WO2014199702A1 - Method for manufacturing molded glass article, and device for manufacturing molded glass article - Google Patents

Method for manufacturing molded glass article, and device for manufacturing molded glass article Download PDF

Info

Publication number
WO2014199702A1
WO2014199702A1 PCT/JP2014/059409 JP2014059409W WO2014199702A1 WO 2014199702 A1 WO2014199702 A1 WO 2014199702A1 JP 2014059409 W JP2014059409 W JP 2014059409W WO 2014199702 A1 WO2014199702 A1 WO 2014199702A1
Authority
WO
WIPO (PCT)
Prior art keywords
mold
molding
molding surface
molten glass
glass
Prior art date
Application number
PCT/JP2014/059409
Other languages
French (fr)
Japanese (ja)
Inventor
将也 木下
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Publication of WO2014199702A1 publication Critical patent/WO2014199702A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/06Construction of plunger or mould
    • C03B11/10Construction of plunger or mould for making hollow or semi-hollow articles
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/05Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing in machines with reciprocating moulds
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/70Horizontal or inclined press axis
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/76Pressing whereby some glass overflows unrestrained beyond the press mould in a direction perpendicular to the press axis

Definitions

  • the present invention relates to a method for producing a glass molded article, and in particular, production of a glass molded article for producing a glass molded article including a main plate portion and a side plate portion continuously provided from at least a part of an outer edge of the main plate portion by pressure molding.
  • the present invention relates to a method and a manufacturing apparatus.
  • cover glasses provided in display devices such as smartphones and tablet terminals are widely used.
  • the cover glass is a portion that appears exposed on the outer surface of a display device or the like, and requires excellent design.
  • a cover glass having excellent design properties a cover glass having a complicated three-dimensional shape such as a substantially box shape composed of a main plate portion and a side plate portion connected to the outer edge thereof is required.
  • the logo mark and icon mark can be formed by grinding the main surface of a glass blank as a glass molded product.
  • the glass blanks that have been pressed may be polished or ground to obtain the required surface accuracy, so if further grinding is performed to obtain a logo mark or icon mark, it will be manufactured. This complicates the process and leads to an increase in manufacturing cost. In particular, when a local convex shape is cut out, the grinding time is increased and the manufacturing cost is greatly increased.
  • the method for manufacturing a glass molded product disclosed in Patent Document 1 includes a step of horizontally disposing a pair of molds, a step of dropping a molten glass lump between a pair of opposed molds, and dropping the molten glass lump. And a step of pressing and molding the molten glass lump in a horizontal direction using a pair of molds.
  • a glass molded product By producing a glass molded product through such a process, a glass molded product having a good surface accuracy of a mirror surface or a state close thereto is obtained, and the surface of the glass molded product after pressure molding is subjected to polishing treatment. At least the surface of the glass molded product can be used as it is as the product surface of the final product.
  • the second cavity portion for forming the side plate portion from the first cavity portion for forming the main plate portion.
  • the molten glass is filled in the first cavity portion and the second cavity portion by spreading the molten glass toward the surface.
  • the second cavity portion extends in a direction intersecting the first cavity portion, when the molten glass moves to the second cavity portion by changing the moving direction, friction with the mold is caused.
  • the moving speed decreases.
  • fever of a molten glass becomes easy to be taken by a metal mold
  • the cover glass provided therein is also required to be thinned.
  • the second cavity portion is partially cured.
  • the molten glass is broken or the transferability and releasability are impaired, resulting in a problem that the yield is greatly reduced or the production itself cannot be performed.
  • This invention is made
  • a manufacturing method of a glass molded product according to the present invention is a manufacturing method for manufacturing a glass molded product including a main plate portion and a side plate portion continuously provided from at least a part of an outer edge of the main plate portion, The step of disposing the first mold and the second mold for pressure forming opposite to each other, and bringing the first mold and the second mold close to each other, thereby allowing the molten glass to move from the first mold to the first mold. And a step of pressing and molding by using a second mold.
  • the first mold includes a first molding surface for molding the outer surface of the main plate portion and a second molding surface for molding the outer surface of the side plate portion.
  • the second mold includes a third molding surface for molding the inner surface of the main plate portion and a fourth molding surface for molding the inner surface of the side plate portion.
  • the molten glass spread by the first molding surface and the third molding surface in the pressure molding step is the second molding surface.
  • the fourth molding surface are filled, at least a part of the spread molten glass stays in the vicinity of the boundary between the first molding surface and the second molding surface.
  • a mold having a recess provided in at least a part near the boundary is used as the first mold.
  • An apparatus for producing a glass molded product according to the present invention is a device for producing a glass molded product including a main plate portion and a side plate portion continuously provided from at least a part of an outer edge of the main plate portion.
  • the first mold includes a first molding surface for molding the outer surface of the main plate portion and a second molding surface for molding the outer surface of the side plate portion.
  • the second mold includes a third molding surface for molding the inner surface of the main plate portion and a fourth molding surface for molding the inner surface of the side plate portion.
  • the first mold and the second mold are relatively moved by the drive mechanism, whereby the first molding surface and the third mold are moved.
  • the molten glass spread by the molding surface is filled between the second molding surface and the fourth molding surface, at least a part of the spread molten glass is in contact with the first molding surface.
  • a recess is provided in at least a part of the first mold in the vicinity of the boundary so as to stay in the vicinity of the boundary with the second molding surface.
  • the present invention it is possible to provide a glass molded product manufacturing method and a glass molded product manufacturing apparatus that can be molded into a complicated three-dimensional shape having a main plate portion and a side plate portion and can be thinned.
  • FIG. 2 is a schematic cross-sectional view taken along line II-II of the display device shown in FIG. It is the schematic which shows the structure of the manufacturing apparatus of the glass molded product which concerns on embodiment of this invention. It is a schematic cross section of the 1st metal mold
  • FIG. 1 is a perspective view showing a state in which a display device including a cover glass manufactured according to a method for manufacturing a glass molded product according to an embodiment of the present invention is partially disassembled.
  • FIG. 2 is a cross-sectional view taken along line II-II in FIG. With reference to FIG. 1 and FIG. 2, the cover glass 10 manufactured according to the manufacturing method of the glass molded product which concerns on this Embodiment, and the display apparatus 100 which comprises this are demonstrated.
  • the display device 100 includes a cover glass 10, an outer plate 20 having a flat plate shape, a circuit board 30 disposed on the outer plate 20, and a display mounted on the circuit board 30. 40.
  • the surface of the display 40 constitutes an image display unit 42.
  • the cover glass 10 is attached to the exterior plate 20 (see arrow AR).
  • the cover glass 10 seals the circuit board 30 and the display 40 on the exterior plate 20.
  • the cover glass 10 is disposed so as to cover the image display unit 42 of the display 40.
  • the cover glass 10 may be provided with an opening at a position corresponding to a speaker (not shown) mounted on the circuit board 30 or an operation button part (not shown) of the display device 100.
  • the opening penetrates in the thickness direction from one main surface side of the cover glass 10 toward the other main surface side.
  • the cover glass 10 has a main plate portion 13 and a side plate portion 16.
  • the cover glass 10 has an outer surface 11 and an inner surface 12, and the outer surface 11 of the cover glass 10 is composed of an outer surface of the main plate portion 13 and an outer surface of the side plate portion 16. Further, the inner surface 12 of the cover glass 10 is composed of an inner surface of the main plate portion 13 and an inner surface of the side plate portion 16.
  • the main plate portion 13 has a substantially flat shape. In a state where the cover glass 10 is attached to the display 40, the outer surface side of the main plate portion 13 is mainly exposed to the outside.
  • the side plate portion 16 has an annular shape as a whole, and is continuously provided on the outer edge of the main plate portion 13.
  • the side plate portion 16 is configured to move away from the outer surface of the main plate portion 13 as it goes outward from the outer edge of the main plate portion 13.
  • the side plate portion 16 may be formed into a flat plate shape, or is formed into a curved plate shape that curves in a direction away from the outer surface of the main plate portion 13 as it goes outward from the outer edge of the main plate portion 13. Also good. Further, it is not always necessary that the side plate portion 16 is provided in an annular shape around the entire circumference of the main plate portion 13, but only on a part of the outer edge of the main plate portion 13 (for example, a pair of opposing sides of the main plate portion 13 having a substantially rectangular shape in plan view). Only) the side plate portion 16 may be provided.
  • light L (see FIG. 2) including predetermined image information is transmitted through the main plate portion 13 from the inner surface 12 side located on the image display unit 42 side of the cover glass 10 toward the outer surface 11 side. To do. Thereby, the various image information displayed on the image display part 42 is recognized by the user.
  • the outer surface 11 of the cover glass 10 constitutes a touch panel display surface, the outer surface 11 is pressed by a user's finger or a pen or the like.
  • the linear expansion coefficient ⁇ of the glass is desirably 70 [ ⁇ 10 ⁇ 7 / ° C.] or more and 110 [ ⁇ 10 ⁇ 7 / ° C.] or less in a temperature range of 100 [° C.] to 300 [° C.].
  • a glass having a linear expansion coefficient ⁇ of 98 [ ⁇ 10 ⁇ 7 / ° C.] in the range of 100 ° C. to 300 ° C. may be used.
  • the glass viscosity is ⁇ [dPa ⁇ s]
  • FIG. 3 is a schematic diagram showing a configuration of a glass molded product manufacturing apparatus according to the present embodiment. With reference to FIG. 3, the manufacturing apparatus 50 of the glass molded product which concerns on this Embodiment is demonstrated.
  • the glass molded product manufacturing apparatus 50 mainly includes a molten glass supply unit 70, a cutting unit 80, a molding unit 60, and a control unit 90.
  • the molten glass supply unit 70 is a part for melting the glass material and supplying the molten glass to the forming unit 60.
  • the cutting unit 80 is a part for adjusting the amount of molten glass supplied from the molten glass supply unit 70 to the forming unit 60 to an appropriate amount.
  • the molding unit 60 is a part for pressure-molding the supplied molten glass using a mold.
  • the control unit 90 is a part for controlling the operations of the cutting unit 80 and the molding unit 60 described above.
  • the molten glass supply unit 70 includes a continuous melting furnace 71, a nozzle unit 72, and an outflow pipe 73.
  • the continuous melting furnace 71 melts a glass material and stores the molten glass
  • the nozzle portion 72 introduces the molten glass stored in the continuous melting furnace 71 into the outflow pipe 73.
  • the outflow pipe 73 has an outflow port 73a at its lower end, and continuously flows out the molten glass flow 10D from the outflow port 73a vertically downward.
  • the cutting unit 80 includes a cutter 81 and a cutter driving mechanism 82 as a cutting mechanism.
  • the cutter 81 cuts the molten glass flow 10D flowing out from the outflow pipe 73 and separates the cut portion from the molten glass flow 10D, and is driven by the cutter driving mechanism 82 described above.
  • the cutter 81 is configured by a pair of flat plate-shaped shear blades, and the pair of shear blades are abutted below the outflow pipe 73 to cut the molten glass flow 10D.
  • the cutter driving mechanism 82 receives a command from the control unit 90 and drives the cutter 81.
  • various types can be used, but preferably an air cylinder, a servo motor, a hydraulic cylinder, a linear motor, a stepping motor, or the like can be used.
  • the molding unit 60 includes a first mold 61, a second mold 62, a first mold drive mechanism 63, and a second mold drive mechanism 64.
  • die 62 are a metal mold
  • the first mold 61 moves by being driven by the first mold driving mechanism 63 described above, and the second mold 62 is moved by being driven by the second mold driving mechanism 64 described above.
  • Materials for forming the first mold 61 and the second mold 62 include heat-resistant alloys (stainless alloys, etc.), super steel materials mainly composed of tungsten carbide, and various ceramics (silicon carbide, silicon nitride, aluminum nitride, etc.). Further, it can be appropriately selected from known materials as a mold for producing a glass molded article such as a composite material containing carbon.
  • the first mold 61 and the second mold 62 may be made of the same material, or may be made of different materials.
  • the surfaces of the first mold 61 and the second mold 62 are preferably covered with a predetermined coating layer from the viewpoint of improving durability and preventing fusion with molten glass.
  • the material of the coating layer is not particularly limited. For example, various metals (chromium, aluminum, titanium, etc.), nitrides (chromium nitride, aluminum nitride, titanium nitride, boron nitride, etc.), oxides (chromium oxide) , Aluminum oxide, titanium oxide, etc.) can be used.
  • the method for forming the coating layer is not particularly limited, and for example, a vacuum deposition method, a sputtering method, a CVD method, or the like can be used.
  • the first mold 61 and the second mold 62 are configured to be heated to a predetermined temperature by a heating means (not shown).
  • the heating means is not particularly limited, but a known heating means can be appropriately selected and used.
  • a cartridge heater that is used by being embedded inside the member to be heated, a sheet heater that is used while being in contact with the outside of the member to be heated, an infrared heating device, a high-frequency induction heating device, or the like can be used as the heating means.
  • 1st mold drive mechanism 63 moves the 1st mold 61 in the DR1 direction (horizontal direction) shown by the arrow in Drawing 1 by receiving the command from control part 90, and driving.
  • the second mold drive mechanism 64 is driven in response to a command from the control unit 90, thereby moving the second mold 62 in the DR2 direction (horizontal direction) indicated by an arrow in FIG.
  • Various types can be used as the first mold driving mechanism 63 and the second mold driving mechanism 64, but preferably a servo motor, an air cylinder, a hydraulic cylinder, a linear motor, a stepping motor, or a combination thereof. Is available.
  • a mode for controlling the first mold driving mechanism 63 and the second mold driving mechanism 64 by the control unit 90 a mode for controlling the positions of the first mold 61 and the second mold 62 (position control mode), There is a mode (load control mode) for controlling the load relatively loaded on the first mold 61 and the second mold 62, and it is preferable that these two control modes are switchable.
  • the first mold driving mechanism 63 and the second mold driving mechanism 64 can press-mold molten glass with a maximum pressing force of 3 tons using the first mold 61 and the second mold 62. It is preferable that it is comprised.
  • the control unit 90 controls the operations of the cutter driving mechanism 82, the first mold driving mechanism 63, and the second mold driving mechanism 64 described above. That is, the control unit 90 manufactures a cover glass as a glass molded product such as the timing of cutting the molten glass flow 10D by the cutter 81, the timing of movement of the first mold 61, and the timing of movement of the second mold 62. A series of such sequences is controlled.
  • FIG. 4 is a schematic cross-sectional view of the first mold and the second mold shown in FIG.
  • FIG. 5 is an enlarged view of the area surrounded by the V line shown in FIG. The first mold 61 and the second mold will be described with reference to FIGS. 4 and 5.
  • the first mold 61 includes a first molding surface 61 a for molding the outer surface of the main plate portion 13 and a second molding surface 61 b for molding the outer surface of the side plate portion 16. And a recess 65 provided in the vicinity of the boundary between the first molding surface 61a and the second molding surface 61b.
  • the boundary between the first molding surface 61a and the second molding surface 61b is a portion where the plane including the first molding surface 61a and the plane including the second molding surface 61b intersect. This corresponds to P2 shown in FIG.
  • the first molding surface 61a is configured by a substantially rectangular flat surface.
  • the first molding surface 61a is connected to the second molding surface 61b via the recess 65.
  • the recess 65 covers the entire area along the extending direction of the boundary between the first molding surface 61a and the second molding surface 61b when viewed from the direction in which the first mold 61 and the second mold 62 are arranged. Is provided.
  • the recess 65 has an end portion P1 and an end portion P2, and an opening surface that passes through the end portion P1 and the end portion P2.
  • the opening surface is located on the same plane as the first molding surface 61a, and the depth direction of the recess 65 is parallel to the normal direction of the first molding surface 61a.
  • the recessed part 65 is formed so that the said opening surface may become a maximum outer dimension, and has a shape which can be mold-released with a molten glass in the manufacturing process mentioned later.
  • a recess 65 is provided.
  • the recess 65 When a part of the recess 65 is located on the second molding surface 61b side with respect to the virtual plane 69, the recess 65 is filled when the first mold 61 is released from the glass molded product after pressure molding.
  • die 61 contact the glass molded product after pressure forming will be broken.
  • the recess 65 is a boundary between the third molding surface 62a and the fourth molding surface 62b of the second mold 62, which will be described later, in the state where the first mold 61 and the second mold 62 are opposed to each other. It is formed so as to face the part.
  • the boundary between the third molding surface 62a and the fourth molding surface 62b refers to a portion where the plane including the third molding surface 62a and the plane including the fourth molding surface 62b intersect, and in FIG. It corresponds to P3 shown.
  • the width of the recess 65 is preferably greater than 0 mm and 2.0 mm or less, and the depth of the recess 65 (the most recessed portion of the recess from P1 along the horizontal direction) Is preferably greater than 0 mm and not greater than 2.0 mm.
  • the width of the recess 65 is more preferably 1.0 mm or more and 2.0 mm or less, and the depth of the recess 65 is preferably 0.5 mm or more and 2.0 mm or less.
  • the size of the concave portion 65 is larger than the width 2.0 mm and the depth 2.0 mm, the temperature of the molten glass itself retained in the concave portion 65 in the pressure forming step described later is lowered, and the molten glass shrinks. Excessive stress is applied and cracking is likely to occur.
  • the concave portion 65 when the concave portion 65 is not formed, in the pressure molding process, melting is performed between the first molding surface 61a and the third molding surface 62a and between the second molding surface 61b and the fourth molding surface 62b.
  • the molten glass is easily shrunk due to a decrease in the speed of the molten glass. As a result, curing of the molten glass proceeds, and it becomes impossible to reduce the thickness.
  • the molten glass is formed between the second molding surface 61b and the fourth molding surface between the first molding surface 61a and the third molding surface 62a.
  • moving between the molding surface 62b it is possible to move more easily.
  • the second molding surface 61b is provided continuously from the end P2 of the recess 65 on the second molding surface 61b side.
  • the second molding surface 61b has an inclined surface that moves away from the first molding surface 61a as it moves away from the first molding surface 61a along the normal direction of the first molding surface 61a.
  • the inclination angle formed by the second molding surface 61b and the normal line of the first molding surface 61a is preferably 1 ° or more and 10 ° or less.
  • the inclination angle is smaller than 1 °, in the manufacturing process described later, when the first mold 61 is released from the glass molded product after pressure molding, the first mold 61 and the pressure molded There is a case where cracks occur due to contact with the glass molded product. Further, when the tilt angle is larger than 10 °, excellent design properties cannot be obtained.
  • the second molding surface 61b does not need to be composed only of an inclined surface, and may include a substantially arcuate curved surface that connects the end portion P2 of the recess 65 and the inclined surface. Good.
  • the second mold 62 includes a third molding surface 62a for molding the inner surface of the main plate portion 13 and a fourth molding surface 62b for molding the inner surface of the side plate portion 16.
  • the third molding surface 62a is configured by a substantially rectangular flat surface.
  • a fourth molding surface 62b is continuously provided from the end P3 of the third molding surface 62a.
  • the fourth molding surface 62b has an inclined surface that moves away from the third molding surface 62a along a direction parallel to the third molding surface 62a as it moves away from the third molding surface 62a along the normal direction of the third molding surface 62a. .
  • the inclination angle formed by the fourth molding surface 62b and the normal line of the third molding surface 62a is preferably 1 ° or more and 10 ° or less.
  • the inclination angle is smaller than 1 °, the second mold 62 and the glass molded product after pressure molding come into contact when the second mold 62 is released from the glass molded product after pressure molding. And cracks may occur.
  • the tilt angle is larger than 10 °, excellent design properties cannot be obtained.
  • the fourth molding surface 62b does not need to be composed only of an inclined surface, and includes a substantially arc-shaped curved surface that connects between the end portion P3 of the third molding surface 62a and the inclined surface. May be.
  • the first cavity portion 91 which is a portion corresponding to the main plate portion 13 is defined by the first molding surface 61a and the third molding surface 62a.
  • a second cavity portion 92 including a portion corresponding to the side plate portion 16 is defined by the second molding surface 61b and the fourth molding surface 62b, and the molten glass corresponding to the convex portion 17 of the glass molded product described later by the concave portion 65.
  • a retention portion 93 is defined.
  • FIG. 6 is a flowchart showing a method for manufacturing a glass molded product according to the present embodiment.
  • 7 to 10, FIG. 12, and FIG. 13 are diagrams showing a predetermined step and a state after the predetermined step in the flow shown in FIG.
  • FIG. 11 is an enlarged view of the area surrounded by the XI line shown in FIG.
  • FIGS. 6 to 12 a method for manufacturing a glass molded product according to the present embodiment will be described.
  • the first mold and the second mold are arranged to face each other.
  • the first mold 61 and the second mold 62 are previously set so that the first molding surface 61a and the third molding surface 62a face each other through a position below the outflow pipe 73. It arrange
  • the first mold 61 and the second mold 62 are arranged so that the first molding surface 61a and the third molding surface 62a are orthogonal to the horizontal plane, and thereby the first mold 61 and the second mold 62 are arranged. Are opposed to each other along the horizontal direction.
  • the first mold 61 and the second mold 62 are moved to the initial positions P11 and P21 by the controller 90 driving the first mold drive mechanism 63 and the second mold drive mechanism 64. .
  • the predetermined temperature may be a temperature at which a good transfer surface can be formed on a glass molded product.
  • the temperature of the molding part 60 is set in the range of (Tg ⁇ 100) ° C. to (Tg + 100) ° C. with respect to the glass transition temperature Tg of the glass to be pressed.
  • an appropriate temperature is determined in consideration of various conditions such as the type of glass, the shape and size of the glass molded product, the material of the molded part 60, and the type of protective film.
  • the heating temperature of the first mold 61 and the second mold 62 may be the same temperature or different temperatures.
  • the molding unit 60 is heated to a predetermined temperature, and then a high-temperature molten glass in a melted state is supplied and subjected to pressure molding, so that the temperature of the molding unit 60 is kept constant. These steps can be performed. Furthermore, it is possible to repeatedly manufacture a plurality of glass molded products while keeping the temperature of the molding unit 60 constant. Therefore, since it is not necessary to repeat the temperature rise and cooling of the molding unit 60 every time one glass molded product is manufactured, the glass molded product can be manufactured efficiently in an extremely short time.
  • keeping the temperature of the molding part 60 constant means that the target set temperature in the temperature control for heating the molding part 60 is kept constant. Therefore, it is not intended to prevent the temperature fluctuation of the molded part 60 due to contact with the molten glass or the like during execution of each process, and such temperature fluctuation is allowed.
  • FIG. 7 is a diagram illustrating a process of supplying the cut molten glass lump shown in FIG. 6 to the gap between the first mold and the second mold.
  • a vertical direction is provided in the gap between the first mold 61 and the second mold 62 disposed at the initial positions P ⁇ b> 11 and P ⁇ b> 21.
  • a molten glass lump 10E is supplied along Such a molten glass lump 10E is cut by the cutter 81 when the length of the molten glass flow 10D flowing out vertically from the outlet 73a of the outlet pipe 73 reaches a predetermined length. Is obtained.
  • the molten glass flow 10D is performed by the control unit 90 using the cutter drive mechanism 82 to move the cutter 81 in the direction of arrow B toward the molten glass flow 10D.
  • the original position is restored by moving in the opposite direction.
  • the molten glass lump is pressure-molded by the first mold and the second mold.
  • 8 to 10 are views showing the first to third steps of the step of press-molding the molten glass lump with the first die and the second die shown in FIG.
  • the molten glass lump 10 ⁇ / b> E has the first mold 61 and the second mold.
  • the first mold 61 and the second mold 62 are moved in the horizontal direction (arrow C1 direction and arrow C2 direction) so that the first molding surface 61a and the third molding surface 62a approach each other at the timing of falling between the molds. Move to.
  • the falling molten glass lump 10E first comes into contact with and adheres to the third molding surface 62a of the second mold 62.
  • the molten glass lump 10E attached to the third molding surface 62a of the second mold 62 is caused on the third molding surface 62a by the impact. Can spread wet.
  • the molten glass instantaneously spreads substantially uniformly along the direction parallel to the third molding surface 62a, and high transferability can be obtained in the pressure molding process described later.
  • the first die 61 and the second die 62 are further The first mold 61 and the second mold 62 are moved in the horizontal direction (the direction of the arrow C1 and the direction of the arrow C2) so that the molten glass lump 10E is dropped.
  • the temperature of the portion located on the second mold 62 side and not in contact with the first mold 61 is higher than the temperature of the first mold 61 and the second mold 62. It is high.
  • the temperature of the molten glass is lowered by the heat of the molten glass being taken away by the mold.
  • the temperature of the molten glass lump 10E located between the second molding surface 61b and the fourth molding surface 62b is lowered by the heat of the molten glass lump 10E staying in the recess 65. Can be suppressed.
  • a part of the molten glass lump 10E can be retracted into the recess 65, so that friction at the time of changing the moving direction of the molten glass lump 10E can be reduced. Thereby, the molten glass lump 10E can be easily moved toward between the second molding surface 61b and the fourth molding surface 62b.
  • This also can suppress a decrease in the temperature of the molten glass lump 10E due to a decrease in the moving speed of the molten glass lump 10E.
  • the molten glass lump 10E becomes the second shaping surface 61b and the fourth shaping surface. It is possible to suppress partial thermal shrinkage between the molding surface 62b and partial curing. As a result, the 1st metal mold
  • the first die 61 and the second die 62 is moved to the stop positions P12 and P22 to approach them.
  • the molten glass lump 10E further expanded by bringing the first mold 61 and the second mold 62 closer to each other is in the first cavity portion 91 defined by the first molding surface 61a and the third molding surface 62a.
  • the second cavity portion 92 can be sufficiently filled with glass by suppressing the partial hardening of the molten glass lump 10E as described above. As a result, transferability and releasability can be ensured, and cracking during molding can be prevented.
  • the inside of the first cavity portion 91, the second cavity portion 92, and the inside of the molten glass retention portion 93 are filled with the molten glass lump 10E, so that the molten glass lump 10E has the first mold 61 and the second mold.
  • the mold 62 is pressurized at a predetermined pressure, and the molten glass lump 10E is pressure-molded.
  • the temperature of the molten glass at the start of the pressure treatment is preferably set to (Tg + 150) [° C.] or more and (Tg + 300) [° C.] or less with respect to the glass transition temperature Tg [° C.].
  • Tg glass transition temperature
  • the temperature of the molten glass just before pressing may be 780 [° C.].
  • the temperature of the first mold 61 is set to (Tg-80) [° C.] or more and (Tg-10) [° C.] or less
  • the second mold 62 The temperature may be set to (Tg-60) [° C] or higher and (Tg-20) [° C] or lower.
  • Tg is 540 [° C.]
  • the temperature of the first mold 61 may be set to 520 [° C.] and the temperature of the second mold 62 may be set to 500 [° C.].
  • a pressure of 1.2 tons is applied to the molten glass lump 10E for 2 seconds.
  • the molten glass lump 10E is pressure-molded, and the glass molded product 10F is molded.
  • step (S14) the pressurization by the first mold and the second mold is released, and the glass molded product manufactured in the step (S15) becomes the first mold and The mold is released from the second mold.
  • FIG. 12 is a diagram showing a step of removing unnecessary portions of the released glass molded product shown in FIG. 6 by polishing and chamfering.
  • the glass molded product 10 ⁇ / b> F taken out after the mold release is located around the product planned area constituted by the main plate portion 13 and the side plate portion 16 and the product planned area, and is mainly constituted by the convex portion 17. To be reserved.
  • the spare area is defined by, for example, a broken line E that crosses the end portion of the convex portion 17 on the main plate portion 13 side and a part of the molding surface formed by the second molding surface 61b. It corresponds to the part.
  • FIG. 13 is a diagram illustrating a state after the step of removing unnecessary portions of the glass molded product illustrated in FIG. 6 by polishing and chamfering.
  • the manufacturing of the thin cover glass 10 is completed as shown in FIG.
  • the width of the recess 65 provided in the first mold 61 (the distance between P1 and P2 (FIG. 11 Reference)) is 1.5 mm
  • the depth of the recess 65 is 1.2 mm
  • the thickness T1 of the main plate portion 13 can be about 0.9 mm
  • the thickness T2 of the side plate portion 16 is It can be set to 1.2 mm.
  • the outer surface and the inner surface of the glass molded product after mold release are both molded into a mirror surface or a state close thereto by pressure molding. Therefore, as the additional processing required after pressure molding, it is only necessary to grind and chamfer and remove unnecessary portions including the convex portions 17 of the glass molded product that has been pressure molded. No additional polishing process is required.
  • the molten glass dropped in the vertical direction between the first mold 61 and the second mold disposed opposite to each other in the horizontal direction is caused by the first mold 61 and the second mold 62.
  • the case of pressure molding has been described as an example.
  • the present invention is not limited to this, and the first mold 61 is used as a lower mold and the second mold is used as an upper mold to face the outflow pipe of the molten glass supply unit.
  • the molten glass dropped onto the first mold arranged in this manner may be pressure-molded by the first mold and the second mold arranged opposite to each other in the vertical direction after dropping.
  • the present invention is not limited to this, and is dropped in the vertical direction.
  • the first mold 61 may be first contacted with the molten glass lump 10E, or the first mold 61 and the second mold 62 may be simultaneously contacted with the molten glass lump 10E.
  • the concave portion 65 is exemplified such that the end portion P2 thereof is provided so that the boundary portion between the first molding surface 61a and the second molding surface 61b coincides.
  • the present invention is not limited to this, and the concave portion 65 may be provided in a portion near the first molding surface 61a away from the boundary portion, or may be provided so as to straddle the boundary portion. Alternatively, it may be provided only on the second molding surface 61b.
  • the cover glass with which a smart phone and a tablet terminal were equipped was illustrated and demonstrated as a glass molded article manufactured by applying this invention, it is limited to this.
  • the present invention may be applied to the manufacture of cover glasses for other display devices, and the manufacture of exterior covers for electronic devices such as mobile computers and digital cameras.
  • the present invention may be applied to the manufacture of an optical recording medium.

Abstract

 A method for manufacturing a molded glass article is provided with a step for placing a first mold (61) and a second mold (62) opposite each other to pressure-mold molten glass (10E) and a step for sandwiching the molten glass (10E) between the first mold (61) and the second mold (62) and pressure molding. The first mold (61) includes a first molding surface (61a) and a second molding surface (61b), and the second mold (62) includes a third molding surface (62a) and a fourth molding surface (62b). A mold provided with recesses (65) near the boundary portion is used as the first mold (61) in the pressure-molding step so that at least part of the molten glass (10E) that has been pushed and spread by the first molding surface (61a) and the third molding surface (62a) remains near the boundary portion of the first molding surface (61a) and the second molding surface (61b).

Description

ガラス成形品の製造方法およびガラス成形品の製造装置Glass molded product manufacturing method and glass molded product manufacturing apparatus
 本発明は、ガラス成形品の製造方法に関し、特に、主板部および当該主板部の外縁の少なくとも一部から連設された側板部を含むガラス成形品を加圧成形によって製造するガラス成形品の製造方法および製造装置に関する。 The present invention relates to a method for producing a glass molded article, and in particular, production of a glass molded article for producing a glass molded article including a main plate portion and a side plate portion continuously provided from at least a part of an outer edge of the main plate portion by pressure molding. The present invention relates to a method and a manufacturing apparatus.
 ガラス成形品の一つとして、スマートフォンやタブレット端末に代表されるディスプレイ装置等に具備されるカバーガラスが広く普及している。カバーガラスは、ディスプレイ装置等の外表面において露出して現れる部位であり、優れたデザイン性が要求される。このような、デザイン性に優れたカバーガラスとして、主板部とその外縁に連設された側板部とで構成される略箱形状等の複雑な立体形状を有するものが要求される。 As one of the glass molded products, cover glasses provided in display devices such as smartphones and tablet terminals are widely used. The cover glass is a portion that appears exposed on the outer surface of a display device or the like, and requires excellent design. As such a cover glass having excellent design properties, a cover glass having a complicated three-dimensional shape such as a substantially box shape composed of a main plate portion and a side plate portion connected to the outer edge thereof is required.
 近年においては、デザイン性に優れることの条件として、カバーガラスが上述したような複雑な立体形状を有することに加え、ロゴマークやアイコンマークがカバーガラスと一体に形成されていることも要求される。 In recent years, as a condition for excellent design, in addition to the cover glass having a complicated three-dimensional shape as described above, it is also required that a logo mark and an icon mark are formed integrally with the cover glass. .
 ロゴマークやアイコンマークは、ガラス成形品としてのガラスブランクの主表面に研削加工を施すことによって形成することができる。加圧成形されたガラスブランクには、所定の面精度を得るために研磨や研削加工が施される場合があるため、ロゴマークやアイコンマークを得るためにさらに研削加工を施すとすれば、製造工程が煩雑化し、製造コストの増大に繋がってしまう。特に、局所的な凸形状を削り出す場合には、研削時間が増大し、製造コストが大幅に増大してしまう。 The logo mark and icon mark can be formed by grinding the main surface of a glass blank as a glass molded product. The glass blanks that have been pressed may be polished or ground to obtain the required surface accuracy, so if further grinding is performed to obtain a logo mark or icon mark, it will be manufactured. This complicates the process and leads to an increase in manufacturing cost. In particular, when a local convex shape is cut out, the grinding time is increased and the manufacturing cost is greatly increased.
 このような製造工程の煩雑化を回避し、ガラスブランクに研磨や研削加工を施す手間を削減するために、最終製品としての製品面を有するようにガラスブランクが成形される必要がある。 In order to avoid such complication of the manufacturing process and to reduce the labor for polishing and grinding the glass blank, it is necessary to form the glass blank so as to have a product surface as a final product.
 ここで、溶融ガラスを金型を用いて直接加圧成形する、いわゆるダイレクトプレス法を用いることによって、最終製品としての製品面を有するガラス成形品を成形することができるガラス成形品の製造方法が、たとえば特開2012-214361号公報(特許文献1)に開示されている。 Here, there is a method for producing a glass molded product capable of molding a glass molded product having a product surface as a final product by using a so-called direct press method in which molten glass is directly pressure-molded using a mold. For example, it is disclosed in JP 2012-214361 A (Patent Document 1).
 特許文献1に開示のガラス成形品の製造方法は、一対の金型を水平方向に対向配置させる工程と、対向配置された一対の金型の間に溶融ガラス塊を落下させる工程と、落下させた溶融ガラス塊を一対の金型を用いて水平方向に挟み込んで加圧成形する工程とを備える。 The method for manufacturing a glass molded product disclosed in Patent Document 1 includes a step of horizontally disposing a pair of molds, a step of dropping a molten glass lump between a pair of opposed molds, and dropping the molten glass lump. And a step of pressing and molding the molten glass lump in a horizontal direction using a pair of molds.
 このような工程を経てガラス成形品を製造することにより、鏡面かまたはそれに近い状態の良好な表面精度を有するガラス成形品が得られ、加圧成形後のガラス成形品の表面に研磨処理を施さずとも当該ガラス成形品の表面を最終製品の製品面としてそのまま利用することができる。 By producing a glass molded product through such a process, a glass molded product having a good surface accuracy of a mirror surface or a state close thereto is obtained, and the surface of the glass molded product after pressure molding is subjected to polishing treatment. At least the surface of the glass molded product can be used as it is as the product surface of the final product.
特開2012-214361号公報JP 2012-214361 A
 ここで、特許文献1に開示のガラス成形品の製造方法にあっては、加圧成形する工程において、主板部を成形するための第1キャビティ部から側板部を成形するための第2キャビティ部に向けて溶融ガラスを押し広げることにより、第1キャビティ部内および第2キャビティ部内に溶融ガラスを充填することとしている。 Here, in the manufacturing method of the glass molded product disclosed in Patent Document 1, in the step of pressure forming, the second cavity portion for forming the side plate portion from the first cavity portion for forming the main plate portion. The molten glass is filled in the first cavity portion and the second cavity portion by spreading the molten glass toward the surface.
 第2キャビティ部は、第1キャビティ部に対して交差する方向に延在しているため、溶融ガラスが移動方向を変更して第2キャビティ部に移動する際には、金型との摩擦によってその移動速度が低下する。これにより、第2キャビティ部では、溶融ガラスの熱が金型に奪われやすくなり、溶融ガラスの温度が低下して硬化が促進されてしまう。このため、第2キャビティ部に十分に溶融ガラスが供給されない場合が生じる。 Since the second cavity portion extends in a direction intersecting the first cavity portion, when the molten glass moves to the second cavity portion by changing the moving direction, friction with the mold is caused. The moving speed decreases. Thereby, in the 2nd cavity part, the heat | fever of a molten glass becomes easy to be taken by a metal mold | die, the temperature of a molten glass will fall and hardening will be accelerated | stimulated. For this reason, a case where the molten glass is not sufficiently supplied to the second cavity portion occurs.
 また、近年においては、スマートフォンやタブレット端末に代表されるディスプレイ装置等の薄型化に伴い、これに具備されるカバーガラスにおいても、薄型化が要求される。 Further, in recent years, with the thinning of display devices such as smartphones and tablet terminals, the cover glass provided therein is also required to be thinned.
 薄型化のために、特許文献1に開示のガラス成形品の製造方法を用いて第1金型と第2金型とをさらに接近させようとすれば、第2キャビティ部において部分的に硬化した溶融ガラスが割れたり、転写性や離型性が損なわれたりすることとなってしまい、歩留まりが大幅に低下するかあるいはその製造自体が行なえなくなってしまう問題が発生する。 If the first mold and the second mold are made closer to each other by using the method for manufacturing a glass molded product disclosed in Patent Document 1 for thinning, the second cavity portion is partially cured. The molten glass is broken or the transferability and releasability are impaired, resulting in a problem that the yield is greatly reduced or the production itself cannot be performed.
 本発明は、上記のような問題に鑑みてなされたものであり、本発明の目的は、主板部および側板部を有する複雑な立体形状に成形できるとともに、薄型化することができるガラス成形品の製造方法およびガラス成形品の製造装置を提供することにある。 This invention is made | formed in view of the above problems, and the objective of this invention is the glass molded product which can be shape | molded into the complicated three-dimensional shape which has a main-plate part and a side-plate part, and can be reduced in thickness. It is providing the manufacturing method and the manufacturing apparatus of a glass molded product.
 本発明に基づくガラス成形品の製造方法は、主板部および上記主板部の外縁の少なくとも一部から連設された側板部を含むガラス成形品を製造するための製造方法であって、溶融ガラスを加圧成形するための第1金型および第2金型を対向配置する工程と、上記第1金型および上記第2金型を接近させることにより、上記溶融ガラスを上記第1金型および上記第2金型を用いて挟み込んで加圧成形する工程とを備える。上記第1金型は、上記主板部の外表面を成形するための第1成形面と、上記側板部の外表面を成形するための第2成形面とを含む。上記第2金型は、上記主板部の内表面を成形するための第3成形面と、上記側板部の内表面を成形するための第4成形面とを含む。上記本発明に基づくガラス成形品の製造方法にあっては、上記加圧成形する工程において、上記第1成形面と上記第3成形面とによって押し広げられた上記溶融ガラスが上記第2成形面と上記第4成形面との間に充填されるに際し、押し広げられた上記溶融ガラスの少なくとも一部が上記第1成形面と上記第2成形面との境界部近傍において滞留することとなるように、上記第1金型として、上記境界部近傍の少なくとも一部に凹部が設けられている金型を用いる。 A manufacturing method of a glass molded product according to the present invention is a manufacturing method for manufacturing a glass molded product including a main plate portion and a side plate portion continuously provided from at least a part of an outer edge of the main plate portion, The step of disposing the first mold and the second mold for pressure forming opposite to each other, and bringing the first mold and the second mold close to each other, thereby allowing the molten glass to move from the first mold to the first mold. And a step of pressing and molding by using a second mold. The first mold includes a first molding surface for molding the outer surface of the main plate portion and a second molding surface for molding the outer surface of the side plate portion. The second mold includes a third molding surface for molding the inner surface of the main plate portion and a fourth molding surface for molding the inner surface of the side plate portion. In the method for producing a glass molded product according to the present invention, the molten glass spread by the first molding surface and the third molding surface in the pressure molding step is the second molding surface. And the fourth molding surface are filled, at least a part of the spread molten glass stays in the vicinity of the boundary between the first molding surface and the second molding surface. In addition, as the first mold, a mold having a recess provided in at least a part near the boundary is used.
 本発明に基づくガラス成形品の製造装置は、主板部および上記主板部の外縁の少なくとも一部から連設された側板部を含むガラス成形品を製造するためのものであって、溶融ガラスを加圧成形するための第1金型および第2金型と、上記溶融ガラスを滴下する溶融ガラス供給部と、上記第1金型および上記第2金型を相対的に移動させる駆動機構とを備える。上記第1金型は、上記主板部の外表面を成形するための第1成形面と、上記側板部の外表面を成形するための第2成形面とを含む。上記第2金型は、上記主板部の内表面を成形するための第3成形面と、上記側板部の内表面を成形するための第4成形面とを含む。上記本発明に基づくガラス成形品の製造装置にあっては、上記駆動機構によって上記第1金型および上記第2金型が相対的に移動されることにより、上記第1成形面と上記第3成形面とによって押し広げられた上記溶融ガラスが上記第2成形面と上記第4成形面との間に充填されるに際し、押し広げられた上記溶融ガラスの少なくとも一部が上記第1成形面と上記第2成形面との境界部近傍において滞留することとなるように、上記第1金型の上記境界部近傍の少なくとも一部に凹部が設けられている。 An apparatus for producing a glass molded product according to the present invention is a device for producing a glass molded product including a main plate portion and a side plate portion continuously provided from at least a part of an outer edge of the main plate portion. A first mold and a second mold for pressure forming; a molten glass supply unit for dropping the molten glass; and a drive mechanism for relatively moving the first mold and the second mold. . The first mold includes a first molding surface for molding the outer surface of the main plate portion and a second molding surface for molding the outer surface of the side plate portion. The second mold includes a third molding surface for molding the inner surface of the main plate portion and a fourth molding surface for molding the inner surface of the side plate portion. In the apparatus for producing a glass molded product according to the present invention, the first mold and the second mold are relatively moved by the drive mechanism, whereby the first molding surface and the third mold are moved. When the molten glass spread by the molding surface is filled between the second molding surface and the fourth molding surface, at least a part of the spread molten glass is in contact with the first molding surface. A recess is provided in at least a part of the first mold in the vicinity of the boundary so as to stay in the vicinity of the boundary with the second molding surface.
 本発明によれば、主板部および側板部を有する複雑な立体形状に成形できるとともに、薄型化することができるガラス成形品の製造方法およびガラス成形品の製造装置を提供することができる。 According to the present invention, it is possible to provide a glass molded product manufacturing method and a glass molded product manufacturing apparatus that can be molded into a complicated three-dimensional shape having a main plate portion and a side plate portion and can be thinned.
本発明の実施の形態に係るガラス成形品の製造方法に従って製造されたカバーガラスを備えるディスプレイ装置を一部分解した状態の斜視図である。It is a perspective view in the state where a display device provided with a cover glass manufactured according to a manufacturing method of a glass molding concerning an embodiment of the invention was partially disassembled. 図1に示すディスプレイ装置のII-II線に沿った模式断面図である。FIG. 2 is a schematic cross-sectional view taken along line II-II of the display device shown in FIG. 本発明の実施の形態に係るガラス成形品の製造装置の構成を示す概略図である。It is the schematic which shows the structure of the manufacturing apparatus of the glass molded product which concerns on embodiment of this invention. 図3に示す第1金型および第2金型の模式断面図である。It is a schematic cross section of the 1st metal mold | die and 2nd metal mold | die shown in FIG. 図4に示す、V線で囲まれる領域を拡大して示す図である。It is a figure which expands and shows the area | region enclosed by V line shown in FIG. 本発明の実施の形態に係るガラス成形品の製造方法を示すフロー図である。It is a flowchart which shows the manufacturing method of the glass molded product which concerns on embodiment of this invention. 図6に示す、切断された溶融ガラス塊を第1金型と第2金型との間に供給する工程を示す図である。It is a figure which shows the process of supplying the cut molten glass lump shown in FIG. 6 between a 1st metal mold | die and a 2nd metal mold | die. 図6に示す、溶融ガラス塊を第1金型と第2金型とによって加圧成形する工程の第1工程を示す図である。It is a figure which shows the 1st process of the process of press-molding the molten glass lump shown in FIG. 6 with a 1st metal mold | die and a 2nd metal mold | die. 図6に示す、溶融ガラス塊を第1金型と第2金型とによって加圧成形する工程の第2工程を示す図である。It is a figure which shows the 2nd process of the process of press-molding the molten glass lump shown in FIG. 6 with a 1st metal mold | die and a 2nd metal mold | die. 図6に示す、溶融ガラス塊を第1金型と第2金型とによって加圧成形する工程の第3工程を示す図である。It is a figure which shows the 3rd process of the process of press-molding the molten glass lump shown in FIG. 6 with a 1st metal mold | die and a 2nd metal mold | die. 図10に示す、XI線で囲まれる領域を拡大して示す図である。It is a figure which expands and shows the area | region enclosed with a XI line shown in FIG. 図6に示す、ガラス成形品の不要部分を研磨および面取りして除去する工程を示す図である。It is a figure which shows the process of grind | polishing and chamfering and removing the unnecessary part of a glass molded product shown in FIG. 図6に示す、ガラス成形品の不要部分を研磨および面取りして除去する工程の後状態を示す図である。It is a figure which shows the state after the process of grind | polishing and chamfering and removing the unnecessary part of a glass molded product shown in FIG.
 (実施の形態)
 以下、本発明の実施の形態について、図を参照して詳細に説明する。以下に示す実施の形態においては、ガラス成形品として、スマートフォンに具備されるカバーガラスを例示して説明を行なう。また、以下に示す実施の形態においては、同一のまたは共通する部分について図中同一の符号を付し、その説明は繰り返さない。
(Embodiment)
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In embodiment shown below, the cover glass with which a smart phone is comprised is illustrated and demonstrated as a glass molded article. In the following embodiments, the same or common parts are denoted by the same reference numerals in the drawings, and description thereof will not be repeated.
 図1は、本発明の実施の形態に係るガラス成形品の製造方法に従って製造されたカバーガラスを備えるディスプレイ装置を一部分解した状態を示す斜視図である。図2は、図1中のII-II線に沿った断面図である。図1および図2を参照して、本実施の形態に係るガラス成形品の製造方法に従って製造されたカバーガラス10およびこれを具備するディスプレイ装置100について説明する。 FIG. 1 is a perspective view showing a state in which a display device including a cover glass manufactured according to a method for manufacturing a glass molded product according to an embodiment of the present invention is partially disassembled. FIG. 2 is a cross-sectional view taken along line II-II in FIG. With reference to FIG. 1 and FIG. 2, the cover glass 10 manufactured according to the manufacturing method of the glass molded product which concerns on this Embodiment, and the display apparatus 100 which comprises this are demonstrated.
 図1に示すように、ディスプレイ装置100は、カバーガラス10と、平板状の形状を有する外装プレート20と、外装プレート20上に配置される回路基板30と、回路基板30上に実装されるディスプレイ40とを備える。ディスプレイ40の表面は、画像表示部42を構成する。 As shown in FIG. 1, the display device 100 includes a cover glass 10, an outer plate 20 having a flat plate shape, a circuit board 30 disposed on the outer plate 20, and a display mounted on the circuit board 30. 40. The surface of the display 40 constitutes an image display unit 42.
 カバーガラス10は、外装プレート20に取り付けられる(矢印AR参照)。カバーガラス10は、回路基板30、ディスプレイ40を、外装プレート20上に封止する。また、カバーガラス10は、ディスプレイ40の画像表示部42を覆うように配置される。 The cover glass 10 is attached to the exterior plate 20 (see arrow AR). The cover glass 10 seals the circuit board 30 and the display 40 on the exterior plate 20. The cover glass 10 is disposed so as to cover the image display unit 42 of the display 40.
 なお、カバーガラス10には、回路基板30上に実装されるスピーカー(不図示)やディスプレイ装置100の操作ボタン部(不図示)に対応する位置に開口部が設けられていてもよい。この場合、開口部は、カバーガラス10の一方の主面側から他方の主面側に向かって厚み方向に貫通する。 The cover glass 10 may be provided with an opening at a position corresponding to a speaker (not shown) mounted on the circuit board 30 or an operation button part (not shown) of the display device 100. In this case, the opening penetrates in the thickness direction from one main surface side of the cover glass 10 toward the other main surface side.
 図2に示すように、カバーガラス10は、主板部13と側板部16とを有する。カバーガラス10は、外表面11および内表面12を有し、カバーガラス10の外表面11は、主板部13の外表面と側板部16の外表面とから構成されている。また、カバーガラス10の内表面12は、主板部13の内表面と側板部16の内表面とから構成されている。 As shown in FIG. 2, the cover glass 10 has a main plate portion 13 and a side plate portion 16. The cover glass 10 has an outer surface 11 and an inner surface 12, and the outer surface 11 of the cover glass 10 is composed of an outer surface of the main plate portion 13 and an outer surface of the side plate portion 16. Further, the inner surface 12 of the cover glass 10 is composed of an inner surface of the main plate portion 13 and an inner surface of the side plate portion 16.
 主板部13は、略平板状の形状を有する。カバーガラス10がディスプレイ40に取り付けられた状態においては、主板部13の外表面側が主として外部に露出する。 The main plate portion 13 has a substantially flat shape. In a state where the cover glass 10 is attached to the display 40, the outer surface side of the main plate portion 13 is mainly exposed to the outside.
 側板部16は、全体として環状の形状を有し、主板部13の外縁に連設される。側板部16は、主板部13の外縁から外方に向かうにしたがって主板部13の外表面から遠ざかるように構成されている。側板部16がこのように成形されることにより、カバーガラス10は、略箱型形状に成形される。 The side plate portion 16 has an annular shape as a whole, and is continuously provided on the outer edge of the main plate portion 13. The side plate portion 16 is configured to move away from the outer surface of the main plate portion 13 as it goes outward from the outer edge of the main plate portion 13. By forming the side plate portion 16 in this way, the cover glass 10 is formed in a substantially box shape.
 なお、側板部16は、平板状に成形されていてもよいし、主板部13の外縁から外方に向かうにしたがって主板部13の外表面から遠ざかる方向に湾曲した湾曲板状に成形されていてもよい。また、主板部13の全周において側板部16が環状に設けられる必要は必ずしもなく、主板部13の外縁の一部にのみ(たとえば、平面視略矩形状の主板部13の相対する一対の辺にのみ)側板部16が設けられる構成であってもよい。 The side plate portion 16 may be formed into a flat plate shape, or is formed into a curved plate shape that curves in a direction away from the outer surface of the main plate portion 13 as it goes outward from the outer edge of the main plate portion 13. Also good. Further, it is not always necessary that the side plate portion 16 is provided in an annular shape around the entire circumference of the main plate portion 13, but only on a part of the outer edge of the main plate portion 13 (for example, a pair of opposing sides of the main plate portion 13 having a substantially rectangular shape in plan view). Only) the side plate portion 16 may be provided.
 ディスプレイ装置100においては、カバーガラス10の画像表示部42側に位置する内表面12側から外表面11側に向かって、所定の画像情報を含む光L(図2参照)が主板部13を透過する。これにより、画像表示部42上に表示された各種の画像情報は、使用者により認識される。カバーガラス10の外表面11がタッチパネル式のディスプレイ面を構成している場合には、外表面11が使用者の手指によって押圧されたりペンなどによって押圧されたりする。 In the display device 100, light L (see FIG. 2) including predetermined image information is transmitted through the main plate portion 13 from the inner surface 12 side located on the image display unit 42 side of the cover glass 10 toward the outer surface 11 side. To do. Thereby, the various image information displayed on the image display part 42 is recognized by the user. When the outer surface 11 of the cover glass 10 constitutes a touch panel display surface, the outer surface 11 is pressed by a user's finger or a pen or the like.
 ガラスの線膨張係数αは、100[℃]以上300[℃]以下の温度範囲において70[×10-7/℃]以上110[×10-7/℃]以下であることが望ましい。たとえば、100℃以上300℃以下の範囲で98[×10-7/℃]の線膨張係数αを有するガラスを使用してもよい。また、ガラス粘性をη[dPa・s]とすると、logη=11.0~14.5であることが望ましい。上記のような特性を持つガラスは、湾曲した形状を有するカバーガラスの成形に適している。 The linear expansion coefficient α of the glass is desirably 70 [× 10 −7 / ° C.] or more and 110 [× 10 −7 / ° C.] or less in a temperature range of 100 [° C.] to 300 [° C.]. For example, a glass having a linear expansion coefficient α of 98 [× 10 −7 / ° C.] in the range of 100 ° C. to 300 ° C. may be used. Further, when the glass viscosity is η [dPa · s], log η = 11.0 to 14.5 is desirable. Glass having the above characteristics is suitable for forming a cover glass having a curved shape.
 以上のようなカバーガラス10は、ダイレクトプレス法を用いて製造される。図3は、本実施の形態に係るガラス成形品の製造装置の構成を示す概略図である。図3を参照して、本実施の形態に係るガラス成形品の製造装置50について説明する。 The cover glass 10 as described above is manufactured using a direct press method. FIG. 3 is a schematic diagram showing a configuration of a glass molded product manufacturing apparatus according to the present embodiment. With reference to FIG. 3, the manufacturing apparatus 50 of the glass molded product which concerns on this Embodiment is demonstrated.
 図3に示すように、ガラス成形品の製造装置50は、溶融ガラス供給部70と、切断部80と、成形部60と、制御部90とを主として備えている。 As shown in FIG. 3, the glass molded product manufacturing apparatus 50 mainly includes a molten glass supply unit 70, a cutting unit 80, a molding unit 60, and a control unit 90.
 溶融ガラス供給部70は、ガラス素材を溶融させて溶融ガラスを成形部60に供給するための部位である。切断部80は、溶融ガラス供給部70から成形部60に供給される溶融ガラスの量を適切な量に調整するための部位である。成形部60は、供給された溶融ガラスを金型を用いて加圧成形するための部位である。また、制御部90は、上述した切断部80および成形部60の動作を制御するための部位である。 The molten glass supply unit 70 is a part for melting the glass material and supplying the molten glass to the forming unit 60. The cutting unit 80 is a part for adjusting the amount of molten glass supplied from the molten glass supply unit 70 to the forming unit 60 to an appropriate amount. The molding unit 60 is a part for pressure-molding the supplied molten glass using a mold. The control unit 90 is a part for controlling the operations of the cutting unit 80 and the molding unit 60 described above.
 溶融ガラス供給部70は、連続溶融炉71と、ノズル部72と、流出管73とを含んでいる。連続溶融炉71は、ガラス素材を溶融させて溶融ガラスを貯留するものであり、ノズル部72は、連続溶融炉71にて貯留された溶融ガラスを流出管73に導入するものである。流出管73は、その下端に流出口73aを有しており、当該流出口73aから鉛直下方に向けて連続的に溶融ガラス流10Dを流出させる。 The molten glass supply unit 70 includes a continuous melting furnace 71, a nozzle unit 72, and an outflow pipe 73. The continuous melting furnace 71 melts a glass material and stores the molten glass, and the nozzle portion 72 introduces the molten glass stored in the continuous melting furnace 71 into the outflow pipe 73. The outflow pipe 73 has an outflow port 73a at its lower end, and continuously flows out the molten glass flow 10D from the outflow port 73a vertically downward.
 切断部80は、切断機構としてのカッター81およびカッター駆動機構82を含んでいる。カッター81は、流出管73から流出する溶融ガラス流10Dを切断して当該切断部分を溶融ガラス流10Dと分離させるものであり、上述したカッター駆動機構82によって駆動される。カッター81は、一対の平板形状の剪断刃によって構成されており、これら一対の剪断刃が流出管73の下方において突き合わされることで溶融ガラス流10Dの切断が行なわれる。カッター駆動機構82は、制御部90からの指令を受け、カッター81を駆動する。カッター駆動機構82としては、各種のものが利用できるが、好適にはエアシリンダ、サーボモータ、油圧シリンダ、リニアモータ、ステッピングモータ等が利用できる。 The cutting unit 80 includes a cutter 81 and a cutter driving mechanism 82 as a cutting mechanism. The cutter 81 cuts the molten glass flow 10D flowing out from the outflow pipe 73 and separates the cut portion from the molten glass flow 10D, and is driven by the cutter driving mechanism 82 described above. The cutter 81 is configured by a pair of flat plate-shaped shear blades, and the pair of shear blades are abutted below the outflow pipe 73 to cut the molten glass flow 10D. The cutter driving mechanism 82 receives a command from the control unit 90 and drives the cutter 81. As the cutter driving mechanism 82, various types can be used, but preferably an air cylinder, a servo motor, a hydraulic cylinder, a linear motor, a stepping motor, or the like can be used.
 成形部60は、第1金型61と、第2金型62と、第1金型駆動機構63と、第2金型駆動機構64とを含んでいる。第1金型61および第2金型62は、後述する加圧成形工程において水平方向に沿って対向配置される型である。第1金型61は、上述した第1金型駆動機構63によって駆動されることで移動し、第2金型62は、上述した第2金型駆動機構64によって駆動されることで移動する。 The molding unit 60 includes a first mold 61, a second mold 62, a first mold drive mechanism 63, and a second mold drive mechanism 64. The 1st metal mold | die 61 and the 2nd metal mold | die 62 are a metal mold | die arrange | positioned facing in the horizontal direction in the press molding process mentioned later. The first mold 61 moves by being driven by the first mold driving mechanism 63 described above, and the second mold 62 is moved by being driven by the second mold driving mechanism 64 described above.
 第1金型61および第2金型62を形成する材料としては、耐熱合金(ステンレス合金等)、炭化タングステンを主成分とする超鋼材料、各種セラミックス(炭化珪素、窒化珪素、窒化アルミニウム等)、カーボンを含む複合材料等、ガラス成形品を製造するための型として公知の材料の中から適宜選択して用いることができる。第1金型61および第2金型62は、同一の材料にて構成されていてもよいし、それぞれ別の材料にて構成されていてもよい。 Materials for forming the first mold 61 and the second mold 62 include heat-resistant alloys (stainless alloys, etc.), super steel materials mainly composed of tungsten carbide, and various ceramics (silicon carbide, silicon nitride, aluminum nitride, etc.). Further, it can be appropriately selected from known materials as a mold for producing a glass molded article such as a composite material containing carbon. The first mold 61 and the second mold 62 may be made of the same material, or may be made of different materials.
 第1金型61および第2金型62の表面は、耐久性の向上や溶融ガラスとの融着の防止を図る観点から、所定の被覆層にて覆われていることが好ましい。被覆層の材料は、特に制限されるものではないが、たとえば種々の金属(クロム、アルミニウム、チタン等)、窒化物(窒化クロム、窒化アルミニウム、窒化チタン、窒化硼素等)、酸化物(酸化クロム、酸化アルミニウム、酸化チタン等)等を用いることができる。被覆層の成膜方法も、特に制限されるものではないが、たとえば真空蒸着法やスパッタ法、CVD法等が利用できる。 The surfaces of the first mold 61 and the second mold 62 are preferably covered with a predetermined coating layer from the viewpoint of improving durability and preventing fusion with molten glass. The material of the coating layer is not particularly limited. For example, various metals (chromium, aluminum, titanium, etc.), nitrides (chromium nitride, aluminum nitride, titanium nitride, boron nitride, etc.), oxides (chromium oxide) , Aluminum oxide, titanium oxide, etc.) can be used. The method for forming the coating layer is not particularly limited, and for example, a vacuum deposition method, a sputtering method, a CVD method, or the like can be used.
 第1金型61および第2金型62は、図示しない加熱手段によって所定温度に加熱できるように構成されている。加熱手段は、特に制限されるものではないが、公知の加熱手段を適宜選択して用いることができる。たとえば、被加熱部材の内部に埋め込んで使用するカートリッジヒーターや、被加熱部材の外側に接触させて使用するシート状のヒーター、赤外線加熱装置、高周波誘導加熱装置等を加熱手段として用いることができる。 The first mold 61 and the second mold 62 are configured to be heated to a predetermined temperature by a heating means (not shown). The heating means is not particularly limited, but a known heating means can be appropriately selected and used. For example, a cartridge heater that is used by being embedded inside the member to be heated, a sheet heater that is used while being in contact with the outside of the member to be heated, an infrared heating device, a high-frequency induction heating device, or the like can be used as the heating means.
 第1金型駆動機構63は、制御部90からの指令を受けて駆動することにより、図1中に矢印で示すDR1方向(水平方向)に第1金型61を移動させる。第2金型駆動機構64は、制御部90からの指令を受けて駆動することにより、図1中に矢印で示すDR2方向(水平方向)に第2金型62を移動させる。これら第1金型駆動機構63および第2金型駆動機構64としては、各種のものが利用できるが、好適にはサーボモータ、エアシリンダ、油圧シリンダ、リニアモータ、ステッピングモータ、あるいはこれらの組み合わせ等が利用できる。 1st mold drive mechanism 63 moves the 1st mold 61 in the DR1 direction (horizontal direction) shown by the arrow in Drawing 1 by receiving the command from control part 90, and driving. The second mold drive mechanism 64 is driven in response to a command from the control unit 90, thereby moving the second mold 62 in the DR2 direction (horizontal direction) indicated by an arrow in FIG. Various types can be used as the first mold driving mechanism 63 and the second mold driving mechanism 64, but preferably a servo motor, an air cylinder, a hydraulic cylinder, a linear motor, a stepping motor, or a combination thereof. Is available.
 制御部90によって第1金型駆動機構63および第2金型駆動機構64を制御するモードとしては、第1金型61および第2金型62の位置を制御するモード(位置制御モード)と、第1金型61および第2金型62に相対的に負荷される荷重を制御するモード(荷重制御モード)とがあり、これら2つの制御モードが切り替え可能に構成されていることが好ましい。第1金型駆動機構63および第2金型駆動機構64は、第1金型61および第2金型62を用いて最大3トンの加圧力で溶融ガラスを加圧成形することが可能となるように構成されていることが好ましい。 As a mode for controlling the first mold driving mechanism 63 and the second mold driving mechanism 64 by the control unit 90, a mode for controlling the positions of the first mold 61 and the second mold 62 (position control mode), There is a mode (load control mode) for controlling the load relatively loaded on the first mold 61 and the second mold 62, and it is preferable that these two control modes are switchable. The first mold driving mechanism 63 and the second mold driving mechanism 64 can press-mold molten glass with a maximum pressing force of 3 tons using the first mold 61 and the second mold 62. It is preferable that it is comprised.
 制御部90は、上述したカッター駆動機構82、第1金型駆動機構63および第2金型駆動機構64の動作を制御する。すなわち、制御部90は、カッター81による溶融ガラス流10Dの切断のタイミング、第1金型61の移動のタイミング、第2金型62の移動のタイミング等のガラス成形品としてのカバーガラスの製造に係る一連のシーケンスを制御する。 The control unit 90 controls the operations of the cutter driving mechanism 82, the first mold driving mechanism 63, and the second mold driving mechanism 64 described above. That is, the control unit 90 manufactures a cover glass as a glass molded product such as the timing of cutting the molten glass flow 10D by the cutter 81, the timing of movement of the first mold 61, and the timing of movement of the second mold 62. A series of such sequences is controlled.
 図4は、図3に示す第1金型および第2金型の模式断面図である。図5は、図4に示す、V線で囲まれる領域を拡大して示す図である。図4および図5を参照して、第1金型61および第2金型について説明する。 FIG. 4 is a schematic cross-sectional view of the first mold and the second mold shown in FIG. FIG. 5 is an enlarged view of the area surrounded by the V line shown in FIG. The first mold 61 and the second mold will be described with reference to FIGS. 4 and 5.
 図4および図5に示すように、第1金型61は、主板部13の外表面を成形するための第1成形面61a、側板部16の外表面を成形するための第2成形面61b、および第1成形面61aと第2成形面61bとの境界部近傍に設けられた凹部65を含む。 As shown in FIGS. 4 and 5, the first mold 61 includes a first molding surface 61 a for molding the outer surface of the main plate portion 13 and a second molding surface 61 b for molding the outer surface of the side plate portion 16. And a recess 65 provided in the vicinity of the boundary between the first molding surface 61a and the second molding surface 61b.
 ここで、第1成形面61aと第2成形面61bとの境界部とは、本実施の形態においては、第1成形面61aを含む平面と第2成形面61bを含む平面とが交差する部分を指し、図5中に示すP2に該当する。 Here, in the present embodiment, the boundary between the first molding surface 61a and the second molding surface 61b is a portion where the plane including the first molding surface 61a and the plane including the second molding surface 61b intersect. This corresponds to P2 shown in FIG.
 第1成形面61aは、略矩形状の平坦な面によって構成されている。また、第1成形面61aは、凹部65を介して第2成形面61bに接続されている。 The first molding surface 61a is configured by a substantially rectangular flat surface. The first molding surface 61a is connected to the second molding surface 61b via the recess 65.
 凹部65は、第1金型61と第2金型62とが並ぶ方向から見た場合に、第1成形面61aと第2成形面61bとの境界部の延在方向に沿った全域に亘って設けられている。 The recess 65 covers the entire area along the extending direction of the boundary between the first molding surface 61a and the second molding surface 61b when viewed from the direction in which the first mold 61 and the second mold 62 are arranged. Is provided.
 凹部65は、端部P1および端部P2と、当該端部P1および端部P2を通る開口面を有する。当該開口面は、第1成形面61aと同一平面上に位置し、凹部65の深さ方向は、第1成形面61aの法線方向に平行である。また、凹部65は、上記開口面が最大外寸法となるように形成されており、後述する製造工程において溶融ガラスと離型可能な形状を有する。 The recess 65 has an end portion P1 and an end portion P2, and an opening surface that passes through the end portion P1 and the end portion P2. The opening surface is located on the same plane as the first molding surface 61a, and the depth direction of the recess 65 is parallel to the normal direction of the first molding surface 61a. Moreover, the recessed part 65 is formed so that the said opening surface may become a maximum outer dimension, and has a shape which can be mold-released with a molten glass in the manufacturing process mentioned later.
 具体的には、第2成形面61b側に位置する凹部65の端部P2に沿って延在するとともに第1成形面61aに垂直な仮想平面69から、第2成形面61b側にはみ出さないように凹部65が設けられている。 Specifically, it does not protrude from the virtual plane 69 extending along the end portion P2 of the recess 65 located on the second molding surface 61b side and perpendicular to the first molding surface 61a to the second molding surface 61b side. A recess 65 is provided.
 凹部65の一部が仮想平面69よりも第2成形面61b側にある場合には、加圧成形後のガラス成形品から第1金型61を離型する際に、凹部65内に充填された溶融ガラスによって成形された後述する凸部17(不要部分)と第1金型61とが接触することにより、加圧成形後のガラス成形品が割れてしまう。 When a part of the recess 65 is located on the second molding surface 61b side with respect to the virtual plane 69, the recess 65 is filled when the first mold 61 is released from the glass molded product after pressure molding. When the convex part 17 (unnecessary part) mentioned later shape | molded with the molten glass and the 1st metal mold | die 61 contact, the glass molded product after pressure forming will be broken.
 凹部65は、第1金型61と第2金型62とが対向配置された状態において、上記開口面が後述する第2金型62の第3成形面62aと第4成形面62bとの境界部に対向するように形成されている。ここで、第3成形面62aと第4成形面62bとの境界部とは、第3成形面62aを含む平面と第4成形面62bを含む平面とが交差する部分を指し、図5中に示すP3に該当する。 The recess 65 is a boundary between the third molding surface 62a and the fourth molding surface 62b of the second mold 62, which will be described later, in the state where the first mold 61 and the second mold 62 are opposed to each other. It is formed so as to face the part. Here, the boundary between the third molding surface 62a and the fourth molding surface 62b refers to a portion where the plane including the third molding surface 62a and the plane including the fourth molding surface 62b intersect, and in FIG. It corresponds to P3 shown.
 凹部65の大きさについては、たとえば第1金型61と第2金型62とによって成形されるガラス成形品の外形寸法を、120mm×60mmとし、全高H(図13参照)を4mmとする場合において、凹部65の幅(P1とP2との間の距離)が0mmより大きく2.0mm以下であることが好ましく、凹部65の深さ(水平方向に沿ったP1から凹部の最も凹んでいる部分までの距離)が0mmより大きく2.0mm以下であることが好ましい。この場合において、凹部65の幅が1.0mm以上2.0mm以下であることがさらに好ましく、凹部65の深さが0.5mm以上2.0mm以下であることが好ましい。 Regarding the size of the recess 65, for example, when the outer dimensions of the glass molded product formed by the first mold 61 and the second mold 62 are 120 mm × 60 mm and the total height H (see FIG. 13) is 4 mm. , The width of the recess 65 (distance between P1 and P2) is preferably greater than 0 mm and 2.0 mm or less, and the depth of the recess 65 (the most recessed portion of the recess from P1 along the horizontal direction) Is preferably greater than 0 mm and not greater than 2.0 mm. In this case, the width of the recess 65 is more preferably 1.0 mm or more and 2.0 mm or less, and the depth of the recess 65 is preferably 0.5 mm or more and 2.0 mm or less.
 凹部65の大きさが幅2.0mmおよび深さ2.0mmより大きい場合には、後述する加圧成形工程において凹部65内に滞留した溶融ガラス自体の温度が低下してしまい、溶融ガラスの収縮によって過度のストレスが掛かり、割れが発生しやすくなる。 When the size of the concave portion 65 is larger than the width 2.0 mm and the depth 2.0 mm, the temperature of the molten glass itself retained in the concave portion 65 in the pressure forming step described later is lowered, and the molten glass shrinks. Excessive stress is applied and cracking is likely to occur.
 また、凹部65が形成されていない場合には、加圧成形工程において、第1成形面61aと第3成形面62aとの間から第2成形面61bと第4成形面62bとの間に溶融ガラスが移動方向を変えて移動する場合に、溶融ガラスの速度が低下することによって溶融ガラスが熱収縮しやすくなる。この結果、溶融ガラスの硬化が進行し、薄型化を図ることができなくなる。 Further, when the concave portion 65 is not formed, in the pressure molding process, melting is performed between the first molding surface 61a and the third molding surface 62a and between the second molding surface 61b and the fourth molding surface 62b. When the glass moves while changing its moving direction, the molten glass is easily shrunk due to a decrease in the speed of the molten glass. As a result, curing of the molten glass proceeds, and it becomes impossible to reduce the thickness.
 凹部65の大きさが幅1.0mm以上および深さ0.5mm以上となる場合には、溶融ガラスが第1成形面61aと第3成形面62aとの間から第2成形面61bと第4成形面62bとの間に移動する際に、より容易に移動することができる。 When the size of the recess 65 is 1.0 mm or more in width and 0.5 mm or more in depth, the molten glass is formed between the second molding surface 61b and the fourth molding surface between the first molding surface 61a and the third molding surface 62a. When moving between the molding surface 62b, it is possible to move more easily.
 第2成形面61bは、凹部65の第2成形面61b側の端部P2から連続して設けられている。第2成形面61bは、側板部16の形状に対応して、第1成形面61aの法線方向に沿って第1成形面61aから遠ざかるにつれて、第1成形面61aから遠ざかる傾斜面を有する。 The second molding surface 61b is provided continuously from the end P2 of the recess 65 on the second molding surface 61b side. Corresponding to the shape of the side plate portion 16, the second molding surface 61b has an inclined surface that moves away from the first molding surface 61a as it moves away from the first molding surface 61a along the normal direction of the first molding surface 61a.
 この場合においては、第2成形面61bと第1成形面61aの法線とが成す傾斜角は、1°以上10°以下であることが好ましい。上記傾斜角が1°より小さい場合には、後述する製造工程において、加圧成形後のガラス成形品から第1金型61を離型する際に、第1金型61と加圧成形後のガラス成形品とが接触して割れが発生する場合がある。また、上記傾斜角が10°より大きい場合には、優れたデザイン性が得られなくなる。 In this case, the inclination angle formed by the second molding surface 61b and the normal line of the first molding surface 61a is preferably 1 ° or more and 10 ° or less. When the inclination angle is smaller than 1 °, in the manufacturing process described later, when the first mold 61 is released from the glass molded product after pressure molding, the first mold 61 and the pressure molded There is a case where cracks occur due to contact with the glass molded product. Further, when the tilt angle is larger than 10 °, excellent design properties cannot be obtained.
 なお、第2成形面61bは、傾斜面のみから構成されている必要はなく、凹部65の端部P2と当該傾斜面との間にこれらを接続する略円弧状の湾曲面を含んでいてもよい。 The second molding surface 61b does not need to be composed only of an inclined surface, and may include a substantially arcuate curved surface that connects the end portion P2 of the recess 65 and the inclined surface. Good.
 第2金型62は、主板部13の内表面を成形するための第3成形面62aと、側板部16の内表面を成形するための第4成形面62bとを含む。 The second mold 62 includes a third molding surface 62a for molding the inner surface of the main plate portion 13 and a fourth molding surface 62b for molding the inner surface of the side plate portion 16.
 第3成形面62aは、略矩形状の平坦な面によって構成されている。第3成形面62aの端部P3から第4成形面62bが連続して設けられている。 The third molding surface 62a is configured by a substantially rectangular flat surface. A fourth molding surface 62b is continuously provided from the end P3 of the third molding surface 62a.
 第4成形面62bは、第3成形面62aの法線方向に沿って第3成形面62aから遠ざかるにつれて第3成形面62aと平行な方向に沿って第3成形面62aから遠ざかる傾斜面を有する。 The fourth molding surface 62b has an inclined surface that moves away from the third molding surface 62a along a direction parallel to the third molding surface 62a as it moves away from the third molding surface 62a along the normal direction of the third molding surface 62a. .
 この場合においては、第4成形面62bと第3成形面62aの法線とが成す傾斜角は、1°以上10°以下であることが好ましい。上記傾斜角が1°より小さい場合には、加圧成形後のガラス成形品から第2金型62を離型する際に、第2金型62と加圧成形後のガラス成形品とが接触して割れが発生する場合がある。また、上記傾斜角が10°より大きい場合には、優れたデザイン性が得られなくなる。 In this case, the inclination angle formed by the fourth molding surface 62b and the normal line of the third molding surface 62a is preferably 1 ° or more and 10 ° or less. When the inclination angle is smaller than 1 °, the second mold 62 and the glass molded product after pressure molding come into contact when the second mold 62 is released from the glass molded product after pressure molding. And cracks may occur. Further, when the tilt angle is larger than 10 °, excellent design properties cannot be obtained.
 なお、第4成形面62bは、傾斜面のみから構成されている必要はなく、第3成形面62aの端部P3と傾斜面との間にこれらを接続する略円弧状の湾曲面を含んでいてもよい。 Note that the fourth molding surface 62b does not need to be composed only of an inclined surface, and includes a substantially arc-shaped curved surface that connects between the end portion P3 of the third molding surface 62a and the inclined surface. May be.
 また、第1金型61と第2金型62とが接近した状態においては、第1成形面61aと第3成形面62aとによって主板部13に対応する部分である第1キャビティ部91が規定され、第2成形面61bと第4成形面62bとによって側板部16に対応する部分を含む第2キャビティ部92が規定され、凹部65によって後述するガラス成形品の凸部17に対応する溶融ガラス滞留部93が規定される。 Further, when the first mold 61 and the second mold 62 are close to each other, the first cavity portion 91 which is a portion corresponding to the main plate portion 13 is defined by the first molding surface 61a and the third molding surface 62a. A second cavity portion 92 including a portion corresponding to the side plate portion 16 is defined by the second molding surface 61b and the fourth molding surface 62b, and the molten glass corresponding to the convex portion 17 of the glass molded product described later by the concave portion 65. A retention portion 93 is defined.
 図6は、本実施の形態に係るガラス成形品の製造方法を示すフロー図である。図7から図10および図12、図13は、図6に示すフローにおける所定の工程および所定の工程の後状態を示す図である。図11は、図10に示す、XI線で囲まれる領域を拡大して示す図である。図6から図12を参照して、本実施の形態に係るガラス成形品の製造方法について説明する。 FIG. 6 is a flowchart showing a method for manufacturing a glass molded product according to the present embodiment. 7 to 10, FIG. 12, and FIG. 13 are diagrams showing a predetermined step and a state after the predetermined step in the flow shown in FIG. FIG. 11 is an enlarged view of the area surrounded by the XI line shown in FIG. With reference to FIGS. 6 to 12, a method for manufacturing a glass molded product according to the present embodiment will be described.
 図6に示すように、まず、工程(S11)において、第1金型と第2金型とが対向配置される。具体的には、第1金型61と第2金型62とは、第1成形面61aおよび第3成形面62aとが流出管73の下方の位置を介して向き合うこととなるように、予め定められた初期位置P11,P21に配置される(図7参照)。 As shown in FIG. 6, first, in the step (S11), the first mold and the second mold are arranged to face each other. Specifically, the first mold 61 and the second mold 62 are previously set so that the first molding surface 61a and the third molding surface 62a face each other through a position below the outflow pipe 73. It arrange | positions to the defined initial position P11 and P21 (refer FIG. 7).
 この際、第1金型61および第2金型62は、第1成形面61aおよび第3成形面62aが水平面と直交するように配置され、これにより第1金型61と第2金型62とが水平方向に沿って対向配置される。なお、第1金型61および第2金型62の初期位置P11,P21への移動は、制御部90が第1金型駆動機構63および第2金型駆動機構64を駆動することで行なわれる。 At this time, the first mold 61 and the second mold 62 are arranged so that the first molding surface 61a and the third molding surface 62a are orthogonal to the horizontal plane, and thereby the first mold 61 and the second mold 62 are arranged. Are opposed to each other along the horizontal direction. The first mold 61 and the second mold 62 are moved to the initial positions P11 and P21 by the controller 90 driving the first mold drive mechanism 63 and the second mold drive mechanism 64. .
 第1金型61および第2金型62が水平方向に対向配置された状態にあっては、第1金型61および第2金型62は、それぞれ所定の温度に加熱されている。所定の温度とは、ガラス成形品に良好な転写面を成形できる温度であればよい。 In the state where the first mold 61 and the second mold 62 are arranged to face each other in the horizontal direction, the first mold 61 and the second mold 62 are each heated to a predetermined temperature. The predetermined temperature may be a temperature at which a good transfer surface can be formed on a glass molded product.
 一般的に、成形部60の温度が低すぎると高精度な転写面を成形することが困難になる。逆に、必要以上に温度が高すぎると、ガラスとの融着が発生し易くなったり、成形部60の寿命が短くなったりする懸念がある。通常は、加圧成形するガラスのガラス転移温度Tgに対し、(Tg-100)℃以上(Tg+100)℃以下の範囲の温度に設定する。実際には、ガラスの種類、ガラス成形品の形状および大きさ、成形部60の材料、保護膜の種類など、種々の条件を考慮に入れて適正な温度を決定する。第1金型61および第2金型62の加熱温度は、同じ温度であってもよいし、異なる温度であってもよい。 Generally, when the temperature of the molding part 60 is too low, it becomes difficult to mold a highly accurate transfer surface. On the other hand, if the temperature is too high than necessary, there is a concern that fusion with the glass tends to occur or the life of the molded part 60 is shortened. Usually, the temperature is set in the range of (Tg−100) ° C. to (Tg + 100) ° C. with respect to the glass transition temperature Tg of the glass to be pressed. Actually, an appropriate temperature is determined in consideration of various conditions such as the type of glass, the shape and size of the glass molded product, the material of the molded part 60, and the type of protective film. The heating temperature of the first mold 61 and the second mold 62 may be the same temperature or different temperatures.
 本実施の形態においては、成形部60を所定温度に加熱した後、溶融した状態の高温の溶融ガラスを供給して加圧成形することから、成形部60の温度を一定に保ったまま、一連の工程を行なうことができる。さらに、成形部60の温度を一定に保ったまま、複数のガラス成形品を繰り返し製造することもできる。したがって、1つのガラス成形品を製造する毎に成形部60の昇温と冷却を繰り返す必要がないことから、極めて短時間で効率よくガラス成形品を製造することができる。 In the present embodiment, the molding unit 60 is heated to a predetermined temperature, and then a high-temperature molten glass in a melted state is supplied and subjected to pressure molding, so that the temperature of the molding unit 60 is kept constant. These steps can be performed. Furthermore, it is possible to repeatedly manufacture a plurality of glass molded products while keeping the temperature of the molding unit 60 constant. Therefore, since it is not necessary to repeat the temperature rise and cooling of the molding unit 60 every time one glass molded product is manufactured, the glass molded product can be manufactured efficiently in an extremely short time.
 ここで、成形部60の温度を一定に保つとは、成形部60を加熱するための温度制御における目標設定温度を一定に保つという意味である。したがって、各工程実施中において、溶融ガラスとの接触などによる成形部60の温度変動を防止しようとするものではなく、かかる温度変動については許容される。 Here, keeping the temperature of the molding part 60 constant means that the target set temperature in the temperature control for heating the molding part 60 is kept constant. Therefore, it is not intended to prevent the temperature fluctuation of the molded part 60 due to contact with the molten glass or the like during execution of each process, and such temperature fluctuation is allowed.
 続いて、図6に示すように、工程(S12)において、切断された溶融ガラス塊を第1金型と第2金型との間に供給する。図7は、図6に示す、切断された溶融ガラス塊を第1金型と第2金型との間の隙間に供給する工程を示す図である。 Subsequently, as shown in FIG. 6, in the step (S12), the cut molten glass lump is supplied between the first mold and the second mold. FIG. 7 is a diagram illustrating a process of supplying the cut molten glass lump shown in FIG. 6 to the gap between the first mold and the second mold.
 図7に示すように、切断された溶融ガラス塊10Eを供給する工程においては、初期位置P11,P21に配置された第1金型61と第2金型62との間の隙間に、鉛直方向に沿って溶融ガラス塊10Eが供給される。このような溶融ガラス塊10Eは、流出管73の流出口73aから鉛直下方に向けて流出される溶融ガラス流10Dの長さが所定の長さに達した時点で、カッター81によって切断されることにより得られる。 As shown in FIG. 7, in the step of supplying the cut molten glass lump 10 </ b> E, a vertical direction is provided in the gap between the first mold 61 and the second mold 62 disposed at the initial positions P <b> 11 and P <b> 21. A molten glass lump 10E is supplied along Such a molten glass lump 10E is cut by the cutter 81 when the length of the molten glass flow 10D flowing out vertically from the outlet 73a of the outlet pipe 73 reaches a predetermined length. Is obtained.
 これにより、溶融ガラス流10Dから分離された溶融ガラス塊10Eが、鉛直下方(矢印A)に向けて落下する。なお、溶融ガラス流10Dは、制御部90がカッター駆動機構82を用いてカッター81を溶融ガラス流10Dに向けて矢印B方向に移動させることで行なわれ、切断が完了した後には、カッター81は、逆方向に移動されることで元の位置に復帰する。 This causes the molten glass lump 10E separated from the molten glass flow 10D to fall vertically downward (arrow A). The molten glass flow 10D is performed by the control unit 90 using the cutter drive mechanism 82 to move the cutter 81 in the direction of arrow B toward the molten glass flow 10D. The original position is restored by moving in the opposite direction.
 次に、図6に示すように、工程(S13)において、溶融ガラス塊を第1金型および第2金型にて加圧成形する。図8から図10は、図6に示す、溶融ガラス塊を第1金型と第2金型とによって加圧成形する工程の第1工程から第3工程を示す図である。 Next, as shown in FIG. 6, in the step (S13), the molten glass lump is pressure-molded by the first mold and the second mold. 8 to 10 are views showing the first to third steps of the step of press-molding the molten glass lump with the first die and the second die shown in FIG.
 図8に示すように、溶融ガラス塊を第1金型および第2金型にて加圧成形する工程の第1工程においては、まず、溶融ガラス塊10Eが第1金型61と第2金型との間に落下してきたタイミングで、第1成形面61aと第3成形面62aとが近づくように第1金型61および第2金型62を水平方向(矢印C1方向および矢印C2方向)に移動させる。 As shown in FIG. 8, in the first step of press molding the molten glass lump with the first mold and the second mold, first, the molten glass lump 10 </ b> E has the first mold 61 and the second mold. The first mold 61 and the second mold 62 are moved in the horizontal direction (arrow C1 direction and arrow C2 direction) so that the first molding surface 61a and the third molding surface 62a approach each other at the timing of falling between the molds. Move to.
 この際、落下中の溶融ガラス塊10Eは、まず、第2金型62の第3成形面62aに接触してこれに付着する。このとき、第2金型62を所定の移動速度をもって素早く移動させることにより、第2金型62の第3成形面62aに付着した溶融ガラス塊10Eを、その衝撃によって第3成形面62a上において濡れ広げることができる。 At this time, the falling molten glass lump 10E first comes into contact with and adheres to the third molding surface 62a of the second mold 62. At this time, by quickly moving the second mold 62 at a predetermined moving speed, the molten glass lump 10E attached to the third molding surface 62a of the second mold 62 is caused on the third molding surface 62a by the impact. Can spread wet.
 これにより、第3成形面62aと平行な方向に沿って溶融ガラスが瞬間的に略均等に広がることになり、後述する加圧成形工程において高い転写性を得ることができる。 Thereby, the molten glass instantaneously spreads substantially uniformly along the direction parallel to the third molding surface 62a, and high transferability can be obtained in the pressure molding process described later.
 続いて、図9に示すように、溶融ガラス塊を第1金型および第2金型にて加圧成形する工程の第2工程においては、さらに第1金型61と第2金型62とが近づくように第1金型61および第2金型62を水平方向(矢印C1方向および矢印C2方向)に移動させて、滴下された溶融ガラス塊10Eを挟み込む。 Subsequently, as shown in FIG. 9, in the second step of press molding the molten glass lump with the first die and the second die, the first die 61 and the second die 62 are further The first mold 61 and the second mold 62 are moved in the horizontal direction (the direction of the arrow C1 and the direction of the arrow C2) so that the molten glass lump 10E is dropped.
 この際、第1金型61の第1成形面61aと第2金型62の第3成形面62aとによって押し広げられた溶融ガラス塊10Eは、矢印D1方向に向かって移動する。矢印D1方向に沿って移動する溶融ガラス塊10Eは、さらに矢印D2方向に向かって第2成形面61bと第4成形面62bとの間に移動する。 At this time, the molten glass lump 10E spread by the first molding surface 61a of the first mold 61 and the third molding surface 62a of the second mold 62 moves in the direction of the arrow D1. Molten glass lump 10E that moves along the direction of arrow D1 further moves between second molding surface 61b and fourth molding surface 62b in the direction of arrow D2.
 溶融ガラス塊10Eの移動方向が変更される際には、溶融ガラス塊10Eと第1金型61および第2金型62との摩擦抵抗が増加するため、溶融ガラス塊10Eの移動速度が低下する。 When the moving direction of the molten glass lump 10E is changed, the frictional resistance between the molten glass lump 10E and the first mold 61 and the second mold 62 increases, so that the moving speed of the molten glass lump 10E decreases. .
 この際、第1金型の凹部65内に溶融ガラス塊10Eの一部が滞留する。凹部65内に滞留した溶融ガラス塊10Eのうち、第2金型62側に位置し第1金型61と接触しない部分の温度は、第1金型61および第2金型62の温度よりも高くなっている。 At this time, a part of the molten glass lump 10E stays in the recess 65 of the first mold. Of the molten glass lump 10E staying in the recess 65, the temperature of the portion located on the second mold 62 side and not in contact with the first mold 61 is higher than the temperature of the first mold 61 and the second mold 62. It is high.
 一般的に、溶融ガラスは金型と接触することにより、金型に溶融ガラスの熱が奪われることによって、その温度が低下する。しかしながら、本実施の形態においては、凹部65に滞留した溶融ガラス塊10Eの熱によって、第2成形面61bと第4成形面62bとの間に位置する溶融ガラス塊10Eの温度が低下することを抑制することができる。 Generally, when the molten glass comes into contact with the mold, the temperature of the molten glass is lowered by the heat of the molten glass being taken away by the mold. However, in the present embodiment, the temperature of the molten glass lump 10E located between the second molding surface 61b and the fourth molding surface 62b is lowered by the heat of the molten glass lump 10E staying in the recess 65. Can be suppressed.
 また、凹部65を設けることにより、溶融ガラス塊10Eの一部を凹部65内に退避させることができるので、溶融ガラス塊10Eの移動方向変更時における摩擦を低減することができる。これによって、第2成形面61bと第4成形面62bとの間に向けて、溶融ガラス塊10Eを容易に移動させることができる。 Further, by providing the recess 65, a part of the molten glass lump 10E can be retracted into the recess 65, so that friction at the time of changing the moving direction of the molten glass lump 10E can be reduced. Thereby, the molten glass lump 10E can be easily moved toward between the second molding surface 61b and the fourth molding surface 62b.
 このことによっても、溶融ガラス塊10Eの移動速度の低下に起因する、溶融ガラス塊10Eの温度の低下を抑制することができる。 This also can suppress a decrease in the temperature of the molten glass lump 10E due to a decrease in the moving speed of the molten glass lump 10E.
 以上のように、第2成形面61bおよび第4成形面62bとの間に位置する溶融ガラス塊10Eの温度の低下を抑制することにより、溶融ガラス塊10Eが、第2成形面61bと第4成形面62bとの間で部分的に熱収縮することを抑制でき、部分的に硬化することを抑制できる。この結果、第1金型61および第2金型62をさらに接近させることができ、加圧成形後のガラス成形品を薄型化することができる。 As described above, by suppressing a decrease in the temperature of the molten glass lump 10E located between the second shaping surface 61b and the fourth shaping surface 62b, the molten glass lump 10E becomes the second shaping surface 61b and the fourth shaping surface. It is possible to suppress partial thermal shrinkage between the molding surface 62b and partial curing. As a result, the 1st metal mold | die 61 and the 2nd metal mold | die 62 can be brought closer, and the glass molded product after pressure forming can be made thin.
 続いて、図10および図11に示すように、溶融ガラス塊を第1金型および第2金型にて加圧成形する工程の第3工程においては、第1金型61および第2金型62を停止位置P12、P22に移動させて接近させる。 Subsequently, as shown in FIG. 10 and FIG. 11, in the third step of the pressure molding of the molten glass lump with the first die and the second die, the first die 61 and the second die 62 is moved to the stop positions P12 and P22 to approach them.
 第1金型61および第2金型62を接近させることによってさらに押し広げられた溶融ガラス塊10Eは、上述の第1成形面61aおよび第3成形面62aによって規定される第1キャビティ部91内、上述の第2成形面61bおよび第4成形面62bによって規定される第2キャビティ部92内、および、凹部65によって規定される溶融ガラス滞留部93内に行き渡る。 The molten glass lump 10E further expanded by bringing the first mold 61 and the second mold 62 closer to each other is in the first cavity portion 91 defined by the first molding surface 61a and the third molding surface 62a. In the second cavity portion 92 defined by the second molding surface 61b and the fourth molding surface 62b described above, and in the molten glass retention portion 93 defined by the recess 65.
 この際、上述のように溶融ガラス塊10Eの部分的な硬化を抑制することによって第2キャビティ部92に十分にガラスを充填させることができる。これにより、転写性および離型性を確保することができ、また成形時における割れの発生を防止することができる。 At this time, the second cavity portion 92 can be sufficiently filled with glass by suppressing the partial hardening of the molten glass lump 10E as described above. As a result, transferability and releasability can be ensured, and cracking during molding can be prevented.
 このように第1キャビティ部91内、第2キャビティ部92内、および溶融ガラス滞留部93内が溶融ガラス塊10Eによって充填されることによって、当該溶融ガラス塊10Eが第1金型61および第2金型62によって所定の圧力で加圧された状態となり、溶融ガラス塊10Eの加圧成形が行なわれる。 As described above, the inside of the first cavity portion 91, the second cavity portion 92, and the inside of the molten glass retention portion 93 are filled with the molten glass lump 10E, so that the molten glass lump 10E has the first mold 61 and the second mold. The mold 62 is pressurized at a predetermined pressure, and the molten glass lump 10E is pressure-molded.
 ここで、加圧処理の開始時点における溶融ガラスの温度は、ガラス転移温度Tg[℃]に対し、(Tg+150)[℃]以上(Tg+300)[℃]以下に設定されることが好ましい。たとえばTgが540[℃]である場合には、加圧直前の溶融ガラスの温度を780[℃]とすればよい。溶融ガラスがこのような温度条件を満たすためには、第1金型61の温度を(Tg-80)[℃]以上(Tg-10)[℃]以下に設定し、第2金型62の温度を(Tg-60)[℃]以上(Tg-20)[℃]以下に設定するとよい。たとえばTgが540[℃]である場合には、第1金型61の温度を520[℃]に設定し、第2金型62の温度を500[℃]に設定すればよい。 Here, the temperature of the molten glass at the start of the pressure treatment is preferably set to (Tg + 150) [° C.] or more and (Tg + 300) [° C.] or less with respect to the glass transition temperature Tg [° C.]. For example, when Tg is 540 [° C.], the temperature of the molten glass just before pressing may be 780 [° C.]. In order for the molten glass to satisfy such a temperature condition, the temperature of the first mold 61 is set to (Tg-80) [° C.] or more and (Tg-10) [° C.] or less, and the second mold 62 The temperature may be set to (Tg-60) [° C] or higher and (Tg-20) [° C] or lower. For example, when Tg is 540 [° C.], the temperature of the first mold 61 may be set to 520 [° C.] and the temperature of the second mold 62 may be set to 500 [° C.].
 また、加圧の際には、たとえば、溶融ガラス塊10Eには、1.2トンの加圧力が2秒間負荷される。これにより、溶融ガラス塊10Eが加圧成形され、ガラス成形品10Fが成形される。 Further, at the time of pressurization, for example, a pressure of 1.2 tons is applied to the molten glass lump 10E for 2 seconds. Thereby, the molten glass lump 10E is pressure-molded, and the glass molded product 10F is molded.
 また、上述の溶融ガラスを第1金型61および第2金型62にて加圧成形する工程の第1工程から第3工程における第1金型61および第2金型62による初期位置P11およびP21から停止位置P12およびP22までの移動は、制御部90が第1金型駆動機構63および第2金型駆動機構64を駆動することで行なわれる。 In addition, the initial position P11 by the first mold 61 and the second mold 62 in the first to third steps of the process of pressure-molding the above-described molten glass with the first mold 61 and the second mold 62, and The movement from P21 to the stop positions P12 and P22 is performed by the controller 90 driving the first mold drive mechanism 63 and the second mold drive mechanism 64.
 次に、図6に示すように、工程(S14)において、第1金型と第2金型とによる加圧が解除され、工程(S15)において製造されたガラス成形品が第1金型および第2金型から離型される。 Next, as shown in FIG. 6, in the step (S14), the pressurization by the first mold and the second mold is released, and the glass molded product manufactured in the step (S15) becomes the first mold and The mold is released from the second mold.
 続いて、図6に示すように、工程(S16)において、離型されたガラス成形品の不要部分を研磨および面取りして除去する。図12は、図6に示す、離型されたガラス成形品の不要部分を研磨および面取りして除去する工程を示す図である。 Subsequently, as shown in FIG. 6, in step (S16), unnecessary portions of the released glass molded product are polished and chamfered to be removed. FIG. 12 is a diagram showing a step of removing unnecessary portions of the released glass molded product shown in FIG. 6 by polishing and chamfering.
 図12に示すように、離型後に取り出されたガラス成形品10Fは、主板部13および側板部16によって構成される製品予定領域と、製品予定領域の周囲に位置し、主として凸部17によって構成される予備領域を含む。 As shown in FIG. 12, the glass molded product 10 </ b> F taken out after the mold release is located around the product planned area constituted by the main plate portion 13 and the side plate portion 16 and the product planned area, and is mainly constituted by the convex portion 17. To be reserved.
 予備領域は、たとえば凸部17の主板部13側の端部と、第2成形面61bによって成形された成形面の一部とを横断する破線Eによって規定され、図中において破線Eよりも左側の部分に該当する。 The spare area is defined by, for example, a broken line E that crosses the end portion of the convex portion 17 on the main plate portion 13 side and a part of the molding surface formed by the second molding surface 61b. It corresponds to the part.
 このような予備領域を研磨および面取りすることによって、離型後のガラス成形品10Fの不要部分(予備領域)が除去される。図13は、図6に示す、ガラス成形品の不要部分を研磨および面取りして除去する工程の後状態を示す図である。 By polishing and chamfering such a preliminary region, an unnecessary portion (preliminary region) of the glass molded product 10F after release is removed. FIG. 13 is a diagram illustrating a state after the step of removing unnecessary portions of the glass molded product illustrated in FIG. 6 by polishing and chamfering.
 以上の工程を経て、図13に示すように、薄型化されたカバーガラス10の製造が完了する。たとえば、外形寸法を120mm×60mmとし、全高Hを4mmとするカバーガラス10を製造する場合において、第1金型61に設けられた凹部65の幅(P1とP2との間の距離(図11参照))を1.5mmとし、当該凹部65の深さを1.2mmとした場合に、主板部13の厚さT1を0.9mm程度とすることができ、側板部16の厚さT2を1.2mmとすることができる。 Through the above steps, the manufacturing of the thin cover glass 10 is completed as shown in FIG. For example, when manufacturing the cover glass 10 having an outer dimension of 120 mm × 60 mm and an overall height H of 4 mm, the width of the recess 65 provided in the first mold 61 (the distance between P1 and P2 (FIG. 11 Reference))) is 1.5 mm, and the depth of the recess 65 is 1.2 mm, the thickness T1 of the main plate portion 13 can be about 0.9 mm, and the thickness T2 of the side plate portion 16 is It can be set to 1.2 mm.
 また、離型後のガラス成形品の外表面および内表面は、加圧成形によっていずれも鏡面かまたはそれに近い状態に成形されることになる。したがって、加圧成形後に必要となる追加の加工としては、加圧成形されたガラス成形品の凸部17を含む不要部分を研磨および面取りして除去する加工のみで足り、外表面および内表面を研磨仕上げする研磨加工を別途必要としない。 In addition, the outer surface and the inner surface of the glass molded product after mold release are both molded into a mirror surface or a state close thereto by pressure molding. Therefore, as the additional processing required after pressure molding, it is only necessary to grind and chamfer and remove unnecessary portions including the convex portions 17 of the glass molded product that has been pressure molded. No additional polishing process is required.
 以上において説明した本実施の形態に係るガラス成形品の製造方法および製造装置を用いることにより、一度の加圧成形によって主板部と側板部を有する所望の複雑な立体形状を得ることができるとともに、薄型化されたガラス成形品を得ることができる。 By using the method and apparatus for producing a glass molded product according to the present embodiment described above, it is possible to obtain a desired complex three-dimensional shape having a main plate portion and a side plate portion by a single pressure molding, A thin glass molded product can be obtained.
 上述の実施の形態においては、水平方向に対向配置された第1金型61および第2金型との間に鉛直方向に滴下された溶融ガラスを第1金型61および第2金型62によって加圧成形する場合を例示して説明したが、これに限定されず、第1金型61を下型とし、第2金型を上型として利用し、溶融ガラス供給部の流出管に対向するように配置された第1金型に滴下された溶融ガラスを、滴下後に鉛直方向に対向配置された第1金型および第2金型によって加圧成形してもよい。 In the above-described embodiment, the molten glass dropped in the vertical direction between the first mold 61 and the second mold disposed opposite to each other in the horizontal direction is caused by the first mold 61 and the second mold 62. The case of pressure molding has been described as an example. However, the present invention is not limited to this, and the first mold 61 is used as a lower mold and the second mold is used as an upper mold to face the outflow pipe of the molten glass supply unit. The molten glass dropped onto the first mold arranged in this manner may be pressure-molded by the first mold and the second mold arranged opposite to each other in the vertical direction after dropping.
 また、上述の実施の形態においては、鉛直方向に滴下された溶融ガラス塊10Eに第2金型62を先に接触させる場合を例示して説明したがこれに限定されず、鉛直方向に滴下された溶融ガラス塊10Eに第1金型61を先に接触させてもよいし、当該溶融ガラス塊10Eに第1金型61と第2金型62とを同時に接触させてもよい。 Moreover, in the above-described embodiment, the case where the second mold 62 is first brought into contact with the molten glass lump 10E dropped in the vertical direction has been described as an example, but the present invention is not limited to this, and is dropped in the vertical direction. The first mold 61 may be first contacted with the molten glass lump 10E, or the first mold 61 and the second mold 62 may be simultaneously contacted with the molten glass lump 10E.
 また、上述の本実施の形態においては、凹部65は、その端部P2と、第1成形面61aと第2成形面61bとの境界部とが一致するように設けられている場合を例示して説明したが、これに限定されず、凹部65が、当該境界部から離れた第1成形面61a寄りの部分に設けられていてもよいし、当該境界部を跨ぐように設けられていてもよいし、第2成形面61bのみに設けられていてもよい。 Further, in the above-described embodiment, the concave portion 65 is exemplified such that the end portion P2 thereof is provided so that the boundary portion between the first molding surface 61a and the second molding surface 61b coincides. However, the present invention is not limited to this, and the concave portion 65 may be provided in a portion near the first molding surface 61a away from the boundary portion, or may be provided so as to straddle the boundary portion. Alternatively, it may be provided only on the second molding surface 61b.
 また、上述した本発明の実施の形態においては、本発明が適用されて製造されるガラス成形品として、スマートフォンやタブレット端末に具備されるカバーガラスを例示して説明を行なったが、これに限定されるものではなく、たとえば他のディスプレイ装置のカバーガラスの製造や、モバイルコンピュータ、デジタルカメラ等に代表される電子機器等の外装カバーの製造に本発明が適用されてもよいし、各種レンズや光記録媒体の製造に本発明が適用されてもよい。 Moreover, in embodiment of this invention mentioned above, although the cover glass with which a smart phone and a tablet terminal were equipped was illustrated and demonstrated as a glass molded article manufactured by applying this invention, it is limited to this. For example, the present invention may be applied to the manufacture of cover glasses for other display devices, and the manufacture of exterior covers for electronic devices such as mobile computers and digital cameras. The present invention may be applied to the manufacture of an optical recording medium.
 以上、本発明の実施の形態について説明したが、今回開示された実施の形態はすべての点で例示であって制限的なものではない。本発明の範囲は請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれる。 As mentioned above, although embodiment of this invention was described, embodiment disclosed this time is an illustration and restrictive at no points. The scope of the present invention is defined by the terms of the claims, and includes meanings equivalent to the terms of the claims and all changes within the scope.
 10 カバーガラス、10D 溶融ガラス流、10E 溶融ガラス塊、10F ガラス成形品、10H 開口部、11 外表面、12 内表面、13 主板部、16 側板部、17 凸部、20 外装プレート、30 回路基板、40 ディスプレイ、42 画像表示部、50 製造装置、60 成形部、61 第1金型、61a 第1成形面、61b 第2成形面、62 第2金型、62a 第3成形面、62b 第4成形面、63 第1金型駆動機構、64 第2金型駆動機構、65 凹部、69 仮想平面、70 溶融ガラス供給部、71 連続溶融炉、72 ノズル部、73 流出管、73a 流出口、80 切断部、81 カッター、82 カッター駆動機構、90 制御部、91 第1キャビティ部、92 第2キャビティ部、93 溶融ガラス滞留部、100 ディスプレイ装置。 10 cover glass, 10D molten glass flow, 10E molten glass lump, 10F glass molded article, 10H opening, 11 outer surface, 12 inner surface, 13 main plate, 16 side plate, 17 convex, 20 exterior plate, 30 circuit board , 40 display, 42 image display unit, 50 manufacturing apparatus, 60 molding unit, 61 first mold, 61a first molding surface, 61b second molding surface, 62 second mold, 62a third molding surface, 62b fourth Molding surface, 63 1st mold drive mechanism, 64 2nd mold drive mechanism, 65 recess, 69 virtual plane, 70 molten glass supply section, 71 continuous melting furnace, 72 nozzle section, 73 outflow pipe, 73a outlet, 80 Cutting part, 81 cutter, 82 cutter drive mechanism, 90 control part, 91 first cavity part, 92 second cavity part 93 molten glass retention unit, 100 display unit.

Claims (7)

  1.  主板部および前記主板部の外縁の少なくとも一部から連設された側板部を含むガラス成形品を製造するためのガラス成形品の製造方法であって、
     溶融ガラスを加圧成形するための第1金型および第2金型を対向配置する工程と、
     前記第1金型および前記第2金型を接近させることにより、前記溶融ガラスを前記第1金型および前記第2金型を用いて挟み込んで加圧成形する工程とを備え、
     前記第1金型は、前記主板部の外表面を成形するための第1成形面と、前記側板部の外表面を成形するための第2成形面とを含み、
     前記第2金型は、前記主板部の内表面を成形するための第3成形面と、前記側板部の内表面を成形するための第4成形面とを含み、
     前記加圧成形する工程において、前記第1成形面と前記第3成形面とによって押し広げられた前記溶融ガラスが前記第2成形面と前記第4成形面との間に充填されるに際し、押し広げられた前記溶融ガラスの少なくとも一部が前記第1成形面と前記第2成形面との境界部近傍において滞留することとなるように、前記第1金型として、前記境界部近傍の少なくとも一部に凹部が設けられている金型を用いる、ガラス成形品の製造方法。
    A method for producing a glass molded article for producing a glass molded article comprising a main plate portion and a side plate portion continuously provided from at least a part of an outer edge of the main plate portion,
    A step of opposingly arranging a first mold and a second mold for pressure-molding molten glass;
    A step of pressing and molding the molten glass by using the first mold and the second mold by bringing the first mold and the second mold close to each other, and
    The first mold includes a first molding surface for molding the outer surface of the main plate portion, and a second molding surface for molding the outer surface of the side plate portion,
    The second mold includes a third molding surface for molding the inner surface of the main plate portion, and a fourth molding surface for molding the inner surface of the side plate portion,
    In the pressure molding step, when the molten glass spread by the first molding surface and the third molding surface is filled between the second molding surface and the fourth molding surface, As the first mold, at least one part in the vicinity of the boundary portion is set so that at least a part of the spread molten glass stays in the vicinity of the boundary portion between the first molding surface and the second molding surface. A method for producing a glass molded product, which uses a mold having a recess in a part.
  2.  前記第1金型および前記第2金型を対向配置する工程において、前記第1金型と前記第2金型とを水平方向において対向配置させ、
     前記第1金型と前記第2金型を用いて挟み込んで加圧成形する前に、水平方向において対向配置された前記第1金型と前記第2金型との間に前記溶融ガラスを鉛直下方に向けて滴下させる工程をさらに備える、請求項1に記載のガラス成形品の製造方法。
    In the step of opposingly arranging the first mold and the second mold, the first mold and the second mold are arranged to face each other in a horizontal direction,
    Before sandwiching the first mold and the second mold with each other and performing pressure molding, the molten glass is vertically placed between the first mold and the second mold that are arranged to face each other in the horizontal direction. The manufacturing method of the glass molded product of Claim 1 further provided with the process dripped toward the downward direction.
  3.  前記第1金型として、前記境界部の延在方向に沿った全域に亘って前記凹部が設けられている金型を用いる、請求項1または2に記載のガラス成形品の製造方法。 The method for producing a glass molded article according to claim 1 or 2, wherein a mold provided with the concave portion over the entire region along the extending direction of the boundary portion is used as the first mold.
  4.  前記第1金型として、前記第1成形面の法線方向を深さ方向とし、かつ、前記第1成形面と同一平面上に開口面が位置し、さらに、前記第1成形面の法線方向に沿って見た場合に前記開口面が最大外形寸法となる形状を有する前記凹部が設けられているとともに、前記凹部の前記第2成形面側の端部から前記第2成形面が連続して設けられているものを用いる、請求項1から3のいずれか1項に記載のガラス成形品の製造方法。 In the first mold, the normal direction of the first molding surface is the depth direction, an opening surface is located on the same plane as the first molding surface, and the normal line of the first molding surface The concave portion having a shape in which the opening surface has a maximum outer dimension when viewed along the direction is provided, and the second molding surface continues from an end of the concave portion on the second molding surface side. The manufacturing method of the glass molded product of any one of Claim 1 to 3 using what is provided.
  5.  前記第1金型として、前記第1成形面の法線方向に沿って前記第1成形面から遠ざかるにつれて前記第1成形面と平行な方向に沿って前記第1成形面から遠ざかる形状の前記第2成形面を有するものを用い、
     前記第2金型として、前記第3成形面の法線方向に沿って前記第3成形面から遠ざかるにつれて前記第3成形面と平行な方向に沿って前記第3成形面から遠ざかる形状の前記第4成形面を有するものを用いる、請求項1から4のいずれか1項に記載のガラス成形品の製造方法。
    The first mold has a shape that moves away from the first molding surface along a direction parallel to the first molding surface as it moves away from the first molding surface along a normal direction of the first molding surface. 2 Using a molding surface
    As said 2nd metal mold | die, the said shape of the shape which goes away from the said 3rd molding surface along the direction parallel to the said 3rd molding surface as it distances from the said 3rd molding surface along the normal line direction of the said 3rd molding surface. The manufacturing method of the glass molded product of any one of Claim 1 to 4 using what has 4 shaping | molding surfaces.
  6.  前記加圧成形する工程において成形された後のガラス成形品から、前記凹部に対応して形成された前記ガラス成形品の凸部を除去する工程をさらに備えた、請求項1から5のいずれか1項に記載のガラス成形品の製造方法。 6. The method according to claim 1, further comprising a step of removing a convex portion of the glass molded product formed corresponding to the concave portion from the glass molded product after being molded in the pressure molding step. The manufacturing method of the glass molded product of 1 item | term.
  7.  主板部および前記主板部の外縁の少なくとも一部から連設された側板部を含むガラス成形品を製造するためのガラス成形品の製造装置であって、
     溶融ガラスを加圧成形するための第1金型および第2金型と、
     前記溶融ガラスを滴下する溶融ガラス供給部と、
     前記第1金型および前記第2金型を相対的に移動させる駆動機構とを備え、
     前記第1金型は、前記主板部の外表面を成形するための第1成形面と、前記側板部の外表面を成形するための第2成形面とを含み、
     前記第2金型は、前記主板部の内表面を成形するための第3成形面と、前記側板部の内表面を成形するための第4成形面とを含み、
     前記駆動機構によって前記第1金型および前記第2金型が相対的に移動されることにより、前記第1成形面と前記第3成形面とによって押し広げられた前記溶融ガラスが前記第2成形面と前記第4成形面との間に充填されるに際し、押し広げられた前記溶融ガラスの少なくとも一部が前記第1成形面と前記第2成形面との境界部近傍において滞留することとなるように、前記第1金型の前記境界部近傍の少なくとも一部に凹部が設けられている、ガラス成形品の製造装置。
    A glass molded product manufacturing apparatus for manufacturing a glass molded product including a main plate portion and a side plate portion continuously provided from at least a part of an outer edge of the main plate portion,
    A first mold and a second mold for pressure-molding molten glass;
    A molten glass supply section for dropping the molten glass;
    A drive mechanism for relatively moving the first mold and the second mold,
    The first mold includes a first molding surface for molding the outer surface of the main plate portion, and a second molding surface for molding the outer surface of the side plate portion,
    The second mold includes a third molding surface for molding the inner surface of the main plate portion, and a fourth molding surface for molding the inner surface of the side plate portion,
    When the first mold and the second mold are relatively moved by the drive mechanism, the molten glass spread by the first molding surface and the third molding surface is the second molding. At the time of filling between the surface and the fourth molding surface, at least a part of the molten glass spread out stays in the vicinity of the boundary between the first molding surface and the second molding surface. Thus, the manufacturing apparatus of the glass molded product by which the recessed part is provided in at least one part of the said boundary part vicinity of a said 1st metal mold | die.
PCT/JP2014/059409 2013-06-11 2014-03-31 Method for manufacturing molded glass article, and device for manufacturing molded glass article WO2014199702A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013122625 2013-06-11
JP2013-122625 2013-06-11

Publications (1)

Publication Number Publication Date
WO2014199702A1 true WO2014199702A1 (en) 2014-12-18

Family

ID=52022008

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/059409 WO2014199702A1 (en) 2013-06-11 2014-03-31 Method for manufacturing molded glass article, and device for manufacturing molded glass article

Country Status (1)

Country Link
WO (1) WO2014199702A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000281362A (en) * 1999-03-31 2000-10-10 Hoya Corp Production of sheet-like glass and forming die for sheet- like glass
JP2005263574A (en) * 2004-03-19 2005-09-29 Konica Minolta Opto Inc Method of manufacturing glass substrate for information recording medium
JP2012106895A (en) * 2010-11-19 2012-06-07 Konica Minolta Opto Inc Glass optical element and method for manufacturing the same
JP2012214361A (en) * 2011-03-30 2012-11-08 Hoya Corp Method for producing cover glass blank for electronic device and method for producing cover glass for electronic device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000281362A (en) * 1999-03-31 2000-10-10 Hoya Corp Production of sheet-like glass and forming die for sheet- like glass
JP2005263574A (en) * 2004-03-19 2005-09-29 Konica Minolta Opto Inc Method of manufacturing glass substrate for information recording medium
JP2012106895A (en) * 2010-11-19 2012-06-07 Konica Minolta Opto Inc Glass optical element and method for manufacturing the same
JP2012214361A (en) * 2011-03-30 2012-11-08 Hoya Corp Method for producing cover glass blank for electronic device and method for producing cover glass for electronic device

Similar Documents

Publication Publication Date Title
US6701750B2 (en) Method and apparatus for molding a glass product
JP2014091655A (en) Method and apparatus for producing glass molding
JPH0471853B2 (en)
JP5321301B2 (en) Optical element manufacturing method
WO2014199702A1 (en) Method for manufacturing molded glass article, and device for manufacturing molded glass article
JPH01148717A (en) Forming device of optical element
WO2013191096A1 (en) Production method and production device for glass formed product
JP2014234320A (en) Manufacturing method of glass molded article, and manufacturing apparatus of glass molded article
JP2014094848A (en) Method and apparatus for production of glass molding
JPH0419172B2 (en)
JP2014094849A (en) Method and apparatus for producing glass molding
JP2008074636A (en) Method and device for producing optical element
JP4784454B2 (en) Optical element manufacturing method and manufacturing apparatus
WO2015118663A1 (en) Glass moulded article manufacturing method and manufacturing device
JP4992035B2 (en) Optical element manufacturing method
JP2015101505A (en) Method and apparatus for manufacturing a glass molding
JP2746454B2 (en) Optical element molding method
JP4666679B2 (en) Mold press molding apparatus and method for manufacturing molded body
JP2014227315A (en) Method and apparatus for manufacturing glass molding
WO2014203636A1 (en) Molded glass article manufacturing method and manufacturing device
JP2015093803A (en) Manufacturing method and manufacturing apparatus for glass molding article
WO2015151178A1 (en) Manufacturing method and manufacturing device for glass molded article
JP2015093802A (en) Manufacturing method and manufacturing apparatus for glass molding article
JP5445087B2 (en) Optical element molding die and optical element molding method
JP2015107883A (en) Method and apparatus for manufacturing glass molding

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14810398

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14810398

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP