WO2014203636A1 - Molded glass article manufacturing method and manufacturing device - Google Patents

Molded glass article manufacturing method and manufacturing device Download PDF

Info

Publication number
WO2014203636A1
WO2014203636A1 PCT/JP2014/062233 JP2014062233W WO2014203636A1 WO 2014203636 A1 WO2014203636 A1 WO 2014203636A1 JP 2014062233 W JP2014062233 W JP 2014062233W WO 2014203636 A1 WO2014203636 A1 WO 2014203636A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
molten glass
mold
pair
molding
Prior art date
Application number
PCT/JP2014/062233
Other languages
French (fr)
Japanese (ja)
Inventor
博久 北野
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Publication of WO2014203636A1 publication Critical patent/WO2014203636A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B7/00Distributors for the molten glass; Means for taking-off charges of molten glass; Producing the gob, e.g. controlling the gob shape, weight or delivery tact
    • C03B7/10Cutting-off or severing the glass flow with the aid of knives or scissors or non-contacting cutting means, e.g. a gas jet; Construction of the blades used
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/06Construction of plunger or mould
    • C03B11/08Construction of plunger or mould for making solid articles, e.g. lenses
    • C03B11/082Construction of plunger or mould for making solid articles, e.g. lenses having profiled, patterned or microstructured surfaces
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/02Press-mould materials
    • C03B2215/05Press-mould die materials
    • C03B2215/06Metals or alloys
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/50Structural details of the press-mould assembly
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/72Barrel presses or equivalent, e.g. of the ring mould type
    • C03B2215/73Barrel presses or equivalent, e.g. of the ring mould type with means to allow glass overflow in a direction perpendicular to the press axis

Definitions

  • the present invention relates to a glass molded product manufacturing method and a manufacturing apparatus for manufacturing a glass molded product by press-molding molten glass using a die placed opposite to each other based on a so-called direct press method.
  • a thin cover glass provided in a display device typified by a smartphone or a tablet terminal is widely used.
  • the cover glass is a portion that appears exposed on the outer surface of a display device or the like, and its front and back surfaces are required to be mirror-finished.
  • Mirror finish can be realized by polishing the glass blank.
  • a separate polishing process is required in addition to various processes for manufacturing a glass blank, which complicates the manufacturing process and leads to an increase in manufacturing cost. End up.
  • a cover glass having a complicated three-dimensional shape such as a substantially box shape composed of a main plate portion and a side plate portion connected to the periphery of the main plate portion is required.
  • a cover glass having such a complicated three-dimensional shape it may be difficult to polish the surface due to the shape.
  • a so-called direct press method is proposed in which molten glass is directly pressure-molded into a final shape or a shape close thereto using a mold.
  • the direct press method there is an advantage that the surface can be finished in a mirror surface or in a state close to it without performing a polishing process on the surface.
  • Patent Document 1 Japanese Patent Laid-Open No. 2000-319026
  • Patent Document 2 Japanese Patent Laid-Open No. 2012-214361 disclose a specific manufacturing method in the case of manufacturing a glass molded article by applying the direct press method described above.
  • molten glass is supplied to the molding surface of the lower mold, and in this state, the molten glass is sandwiched in the vertical direction using the upper mold and the lower mold.
  • a glass molded product is manufactured by pressure molding.
  • the molten glass is in contact with the lower mold prior to the upper mold contacting the molten glass.
  • the molten glass in the part in contact with the glass is rapidly cooled, a large temperature difference will occur in the molten glass, and not only a glass molded product in a good state can be obtained, but also the molten glass is cured. As the process proceeds rapidly, it may be difficult to form the molten glass into a thin plate shape.
  • the glass molded product to be manufactured has a non-disc shape (for example, a rectangular plate shape or the above-mentioned substantially box shape)
  • a non-disc shape for example, a rectangular plate shape or the above-mentioned substantially box shape
  • the present invention has been made to solve such problems, and is a novel glass based on the direct press method that can efficiently produce a thin glass molded product with excellent moldability. It aims at providing the manufacturing method and manufacturing apparatus of a molded article.
  • the method for producing a glass molded product according to the present invention includes a step of dropping molten glass, a step of receiving the dropped molten glass in a reservoir receiving portion, and a pressing portion for receiving the molten glass stored in the reservoir receiving portion.
  • a step of pressure-molding by sandwiching the molten glass from both sides along the thickness direction using a pair of molding dies.
  • An apparatus for manufacturing a glass molded product according to the present invention includes a material supply unit that drops molten glass, a reservoir receiving unit that stores the dropped molten glass, and a press that presses the molten glass stored in the reservoir receiving unit.
  • An extrusion passage including a slit-like opening for extruding the molten glass pressed by the pressing portion toward the outside of the reservoir receiving portion, and a substantially plate shape by being extruded from the extrusion passage.
  • a pair of molding die parts that are pressure-molded by sandwiching the formed molten glass from both sides along the thickness direction.
  • the present invention it is possible to provide a glass molded product manufacturing method and a manufacturing apparatus based on the direct press method capable of efficiently manufacturing a thin glass molded product with excellent moldability.
  • FIG. 2 is a schematic cross-sectional view taken along line II-II of the display device shown in FIG.
  • It is a schematic block diagram of the manufacturing apparatus of the glass molded product in embodiment of this invention.
  • It is a schematic cross section of the state which combined the 1st metal mold
  • FIG. 5 which presses a molten glass using a piston. It is a figure which shows the process of pressure-molding molten glass shown in FIG. It is a figure which shows the process of canceling
  • FIG. 1 is a schematic perspective view of a state in which a display device including a cover glass manufactured according to the method for manufacturing a glass molded product in the embodiment of the present invention is partially disassembled
  • FIG. 2 is a display device shown in FIG. It is a schematic cross section along the II-II line.
  • the display device 100 has a flat and substantially rectangular shape as a whole, and covers the cover glass 110, a flat plate-shaped outer plate 120, and the outer plate 120. It mainly includes a circuit board 130 arranged, a display 140 and a speaker 131 mounted on the circuit board 130. The upper surface of the display 140 constitutes an image display unit 142.
  • the cover glass 110 is made of a glass molded product formed by a direct press method.
  • the cover glass 110 is assembled on the exterior plate 120 from above (along the arrow AR direction in the drawing) so as to seal the internal components represented by the circuit board 130 and the display 140 with the exterior plate 120. Attached.
  • the cover glass 110 has a substantially box shape, and is provided on the periphery of the main plate portion 111 and a flat main plate portion 111 having a substantially rectangular shape in plan view provided so as to cover the image display portion 142 of the display 140. And four side plate portions 112 fixed to the exterior plate 120 by being continuously provided downward from the four sides. Thereby, the cover glass 110 has the front surface 110a exposed to the outside of the display device 100 after the assembly and the back surface 110b not exposed to the outside.
  • a hole 113 is provided at a position corresponding to the speaker 131 of the cover glass 110.
  • the hole 113 passes through the main plate 111 of the cover glass 110 so as to reach the back surface 110b from the front surface 110a. As a result, the speaker 131 is exposed to the outside through the hole 113.
  • the light L including predetermined image information emitted from the image display unit 142 is directed from the back surface 110 b side of the cover glass 110 toward the front surface 110 a side. 110 is transmitted.
  • the image information displayed on the image display unit 142 is recognized by the user.
  • the front surface 110a of the cover glass 110 constitutes the display surface of the touch panel, the front surface 110a is pressed by the user's fingers or a touch pen.
  • a substantially box-shaped cover having a flat main plate portion 111 having a substantially rectangular shape in plan view and four side plate portions 112 arranged continuously from four sides located at the periphery of the main plate portion 111.
  • a cover glass having a shape in which the side plate portion is continuously provided from only a part of the peripheral edge of the flat plate-like main plate portion may be used. You may use the cover glass which consists only of a flat main plate part without having.
  • the shape of the main plate portion is not limited to a substantially rectangular shape in plan view, and other shapes may be used, and the shape of the side plate portion may be inclined or curved.
  • the linear expansion coefficient ⁇ of the cover glass 110 is preferably 70 [ ⁇ 10 ⁇ 7 / ° C.] or more and 110 [ ⁇ 10 ⁇ 7 / ° C.] or less in a temperature range of 100 [° C.] or more and 300 [° C.] or less.
  • a glass having a linear expansion coefficient ⁇ of 98 [ ⁇ 10 ⁇ 7 / ° C.] in the range of 100 [° C.] to 300 [° C.] may be used.
  • the glass viscosity is ⁇ [dPa ⁇ s]
  • the outer shape of the cover glass 110 is preferably in a range of 40 [mm] ⁇ 40 [mm] or more and 300 [mm] ⁇ 300 [mm] or less in a plan view. Moreover, it is preferable that the total height along the normal direction of the front surface 110a of the main plate portion 111 of the cover glass 110, that is, the total height of the side plate portion 112 is 1 [mm] or more and 10 [mm] or less. Within such a range, the glass molded product manufacturing method and manufacturing apparatus in the present embodiment to be described later can be used particularly preferably.
  • the front surface 110a and the back surface 110b of the cover glass 110 must both be mirror-finished or close to this state.
  • the surface roughness of the front surface 110a and the back surface 110b of the cover glass 110 is preferably set to approximately 0.5 [nm] or more and 20 [nm] or less.
  • the manufacturing method and the manufacturing apparatus of the molded product can form the cover glass 110 so as to satisfy the conditions.
  • FIG. 3 is a schematic configuration diagram of a glass molded product manufacturing apparatus according to an embodiment of the present invention.
  • FIG. 4 is a schematic cross-sectional view of a state in which the first mold, the auxiliary mold, the piston, and the second mold shown in FIG. 3 are combined. Next, with reference to these FIG. 3 and FIG. 4, the structure of the manufacturing apparatus of the glass molded product in this Embodiment is demonstrated.
  • the apparatus for producing a glass molded product in the present embodiment produces a cover glass as a glass molded product based on a so-called direct press method, and produces two cover glasses at a time in one production cycle, A plurality of cover glasses are sequentially manufactured by repeating the manufacturing cycle.
  • the glass molded product manufacturing apparatus 1 mainly includes a material supply unit 10, a molding unit 20, and a control unit 40.
  • the material supply unit 10 is a part for melting a glass material and supplying it to the molding unit 20, and the molding unit 20 is a part for pressure-molding the supplied glass material using a mold.
  • the control unit 40 is a part that controls the operations of the material supply unit 10 and the molding unit 20 described above.
  • the material supply unit 10 includes a continuous melting furnace 11, a nozzle unit 12, an outflow pipe 13, a cutter 14, and a cutter driving mechanism 15.
  • the continuous melting furnace 11 melts a glass material and stores the molten glass
  • the nozzle unit 12 introduces the molten glass stored in the continuous melting furnace 11 into the outflow pipe 13.
  • the outflow pipe 13 has an outflow port at the lower end thereof, and allows the molten glass 50 to flow out continuously from the outflow port vertically downward.
  • the cutter 14 cuts the molten glass 50 flowing out from the outflow pipe 13 and drops the cut portion, and is driven by the cutter driving mechanism 15 described above.
  • the cutter 14 is composed of a pair of planar shear blades, and the pair of shear blades are abutted below the outflow pipe 13 to cut the molten glass 50.
  • the cutter driving mechanism 15 receives a command from the control unit 40 and drives the cutter 14.
  • various types can be used, but preferably an air cylinder, a servo motor, a hydraulic cylinder, a linear motor, a stepping motor, or the like can be used.
  • the molding unit 20 includes a first mold 21 as a first member, an auxiliary mold 22 as a second member, a piston 23 as a third member, and a pair of second molds 24 as a fourth member, 24, a first mold drive mechanism 25, an auxiliary mold drive mechanism 26, a piston drive mechanism 27, and a pair of second mold drive mechanisms 28, 28.
  • the first mold 21 moves along the horizontal direction by being driven by the first mold drive mechanism 25 described above.
  • the auxiliary mold 22 moves along the horizontal direction and the vertical direction by being driven by the above-described auxiliary mold drive mechanism 26.
  • the piston 23 and the pair of second molds 24, 24 move along the vertical direction by being driven by the piston drive mechanism 27 and the pair of second mold drive mechanisms 28, 28, respectively.
  • the first mold 21, the auxiliary mold 22, the piston 23, and the pair of second molds 24, 24 are combined by placing them close to each other in a pressure molding process described later.
  • the pressure chamber 31, the pair of extrusion channels 33, 33, the pair of cavities 34, 34, and the pair of escape portions 35, 35 are provided.
  • the pressing chamber 31 is located at the central portion along the horizontal direction of the first mold 21, the auxiliary mold 22, the piston 23 and the pair of second molds 24, 24 in a combined state, which will be described later.
  • the reservoir receiving part 32 which receives the molten glass 50 in the reservoir receiving process is included.
  • the pair of extrusion channels 33 are positioned so as to sandwich the above-described pressing chamber 31 along the horizontal direction. Thereby, each of a pair of extrusion flow path 33 is each connected to the press chamber 31 in the edge part along the horizontal direction.
  • the pair of cavities 34 and 34 are positioned so as to sandwich the above-described pressing chamber 31 and the pair of extrusion channels 33 and 33 along the horizontal direction. Thereby, a pair of cavities 34 and 34 are matched and connected with a pair of extrusion flow paths 33 and 33 in the edge part along those horizontal directions, respectively.
  • the pair of relief portions 35, 35 are positioned so as to sandwich the above-described pressing chamber 31, the pair of extrusion channels 33, 33, and the pair of cavities 34, 34 along the horizontal direction. Thereby, a pair of relief parts 35 and 35 are matched and connected with a pair of cavities 34 and 34, respectively in the edge part along those horizontal directions.
  • the first mold 21 includes a reservoir receiving surface 21a that defines the above-described reservoir receiving portion 32 (pressing chamber 31), and a pair of first flow path forming surfaces 21b that respectively define the above-described pair of extrusion channels 33 and 33. , 21b, a pair of first molding surfaces 21c, 21c that respectively define the pair of cavities 34, 34, and a portion that respectively define the pair of relief portions 35, 35 described above.
  • the auxiliary mold 22 includes a portion that defines the above-described pressing chamber 31, a pair of second flow path forming surfaces 22b and 22b that respectively define the above-described pair of extrusion flow paths 33 and 33, and the above-described pair of relief portions. 35 and 35, a piston moving passage 22e through which the piston 23 is inserted, and a pair of second mold moving passages 22f and 22f through which the pair of second molds are inserted.
  • the first mold 21 is disposed vertically above the first mold 21 so as to face the first mold 21.
  • the piston 23 includes a pressing surface 23 a that defines the pressing chamber 31 described above, and is inserted into a piston moving passage 22 e provided in the auxiliary mold 22 so as to face the first mold 21. It is arranged vertically above the first mold 21.
  • the pair of second molds 24, 24 include second molding surfaces 24 c, 24 c that respectively define the pair of cavities 34, 34 described above, and the pair of second mold movements provided on the auxiliary mold 22.
  • the first mold 21 is disposed vertically above the first mold 21 so as to face the first mold 21.
  • the portion including the reservoir receiving surface 21a of the first mold 21 corresponds to a reservoir receiving portion 32 that receives the molten glass 50 in a reservoir receiving process described later, and the piston 23 causes the molten glass 50 to be received in a pressing process described later. Corresponds to the pressing part to be pressed.
  • the portion including the pair of first molding surfaces 21c and 21c of the first mold 21 and the pair of second molds 24 and 24 are formed by pressure molding the molten glass 50 in a pressure molding process described later. Corresponds to the mold part.
  • each of the pair of extrusion channels 33, 33 is configured to have a slit-shaped opening. More specifically, as described above, each of the pair of extrusion channels 33 and 33 includes the first channel forming surface 21b of the first mold 21 and the second channel forming surface 22b of the auxiliary mold 22.
  • the cross-sectional shape is configured to have an elongated, substantially rectangular opening having a major axis and a minor axis. Yes.
  • the major axis of the slit-shaped opening is arranged so as to extend along the horizontal direction
  • the minor axis of the slit-like opening is arranged so as to extend along the vertical direction. Yes.
  • the pressing chamber 31 is a combination of the first mold 21, the auxiliary mold 22, and the piston 23 and the reservoir receiving surface 21 a of the first mold 21 and one of the auxiliary molds 22 as described above. This is defined by the portion and the pressing surface 23 a of the piston 23, but the above-mentioned one of the reservoir receiving surface 21 a of the first mold 21 and the auxiliary mold 22 adjacent to the pair of extrusion flow paths 33, 33.
  • the portion is configured by inclined surfaces 21d, 21d, 22d, and 22d having a shape inclined toward the corresponding extrusion flow path 33 side.
  • each of the pair of cavities 34 and 34 has a shape corresponding to a cover glass as a glass molded article to be manufactured, and the pair of first molding surfaces 21c and 21c of the first mold 21 and the pair of first moldings.
  • the second mold surfaces 24c and 24c are defined so as to have a substantially box-shaped space.
  • the part adjacent to a pair of extrusion flow paths 33 and 33 mentioned above among a pair of cavities 34 and 34 is the side in which the main board part is located among the side plate parts of the cover glass as a glass molded article which should be manufactured. Corresponds to a portion forming a non-product region continuously provided from the end located on the opposite side.
  • the material for forming the first mold 21, the auxiliary mold 22, the piston 23 and the pair of second molds 24, 24 is a super steel material mainly composed of a heat-resistant alloy (stainless alloy, etc.) or tungsten carbide.
  • various ceramics silicon carbide, silicon nitride, aluminum nitride, etc.
  • composite materials containing carbon, and the like can be appropriately selected from known materials as molds for producing glass molded articles.
  • the first mold 21, the auxiliary mold 22, the piston 23, and the pair of second molds 24, 24 may be made of the same material, or may be made of different materials. Good.
  • the surfaces of the first mold 21, the auxiliary mold 22, the piston 23, and the pair of second molds 24, 24 are provided with a predetermined coating layer from the viewpoint of improving durability and preventing fusion with the glass material.
  • the material of the coating layer is not particularly limited.
  • various metals chromium, aluminum, titanium, etc.
  • nitrides chromium nitride, aluminum nitride, titanium nitride, boron nitride, etc.
  • oxides chromium oxide
  • the method for forming the coating layer is not particularly limited, and for example, a vacuum deposition method, a sputtering method, a CVD method, or the like can be used.
  • the first mold 21, the auxiliary mold 22, the piston 23, and the pair of second molds 24, 24 are configured to be heated to a predetermined temperature by a heating means (not shown).
  • the heating means is not particularly limited, but a known heating means can be appropriately selected and used.
  • a cartridge heater that is used by being embedded inside the member to be heated a sheet heater that is used while being in contact with the outside of the member to be heated, an infrared heating device, a high-frequency induction heating device, or the like can be used as the heating means.
  • each of the first mold driving mechanism 25 and the auxiliary mold driving mechanism 26 receives a command from the control unit 40 and receives the first mold in the DR1 direction (horizontal direction) indicated by an arrow in the drawing. 21 and the auxiliary mold 22 are moved. As a result, the first mold 21 and the auxiliary mold 22 are provided with a position for receiving the molten glass 50 vertically below the outflow pipe 13 (dropping position P1) and a piston for press-molding the received molten glass 50 under pressure. 23 and a position facing the pair of second molds 24, 24 (molding position P2) and a position for taking out the glass molded product after pressure molding (takeout position P3).
  • the auxiliary mold drive mechanism 26 receives a command from the control unit 40, and moves the auxiliary mold 22 in the DR3 direction (vertical direction) indicated by an arrow in the drawing at the take-out position P3.
  • Various types can be used as the first mold driving mechanism 25 and the auxiliary mold driving mechanism 26, but a servo motor, an air cylinder, a hydraulic cylinder, a linear motor, a stepping motor, or a combination of these is preferably used. it can.
  • the piston drive mechanism 27 and the pair of second mold drive mechanisms 28, 28 receive a command from the control unit 40, respectively, and the piston 23 and the pair of second mold dies in the DR2 direction (vertical direction) indicated by an arrow in the drawing. 24, 24 are moved.
  • the piston 23 and the pair of second molds 24, 24 reciprocate between a vertically upper position and a vertically lower position, respectively. Therefore, when the first mold 21 and the auxiliary mold 22 are arranged at the molding position P2, the piston 23 and the pair of second molds 24, 24 move, so that the piston 23 and the pair of second molds are moved.
  • the molds 24, 24, the first mold 21 and the auxiliary mold 22 approach and separate from each other.
  • FIG. Various types can be used as the piston drive mechanism 27 and the pair of second mold drive mechanisms 28, 28, but preferably a servo motor, an air cylinder, a hydraulic cylinder, a linear motor, a stepping motor, or a combination thereof. Is available.
  • a mode for controlling the piston drive mechanism 27 by the control unit 40 a mode for controlling the position of the piston 23 (position control mode), a mode for controlling a load applied to the piston 23 (load control mode), and It is preferable that these two control modes can be switched.
  • the piston drive mechanism 27 is preferably configured to be able to press the molten glass 50 using the piston 23 with a pressing force of a maximum of 3 tons.
  • a mode for controlling the pair of second mold drive mechanisms 28, 28 by the control unit 40 a mode for controlling the position of the pair of second molds 24, 24 (position control mode) and a pair of second molds are controlled.
  • the pair of second mold drive mechanisms 28, 28 is configured to be capable of pressure-molding the molten glass 50 with a pressure of up to 3 tons using the pair of second mold drive mechanisms 28, 28. It is preferable that
  • the control unit 40 controls the operations of the cutter driving mechanism 15, the first mold driving mechanism 25, the auxiliary mold driving mechanism 26, the piston driving mechanism 27, and the pair of second mold driving mechanisms 28, 28 described above. That is, the control unit 40 determines the timing of cutting the molten glass 50 by the cutter 14, the timing of movement of the first mold 21, the timing of movement of the auxiliary mold 22, the timing of movement of the piston 23, and a pair of second molds. A series of sequences relating to the production of the glass molded product, such as the timing of movement of 24 and 24, is controlled.
  • FIG. 5 is a diagram showing a manufacturing flow according to the method for manufacturing a glass molded product in the embodiment of the present invention.
  • 6 to 14 FIG. 15A, and FIG. 15B are diagrams showing predetermined steps among the steps shown in FIG. Next, with reference to these FIG. 6 thru
  • the manufacturing method of the glass molded product in this Embodiment manufactures the cover glass as a glass molded product based on what is called a direct press method, and uses the manufacturing apparatus 1 of the glass molded product in this Embodiment mentioned above. Can be suitably implemented. Moreover, the manufacturing method of the glass molded product in this Embodiment manufactures two cover glasses at once by implementing the series of processes mentioned later in one manufacturing cycle, and the said manufacturing cycle is repeated. Thus, a plurality of cover glasses are sequentially manufactured.
  • the first mold 21, the auxiliary mold 22, the piston 23, and the pair of second molds 24, 24 described above are each predetermined in advance by the heating means described above. Heated to temperature.
  • the predetermined temperature means a temperature at which a good transfer surface can be formed on a cover glass as a glass molded product.
  • the temperature of the first mold 21, the auxiliary mold 22, the piston 23, and the pair of second molds 24, 24 is too low, the molten glass 50 is rapidly cooled, and the fluidity of the molten glass 50 is increased. Is impaired, and it becomes difficult to form a highly accurate transfer surface.
  • the temperature of the first mold 21, the auxiliary mold 22, the piston 23 and the pair of second molds 24, 24 is excessively increased, fusion with the molten glass 50 occurs. This is not preferable because the life of the first mold 21, the auxiliary mold 22, the piston 23, and the pair of second molds 24, 24 may be shortened.
  • the temperature of the first mold 21, the auxiliary mold 22, the piston 23, and the pair of second molds 24, 24 is (Tg-100) with respect to the glass transition point Tg [° C.] of the glass material to be pressure-molded. ) Set in the range of [° C.] to (Tg + 100) [° C.].
  • Tg glass transition point
  • Tg + 100 glass transition point
  • An appropriate temperature is determined in consideration of various conditions.
  • the heating temperature of the first mold 21, the auxiliary mold 22, the piston 23, and the pair of second molds 24, 24 may be the same temperature or different temperatures.
  • the first mold 21, the auxiliary mold 22, the piston 23 and the pair of second molds 24, 24 are heated to a predetermined temperature and then melted in a high temperature state. Since the glass 50 is pressure-molded using the first mold 21 and the pair of second molds 24, 24, the first mold 21, the auxiliary mold 22, the piston 23, and the pair of second molds. A series of processes to be described later can be performed while keeping the temperature of the molds 24, 24 constant. Furthermore, a plurality of cover glasses can be sequentially manufactured while keeping the temperature of the first mold 21, the auxiliary mold 22, the piston 23, and the pair of second molds 24, 24 constant. Therefore, since it is not necessary to repeat heating and cooling of the first mold 21, the auxiliary mold 22, the piston 23, and the pair of second molds 24 and 24 every time the cover glass is manufactured, the efficiency is extremely short. A number of cover glasses can be manufactured well.
  • keeping the temperatures of the first mold 21, the auxiliary mold 22, the piston 23, and the pair of second molds 24, 24 constant means that the first mold 21, the auxiliary mold 22, the piston 23, and the pair.
  • FIG. 6 is a diagram illustrating a process of arranging the first mold and the auxiliary mold at the dropping position.
  • the first mold 21 and the auxiliary mold 22 are moved and arranged at the dropping position P ⁇ b> 1 (see FIG. 3), and the auxiliary is placed above the first mold 21.
  • the molds 22 are arranged to face each other.
  • the movement of the first mold 21 and the auxiliary mold 22 is performed by the control unit 40 driving the first mold driving mechanism 25 and the auxiliary mold driving mechanism 26.
  • the first mold 21 is disposed such that the reservoir receiving surface 21a is positioned below the outflow pipe 13 of the material supply unit 10. Further, the auxiliary mold 22 has a piston moving passage 22e located above the reservoir receiving surface 21a of the first mold 21, and a pair of second mold moving passages 22f and 22f respectively corresponding thereto. The first mold 21 is positioned and arranged with respect to the first mold 21 so as to be positioned above the pair of first molding surfaces 21c and 21c.
  • FIG. 5 is a diagram showing a step of dropping molten glass
  • FIG. 8 is a diagram showing a step of receiving molten glass at a reservoir receiving portion.
  • the molten glass 50 continuously flows out vertically from the outlet of the outflow pipe 13, and the length of the molten glass 50 gradually increases in proportion to time. .
  • the molten glass 50 is cut by the cutter 14.
  • the separated molten glass 50 is dropped vertically downward (in the direction of arrow A shown in the figure).
  • the molten glass 50 is cut by the control unit 40 moving the cutter 14 using the cutter driving mechanism 15.
  • the dropped molten glass 50 then passes through the piston movement passage 22 e of the auxiliary mold 22 and is received by the reservoir receiving surface 21 a of the first mold 21. Thereby, the molten glass 50 is stored and received by the storage receiver 32.
  • FIG. 9 is a diagram illustrating a process of arranging the first mold and the auxiliary mold at the molding position.
  • the piston 23 and the pair of second molds are arranged to face each other below the molds 24 and 24.
  • the movement of the first mold 21 and the auxiliary mold 22 is performed by the control unit 40 driving the first mold driving mechanism 25 and the auxiliary mold driving mechanism 26.
  • the first mold 21 has a reservoir receiving surface 21a positioned below the piston 23, and a pair of first molding surfaces 21c and 21c positioned below the corresponding second mold 24, respectively.
  • the piston 23 and the pair of second molds 24, 24 are positioned and arranged.
  • the auxiliary mold 22 is arranged so that the relative positional relationship with the first mold 21 is maintained.
  • the piston movement passage 22e of the auxiliary mold 22 is disposed below the piston 23, and the pair of second mold movement passages 22f and 22f of the auxiliary mold 22 correspond to the corresponding second mold.
  • the first mold 21 and the auxiliary mold 22 are moved to the molding position P2 without delay.
  • FIG. 10 is a diagram illustrating an intermediate stage of the process of pressing the molten glass using the piston
  • FIG. 11 is a diagram illustrating an end stage of the process of pressing the molten glass using the piston.
  • the piston 23 vigorously moves vertically downward (in the direction of arrow B ⁇ b> 1 shown in the drawing) so as to approach the reservoir receiving portion 32 of the first mold 21. Moved.
  • the movement of the piston 23 is performed by the control unit 40 driving the piston drive mechanism 27.
  • the molten glass 50 is pressed by the piston 23, and the pressed molten glass 50 is ejected vigorously from the pair of extrusion channels 33 and 33 toward the outside.
  • piston 23 is lowered
  • the above operation is performed instantaneously in a shorter time in order to prevent the molten glass 50 from being hardened in the pressing chamber 31 or / and in the pair of extrusion flow paths 33.
  • the operation will be described in detail in stages.
  • the pressing surface 23a located at the lower end of the piston 23 comes into contact with the upper surface of the molten glass 50 stored in the reservoir receiving portion 32, whereby the molten glass 50 is It is pressed by the piston 23.
  • the pressing chamber 31 is filled with the molten glass 50, and a part of the molten glass 50 enters the pair of extrusion channels 33 and 33.
  • the inclined surfaces 21d and 21d having a shape in which the wall surface of the pressing chamber 31 adjacent to the pair of extrusion channels 33 and 33 is inclined toward the pair of extrusion channels 33 and 33 side. , 22d, 22d, the molten glass 50 is smoothly supplied from the pressing chamber 31 into the pair of extrusion channels 33, 33.
  • the piston 23 further moves downward in the vertical direction, so that the molten glass 50 supplied to the above-described pair of extrusion flow paths 33, 33 is extruded along the horizontal direction. It discharges toward the outside from the flow paths 33 and 33. Since the discharged molten glass 50 has a relatively high viscosity, the molten glass 50 does not immediately sag toward the pair of first molding surfaces 21c, 21c of the first mold 21, and advances in the horizontal direction to each of the pair of first molding surfaces 21c, 21c. The escape portions 35 and 35 are reached.
  • each of the pair of extrusion channels 33 and 33 has a slit-like opening, and therefore, the portion of the molten glass 50 discharged from the pair of extrusion channels 33 and 33. Is substantially plate-shaped. Therefore, by passing through the above steps, the portion of the molten glass 50 discharged from the pair of extrusion flow paths 33, 33 is in a state close to the shape of the cover glass as a glass molded product to be molded, and a pair of molded It is supplied between the first molding surface 21 c of the first mold 21 that is a mold part and the second molding surface 24 c of the second mold 24.
  • the molten glass 50 of the part discharged from the said pair of extrusion flow paths 33 and 33 moved to the exterior from the press chamber 31 by the flow resulting from the press by the piston 23, a temperature difference is compared. It is in a state that does not occur. Therefore, the temperature at the upper surface and the lower surface of the molten glass 50 in the discharged portion is in a state where they are kept substantially the same.
  • FIG. 12 is a diagram illustrating a process of pressure-forming molten glass.
  • the pair of second molds 24, 24 are vertically downward (in FIG. 11) so as to approach the pair of first molding surfaces 21c, 21c of the first mold 21, respectively. In the direction of arrow C1).
  • the movement of the pair of second molds 24, 24 is performed by the control unit 40 driving the pair of second mold drive mechanisms 28, 28.
  • the molten glass 50 of the part discharged from a pair of extrusion flow paths 33 and 33 each contacts the 2nd molding surface 24c of the 2nd metal mold
  • the state in which the molten glass 50 is pressurized by the first mold 21 and the pair of second molds 24 and 24 is maintained for a predetermined time.
  • the molten glass 50 is cured in a state where the shapes of the first molding surface 21c of the first mold 21 and the second molding surface 24c of the second mold 24 are transferred to the molten glass 50.
  • a glass molded body 60 (see FIG. 13 and the like) including the product region 61 and the non-product region 62 to be the cover glass is formed.
  • the temperature of the molten glass 50 at the start of the pressure treatment is preferably set to (Tg + 150) [° C.] or more and (Tg + 300) [° C.] or less with respect to the glass transition point Tg [° C.].
  • Tg glass transition point
  • the temperature of the molten glass just before pressing may be 780 [° C.].
  • the temperature of the first mold 21 is set to 450 [° C.] or more and 550 [° C.] or less, and the temperature of the pair of second molds 24 and 24 is set to 450 respectively. It is good to set [C] or more and 550 [C] or less.
  • Tg is 540 [° C.]
  • the temperature of the first mold 21 may be set to 500 [° C.]
  • the temperature of the pair of second molds 24 and 24 may be set to 520 [° C.]. .
  • FIG. 13 is a diagram illustrating a process of releasing the pressing and pressing.
  • the piston 23 and the pair of second molds 24, 24 are vertically upward (in the directions of arrows B ⁇ b> 2 and C ⁇ b> 2 shown in the figure) so as to be separated from the first mold 21. It is moved toward. Thereby, the piston 23 and the pair of second dies 24, 24 are released from the glass molded body 60. The movement of the piston 23 and the pair of second molds 24, 24 is performed by the control unit 40 driving the piston drive mechanism 27 and the pair of second mold drive mechanisms 28, 28.
  • FIG. 14 is a diagram illustrating a process of taking out the glass molded body by taking out the first mold and the auxiliary mold at the take-out position.
  • the first mold 21 and the auxiliary mold 22 are moved to be taken out and placed at the take-out position P3 (see FIG. 3), and the auxiliary mold 22 is moved vertically upward (see FIG. 14). It is separated from the first mold 21 in the direction of arrow D shown in the figure. Thereby, the auxiliary mold 22 is released from the glass molded body 60. Furthermore, the glass molded body 60 is taken out by adsorbing the glass molded body 60 by an adsorption device (not shown) and releasing the glass molded body 60 from the first mold 21. The movement of the first mold 21 and the auxiliary mold 22 is performed by the control unit 40 driving the first mold driving mechanism 25 and the auxiliary mold driving mechanism 26.
  • FIG. 15A and FIG. 15B are a plan view and a cross-sectional view of a glass molded body showing a cutting position in a step of cutting and removing a non-product region of the glass molded body.
  • FIG. 15B shows a cross-sectional view of the glass molded body taken along line XVB-XVB shown in FIG. 15A.
  • the front surface and the back surface of the product region 61 of the glass molded body 60 after being taken out are both formed into a mirror surface or a state close thereto by the pressure molding described above. Therefore, it is sufficient to cut and remove the non-product region 62 from the glass molded body 60 as an additional process required after pressure molding.
  • the glass molded body 60 is cut along a cutting line E shown in the drawing so that a substantially box-shaped cover glass is obtained.
  • region 62 will be removed from the glass molded object 60, and two substantially box-shaped cover glasses will be obtained.
  • the portion adjacent to the pair of extrusion channels 33, 33 in the pair of cavities 34, 34 is the side plate portion of the cover glass as a glass molded product to be manufactured. Since it is configured to correspond to a portion that forms a non-product region continuously provided from an end located on the side opposite to the side on which the main plate portion is located, it is cut during the cutting process described above.
  • the part which becomes is an edge part located in the opposite side to the side in which the main board part of the side plate part of the manufactured cover glass is located. Therefore, not only the front and back surfaces of the main plate portion of the manufactured cover glass, but also the front and back surfaces of the side plate portions are mirror surfaces or surfaces that are close to that without being polished. It can be finished to the state.
  • the cover glass is manufactured using the glass molded product manufacturing method and the manufacturing apparatus 1 according to the present embodiment, so that the molten glass 50 received by the reservoir receiver 32 is slit-shaped.
  • the molten glass 50 can be made to have a substantially plate-like shape close to the shape of the cover glass to be manufactured.
  • the formed molten glass 50 can be pressure-formed from both sides along the thickness direction. Therefore, the shape of the molten glass 50 can be instantly determined as the shape of the cover glass to be manufactured in a short time from the dropping of the molten glass 50 to the curing of the molten glass 50. Therefore, it is possible not only to efficiently produce a thin cover glass with excellent moldability, but also to improve transferability at the corners.
  • the portion of the molten glass 50 extruded from the extrusion flow path 33 including the slit-shaped opening is formed. Since a relatively large temperature difference does not occur, in the subsequent pressure forming step, the upper surface and the lower surface, which are portions that contact the first molding surface 21c and the second molding surface 24c, of the molten glass 50 are used. It becomes possible to go through substantially the same cooling process. Therefore, also from this viewpoint, it becomes possible to efficiently produce a thin cover glass with excellent moldability.
  • the cover glass is manufactured using the manufacturing method and the manufacturing apparatus 1 of the glass molded product in the present embodiment, compared to the case where the molten glass dropped is sandwiched in the horizontal direction and pressed. Since various production conditions can be made relatively easy to match, the quality of the produced cover glass does not vary greatly, and the cover glass can be produced with good yield.
  • the reservoir receiving surface, the first flow path forming surface, and the first forming surface are used as members for pressure forming molten glass.
  • the various surfaces may be defined by more members.
  • the first mold described above may be divided into a member including a reservoir receiving surface and a first flow path forming surface, and a member including a first molding surface, and the former of these may be used as a reservoir receiver. You may divide
  • the extruding direction when extruding the molten glass from the extruding flow path is the horizontal direction, and the sandwiching direction when the molten glass is pressure-molded using a pair of forming mold parts
  • the extruding direction when extruding the molten glass from the extruding flow path is vertically downward, and the sandwiching direction when the molten glass is pressure-formed using a pair of forming mold parts is horizontal.
  • the wall surface of the pressing chamber in the portion adjacent to the pair of extrusion channels is configured by an inclined surface having a shape inclined toward the pair of extrusion channels.
  • the wall surface may be configured by a curved surface having a shape that curves toward the pair of extruded flow paths.
  • the cover glass with which a smart phone and a tablet terminal were equipped was demonstrated as a glass molded product manufactured by applying this invention,
  • the present invention may be applied to the manufacture of cover glasses for other display devices, and the manufacture of exterior covers for electronic devices such as mobile computers and digital cameras, and various lenses.
  • the present invention may also be applied to the manufacture of optical recording media.

Abstract

This molded glass article manufacturing method comprises: a step of receiving and accumulating, in a receiving reservoir (32), molten glass (50) that is dripped into the receiving reservoir (32); a step of pushing the molten glass (50) out from an extrusion channel (33) that includes a slit-shaped opening toward the exterior of the receiving reservoir (32) by pushing the molten glass (50) accumulated in the receiving reservoir (32) using a piston (23); and a step of pressure molding the molten glass (50) that is formed into a substantially plate shape by being pushed out from the extrusion channel (33) by sandwiching the same using a molding die from both side in the thickness direction of the glass.

Description

ガラス成形品の製造方法および製造装置Manufacturing method and manufacturing apparatus for glass molded product
 本発明は、いわゆるダイレクトプレス法に基づき、対向配置された金型を用いて溶融ガラスを加圧成形することでガラス成形品を製造するガラス成形品の製造方法および製造装置に関する。 The present invention relates to a glass molded product manufacturing method and a manufacturing apparatus for manufacturing a glass molded product by press-molding molten glass using a die placed opposite to each other based on a so-called direct press method.
 ガラス成形品の一つとして、スマートフォンやタブレット端末に代表されるディスプレイ装置に具備される薄板状のカバーガラスが広く普及している。カバーガラスは、ディスプレイ装置等の外表面において露出して現れる部位であり、その表裏面が鏡面仕上げされていることが要求される。 As one of the glass molded products, a thin cover glass provided in a display device typified by a smartphone or a tablet terminal is widely used. The cover glass is a portion that appears exposed on the outer surface of a display device or the like, and its front and back surfaces are required to be mirror-finished.
 鏡面仕上げは、ガラスブランクに研磨加工が施されることで実現できる。しかしながら、当該研磨加工にて鏡面仕上げを行なった場合には、ガラスブランクを製造するための各種の工程に加えて別途研磨工程が必要になるため、製造工程が煩雑化し、製造コストの増大に繋がってしまう。 Mirror finish can be realized by polishing the glass blank. However, when mirror finishing is performed in the polishing process, a separate polishing process is required in addition to various processes for manufacturing a glass blank, which complicates the manufacturing process and leads to an increase in manufacturing cost. End up.
 さらに、近年においては、カバーガラスとして、主板部とその周縁に連設された側板部とで構成される略箱形状等の複雑な立体形状を有するものが求められている。このような複雑な立体形状を有するカバーガラスを製造する場合には、当該形状に起因して、表面に研磨処理を施すことが困難な場合が生じ得る。 Furthermore, in recent years, a cover glass having a complicated three-dimensional shape such as a substantially box shape composed of a main plate portion and a side plate portion connected to the periphery of the main plate portion is required. When manufacturing a cover glass having such a complicated three-dimensional shape, it may be difficult to polish the surface due to the shape.
 一方、製造工程の簡略化の観点から、溶融ガラスを金型を用いて最終形状かまたはそれに近いかたちに直接加圧成形する、いわゆるダイレクトプレス法が提案されている。当該ダイレクトプレス法を用いた場合には、その表面に研磨処理を施さずとも鏡面かまたはそれに近い状態で表面を仕上げることができるメリットが得られる。 On the other hand, from the viewpoint of simplifying the manufacturing process, a so-called direct press method is proposed in which molten glass is directly pressure-molded into a final shape or a shape close thereto using a mold. When the direct press method is used, there is an advantage that the surface can be finished in a mirror surface or in a state close to it without performing a polishing process on the surface.
 上述したダイレクトプレス法を適用してガラス成形品を製造する場合の具体的な製造方法が開示された文献として、たとえば特開2000-319026号公報(特許文献1)や特開2012-214361号公報(特許文献2)等がある。 For example, Japanese Patent Laid-Open No. 2000-319026 (Patent Document 1) and Japanese Patent Laid-Open No. 2012-214361 disclose a specific manufacturing method in the case of manufacturing a glass molded article by applying the direct press method described above. (Patent Document 2).
 上記特許文献1に開示されたガラス成形品の製造方法にあっては、溶融ガラスを下型の成形面に供給し、この状態において溶融ガラスを上型と下型とを用いて鉛直方向に挟み込んで加圧成形することでガラス成形品を製造することとしている。 In the method for producing a glass molded article disclosed in Patent Document 1, molten glass is supplied to the molding surface of the lower mold, and in this state, the molten glass is sandwiched in the vertical direction using the upper mold and the lower mold. A glass molded product is manufactured by pressure molding.
 一方、上記特許文献2に開示されたガラス成形品の製造方法にあっては、溶融ガラスを落下させ、落下させた溶融ガラスを一対の金型を用いて水平方向に挟み込んで加圧成形することでガラス成形品を製造することとしている。 On the other hand, in the method for producing a glass molded article disclosed in Patent Document 2, the molten glass is dropped, and the dropped molten glass is sandwiched in a horizontal direction using a pair of molds and is pressure-molded. We are going to manufacture glass molded products.
特開2000-319026号公報JP 2000-319026 A 特開2012-214361号公報JP 2012-214361 A
 しかしながら、樹脂成形の場合と異なり、ガラス成形においては、約1000[℃]程度の非常に高温の状態にある溶融ガラスを冷却しつつ加圧成形することが必要であるため、成形されたガラス成形品に割れや反り、クラック、捻じれ等が発生し易く、その成形は容易ではない。特に、上述したカバーガラスの如く複雑な立体形状を有するガラス成形品をダイレクトプレス法を用いて製造する場合には、上述した如くの問題が顕著となり、その製造は困難を極める。 However, unlike the case of resin molding, in glass molding, it is necessary to perform pressure molding while cooling molten glass in a very high temperature of about 1000 [° C.]. The product is easily cracked, warped, cracked, twisted, etc., and its molding is not easy. In particular, when a glass molded product having a complicated three-dimensional shape such as the cover glass described above is manufactured using the direct press method, the problems as described above become prominent and the manufacture becomes extremely difficult.
 一般に、溶融ガラスは、その温度が低下するに伴って粘度が上昇するため、加圧成形時における溶融ガラスの温度の制御が成形性を高める上で非常に重要となる。特に、上述した如くの薄板状のカバーガラスを成形する場合には、一対の金型のそれぞれに接触する部分の溶融ガラスが略同等の冷却プロセスを経て硬化することが成形性を高めるための重要な鍵となる。 Generally, since the viscosity of molten glass increases as the temperature decreases, control of the temperature of the molten glass during pressure molding is very important for improving moldability. In particular, when forming a thin cover glass as described above, it is important to improve the formability that the molten glass in the part contacting each of the pair of molds is cured through a substantially equivalent cooling process. Key.
 この点、上記特許文献1に開示されたガラス成形品の製造方法を採用した場合には、上型が溶融ガラスに接触するに先立って溶融ガラスが下型に接触した状態にあるため、下型に接触した部分の溶融ガラスが急速に冷却されることで溶融ガラス中において大きな温度差が発生してしまうことになり、良好な状態のガラス成形品が得られなくなるばかりでなく、溶融ガラスの硬化の進行が急速に進むことで溶融ガラスを薄板状にそもそも成形することが困難になる問題も発生し得る。 In this regard, when the method for producing a glass molded product disclosed in Patent Document 1 is adopted, the molten glass is in contact with the lower mold prior to the upper mold contacting the molten glass. When the molten glass in the part in contact with the glass is rapidly cooled, a large temperature difference will occur in the molten glass, and not only a glass molded product in a good state can be obtained, but also the molten glass is cured. As the process proceeds rapidly, it may be difficult to form the molten glass into a thin plate shape.
 これを解決するためには、溶融ガラス中において大きな温度差が発生する前に(具体的には、溶融ガラスが下型に接触した時点から少なくとも3秒以内、好ましくは1秒以内に)溶融ガラスに上型を接触させることが考えられるが、溶融ガラスの滴下方向と上型および下型による加圧方向とがいずれも鉛直方向で合致しているため、遅滞なく上型を溶融ガラスに接触させることが非常に困難となってしまい、現実的には当該解決策を採用することは難しい状況にある。 In order to solve this, before a large temperature difference occurs in the molten glass (specifically, at least 3 seconds, preferably within 1 second from the time when the molten glass contacts the lower mold) It is conceivable that the upper mold is brought into contact with the upper mold, but since the dripping direction of the molten glass and the pressurizing direction by the upper mold and the lower mold coincide with each other in the vertical direction, the upper mold is brought into contact with the molten glass without delay. In reality, it is difficult to adopt such a solution.
 一方、上記特許文献2に開示されたガラス成形品の製造方法を採用した場合には、一対の水平型のそれぞれに略同時に溶融ガラスを接触させることができるため、上記特許文献1に開示されたガラス成形品の製造方法に比べて、成形性の面でより良好な状態のガラス成形品を得ることができる。 On the other hand, when the manufacturing method of the glass molded product disclosed in Patent Document 2 is adopted, the molten glass can be brought into contact with each of the pair of horizontal molds at the same time. Compared with the manufacturing method of a glass molded product, a glass molded product in a better state in terms of moldability can be obtained.
 しかしながら、当該製造方法を採用した場合には、製造されたガラス成形品の品質に大きなばらつきが生じてしまう問題が発生する。これは、仮に同一の製造装置を用いて繰り返しガラス成形品を連続して製造した場合にも、落下させる溶融ガラスの形状や溶融ガラスの落下位置を毎回完全に一致させることが極めて困難であり、各種の製造条件に厳密な意味においてばらつきが生じることが不可避であることに起因する。 However, when the manufacturing method is adopted, there is a problem that the quality of the manufactured glass molded product varies greatly. This is very difficult to match the shape of the molten glass to be dropped and the dropping position of the molten glass every time, even if it is continuously produced repeatedly using the same production apparatus, This is because it is inevitable that variations occur in various manufacturing conditions in a strict sense.
 また、製造すべきガラス成形品が非円盤状の形状(たとえば矩形板状や上述した略箱形状等)を有している場合には、一対の金型によって溶融ガラスが押し広げられる際に、型面と平行な方向において溶融ガラスの押し広がり方に大きな差が生じてしまい、結果としてガラス成形品の隅部において成形性が低下してしまう等の問題も発生し得る。 In addition, when the glass molded product to be manufactured has a non-disc shape (for example, a rectangular plate shape or the above-mentioned substantially box shape), when the molten glass is spread by a pair of molds, A large difference occurs in how the molten glass is spread in a direction parallel to the mold surface, and as a result, there may be a problem that formability is deteriorated at the corner of the glass molded product.
 したがって、本発明は、このような問題点を解決すべくなされたものであり、優れた成形性にて薄肉のガラス成形品を効率よく製造することができる、ダイレクトプレス法に基づいた新規なガラス成形品の製造方法および製造装置を提供することを目的とする。 Therefore, the present invention has been made to solve such problems, and is a novel glass based on the direct press method that can efficiently produce a thin glass molded product with excellent moldability. It aims at providing the manufacturing method and manufacturing apparatus of a molded article.
 本発明に基づくガラス成形品の製造方法は、溶融ガラスを滴下する工程と、滴下された溶融ガラスを溜め受け部にて溜め受ける工程と、上記溜め受け部にて溜め受けた溶融ガラスを押圧部を用いて押圧することにより、溶融ガラスをスリット状の開口部を含む押し出し流路から上記溜め受け部の外部に向けて押し出す工程と、上記押し出し流路から押し出されることで略板状を成した溶融ガラスをその厚み方向に沿って両側から一対の成形用型部を用いて挟み込むことによって加圧成形する工程とを備えている。 The method for producing a glass molded product according to the present invention includes a step of dropping molten glass, a step of receiving the dropped molten glass in a reservoir receiving portion, and a pressing portion for receiving the molten glass stored in the reservoir receiving portion. The step of extruding the molten glass from the extrusion flow path including the slit-shaped opening toward the outside of the reservoir receiving portion, and being extruded from the extrusion flow path, formed a substantially plate shape. And a step of pressure-molding by sandwiching the molten glass from both sides along the thickness direction using a pair of molding dies.
 本発明に基づくガラス成形品の製造装置は、溶融ガラスを滴下する素材供給部と、滴下された溶融ガラスを溜め受ける溜め受け部と、上記溜め受け部に溜め受けられた溶融ガラスを押圧する押圧部と、上記押圧部によって押圧された溶融ガラスを上記溜め受け部の外部に向けて押し出すためのスリット状の開口部を含む押し出し流路と、上記押し出し流路から押し出されることで略板状を成した溶融ガラスをその厚み方向に沿って両側から挟み込むことによって加圧成形する一対の成形用型部とを備えている。 An apparatus for manufacturing a glass molded product according to the present invention includes a material supply unit that drops molten glass, a reservoir receiving unit that stores the dropped molten glass, and a press that presses the molten glass stored in the reservoir receiving unit. An extrusion passage including a slit-like opening for extruding the molten glass pressed by the pressing portion toward the outside of the reservoir receiving portion, and a substantially plate shape by being extruded from the extrusion passage. And a pair of molding die parts that are pressure-molded by sandwiching the formed molten glass from both sides along the thickness direction.
 本発明によれば、優れた成形性にて薄肉のガラス成形品を効率よく製造することができるダイレクトプレス法に基づいたガラス成形品の製造方法および製造装置を提供することができる。 According to the present invention, it is possible to provide a glass molded product manufacturing method and a manufacturing apparatus based on the direct press method capable of efficiently manufacturing a thin glass molded product with excellent moldability.
本発明の実施の形態におけるガラス成形品の製造方法に従って製造されたカバーガラスを備えたディスプレイ装置を一部分解した状態の概略斜視図である。It is a schematic perspective view of the state which partially decomposed | disassembled the display apparatus provided with the cover glass manufactured according to the manufacturing method of the glass molded product in embodiment of this invention. 図1に示すディスプレイ装置のII-II線に沿った模式断面図である。FIG. 2 is a schematic cross-sectional view taken along line II-II of the display device shown in FIG. 本発明の実施の形態におけるガラス成形品の製造装置の概略構成図である。It is a schematic block diagram of the manufacturing apparatus of the glass molded product in embodiment of this invention. 図3に示す第1金型、補助金型、ピストンおよび第2金型を組み合わせた状態の模式断面図である。It is a schematic cross section of the state which combined the 1st metal mold | die shown in FIG. 3, an auxiliary metal mold | die, a piston, and a 2nd metal mold | die. 本発明の実施の形態におけるガラス成形品の製造方法に従った製造フローを示す図である。It is a figure which shows the manufacture flow according to the manufacturing method of the glass molded product in embodiment of this invention. 図5に示す、第1金型および補助金型を滴下ポジションに配置する工程を示す図である。It is a figure which shows the process of arrange | positioning a 1st metal mold | die and an auxiliary metal mold | die shown in FIG. 5 in a dripping position. 図5に示す、溶融ガラスを滴下する工程を示す図である。It is a figure which shows the process of dripping a molten glass shown in FIG. 図5に示す、溶融ガラスを溜め受け部にて溜め受ける工程を示す図である。It is a figure which shows the process of receiving the molten glass shown in FIG. 5 in the reservoir receiving part. 図5に示す、第1金型および補助金型を成形ポジションに配置する工程を示す図である。It is a figure which shows the process of arrange | positioning the 1st metal mold | die and auxiliary metal mold | die shown in FIG. 5 in a molding position. 図5に示す、ピストンを用いて溶融ガラスを押圧する工程の途中段階を示す図である。It is a figure which shows the intermediate stage of the process of pressing a molten glass using a piston shown in FIG. 図5に示す、ピストンを用いて溶融ガラスを押圧する工程の終了段階を示す図である。It is a figure which shows the completion | finish stage of the process shown in FIG. 5 which presses a molten glass using a piston. 図5に示す、溶融ガラスを加圧成形する工程を示す図である。It is a figure which shows the process of pressure-molding molten glass shown in FIG. 図5に示す、押圧および加圧を解除する工程を示す図である。It is a figure which shows the process of canceling | releases press and pressurization shown in FIG. 図5に示す、ガラス成形体を離型する工程の初期段階を示す図である。It is a figure which shows the initial stage of the process of releasing a glass forming body shown in FIG. 図5に示す、ガラス成形体の非製品領域を切断して除去する工程の切断位置を示すガラス成形体の平面図である。It is a top view of the glass forming body which shows the cutting position of the process of cutting and removing the non-product area | region of the glass forming body shown in FIG. 図5に示す、ガラス成形体の非製品領域を切断して除去する工程の切断位置を示すガラス成形体の断面図である。It is sectional drawing of the glass molded object which shows the cutting position of the process of cut | disconnecting and removing the non-product area | region of the glass molded object shown in FIG.
 以下、本発明の実施の形態について、図を参照して詳細に説明する。なお、以下に示す実施の形態においては、同一のまたは共通する部分について図中同一の符号を付し、その説明は繰り返さない。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the following embodiments, the same or common parts are denoted by the same reference numerals in the drawings, and description thereof will not be repeated.
 図1は、本発明の実施の形態におけるガラス成形品の製造方法に従って製造されたカバーガラスを備えたディスプレイ装置を一部分解した状態の概略斜視図であり、図2は、図1に示すディスプレイ装置のII-II線に沿った模式断面図である。まず、本発明の実施の形態におけるガラス成形品の製造方法および製造装置について説明するに先立ち、当該製造方法および製造装置を用いて製造されたカバーガラスおよびこれを備えたディスプレイ装置について、これら図1および図2を参照して説明する。なお、図1および図2に示すディスプレイ装置は、いわゆるスマートフォンである。 FIG. 1 is a schematic perspective view of a state in which a display device including a cover glass manufactured according to the method for manufacturing a glass molded product in the embodiment of the present invention is partially disassembled, and FIG. 2 is a display device shown in FIG. It is a schematic cross section along the II-II line. First, prior to explaining the manufacturing method and manufacturing apparatus for a glass molded product in the embodiment of the present invention, the cover glass manufactured using the manufacturing method and the manufacturing apparatus and the display device including the cover glass will be described with reference to FIG. This will be described with reference to FIG. The display device shown in FIGS. 1 and 2 is a so-called smartphone.
 図1および図2に示すように、ディスプレイ装置100は、全体として扁平な略直体形状を有しており、カバーガラス110と、平板状の形状を有する外装プレート120と、外装プレート120上に配置された回路基板130と、回路基板130上に実装されたディスプレイ140およびスピーカー131とを主として備えている。ディスプレイ140の上面は、画像表示部142を構成している。 As shown in FIG. 1 and FIG. 2, the display device 100 has a flat and substantially rectangular shape as a whole, and covers the cover glass 110, a flat plate-shaped outer plate 120, and the outer plate 120. It mainly includes a circuit board 130 arranged, a display 140 and a speaker 131 mounted on the circuit board 130. The upper surface of the display 140 constitutes an image display unit 142.
 カバーガラス110は、ダイレクトプレス法にて形成されたガラス成形品からなる。カバーガラス110は、回路基板130およびディスプレイ140に代表される内部構成部品を外装プレート120との間で封止するように、上方から(図中矢印AR方向に沿って)外装プレート120上に組付けられる。 The cover glass 110 is made of a glass molded product formed by a direct press method. The cover glass 110 is assembled on the exterior plate 120 from above (along the arrow AR direction in the drawing) so as to seal the internal components represented by the circuit board 130 and the display 140 with the exterior plate 120. Attached.
 カバーガラス110は、略箱形状を有しており、ディスプレイ140の画像表示部142を覆うように設けられた平面視略矩形状の平板状の主板部111と、当該主板部111の周縁に位置する四辺から下方に向けて連設されることで外装プレート120に固定される4つの側板部112とを含んでいる。これにより、カバーガラス110は、組付け後においてディスプレイ装置100の外部に露出するおもて面110aと、外部に露出しないうら面110bとを有することになる。 The cover glass 110 has a substantially box shape, and is provided on the periphery of the main plate portion 111 and a flat main plate portion 111 having a substantially rectangular shape in plan view provided so as to cover the image display portion 142 of the display 140. And four side plate portions 112 fixed to the exterior plate 120 by being continuously provided downward from the four sides. Thereby, the cover glass 110 has the front surface 110a exposed to the outside of the display device 100 after the assembly and the back surface 110b not exposed to the outside.
 また、図1に示すように、カバーガラス110のスピーカー131に対応する位置には、孔部113が設けられている。当該孔部113は、おもて面110aからうら面110bに達するようにカバーガラス110の主板部111を貫通している。これにより、スピーカー131は、当該孔部113を介して外部に露出することになる。 Further, as shown in FIG. 1, a hole 113 is provided at a position corresponding to the speaker 131 of the cover glass 110. The hole 113 passes through the main plate 111 of the cover glass 110 so as to reach the back surface 110b from the front surface 110a. As a result, the speaker 131 is exposed to the outside through the hole 113.
 図2に示すように、ディスプレイ装置100においては、画像表示部142から発せられる所定の画像情報を含む光Lが、カバーガラス110のうら面110b側からおもて面110a側に向けてカバーガラス110を透過する。これにより、画像表示部142に表示された画像情報が使用者によって認識されることになる。なお、カバーガラス110のおもて面110aがタッチパネルの表示面を構成している場合には、当該おもて面110aが使用者の手指やタッチペン等によって押圧されることになる。 As shown in FIG. 2, in the display device 100, the light L including predetermined image information emitted from the image display unit 142 is directed from the back surface 110 b side of the cover glass 110 toward the front surface 110 a side. 110 is transmitted. As a result, the image information displayed on the image display unit 142 is recognized by the user. In addition, when the front surface 110a of the cover glass 110 constitutes the display surface of the touch panel, the front surface 110a is pressed by the user's fingers or a touch pen.
 なお、上記においては、平面視略矩形状の平板状の主板部111と、当該主板部111の周縁に位置する四辺から垂直に連設された4つの側板部112とを有する略箱形状のカバーガラス110を用いた場合を例示したが、これに代えて、平板状の主板部の周縁の一部のみから側板部が連設された形状のカバーガラスを用いてもよいし、側板部を一切有さず、平板状の主板部のみからなるカバーガラスを用いてもよい。また、主板部の形状も平面視略矩形状に限定されるものではなく、他の形状のものを利用してもよいし、側板部の形状も傾斜状または湾曲状等であってもよい。 Note that, in the above, a substantially box-shaped cover having a flat main plate portion 111 having a substantially rectangular shape in plan view and four side plate portions 112 arranged continuously from four sides located at the periphery of the main plate portion 111. Although the case where the glass 110 was used was illustrated, instead of this, a cover glass having a shape in which the side plate portion is continuously provided from only a part of the peripheral edge of the flat plate-like main plate portion may be used. You may use the cover glass which consists only of a flat main plate part without having. Also, the shape of the main plate portion is not limited to a substantially rectangular shape in plan view, and other shapes may be used, and the shape of the side plate portion may be inclined or curved.
 カバーガラス110の線膨張係数αは、100[℃]以上300[℃]以下の温度範囲において70[×10-7/℃]以上110[×10-7/℃]以下であることが好ましい。たとえば、100[℃]以上300[℃]以下の範囲で98[×10-7/℃]の線膨張係数αを有するガラスを使用してもよい。また、ガラス粘性をη[dPa・s]とすると、logη=11.0~14.5であることが好ましい。上記のような特性を持つガラスは、湾曲した形状を有するカバーガラスの成形に特に適している。 The linear expansion coefficient α of the cover glass 110 is preferably 70 [× 10 −7 / ° C.] or more and 110 [× 10 −7 / ° C.] or less in a temperature range of 100 [° C.] or more and 300 [° C.] or less. For example, a glass having a linear expansion coefficient α of 98 [× 10 −7 / ° C.] in the range of 100 [° C.] to 300 [° C.] may be used. Further, when the glass viscosity is η [dPa · s], log η = 11.0 to 14.5 is preferable. Glass having the above characteristics is particularly suitable for forming a cover glass having a curved shape.
 また、カバーガラス110の外形は、平面視した状態において、40[mm]×40[mm]以上かつ300[mm]×300[mm]以下に収まる範囲の大きさであることが好ましい。また、カバーガラス110の主板部111のおもて面110aの法線方向に沿った全高、すなわち側板部112の全高は、1[mm]以上10[mm]以下であることが好ましい。このような範囲内において、後述する本実施の形態におけるガラス成形品の製造方法および製造装置を特に好適に用いることができる。 Further, the outer shape of the cover glass 110 is preferably in a range of 40 [mm] × 40 [mm] or more and 300 [mm] × 300 [mm] or less in a plan view. Moreover, it is preferable that the total height along the normal direction of the front surface 110a of the main plate portion 111 of the cover glass 110, that is, the total height of the side plate portion 112 is 1 [mm] or more and 10 [mm] or less. Within such a range, the glass molded product manufacturing method and manufacturing apparatus in the present embodiment to be described later can be used particularly preferably.
 また、カバーガラス110のおもて面110aおよびうら面110bは、いずれも鏡面またはこれに近い状態に仕上げられていることが必要である。そのため、カバーガラス110のおもて面110aおよびうら面110bの表面粗さは、概ね0.5[nm]以上20[nm]以下とされることが好ましいが、後述する本実施の形態におけるガラス成形品の製造方法および製造装置は、当該条件を充足するようにカバーガラス110を成形することが可能なものである。 In addition, the front surface 110a and the back surface 110b of the cover glass 110 must both be mirror-finished or close to this state. For this reason, the surface roughness of the front surface 110a and the back surface 110b of the cover glass 110 is preferably set to approximately 0.5 [nm] or more and 20 [nm] or less. The manufacturing method and the manufacturing apparatus of the molded product can form the cover glass 110 so as to satisfy the conditions.
 図3は、本発明の実施の形態におけるガラス成形品の製造装置の概略構成図である。また、図4は、図3に示す第1金型、補助金型、ピストンおよび第2金型を組み合わせた状態の模式断面図である。次に、これら図3および図4を参照して、本実施の形態におけるガラス成形品の製造装置の構成について説明する。 FIG. 3 is a schematic configuration diagram of a glass molded product manufacturing apparatus according to an embodiment of the present invention. FIG. 4 is a schematic cross-sectional view of a state in which the first mold, the auxiliary mold, the piston, and the second mold shown in FIG. 3 are combined. Next, with reference to these FIG. 3 and FIG. 4, the structure of the manufacturing apparatus of the glass molded product in this Embodiment is demonstrated.
 本実施の形態におけるガラス成形品の製造装置は、いわゆるダイレクトプレス法に基づいてガラス成形品としてのカバーガラスを製造するものであり、1回の製造サイクルにおいて2つのカバーガラスを一度に製造し、当該製造サイクルが繰り返されることによって複数のカバーガラスを順次製造するものである。 The apparatus for producing a glass molded product in the present embodiment produces a cover glass as a glass molded product based on a so-called direct press method, and produces two cover glasses at a time in one production cycle, A plurality of cover glasses are sequentially manufactured by repeating the manufacturing cycle.
 図3に示すように、ガラス成形品の製造装置1は、素材供給部10と、成形部20と、制御部40とを主として備えている。 As shown in FIG. 3, the glass molded product manufacturing apparatus 1 mainly includes a material supply unit 10, a molding unit 20, and a control unit 40.
 素材供給部10は、ガラス素材を溶融させてこれを成形部20に供給するための部位であり、成形部20は、供給されたガラス素材を金型を用いて加圧成形する部位である。また、制御部40は、上述した素材供給部10および成形部20の動作を制御する部位である。 The material supply unit 10 is a part for melting a glass material and supplying it to the molding unit 20, and the molding unit 20 is a part for pressure-molding the supplied glass material using a mold. The control unit 40 is a part that controls the operations of the material supply unit 10 and the molding unit 20 described above.
 素材供給部10は、連続溶融炉11と、ノズル部12と、流出管13と、カッター14と、カッター駆動機構15とを含んでいる。 The material supply unit 10 includes a continuous melting furnace 11, a nozzle unit 12, an outflow pipe 13, a cutter 14, and a cutter driving mechanism 15.
 連続溶融炉11は、ガラス素材を溶融させて溶融ガラスを貯留するものであり、ノズル部12は、連続溶融炉11にて貯留された溶融ガラスを流出管13に導入するものである。流出管13は、その下端に流出口を有しており、当該流出口から鉛直下方に向けて連続的に溶融ガラス50を流出させる。 The continuous melting furnace 11 melts a glass material and stores the molten glass, and the nozzle unit 12 introduces the molten glass stored in the continuous melting furnace 11 into the outflow pipe 13. The outflow pipe 13 has an outflow port at the lower end thereof, and allows the molten glass 50 to flow out continuously from the outflow port vertically downward.
 カッター14は、流出管13から流出する溶融ガラス50を切断して当該切断部分を滴下させるものであり、上述したカッター駆動機構15によって駆動される。カッター14は、一対の平面形状の剪断刃によって構成されており、これら一対の剪断刃が流出管13の下方において突き合わされることで溶融ガラス50の切断が行なわれる。 The cutter 14 cuts the molten glass 50 flowing out from the outflow pipe 13 and drops the cut portion, and is driven by the cutter driving mechanism 15 described above. The cutter 14 is composed of a pair of planar shear blades, and the pair of shear blades are abutted below the outflow pipe 13 to cut the molten glass 50.
 カッター駆動機構15は、制御部40からの指令を受け、カッター14を駆動する。カッター駆動機構15としては、各種のものが利用できるが、好適にはエアシリンダ、サーボモータ、油圧シリンダ、リニアモータ、ステッピングモータ等が利用できる。 The cutter driving mechanism 15 receives a command from the control unit 40 and drives the cutter 14. As the cutter driving mechanism 15, various types can be used, but preferably an air cylinder, a servo motor, a hydraulic cylinder, a linear motor, a stepping motor, or the like can be used.
 成形部20は、第1部材としての第1金型21と、第2部材としての補助金型22と、第3部材としてのピストン23と、第4部材としての一対の第2金型24,24と、第1金型駆動機構25と、補助金型駆動機構26と、ピストン駆動機構27と、一対の第2金型駆動機構28,28とを含んでいる。 The molding unit 20 includes a first mold 21 as a first member, an auxiliary mold 22 as a second member, a piston 23 as a third member, and a pair of second molds 24 as a fourth member, 24, a first mold drive mechanism 25, an auxiliary mold drive mechanism 26, a piston drive mechanism 27, and a pair of second mold drive mechanisms 28, 28.
 第1金型21は、上述した第1金型駆動機構25によって駆動されることで水平方向に沿って移動する。補助金型22は、上述した補助金型駆動機構26によって駆動されることで水平方向および鉛直方向に沿って移動する。ピストン23および一対の第2金型24,24は、それぞれ上述したピストン駆動機構27および一対の第2金型駆動機構28,28によって駆動されることで鉛直方向に沿って移動する。 The first mold 21 moves along the horizontal direction by being driven by the first mold drive mechanism 25 described above. The auxiliary mold 22 moves along the horizontal direction and the vertical direction by being driven by the above-described auxiliary mold drive mechanism 26. The piston 23 and the pair of second molds 24, 24 move along the vertical direction by being driven by the piston drive mechanism 27 and the pair of second mold drive mechanisms 28, 28, respectively.
 図4に示すように、第1金型21、補助金型22、ピストン23および一対の第2金型24,24は、後述する加圧成形工程においてこれらが相互に接近配置されることによって組み合わされることにより、押圧室31と、一対の押し出し流路33,33と、一対のキャビティ34,34と、一対の逃がし部35,35とを有することになる。 As shown in FIG. 4, the first mold 21, the auxiliary mold 22, the piston 23, and the pair of second molds 24, 24 are combined by placing them close to each other in a pressure molding process described later. As a result, the pressure chamber 31, the pair of extrusion channels 33, 33, the pair of cavities 34, 34, and the pair of escape portions 35, 35 are provided.
 押圧室31は、組み合わされた状態にある第1金型21、補助金型22、ピストン23および一対の第2金型24,24の水平方向に沿った中央部に位置しており、後述する溜め受け工程において溶融ガラス50を溜め受ける溜め受け部32を含んでいる。 The pressing chamber 31 is located at the central portion along the horizontal direction of the first mold 21, the auxiliary mold 22, the piston 23 and the pair of second molds 24, 24 in a combined state, which will be described later. The reservoir receiving part 32 which receives the molten glass 50 in the reservoir receiving process is included.
 一対の押し出し流路33は、水平方向に沿って上述した押圧室31を挟み込むように位置している。これにより、一対の押し出し流路33の各々は、その水平方向に沿った端部において押圧室31にそれぞれ連通している。 The pair of extrusion channels 33 are positioned so as to sandwich the above-described pressing chamber 31 along the horizontal direction. Thereby, each of a pair of extrusion flow path 33 is each connected to the press chamber 31 in the edge part along the horizontal direction.
 一対のキャビティ34,34は、水平方向に沿って上述した押圧室31および一対の押し出し流路33,33を挟み込むように位置している。これにより、一対のキャビティ34,34は、それらの水平方向に沿った端部において一対の押し出し流路33,33にそれぞれ対応付けられて連通している。 The pair of cavities 34 and 34 are positioned so as to sandwich the above-described pressing chamber 31 and the pair of extrusion channels 33 and 33 along the horizontal direction. Thereby, a pair of cavities 34 and 34 are matched and connected with a pair of extrusion flow paths 33 and 33 in the edge part along those horizontal directions, respectively.
 一対の逃がし部35,35は、水平方向に沿って上述した押圧室31、一対の押し出し流路33,33および一対のキャビティ34,34を挟み込むように位置している。これにより、一対の逃がし部35,35は、それらの水平方向に沿った端部において一対のキャビティ34,34にそれぞれ対応づけられて連通している。 The pair of relief portions 35, 35 are positioned so as to sandwich the above-described pressing chamber 31, the pair of extrusion channels 33, 33, and the pair of cavities 34, 34 along the horizontal direction. Thereby, a pair of relief parts 35 and 35 are matched and connected with a pair of cavities 34 and 34, respectively in the edge part along those horizontal directions.
 第1金型21は、上述した溜め受け部32(押圧室31)を規定する溜め受け面21aと、上述した一対の押し出し流路33,33をそれぞれ規定する一対の第1流路形成面21b,21bと、上述した一対のキャビティ34,34をそれぞれ規定する一対の第1成形面21c,21cと、上述した一対の逃がし部35,35をそれぞれ規定する部分とを含んでいる。 The first mold 21 includes a reservoir receiving surface 21a that defines the above-described reservoir receiving portion 32 (pressing chamber 31), and a pair of first flow path forming surfaces 21b that respectively define the above-described pair of extrusion channels 33 and 33. , 21b, a pair of first molding surfaces 21c, 21c that respectively define the pair of cavities 34, 34, and a portion that respectively define the pair of relief portions 35, 35 described above.
 補助金型22は、上述した押圧室31を規定する部分と、上述した一対の押し出し流路33,33をそれぞれ規定する一対の第2流路形成面22b,22bと、上述した一対の逃がし部35,35をそれぞれ規定する部分と、ピストン23が挿通されるピストン移動用通路22eと、一対の第2金型が挿通される一対の第2金型移動用通路22f,22fとを含んでおり、第1金型21に対向するように第1金型21の鉛直上方に配置される。 The auxiliary mold 22 includes a portion that defines the above-described pressing chamber 31, a pair of second flow path forming surfaces 22b and 22b that respectively define the above-described pair of extrusion flow paths 33 and 33, and the above-described pair of relief portions. 35 and 35, a piston moving passage 22e through which the piston 23 is inserted, and a pair of second mold moving passages 22f and 22f through which the pair of second molds are inserted. The first mold 21 is disposed vertically above the first mold 21 so as to face the first mold 21.
 ピストン23は、上述した押圧室31を規定する押圧面23aを含んでおり、補助金型22に設けられたピストン移動用通路22eに挿通されることにより、第1金型21に対向するように第1金型21の鉛直上方に配置される。 The piston 23 includes a pressing surface 23 a that defines the pressing chamber 31 described above, and is inserted into a piston moving passage 22 e provided in the auxiliary mold 22 so as to face the first mold 21. It is arranged vertically above the first mold 21.
 一対の第2金型24,24は、上述した一対のキャビティ34,34をそれぞれ規定する第2成形面24c,24cを含んでおり、補助金型22に設けられた一対の第2金型移動用通路22f,22fにそれぞれ挿通されることにより、第1金型21に対向するように第1金型21の鉛直上方にそれぞれ配置される。 The pair of second molds 24, 24 include second molding surfaces 24 c, 24 c that respectively define the pair of cavities 34, 34 described above, and the pair of second mold movements provided on the auxiliary mold 22. By being respectively inserted into the passages 22f, 22f, the first mold 21 is disposed vertically above the first mold 21 so as to face the first mold 21.
 なお、第1金型21の溜め受け面21aを含む部分は、後述する溜め受け工程において溶融ガラス50を溜め受ける溜め受け部32に該当し、ピストン23は、後述する押圧工程において溶融ガラス50を押圧する押圧部に該当する。また、第1金型21の一対の第1成形面21c,21cを含む部分と、一対の第2金型24,24とは、後述する加圧成形工程において溶融ガラス50を加圧成形する成形用型部に該当する。 The portion including the reservoir receiving surface 21a of the first mold 21 corresponds to a reservoir receiving portion 32 that receives the molten glass 50 in a reservoir receiving process described later, and the piston 23 causes the molten glass 50 to be received in a pressing process described later. Corresponds to the pressing part to be pressed. In addition, the portion including the pair of first molding surfaces 21c and 21c of the first mold 21 and the pair of second molds 24 and 24 are formed by pressure molding the molten glass 50 in a pressure molding process described later. Corresponds to the mold part.
 ここで、一対の押し出し流路33,33の各々は、スリット状の開口部を有するように構成されている。より詳細には、上述したように、一対の押し出し流路33,33の各々は、第1金型21の第1流路成形面21bと、補助金型22の第2流路形成面22bとによって規定されるが、これら第1金型21および補助金型22が組み合わされた状態において、その断面形状が長軸および短軸を有する細長の略矩形状の開口部を有するように構成されている。当該スリット状の開口部の長軸は、水平方向に沿って延在するように配置されており、当該スリット状の開口部の短軸は、鉛直方向に沿って延在するように配置されている。 Here, each of the pair of extrusion channels 33, 33 is configured to have a slit-shaped opening. More specifically, as described above, each of the pair of extrusion channels 33 and 33 includes the first channel forming surface 21b of the first mold 21 and the second channel forming surface 22b of the auxiliary mold 22. In the state in which the first mold 21 and the auxiliary mold 22 are combined, the cross-sectional shape is configured to have an elongated, substantially rectangular opening having a major axis and a minor axis. Yes. The major axis of the slit-shaped opening is arranged so as to extend along the horizontal direction, and the minor axis of the slit-like opening is arranged so as to extend along the vertical direction. Yes.
 また、押圧室31は、第1金型21、補助金型22およびピストン23が組み合わされた状態において、上述したように、第1金型21の溜め受け面21aと、補助金型22の一部と、ピストン23の押圧面23aとによって規定されることになるが、一対の押し出し流路33,33に隣接する部分の第1金型21の溜め受け面21aおよび補助金型22の上記一部は、対応する押し出し流路33側に向かって傾斜する形状を有する傾斜面21d,21d,22d,22dにて構成されている。 In addition, the pressing chamber 31 is a combination of the first mold 21, the auxiliary mold 22, and the piston 23 and the reservoir receiving surface 21 a of the first mold 21 and one of the auxiliary molds 22 as described above. This is defined by the portion and the pressing surface 23 a of the piston 23, but the above-mentioned one of the reservoir receiving surface 21 a of the first mold 21 and the auxiliary mold 22 adjacent to the pair of extrusion flow paths 33, 33. The portion is configured by inclined surfaces 21d, 21d, 22d, and 22d having a shape inclined toward the corresponding extrusion flow path 33 side.
 一方、一対のキャビティ34,34は、それぞれ製造すべきガラス成形品としてのカバーガラスに対応した形状を有しており、第1金型21の一対の第1成形面21c,21cおよび一対の第2金型24,24の第2成形面24c,24cによって略箱形状の空間を有するように規定されている。また、一対のキャビティ34,34のうちの上述した一対の押し出し流路33,33に隣接する部分は、製造すべきガラス成形品としてのカバーガラスの側板部のうちの主板部が位置する側とは反対側に位置する端部から連設される非製品領域を形成する部分に該当している。 On the other hand, each of the pair of cavities 34 and 34 has a shape corresponding to a cover glass as a glass molded article to be manufactured, and the pair of first molding surfaces 21c and 21c of the first mold 21 and the pair of first moldings. The second mold surfaces 24c and 24c are defined so as to have a substantially box-shaped space. Moreover, the part adjacent to a pair of extrusion flow paths 33 and 33 mentioned above among a pair of cavities 34 and 34 is the side in which the main board part is located among the side plate parts of the cover glass as a glass molded article which should be manufactured. Corresponds to a portion forming a non-product region continuously provided from the end located on the opposite side.
 上述した第1金型21、補助金型22、ピストン23および一対の第2金型24,24を形成する材料としては、耐熱合金(ステンレス合金等)、炭化タングステンを主成分とする超鋼材料、各種セラミックス(炭化珪素、窒化珪素、窒化アルミニウム等)、カーボンを含む複合材料等、ガラス成形品を製造するための金型として公知の材料の中から適宜選択して用いることができる。第1金型21、補助金型22、ピストン23および一対の第2金型24,24は、それぞれ同一の材料にて構成されていてもよいし、それぞれ別の材料にて構成されていてもよい。 The material for forming the first mold 21, the auxiliary mold 22, the piston 23 and the pair of second molds 24, 24 is a super steel material mainly composed of a heat-resistant alloy (stainless alloy, etc.) or tungsten carbide. In addition, various ceramics (silicon carbide, silicon nitride, aluminum nitride, etc.), composite materials containing carbon, and the like can be appropriately selected from known materials as molds for producing glass molded articles. The first mold 21, the auxiliary mold 22, the piston 23, and the pair of second molds 24, 24 may be made of the same material, or may be made of different materials. Good.
 第1金型21、補助金型22、ピストン23および一対の第2金型24,24の表面は、耐久性の向上やガラス素材との融着の防止を図る観点から、所定の被覆層にて覆われていることが好ましい。被覆層の材料は、特に制限されるものではないが、たとえば種々の金属(クロム、アルミニウム、チタン等)、窒化物(窒化クロム、窒化アルミニウム、窒化チタン、窒化硼素等)、酸化物(酸化クロム、酸化アルミニウム、酸化チタン等)等を用いることができる。被覆層の成膜方法も、特に制限されるものではないが、たとえば真空蒸着法やスパッタ法、CVD法等が利用できる。 The surfaces of the first mold 21, the auxiliary mold 22, the piston 23, and the pair of second molds 24, 24 are provided with a predetermined coating layer from the viewpoint of improving durability and preventing fusion with the glass material. Are preferably covered. The material of the coating layer is not particularly limited. For example, various metals (chromium, aluminum, titanium, etc.), nitrides (chromium nitride, aluminum nitride, titanium nitride, boron nitride, etc.), oxides (chromium oxide) , Aluminum oxide, titanium oxide, etc.) can be used. The method for forming the coating layer is not particularly limited, and for example, a vacuum deposition method, a sputtering method, a CVD method, or the like can be used.
 また、第1金型21、補助金型22、ピストン23および一対の第2金型24,24は、図示しない加熱手段によって所定温度に加熱できるように構成されている。加熱手段は、特に制限されるものではないが、公知の加熱手段を適宜選択して用いることができる。たとえば、被加熱部材の内部に埋め込んで使用するカートリッジヒーターや、被加熱部材の外側に接触させて使用するシート状のヒーター、赤外線加熱装置、高周波誘導加熱装置等を加熱手段として用いることができる。 The first mold 21, the auxiliary mold 22, the piston 23, and the pair of second molds 24, 24 are configured to be heated to a predetermined temperature by a heating means (not shown). The heating means is not particularly limited, but a known heating means can be appropriately selected and used. For example, a cartridge heater that is used by being embedded inside the member to be heated, a sheet heater that is used while being in contact with the outside of the member to be heated, an infrared heating device, a high-frequency induction heating device, or the like can be used as the heating means.
 図3に示すように、第1金型駆動機構25および補助金型駆動機構26は、それぞれ制御部40からの指令を受け、図中に矢印で示すDR1方向(水平方向)に第1金型21および補助金型22を移動させる。これにより、第1金型21および補助金型22は、流出管13の鉛直下方で溶融ガラス50を受け止めるための位置(滴下ポジションP1)と、受け止めた溶融ガラス50を加圧成形するためにピストン23および一対の第2金型24,24と対向する位置(成形ポジションP2)と、加圧成形後のガラス成形品を取り出すための位置(取出しポジションP3)との間で移動する。また、補助金型駆動機構26は、制御部40からの指令を受け、取出しポジションP3において、図中に矢印で示すDR3方向(鉛直方向)に補助金型22を移動させる。第1金型駆動機構25および補助金型駆動機構26としては、各種のものが利用できるが、好適にはサーボモータ、エアシリンダ、油圧シリンダ、リニアモータ、ステッピングモータ、あるいはこれらの組み合わせ等が利用できる。 As shown in FIG. 3, each of the first mold driving mechanism 25 and the auxiliary mold driving mechanism 26 receives a command from the control unit 40 and receives the first mold in the DR1 direction (horizontal direction) indicated by an arrow in the drawing. 21 and the auxiliary mold 22 are moved. As a result, the first mold 21 and the auxiliary mold 22 are provided with a position for receiving the molten glass 50 vertically below the outflow pipe 13 (dropping position P1) and a piston for press-molding the received molten glass 50 under pressure. 23 and a position facing the pair of second molds 24, 24 (molding position P2) and a position for taking out the glass molded product after pressure molding (takeout position P3). Further, the auxiliary mold drive mechanism 26 receives a command from the control unit 40, and moves the auxiliary mold 22 in the DR3 direction (vertical direction) indicated by an arrow in the drawing at the take-out position P3. Various types can be used as the first mold driving mechanism 25 and the auxiliary mold driving mechanism 26, but a servo motor, an air cylinder, a hydraulic cylinder, a linear motor, a stepping motor, or a combination of these is preferably used. it can.
 ピストン駆動機構27および一対の第2金型駆動機構28,28は、それぞれ制御部40からの指令を受け、図中に矢印で示すDR2方向(垂直方向)にピストン23および一対の第2金型24,24を移動させる。これにより、ピストン23および一対の第2金型24,24は、鉛直上方の位置と鉛直下方の位置との間をそれぞれ往復動することになる。そのため、第1金型21および補助金型22が成形ポジションP2に配置された状態において、ピストン23および一対の第2金型24,24が移動することにより、当該ピストン23および一対の第2金型24,24と第1金型21および補助金型22とが接近および離隔することになる。なお、このうちの鉛直下方の位置が、溶融ガラス50を加圧成形するための位置である。ピストン駆動機構27および一対の第2金型駆動機構28,28としては、各種のものが利用できるが、好適にはサーボモータ、エアシリンダ、油圧シリンダ、リニアモータ、ステッピングモータ、あるいはこれらの組み合わせ等が利用できる。 The piston drive mechanism 27 and the pair of second mold drive mechanisms 28, 28 receive a command from the control unit 40, respectively, and the piston 23 and the pair of second mold dies in the DR2 direction (vertical direction) indicated by an arrow in the drawing. 24, 24 are moved. As a result, the piston 23 and the pair of second molds 24, 24 reciprocate between a vertically upper position and a vertically lower position, respectively. Therefore, when the first mold 21 and the auxiliary mold 22 are arranged at the molding position P2, the piston 23 and the pair of second molds 24, 24 move, so that the piston 23 and the pair of second molds are moved. The molds 24, 24, the first mold 21 and the auxiliary mold 22 approach and separate from each other. In addition, the position of the vertically downward of these is a position for press-molding the molten glass 50. FIG. Various types can be used as the piston drive mechanism 27 and the pair of second mold drive mechanisms 28, 28, but preferably a servo motor, an air cylinder, a hydraulic cylinder, a linear motor, a stepping motor, or a combination thereof. Is available.
 ここで、制御部40によってピストン駆動機構27を制御するモードとしては、ピストン23の位置を制御するモード(位置制御モード)と、ピストン23に負荷される荷重を制御するモード(荷重制御モード)とがあり、これら2つの制御モードが切り替え可能に構成されていることが好ましい。ピストン駆動機構27は、ピストン23を用いて最大3トンの押圧力で溶融ガラス50を押圧することが可能となるように構成されていることが好ましい。 Here, as a mode for controlling the piston drive mechanism 27 by the control unit 40, a mode for controlling the position of the piston 23 (position control mode), a mode for controlling a load applied to the piston 23 (load control mode), and It is preferable that these two control modes can be switched. The piston drive mechanism 27 is preferably configured to be able to press the molten glass 50 using the piston 23 with a pressing force of a maximum of 3 tons.
 また、制御部40によって一対の第2金型駆動機構28,28を制御するモードとしては、一対の第2金型24,24の位置を制御するモード(位置制御モード)と、一対の第2金型24,24に負荷される荷重を制御するモード(荷重制御モード)とがあり、これら2つの制御モードが切り替え可能に構成されていることが好ましい。一対の第2金型駆動機構28,28は、一対の第2金型駆動機構28,28を用いて最大3トンの加圧力で溶融ガラス50を加圧成形することが可能となるように構成されていることが好ましい。 Further, as a mode for controlling the pair of second mold drive mechanisms 28, 28 by the control unit 40, a mode for controlling the position of the pair of second molds 24, 24 (position control mode) and a pair of second molds are controlled. There is a mode (load control mode) for controlling the load applied to the dies 24, 24, and it is preferable that these two control modes can be switched. The pair of second mold drive mechanisms 28, 28 is configured to be capable of pressure-molding the molten glass 50 with a pressure of up to 3 tons using the pair of second mold drive mechanisms 28, 28. It is preferable that
 制御部40は、上述したカッター駆動機構15、第1金型駆動機構25、補助金型駆動機構26、ピストン駆動機構27および一対の第2金型駆動機構28,28の動作を制御する。すなわち、制御部40は、カッター14による溶融ガラス50の切断のタイミング、第1金型21の移動のタイミング、補助金型22の移動のタイミング、ピストン23の移動のタイミング、一対の第2金型24,24の移動のタイミング等のガラス成形品の製造に係る一連のシーケンスを制御する。 The control unit 40 controls the operations of the cutter driving mechanism 15, the first mold driving mechanism 25, the auxiliary mold driving mechanism 26, the piston driving mechanism 27, and the pair of second mold driving mechanisms 28, 28 described above. That is, the control unit 40 determines the timing of cutting the molten glass 50 by the cutter 14, the timing of movement of the first mold 21, the timing of movement of the auxiliary mold 22, the timing of movement of the piston 23, and a pair of second molds. A series of sequences relating to the production of the glass molded product, such as the timing of movement of 24 and 24, is controlled.
 図5は、本発明の実施の形態におけるガラス成形品の製造方法に従った製造フローを示す図である。また、図6ないし図14、図15Aおよび図15Bは、図5に示す工程のうちの所定の工程を示す図である。次に、これら図6ないし図14、図15Aおよび図15Bを参照して、本実施の形態におけるガラス成形品の製造方法について順を追って説明する。 FIG. 5 is a diagram showing a manufacturing flow according to the method for manufacturing a glass molded product in the embodiment of the present invention. 6 to 14, FIG. 15A, and FIG. 15B are diagrams showing predetermined steps among the steps shown in FIG. Next, with reference to these FIG. 6 thru | or FIG. 14, FIG. 15A, and FIG. 15B, the manufacturing method of the glass molded product in this Embodiment is demonstrated in order.
 本実施の形態におけるガラス成形品の製造方法は、いわゆるダイレクトプレス法に基づいてガラス成形品としてのカバーガラスを製造するものであり、上述した本実施の形態におけるガラス成形品の製造装置1を用いて好適に実施できる。また、本実施の形態におけるガラス成形品の製造方法は、1回の製造サイクルにおいて後述する一連の工程が実施されることにより2つのカバーガラスを一度に製造するものであり、当該製造サイクルが繰り返されることによって複数のカバーガラスを順次製造するものである。 The manufacturing method of the glass molded product in this Embodiment manufactures the cover glass as a glass molded product based on what is called a direct press method, and uses the manufacturing apparatus 1 of the glass molded product in this Embodiment mentioned above. Can be suitably implemented. Moreover, the manufacturing method of the glass molded product in this Embodiment manufactures two cover glasses at once by implementing the series of processes mentioned later in one manufacturing cycle, and the said manufacturing cycle is repeated. Thus, a plurality of cover glasses are sequentially manufactured.
 本実施の形態におけるガラス成形品の製造方法においては、上述した第1金型21、補助金型22、ピストン23および一対の第2金型24,24が、それぞれ上述した加熱手段によって予め所定の温度に加熱されている。ここで、所定の温度とは、ガラス成形品としてのカバーガラスに良好な転写面が形成できる温度を意味する。 In the method for manufacturing a glass molded product in the present embodiment, the first mold 21, the auxiliary mold 22, the piston 23, and the pair of second molds 24, 24 described above are each predetermined in advance by the heating means described above. Heated to temperature. Here, the predetermined temperature means a temperature at which a good transfer surface can be formed on a cover glass as a glass molded product.
 一般的に、第1金型21、補助金型22、ピストン23および一対の第2金型24,24の温度が低すぎると溶融ガラス50が急速に冷却されてしまい、溶融ガラス50の流動性が損なわれてしまうとともに、高精度な転写面を形成することが困難になる。逆に、必要以上に第1金型21、補助金型22、ピストン23および一対の第2金型24,24の温度を高くし過ぎることは、溶融ガラス50との間で融着が発生し易くなったり、第1金型21、補助金型22、ピストン23および一対の第2金型24,24の寿命が短くなったりするおそれがあるため好ましくない。 Generally, if the temperature of the first mold 21, the auxiliary mold 22, the piston 23, and the pair of second molds 24, 24 is too low, the molten glass 50 is rapidly cooled, and the fluidity of the molten glass 50 is increased. Is impaired, and it becomes difficult to form a highly accurate transfer surface. On the other hand, if the temperature of the first mold 21, the auxiliary mold 22, the piston 23 and the pair of second molds 24, 24 is excessively increased, fusion with the molten glass 50 occurs. This is not preferable because the life of the first mold 21, the auxiliary mold 22, the piston 23, and the pair of second molds 24, 24 may be shortened.
 通常は、加圧成形するガラス材料のガラス転移点Tg[℃]に対し、第1金型21、補助金型22、ピストン23および一対の第2金型24,24の温度を(Tg-100)[℃]以上(Tg+100)[℃]以下の範囲に設定する。実際には、ガラス材料の種類、カバーガラスの形状および大きさ、第1金型21、補助金型22、ピストン23および一対の第2金型24,24の形成材料、保護膜の種類等、種々の条件を考慮に入れて適正な温度を決定する。第1金型21、補助金型22、ピストン23および一対の第2金型24,24の加熱温度は、同一の温度であってもよいし、異なる温度であってもよい。 Usually, the temperature of the first mold 21, the auxiliary mold 22, the piston 23, and the pair of second molds 24, 24 is (Tg-100) with respect to the glass transition point Tg [° C.] of the glass material to be pressure-molded. ) Set in the range of [° C.] to (Tg + 100) [° C.]. Actually, the type of glass material, the shape and size of the cover glass, the first mold 21, the auxiliary mold 22, the formation material of the piston 23 and the pair of second molds 24, 24, the type of protective film, etc. An appropriate temperature is determined in consideration of various conditions. The heating temperature of the first mold 21, the auxiliary mold 22, the piston 23, and the pair of second molds 24, 24 may be the same temperature or different temperatures.
 本実施の形態におけるガラス成形品の製造方法は、第1金型21、補助金型22、ピストン23および一対の第2金型24,24を所定の温度に加熱した後に高温の状態にある溶融ガラス50を第1金型21および一対の第2金型24,24を用いて加圧成形するものであることから、第1金型21、補助金型22、ピストン23および一対の第2金型24,24の温度を一定に保ったまま、後述する一連の工程を行なうことができる。さらに、第1金型21、補助金型22、ピストン23および一対の第2金型24,24の温度を一定に保ったまま、複数のカバーガラスを順次製造することもできる。したがって、カバーガラスを製造する毎に第1金型21、補助金型22、ピストン23および一対の第2金型24,24の加熱と冷却とを繰り返す必要がないことから、極めて短時間で効率よく複数のカバーガラスを製造することができる。 In the method of manufacturing a glass molded product in the present embodiment, the first mold 21, the auxiliary mold 22, the piston 23 and the pair of second molds 24, 24 are heated to a predetermined temperature and then melted in a high temperature state. Since the glass 50 is pressure-molded using the first mold 21 and the pair of second molds 24, 24, the first mold 21, the auxiliary mold 22, the piston 23, and the pair of second molds. A series of processes to be described later can be performed while keeping the temperature of the molds 24, 24 constant. Furthermore, a plurality of cover glasses can be sequentially manufactured while keeping the temperature of the first mold 21, the auxiliary mold 22, the piston 23, and the pair of second molds 24, 24 constant. Therefore, since it is not necessary to repeat heating and cooling of the first mold 21, the auxiliary mold 22, the piston 23, and the pair of second molds 24 and 24 every time the cover glass is manufactured, the efficiency is extremely short. A number of cover glasses can be manufactured well.
 ここで、第1金型21、補助金型22、ピストン23および一対の第2金型24,24の温度を一定に保つとは、第1金型21、補助金型22、ピストン23および一対の第2金型24,24を加熱するための温度制御における目標設定温度を一定に保つという意味である。したがって、後述する各工程の実施中において、溶融ガラス50の接触等による第1金型21、補助金型22、ピストン23および一対の第2金型24,24の温度変動までをも防止しようとするものではなく、かかる温度の変動は許容できる。 Here, keeping the temperatures of the first mold 21, the auxiliary mold 22, the piston 23, and the pair of second molds 24, 24 constant means that the first mold 21, the auxiliary mold 22, the piston 23, and the pair. This means that the target set temperature in the temperature control for heating the second molds 24, 24 is kept constant. Therefore, it is intended to prevent even the temperature fluctuations of the first mold 21, the auxiliary mold 22, the piston 23 and the pair of second molds 24, 24 due to the contact of the molten glass 50 or the like during the execution of each process described later. This temperature variation is acceptable.
 まず、図5に示すように、第1金型および補助金型が滴下ポジションに配置される(工程S1)。図6は、第1金型および補助金型を滴下ポジションに配置する工程を示す図である。 First, as shown in FIG. 5, the first mold and the auxiliary mold are arranged at the dropping position (step S1). FIG. 6 is a diagram illustrating a process of arranging the first mold and the auxiliary mold at the dropping position.
 具体的には、図6に示すように、第1金型21および補助金型22を移動させてこれらを滴下ポジションP1(図3参照)に配置するとともに、第1金型21の上方に補助金型22が対向配置されるようにする。第1金型21および補助金型22の移動は、制御部40が第1金型駆動機構25および補助金型駆動機構26を駆動することで行われる。 Specifically, as shown in FIG. 6, the first mold 21 and the auxiliary mold 22 are moved and arranged at the dropping position P <b> 1 (see FIG. 3), and the auxiliary is placed above the first mold 21. The molds 22 are arranged to face each other. The movement of the first mold 21 and the auxiliary mold 22 is performed by the control unit 40 driving the first mold driving mechanism 25 and the auxiliary mold driving mechanism 26.
 より詳細には、第1金型21は、その溜め受け面21aが素材供給部10の流出管13の下方に位置するように配置される。また、補助金型22は、そのピストン移動用通路22eが第1金型21の溜め受け面21aの上方に位置するとともに、その一対の第2金型移動用通路22f,22fがそれぞれ対応する第1金型21の一対の第1成形面21c,21cの上方に位置するように、第1金型21に対して位置決めして配置される。 More specifically, the first mold 21 is disposed such that the reservoir receiving surface 21a is positioned below the outflow pipe 13 of the material supply unit 10. Further, the auxiliary mold 22 has a piston moving passage 22e located above the reservoir receiving surface 21a of the first mold 21, and a pair of second mold moving passages 22f and 22f respectively corresponding thereto. The first mold 21 is positioned and arranged with respect to the first mold 21 so as to be positioned above the pair of first molding surfaces 21c and 21c.
 次に、図5に示すように、溶融ガラスが滴下されて溜め受け部にて溜め受けられる(工程S2)。図7は、溶融ガラスを滴下する工程を示す図であり、図8は、溶融ガラスを溜め受け部にて溜め受ける工程を示す図である。 Next, as shown in FIG. 5, molten glass is dropped and received in the reservoir receiving part (step S2). FIG. 7 is a diagram showing a step of dropping molten glass, and FIG. 8 is a diagram showing a step of receiving molten glass at a reservoir receiving portion.
 図3に示すように、流出管13の流出口からは連続的に鉛直下方に向けて溶融ガラス50が流出しており、当該溶融ガラス50の長さは、時間に比例して徐々に長くなる。当該溶融ガラス50の長さが所定の長さに達した時点で、溶融ガラス50がカッター14によって切断される。 As shown in FIG. 3, the molten glass 50 continuously flows out vertically from the outlet of the outflow pipe 13, and the length of the molten glass 50 gradually increases in proportion to time. . When the length of the molten glass 50 reaches a predetermined length, the molten glass 50 is cut by the cutter 14.
 これにより、図7に示すように、分離された溶融ガラス50は、鉛直下方(図中に示す矢印A方向)に向けて滴下されることになる。なお、溶融ガラス50の切断は、制御部40がカッター駆動機構15を用いてカッター14を移動させることで行なわれる。 Thereby, as shown in FIG. 7, the separated molten glass 50 is dropped vertically downward (in the direction of arrow A shown in the figure). The molten glass 50 is cut by the control unit 40 moving the cutter 14 using the cutter driving mechanism 15.
 図8に示すように、滴下された溶融ガラス50は、その後、補助金型22のピストン移動用通路22eを通過して第1金型21の溜め受け面21aによって受け止められる。これにより、溶融ガラス50が、溜め受け部32によって溜め受けられる。 As shown in FIG. 8, the dropped molten glass 50 then passes through the piston movement passage 22 e of the auxiliary mold 22 and is received by the reservoir receiving surface 21 a of the first mold 21. Thereby, the molten glass 50 is stored and received by the storage receiver 32.
 次に、図5に示すように、第1金型および補助金型が成形ポジションに配置される(工程S3)。図9は、第1金型および補助金型を成形ポジションに配置する工程を示す図である。 Next, as shown in FIG. 5, the first mold and the auxiliary mold are arranged at the molding position (step S3). FIG. 9 is a diagram illustrating a process of arranging the first mold and the auxiliary mold at the molding position.
 具体的には、図9に示すように、第1金型21および補助金型22を移動させてこれらを成形ポジションP2(図3参照)に配置することにより、ピストン23および一対の第2金型24,24の下方に第1金型21および補助金型22が対向配置されるようにする。第1金型21および補助金型22の移動は、制御部40が第1金型駆動機構25および補助金型駆動機構26を駆動することで行われる。 Specifically, as shown in FIG. 9, by moving the first mold 21 and the auxiliary mold 22 and placing them in the molding position P2 (see FIG. 3), the piston 23 and the pair of second molds. The first mold 21 and the auxiliary mold 22 are arranged to face each other below the molds 24 and 24. The movement of the first mold 21 and the auxiliary mold 22 is performed by the control unit 40 driving the first mold driving mechanism 25 and the auxiliary mold driving mechanism 26.
 より詳細には、第1金型21は、その溜め受け面21aがピストン23の下方に位置するとともに、その一対の第1成形面21c,21cがそれぞれ対応する第2金型24の下方に位置するように、ピストン23および一対の第2金型24,24に対して位置決めして配置される。このとき、補助金型22は、第1金型21との相対的な位置関係が維持されるように配置される。これにより、補助金型22のピストン移動用通路22eは、ピストン23の下方に配置されるとともに、補助金型22の一対の第2金型移動用通路22f,22fは、それぞれ対応する第2金型24の下方に配置される。なお、溜め受け部32にて溶融ガラス50が溜め受けられた後には、遅滞なく第1金型21および補助金型22が成形ポジションP2へ移動させられる。 More specifically, the first mold 21 has a reservoir receiving surface 21a positioned below the piston 23, and a pair of first molding surfaces 21c and 21c positioned below the corresponding second mold 24, respectively. Thus, the piston 23 and the pair of second molds 24, 24 are positioned and arranged. At this time, the auxiliary mold 22 is arranged so that the relative positional relationship with the first mold 21 is maintained. Thus, the piston movement passage 22e of the auxiliary mold 22 is disposed below the piston 23, and the pair of second mold movement passages 22f and 22f of the auxiliary mold 22 correspond to the corresponding second mold. Located below the mold 24. In addition, after the molten glass 50 is collected and received by the reservoir receiver 32, the first mold 21 and the auxiliary mold 22 are moved to the molding position P2 without delay.
 次に、図5に示すように、ピストンによって溶融ガラスが押圧される(工程S4)。図10は、ピストンを用いて溶融ガラスを押圧する工程の途中段階を示す図であり、図11は、ピストンを用いて溶融ガラスを押圧する工程の終了段階を示す図である。 Next, as shown in FIG. 5, the molten glass is pressed by the piston (step S4). FIG. 10 is a diagram illustrating an intermediate stage of the process of pressing the molten glass using the piston, and FIG. 11 is a diagram illustrating an end stage of the process of pressing the molten glass using the piston.
 具体的には、図10および図11に示すように、ピストン23が、第1金型21の溜め受け部32に接近するように鉛直下方(図中に示す矢印B1方向)に向けて勢いよく移動させられる。ピストン23の移動は、制御部40がピストン駆動機構27を駆動することで行われる。 Specifically, as shown in FIGS. 10 and 11, the piston 23 vigorously moves vertically downward (in the direction of arrow B <b> 1 shown in the drawing) so as to approach the reservoir receiving portion 32 of the first mold 21. Moved. The movement of the piston 23 is performed by the control unit 40 driving the piston drive mechanism 27.
 これにより、ピストン23によって溶融ガラス50が押圧され、押圧された溶融ガラス50が一対の押し出し流路33,33から外側に向けて勢いよく吐出される。なお、成形ポジションP2に第1金型21および補助金型22が配置された後には、遅滞なくピストン23が下降させられる。 Thereby, the molten glass 50 is pressed by the piston 23, and the pressed molten glass 50 is ejected vigorously from the pair of extrusion channels 33 and 33 toward the outside. In addition, after the 1st metal mold | die 21 and the auxiliary | assistant metal mold | die 22 are arrange | positioned in the molding position P2, piston 23 is lowered | hung without delay.
 上記動作は、溶融ガラス50が押圧室31内または/および一対の押し出し流路33内において硬化してしまうことを避けるべく、より短時間に瞬間的に実施されるものであるが、以下においては、当該動作についてこれを段階に分けて詳細に説明する。 The above operation is performed instantaneously in a shorter time in order to prevent the molten glass 50 from being hardened in the pressing chamber 31 or / and in the pair of extrusion flow paths 33. The operation will be described in detail in stages.
 まず、図10に示すように、ピストン23が鉛直下方に向けて移動することにより、ピストン23が補助金型22のピストン移動用通路22eに進入し、これによって押圧室31が形成されることになる。 First, as shown in FIG. 10, when the piston 23 moves vertically downward, the piston 23 enters the piston moving passage 22 e of the auxiliary mold 22, thereby forming the pressing chamber 31. Become.
 その後、ピストン23がさらに鉛直下方に向けて移動することにより、ピストン23の下端に位置する押圧面23aが溜め受け部32に溜め受けられた溶融ガラス50の上面に接触することで溶融ガラス50がピストン23によって押圧される。これに伴い、押圧室31が溶融ガラス50によって充填されることになり、溶融ガラス50の一部が一対の押し出し流路33,33内に進入する。 Thereafter, when the piston 23 further moves vertically downward, the pressing surface 23a located at the lower end of the piston 23 comes into contact with the upper surface of the molten glass 50 stored in the reservoir receiving portion 32, whereby the molten glass 50 is It is pressed by the piston 23. Along with this, the pressing chamber 31 is filled with the molten glass 50, and a part of the molten glass 50 enters the pair of extrusion channels 33 and 33.
 このとき、上述したように、一対の押し出し流路33,33に隣接する部分の押圧室31の壁面が当該一対の押し出し流路33,33側に向かって傾斜する形状を有する傾斜面21d,21d,22d,22dにて構成されているため、溶融ガラス50が押圧室31から一対の押し出し流路33,33内にスムーズに供給されることになる。 At this time, as described above, the inclined surfaces 21d and 21d having a shape in which the wall surface of the pressing chamber 31 adjacent to the pair of extrusion channels 33 and 33 is inclined toward the pair of extrusion channels 33 and 33 side. , 22d, 22d, the molten glass 50 is smoothly supplied from the pressing chamber 31 into the pair of extrusion channels 33, 33.
 その後、図11に示すように、ピストン23がさらに鉛直下方に向けて移動することにより、上述した一対の押し出し流路33,33に供給された溶融ガラス50が水平方向に沿って当該一対の押し出し流路33,33から外側に向かって吐出する。吐出した溶融ガラス50は、比較的高い粘度を有しているため、第1金型21の一対の第1成形面21c,21cに向けて直ちに垂れ下がることはなく、水平方向に進んでそれぞれ一対の逃がし部35,35に到達する。 Thereafter, as shown in FIG. 11, the piston 23 further moves downward in the vertical direction, so that the molten glass 50 supplied to the above-described pair of extrusion flow paths 33, 33 is extruded along the horizontal direction. It discharges toward the outside from the flow paths 33 and 33. Since the discharged molten glass 50 has a relatively high viscosity, the molten glass 50 does not immediately sag toward the pair of first molding surfaces 21c, 21c of the first mold 21, and advances in the horizontal direction to each of the pair of first molding surfaces 21c, 21c. The escape portions 35 and 35 are reached.
 ここで、上述したように、一対の押し出し流路33,33の各々は、スリット状の開口部を有しているため、当該一対の押し出し流路33,33から吐出された部分の溶融ガラス50は、略板状の形状を成すことになる。そのため、以上の段階を経ることにより、一対の押し出し流路33,33から吐出された部分の溶融ガラス50は、成形すべきガラス成形品としてのカバーガラスの形状に近い状態となって一対の成形用型部である第1金型21の第1成形面21cと第2金型24の第2成形面24cとの間に供給されることになる。 Here, as described above, each of the pair of extrusion channels 33 and 33 has a slit-like opening, and therefore, the portion of the molten glass 50 discharged from the pair of extrusion channels 33 and 33. Is substantially plate-shaped. Therefore, by passing through the above steps, the portion of the molten glass 50 discharged from the pair of extrusion flow paths 33, 33 is in a state close to the shape of the cover glass as a glass molded product to be molded, and a pair of molded It is supplied between the first molding surface 21 c of the first mold 21 that is a mold part and the second molding surface 24 c of the second mold 24.
 また、当該一対の押し出し流路33,33から吐出された部分の溶融ガラス50は、ピストン23による押圧に起因する流動によって押圧室31から外部に向けて移動したものであるため、温度差が比較的生じていない状態にある。そのため、吐出された部分の溶融ガラス50の上面および下面における温度は、これらが略同一に保たれた状態にあることになる。 Moreover, since the molten glass 50 of the part discharged from the said pair of extrusion flow paths 33 and 33 moved to the exterior from the press chamber 31 by the flow resulting from the press by the piston 23, a temperature difference is compared. It is in a state that does not occur. Therefore, the temperature at the upper surface and the lower surface of the molten glass 50 in the discharged portion is in a state where they are kept substantially the same.
 次に、図5に示すように、溶融ガラスに第2金型を接触させて加圧成形を行なう(工程S5)。図12は、溶融ガラスを加圧成形する工程を示す図である。 Next, as shown in FIG. 5, the second mold is brought into contact with the molten glass to perform pressure molding (step S5). FIG. 12 is a diagram illustrating a process of pressure-forming molten glass.
 具体的には、図12に示すように、一対の第2金型24,24が、第1金型21の一対の第1成形面21c,21cにそれぞれ接近するように鉛直下方(図11中に示す矢印C1方向)に向けて移動させられる。一対の第2金型24,24の移動は、制御部40が一対の第2金型駆動機構28,28を駆動することで行われる。 Specifically, as shown in FIG. 12, the pair of second molds 24, 24 are vertically downward (in FIG. 11) so as to approach the pair of first molding surfaces 21c, 21c of the first mold 21, respectively. In the direction of arrow C1). The movement of the pair of second molds 24, 24 is performed by the control unit 40 driving the pair of second mold drive mechanisms 28, 28.
 これにより、一対の押し出し流路33,33から吐出された部分の溶融ガラス50がそれぞれ第2金型24の第2成形面24cに接触し、さらにその後、第1金型21の第1成形面21cに接触することになる。これにより、溶融ガラス50は、第2成形面24cと第1成形面21cとの間で挟み込まれた状態となる。その際、溶融ガラス50は、第1成形面21cおよび第2成形面24cによって加圧されて押し広げられ、これにより第1金型21および一対の第2金型24によって規定される一対のキャビティ34,34内に溶融ガラス50が充填されるとともに、溶融ガラス50の加圧成形が行なわれる。なお、一対の押し出し流路33,33から溶融ガラス50が吐出された後には、遅滞なく一対の第2金型24,24が下降させられる。 Thereby, the molten glass 50 of the part discharged from a pair of extrusion flow paths 33 and 33 each contacts the 2nd molding surface 24c of the 2nd metal mold | die 24, and also the 1st molding surface of the 1st metal mold | die 21 after that. 21c will be contacted. Thereby, the molten glass 50 will be in the state pinched | interposed between the 2nd shaping | molding surface 24c and the 1st shaping | molding surface 21c. At that time, the molten glass 50 is pressed and spread by the first molding surface 21 c and the second molding surface 24 c, thereby a pair of cavities defined by the first mold 21 and the pair of second molds 24. 34 and 34 are filled with molten glass 50, and pressure molding of molten glass 50 is performed. In addition, after the molten glass 50 is discharged from a pair of extrusion flow paths 33 and 33, a pair of 2nd metal mold | dies 24 and 24 are dropped without delay.
 溶融ガラス50が第1金型21および一対の第2金型24,24によって加圧された状態は、所定の時間にわたって維持される。これにより、溶融ガラス50に第1金型21の第1成形面21cおよび第2金型24の第2成形面24cの形状が転写された状態で溶融ガラス50が硬化することになり、これによってカバーガラスとなる製品領域61と非製品領域62とを含むガラス成形体60(図13等参照)が形成される。 The state in which the molten glass 50 is pressurized by the first mold 21 and the pair of second molds 24 and 24 is maintained for a predetermined time. As a result, the molten glass 50 is cured in a state where the shapes of the first molding surface 21c of the first mold 21 and the second molding surface 24c of the second mold 24 are transferred to the molten glass 50. A glass molded body 60 (see FIG. 13 and the like) including the product region 61 and the non-product region 62 to be the cover glass is formed.
 加圧処理の開始時点における溶融ガラス50の温度は、ガラス転移点Tg[℃]に対し、(Tg+150)[℃]以上(Tg+300)[℃]以下に設定されることが好ましい。たとえばTgが540[℃]である場合には、加圧直前の溶融ガラスの温度を780[℃]とすればよい。溶融ガラスがこのような温度条件を満たすためには、第1金型21の温度を450[℃]以上550[℃]以下に設定し、一対の第2金型24,24の温度をそれぞれ450[℃]以上550[℃]以下に設定するとよい。たとえばTgが540[℃]である場合には、第1金型21の温度を500[℃]に設定し、一対の第2金型24,24の温度を520[℃]に設定すればよい。 The temperature of the molten glass 50 at the start of the pressure treatment is preferably set to (Tg + 150) [° C.] or more and (Tg + 300) [° C.] or less with respect to the glass transition point Tg [° C.]. For example, when Tg is 540 [° C.], the temperature of the molten glass just before pressing may be 780 [° C.]. In order for the molten glass to satisfy such a temperature condition, the temperature of the first mold 21 is set to 450 [° C.] or more and 550 [° C.] or less, and the temperature of the pair of second molds 24 and 24 is set to 450 respectively. It is good to set [C] or more and 550 [C] or less. For example, when Tg is 540 [° C.], the temperature of the first mold 21 may be set to 500 [° C.], and the temperature of the pair of second molds 24 and 24 may be set to 520 [° C.]. .
 次に、図5に示すように、ピストンおよび第2金型による押圧および加圧が解除される(工程S6)。図13は、押圧および加圧を解除する工程を示す図である。 Next, as shown in FIG. 5, the pressing and pressurization by the piston and the second mold are released (step S6). FIG. 13 is a diagram illustrating a process of releasing the pressing and pressing.
 具体的には、図13に示すように、ピストン23および一対の第2金型24,24が、それぞれ第1金型21から離隔するように鉛直上方(図中に示す矢印B2,C2方向)に向けて移動させられる。これにより、ガラス成形体60からピストン23および一対の第2金型24,24が離型される。なお、ピストン23および一対の第2金型24,24の移動は、制御部40がピストン駆動機構27および一対の第2金型駆動機構28,28を駆動することで行われる。 Specifically, as shown in FIG. 13, the piston 23 and the pair of second molds 24, 24 are vertically upward (in the directions of arrows B <b> 2 and C <b> 2 shown in the figure) so as to be separated from the first mold 21. It is moved toward. Thereby, the piston 23 and the pair of second dies 24, 24 are released from the glass molded body 60. The movement of the piston 23 and the pair of second molds 24, 24 is performed by the control unit 40 driving the piston drive mechanism 27 and the pair of second mold drive mechanisms 28, 28.
 次に、図5に示すように、第1金型および補助金型が取出しポジションに配置され(工程S7)、ガラス成形体が取り出される(工程S8)。図14は、第1金型および補助金型を取出しポジションに配置してガラス成形体を取り出す工程を示す図である。 Next, as shown in FIG. 5, the first mold and the auxiliary mold are arranged at the take-out position (step S7), and the glass molded body is taken out (step S8). FIG. 14 is a diagram illustrating a process of taking out the glass molded body by taking out the first mold and the auxiliary mold at the take-out position.
 具体的には、図14に示すように、第1金型21および補助金型22を移動させてこれらを取出しポジションP3(図3参照)に配置するとともに、補助金型22を鉛直上方(図中に示す矢印D方向)に向けて第1金型21から離隔させる。これにより、ガラス成形体60から補助金型22が離型される。さらに、図示しない吸着装置等によってガラス成形体60を吸着し、ガラス成形体60を第1金型21から離型させることにより、ガラス成形体60の取り出しが行なわれる。なお、第1金型21および補助金型22の移動は、制御部40が第1金型駆動機構25および補助金型駆動機構26を駆動することで行われる。 Specifically, as shown in FIG. 14, the first mold 21 and the auxiliary mold 22 are moved to be taken out and placed at the take-out position P3 (see FIG. 3), and the auxiliary mold 22 is moved vertically upward (see FIG. 14). It is separated from the first mold 21 in the direction of arrow D shown in the figure. Thereby, the auxiliary mold 22 is released from the glass molded body 60. Furthermore, the glass molded body 60 is taken out by adsorbing the glass molded body 60 by an adsorption device (not shown) and releasing the glass molded body 60 from the first mold 21. The movement of the first mold 21 and the auxiliary mold 22 is performed by the control unit 40 driving the first mold driving mechanism 25 and the auxiliary mold driving mechanism 26.
 次に、図5に示すように、ガラス成形体の非製品領域が切断されて除去される(工程S9)。図15Aおよび図15Bは、ガラス成形体の非製品領域を切断して除去する工程の切断位置を示すガラス成形体の平面図および断面図である。なお、図15Bは、図15Aに示すXVB-XVB線に沿ったガラス成形体の断面図を示している。 Next, as shown in FIG. 5, the non-product region of the glass molded body is cut and removed (step S9). FIG. 15A and FIG. 15B are a plan view and a cross-sectional view of a glass molded body showing a cutting position in a step of cutting and removing a non-product region of the glass molded body. FIG. 15B shows a cross-sectional view of the glass molded body taken along line XVB-XVB shown in FIG. 15A.
 取り出し後のガラス成形体60の製品領域61のおもて面およびうら面は、上述した加圧成形によっていずれも鏡面かまたはそれに近い状態に成形されている。そのため、加圧成形後に必要となる追加の加工としては、ガラス成形体60から非製品領域62を切断して除去するのみで足りる。 The front surface and the back surface of the product region 61 of the glass molded body 60 after being taken out are both formed into a mirror surface or a state close thereto by the pressure molding described above. Therefore, it is sufficient to cut and remove the non-product region 62 from the glass molded body 60 as an additional process required after pressure molding.
 具体的には、図15Aおよび図15Bに示すように、略箱形状のカバーガラスが得られることとなるように、図中に示す切断線Eに沿ってガラス成形体60を切断する。これにより、ガラス成形体60から非製品領域62が除去されることになり、略箱形状のカバーガラスが2つ得られることになる。 Specifically, as shown in FIGS. 15A and 15B, the glass molded body 60 is cut along a cutting line E shown in the drawing so that a substantially box-shaped cover glass is obtained. Thereby, the non-product area | region 62 will be removed from the glass molded object 60, and two substantially box-shaped cover glasses will be obtained.
 ここで、上述したように、加圧成形工程において、一対のキャビティ34,34のうちの一対の押し出し流路33,33に隣接する部分が、製造すべきガラス成形品としてのカバーガラスの側板部のうちの主板部が位置する側とは反対側に位置する端部から連設される非製品領域を形成する部分に該当するように構成されているため、上述した切断工程の際に切断される部分は、製造されたカバーガラスの側板部の主板部が位置する側とは反対側に位置する端部となる。そのため、製造されたカバーガラスの主板部のおもて面およびうら面のみならず、側板部のおもて面およびうら面についても、研磨加工等を施さずとも鏡面かまたはそれに近い状態の表面状態に仕上げることができる。 Here, as described above, in the pressure molding step, the portion adjacent to the pair of extrusion channels 33, 33 in the pair of cavities 34, 34 is the side plate portion of the cover glass as a glass molded product to be manufactured. Since it is configured to correspond to a portion that forms a non-product region continuously provided from an end located on the side opposite to the side on which the main plate portion is located, it is cut during the cutting process described above. The part which becomes is an edge part located in the opposite side to the side in which the main board part of the side plate part of the manufactured cover glass is located. Therefore, not only the front and back surfaces of the main plate portion of the manufactured cover glass, but also the front and back surfaces of the side plate portions are mirror surfaces or surfaces that are close to that without being polished. It can be finished to the state.
 以上において説明したように、本実施の形態におけるガラス成形品の製造方法および製造装置1を利用してカバーガラスを製造することにより、溜め受け部32にて溜め受けた溶融ガラス50をスリット状の開口部を含む押し出し流路33から押し出すことにより、溶融ガラス50を製造すべきカバーガラスの形状に近い状態の略板状の形状を成すようにすることができ、さらにこの略板状の形状を成す溶融ガラス50をその厚み方向に沿って両側から加圧成形することが可能になる。そのため、溶融ガラス50の滴下から溶融ガラス50の硬化までの僅かな時間の間に瞬時に溶融ガラス50の形状を製造すべきカバーガラスの形状に定めることができる。したがって、優れた成形性にて薄肉のカバーガラスを効率よく製造することが可能になるばかりでなく、隅部における転写性も向上することになる。 As described above, the cover glass is manufactured using the glass molded product manufacturing method and the manufacturing apparatus 1 according to the present embodiment, so that the molten glass 50 received by the reservoir receiver 32 is slit-shaped. By extruding from the extrusion flow path 33 including the opening, the molten glass 50 can be made to have a substantially plate-like shape close to the shape of the cover glass to be manufactured. The formed molten glass 50 can be pressure-formed from both sides along the thickness direction. Therefore, the shape of the molten glass 50 can be instantly determined as the shape of the cover glass to be manufactured in a short time from the dropping of the molten glass 50 to the curing of the molten glass 50. Therefore, it is possible not only to efficiently produce a thin cover glass with excellent moldability, but also to improve transferability at the corners.
 また、本実施の形態におけるガラス成形品の製造方法および製造装置1を利用してカバーガラスを製造することにより、スリット状の開口部を含む押し出し流路33から押し出された部分の溶融ガラス50に比較的大きな温度差が生じないことになるため、その後に実施される加圧成形工程において、当該溶融ガラス50の第1成形面21cおよび第2成形面24cに接触する部分である上面および下面において略同等の冷却プロセスを経させることが可能になる。したがって、当該観点からも、優れた成形性にて薄肉のカバーガラスを効率よく製造することが可能になることになる。 Moreover, by manufacturing the cover glass using the manufacturing method and the manufacturing apparatus 1 of the glass molded product in the present embodiment, the portion of the molten glass 50 extruded from the extrusion flow path 33 including the slit-shaped opening is formed. Since a relatively large temperature difference does not occur, in the subsequent pressure forming step, the upper surface and the lower surface, which are portions that contact the first molding surface 21c and the second molding surface 24c, of the molten glass 50 are used. It becomes possible to go through substantially the same cooling process. Therefore, also from this viewpoint, it becomes possible to efficiently produce a thin cover glass with excellent moldability.
 さらには、本実施の形態におけるガラス成形品の製造方法および製造装置1を利用してカバーガラスを製造することにより、落下させた溶融ガラスを水平方向に沿って挟み込んで加圧成形する場合に比べ、各種の製造条件を比較的容易に一致させることができるため、製造されるカバーガラスの品質に大きなばらつきが生じることもなく、歩留まりよくカバーガラスを製造することができる。 Furthermore, by manufacturing the cover glass using the manufacturing method and the manufacturing apparatus 1 of the glass molded product in the present embodiment, compared to the case where the molten glass dropped is sandwiched in the horizontal direction and pressed. Since various production conditions can be made relatively easy to match, the quality of the produced cover glass does not vary greatly, and the cover glass can be produced with good yield.
 以上において説明した本発明の実施の形態においては、装置構成をより簡素化する観点から、溶融ガラスを加圧成形するための部材として、溜め受け面、第1流路形成面および第1成形面を含む第1金型と、第2流路形成面を含む補助金型と、押圧面を含むピストンと、第2成形面を含む第2金型とからなる4つの部材にて構成した場合を例示したが、必ずしもこのような構成にする必要はなく、より多くの部材にてこれら各種の面が規定されるように構成してもよい。たとえば、上述した第1金型を、溜め受け面および第1流路形成面を含む部材と、第1成形面を含む部材とに分割してもよいし、さらにこのうちの前者を、溜め受け面を含む部材と、第1流路形成面を含む部材に分割してもよい。 In the embodiment of the present invention described above, from the viewpoint of further simplifying the apparatus configuration, the reservoir receiving surface, the first flow path forming surface, and the first forming surface are used as members for pressure forming molten glass. A case in which it is constituted by four members including a first mold including the auxiliary mold including the second flow path forming surface, the piston including the pressing surface, and the second mold including the second molding surface. Although illustrated, it is not always necessary to have such a configuration, and the various surfaces may be defined by more members. For example, the first mold described above may be divided into a member including a reservoir receiving surface and a first flow path forming surface, and a member including a first molding surface, and the former of these may be used as a reservoir receiver. You may divide | segment into the member containing a surface and the member containing a 1st flow-path formation surface.
 また、上述した本発明の実施の形態においては、押し出し流路から溶融ガラスを押し出す際の押し出し方向を水平方向とし、一対の成形用型部を用いて溶融ガラスを加圧成形する際の挟み込み方向を鉛直方向とした場合を例示したが、押し出し流路から溶融ガラスを押し出す際の押し出し方向を鉛直下方とし、一対の成形用型部を用いて溶融ガラスを加圧成形する際の挟み込み方向を水平方向とすることも当然に可能である。 Further, in the above-described embodiment of the present invention, the extruding direction when extruding the molten glass from the extruding flow path is the horizontal direction, and the sandwiching direction when the molten glass is pressure-molded using a pair of forming mold parts However, the extruding direction when extruding the molten glass from the extruding flow path is vertically downward, and the sandwiching direction when the molten glass is pressure-formed using a pair of forming mold parts is horizontal. Of course, it is possible to set the direction.
 また、上述した本発明の実施の形態においては、一対の押し出し流路に隣接する部分の押圧室の壁面が当該一対の押し出し流路側に向かって傾斜する形状を有する傾斜面にて構成されている場合を例示したが、これに代えて当該壁面を一対の押し出し流路側に向かって湾曲する形状を有する湾曲面にて構成してもよい。 Further, in the above-described embodiment of the present invention, the wall surface of the pressing chamber in the portion adjacent to the pair of extrusion channels is configured by an inclined surface having a shape inclined toward the pair of extrusion channels. Although the case has been illustrated, instead of this, the wall surface may be configured by a curved surface having a shape that curves toward the pair of extruded flow paths.
 また、上述した本発明の実施の形態においては、押圧室に面するように2つの押し出し流路を設けることで一度に2つのカバーガラスが製造可能となるように構成した場合を例示したが、押圧室に面するように1つの押し出し流路のみを設けることとすれば、一度に1つのカバーガラスだけを製造することも可能である。一方で、押圧室に面するように押し出し流路を放射状に3つ以上設けることとすれば、一度に3つ以上のカバーガラスを製造することも可能になる。 Moreover, in the above-described embodiment of the present invention, the case where two cover glasses can be manufactured at a time by providing two extrusion flow paths so as to face the pressing chamber is exemplified. If only one extrusion channel is provided so as to face the pressing chamber, it is possible to manufacture only one cover glass at a time. On the other hand, if three or more extrusion channels are provided radially so as to face the pressing chamber, three or more cover glasses can be manufactured at a time.
 さらには、上述した本発明の実施の形態においては、本発明が適用されて製造されるガラス成形品として、スマートフォンやタブレット端末に具備されるカバーガラスを例示して説明を行なったが、これに限定されるものではなく、たとえば他のディスプレイ装置のカバーガラスの製造や、モバイルコンピュータ、デジタルカメラ等に代表される電子機器等の外装カバーの製造に本発明が適用されてもよいし、各種レンズや光記録媒体の製造に本発明が適用されてもよい。 Furthermore, in embodiment of this invention mentioned above, although illustrated, the cover glass with which a smart phone and a tablet terminal were equipped was demonstrated as a glass molded product manufactured by applying this invention, For example, the present invention may be applied to the manufacture of cover glasses for other display devices, and the manufacture of exterior covers for electronic devices such as mobile computers and digital cameras, and various lenses. The present invention may also be applied to the manufacture of optical recording media.
 このように、今回開示した上記実施の形態はすべての点で例示であって、制限的なものではない。本発明の技術的範囲は請求の範囲によって画定され、また請求の範囲の記載と均等の意味および範囲内でのすべての変更を含むものである。 Thus, the above-described embodiment disclosed herein is illustrative in all respects and is not restrictive. The technical scope of the present invention is defined by the scope of the claims, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
 1 製造装置、10 素材供給部、11 連続溶融炉、12 ノズル部、13 流出管、14 カッター、15 カッター駆動機構、20 成形部、21 第1金型、21a 溜め受け面、21b 第1流路成形面、21c 第1成形面、21d 傾斜面、22 補助金型、22b 第2流路形成面、22d 傾斜面、22e ピストン移動用通路、22f 第2金型移動用通路、23 ピストン、23a 押圧面、24 第2金型、24c 第2成形面、25 第1金型駆動機構、26 補助金型駆動機構、27 ピストン駆動機構、28 第2金型駆動機構、31 押圧室、32 溜め受け部、33 押し出し流路、34 キャビティ、35 逃がし部、40 制御部、50 溶融ガラス、60 ガラス成形体、61 製品領域、62 非製品領域、100 ディスプレイ装置、110 カバーガラス、110a おもて面、110b うら面、111 主板部、112 側板部、113 孔部、120 外装プレート、130 回路基板、131 スピーカー、140 ディスプレイ、142 画像表示部、P1 滴下ポジション、P2 成形ポジション、P3 取出しポジション。 DESCRIPTION OF SYMBOLS 1 Manufacturing apparatus, 10 Material supply part, 11 Continuous melting furnace, 12 Nozzle part, 13 Outflow pipe, 14 Cutter, 15 Cutter drive mechanism, 20 Molding part, 21 1st metal mold | die, 21a Reservoir receiving surface, 21b 1st flow path Molding surface, 21c first molding surface, 21d inclined surface, 22 auxiliary mold, 22b second flow path forming surface, 22d inclined surface, 22e piston moving passage, 22f second mold moving passage, 23 piston, 23a pressing Surface, 24 second mold, 24c second molding surface, 25 first mold drive mechanism, 26 auxiliary mold drive mechanism, 27 piston drive mechanism, 28 second mold drive mechanism, 31 pressing chamber, 32 reservoir receiving part 33 Extrusion flow path, 34 Cavity, 35 Escape part, 40 Control part, 50 Molten glass, 60 Glass molded body, 61 Product area, 62 Non-product area, 100 display device, 110 cover glass, 110a front surface, 110b back surface, 111 main plate, 112 side plate, 113 hole, 120 exterior plate, 130 circuit board, 131 speaker, 140 display, 142 images Display, P1 dripping position, P2 molding position, P3 take-out position.

Claims (8)

  1.  溶融ガラスを滴下する工程と、
     滴下された溶融ガラスを溜め受け部にて溜め受ける工程と、
     前記溜め受け部にて溜め受けた溶融ガラスを押圧部を用いて押圧することにより、溶融ガラスをスリット状の開口部を含む押し出し流路から前記溜め受け部の外部に向けて押し出す工程と、
     前記押し出し流路から押し出されることで略板状を成した溶融ガラスをその厚み方向に沿って両側から一対の成形用型部を用いて挟み込むことによって加圧成形する工程とを備えた、ガラス成形品の製造方法。
    A step of dripping molten glass;
    A step of receiving the dropped molten glass in a reservoir receiving portion;
    Extruding the molten glass from the extrusion flow path including a slit-shaped opening toward the outside of the reservoir receiver by pressing the molten glass stored in the reservoir receiver using a pressing portion;
    A glass molding comprising a step of pressure-molding by sandwiching a molten glass that has been substantially plate-shaped by being extruded from the extrusion flow path from both sides using a pair of molding dies along its thickness direction. Product manufacturing method.
  2.  前記押し出し流路から溶融ガラスを押し出す際の押し出し方向が、略水平方向であり、
     前記一対の成形用型部を用いて溶融ガラスを加圧成形する際の挟み込み方向が、略鉛直方向である、請求項1に記載のガラス成形品の製造方法。
    The extrusion direction when extruding molten glass from the extrusion flow path is a substantially horizontal direction,
    The manufacturing method of the glass molded product of Claim 1 whose sandwiching direction at the time of press-molding molten glass using the pair of said shaping | molding die part is a substantially vertical direction.
  3.  前記溜め受け部を規定する溜め受け面、前記押し出し流路の一部を規定する第1流路形成面、および、前記一対の成形用型部の一方を規定する第1成形面を含む第1部材と、前記押し出し流路の残る一部を規定する第2流路形成面を含む第2部材と、前記押圧部を規定する押圧面を含む第3部材と、前記一対の成形用型部の他方を規定する第2成形面を含む第4部材とを用いることにより、ガラス成形品を製造する、請求項1または2に記載のガラス成形品の製造方法。 A first receiving surface that includes a reservoir receiving surface that defines the reservoir receiving portion, a first flow path forming surface that defines a part of the extrusion flow channel, and a first molding surface that defines one of the pair of molding die portions. A second member that includes a member, a second channel forming surface that defines a remaining part of the extrusion channel, a third member that includes a pressing surface that defines the pressing portion, and a pair of molding die portions The manufacturing method of the glass molded product of Claim 1 or 2 which manufactures a glass molded product by using the 4th member containing the 2nd molding surface which prescribes | regulates the other.
  4.  前記一対の成形用型部を用いて溶融ガラスを加圧成形する際に、前記第1部材を移動させることなく前記第4部材を前記第1部材側に向けて移動させることによって溶融ガラスを挟み込んで加圧成形する、請求項3に記載のガラス成形品の製造方法。 When pressure-molding molten glass using the pair of mold parts, the molten glass is sandwiched by moving the fourth member toward the first member without moving the first member. The manufacturing method of the glass molded product of Claim 3 which press-molds by.
  5.  前記第1部材および前記第2部材として、溶融ガラスの押し出し方向に沿った上流側において前記押し出し流路に隣接する部分の壁面が前記押し出し流路側に向かって傾斜または湾曲した形状のものを用いる、請求項3または4に記載のガラス成形品の製造方法。 As the first member and the second member, those having a shape in which the wall surface of the portion adjacent to the extrusion flow channel is inclined or curved toward the extrusion flow channel side on the upstream side along the extrusion direction of the molten glass, The manufacturing method of the glass molded product of Claim 3 or 4.
  6.  加圧成形されるガラス成形品が、主板部および当該主板部の周縁から連設された側板部を含むものであり、
     前記一対の成形用型部を用いて溶融ガラスを加圧成形する際に、前記押し出し流路に隣接して前記側板部の前記主板部が位置する側とは反対側に位置する端部が形成される、請求項1から5のいずれかに記載のガラス成形品の製造方法。
    The glass molded product to be pressure-molded includes a main plate portion and a side plate portion continuously provided from the periphery of the main plate portion,
    When pressure-molding molten glass using the pair of forming mold portions, an end portion located on the opposite side of the side plate portion from the side where the main plate portion is located is formed adjacent to the extrusion flow path. The manufacturing method of the glass molded product in any one of Claim 1 to 5.
  7.  前記押し出し流路として複数の押し出し流路を予め設けておき、前記押圧部を用いた溶融ガラスの押圧によって前記複数の押し出し流路から押し出された溶融ガラスのそれぞれを加圧成形することによって複数のガラス成形品を一度に製造する、請求項1から6のいずれかに記載のガラス成形品の製造方法。 A plurality of extrusion channels are provided in advance as the extrusion channel, and a plurality of molten glass extruded from the plurality of extrusion channels by pressing the molten glass using the pressing unit are formed by pressing. The manufacturing method of the glass molded product in any one of Claim 1 to 6 which manufactures a glass molded product at once.
  8.  溶融ガラスを滴下する素材供給部と、
     滴下された溶融ガラスを溜め受ける溜め受け部と、
     前記溜め受け部に溜め受けられた溶融ガラスを押圧する押圧部と、
     前記押圧部によって押圧された溶融ガラスを前記溜め受け部の外部に向けて押し出すためのスリット状の開口部を含む押し出し流路と、
     前記押し出し流路から押し出されることで略板状を成した溶融ガラスをその厚み方向に沿って両側から挟み込むことによって加圧成形する一対の成形用型部とを備えた、ガラス成形品の製造装置。
    A material supply unit for dropping molten glass;
    A reservoir receiver for receiving the molten glass that has been dropped;
    A pressing portion that presses the molten glass stored in the reservoir receiving portion; and
    An extrusion flow path including a slit-shaped opening for extruding the molten glass pressed by the pressing portion toward the outside of the reservoir receiving portion;
    An apparatus for producing a glass molded article, comprising: a pair of mold parts for pressure molding by sandwiching molten glass that has been substantially plate-shaped by being extruded from the extrusion flow path from both sides along its thickness direction .
PCT/JP2014/062233 2013-06-18 2014-05-07 Molded glass article manufacturing method and manufacturing device WO2014203636A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-127289 2013-06-18
JP2013127289 2013-06-18

Publications (1)

Publication Number Publication Date
WO2014203636A1 true WO2014203636A1 (en) 2014-12-24

Family

ID=52104379

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/062233 WO2014203636A1 (en) 2013-06-18 2014-05-07 Molded glass article manufacturing method and manufacturing device

Country Status (1)

Country Link
WO (1) WO2014203636A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111094195A (en) * 2018-04-17 2020-05-01 冈本硝子株式会社 Mold for molding glass optical component and method for manufacturing glass optical component using the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05178631A (en) * 1991-12-27 1993-07-20 Olympus Optical Co Ltd Method for forming optical element
JPH08245225A (en) * 1995-03-10 1996-09-24 Olympus Optical Co Ltd Device for forming optical element
JPH11189426A (en) * 1991-11-27 1999-07-13 Olympus Optical Co Ltd Molding process for optical element and optical element
JP2013234091A (en) * 2012-05-09 2013-11-21 Konica Minolta Inc Method and apparatus for manufacturing glass sheet

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11189426A (en) * 1991-11-27 1999-07-13 Olympus Optical Co Ltd Molding process for optical element and optical element
JPH05178631A (en) * 1991-12-27 1993-07-20 Olympus Optical Co Ltd Method for forming optical element
JPH08245225A (en) * 1995-03-10 1996-09-24 Olympus Optical Co Ltd Device for forming optical element
JP2013234091A (en) * 2012-05-09 2013-11-21 Konica Minolta Inc Method and apparatus for manufacturing glass sheet

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111094195A (en) * 2018-04-17 2020-05-01 冈本硝子株式会社 Mold for molding glass optical component and method for manufacturing glass optical component using the same
EP3686164A4 (en) * 2018-04-17 2020-10-28 Okamoto Glass Co., Ltd. Mold for glass-made optical component molding use, and method for manufacturing glass-made optical component using said mold
US20200339463A1 (en) * 2018-04-17 2020-10-29 Okamoto Glass Co., Ltd. Mold for molding glass-made optical component and method for manufucturing glass-made optical component using mold
CN111094195B (en) * 2018-04-17 2022-06-24 冈本硝子株式会社 Mold for molding glass optical component and method for manufacturing glass optical component using the same

Similar Documents

Publication Publication Date Title
CN103803779A (en) Protective glass cover forming device for mobile phone and mold for forming
JP2014091655A (en) Method and apparatus for producing glass molding
CN109250895A (en) Optical glass non-spherical surface lens moulding manufacture method and its mold
WO2014203636A1 (en) Molded glass article manufacturing method and manufacturing device
JPH09267404A (en) Optical element by pressure molding, its production and press mold
JP6374951B2 (en) Optical element molding die set and optical element manufacturing method
JPH0471853B2 (en)
CN111094195A (en) Mold for molding glass optical component and method for manufacturing glass optical component using the same
JPH01148717A (en) Forming device of optical element
WO2015118663A1 (en) Glass moulded article manufacturing method and manufacturing device
JP2000095532A (en) Press-formed optical element, its production, die for press-forming optical element and device for press- forming optical element
WO2013191096A1 (en) Production method and production device for glass formed product
JP2014234320A (en) Manufacturing method of glass molded article, and manufacturing apparatus of glass molded article
JP2012201518A (en) Method for manufacturing glass optical element
WO2015151178A1 (en) Manufacturing method and manufacturing device for glass molded article
JPH01164738A (en) Device for forming optical element
JP2006089313A (en) Method of molding plastic material
WO2015111183A1 (en) Method for manufacturing glass molded article, glass molded article, and device for manufacturing glass molded article
JP4666679B2 (en) Mold press molding apparatus and method for manufacturing molded body
JP2014094849A (en) Method and apparatus for producing glass molding
JP2015202974A (en) Manufacturing method for glass molding and manufacturing apparatus for glass molding
JP2014094848A (en) Method and apparatus for production of glass molding
WO2014199702A1 (en) Method for manufacturing molded glass article, and device for manufacturing molded glass article
WO2015111180A1 (en) Method and device for manufacturing glass molded article
JP2014227315A (en) Method and apparatus for manufacturing glass molding

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14813891

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 14813891

Country of ref document: EP

Kind code of ref document: A1