the end of the alkylene oxide (manufactured by ADEKA Corporation, Adecanol BO922).
  • Surfactant (A'-3) A polyoxyalkylene alkyl ether having 1 to 400 oxyalkylene groups and having a hydroxyl group at the end of the alkylene oxide (manufactured by ADEKA Corporation, Adecanol B-2020).
  • Surfactants (A′-1) to (A′-3) are raw materials for surfactants (A-1) to (A-3) produced in Production Examples, respectively.
  • the detergent compositions of Examples 1 to 30 and Comparative Examples 1 to 10 were prepared using the surfactants prepared in the above Production Examples and Comparative Production Examples.
  • the formulations of the detergent compositions of Examples 1 to 30 are shown in Table 1-1 and Table 1-2, and the formulations of the detergent compositions of Comparative Examples 1 to 10 are shown in Table 2, respectively.
  • the antifoaming property test was done about the cleaning composition of each Example and the comparative example.
  • the cleaning composition immediately after preparation of the cleaning composition or the cleaning composition after storage at 45 ° C. for 30 days is transferred to an automatic dishwasher of Hobart's single tank conveyor type. Each was added so that the concentration was 0.05% by weight, and operated at 60 ° C. for 2 minutes, and the bubble height immediately after the operation was measured.
  • the evaluation results are shown in Table 1-1, Table 1-2, and Table 2.
  • The foam height is less than 1 cm, which is preferable for use in an automatic dishwasher.
  • Bubble height of 1 cm or more and less than 5 cm, and can be used in an automatic dishwasher.
  • X Foam height of 5 cm or more, which is not preferable for use in an automatic dishwasher.
  • Chlorine stability test A chlorine stability test was performed on the cleaning compositions prepared in Examples 1 to 3, 7, 14 to 29 and Comparative Examples 1, 2, and 7 to 10. The effective chlorine concentration was measured by the iodine titration method shown below. To about 1 g of the cleaning composition, 50 mL of an aqueous potassium iodide solution (concentration of about 2% by weight) and 10 mL of acetic acid were added and mixed thoroughly to prepare a mixed solution. Next, the mixture was titrated with a 0.1 M aqueous sodium thiosulfate solution, and the point at which the brown color disappeared and became colorless was defined as the end point.
  • Effective chlorine concentration [%] Amount of sodium thiosulfate dropped in water [mL] ⁇ 0.3546 / Amount of detergent composition collected [g] (1)
  • the effective chlorine concentration was measured by the above method immediately after preparation of the cleaning composition (0 day), after storage at 45 ° C / 30 days, after storage at 45 ° C / 15 days, after storage at 25 ° C / 45 days, or at 25 ° C / 4. Each day was carried out after storage.
  • Table 1-1, Table 1-2 and Table 2 show that immediately after preparation and after storage at 45 ° C / 30 days, after storage at 45 ° C / 15 days, after storage at 25 ° C / 45 days or after storage at 25 ° C / 4 days. The amount of effective chlorine and the decrease rate of effective chlorine immediately after preparation and after storage were shown.
  • Scale deposition test For the cleaning compositions of Examples 14 to 24 and Comparative Examples 5 and 6, a scale deposition test was performed according to the following procedure. A solution prepared by dissolving 4.41 g of calcium chloride dihydrate in purified water to give a 2000 ml solution was prepared as artificial hard water. In a 200 ml stainless beaker, put 21 g of artificial hard water, 10 g of a detergent composition (aqueous solution diluted to 2% by weight with water) and 169 g of tap water, cover with a wrap and heat in a 90 ° C. constant temperature bath for 27 hours. Allowed to cool overnight.
  • the detergent compositions of Examples 1 to 30 containing a nonionic surfactant having an acetal structure at the end and containing an alkali metal hydroxide or the like as an alkali agent have no discoloration and foaming. There is little and it turns out that detergency is high.
  • the detergent compositions of Comparative Examples 1 to 4 and 7 to 10 contained a surfactant having a hydroxyl group at the end, foaming was large and it was not suitable for use in an automatic dishwasher. From this, it can be seen that a detergent composition containing a nonionic surfactant having a hydroxyl group at the end tends to have high foamability.
  • Example 1 and Comparative Example 1 which differ only in the type of surfactant, and Example 3 and Comparative Example 2 are compared and evaluated.
  • Examples 22 to 24 and Comparative Examples 7 to 10 have similar compositions except that the types of the surfactants are different, and in contrast, are combinations capable of evaluating chlorine stability.
  • the cleaning composition of each example containing a surfactant having an acetal structure at the end had a lower reduction rate of effective chlorine. From these results, it was found that a detergent composition containing a surfactant having an acetal structure at the terminal is excellent in chlorine stability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Detergent Compositions (AREA)
  • Polyethers (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Cosmetics (AREA)

Abstract

This cleaning agent composition is characterized by containing the following (A) and (B) components: (A) a nonionic surfactant having a structure represented by general formula (1) on an end thereof; and (B) one or more types of alkali agent selected from a group consisting of an alkali metal hydroxide, an alkali metal salt of a metasilicic acid, an alkali metal salt of a sesquisilicic acid, an alkali metal salt of an orthosilicic acid, an alkali metal salt of an orthophosphoric acid, an alkali metal salt of a pyrophosphoric acid, an alkali metal salt of a tetraphosphoric acid, an alkali metal salt of a pentaphosphoric acid, an alkali metal salt of a hexaphosphoric acid, and an alkali metal salt of a carboxylic acid. (In the formula, R1 represents a hydrogen atom or an alkyl group, R2 and R3 represent hydrocarbon groups which may contain an ether bond and may form a ring, AO represents an oxyalkylene group which may be identical or different, and n represents the average number of added moles of the oxyalkylene group, and is a number between 1 and 400, inclusive.)

Description

固形洗浄剤組成物Solid detergent composition
本発明は、固形洗浄剤組成物に関する。 The present invention relates to a solid detergent composition.
自動食器洗浄機用の洗浄剤組成物としては、界面活性剤を含有する組成物が用いられることが多いが、自動食器洗浄機を用いた洗浄時に泡が大量に発生すると泡が溢れだし装置の故障等の原因になることがある。また、泡の発生により洗浄力が低下することがある。
そのため、自動食器洗浄機用の洗浄剤組成物には低起泡性が求められる。
As a detergent composition for an automatic dishwasher, a composition containing a surfactant is often used, but if a large amount of foam is generated during washing using an automatic dishwasher, the foam overflows and It may cause failure. Also, the cleaning power may be reduced due to the generation of bubbles.
Therefore, low foaming property is calculated | required by the cleaning composition for automatic dishwashers.
泡の発生を抑えるために、特許文献1に記載されたような非イオン性界面活性剤を用いる方法が知られている。 In order to suppress the generation of bubbles, a method using a nonionic surfactant as described in Patent Document 1 is known.
特許文献1に記載の洗浄剤組成物には、汚れに対する浸透、乳化、分散などの洗浄力を有し低起泡性を示す非イオン性界面活性剤と、油脂の鹸化や金属イオンのキレート作用などを示すアルカリ剤とが含まれている。 The detergent composition described in Patent Document 1 includes a nonionic surfactant having a detergency such as permeation, emulsification, and dispersion with respect to dirt and low foaming properties, saponification of fats and oils, and chelating action of metal ions And an alkaline agent.
さらに、自動食器洗浄機を継続的に使用すると、自動食器洗浄機内部の配管や洗浄液の加熱部等に、炭酸カルシウムや炭酸マグネシウム等の難水溶性物質が析出することが知られている。これらの析出物はスケールと呼ばれ、配管の断面積を低下させて洗浄効率を低下させることや、洗浄液の加熱部に析出した場合には熱効率を著しく低下させる等の問題を引き起こすことが知られている。 Furthermore, it is known that when an automatic dishwasher is continuously used, poorly water-soluble substances such as calcium carbonate and magnesium carbonate are deposited on piping inside the automatic dishwasher, a heating part of the cleaning liquid, and the like. These deposits are called scales, and are known to cause problems such as reducing the cross-sectional area of the piping to lower the cleaning efficiency and, if deposited on the heating part of the cleaning liquid, significantly reducing the thermal efficiency. ing.
アルカリ剤の中でも、炭酸ナトリウムは安価であることから、洗浄剤組成物には広く活用されている。特に、自動食器洗浄機用洗浄剤組成物では、炭酸ナトリウムによるアルカリ洗浄において、酵素やキレート剤、漂白剤の効果を発現させて、洗浄力向上を図っている。
例えば、特許文献2には、(a)成分として、炭酸ナトリウム35~80重量%、(b)成分として、炭酸水素ナトリウム1~10重量%、(c)成分として、界面活性剤0.5~10重量%からなる組成物であり、(a)成分と(b)成分の含有比率が、重量比で、8:1~20:1の範囲内であることを特徴とする自動食器洗浄機用洗浄剤が記載されている。
Among alkaline agents, sodium carbonate is widely used in cleaning compositions because it is inexpensive. In particular, in the detergent composition for automatic dishwashers, the effects of enzymes, chelating agents, and bleaching agents are expressed in alkaline washing with sodium carbonate to improve washing power.
For example, Patent Document 2 discloses that 35a to 80% by weight of sodium carbonate as the component (a), 1 to 10% by weight of sodium bicarbonate as the component (b), 0.5 to 0.5% of the surfactant as the component (c). A composition comprising 10% by weight, wherein the content ratio of component (a) and component (b) is in the range of 8: 1 to 20: 1 by weight, for an automatic dishwasher Detergents are described.
特開2005-112890号公報JP 2005-112890 A 特開2001-107092号公報JP 2001-107092 A
しかしながら、上記のような洗浄剤組成物は洗浄力に劣ることがわかった。さらに、炭酸ナトリウム等の炭酸塩をアルカリ剤とした場合には、洗浄液中の炭酸イオン濃度が高まるため、スケールが析出しやすいという問題もあった。 However, it has been found that the cleaning composition as described above is inferior in cleaning power. Furthermore, when a carbonate such as sodium carbonate is used as an alkaline agent, the concentration of carbonate ions in the cleaning liquid increases, so that there is a problem that scale is likely to precipitate.
そこで発明者らは、上記洗浄剤組成物の組成を様々変更し、洗浄力が劣る原因を調査したところ、アルカリ剤を変更することで洗浄力が向上することが判明した。 Thus, the inventors have changed the composition of the above-described cleaning composition and investigated the cause of poor cleaning power. As a result, it has been found that the cleaning power is improved by changing the alkaline agent.
そこで、特許文献1に記載の洗浄剤組成物のアルカリ剤を水酸化ナトリウム、水酸化カリウム、メタケイ酸ナトリウム、オルソケイ酸ナトリウム等に変更した洗浄剤組成物を調製したところ、洗浄力は向上したものの泡が大量に発生するという問題が発生した。 Therefore, when the detergent composition was prepared by changing the alkali agent of the detergent composition described in Patent Document 1 to sodium hydroxide, potassium hydroxide, sodium metasilicate, sodium orthosilicate, etc., the detergency improved. There was a problem that a large amount of foam was generated.
本発明は、上記のような課題を解決するためになされたものであり、高い洗浄力と低起泡性とを有する固形洗浄剤組成物であって、かつ、スケールが析出しにくい固形洗浄剤組成物を提供することを目的とする。 The present invention has been made in order to solve the above-described problems, and is a solid detergent composition having a high detergency and low foaming property, and a solid detergent in which scale does not easily precipitate. An object is to provide a composition.
本発明者らは、特許文献1に記載の界面活性剤のような非イオン性界面活性剤が、その末端にヒドロキシル基を有していることが問題であると認識し、末端の構造に着目して鋭意検討した。その結果、アルカリ剤によりヒドロキシル基末端が酸化されて、アニオン化することにより泡が発生すると考え、さらに検討した結果、アルキレンオキサイド末端の酸素原子を含むアセタール構造を有する非イオン性界面活性剤は、アルカリ剤によって末端のアセタール構造がアニオン化することがないため、非イオン性界面活性剤が本来的に有する低起泡性が保持されることを発見した。
さらに、炭酸ナトリウムではなく、アルカリ金属の水酸化物、ケイ酸のアルカリ金属塩、リン酸のアルカリ金属塩及びカルボン酸のアルカリ金属塩等をアルカリ剤として用いた洗浄剤組成物を用いた場合であっても、低起泡性が保持されることを発見した。
また、炭酸塩等の炭酸イオンを含まないアルカリ剤を用いることでスケールの析出を抑制できることがわかった。
上記発見を踏まえて、末端にアルキレンオキサイド末端の酸素原子を含むアセタール構造を有する非イオン性界面活性剤と所定のアルカリ剤を配合することによって、本発明に想到した。
The present inventors have recognized that it is a problem that a nonionic surfactant such as the surfactant described in Patent Document 1 has a hydroxyl group at the terminal, and pay attention to the structure of the terminal. And studied diligently. As a result, the hydroxyl group terminal is oxidized by an alkali agent and bubbles are generated by anionization. As a result of further investigation, the nonionic surfactant having an acetal structure containing an oxygen atom at the alkylene oxide terminal is It has been discovered that the low aeration property inherent to nonionic surfactants is maintained because the terminal acetal structure is not anionized by the alkali agent.
Furthermore, in the case of using a detergent composition using an alkali metal hydroxide, an alkali metal salt of silicic acid, an alkali metal salt of phosphoric acid, an alkali metal salt of carboxylic acid or the like as an alkali agent instead of sodium carbonate. Even if it exists, it discovered that low foaming property was hold | maintained.
It was also found that the precipitation of scale can be suppressed by using an alkali agent that does not contain carbonate ions such as carbonate.
In light of the above findings, the present invention has been conceived by blending a nonionic surfactant having an acetal structure containing an oxygen atom at the end of alkylene oxide with a predetermined alkali agent.
すなわち、本発明の固形洗浄剤組成物は、下記(A)及び(B)成分を含有することを特徴とする。
(A)末端に一般式(1)で示される構造を有する非イオン性界面活性剤
(B)アルカリ金属の水酸化物、メタケイ酸のアルカリ金属塩、セスキケイ酸のアルカリ金属塩、オルソケイ酸のアルカリ金属塩、オルソリン酸のアルカリ金属塩、ピロリン酸のアルカリ金属塩、テトラリン酸のアルカリ金属塩、ペンタリン酸のアルカリ金属塩、ヘキサリン酸のアルカリ金属塩及びカルボン酸のアルカリ金属塩からなる群から選択された少なくとも1種のアルカリ剤
Figure JPOXMLDOC01-appb-C000006
(式中、Rは水素原子またはアルキル基、R及びRはエーテル結合を含んでもよい炭化水素基であり、RとRは環を形成していてもよく、AOは、同一又は異なっていてもよいオキシアルキレン基であり、nは、オキシアルキレン基の平均付加モル数を表し、1~400の数である。)
That is, the solid detergent composition of the present invention is characterized by containing the following components (A) and (B).
(A) Nonionic surfactant having the structure represented by the general formula (1) at the terminal (B) Alkali metal hydroxide, alkali metal salt of metasilicic acid, alkali metal salt of sesquisilicate, alkali of orthosilicate Selected from the group consisting of metal salts, alkali metal salts of orthophosphoric acid, alkali metal salts of pyrophosphoric acid, alkali metal salts of tetraphosphoric acid, alkali metal salts of pentaphosphoric acid, alkali metal salts of hexaphosphoric acid and alkali metal salts of carboxylic acid And at least one alkaline agent
Figure JPOXMLDOC01-appb-C000006
(Wherein R 1 is a hydrogen atom or an alkyl group, R 2 and R 3 are hydrocarbon groups that may contain an ether bond, R 2 and R 3 may form a ring, and AO is the same Or an oxyalkylene group which may be different, and n represents the average number of added moles of the oxyalkylene group and is a number of 1 to 400.)
非イオン性界面活性剤(A)はその末端に、アルキレンオキサイド末端の酸素原子を含むアセタール構造(AO-C(R)(R)-O-R)を有する。
アセタール構造を構成する2つの酸素原子のうちの1つは、アルキレンオキサイド末端に存在していたヒドロキシル基に由来する酸素原子である。
アルカリ剤の存在下では、非イオン性界面活性剤の末端にヒドロキシル基が存在する場合に、ヒドロキシル基が酸化されることで、アニオン性界面活性剤に類似した性質を示し、起泡性が高くなる傾向が顕著である。非イオン性界面活性剤(A)が有するアセタール構造はアルカリ剤の存在下でも安定であり、アニオン化されて起泡性が高くなることがないので、本発明の固形洗浄剤組成物はアルカリ剤の存在下であっても起泡性を低く保つことができるという有利な効果を有している。
すなわち、本発明の固形洗浄剤組成物は、アルカリ剤の存在下でも安定な洗浄剤組成物であって油汚れに強く、かつ、低起泡性であるために自動食器洗浄機用の洗浄剤として適した洗浄剤組成物となる。
The nonionic surfactant (A) has an acetal structure (AO—C (R 1 ) (R 2 ) —O—R 3 ) containing an oxygen atom at the end of the alkylene oxide at its terminal.
One of the two oxygen atoms constituting the acetal structure is an oxygen atom derived from a hydroxyl group present at the end of the alkylene oxide.
In the presence of an alkaline agent, when a hydroxyl group is present at the end of a nonionic surfactant, the hydroxyl group is oxidized, so that it exhibits properties similar to an anionic surfactant and has high foaming properties. The tendency to become is remarkable. Since the acetal structure possessed by the nonionic surfactant (A) is stable even in the presence of an alkaline agent and is not anionized to increase foaming properties, the solid detergent composition of the present invention is an alkaline agent. This has the advantageous effect that the foamability can be kept low even in the presence of.
That is, the solid detergent composition of the present invention is a detergent composition that is stable even in the presence of an alkaline agent, is resistant to oil stains, and has low foaming properties, so that it is a detergent for an automatic dishwasher. It becomes a suitable detergent composition.
なお、本明細書におけるアセタール構造とは、Rが水素原子であるアセタール、Rがアルキル基であるケタールの両方を含む概念である。 In addition, the acetal structure in this specification is a concept including both an acetal in which R 1 is a hydrogen atom and a ketal in which R 1 is an alkyl group.
また、非イオン性界面活性剤(A)のアルキレンオキサイド末端にヒドロキシル基が存在していると、アルカリ剤との反応によってヒドロキシル基が酸化されてカルボキシル基になり変色が生じることがあるが、末端がアセタール構造であるとこの反応も生じないため、変色が抑制される。 In addition, if a hydroxyl group is present at the end of the alkylene oxide of the nonionic surfactant (A), the hydroxyl group may be oxidized by reaction with an alkaline agent to become a carboxyl group, resulting in discoloration. Since this reaction does not occur when is an acetal structure, discoloration is suppressed.
本発明の固形洗浄剤組成物において、上記アルカリ剤はアルカリ金属の水酸化物、メタケイ酸のアルカリ金属塩、セスキケイ酸のアルカリ金属塩、オルソケイ酸のアルカリ金属塩、オルソリン酸のアルカリ金属塩、ピロリン酸のアルカリ金属塩、テトラリン酸のアルカリ金属塩、ペンタリン酸のアルカリ金属塩、ヘキサリン酸のアルカリ金属塩及びカルボン酸のアルカリ金属塩からなる群から選択された少なくとも1種であることが望ましい。
これらのアルカリ剤を使用すると、炭酸ナトリウムを用いた場合よりも高い洗浄力を得ることができ、かつ、低起泡性が維持されるため、油汚れの洗浄に適した洗浄剤組成物とすることに適している。また、炭酸塩を用いていないため、洗浄液中の炭酸イオン濃度が高くならず、スケールが析出しにくい。
In the solid detergent composition of the present invention, the alkali agent is an alkali metal hydroxide, an alkali metal salt of metasilicic acid, an alkali metal salt of sesquisilicic acid, an alkali metal salt of orthosilicate, an alkali metal salt of orthophosphoric acid, pyrroline It is desirable to be at least one selected from the group consisting of alkali metal salts of acids, alkali metal salts of tetraphosphoric acid, alkali metal salts of pentaphosphoric acid, alkali metal salts of hexaphosphoric acid, and alkali metal salts of carboxylic acid.
When these alkaline agents are used, a higher cleaning power can be obtained than when sodium carbonate is used, and a low foaming property is maintained, so that the cleaning composition is suitable for cleaning oil stains. Suitable for that. In addition, since no carbonate is used, the carbonate ion concentration in the cleaning liquid does not increase, and scale does not easily precipitate.
本発明の固形洗浄剤組成物において、上記非イオン性界面活性剤は、末端に一般式(2)で示される構造を有することが望ましい。
Figure JPOXMLDOC01-appb-C000007
(式中、mは3以上の整数である。)
In the solid detergent composition of the present invention, it is desirable that the nonionic surfactant has a structure represented by the general formula (2) at the terminal.
Figure JPOXMLDOC01-appb-C000007
(In the formula, m is an integer of 3 or more.)
本発明の固形洗浄剤組成物において、上記非イオン性界面活性剤は、末端に一般式(3)で示される構造を有することが望ましい。
Figure JPOXMLDOC01-appb-C000008
In the solid detergent composition of the present invention, it is desirable that the nonionic surfactant has a structure represented by the general formula (3) at the terminal.
Figure JPOXMLDOC01-appb-C000008
本発明の固形洗浄剤組成物において、上記非イオン性界面活性剤は、末端に一般式(4)で示される構造を有することが望ましい。
Figure JPOXMLDOC01-appb-C000009
(式中、Xはアルコールの残基又はアルキルフェノールの残基である。)
In the solid detergent composition of the present invention, it is desirable that the nonionic surfactant has a structure represented by the general formula (4) at the terminal.
Figure JPOXMLDOC01-appb-C000009
(In the formula, X is an alcohol residue or an alkylphenol residue.)
本発明の固形洗浄剤組成物は、(C)塩素剤をさらに含有することが望ましい。
洗浄剤組成物中に塩素剤が配合されていると、漂白、殺菌効果をともに発揮させることができる。
また、本発明の固形洗浄剤組成物に配合される非イオン性界面活性剤(A)は、塩素剤と反応しないため、塩素剤を失活させることがなく、高い塩素安定性を有する洗浄剤組成物となる。
It is desirable that the solid detergent composition of the present invention further contains (C) a chlorine agent.
When a chlorine agent is blended in the cleaning composition, both bleaching and bactericidal effects can be exhibited.
Moreover, since the nonionic surfactant (A) blended in the solid detergent composition of the present invention does not react with the chlorine agent, it does not deactivate the chlorine agent and has a high chlorine stability. It becomes a composition.
本発明の固形洗浄剤組成物においては、上記塩素剤が、塩素化イソシアヌール酸ナトリウム、塩素化イソシアヌール酸カリウム、トリクロロイソシアヌール酸、次亜塩素酸ナトリウム、次亜塩素酸カルシウム及び次亜塩素酸カリウムからなる群から選択された少なくとも1種であることが望ましい。 In the solid detergent composition of the present invention, the chlorinating agent is sodium chlorinated isocyanurate, potassium chlorinated isocyanurate, trichloroisocyanuric acid, sodium hypochlorite, calcium hypochlorite and hypochlorous acid. It is desirable that it is at least one selected from the group consisting of potassium acid.
本発明の固形洗浄剤組成物において、上記非イオン性界面活性剤は、末端に一般式(5)で示される構造を有する非イオン性界面活性剤のアルキレンオキサイド末端のヒドロキシル基に対して付加反応を行うことにより末端に一般式(1)で示されるアセタール構造を設けることにより製造されていることが望ましい。
Figure JPOXMLDOC01-appb-C000010
In the solid detergent composition of the present invention, the nonionic surfactant is added to the hydroxyl group at the end of the alkylene oxide of the nonionic surfactant having the structure represented by the general formula (5) at the end. It is desirable that the acetal structure represented by the general formula (1) is provided at the terminal by performing the above.
Figure JPOXMLDOC01-appb-C000010
アセタール構造は、アルキレンオキサイド末端のヒドロキシル基に対する付加反応により生成させることができるが、この付加反応は反応率が高いため、アルキレンオキサイド末端のヒドロキシル基が残存しないように末端を封鎖させることができる。
また、副生成物が生じることもない。
そのため、洗浄剤組成物に含まれる界面活性剤に、末端がヒドロキシル基であるものが混在する可能性が低く、低起泡性を確実に担保させることができる。
The acetal structure can be generated by an addition reaction to the hydroxyl group at the end of the alkylene oxide, but since this addition reaction has a high reaction rate, the end can be blocked so that the hydroxyl group at the end of the alkylene oxide does not remain.
Further, no by-product is generated.
Therefore, it is unlikely that the surfactant contained in the cleaning composition contains a hydroxyl group at the end, and low foaming property can be reliably ensured.
本発明の固形洗浄剤組成物において、上記付加反応は、酸触媒下でヒドロキシル基にジヒドロピランを付加させる反応であることが望ましい。 In the solid detergent composition of the present invention, the addition reaction is desirably a reaction in which dihydropyran is added to a hydroxyl group under an acid catalyst.
本発明の固形洗浄剤組成物の剤形は、粉末、顆粒、錠剤、タブレット、フレーク又はブロックであることが望ましい。 The dosage form of the solid detergent composition of the present invention is desirably a powder, granule, tablet, tablet, flake or block.
本発明の固形洗浄剤組成物は、起泡性を低く保つことができ、洗浄力が高く、スケールが析出しにくいという効果を有する。 The solid detergent composition of the present invention has an effect that the foamability can be kept low, the detergency is high, and scale does not easily precipitate.
本発明の固形洗浄剤組成物は、下記(A)及び(B)成分を含有することを特徴とする。
(A)末端に一般式(1)で示される構造を有する非イオン性界面活性剤
(B)アルカリ金属の水酸化物、メタケイ酸のアルカリ金属塩、セスキケイ酸のアルカリ金属塩、オルソケイ酸のアルカリ金属塩、オルソリン酸のアルカリ金属塩、ピロリン酸のアルカリ金属塩、テトラリン酸のアルカリ金属塩、ペンタリン酸のアルカリ金属塩、ヘキサリン酸のアルカリ金属塩及びカルボン酸のアルカリ金属塩からなる群から選択された少なくとも1種のアルカリ剤
Figure JPOXMLDOC01-appb-C000011
(式中、Rは水素原子またはアルキル基、R及びRはエーテル結合を含んでもよい炭化水素基であり、RとRは環を形成していてもよく、AOは、同一又は異なっていてもよいオキシアルキレン基であり、nは、オキシアルキレン基の平均付加モル数を表し、1~400の数である。)
The solid detergent composition of the present invention is characterized by containing the following components (A) and (B).
(A) Nonionic surfactant having the structure represented by the general formula (1) at the terminal (B) Alkali metal hydroxide, alkali metal salt of metasilicic acid, alkali metal salt of sesquisilicate, alkali of orthosilicate Selected from the group consisting of metal salts, alkali metal salts of orthophosphoric acid, alkali metal salts of pyrophosphoric acid, alkali metal salts of tetraphosphoric acid, alkali metal salts of pentaphosphoric acid, alkali metal salts of hexaphosphoric acid and alkali metal salts of carboxylic acid And at least one alkaline agent
Figure JPOXMLDOC01-appb-C000011
(Wherein R 1 is a hydrogen atom or an alkyl group, R 2 and R 3 are hydrocarbon groups that may contain an ether bond, R 2 and R 3 may form a ring, and AO is the same Or an oxyalkylene group which may be different, and n represents the average number of added moles of the oxyalkylene group and is a number of 1 to 400.)
上記一般式(1)で示される構造は、アセタール構造である。
アセタール構造は、ヒドロキシル基の保護基として用いられる構造であり、ヒドロキシル基末端をアセタール構造とすることで、末端の構造がアルカリ剤と反応してアニオン化することがなくなる。
そのため、アルカリ剤の存在下においても低起泡性が維持される。
The structure represented by the general formula (1) is an acetal structure.
The acetal structure is a structure used as a protecting group for a hydroxyl group. By making the hydroxyl group terminal an acetal structure, the terminal structure does not react with an alkali agent to be anionized.
Therefore, low foamability is maintained even in the presence of an alkaline agent.
アセタール構造はアルカリ剤の存在下で安定な構造であるため、非イオン性界面活性剤(A)はアルカリ剤を含む洗浄剤組成物に使用することに適している。
また、アセタール構造は、アルキレンオキサイド末端のヒドロキシル基に対する付加反応により生成させることができる。この付加反応は反応率が高いため、アルキレンオキサイド末端のヒドロキシル基が残存しないように末端を封鎖させることができる。
すなわち、アセタール構造は、「アルカリ剤の存在下での安定性が高い」という特徴と「付加反応により形成されるためヒドロキシル基が残存しない」という特徴を有する。
Since the acetal structure is a stable structure in the presence of an alkali agent, the nonionic surfactant (A) is suitable for use in a detergent composition containing an alkali agent.
Moreover, an acetal structure can be produced | generated by addition reaction with respect to the hydroxyl group of the alkylene oxide terminal. Since this addition reaction has a high reaction rate, the end can be blocked so that the hydroxyl group at the end of the alkylene oxide does not remain.
That is, the acetal structure has the characteristics of “high stability in the presence of an alkaline agent” and “the hydroxyl group does not remain because it is formed by addition reaction”.
有機合成の分野で用いられる、ヒドロキシル基を保護するための保護基としてアセタール構造以外の保護基(例えば、メチル基、ベンジル基、アセチル基、トリメチルシリル基等)が挙げられる。しかしながら、アセタール構造以外の保護基は、アセタール構造の特徴である「アルカリ剤の存在下での安定性が高い」という特徴、又は、「付加反応により形成されるためヒドロキシル基が残存しない」という特徴のいずれかを満足しないため、ヒドロキシル基末端を封鎖するための構造として適していない。すなわち、アセタール構造でヒドロキシル基末端を封鎖している非イオン性界面活性剤(A)は、他の保護基でヒドロキシル基末端を封鎖した界面活性剤に比べて「アルカリ剤の存在下での低起泡性」という効果を発揮するために有利であるといえる。 Examples of the protecting group for protecting the hydroxyl group used in the field of organic synthesis include protecting groups other than the acetal structure (for example, methyl group, benzyl group, acetyl group, trimethylsilyl group, etc.). However, the protecting group other than the acetal structure has a feature of “high stability in the presence of an alkali agent” which is a characteristic of the acetal structure, or “a hydroxyl group does not remain because it is formed by an addition reaction”. Since either of these is not satisfied, it is not suitable as a structure for blocking the hydroxyl group terminal. That is, the nonionic surfactant (A) having the hydroxyl group end blocked with an acetal structure is less “low in the presence of an alkali agent” than the surfactant having the hydroxyl group end blocked with another protecting group. It can be said that it is advantageous in order to exhibit the effect of “foaming property”.
一般式(1)におけるRは、エーテル結合を含んでもよい炭化水素基である。Rは炭素及び水素のみからなるアルキレン基であってもよく、エーテル結合を含むアルキレン基であってもよい。
また、R自体に環状構造が含まれていてもよく、環状構造の例としては、シクロヘキサン環、ベンゼン環、ナフタレン環等が挙げられる。
自体に環状構造が含まれる場合、RとRが環を形成することによって、一般式(1)で示される構造の末端が縮合環となっていてもよい。
R 2 in the general formula (1) is a hydrocarbon group that may contain an ether bond. R 2 may be an alkylene group consisting only of carbon and hydrogen, or may be an alkylene group containing an ether bond.
Further, R 2 itself may contain a cyclic structure, and examples of the cyclic structure include a cyclohexane ring, a benzene ring, a naphthalene ring and the like.
When R 2 itself contains a cyclic structure, R 2 and R 3 may form a ring so that the terminal of the structure represented by the general formula (1) may be a condensed ring.
一般式(1)に含まれるアセタール構造として望ましい構造は、下記一般式(2)に示される構造である。
Figure JPOXMLDOC01-appb-C000012
(式中、mは3以上の整数である。)
上記一般式(2)で示される構造は、一般式(1)においてRとRが環を形成した構造である。
A desirable structure as an acetal structure contained in the general formula (1) is a structure represented by the following general formula (2).
Figure JPOXMLDOC01-appb-C000012
(In the formula, m is an integer of 3 or more.)
The structure represented by the general formula (2) is a structure in which R 2 and R 3 form a ring in the general formula (1).
また、上記一般式(2)に含まれる構造のうち、末端に一般式(3)で示される構造を有することが望ましい。
Figure JPOXMLDOC01-appb-C000013
上記一般式(3)で示される構造は、一般式(2)においてmが4である構造である。
また、一般式(3)で表される構造のうち、さらに望ましい構造は、RがHである構造(テトラヒドロピラニルエーテル)である。
テトラヒドロピラニルエーテルは、中性及びアルカリ性環境下での安定性が高く、また、アセタール構造の原料となるジヒドロピランが安価で入手しやすいため、好ましい。
この構造は、後述するように、酸触媒下でヒドロキシル基にジヒドロピランを付加させることにより得られる。
なお、本明細書におけるジヒドロピランとは、下記式(6)で表される3,4-ジヒドロ-2H-ピラン(DHP)を意味する。
Figure JPOXMLDOC01-appb-C000014
Moreover, among the structures included in the general formula (2), it is desirable that the terminal has a structure represented by the general formula (3).
Figure JPOXMLDOC01-appb-C000013
The structure represented by the general formula (3) is a structure in which m is 4 in the general formula (2).
Further, among the structures represented by the general formula (3), a more desirable structure is a structure (tetrahydropyranyl ether) in which R 1 is H.
Tetrahydropyranyl ether is preferable because it is highly stable in neutral and alkaline environments, and dihydropyran as a raw material for the acetal structure is inexpensive and easily available.
As will be described later, this structure can be obtained by adding dihydropyran to a hydroxyl group under an acid catalyst.
In the present specification, dihydropyran means 3,4-dihydro-2H-pyran (DHP) represented by the following formula (6).
Figure JPOXMLDOC01-appb-C000014
上記一般式(1)で示されるアセタール構造として、上記一般式(2)、(3)で表される環を有する構造の他、環を有する構造として下記式(7)、(8)、(9)で表される構造も挙げられる。
Figure JPOXMLDOC01-appb-C000015
As the acetal structure represented by the general formula (1), in addition to the structures having the rings represented by the general formulas (2) and (3), the following formulas (7), (8), ( The structure represented by 9) is also included.
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
式(7)で示す構造は、酸触媒下でヒドロキシル基に下記式(10)で示す2,3-ジヒドロ―1,4-ジオキシンを付加させることにより得られる。
Figure JPOXMLDOC01-appb-C000018
The structure represented by the formula (7) can be obtained by adding 2,3-dihydro-1,4-dioxin represented by the following formula (10) to the hydroxyl group under an acid catalyst.
Figure JPOXMLDOC01-appb-C000018
式(8)で示す構造は、酸触媒下でヒドロキシル基に下記式(11)で示す2,3-ジヒドロフランを付加させることにより得られる。
Figure JPOXMLDOC01-appb-C000019
The structure represented by the formula (8) can be obtained by adding 2,3-dihydrofuran represented by the following formula (11) to a hydroxyl group under an acid catalyst.
Figure JPOXMLDOC01-appb-C000019
式(9)で示す構造は、一般式(1)において、RがR自体に環状構造を含む構造であり、一般式(1)で示される構造の末端が縮合環となる構造の一例である。
この構造は、酸触媒下でヒドロキシル基に下記式(12)で示す2,3-ベンゾフランを付加させることにより得られる。
Figure JPOXMLDOC01-appb-C000020
The structure represented by the formula (9) is an example of a structure in which, in the general formula (1), R 2 includes a cyclic structure in R 2 itself, and the terminal of the structure represented by the general formula (1) is a condensed ring. It is.
This structure can be obtained by adding 2,3-benzofuran represented by the following formula (12) to a hydroxyl group under an acid catalyst.
Figure JPOXMLDOC01-appb-C000020
上記一般式(1)で示されるアセタール構造としては、環を有する構造の他に、環を有さない構造も挙げられる。
一般式(1)に含まれるアセタール構造が環を有さない場合に望ましい構造は、上記一般式(1)におけるRがアルキル基である構造である。
としては、直鎖又は分岐鎖のアルキル基であれば特に限定されるものではなく、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基等が挙げられる。
Examples of the acetal structure represented by the general formula (1) include a structure having no ring in addition to a structure having a ring.
A desirable structure when the acetal structure included in the general formula (1) does not have a ring is a structure in which R 1 in the general formula (1) is an alkyl group.
R 1 is not particularly limited as long as it is a linear or branched alkyl group, and examples thereof include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, and a hexyl group.
上記一般式(1)におけるR及びRは、Rがアルキル基であるか否かに関係なく、炭化水素基であれば特に限定されるものではなく、直鎖又は分岐鎖のアルキル基、環状炭化水素基、芳香族炭化水素基等が挙げられる。
例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、シクロペンチル基、シクロヘキシル基、フェニル基、ベンジル基等が挙げられる。
また、R及びRは、エーテル結合を含む炭化水素基であってもよい。
R 2 and R 3 in the general formula (1) are not particularly limited as long as R 1 is a hydrocarbon group, regardless of whether or not R 1 is an alkyl group, and are linear or branched alkyl groups. , Cyclic hydrocarbon groups, aromatic hydrocarbon groups and the like.
Examples thereof include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, a cyclopentyl group, a cyclohexyl group, a phenyl group, and a benzyl group.
R 2 and R 3 may be a hydrocarbon group containing an ether bond.
また、一般式(1)においてRがアルキル基である構造のうち、末端に下記一般式(13)に示される構造を有することが特に望ましい。
Figure JPOXMLDOC01-appb-C000021
上記一般式(13)で示される構造は、一般式(1)においてRとRが共にメチル基であり、Rがエチル基である構造である。
Moreover, among the structures in which R 1 is an alkyl group in the general formula (1), it is particularly desirable that the terminal has a structure represented by the following general formula (13).
Figure JPOXMLDOC01-appb-C000021
The structure represented by the general formula (13) is a structure in which R 1 and R 2 are both methyl groups and R 3 is an ethyl group in the general formula (1).
上記一般式(13)で表される構造は、末端が2-エトキシプロピル基となっており、酸触媒下でヒドロキシル基に2-エトキシプロペンを付加させることにより得られる。 The structure represented by the general formula (13) has a 2-ethoxypropyl group at the end, and can be obtained by adding 2-ethoxypropene to a hydroxyl group under an acid catalyst.
その他の具体的な構造の例としては、下記一般式(14)~(19)で表される構造等が挙げられる。
Figure JPOXMLDOC01-appb-C000022
上記一般式(14)で示される構造は、一般式(1)においてRがメチル基、Rがエチル基、Rがメチル基である構造である。
上記構造は、酸触媒下でヒドロキシル基に2-メトキシ-1-ブテンを付加させることにより得られる。
Examples of other specific structures include structures represented by the following general formulas (14) to (19).
Figure JPOXMLDOC01-appb-C000022
The structure represented by the general formula (14) is a structure in which R 1 is a methyl group, R 2 is an ethyl group, and R 3 is a methyl group in the general formula (1).
The above structure is obtained by adding 2-methoxy-1-butene to a hydroxyl group under an acid catalyst.
Figure JPOXMLDOC01-appb-C000023
上記一般式(15)で示される構造は、一般式(1)においてRがメチル基、Rがペンチル基、Rがメチル基である構造である。
上記構造は、酸触媒下でヒドロキシル基に2-メトキシ-1-ヘプテンを付加させることにより得られる。
Figure JPOXMLDOC01-appb-C000023
The structure represented by the general formula (15) is a structure in which R 1 is a methyl group, R 2 is a pentyl group, and R 3 is a methyl group in the general formula (1).
The above structure is obtained by adding 2-methoxy-1-heptene to a hydroxyl group under an acid catalyst.
Figure JPOXMLDOC01-appb-C000024
上記一般式(16)で示される構造は、一般式(1)においてRがメチル基、Rがメチル基、Rがシクロヘキシル基である構造である。
上記構造は、酸触媒下でヒドロキシル基に2-シクロヘキシルオキシ-1-プロペンを付加させることにより得られる。
Figure JPOXMLDOC01-appb-C000024
The structure represented by the general formula (16) is a structure in which R 1 is a methyl group, R 2 is a methyl group, and R 3 is a cyclohexyl group in the general formula (1).
The above structure can be obtained by adding 2-cyclohexyloxy-1-propene to a hydroxyl group under an acid catalyst.
Figure JPOXMLDOC01-appb-C000025
上記一般式(17)で示される構造は、一般式(1)においてRがメチル基、Rがメチル基、Rがフェニル基である構造である。
上記構造は、酸触媒下でヒドロキシル基に2-フェノキシ-1-プロペンを付加させることにより得られる。
Figure JPOXMLDOC01-appb-C000025
The structure represented by the general formula (17) is a structure in which R 1 is a methyl group, R 2 is a methyl group, and R 3 is a phenyl group in the general formula (1).
The above structure is obtained by adding 2-phenoxy-1-propene to a hydroxyl group under an acid catalyst.
Figure JPOXMLDOC01-appb-C000026
上記一般式(18)で示される構造は、一般式(1)においてR、R、Rがいずれもメチル基である構造である。
上記構造は、酸触媒下でヒドロキシル基に2-メトキシプロペンを付加させることにより得られる。
Figure JPOXMLDOC01-appb-C000026
The structure represented by the general formula (18) is a structure in which R 1 , R 2 , and R 3 are all methyl groups in the general formula (1).
The above structure is obtained by adding 2-methoxypropene to a hydroxyl group under an acid catalyst.
Figure JPOXMLDOC01-appb-C000027
上記一般式(19)で示される構造は、一般式(1)においてR、Rがいずれもメチル基、Rがベンジル基である構造である。
上記構造は、酸触媒下でヒドロキシル基にベンジルイソプロペニルエーテルを付加させることにより得られる。
Figure JPOXMLDOC01-appb-C000027
The structure represented by the general formula (19) is a structure in which R 1 and R 2 are both methyl groups and R 3 is a benzyl group in the general formula (1).
The above structure can be obtained by adding benzylisopropenyl ether to a hydroxyl group under an acid catalyst.
また、上記一般式(1)に含まれる構造のうち、末端に一般式(20)で示される構造を有することも望ましい。
Figure JPOXMLDOC01-appb-C000028
上記一般式(20)で示される構造は、一般式(1)においてRが水素原子、Rがメチル基であり、Rがエチル基である構造である。
Moreover, among the structures included in the general formula (1), it is desirable that the terminal has a structure represented by the general formula (20).
Figure JPOXMLDOC01-appb-C000028
The structure represented by the general formula (20) is a structure in which R 1 is a hydrogen atom, R 2 is a methyl group, and R 3 is an ethyl group in the general formula (1).
上記一般式(20)で表される構造は、末端がエトキシエチル基となっており、酸触媒下でヒドロキシル基にエチルビニルエーテルを付加させることにより得られる。 The structure represented by the general formula (20) has an ethoxyethyl group at the end, and can be obtained by adding ethyl vinyl ether to a hydroxyl group under an acid catalyst.
AO(オキシアルキレン基)としては、オキシエチレン基(EO)、オキシプロピレン基(PO)、又は、オキシブチレン基が挙げられる。非イオン性界面活性剤(A)には、オキシエチレン基、オキシプロピレン基、又は、オキシブチレン基のうちの1種類のみが含まれていてもよく、これらのうちの複数種類が含まれていてもよい。オキシエチレン基、オキシプロピレン基、又は、オキシブチレン基の繰り返し構造の単位も特に限定されるものではない。 Examples of AO (oxyalkylene group) include oxyethylene group (EO), oxypropylene group (PO), and oxybutylene group. The nonionic surfactant (A) may contain only one type of oxyethylene group, oxypropylene group, or oxybutylene group, and a plurality of types thereof are included. Also good. The unit of the repeating structure of the oxyethylene group, oxypropylene group, or oxybutylene group is not particularly limited.
非イオン性界面活性剤(A)におけるAOの平均付加モル数nは、1~400であり、nの好ましい下限値は3、より好ましい下限値は5であり、好ましい上限値は100、より好ましい上限値は50、さらに好ましい上限値は30、よりさらに好ましい上限値は15である。
好ましいnの範囲の例として示すと、3~100、5~50、3~30又は5~15である。
通常、非イオン性界面活性剤(A)は、AOの付加モル数nが異なる複数の化合物の混合物である。非イオン界面活性剤(A)の分子のそれぞれに含まれるAOの付加モル数は整数値であるが、AOの付加モル数を測定した場合の測定値は、非イオン界面活性剤(A)の分子のそれぞれに含まれるAOの付加モル数の平均値として測定されるので、これを平均付加モル数とする。
また、非イオン性界面活性剤(A)は、AOの種類が異なる複数の化合物の混合物であってもよい。
The average added mole number n of AO in the nonionic surfactant (A) is 1 to 400, the preferred lower limit value of n is 3, more preferred lower limit value is 5, and the preferred upper limit value is 100, more preferred. The upper limit value is 50, the more preferable upper limit value is 30, and the still more preferable upper limit value is 15.
Preferable examples of the range of n are 3 to 100, 5 to 50, 3 to 30, or 5 to 15.
Usually, the nonionic surfactant (A) is a mixture of a plurality of compounds having different addition mole numbers n of AO. Although the added mole number of AO contained in each molecule of the nonionic surfactant (A) is an integer value, the measured value when the added mole number of AO is measured is that of the nonionic surfactant (A). Since it is measured as the average value of the number of moles of AO contained in each molecule, this is the average number of moles added.
Further, the nonionic surfactant (A) may be a mixture of a plurality of compounds having different types of AO.
非イオン性界面活性剤(A)は、末端に一般式(1)で示されるアセタール構造を有することを特徴としているが、非イオン性界面活性剤全体の構造としては、下記一般式(4)で示される構造を有することが望ましい。
Figure JPOXMLDOC01-appb-C000029
(Xはアルコールの残基又はアルキルフェノールの残基である。)
The nonionic surfactant (A) is characterized by having an acetal structure represented by the general formula (1) at the terminal, and the structure of the whole nonionic surfactant is represented by the following general formula (4). It is desirable to have the structure shown by these.
Figure JPOXMLDOC01-appb-C000029
(X is an alcohol residue or an alkylphenol residue.)
上記一般式(4)におけるXのうち、アルコールの残基の好ましい具体例としては、オクチルアルコールの残基、2-エチルヘキシルアルコールの残基、デシルアルコールの残基、イソデシルアルコールの残基、ラウリルアルコールの残基、ドデシルアルコールの残基、トリデシルアルコールの残基、ミリスチルアルコールの残基、テトラデシルアルコールの残基、ペンタデシルアルコールの残基、セチルアルコールの残基、ヘキサデシルアルコールの残基、イソヘキサデシルアルコールの残基、ヘプタデシルアルコールの残基、ステアリルアルコールの残基、オクタデシルアルコールの残基、イソステアリルアルコールの残基、エライジルアルコールの残基、オレイルアルコールの残基、リノレイルアルコールの残基、エライドリノレイルアルコールの残基、リノレニルアルコールの残基、エライドリノレニルアルコールの残基、リシノレイルアルコールの残基、ノナデシルアルコールの残基、アラキジルアルコール(エイコサノール)の残基、オクチルドデシルアルコールの残基、ヘンエイコサノールの残基、ベヘニルアルコール(1-ドコサノール)の残基、エルシルアルコールの残基、トリコサノールの残基、リグノセリルアルコール(1-テトラコサノール)の残基、ペンタコサノールの残基、セリルアルコールの残基、1-ヘプタコサノールの残基、モンタニルアルコール(1-オクタコサノール)の残基、1-ノナコサノールの残基、ミリシルアルコール(1-トリアコンタノール)の残基、1-ヘントリアコンタノールの残基、1-ドトリアコンタノールの残基、ゲジルアルコール(1-テトラトリアコンタノール)の残基等が挙げられる。アルキルフェノールの残基の好ましい具体例としては、ノニルフェノールの残基、ドデシルフェノールの残基、オクチルフェノールの残基、オクチルクレゾールの残基等が挙げられる。
非イオン性界面活性剤(A)は、Xとしてこれらの残基のうちの1種類のみを有する化合物であってもよく、異なるXを有する複数の化合物の混合物であってもよい。
Among X in the general formula (4), preferred specific examples of the alcohol residue include octyl alcohol residue, 2-ethylhexyl alcohol residue, decyl alcohol residue, isodecyl alcohol residue, lauryl. Residue of alcohol, residue of dodecyl alcohol, residue of tridecyl alcohol, residue of myristyl alcohol, residue of tetradecyl alcohol, residue of pentadecyl alcohol, residue of cetyl alcohol, residue of hexadecyl alcohol , Isohexadecyl alcohol residue, heptadecyl alcohol residue, stearyl alcohol residue, octadecyl alcohol residue, isostearyl alcohol residue, elaidyl alcohol residue, oleyl alcohol residue, linoleyl Residue of alcohol, Elide Linoleil Resol residue, linolenyl alcohol residue, elide linolenyl alcohol residue, ricinoleyl alcohol residue, nonadecyl alcohol residue, arachidyl alcohol (eicosanol) residue, octyldodecyl alcohol Residue, heneicosanol residue, behenyl alcohol (1-docosanol) residue, erucyl alcohol residue, tricosanol residue, lignoceryl alcohol (1-tetracosanol) residue, pentacososa Residue of anol, residue of seryl alcohol, residue of 1-heptacosanol, residue of montanyl alcohol (1-octacosanol), residue of 1-nonacosanol, residue of myricyl alcohol (1-triacontanol) 1-Hentriacontanol residue, 1-Dotriacontanol residue, Residues such as the benzyl alcohol (1-tetra-triacontanol) and the like. Preferable specific examples of the alkylphenol residue include nonylphenol residue, dodecylphenol residue, octylphenol residue, octylcresol residue and the like.
The nonionic surfactant (A) may be a compound having only one of these residues as X, or may be a mixture of a plurality of compounds having different X.
また、非イオン性界面活性剤(A)は、両末端にアセタール構造を有してもよく、下記一般式(21)で示される構造を有していてもよい。
Figure JPOXMLDOC01-appb-C000030
(式中、R及びRは水素原子またはアルキル基、R、R、R及びRはエーテル結合を含んでもよい炭化水素基であり、RとR、RとRはそれぞれ環を形成していてもよく、AOは、同一又は異なっていてもよいオキシアルキレン基であり、nは、オキシアルキレン基の平均付加モル数を表し、1~400の数である。)
In addition, the nonionic surfactant (A) may have an acetal structure at both ends, and may have a structure represented by the following general formula (21).
Figure JPOXMLDOC01-appb-C000030
(Wherein R 1 and R 4 are a hydrogen atom or an alkyl group, R 2 , R 3 , R 5 and R 6 are hydrocarbon groups which may contain an ether bond, R 2 and R 3 , R 5 and R Each of 6 may form a ring, AO is an oxyalkylene group which may be the same or different, and n represents the average number of added moles of the oxyalkylene group and is a number from 1 to 400. )
両末端にアセタール構造を有する非イオン界面活性剤は、分子両末端にヒドロキシル基を有する(ポリ)アルキレングリコールのヒドロキシル基をアセタール化することにより得られる。
(ポリ)アルキレングリコールとしては、AOがオキシエチレン基であるポリエチレングリコール、AOがオキシプロピレン基であるポリプロピレングリコールが挙げられる。また、AOがHO-(PO)o1-(EO)p1-(PO)q1-Hの構造(o1、p1及びq1は1以上の整数である)を有するポリアルキレングリコール(例えば、プルロニック(BASFジャパン株式会社製))、HO-(EO)o2-(PO)p2-(EO)q2-Hの構造(o2、p2及びq2は1以上の整数である)を有するポリアルキレングリコール(例えば、ブラウノン(青木油脂工業株式会社製))等が挙げられる。
なお、分子両末端にヒドロキシル基を有する(ポリ)アルキレングリコールとしてのAOの平均付加モル数nは、1~400であるが、nが3~300のものが好ましく、nが5~200のものがより好ましい。
A nonionic surfactant having an acetal structure at both ends can be obtained by acetalizing the hydroxyl group of (poly) alkylene glycol having hydroxyl groups at both ends of the molecule.
Examples of the (poly) alkylene glycol include polyethylene glycol in which AO is an oxyethylene group, and polypropylene glycol in which AO is an oxypropylene group. Further, AO has a structure of HO— (PO) o1- (EO) p1- (PO) q1 —H (where o1, p1 and q1 are integers of 1 or more) (for example, Pluronic (BASF Japan) Co., Ltd.), HO- (EO) o2- (PO) p2- (EO) q2 -H (where o2, p2 and q2 are integers of 1 or more) (for example, Braunon ( Aoki Yushi Kogyo Co., Ltd.)) and the like.
The average addition mole number n of AO as a (poly) alkylene glycol having hydroxyl groups at both ends of the molecule is 1 to 400, preferably n is 3 to 300, and n is 5 to 200. Is more preferable.
上記一般式(21)で示される構造の界面活性剤の具体例としては、両末端がテトラヒドロピラニルエーテルとなっている下記式(22)で示される構造が挙げられる。
Figure JPOXMLDOC01-appb-C000031
この構造は、ポリエチレングリコール等の両末端にヒドロキシル基を有する界面活性剤1モルに対してジヒドロピランを2モル付加させることによって得られる。
また、上記一般式(21)で示される構造の界面活性剤の他の具体例としては、両末端がジオキサニル基(一般式(7)参照)である構造、両末端がテトラヒドロフラニルエーテル(一般式(8)参照)である構造、両末端が2-エトキシエチル基(一般式(20)参照)である構造、両末端が2-エトキシプロピル基(一般式(13)参照)である構造等が挙げられる。
Specific examples of the surfactant having the structure represented by the general formula (21) include a structure represented by the following formula (22) in which both ends are tetrahydropyranyl ethers.
Figure JPOXMLDOC01-appb-C000031
This structure is obtained by adding 2 mol of dihydropyran to 1 mol of a surfactant having hydroxyl groups at both ends, such as polyethylene glycol.
Other specific examples of the surfactant having the structure represented by the general formula (21) include a structure in which both ends are dioxanyl groups (see general formula (7)), and both ends are tetrahydrofuranyl ether (general formula (8)), a structure in which both ends are 2-ethoxyethyl groups (see general formula (20)), a structure in which both ends are 2-ethoxypropyl groups (see general formula (13)), etc. Can be mentioned.
以下、非イオン性界面活性剤(A)の製造方法について説明する。
まず、出発物質として、末端に下記一般式(5)で示される構造を有する非イオン性界面活性剤を準備する。
Figure JPOXMLDOC01-appb-C000032
Hereinafter, the manufacturing method of a nonionic surfactant (A) is demonstrated.
First, a nonionic surfactant having a structure represented by the following general formula (5) is prepared as a starting material.
Figure JPOXMLDOC01-appb-C000032
一般式(5)で示される構造を有する非イオン性界面活性剤としては、市販されている界面活性剤を使用することができる。例えば、商品名「エマルミン」(三洋化成工業株式会社製)、商品名「ワンダーサーフ」(青木油脂工業株式会社製)、商品名「ブラウノン」(青木油脂工業株式会社製)、商品名「ファインサーフ」(青木油脂工業株式会社製)、商品名「アデカノール」(株式会社ADEKA製)、商品名「プルラファック」「プルロニック」(BASFジャパン株式会社製)、商品名「ノイゲン」(第一工業製薬株式会社製)、商品名「ペレテックス」(ミヨシ油脂株式会社製)等が挙げられる。 As the nonionic surfactant having the structure represented by the general formula (5), a commercially available surfactant can be used. For example, the product name “Emarumin” (manufactured by Sanyo Chemical Industries), the product name “Wonder Surf” (manufactured by Aoki Yushi Kogyo Co., Ltd.), the product name “Brownon” (manufactured by Aoki Yushi Kogyo Co., Ltd.), and the product name “Fine Surf” (Aoki Yushi Kogyo Co., Ltd.), trade name "Adekanol" (Adeka Co., Ltd.), trade name "Plurafuck" "Pluronic" (BASF Japan Ltd.), trade name "Neugen" (Daiichi Kogyo Seiyaku Co., Ltd.) Product name), “Peletex” (manufactured by Miyoshi Oil & Fat Co., Ltd.) and the like.
上記非イオン性界面活性剤のアルキレンオキサイド末端のヒドロキシル基に対して、付加反応を行うことによりヒドロキシル基を封鎖して、一般式(1)で示されるアセタール構造を得る。
付加反応の具体的な手順は、ヒドロキシル基に付加反応させて得るアセタール構造によって異なるが、例えば、一般式(3)で表され、RがHである構造(テトラヒドロピラニルエーテル)は、非イオン性界面活性剤のヒドロキシル基末端にジヒドロピラン(DHP)を酸触媒と共に有機溶媒下で反応させることにより得ることができる。
The hydroxyl group is blocked by performing an addition reaction on the hydroxyl group at the end of the alkylene oxide of the nonionic surfactant to obtain an acetal structure represented by the general formula (1).
The specific procedure of the addition reaction varies depending on the acetal structure obtained by addition reaction to the hydroxyl group. For example, the structure represented by the general formula (3) and R 1 is H (tetrahydropyranyl ether) It can be obtained by reacting dihydropyran (DHP) at the hydroxyl group terminal of the surfactant with an acid catalyst in an organic solvent.
上記酸触媒としては、p-トルエンスルホン酸、ベンゼンスルホン酸、メタンスルホン酸、ピリジニウムp-トルエンスルホネート、トリフルオロメタンスルホン酸、硫酸、塩酸、酸性イオン交換樹脂等が挙げられる。この中では、扱いが容易であり、安価であるためp-トルエンスルホン酸が望ましい。 Examples of the acid catalyst include p-toluenesulfonic acid, benzenesulfonic acid, methanesulfonic acid, pyridinium p-toluenesulfonate, trifluoromethanesulfonic acid, sulfuric acid, hydrochloric acid, and an acidic ion exchange resin. Of these, p-toluenesulfonic acid is desirable because it is easy to handle and inexpensive.
上記反応に用いる有機溶媒としては、一般的な有機溶媒を用いることができ、塩化メチレン、クロロホルム、アセトニトリル、テトラヒドロフラン(THF)、トルエン、クロロベンゼン、メチルtert-ブチルエーテル等を用いることができる。 As the organic solvent used in the above reaction, a general organic solvent can be used, and methylene chloride, chloroform, acetonitrile, tetrahydrofuran (THF), toluene, chlorobenzene, methyl tert-butyl ether and the like can be used.
反応の終了は、酸触媒の中和により行う。中和に用いる塩基としては特に限定されるものではないが、炭酸水素ナトリウム、水酸化ナトリウム、水酸化カリウム等の粉末またはそれらの溶液等を用いることができる。 The reaction is completed by neutralization of the acid catalyst. Although it does not specifically limit as a base used for neutralization, Powder, such as sodium hydrogencarbonate, sodium hydroxide, potassium hydroxide, or those solutions etc. can be used.
反応条件は、出発物質の種類や量により適宜定めることができるが、例えば、非イオン性界面活性剤としてポリオキシエチレンラウリルエーテル60~70gを塩化メチレン溶液25~100ml中で反応させる場合、ポリオキシエチレンラウリルエーテルの全てのヒドロキシル基と反応させるのに充分な量(モル比でポリオキシエチレンラウリルエーテルに対して1~10倍)のジヒドロピランと酸触媒として1~10mol%のp-トルエンスルホン酸を加えて、0.5時間~終夜(10時間)室温にて撹拌した後、炭酸水素ナトリウムを加えて反応を終了させ、ろ過したのち、溶媒及び未反応のジヒドロピランを留去する方法が挙げられる。 The reaction conditions can be appropriately determined depending on the type and amount of the starting material. For example, when reacting 60 to 70 g of polyoxyethylene lauryl ether as a nonionic surfactant in 25 to 100 ml of methylene chloride solution, Dihydropyran sufficient to react with all hydroxyl groups of ethylene lauryl ether (1-10 times molar ratio to polyoxyethylene lauryl ether) and 1-10 mol% p-toluenesulfonic acid as acid catalyst After stirring at room temperature for 0.5 hours to overnight (10 hours), sodium bicarbonate is added to terminate the reaction, and after filtration, the solvent and unreacted dihydropyran are distilled off. It is done.
本発明の固形洗浄剤組成物中における非イオン性界面活性剤(A)の濃度は、特に限定されるものではないが、0.1~60重量%であることが望ましく、0.5~40重量%であることがより望ましく、0.5~30重量%であることがさらに望ましい。 The concentration of the nonionic surfactant (A) in the solid detergent composition of the present invention is not particularly limited, but is preferably 0.1 to 60% by weight, and preferably 0.5 to 40 More preferably, it is 0.5% by weight, and more preferably 0.5-30% by weight.
アルカリ剤(B)としてはアルカリ金属の水酸化物、メタケイ酸のアルカリ金属塩、セスキケイ酸のアルカリ金属塩、オルソケイ酸のアルカリ金属塩、オルソリン酸のアルカリ金属塩、ピロリン酸のアルカリ金属塩、テトラリン酸のアルカリ金属塩、ペンタリン酸のアルカリ金属塩、ヘキサリン酸のアルカリ金属塩及びカルボン酸のアルカリ金属塩からなる群から選択された少なくとも1種が用いられる。
また、これらのアルカリ剤のうちの1種を用いてもよく、2種以上を併用してもよい。
本発明の固形洗浄剤組成物中におけるアルカリ剤(B)の濃度は、特に限定されるものではないが、2~95重量%であることが望ましく、30~95重量%であることがより望ましく、45~95重量%であることがさらに望ましい。
アルカリ剤が複数種類用いられている場合、アルカリ剤の濃度は各アルカリ剤の濃度の合計値として定められる。
Examples of the alkali agent (B) include alkali metal hydroxide, alkali metal salt of metasilicic acid, alkali metal salt of sesquisilicic acid, alkali metal salt of orthosilicate, alkali metal salt of orthophosphoric acid, alkali metal salt of pyrophosphoric acid, tetralin At least one selected from the group consisting of an alkali metal salt of acid, an alkali metal salt of pentaphosphoric acid, an alkali metal salt of hexaphosphoric acid, and an alkali metal salt of carboxylic acid is used.
Moreover, 1 type in these alkaline agents may be used and 2 or more types may be used together.
The concentration of the alkaline agent (B) in the solid detergent composition of the present invention is not particularly limited, but is preferably 2 to 95% by weight, more preferably 30 to 95% by weight. 45 to 95% by weight is more desirable.
When a plurality of types of alkali agents are used, the concentration of the alkali agent is determined as a total value of the concentrations of the respective alkali agents.
アルカリ剤(B)がアルカリ金属の水酸化物である場合には、2~95重量%であることが望ましく、5~80重量%であることがより望ましく、10~80重量%であることがさらに望ましい。
アルカリ剤(B)がメタケイ酸のアルカリ金属塩、セスキケイ酸のアルカリ金属塩又はオルソケイ酸のアルカリ金属塩である場合には、2~95重量%であることが望ましく、10~95重量%であることがより望ましく、10~60重量%であることがさらに望ましい。
アルカリ剤(B)がオルソリン酸、ピロリン酸、テトラリン酸、ペンタリン酸及びヘキサリン酸のアルカリ金属塩である場合には、2~95重量%であることが望ましく、10~95重量%であることがより望ましく、10~60重量%であることがさらに望ましい。
アルカリ剤(B)がカルボン酸のアルカリ金属塩である場合には、2~95重量%であることが望ましく、15~95重量%であることがより望ましく、15~70重量%であることがさらに望ましい。
When the alkali agent (B) is an alkali metal hydroxide, it is preferably 2 to 95% by weight, more preferably 5 to 80% by weight, and preferably 10 to 80% by weight. More desirable.
When the alkali agent (B) is an alkali metal salt of metasilicic acid, an alkali metal salt of sesquisilicic acid or an alkali metal salt of orthosilicic acid, it is preferably 2 to 95% by weight, and 10 to 95% by weight. More preferably, the content is 10 to 60% by weight.
When the alkaline agent (B) is an alkali metal salt of orthophosphoric acid, pyrophosphoric acid, tetraphosphoric acid, pentaphosphoric acid and hexaphosphoric acid, it is preferably 2 to 95% by weight, and preferably 10 to 95% by weight. More desirably, the amount is 10 to 60% by weight.
When the alkali agent (B) is an alkali metal salt of a carboxylic acid, it is preferably 2 to 95% by weight, more preferably 15 to 95% by weight, and 15 to 70% by weight. More desirable.
本発明におけるアルカリ剤とは、水に溶解した際にアルカリ性を示すものに限らず、非イオン性界面活性剤(A)の末端アセタール構造が分解しない程度の酸性や中性を示す化合物を含む。従って、本発明の洗浄剤組成物を水に溶解した際には、その水溶液のpHが7.0以下となることもある。 The alkaline agent in the present invention is not limited to those that exhibit alkalinity when dissolved in water, but includes compounds that exhibit acidity and neutrality to such an extent that the terminal acetal structure of the nonionic surfactant (A) does not decompose. Therefore, when the cleaning composition of the present invention is dissolved in water, the pH of the aqueous solution may be 7.0 or less.
アルカリ剤(B)は無水物であってもよく、水和物であってもよい。 The alkali agent (B) may be an anhydride or a hydrate.
アルカリ剤(B)を構成するアルカリ金属としては、リチウム、ナトリウム、カリウムが好ましく、ナトリウム、カリウムがより好ましい。 As an alkali metal which comprises an alkaline agent (B), lithium, sodium, and potassium are preferable, and sodium and potassium are more preferable.
アルカリ剤(B)のうち、アルカリ金属の水酸化物としては、水酸化ナトリウム、水酸化カリウムが好ましい。 Among the alkali agents (B), the alkali metal hydroxide is preferably sodium hydroxide or potassium hydroxide.
アルカリ剤(B)のうち、ケイ酸のアルカリ金属塩としては、下記式(23)で表されるものであり、a/b=1.0~2.0である、メタケイ酸ナトリウム(a/b=1.0)、メタケイ酸カリウム(a/b=1.0)、セスキケイ酸ナトリウム(a/b=1.5)、セスキケイ酸カリウム(a/b=1.5)、オルソケイ酸ナトリウム(a/b=2.0)、オルソケイ酸カリウム(a/b=2.0)が挙げられる。
a/bが1.0未満の場合、化合物中のシリカ成分が多くなるため、シリカ由来の難溶性析出物質であるシリカスケールが発生しやすくなる。
Figure JPOXMLDOC01-appb-C000033
[式(23)中、Mは-Li、-Na又は-Kである。a、bは1以上の整数であり、cは0以上の整数である。]
Among the alkali agents (B), the alkali metal salt of silicic acid is represented by the following formula (23), and a / b = 1.0 to 2.0, sodium metasilicate (a / b = 1.0), potassium metasilicate (a / b = 1.0), sodium sesquisilicate (a / b = 1.5), potassium sesquisilicate (a / b = 1.5), sodium orthosilicate ( a / b = 2.0) and potassium orthosilicate (a / b = 2.0).
When a / b is less than 1.0, since the silica component in the compound increases, silica scale which is a hardly soluble precipitate derived from silica is likely to be generated.
Figure JPOXMLDOC01-appb-C000033
[In the formula (23), M represents —Li, —Na or —K. a and b are integers of 1 or more, and c is an integer of 0 or more. ]
アルカリ剤(B)のうち、リン酸のアルカリ金属塩としては、オルソリン酸ナトリウム、オルソリン酸カリウム、ピロリン酸ナトリウム、ピロリン酸カリウム、テトラリン酸ナトリウム、テトラリン酸カリウム、ペンタリン酸ナトリウム、ペンタリン酸カリウム、ヘキサリン酸ナトリウム及びヘキサリン酸カリウムが挙げられる。 Among the alkali agents (B), the alkali metal salts of phosphoric acid include sodium orthophosphate, potassium orthophosphate, sodium pyrophosphate, potassium pyrophosphate, sodium tetraphosphate, potassium tetraphosphate, sodium pentaphosphate, potassium pentaphosphate, hexalin And sodium acid phosphate and potassium hexaphosphate.
本明細書において、リン酸のアルカリ金属塩は、特筆しない限り、すべてのヒドロキシル基の水素がアルカリ金属に置換された化合物を指している。例えば、オルソリン酸ナトリウムはオルソリン酸三ナトリウムを示し、ピロリン酸ナトリウムはピロリン酸四ナトリウムを示している。 In the present specification, unless otherwise specified, the alkali metal salt of phosphoric acid refers to a compound in which hydrogens of all hydroxyl groups are substituted with alkali metals. For example, sodium orthophosphate indicates trisodium orthophosphate and sodium pyrophosphate indicates tetrasodium pyrophosphate.
アルカリ剤(B)のうち、カルボン酸塩としては、カルボキシル基の個数は特に限定されないが、例えば1~5価のカルボン酸塩が挙げられる。1価のカルボン酸塩としては、酢酸塩、プロピオン酸塩、グルコン酸塩等が挙げられる。
2価のカルボン酸塩としては、リンゴ酸塩、酒石酸塩及びヒドロキシエチルイミノ二酢酸塩等が挙げられる。
3価のカルボン酸塩としては、クエン酸塩、ヒドロキシエチルエチレンジアミン三酢酸塩、ニトリロ三酢酸塩、メチルグリシン二酢酸塩及び2-ホスホノブタン-1,2,4-トリカルボン酸塩等が挙げられる。
4価のカルボン酸塩としては、エチレンジアミン四酢酸塩、エチレンジアミン二コハク酸塩、グルタミン酸二酢酸塩及びアスパラギン酸二酢酸塩等が挙げられる。
5価のカルボン酸としては、エチレントリアミン五酢酸塩等が挙げられる。
Among the alkaline agents (B), the carboxylate is not particularly limited in the number of carboxyl groups, and examples thereof include monovalent to pentavalent carboxylates. Examples of the monovalent carboxylate include acetate, propionate, and gluconate.
Examples of the divalent carboxylate include malate, tartrate and hydroxyethyliminodiacetate.
Examples of the trivalent carboxylate include citrate, hydroxyethylethylenediamine triacetate, nitrilotriacetate, methylglycine diacetate and 2-phosphonobutane-1,2,4-tricarboxylate.
Examples of the tetravalent carboxylate include ethylenediamine tetraacetate, ethylenediamine disuccinate, glutamate diacetate, and aspartate diacetate.
Examples of the pentavalent carboxylic acid include ethylene triamine pentaacetate.
アルカリ剤(B)としては、さらに、下記式(24)で表されるポリアスパラギン酸系化合物、下記式(25)で表されるイミノジコハク酸系化合物、下記式(26)で表されるイミノジ酢酸系化合物も挙げられる。 As the alkaline agent (B), a polyaspartic acid compound represented by the following formula (24), an iminodisuccinic acid compound represented by the following formula (25), and an iminodiacetic acid represented by the following formula (26) Also included are system compounds.
Figure JPOXMLDOC01-appb-C000034
[式(24)中、Mは同一又は異なって-H、-Li、-Na又は-Kであり、少なくとも1つ以上のMが-Li、-Na、又は-Kである。s、tは整数である。]
Figure JPOXMLDOC01-appb-C000035
[式(25)中、Mは同一又は異なって-H、-Li、-Na又は-Kであり、少なくとも1つ以上のMが-Li、-Na、又は-Kである。]
Figure JPOXMLDOC01-appb-C000036
[式(26)中、Mは同一又は異なって-H、-Li、-Na又は-Kであり、少なくとも1つ以上のMが-Li、-Na、又は-Kである。]
Figure JPOXMLDOC01-appb-C000034
[In the formula (24), M is the same or different and is —H, —Li, —Na or —K, and at least one M is —Li, —Na or —K. s and t are integers. ]
Figure JPOXMLDOC01-appb-C000035
[In the formula (25), M is the same or different and is —H, —Li, —Na or —K, and at least one M is —Li, —Na or —K. ]
Figure JPOXMLDOC01-appb-C000036
[In Formula (26), M is the same or different and is —H, —Li, —Na or —K, and at least one M is —Li, —Na or —K. ]
二価以上のカルボン酸塩については、全てのカルボキシル基の水素がアルカリ金属イオンに置換されていてもよいし、一部のカルボキシル基の水素がアルカリ金属イオンに置換されていてもよいが、洗浄力の観点から、全てのカルボキシル基の水素がアルカリ金属イオンに置換されたものが好ましい。
すなわち、二価のカルボン酸塩としては、リンゴ酸二ナトリウム、リンゴ酸二カリウム、酒石酸二ナトリウム、酒石酸二カリウム、ヒドロキシエチルイミノ二酢酸二ナトリウム、ヒドロキシエチルイミノ二酢酸二カリウムが好ましく、
三価のカルボン酸塩としては、クエン酸三ナトリウム、クエン酸三カリウム、ヒドロキシエチルエチレンジアミン三酢酸三ナトリウム、ヒドロキシエチルエチレンジアミン三酢酸三カリウム、ニトリロ三酢酸三ナトリウム、ニトリロ三酢酸三カリウム、メチルグリシン二酢酸三ナトリウム、メチルグリシン二酢酸三カリウム、2-ホスホノブタン-1,2,4-トリカルボン酸三ナトリウム、2-ホスホノブタン-1,2,4-トリカルボン酸三カリウムが好ましく、
四価のカルボン酸塩としては、エチレンジアミン四酢酸四ナトリウム、エチレンジアミン四酢酸四カリウム、エチレンジアミン二コハク酸四ナトリウム、エチレンジアミン二コハク酸四カリウム、グルタミン酸二酢酸四ナトリウム、グルタミン酸二酢酸四カリウム、アスパラギン酸二酢酸四ナトリウム、アスパラギン酸二酢酸四カリウムが好ましく、
五価のカルボン酸塩としては、エチレントリアミン五酢酸五ナトリウム、エチレントリアミン五酢酸五カリウムが好ましい。
For divalent or higher carboxylates, all carboxyl group hydrogens may be replaced with alkali metal ions, or some of the carboxyl group hydrogens may be replaced with alkali metal ions, From the viewpoint of force, it is preferable that all carboxyl group hydrogens are replaced with alkali metal ions.
That is, as the divalent carboxylate, disodium malate, dipotassium malate, disodium tartrate, dipotassium tartrate, disodium hydroxyethyliminodiacetic acid, dipotassium hydroxyethyliminodiacetic acid,
Trivalent carboxylates include trisodium citrate, tripotassium citrate, trisodium hydroxyethylethylenediamine triacetate, tripotassium hydroxyethylethylenediamine triacetate, trisodium nitrilotriacetate, tripotassium nitrilotriacetate, methylglycine Trisodium acetate, tripotassium methylglycine diacetate, trisodium 2-phosphonobutane-1,2,4-tricarboxylate, tripotassium 2-phosphonobutane-1,2,4-tricarboxylate are preferred,
Tetravalent carboxylates include ethylenediaminetetraacetic acid tetrasodium, ethylenediaminetetraacetic acid tetrapotassium, ethylenediamine disuccinic acid tetrasodium, ethylenediamine disuccinic acid tetrapotassium, glutamic acid diacetic acid tetrasodium, glutamic acid diacetic acid tetrapotassium, aspartic acid Tetrasodium acetate, tetrapotassium aspartate diacetate are preferred,
As the pentavalent carboxylate, ethylenetriaminepentaacetic acid pentasodium and ethylenetriaminepentaacetic acid pentapotassium are preferable.
また、二価以上のカルボン酸塩は、複数種類のアルカリ金属イオンを含んでいてもよく、例えば、四価のカルボン酸塩として、エチレンジアミン四酢酸二カリウム二ナトリウム等も好適に用いることができる。 In addition, the divalent or higher carboxylic acid salt may contain a plurality of types of alkali metal ions. For example, as the tetravalent carboxylic acid salt, disodium ethylenediaminetetraacetate or the like can be suitably used.
上記カルボン酸のアルカリ金属塩のうち、洗浄力の観点から、エチレンジアミン四酢酸四ナトリウム、エチレンジアミン四酢酸四カリウム、メチルグリシン二酢酸三ナトリウム、メチルグリシン二酢酸三カリウム、ニトリロ三酢酸三ナトリウム及びニトリロ三酢酸三カリウムが特に好ましい。 Among the above alkali metal salts of carboxylic acids, from the viewpoint of detergency, ethylenediaminetetraacetic acid tetrasodium, ethylenediaminetetraacetic acid tetrapotassium, methylglycine diacetic acid trisodium, methylglycine diacetic acid tripotassium, nitrilotriacetic acid trisodium and nitrilotrimethyl Tripotassium acetate is particularly preferred.
本発明の固形洗浄剤組成物に含まれる非イオン性界面活性剤(A)の末端のアセタール構造は、上記アルカリ剤の存在下においても安定であり、非イオン性界面活性剤が安定に存在するため、アルカリによる油汚れ等に対する洗浄効果と非イオン性界面活性剤による洗浄効果及び消泡剤としての機能をともに発揮させることができる。 The terminal acetal structure of the nonionic surfactant (A) contained in the solid detergent composition of the present invention is stable even in the presence of the alkali agent, and the nonionic surfactant is stably present. Therefore, it is possible to exhibit both the cleaning effect against oil stains due to alkali, the cleaning effect due to the nonionic surfactant, and the function as an antifoaming agent.
本発明の固形洗浄剤組成物を水に溶解した際のpHは特に限定されるものではないが、非イオン性界面活性剤(A)の末端のアセタール構造の安定性の観点からは、中性~アルカリ性域であることが望ましい。
固形洗浄剤組成物を水に溶解した際のpHは、洗浄剤組成物10gを水90gと混合した状態(洗浄剤組成物の濃度が10重量%)で測定したpHとして、中性の洗浄剤組成物とする場合、そのpHが6以上9未満であることが望ましく、弱アルカリ性の洗浄剤組成物とする場合、pHが9以上12未満であることが望ましく、強アルカリ性の洗浄剤組成物とする場合、pHが12以上であることが望ましい。
pHの測定は、市販のpHメーター等を用いて行えばよいが、例えば、堀場製作所製、D-21型を用いて測定することができる。
The pH when the solid detergent composition of the present invention is dissolved in water is not particularly limited, but from the viewpoint of the stability of the acetal structure at the end of the nonionic surfactant (A), it is neutral. It is desirable to be in an alkaline region.
The pH when the solid detergent composition is dissolved in water is a neutral detergent as the pH measured in a state where 10 g of the detergent composition is mixed with 90 g of water (the concentration of the detergent composition is 10% by weight). In the case of a composition, the pH is desirably 6 or more and less than 9, and in the case of a weakly alkaline detergent composition, the pH is desirably 9 or more and less than 12, and the strongly alkaline detergent composition In this case, the pH is desirably 12 or more.
The pH may be measured using a commercially available pH meter or the like. For example, the pH can be measured using a model D-21 manufactured by Horiba, Ltd.
本発明の固形洗浄剤組成物は、塩素剤(C)をさらに含んでもよく、塩素剤(C)としては、例えば、塩素化イソシアヌール酸塩(塩素化イソシアヌール酸ナトリウム、塩素化イソシアヌール酸カリウム等)、トリクロロイソシアヌール酸、次亜塩素酸塩(次亜塩素酸ナトリウム、次亜塩素酸カリウム、次亜塩素酸カルシウム等)等が挙げられる。
また、これらの塩素剤のうちの1種を用いてもよく、2種以上を併用してもよい。
本発明の固形洗浄剤組成物に含まれる非イオン性界面活性剤(A)はその末端にヒドロキシル基を有さず、アセタール構造を有しており、アセタール構造は塩素剤(C)と反応しないので、洗浄剤組成物中の塩素剤(C)の失活が防止される。
洗浄剤組成物中における塩素剤(C)の濃度は、特に限定されるものではないが、有効塩素濃度として0~45重量%となるように配合されることが望ましい。塩素剤の濃度は、0~50重量%であることがより望ましく、2~50重量%であることが更に望ましい。
塩素剤が複数種類用いられている場合、塩素剤の濃度は各塩素剤の濃度の合計値として定められる。
The solid detergent composition of the present invention may further contain a chlorinating agent (C). Examples of the chlorinating agent (C) include chlorinated isocyanurates (chlorinated isocyanurate sodium, chlorinated isocyanuric acid). Potassium), trichloroisocyanuric acid, hypochlorite (sodium hypochlorite, potassium hypochlorite, calcium hypochlorite, etc.).
Moreover, 1 type in these chlorine agents may be used, and 2 or more types may be used together.
The nonionic surfactant (A) contained in the solid detergent composition of the present invention does not have a hydroxyl group at the terminal and has an acetal structure, and the acetal structure does not react with the chlorine agent (C). Therefore, deactivation of the chlorine agent (C) in the cleaning composition is prevented.
The concentration of the chlorine agent (C) in the cleaning composition is not particularly limited, but it is desirable that the concentration be 0 to 45% by weight as the effective chlorine concentration. The concentration of the chlorinating agent is more preferably 0 to 50% by weight, and further preferably 2 to 50% by weight.
When a plurality of types of chlorinating agents are used, the concentration of the chlorinating agent is determined as a total value of the concentration of each chlorinating agent.
本発明の固形洗浄剤組成物は、必要に応じて高分子分散剤(D)、工程剤(E)等の、洗浄剤組成物に配合される他の成分を含有してもよい。また、非イオン性界面活性剤(A)以外の界面活性剤を含有していてもよい。
高分子分散剤(D)としては、ポリアクリル酸、ポリアコニット酸、ポリイタコン酸、ポリシトラコン酸、ポリフマル酸、ポリマレイン酸、ポリメタコン酸、ポリ-α-ヒドロキシアクリル酸、ポリビニルホスホン酸、スルホン化ポリマレイン酸、オレフィン-マレイン酸共重合体、無水マレイン酸ジイソブチレン共重合体、無水マレイン酸スチレン共重合体、無水マレイン酸メチルビニルエーテル共重合体、無水マレイン酸エチレン共重合体、無水マレイン酸エチレンクロスリンク共重合体、無水マレイン酸アクリル酸共重合体、無水マレイン酸酢酸ビニル共重合体、無水マレイン酸アクリロニトリル共重合体、無水マレイン酸アクリル酸エステル共重合体、無水マレイン酸ブタジエン共重合体、無水マレイン酸イソプレン共重合体、無水マレイン酸と一酸化炭素から誘導されるポリ-β-ケトカルボン酸、イタコン酸エチレン共重合体、イタコン酸アコニット酸共重合体、イタコン酸マレイン酸共重合体、イタコン酸アクリル酸共重合体、マロン酸メチレン共重合体、イタコン酸フマール酸共重合体、エチレングリコールエチレンテレフタレート共重合体、ビニルピロリドン酢酸ビニル共重合体及びこれらの金属塩等が挙げられる。なかでも、コスト面、経済性の点から、ポリアクリル酸ナトリウム(平均分子量Mw=3,000~30,000)、ポリマレイン酸-アクリル酸ナトリウム、オレフィン-マレイン酸ナトリウム共重合体等が好適に用いられる。
The solid detergent composition of the present invention may contain other components blended in the detergent composition such as a polymer dispersant (D) and a process agent (E) as necessary. Moreover, you may contain surfactant other than nonionic surfactant (A).
Examples of the polymer dispersant (D) include polyacrylic acid, polyaconitic acid, polyitaconic acid, polycitraconic acid, polyfumaric acid, polymaleic acid, polymethaconic acid, poly-α-hydroxyacrylic acid, polyvinylphosphonic acid, and sulfonated polymaleic acid. Olefin-maleic acid copolymer, maleic anhydride diisobutylene copolymer, maleic anhydride styrene copolymer, maleic anhydride methyl vinyl ether copolymer, maleic anhydride ethylene copolymer, maleic anhydride ethylene crosslink copolymer Polymer, maleic anhydride acrylic acid copolymer, maleic anhydride vinyl acetate copolymer, maleic anhydride acrylonitrile copolymer, maleic anhydride acrylic ester copolymer, maleic anhydride butadiene copolymer, maleic anhydride Isoprene copolymer, anhydrous Poly-β-ketocarboxylic acid, itaconic acid ethylene copolymer, itaconic acid aconitic acid copolymer, itaconic acid maleic acid copolymer, itaconic acid acrylic acid copolymer, malonic acid derived from rain acid and carbon monoxide Examples include methylene copolymers, itaconic acid fumaric acid copolymers, ethylene glycol ethylene terephthalate copolymers, vinyl pyrrolidone vinyl acetate copolymers, and metal salts thereof. Of these, sodium polyacrylate (average molecular weight Mw = 3,000 to 30,000), polymaleic acid-sodium acrylate, olefin-sodium maleate copolymer, etc. are preferably used from the viewpoint of cost and economy. It is done.
工程剤(E)は、洗浄剤組成物の剤形を制御するために加えられる増粘剤や増量剤であり、pHが中性であるものが望ましく、水、硫酸ナトリウム、粉末シリカ、12-ヒドロキシステアリン酸等が挙げられる。
その他の成分として、過ホウ酸ナトリウム等の酸素系漂白剤を含んでいてもよい。
The process agent (E) is a thickener or extender added to control the dosage form of the detergent composition, and preferably has a neutral pH, such as water, sodium sulfate, powdered silica, 12- Examples thereof include hydroxystearic acid.
As other components, oxygen-based bleaching agents such as sodium perborate may be included.
本発明の固形洗浄剤組成物の剤形は、粉末、顆粒、錠剤、タブレット、フレーク又はブロック等であることが望ましく、洗浄剤組成物を構成する成分の一部が液状であっても、他の構成成分中に含浸されるなど洗浄剤組成物全体として固形であればよく、構成成分のすべてが固形であることを指すものではない。 The dosage form of the solid detergent composition of the present invention is preferably a powder, granule, tablet, tablet, flake or block, etc., even if some of the components constituting the detergent composition are liquid. The cleaning composition as a whole may be solid, such as impregnated in the components, and does not indicate that all the components are solid.
以下に本発明をより具体的に説明する実施例を示すが、本発明はこれらの実施例に限定されるものではない。 Examples for more specifically explaining the present invention are shown below, but the present invention is not limited to these examples.
(製造例1)(A-1)の製造
非イオン性界面活性剤として、オキシアルキレン基を1~400個の範囲で有し、アルキレンオキサイド末端にヒドロキシル基を有するポリオキシアルキレンアルキルエーテル(株式会社ADEKA製、アデカノールB722)(140g)の塩化メチレン溶液(50ml)に20gのジヒドロピラン(DHP)と、触媒として1mol%のパラトルエンスルホン酸を加えて、終夜(10時間)、室温にて撹拌した。炭酸水素ナトリウムを加えて反応を終了させ、ろ過したのち、溶媒及び未反応のジヒドロピランを留去して目的生成物を得た。
得られた生成物は、上記非イオン性界面活性剤の末端のヒドロキシル基とDHPが反応してなる、末端にアセタール構造を有する非イオン性界面活性剤(A-1)である。
(Production Example 1) Production of (A-1) As a nonionic surfactant, a polyoxyalkylene alkyl ether having 1 to 400 oxyalkylene groups and having a hydroxyl group at the end of alkylene oxide (Co., Ltd.) 20 g of dihydropyran (DHP) and 1 mol% of paratoluenesulfonic acid as a catalyst were added to a solution of ADEKA, Adecanol B722 (140 g) in methylene chloride (50 ml), and the mixture was stirred overnight (10 hours) at room temperature. . Sodium bicarbonate was added to terminate the reaction, and after filtration, the solvent and unreacted dihydropyran were distilled off to obtain the desired product.
The obtained product is a nonionic surfactant (A-1) having an acetal structure at the end, which is obtained by reacting the hydroxyl group at the end of the nonionic surfactant with DHP.
(製造例2)(A-2)の製造
非イオン性界面活性剤として、オキシアルキレン基を1~400個の範囲で有し、アルキレンオキサイド末端にヒドロキシル基を有するポリオキシアルキレンアルキルエーテル(株式会社ADEKA製、アデカノールBO-922)(110g)の塩化メチレン溶液(50ml)に18gのエチルビニルエーテルと、触媒として1mol%のパラトルエンスルホン酸を加えて、終夜(10時間)、室温にて撹拌した。炭酸水素ナトリウムを加えて反応を終了させ、ろ過したのち、溶媒及び未反応のエチルビニルエーテルを留去して目的生成物を得た。
得られた生成物は、上記非イオン性界面活性剤の末端のヒドロキシル基とエチルビニルエーテルが反応してなる、末端にアセタール構造を有する非イオン性界面活性剤(A-2)である。
(Production Example 2) Production of (A-2) As a nonionic surfactant, a polyoxyalkylene alkyl ether having 1 to 400 oxyalkylene groups and having a hydroxyl group at the end of alkylene oxide (Co., Ltd.) To a methylene chloride solution (50 ml) of ADEKA, Adecanol BO-922) (110 g), 18 g of ethyl vinyl ether and 1 mol% of paratoluenesulfonic acid as a catalyst were added, and the mixture was stirred overnight (10 hours) at room temperature. Sodium bicarbonate was added to terminate the reaction, and after filtration, the solvent and unreacted ethyl vinyl ether were distilled off to obtain the desired product.
The obtained product is a nonionic surfactant (A-2) having an acetal structure at the terminal, which is obtained by reacting the hydroxyl group at the terminal of the nonionic surfactant with ethyl vinyl ether.
(製造例3)(A-3)の製造
非イオン性界面活性剤として、オキシアルキレン基を1~400個の範囲で有し、アルキレンオキサイド末端にヒドロキシル基を有するポリオキシアルキレンアルキルエーテル(株式会社ADEKA製、アデカノールB-2020)(300g)の塩化メチレン溶液(50ml)に17gの2,3-ジヒドロフランと、触媒として1mol%のパラトルエンスルホン酸を加えて、終夜(10時間)、室温にて撹拌した。炭酸水素ナトリウムを加えて反応を終了させ、ろ過したのち、溶媒及び未反応の2,3-ジヒドロフランを留去して目的生成物を得た。
得られた生成物は、上記非イオン性界面活性剤の末端のヒドロキシル基と2,3-ジヒドロフランが反応してなる、末端にアセタール構造を有する非イオン性界面活性剤(A-3)である。
(Production Example 3) Production of (A-3) As a nonionic surfactant, a polyoxyalkylene alkyl ether having 1 to 400 oxyalkylene groups and having a hydroxyl group at the end of alkylene oxide (Co., Ltd.) 17 g of 2,3-dihydrofuran and 1 mol% of p-toluenesulfonic acid as a catalyst were added to a solution of ADEKA, Adecanol B-2020 (300 g) in methylene chloride (50 ml), and overnight (10 hours) at room temperature. And stirred. Sodium hydrogencarbonate was added to terminate the reaction, and after filtration, the solvent and unreacted 2,3-dihydrofuran were distilled off to obtain the desired product.
The obtained product is a nonionic surfactant (A-3) having an acetal structure at the terminal, which is obtained by reacting the terminal hydroxyl group of the nonionic surfactant with 2,3-dihydrofuran. is there.
(製造例4)(A-4)の製造
非イオン性界面活性剤として、オキシアルキレン基を1~400個の範囲で有し、アルキレンオキサイド末端にヒドロキシル基を有するポリオキシアルキレンアルキルエーテル(株式会社ADEKA製、アデカノールB-2030)(280g)の塩化メチレン溶液(50ml)に21gの2,3-ジヒドロ―1,4-ジオキシンと、触媒として1mol%のパラトルエンスルホン酸を加えて、終夜(10時間)、室温にて撹拌した。炭酸水素ナトリウムを加えて反応を終了させ、ろ過したのち、溶媒及び未反応の2,3-ジヒドロ―1,4-ジオキシンを留去して目的生成物を得た。
得られた生成物は、上記非イオン性界面活性剤の末端のヒドロキシル基と2,3-ジヒドロ―1,4-ジオキシンが反応してなる、末端にアセタール構造を有する非イオン性界面活性剤(A-4)である。
(Production Example 4) Production of (A-4) As a nonionic surfactant, a polyoxyalkylene alkyl ether having 1 to 400 oxyalkylene groups and having a hydroxyl group at the end of alkylene oxide (Co., Ltd.) 21 g of 2,3-dihydro-1,4-dioxin and 1 mol% of p-toluenesulfonic acid as a catalyst were added to a solution of ADEKA, Adecanol B-2030) (280 g) in methylene chloride (50 ml), and overnight (10 Time) and stirred at room temperature. Sodium bicarbonate was added to terminate the reaction, and after filtration, the solvent and unreacted 2,3-dihydro-1,4-dioxin were distilled off to obtain the desired product.
The resulting product is a nonionic surfactant having an acetal structure at the end (reaction of a hydroxyl group at the end of the nonionic surfactant with 2,3-dihydro-1,4-dioxin ( A-4).
(製造例5)(A-5)の製造
非イオン界面活性剤として、分子両末端にヒドロキシル基を有するポリアルキレングリコール(商品名:Pluronic RPE 2520)を80g準備し、上記ポリアルキレングリコールの塩化メチレン溶液(50ml)に10gのエチルビニルエーテルと、触媒として1mol%のp-トルエンスルホン酸とを加えて、終夜(10時間)、室温にて撹拌した。炭酸水素ナトリウムを加えて反応を終了させ、ろ過したのち、溶媒及び未反応のエチルビニルエーテルを留去して目的生成物を得た。
得られた目的生成物は、上記ポリアルキレングリコールの分子両末端のヒドロキシル基とエチルビニルエーテルとが反応してなる、分子両末端にアセタール構造を有する非イオン性界面活性剤(A-5)である。
なお、Pluronic RPE 2520は、AOがHO-(PO)o3-(EO)p3-(PO)q3-Hの構造を有し(o3、p3及びq3は1以上の整数である)、EOとPOとのモル比がEO:PO=2:8のポリアルキレングリコールである。
(Production Example 5) Production of (A-5) As a nonionic surfactant, 80 g of polyalkylene glycol having a hydroxyl group at both molecular ends (trade name: Pluronic RPE 2520) was prepared, and methylene chloride of the above polyalkylene glycol. 10 g of ethyl vinyl ether and 1 mol% of p-toluenesulfonic acid as a catalyst were added to the solution (50 ml), and the mixture was stirred overnight (10 hours) at room temperature. Sodium bicarbonate was added to terminate the reaction, and after filtration, the solvent and unreacted ethyl vinyl ether were distilled off to obtain the desired product.
The obtained target product is a nonionic surfactant (A-5) having an acetal structure at both molecular ends obtained by reacting hydroxyl groups at both molecular ends of the polyalkylene glycol with ethyl vinyl ether. .
Pluronic RPE 2520 has a structure in which AO is HO— (PO) o3 — (EO) p3 — (PO) q3 —H (o3, p3 and q3 are integers of 1 or more), and EO and PO Is a polyalkylene glycol having a molar ratio of EO: PO = 2: 8.
(製造例6)(A-6)
製造例5において、ポリアルキレングリコール(商品名:Pluronic RPE 2520)に代えて、別のポリアルキレングリコール(商品名:Blaunon P 174)を、エチルビニルエーテルに代えて、DHPを使用した他は同様にして目的生成物を得た。
得られた目的生成物は、上記ポリアルキレングリコールの分子両末端のヒドロキシル基とDHPとが反応してなる、分子両末端にアセタール構造を有する非イオン性界面活性剤(A-6)である。
なお、Blaunon P 174は、AOがHO-(EO)o7-(PO)p7-(EO)q7-Hの構造を有し(o7、p7及びq7は1以上の整数である)、EOとPOとのモル比がEO:PO=4:6のポリアルキレングリコールである。
(Production Example 6) (A-6)
In Production Example 5, instead of polyalkylene glycol (trade name: Pluronic RPE 2520), another polyalkylene glycol (trade name: Blaunon P 174) was used instead of ethyl vinyl ether, except that DHP was used. The expected product is obtained.
The obtained target product is a nonionic surfactant (A-6) having an acetal structure at both molecular ends obtained by reacting hydroxyl groups at both molecular ends of the polyalkylene glycol with DHP.
Incidentally, BLAUNON P 174 is, AO is HO- (EO) o7 - (PO ) p7 - (EO) q7 has the structure of -H (o7, p7 and q7 is an integer of 1 or more), EO and PO Is a polyalkylene glycol having a molar ratio of EO: PO = 4: 6.
(比較製造例1~3)
後述する評価試験で使用する界面活性剤として、以下の界面活性剤を準備した。
(比較製造例1)界面活性剤(A´-1)
オキシアルキレン基を1~400個の範囲で有し、アルキレンオキサイド末端にヒドロキシル基を有するポリオキシアルキレンアルキルエーテル(株式会社ADEKA製、アデカノールB722)。
(比較製造例2)界面活性剤(A´-2)
オキシアルキレン基を1~400個の範囲で有し、アルキレンオキサイド末端にヒドロキシル基を有するポリオキシアルキレンアルキルエーテル(株式会社ADEKA製、アデカノールBO922)。
(比較製造例3)界面活性剤(A´-3)
オキシアルキレン基を1~400個の範囲で有し、アルキレンオキサイド末端にヒドロキシル基を有するポリオキシアルキレンアルキルエーテル(株式会社ADEKA製、アデカノールB-2020)。
界面活性剤(A´-1)~(A´-3)は、それぞれ、製造例で製造する界面活性剤(A-1)~(A-3)の原料である。
(Comparative Production Examples 1 to 3)
The following surfactants were prepared as surfactants used in the evaluation test described below.
(Comparative Production Example 1) Surfactant (A'-1)
A polyoxyalkylene alkyl ether having an oxyalkylene group in the range of 1 to 400 and having a hydroxyl group at the end of the alkylene oxide (manufactured by ADEKA Corporation, Adecanol B722).
(Comparative Production Example 2) Surfactant (A'-2)
A polyoxyalkylene alkyl ether having an oxyalkylene group in the range of 1 to 400 and having a hydroxyl group at the end of the alkylene oxide (manufactured by ADEKA Corporation, Adecanol BO922).
(Comparative Production Example 3) Surfactant (A'-3)
A polyoxyalkylene alkyl ether having 1 to 400 oxyalkylene groups and having a hydroxyl group at the end of the alkylene oxide (manufactured by ADEKA Corporation, Adecanol B-2020).
Surfactants (A′-1) to (A′-3) are raw materials for surfactants (A-1) to (A-3) produced in Production Examples, respectively.
(洗浄剤組成物の調製)
上記製造例及び比較製造例で準備した界面活性剤を使用して、実施例1~30及び比較例1~10の洗浄剤組成物を調製した。
実施例1~30の洗浄剤組成物の処方を表1-1及び表1-2に、比較例1~10の洗浄剤組成物の処方を表2にそれぞれ示した。
(Preparation of cleaning composition)
The detergent compositions of Examples 1 to 30 and Comparative Examples 1 to 10 were prepared using the surfactants prepared in the above Production Examples and Comparative Production Examples.
The formulations of the detergent compositions of Examples 1 to 30 are shown in Table 1-1 and Table 1-2, and the formulations of the detergent compositions of Comparative Examples 1 to 10 are shown in Table 2, respectively.
Figure JPOXMLDOC01-appb-T000037
Figure JPOXMLDOC01-appb-T000037
Figure JPOXMLDOC01-appb-T000038
Figure JPOXMLDOC01-appb-T000038
Figure JPOXMLDOC01-appb-T000039
Figure JPOXMLDOC01-appb-T000039
(pHの測定)
各実施例及び比較例の洗浄剤組成物について、洗浄剤組成物の濃度が10重量%となるように水と混合し、pHメーター(堀場製作所製、D-21型)を用いてpHを測定した。
評価結果を表1-1、表1-2及び表2に示した。
(Measurement of pH)
About the cleaning composition of each Example and the comparative example, it mixed with water so that the density | concentration of cleaning composition might be 10 weight%, and measured pH using a pH meter (Horiba, D-21 type). did.
The evaluation results are shown in Table 1-1, Table 1-2, and Table 2.
(外観(変色の有無)の観察)
各実施例及び比較例の洗浄剤組成物について、洗浄剤組成物の調製直後と、洗浄剤組成物を45℃/15日、又は、45℃/30日保管した後での洗浄剤組成物の色の変化を目視で確認した。評価結果を表1-1、表1-2及び表2に示した。
○:変色は見られない。
×:明らかな変色が見られた。
(Observation of appearance (presence of discoloration))
For the cleaning composition of each Example and Comparative Example, the cleaning composition immediately after preparation of the cleaning composition and after the cleaning composition was stored at 45 ° C./15 days or 45 ° C./30 days. The color change was confirmed visually. The evaluation results are shown in Table 1-1, Table 1-2, and Table 2.
○: No discoloration is observed.
X: Obvious discoloration was observed.
(抑泡性試験)
各実施例及び比較例の洗浄剤組成物について、抑泡性試験を行った。
洗浄剤組成物を調製した直後の洗浄剤組成物、又は、45℃、30日保管した後の洗浄剤組成物を、ホバート製一槽式コンベアータイプの自動食器洗浄機に、洗浄剤組成物の濃度が0.05重量%となるようにそれぞれ投入して、60℃で2分間運転し、運転直後の泡高を計測した。評価結果を表1-1、表1-2及び表2に示した。
○:泡高1cm未満で、自動食器洗浄機での使用に好ましい。
△:泡高1cm以上5cm未満で、自動食器洗浄機での使用が可能である。
×:泡高5cm以上で、自動食器洗浄機での使用に好ましくない。
(Foam suppression test)
The antifoaming property test was done about the cleaning composition of each Example and the comparative example.
The cleaning composition immediately after preparation of the cleaning composition or the cleaning composition after storage at 45 ° C. for 30 days is transferred to an automatic dishwasher of Hobart's single tank conveyor type. Each was added so that the concentration was 0.05% by weight, and operated at 60 ° C. for 2 minutes, and the bubble height immediately after the operation was measured. The evaluation results are shown in Table 1-1, Table 1-2, and Table 2.
○: The foam height is less than 1 cm, which is preferable for use in an automatic dishwasher.
Δ: Bubble height of 1 cm or more and less than 5 cm, and can be used in an automatic dishwasher.
X: Foam height of 5 cm or more, which is not preferable for use in an automatic dishwasher.
(洗浄力試験)
各実施例及び比較例の洗浄剤組成物について、洗浄力試験を行った。
洗浄力試験は、自動食器洗浄機内の水量に対して洗浄剤組成物の濃度が0.05重量%になるように洗浄剤組成物を投入して、自動食器洗浄機を用いて汚れを洗浄してその外観を評価することにより行った。
自動食器洗浄機としては、ホシザキ製ドアタイプの洗浄機を用い、洗浄条件は洗浄時間60秒、洗浄温度60℃とした。
洗浄対象の汚れとして、複合汚垢(蛋白質、澱粉質、油脂の混合物)を塗ったグラスを用いた。評価結果を表1-1、表1-2及び表2に示した。
◎:汚れの付着は見られない。
○:汚れの付着はほとんど見られない。
△:薄い曇り状の汚れが見られる。
×:明らかな汚れの残留が見られる。
(Detergency test)
Detergency tests were performed on the cleaning compositions of each Example and Comparative Example.
In the cleaning power test, the detergent composition is added so that the concentration of the detergent composition is 0.05% by weight with respect to the amount of water in the automatic dishwasher, and the automatic dishwasher is used to wash the dirt. This was done by evaluating the appearance.
As an automatic dishwasher, a door type washer made by Hoshizaki was used, and washing conditions were a washing time of 60 seconds and a washing temperature of 60 ° C.
As dirt to be cleaned, a glass coated with composite dirt (a mixture of protein, starch and oil) was used. The evaluation results are shown in Table 1-1, Table 1-2, and Table 2.
(Double-circle): The adhesion of dirt is not seen.
○: Almost no dirt is observed.
Δ: A light cloudy stain is observed.
X: Obvious residue of dirt is observed.
(塩素安定性試験)
実施例1~3、7、14~29及び比較例1、2、7~10で調製した洗浄剤組成物について塩素安定性試験を行った。
有効塩素濃度を下記に示すヨウ素滴定法で測定した。
上記洗浄剤組成物約1gに、ヨウ化カリウム水溶液(濃度約2重量%)50mL及び酢酸10mLを添加して充分に混合することにより混合液を作製した。次に、0.1Mのチオ硫酸ナトリウム水溶液で混合液を滴定し、褐色が消えて無色になった点を終点とした。その時のチオ硫酸ナトリウム水溶液の滴下量に基づき、次式(1)によって有効塩素濃度を算出した。
有効塩素濃度[%]=チオ硫酸ナトリウム水溶液の滴下量[mL]×0.3546/洗浄剤組成物採取量[g]・・・(1)
(Chlorine stability test)
A chlorine stability test was performed on the cleaning compositions prepared in Examples 1 to 3, 7, 14 to 29 and Comparative Examples 1, 2, and 7 to 10.
The effective chlorine concentration was measured by the iodine titration method shown below.
To about 1 g of the cleaning composition, 50 mL of an aqueous potassium iodide solution (concentration of about 2% by weight) and 10 mL of acetic acid were added and mixed thoroughly to prepare a mixed solution. Next, the mixture was titrated with a 0.1 M aqueous sodium thiosulfate solution, and the point at which the brown color disappeared and became colorless was defined as the end point. Based on the dropping amount of the aqueous sodium thiosulfate solution at that time, the effective chlorine concentration was calculated by the following formula (1).
Effective chlorine concentration [%] = Amount of sodium thiosulfate dropped in water [mL] × 0.3546 / Amount of detergent composition collected [g] (1)
上記方法による有効塩素濃度の測定を、洗浄剤組成物の調製直後(0日)、45℃/30日保管後、45℃/15日保管後、25℃/45日保管後又は25℃/4日保管後にそれぞれ実施した。
表1-1、表1-2及び表2には、調製直後及び45℃/30日保管後、45℃/15日保管後、25℃/45日保管後又は25℃/4日保管後の有効塩素量、及び、調製直後から保管後の間の有効塩素の減少率を示した。
The effective chlorine concentration was measured by the above method immediately after preparation of the cleaning composition (0 day), after storage at 45 ° C / 30 days, after storage at 45 ° C / 15 days, after storage at 25 ° C / 45 days, or at 25 ° C / 4. Each day was carried out after storage.
Table 1-1, Table 1-2 and Table 2 show that immediately after preparation and after storage at 45 ° C / 30 days, after storage at 45 ° C / 15 days, after storage at 25 ° C / 45 days or after storage at 25 ° C / 4 days. The amount of effective chlorine and the decrease rate of effective chlorine immediately after preparation and after storage were shown.
(スケール析出試験)
実施例14~24及び比較例5,6の洗浄剤組成物について、以下の手順でスケール析出試験を行った。
精製水に塩化カルシウム・二水塩4.41gを溶解して2000mlの溶液としたものを人工硬水として準備した。
200mlステンレスビーカーに人工硬水21g、洗浄剤組成物(水で2重量%に希釈した水溶液)10g、水道水169gを入れ、ラップで蓋をして90℃の恒温槽中で27時間加熱後、一晩放冷した。
その後、ステンレスビーカー内の溶液を200mlガラスビーカーにゆっくり移し、空になったステンレスビーカーを乾燥させた。
乾燥後のステンレスビーカーの底面を観察し、白い付着物(スケール)があるかどうかを目視確認し、下記基準にて評価した。
○:スケールの付着がない。
×:スケールの付着がある。
(Scale deposition test)
For the cleaning compositions of Examples 14 to 24 and Comparative Examples 5 and 6, a scale deposition test was performed according to the following procedure.
A solution prepared by dissolving 4.41 g of calcium chloride dihydrate in purified water to give a 2000 ml solution was prepared as artificial hard water.
In a 200 ml stainless beaker, put 21 g of artificial hard water, 10 g of a detergent composition (aqueous solution diluted to 2% by weight with water) and 169 g of tap water, cover with a wrap and heat in a 90 ° C. constant temperature bath for 27 hours. Allowed to cool overnight.
Thereafter, the solution in the stainless beaker was slowly transferred to a 200 ml glass beaker, and the empty stainless beaker was dried.
The bottom surface of the dried stainless beaker was observed to visually check whether there was a white deposit (scale) and evaluated according to the following criteria.
○: No scale adhesion.
X: There is scale adhesion.
これらの評価結果から、末端にアセタール構造を有する非イオン性界面活性剤を含み、アルカリ剤としてアルカリ金属の水酸化物等を含む実施例1~30の洗浄剤組成物では、変色がなく、泡立ちが少なく、洗浄力が高いことがわかる。
一方、比較例1~4、7~10の洗浄剤組成物は、末端がヒドロキシル基である界面活性剤を含んでいるため、泡立ちが大きく、自動食器洗浄機での使用に適していなかった。
このことから、末端がヒドロキシル基である非イオン性界面活性剤を含む洗浄剤組成物は、起泡性が高くなりやすいことがわかる。
また、末端がヒドロキシル基である界面活性剤を含む比較例3、4の洗浄剤組成物では変色が見られた。
また、比較例5、6の洗浄剤組成物は、アルカリ剤として炭酸ナトリウムを含むため、洗浄力が不足しているのに加え、スケール析出が多くみられた。
From these evaluation results, the detergent compositions of Examples 1 to 30 containing a nonionic surfactant having an acetal structure at the end and containing an alkali metal hydroxide or the like as an alkali agent have no discoloration and foaming. There is little and it turns out that detergency is high.
On the other hand, since the detergent compositions of Comparative Examples 1 to 4 and 7 to 10 contained a surfactant having a hydroxyl group at the end, foaming was large and it was not suitable for use in an automatic dishwasher.
From this, it can be seen that a detergent composition containing a nonionic surfactant having a hydroxyl group at the end tends to have high foamability.
Further, discoloration was observed in the cleaning compositions of Comparative Examples 3 and 4 containing a surfactant having a hydroxyl group at the end.
Moreover, since the cleaning composition of Comparative Examples 5 and 6 contained sodium carbonate as an alkaline agent, in addition to lack of cleaning power, a large amount of scale deposition was observed.
塩素安定性試験については、界面活性剤の種類のみが異なる実施例1と比較例1、実施例3と比較例2をそれぞれ対比して評価する。また、実施例22~24と比較例7~10も界面活性剤の種類が異なる他は類似した組成であり、対比して塩素安定性を評価可能な組み合わせである。
それぞれ、対比する実施例と比較例を比較すると、末端にアセタール構造を有する界面活性剤を含む各実施例の洗浄剤組成物の方が、有効塩素の減少率が低くなっていた。
これらの結果から、末端にアセタール構造を有する界面活性剤を含む洗浄剤組成物は、塩素安定性に優れることがわかった。
For the chlorine stability test, Example 1 and Comparative Example 1, which differ only in the type of surfactant, and Example 3 and Comparative Example 2 are compared and evaluated. Further, Examples 22 to 24 and Comparative Examples 7 to 10 have similar compositions except that the types of the surfactants are different, and in contrast, are combinations capable of evaluating chlorine stability.
When comparing the comparative example and the comparative example, the cleaning composition of each example containing a surfactant having an acetal structure at the end had a lower reduction rate of effective chlorine.
From these results, it was found that a detergent composition containing a surfactant having an acetal structure at the terminal is excellent in chlorine stability.

Claims (9)

  1. 下記(A)及び(B)成分を含有することを特徴とする固形洗浄剤組成物。
    (A)末端に一般式(1)で示される構造を有する非イオン性界面活性剤
    (B)アルカリ金属の水酸化物、メタケイ酸のアルカリ金属塩、セスキケイ酸のアルカリ金属塩、オルソケイ酸のアルカリ金属塩、オルソリン酸のアルカリ金属塩、ピロリン酸のアルカリ金属塩、テトラリン酸のアルカリ金属塩、ペンタリン酸のアルカリ金属塩、ヘキサリン酸のアルカリ金属塩及びカルボン酸のアルカリ金属塩からなる群から選択された少なくとも1種のアルカリ剤
    Figure JPOXMLDOC01-appb-C000001
    (式中、Rは水素原子またはアルキル基、R及びRはエーテル結合を含んでもよい炭化水素基であり、RとRは環を形成していてもよく、AOは、同一又は異なっていてもよいオキシアルキレン基であり、nは、オキシアルキレン基の平均付加モル数を表し、1~400の数である。)
    A solid detergent composition comprising the following components (A) and (B):
    (A) Nonionic surfactant having the structure represented by the general formula (1) at the terminal (B) Alkali metal hydroxide, alkali metal salt of metasilicic acid, alkali metal salt of sesquisilicate, alkali of orthosilicate Selected from the group consisting of metal salts, alkali metal salts of orthophosphoric acid, alkali metal salts of pyrophosphoric acid, alkali metal salts of tetraphosphoric acid, alkali metal salts of pentaphosphoric acid, alkali metal salts of hexaphosphoric acid and alkali metal salts of carboxylic acid And at least one alkaline agent
    Figure JPOXMLDOC01-appb-C000001
    (Wherein R 1 is a hydrogen atom or an alkyl group, R 2 and R 3 are hydrocarbon groups that may contain an ether bond, R 2 and R 3 may form a ring, and AO is the same Or an oxyalkylene group which may be different, and n represents the average number of added moles of the oxyalkylene group and is a number of 1 to 400.)
  2. 前記非イオン性界面活性剤は、末端に一般式(2)で示される構造を有する請求項1に記載の固形洗浄剤組成物。
    Figure JPOXMLDOC01-appb-C000002
    (式中、mは3以上の整数である。)
    The said nonionic surfactant is a solid cleaning composition of Claim 1 which has a structure shown by General formula (2) at the terminal.
    Figure JPOXMLDOC01-appb-C000002
    (In the formula, m is an integer of 3 or more.)
  3. 前記非イオン性界面活性剤は、末端に一般式(3)で示される構造を有する請求項1又は2に記載の固形洗浄剤組成物。
    Figure JPOXMLDOC01-appb-C000003
    The said nonionic surfactant is a solid cleaning composition of Claim 1 or 2 which has a structure shown by General formula (3) at the terminal.
    Figure JPOXMLDOC01-appb-C000003
  4. 前記非イオン性界面活性剤は、末端に一般式(4)で示される構造を有する請求項1~3のいずれかに記載の固形洗浄剤組成物。
    Figure JPOXMLDOC01-appb-C000004
    (式中、Xはアルコールの残基又はアルキルフェノールの残基である。)
    The solid detergent composition according to any one of claims 1 to 3, wherein the nonionic surfactant has a structure represented by the general formula (4) at a terminal.
    Figure JPOXMLDOC01-appb-C000004
    (In the formula, X is an alcohol residue or an alkylphenol residue.)
  5. (C)塩素剤をさらに含有する請求項1~4のいずれかに記載の固形洗浄剤組成物。 5. The solid detergent composition according to claim 1, further comprising (C) a chlorine agent.
  6. 前記塩素剤が、塩素化イソシアヌール酸ナトリウム、塩素化イソシアヌール酸カリウム、トリクロロイソシアヌール酸、次亜塩素酸ナトリウム、次亜塩素酸カルシウム及び次亜塩素酸カリウムからなる群から選択された少なくとも1種である請求項5に記載の固形洗浄剤組成物。 The chlorinating agent is at least one selected from the group consisting of sodium chlorinated isocyanurate, potassium chlorinated isocyanurate, trichloroisocyanuric acid, sodium hypochlorite, calcium hypochlorite and potassium hypochlorite. The solid detergent composition according to claim 5, which is a seed.
  7. 前記非イオン性界面活性剤は、末端に一般式(5)で示される構造を有する非イオン性界面活性剤のアルキレンオキサイド末端のヒドロキシル基に対して付加反応を行うことにより末端に一般式(1)で示されるアセタール構造を設けることにより製造されている請求項1~6のいずれかに記載の固形洗浄剤組成物。
    Figure JPOXMLDOC01-appb-C000005
    The nonionic surfactant is subjected to an addition reaction with respect to the hydroxyl group at the end of the alkylene oxide of the nonionic surfactant having the structure represented by the general formula (5) at the terminal to thereby generate the general formula (1 The solid detergent composition according to any one of claims 1 to 6, which is produced by providing an acetal structure represented by
    Figure JPOXMLDOC01-appb-C000005
  8. 前記付加反応は、酸触媒下でヒドロキシル基にジヒドロピランを付加させる反応である請求項7に記載の固形洗浄剤組成物。 The solid detergent composition according to claim 7, wherein the addition reaction is a reaction in which dihydropyran is added to a hydroxyl group under an acid catalyst.
  9. 剤形が、粉末、顆粒、錠剤、タブレット、フレーク又はブロックである請求項1~8のいずれかに記載の固形洗浄剤組成物。 The solid detergent composition according to any one of claims 1 to 8, wherein the dosage form is a powder, granule, tablet, tablet, flake or block.
PCT/JP2014/062412 2013-06-18 2014-05-08 Solid cleaning agent composition WO2014203643A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201480035170.1A CN105339480A (en) 2013-06-18 2014-05-08 Solid cleaning agent composition
JP2015522653A JPWO2014203643A1 (en) 2013-06-18 2014-05-08 Solid detergent composition
KR1020157032441A KR20160020414A (en) 2013-06-18 2014-05-08 Solid cleaning agent composition
PH12015502789A PH12015502789A1 (en) 2013-06-18 2015-12-16 Solid cleaning agent composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013127912 2013-06-18
JP2013-127912 2013-06-18

Publications (1)

Publication Number Publication Date
WO2014203643A1 true WO2014203643A1 (en) 2014-12-24

Family

ID=52104386

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/062412 WO2014203643A1 (en) 2013-06-18 2014-05-08 Solid cleaning agent composition

Country Status (5)

Country Link
JP (1) JPWO2014203643A1 (en)
KR (1) KR20160020414A (en)
CN (1) CN105339480A (en)
PH (1) PH12015502789A1 (en)
WO (1) WO2014203643A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015170634A1 (en) * 2014-05-08 2015-11-12 株式会社ニイタカ Washing method
WO2015170637A1 (en) * 2014-05-08 2015-11-12 株式会社ニイタカ Non-ionic surfactant and non-ionic surfactant production method
WO2015170635A1 (en) * 2014-05-08 2015-11-12 株式会社ニイタカ Non-ionic surfactant and non-ionic surfactant production method
WO2016093188A1 (en) * 2014-12-12 2016-06-16 株式会社ニイタカ Non-ionic surfactant and method for producing non-ionic surfactant
JP2017186549A (en) * 2016-03-31 2017-10-12 株式会社Adeka Fused solid type detergent composition
JP2017222802A (en) * 2016-06-16 2017-12-21 株式会社ニイタカ Defoaming agent, method for producing defoaming agent, and detergent composition
JP2020518697A (en) * 2017-05-01 2020-06-25 エコラボ ユーエスエー インコーポレイティド Alkaline surface cleaning detergent for aluminum surface

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107266401A (en) * 2012-11-09 2017-10-20 株式会社新高 Cleansing composition
CN110055139B (en) * 2019-04-08 2021-06-22 广东翔鹰化工有限公司 Cleaning composition

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003516432A (en) * 1999-12-08 2003-05-13 ザ、プロクター、エンド、ギャンブル、カンパニー Poly (oxyalkylated) alcohol surfactants terminated with ether
JP2003516468A (en) * 1999-12-08 2003-05-13 ザ、プロクター、エンド、ギャンブル、カンパニー Compositions comprising ether-terminated poly (oxyalkylated) alcohol surfactants
JP2003516424A (en) * 1999-12-08 2003-05-13 ザ、プロクター、エンド、ギャンブル、カンパニー Ether-terminated poly (oxyalkylated) alcohol surfactant
JP2003516469A (en) * 1999-12-08 2003-05-13 ザ、プロクター、エンド、ギャンブル、カンパニー Compositions comprising ether-terminated poly (oxyalkylated) alcohol surfactants
WO2014073644A2 (en) * 2012-11-09 2014-05-15 株式会社ニイタカ Detergent composition

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001107092A (en) 1999-10-04 2001-04-17 Asahi Denka Kogyo Kk Detergent for automatic dish washer
US6844309B1 (en) * 1999-12-08 2005-01-18 The Procter & Gamble Company Ether-capped poly(oxyalkylated) alcohol surfactants
AU2079401A (en) * 1999-12-08 2001-06-18 Procter & Gamble Company, The Process for preparing ether-capped poly(oxyalkylated) alcohol surfactants
US6686330B2 (en) * 1999-12-08 2004-02-03 The Procter & Gamble Company Compositions including ether-capped poly (oxyalkylated) alcohol wetting agents
JP4230328B2 (en) 2003-10-03 2009-02-25 花王株式会社 Liquid detergent composition

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003516432A (en) * 1999-12-08 2003-05-13 ザ、プロクター、エンド、ギャンブル、カンパニー Poly (oxyalkylated) alcohol surfactants terminated with ether
JP2003516468A (en) * 1999-12-08 2003-05-13 ザ、プロクター、エンド、ギャンブル、カンパニー Compositions comprising ether-terminated poly (oxyalkylated) alcohol surfactants
JP2003516424A (en) * 1999-12-08 2003-05-13 ザ、プロクター、エンド、ギャンブル、カンパニー Ether-terminated poly (oxyalkylated) alcohol surfactant
JP2003516469A (en) * 1999-12-08 2003-05-13 ザ、プロクター、エンド、ギャンブル、カンパニー Compositions comprising ether-terminated poly (oxyalkylated) alcohol surfactants
WO2014073644A2 (en) * 2012-11-09 2014-05-15 株式会社ニイタカ Detergent composition

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015170634A1 (en) * 2014-05-08 2015-11-12 株式会社ニイタカ Washing method
WO2015170637A1 (en) * 2014-05-08 2015-11-12 株式会社ニイタカ Non-ionic surfactant and non-ionic surfactant production method
WO2015170635A1 (en) * 2014-05-08 2015-11-12 株式会社ニイタカ Non-ionic surfactant and non-ionic surfactant production method
WO2016093188A1 (en) * 2014-12-12 2016-06-16 株式会社ニイタカ Non-ionic surfactant and method for producing non-ionic surfactant
JP2016113389A (en) * 2014-12-12 2016-06-23 株式会社ニイタカ Nonionic surfactant and method for producing nonionic surfactant
JP2017186549A (en) * 2016-03-31 2017-10-12 株式会社Adeka Fused solid type detergent composition
JP2017222802A (en) * 2016-06-16 2017-12-21 株式会社ニイタカ Defoaming agent, method for producing defoaming agent, and detergent composition
JP2020518697A (en) * 2017-05-01 2020-06-25 エコラボ ユーエスエー インコーポレイティド Alkaline surface cleaning detergent for aluminum surface
JP2022031716A (en) * 2017-05-01 2022-02-22 エコラボ ユーエスエー インコーポレイティド Alkaline warewash detergent for aluminum surfaces
JP7305552B2 (en) 2017-05-01 2023-07-10 エコラボ ユーエスエー インコーポレイティド Alkaline dishwashing detergent for aluminum surfaces

Also Published As

Publication number Publication date
JPWO2014203643A1 (en) 2017-02-23
CN105339480A (en) 2016-02-17
PH12015502789A1 (en) 2016-03-21
KR20160020414A (en) 2016-02-23

Similar Documents

Publication Publication Date Title
WO2014203643A1 (en) Solid cleaning agent composition
JP6263475B2 (en) Cleaning composition
JP5642911B1 (en) Nonionic surfactant and method for producing nonionic surfactant
WO2014203642A1 (en) Cleaning agent composition
CN110382678B (en) Dispersant system for automatic dishwashing formulations
JP5857167B1 (en) Method for producing nonionic surfactant
JP6371108B2 (en) Cleaning method
JP5876923B1 (en) Nonionic surfactant and method for producing nonionic surfactant
JP5820501B1 (en) Nonionic surfactant and method for producing nonionic surfactant
JP5879005B2 (en) Nonionic surfactant and method for producing nonionic surfactant
WO2017208472A1 (en) Detergent composition for automatic dishwasher
JP5833179B2 (en) Nonionic surfactant and method for producing nonionic surfactant
JP5884002B1 (en) Nonionic surfactant and method for producing nonionic surfactant
JP6468831B2 (en) Nonionic surfactant and method for producing nonionic surfactant
JP2017222802A (en) Defoaming agent, method for producing defoaming agent, and detergent composition
WO2020242813A1 (en) Dispersant polymer for automatic dishwashing
JP2011173938A (en) Method for producing polymer builder for detergent
MXPA96005581A (en) Concentrates for cleaning, which contain high levels of alc

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480035170.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14813119

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015522653

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20157032441

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12015502789

Country of ref document: PH

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14813119

Country of ref document: EP

Kind code of ref document: A1