WO2014203464A1 - 方向性電磁鋼板およびそれを用いた変圧器鉄心 - Google Patents

方向性電磁鋼板およびそれを用いた変圧器鉄心 Download PDF

Info

Publication number
WO2014203464A1
WO2014203464A1 PCT/JP2014/002804 JP2014002804W WO2014203464A1 WO 2014203464 A1 WO2014203464 A1 WO 2014203464A1 JP 2014002804 W JP2014002804 W JP 2014002804W WO 2014203464 A1 WO2014203464 A1 WO 2014203464A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
strain
grain
oriented electrical
flat surface
Prior art date
Application number
PCT/JP2014/002804
Other languages
English (en)
French (fr)
Other versions
WO2014203464A8 (ja
Inventor
岡部 誠司
博貴 井上
重宏 ▲高▼城
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to US14/894,697 priority Critical patent/US10559410B2/en
Priority to RU2016101317A priority patent/RU2620833C1/ru
Priority to CN201480034559.4A priority patent/CN105339510A/zh
Priority to EP14814563.4A priority patent/EP3012332B1/en
Priority to KR1020167000437A priority patent/KR101607909B1/ko
Publication of WO2014203464A1 publication Critical patent/WO2014203464A1/ja
Publication of WO2014203464A8 publication Critical patent/WO2014203464A8/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F3/00Cores, Yokes, or armatures
    • H01F3/02Cores, Yokes, or armatures made from sheets
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/125Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest with application of tension
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
    • C21D8/1288Application of a tension-inducing coating
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • H01F27/245Magnetic cores made from sheets, e.g. grain-oriented
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/16Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets

Definitions

  • the present invention relates to a grain-oriented electrical steel sheet having a low iron loss, which is suitable for use in iron core materials such as a transformer, and more particularly to a grain-oriented electrical steel sheet subjected to magnetic domain subdivision.
  • Oriented electrical steel sheets are mainly used as iron core materials for transformers and the like, and are required to have excellent magnetization characteristics, particularly low iron loss.
  • secondary recrystallized grains in the steel sheet should be accumulated in the (110) [001] orientation (so-called Goth orientation), and impurities and precipitates present in the final product steel should be reduced as much as possible. is important.
  • the control of crystal orientation and the reduction of impurities and precipitates are limited due to the balance of manufacturing costs.
  • a technique for reducing the iron loss by subdividing the width of the magnetic domain by introducing non-uniformity to the surface of the steel sheet by a physical method, that is, a magnetic domain subdivision technique has been developed.
  • Patent Document 1 and Patent Document 2 irradiate the surface of the final product plate with a laser beam or an electron beam at intervals of several millimeters at a substantially right angle to the rolling direction, and form a linear high dislocation density region on the steel sheet surface layer.
  • a technique for reducing iron loss by narrowing the magnetic domain width by introducing (distortion) is disclosed.
  • Patent Document 3 discloses a steel sheet per 280 mm in length of the strain-introducing surface after the strain-introducing treatment, which satisfies a predetermined relationship with the tension applied to the steel plate surface of the tension-applying insulating coating before the strain-introducing treatment.
  • a grain-oriented electrical steel sheet is disclosed in which the iron loss is reduced by restricting the amount of warpage to 1 mm to 10 mm, particularly 3 mm to 8 mm.
  • the warpage of this steel sheet depends on the irradiation conditions such as laser beam or electron beam when introducing strain.
  • Conditions that have a particularly large influence include beam output, beam scanning speed, beam spot shape, irradiation line interval, and the like.
  • an object of the present invention is to provide a grain-oriented electrical steel sheet that can further reduce the iron loss of a transformer and consequently contribute to higher efficiency of the transformer.
  • the grain-oriented electrical steel sheet is further pressed by a structural steel sheet or the like after being laminated in the shape of the iron core. Therefore, even if the grain-oriented electrical steel sheet is warped at the stage of the iron core material, the grain-oriented electrical steel sheet is straightened in the fabricated core. Conventionally, the smaller the deformation at the time of correction, the smaller the stress applied at the time of correction, so the range of warping has been restricted under the technical idea that the magnetic properties are not deteriorated. However, in reality, since the warpage of the steel sheet is concentrated at the portion where the distortion is introduced, the stress generated by the correction of the warpage is not uniformly applied to the steel sheet.
  • a grain-oriented electrical steel sheet in which the introduction of strain linearly in a direction intersecting with the rolling direction of the steel sheet is repeated at intervals in the rolling direction and magnetic domain subdivision is performed.
  • the repetition distance in the direction is d (mm)
  • d (mm) when the steel sheet is placed on a flat surface, the height from the flat surface at the center of the line portion where the distortion of the steel sheet surface is introduced, and the mutual distance between the line portions
  • the ratio h / d to d is 0.0025 or more and 0.015 or less, where h (mm) is the average value of the difference from the flat surface at the equally divided point. Electrical steel sheet.
  • iron loss in a transformer can be reliably reduced by giving an appropriate shape when placed on a flat surface to a grain-oriented electrical steel sheet subjected to magnetic domain refinement by introducing strain.
  • the present invention is characterized in that the shape of the grain-oriented electrical steel sheet, which has been subdivided by introduction of strain, is appropriately regulated in a state where the steel sheet is placed on a flat surface.
  • strain line which is a line portion into which strain is introduced
  • the shape of the steel plate at this time is affected by the repetition interval of the strain in the rolling direction and the size of the strain introduced in the vicinity of the strain line, so that the warpage of the steel plate before placing on the flat surface is the same.
  • the shape of the steel plate after being placed on a flat surface is not necessarily the same.
  • this steel plate is pressed down with a structural steel plate or tightened with a glass tape or the like, and is corrected to be flat, but even in this case, the wavy shape remains, The steel plates do not become completely flat, and a slight gap is generated between the steel plates. This gap lowers the space factor of the iron core and increases the substantial magnetic flux density of the transformer being excited, causing the iron loss to deteriorate in the transformer.
  • the warped steel plate when the warped steel plate is straightened, for example, when an iron core is produced, a tensile stress is generated inside the warp, so that the magnetic domain refinement effect is enhanced.
  • the outer surface of the warp causes a compressive stress, but there is no portion where the stress is concentrated. Therefore, if the warpage is not excessive, the influence of the stress on the magnetic deterioration is small. That is, the warpage of the steel sheet caused by the distortion works well on the iron loss depending on the stress generated when the steel sheet is straightened.
  • the steel plate 1 when the linear strain introduced into the surface of the steel plate 1 is d (mm) in the rolling direction and the steel plate 1 is placed on a flat surface.
  • the difference between the height from the flat surface at the center of the line portion where the surface distortion is introduced and the height from the flat surface at the equidistant point between the line portions (hereinafter simply referred to as “height difference”). Let the average value be h (mm).
  • the ratio h / d of the average value h (mm) of the height difference with respect to the repetition interval d (mm) in the rolling direction of this strain is 0.0025 or more and 0.015 or less. It was found that the iron loss of a transformer produced using this steel plate can be further reduced. When the ratio h / d is less than 0.0025, the tension generated between the strain lines is small, so the magnetic domain refinement effect is reduced and the iron loss is increased.
  • parameters such as repetition interval in the rolling direction of the strain, beam intensity, beam spot shape and beam scanning speed are set. Even if it is changed, the iron loss value of the steel sheet can be made comparable by adjusting other parameters.
  • the wave shape when placed on a flat surface is different if the strain wire is introduced differently. For example, when the beam intensity is high, the beam spot is small, or the beam scanning speed is high, the plastic strain introduced into the steel sheet is introduced at a high density on the surface layer. The stress when straightening the steel plate is likely to concentrate in the vicinity of the strain line, and the average value h of the height difference is also increased.
  • the beam intensity (laser beam output, electron beam current, acceleration voltage), beam spot shape (focus diameter, defocus amount), beam scanning speed
  • the output is 10 to 1000 W
  • the beam spot diameter is 0.01 to 0.5 mm
  • the scanning speed is 1 to 100 m / s
  • the acceleration voltage is 10 to
  • the ratio h / d is 0.0025 or more and 0.015 or less. can do.
  • the above irradiation conditions are not intended to limit the present invention.
  • the size of the average value h of the allowable height difference is limited by the repetition interval d in the rolling direction of strain, but d is 3 mm or more, 6 mm The following is preferable.
  • the iron loss of the steel plate iron loss of the transformer
  • strain can be introduced by either laser beam irradiation or electron beam irradiation, but it is preferable to introduce strain by electron beam irradiation. This is because, when laser beam irradiation and electron beam irradiation are compared, the electron beam passes through the insulating coating on the steel sheet surface and penetrates the steel sheet surface several ⁇ m to several tens of ⁇ m to generate heat, resulting in damage to the insulating coating. Is small. Furthermore, in the case of electron beam irradiation, strain introduced into the steel sheet is also distributed to the inside of the steel sheet without concentrating on the surface of the steel sheet, and stress concentration when the steel sheet is straightened is alleviated.
  • linear includes not only a straight line but also a straight line, and also includes a solid line, a dotted line, a broken line, and the like.
  • the “direction intersecting the rolling direction” means an angle range within ⁇ 30 ° with respect to the direction perpendicular to the rolling direction.
  • the component composition of the grain-oriented electrical steel sheet according to the present invention and the production conditions thereof will be specifically described.
  • the component composition of the slab for grain-oriented electrical steel sheets will not be specifically limited if it is a component composition in which secondary recrystallization with good orientation occurs.
  • an inhibitor used to cause secondary recrystallization, for example, Al and N are used when an AlN inhibitor is used, and Mn and Se are used when an MnS / MnSe inhibitor is used. And / or an appropriate amount of S may be contained. Of course, both inhibitors may be used in combination.
  • the preferred contents of Al, N, S and Se are Al: 0.01 to 0.065 mass%, N: 0.005 to 0.012 mass%, S: 0.005 to 0.03 mass%, and Se: 0.005 to 0.03 mass%, respectively. .
  • the present invention can also be applied to grain-oriented electrical steel sheets in which the contents of Al, N, S and Se are limited and no inhibitor is used.
  • the amounts of Al, N, S, and Se are preferably suppressed to Al: 100 mass ppm or less, N: 50 mass ppm or less, S: 50 mass ppm or less, and Se: 50 mass ppm or less, respectively.
  • C 0.08 mass% or less C is added to improve the hot-rolled sheet structure. However, if it exceeds 0.08 mass%, C may be reduced to 50 massppm or less during the manufacturing process to prevent magnetic aging. Since it becomes difficult, it is preferable to set it as 0.08 mass% or less. In addition, regarding the lower limit, since a secondary recrystallization is possible even for a material not containing C, it is not particularly necessary to provide it.
  • Si 2.0-8.0% by mass
  • Si is an element effective in increasing the electrical resistance of steel and improving iron loss.
  • the content is less than 2.0% by mass, a sufficient iron loss reduction effect cannot be achieved, while 8.0% by mass. If it exceeds 1, the workability is remarkably lowered and the magnetic flux density is also lowered. Therefore, the Si content is preferably in the range of 2.0 to 8.0% by mass.
  • Mn 0.005 to 1.0 mass%
  • Mn is an element necessary for improving the hot workability, but if the content is less than 0.005% by mass, the effect of addition is poor. On the other hand, if it exceeds 1.0% by mass, the magnetic flux density of the product plate decreases, so the Mn content is preferably in the range of 0.005 to 1.0% by mass.
  • the following elements can be appropriately contained as magnetic property improving components.
  • Ni 0.03-1.50% by mass
  • Sn 0.01-1.50% by mass
  • Sb 0.005-1.50% by mass
  • Cu 0.03-3.0% by mass
  • P 0.03-0.50% by mass
  • Cr 0.03-1.50% by mass
  • Mo At least one Ni selected from 0.005 to 0.10% by mass is an element useful for improving the hot rolled sheet structure and improving the magnetic properties.
  • the content is less than 0.03% by mass, the effect of improving the magnetic properties is small.
  • the amount of Ni is preferably in the range of 0.03 to 1.50% by mass.
  • Sn, Sb, Cu, P, Cr and Mo are each an element useful for improving the magnetic properties, but if any of them does not meet the lower limit of each component described above, the effect of improving the magnetic properties is small, If the upper limit amount of each component described above is exceeded, the development of secondary recrystallized grains is hindered.
  • the balance other than the above components is inevitable impurities and Fe mixed in the manufacturing process.
  • the steel slab having the above component composition is heated and subjected to hot rolling according to a conventional method, but may be immediately hot rolled without being heated after casting.
  • hot rolling may be performed, or the hot rolling may be omitted and the process may proceed as it is.
  • the hot rolled sheet annealing temperature is preferably in the range of 800 to 1100 ° C.
  • the hot-rolled sheet annealing temperature is less than 800 ° C, the band structure in hot rolling remains, making it difficult to achieve a sized primary recrystallization structure and inhibiting the development of secondary recrystallization.
  • the hot-rolled sheet annealing temperature exceeds 1100 ° C., the grain size after the hot-rolled sheet annealing is excessively coarsened, so that it is very difficult to realize a sized primary recrystallized structure.
  • the steel sheet After the hot-rolled sheet annealing, the steel sheet is subjected to cold rolling twice or more with one or more intermediate annealings, followed by primary recrystallization annealing and applying an annealing separator. After applying the annealing separator, a final finish annealing is performed for the purpose of secondary recrystallization and forsterite film formation.
  • This tension coating is generally a phosphate-colloidal silica-based glass coating, but other oxides having a low thermal expansion coefficient such as alumina borate, carbides that are films that generate higher tension, and nitriding Goods are also effective.
  • tension coating it is important to adjust the coating amount and baking conditions to generate sufficient tension.
  • the grain-oriented electrical steel sheet of the present invention is obtained by further subjecting the grain-oriented electrical steel sheet obtained through the above process to magnetic domain subdivision by introducing strain, and placing the grain-oriented electrical steel sheet on a flat surface.
  • the steel plate shape is set to an appropriate shape as described above.
  • the transformer core using the above-described grain-oriented electrical steel sheet according to the present invention can further reduce the iron loss, and as a result, can contribute to higher efficiency of the transformer.
  • an annealing separator containing MgO as a main component was applied, and final finish annealing including a secondary recrystallization process and a purification process was performed to obtain a grain-oriented electrical steel sheet having a forsterite film.
  • an insulating coat composed of 60% colloidal silica and aluminum phosphate was dried and coated at a weight of 5 g / m 2 on one side and baked at 800 ° C.
  • the iron loss per kg of steel sheet when magnetized up to 1.7 T with an alternating magnetic field with an excitation frequency of 50 Hz is W 17/50
  • the magnetic flux density at a magnetic field strength of 800 A / m is B 8 To do.
  • the iron loss W 17/50 and the magnetic flux density B 8 of the obtained steel plate using a single plate magnetometer they were 0.83 W / kg and 1.94 T, respectively.
  • the iron core is 500mm x 500mm in outline, 100mm x 300mm in window, 100mm in thickness, and the weight of the iron core is about 145kg.
  • a structural steel plate with a thickness of 2 mm was applied and pressed flat, and a jig was applied to the yoke and tightened with bolts.
  • the test transformer was excited with an alternating current with a magnetic flux density of 1.7 T and a frequency of 50 Hz, and the no-load loss was measured as the iron loss of the test transformer.
  • the steel plate shape was measured using a laser shape meter for each electron beam irradiation condition.
  • a laser shape meter for each electron beam irradiation condition.
  • cut a 100 mm wide steel strip to a length of 100 mm place the surface irradiated with the electron beam on the flat stage as the measurement surface, and tape the both ends of the steel plate in the rolling direction so that they are in close contact with the stage.
  • Fixed Using a laser shape meter, measure the surface profile in the rolling direction 50mm with the center position of the steel sheet as the reference point, and check the maximum and minimum heights from the stage for each electron beam irradiation interval d (mm).
  • the difference between the maximum value and the minimum value of the height was obtained, and the average value h (mm) of the height difference over the entire length of 50 mm was obtained.
  • the iron loss of the steel plate for iron core materials was measured using the single plate magnetometer.
  • Table 1 further shows the ratio h / d of h to the average value h and d of the iron loss, irradiation interval d, and height difference of the prototype transformer. Moreover, the iron loss of a steel plate is also shown.
  • Table 1 shows that the iron loss of the prototype transformer can be reduced if the ratio h / d of h to d is 0.0025 or more and 0.015 or less, even though the iron loss of the steel sheet that is the core material is similar. .
  • iron loss in a transformer can be reliably reduced by giving an appropriate shape when placed on a flat surface to a grain-oriented electrical steel sheet subjected to magnetic domain refinement by introducing strain.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

 鋼板の圧延方向と交差する方向へ線状に歪みを導入することを、前記圧延方向に間隔を置いて繰り返して磁区細分化を施した方向性電磁鋼板であって、前記歪みの圧延方向への繰り返し間隔をd(mm)とし、前記鋼板を平坦面上に置いたときの、該鋼板表面の歪みを導入した線部分中心における前記平坦面からの高さと、該線部分の相互間隔の等分点における前記平坦面からの高さとの差の平均値をh(mm)としたとき、前記dに対する前記hの比h/dが、0.0025以上0.015以下であることを特徴とする方向性電磁鋼板。

Description

方向性電磁鋼板およびそれを用いた変圧器鉄心
 本発明は、変圧器などの鉄心材料に供して好適な鉄損の低い方向性電磁鋼板に関し、特に磁区細分化を施した方向性電磁鋼板に関する。
 方向性電磁鋼板は、主に変圧器などの鉄心材料として利用され、その磁化特性に優れていること、特に鉄損の低いことが求められている。そのためには、鋼板中の二次再結晶粒を(110)[001]方位(いわゆる、ゴス方位)に集積させることや、最終製品の鋼中に存在する不純物や析出物をできるだけ減少させることが重要である。しかしながら、結晶方位の制御や、不純物および析出物の低減には、製造コストの兼ね合い等で限界がある。そこで、鋼板の表面に対して物理的な手法で不均一性を導入することにより、磁区の幅を細分化して鉄損を低減する技術、すなわち磁区細分化技術が開発されている。
 例えば、特許文献1や特許文献2には、最終製品板の表面に、圧延方向に対してほぼ直角にレーザビームや電子ビームを数mm間隔で照射し、鋼板表層に線状の高転位密度領域(歪み)を導入することにより、磁区幅を狭くして鉄損を低減する技術が開示されている。
 この歪みは、磁区を細分化して鉄損を低減する一方、鋼板に局所的な変形を生じさせる。一般的に、磁区細分化を施すための歪みは鋼板の片面に導入されるため、その歪み導入面が内側になるような反りが不可避的に生じる。従来、この反りは、方向性電磁鋼板の鉄損や磁歪などの特性を劣化させるものとして考えられ、その範囲を制約する技術が開示されている。例えば特許文献3には、歪み導入処理前における張力付与型絶縁被膜の鋼板面に対する付与張力に対して所定の関係を満足させ、かつ歪み導入処理後における歪み導入面の、長さ280mm当たりの鋼板反り量を1mm以上10mm以下、特に3mm以上8mm以下に制約することにより、鉄損を低減した方向性電磁鋼板が開示されている。
 ここで、この鋼板の反りの大きさは、歪みを導入する際のレーザビームまたは電子ビームなどの照射条件に依存する。特に大きく影響する条件としては、ビーム出力、ビーム走査速度、ビームスポット形状、照射線間隔などが挙げられる。
特公昭57-002252号公報 特公平06-072266号公報 特開2012-052228号公報
 上記のとおり、従来は磁区細分化処理後の鋼板に生じる反りの影響が大きいことを前提として、この反り量を規定することによって、一定の成果を挙げていた。しかしながら、かような規制に従う鋼板を素材として変圧器の鉄心を作製した際に、同程度の鉄損かつ同程度の反りの大きさに規制した鋼板を用いたのにも関わらず、作製した変圧器の相互間で鉄損が異なることがあった。特に、素材鋼板から想定される鉄損が変圧器において実現されないことは、磁区細分化を施した方向性電磁鋼板における技術的課題となっていた。
 そこで本発明は、上記の課題に鑑み、変圧器の鉄損をより低減でき、結果として変圧器の高効率化に寄与する方向性電磁鋼板を提供することを目的とする。
 本発明者らは、鉄心素材に供する鋼板が同程度の鉄損かつ同程度の反りの大きさであるにも関わらず、その鋼板を用いて変圧器を作製した場合に、変圧器の鉄損に違いが生ずる原因を詳細に検討した。その結果、磁区細分化により形成される鋼板の反りの大きさよりも、鋼板の歪み導入域近傍の形状が、変圧器の鉄損に影響することを知見した。これは、以下の理由によるものと考えられる。
 鉄心の作製にあたり、方向性電磁鋼板は、鉄心の形状に積層された後、さらに構造用の鋼板等によって押さえられる。そのため、鉄心素材の段階で方向性電磁鋼板に反りがあっても、方向性電磁鋼板は、作製後の鉄心においては平坦に矯正されている。従来、この矯正時の変形が小さい方が、矯正時に加わる応力は小さいために、磁気特性を劣化させない、とする技術思想の下に反りの範囲を制約していた。しかし、実際には、鋼板の反りは歪みの導入部分に集中しているため、反りの矯正によって生じる応力は鋼板に均一にかかるわけではない。また、鋼板の反りを矯正した内側には引っ張りの応力が掛かるため、磁区細分化効果を高める効果も生じている。そこで、磁区細分化処理後の鋼板の形状をより詳細に調査した結果、鋼板を平坦面上に置いて、鋼板の自重によって反りが消失した状態にあっても尚鋼板に残存する変形が、特に変圧器における鉄損値に影響することが判明した。この鋼板形状の条件を鋭意検討した結果、本発明を完成するに至った。
 本発明は、このような知見に基づきなされたものであり、本発明の要旨構成は以下のとおりである。
 (1)鋼板の圧延方向と交差する方向へ線状に歪みを導入することを、前記圧延方向に間隔を置いて繰り返して磁区細分化を施した方向性電磁鋼板であって、前記歪みの圧延方向への繰り返し間隔をd(mm)とし、前記鋼板を平坦面上に置いたときの、該鋼板表面の歪みを導入した線部分中心における前記平坦面からの高さと、該線部分の相互間隔の等分点における前記平坦面からの高さとの差の平均値をh(mm)としたとき、前記dに対する前記hの比h/dが、0.0025以上0.015以下であることを特徴とする方向性電磁鋼板。
 (2)前記dが3mm以上6mm以下である、上記(1)に記載の方向性電磁鋼板。
 (3)前記歪みは、電子ビーム照射により形成される、上記(1)または(2)に記載の方向性電磁鋼板。
 (4)上記(1)~(3)のいずれか1項に記載の方向性電磁鋼板を用いた変圧器鉄心。
 本発明に従って、歪みの導入によって磁区細分化を施した方向性電磁鋼板に、平坦面上に置いたときの適切な形状を与えることによって、変圧器における鉄損を確実に低減することができる。
本発明に従う方向性電磁鋼板の、歪み導入域近傍における鋼板形状を示す模式図である。
 以下、図1を参照しつつ、本発明を具体的に説明する。本発明では、歪みの導入により磁区細分化した方向性電磁鋼板の鋼板形状を、該鋼板を平坦面上に置いた状態で適切に規制することを特徴とする。
 歪みを導入した線部分である線状の歪み(以下、単に「歪み線」と言う。)を、鋼板の圧延方向と交差する方向へ、圧延方向に繰り返し導入することにより、方向性電磁鋼板は磁区細分化が施され、歪み導入側の面が内側になるような反りが生じるのは既述のとおりである。ここで、歪み線の導入により反った方向性電磁鋼板を、平坦面上に歪み導入面を該平坦面側として置くと、鋼板の自重により鋼板は平坦面に反りが解消された状態となるが、歪み線の導入域近傍において、歪み線を山とする波形状は鋼板に残存する(図1)。
 このときの鋼板の形状は、歪みの圧延方向への繰り返し間隔と、歪み線近傍に導入された歪みの大きさとの影響を受けるため、平坦面上に置く前の鋼板の反りの大きさが同じであっても、平坦面上に置いた後の鋼板形状は必ずしも同じにはならない。また、鉄心の製作においては、この鋼板は、構造用鋼板などで押さえつけられたり、ガラステープ等によって締め付けられたりして平坦に矯正されるが、その場合であってもこの波状形状は残るため、鋼板が完全に平坦になることはなく、鋼板間に若干の隙間を生じさせる。この隙間は、鉄心の占積率を低下させ、励磁中の変圧器の実質的な磁束密度を大きくするため、変圧器に鉄損の劣化を生じさせる。
 一方で、この反りの生じた鋼板を、例えば鉄心作製時などの平坦に矯正した際に、反りの内側には引張応力が発生するため、磁区細分化効果が高まる。レーザビームや電子ビームの照射によって塑性歪みが表面に形成されている反りの内側面とは異なり、反りの外側面では圧縮応力が生じるものの応力が集中する箇所がない。そのため、反りが過大でなければ、応力による磁性劣化への影響は小さい。すなわち、歪みにより生じる鋼板の反りは、鋼板を矯正したときに生じる応力次第では、鉄損に良好に作用する。
 また、鋼板を平坦面上に置いたときの波状の高さが同じでも、歪みの圧延方向への繰り返し間隔が広い場合は締結による矯正が容易であり、上述の応力集中が小さいため、磁性の劣化は小さい。すなわち、変圧器作製時の磁性の劣化は、鋼板の反りの影響よりも、鋼板を平坦面上に置いた際の波形状の高さと、歪みの圧延方向への繰り返し間隔との影響を強く受けるのである。
 ここで、図1に示すように、鋼板1表面に導入された線状の歪みの、圧延方向への繰り返し間隔をd(mm)とし、鋼板1を平坦面上に置いたときの、鋼板1表面の歪みを導入した線部分中心における平坦面からの高さと、線部分の相互間隔の等分点における平坦面からの高さとの差(以下、単に「高さの差」と言う。)の平均値をh(mm)とする。
 本発明者らが調査した結果によると、この歪みの圧延方向への繰り返し間隔d(mm)に対する高さの差の平均値h(mm)の比h/dが、0.0025以上0.015以下の際に、この鋼板を用いて作製した変圧器の鉄損をより低減することができることが判明した。この比h/dが0.0025未満では、歪み線の間に生じる張力が小さいため磁区細分化効果が減少し、鉄損が増大する。また、比h/dが0.015を超えると、鉄心の占積率が低下し、また鉄心作製の際の締め付け時に鋼板に導入される圧縮応力が過大となり、この場合も鉄損が増大する。
 ここで、磁区細分化によって鉄損を低減するためのレーザ照射や電子ビーム照射の際に、歪みの圧延方向への繰り返し間隔、ビーム強度、ビームスポット形状およびビーム走査速度等のパラメータのいずれかを変化させても、他のパラメータを調整すれば、鋼板の鉄損値を同程度とすることができる。しかし、鋼板の鉄損値が同程度であっても、歪み線の導入形態が異なれば、平坦面上に置いたときの波形状が異なる。例えば、ビーム強度が大きい場合や、ビームスポットが小さい場合や、ビーム走査速度が大きい場合には、鋼板に導入される塑性歪みが表層に高密度で導入されるため、変圧器を作製する際に、鋼板を平坦に矯正するときの応力が歪み線の近傍に集中しやすくなり、上記した高さの差の平均値hも大きくなる。
 したがって、比h/dを0.0025以上0.015以下とするためには、ビームの強度(レーザビーム出力、電子ビームのビーム電流、加速電圧)、ビームスポット形状(焦点径、デフォーカス量)、ビーム走査速度を適宜選択することが必要である。例えば、レーザビームにより歪み線を導入する場合は出力:10~1000W、ビームスポット径:0.01~0.5mm、走査速度:1~100m/s、電子ビームによる歪み線導入の場合は加速電圧:10~200kV、ビーム電流1~50mA、ビームスポット径:0.01~0.5mm、走査速度:1~100m/sの照射条件の下、適宜照射条件を調製することで、比h/dを0.0025以上0.015以下とすることができる。なお、上記照射条件は、本発明の限定を意図するものではない。
 ここで、比h/dを上記範囲とする場合、歪みの圧延方向への繰り返し間隔dにより、許容される高さの差の平均値hの大きさも限定されるが、dは3mm以上、6mm以下であることが好ましい。この場合、比h/dを過大にせずに、鋼板の鉄損(変圧器の鉄損)をより低減することができる。
 また、歪みは、レーザビーム照射および電子ビーム照射のいずれによっても導入可能であるが、電子ビーム照射により導入することが好ましい。これは、レーザビーム照射と電子ビーム照射とを比較した場合に、電子ビームは鋼板表面の絶縁被膜を透過し、かつ鋼板表面を数μm~10数μm透過して発熱するため、絶縁被膜の損傷が小さいからである。さらに、電子ビーム照射の場合、鋼板に導入される歪みも鋼板表面に集中せずに鋼板内部にまで分布するため、鋼板を平坦に矯正したときの応力集中が緩和されるためである。
 なお、本発明において、「線状」とは、直線だけでなく直線状も含み、実線や、点線、破線なども含むものとする。また、歪みを導入するためのレーザ照射や電子ビーム照射が連続した線状ではなく、不連続の場合には、照射による影響領域は平均値を用いるものとする。また、本発明において「圧延方向と交差する方向」とは、圧延方向と直角する方向に対し±30°以内の角度範囲を意味する。
 次に、本発明に従う方向性電磁鋼板の成分組成およびその製造条件に関して具体的に説明する。ここで、本発明において、方向性電磁鋼板用スラブの成分組成は、配向性のよい二次再結晶が生じる成分組成であれば特に限定するものではない。
 また、二次再結晶を生じさせるために、インヒビターを利用する場合、例えばAlN系インヒビターを利用する場合であればAlおよびNを、またMnS・MnSe系インヒビターを利用する場合であればMnとSeおよび/またはSを適量含有させればよい。勿論、両インヒビターを併用してもよい。この場合におけるAl、N、SおよびSeの好適含有量はそれぞれ、Al:0.01~0.065質量%、N:0.005~0.012質量%、S:0.005~0.03質量%、Se:0.005~0.03質量%である。
 さらに、本発明は、Al、N、SおよびSeの含有量を制限した、インヒビターを使用しない方向性電磁鋼板にも適用することができる。この場合には、Al、N、SおよびSe量はそれぞれ、Al:100質量ppm以下、N:50質量ppm以下、S:50質量ppm以下、Se:50質量ppm以下に抑制することが好ましい。
 本発明の方向性電磁鋼板用スラブの基本成分および任意添加成分について具体的に述べると次のとおりである。
C:0.08質量%以下
 Cは、熱延板組織の改善のために添加をするが、0.08質量%を超えると、Cを磁気時効の起こらない50質量ppm以下まで製造工程中に低減することが困難になるため、0.08質量%以下とすることが好ましい。なお、下限に関しては、Cを含まない素材でも二次再結晶が可能であるので特に設ける必要はない。
Si:2.0~8.0質量%
 Siは、鋼の電気抵抗を高め、鉄損を改善するのに有効な元素であるが、含有量が2.0質量%に満たないと十分な鉄損低減効果が達成できず、一方、8.0質量%を超えると加工性が著しく低下し、また磁束密度も低下するため、Si量は2.0~8.0質量%の範囲とすることが好ましい。
Mn:0.005~1.0質量%
 Mnは、熱間加工性を良好にする上で必要な元素であるが、含有量が0.005質量%未満ではその添加効果に乏しい。一方、1.0質量%を超えると、製品板の磁束密度が低下するため、Mn量は0.005~1.0質量%の範囲とすることが好ましい。
 上記の基本成分以外に、磁気特性改善成分として、次に述べる元素を適宜含有させることができる。
Ni:0.03~1.50質量%、Sn:0.01~1.50質量%、Sb:0.005~1.50質量%、Cu:0.03~3.0質量%、P:0.03~0.50質量%、Cr:0.03~1.50質量%およびMo:0.005~0.10質量%のうちから選んだ少なくとも1種
 Niは、熱延板組織を改善して磁気特性を向上させるために有用な元素である。しかしながら、含有量が0.03質量%未満では磁気特性の向上効果が小さく、一方1.50質量%を超えると、二次再結晶が不安定になり磁気特性が劣化する。そのため、Ni量は0.03~1.50質量%の範囲とするのが好ましい。
 また、Sn、Sb、Cu、P、CrおよびMoはそれぞれ磁気特性の向上に有用な元素であるが、いずれも上記した各成分の下限に満たないと、磁気特性の向上効果が小さく、一方、上記した各成分の上限量を超えると、二次再結晶粒の発達が阻害されるため、それぞれ上記の範囲で含有させることが好ましい。
 なお、上記成分以外の残部は、製造工程において混入する不可避的不純物およびFeである。
 次いで、上記した成分組成を有する鋼スラブは、常法に従い加熱して熱間圧延に供するが、鋳造後、加熱せずに直ちに熱間圧延してもよい。薄鋳片の場合には熱間圧延してもよいし、熱間圧延を省略してそのまま以後の工程に進んでもよい。
 さらに、必要に応じて熱延板焼鈍を施す。この時、ゴス組織を製品板において高度に発達させるためには、熱延板焼鈍温度として800~1100℃の範囲が好適である。熱延板焼鈍温度が800℃未満であると、熱間圧延でのバンド組織が残留し、整粒した一次再結晶組織を実現することが困難になり、二次再結晶の発達が阻害される。一方、熱延板焼鈍温度が1100℃を超えると、熱延板焼鈍後の粒径が粗大化しすぎるために、整粒した一次再結晶組織の実現が極めて困難となる。
 熱延板焼鈍後は、1回または中間焼鈍を挟む2回以上の冷間圧延を施した後、一次再結晶焼鈍を行い、焼鈍分離剤を塗布する。焼鈍分離剤を塗布した後に、二次再結晶およびフォルステライト被膜の形成を目的として最終仕上げ焼鈍を施す。
 最終仕上げ焼鈍後、平坦化焼鈍を行って鋼板の形状を矯正する。また、この際、鋼板表面に張力コーティングを施すことが有効である。この張力コーティングは、リン酸塩―コロイダルシリカ系のガラスコーティングが一般的であるが、他にホウ酸アルミナ系などの低熱膨張係数を有する酸化物や、さらなる高張力を生じる被膜である炭化物、窒化物等も有効である。なお、張力コーティングを施す際には塗布量および焼付け条件等を調整し、張力を十分に発生させることが肝要である。
 本発明の方向性電磁鋼板は、上記のプロセスを経て得られた方向性電磁鋼板に対して、歪みの導入により磁区細分化をさらに施し、この方向性電磁鋼板を平坦面上に置いたときの鋼板形状を既述のとおりの適切な形状とするものである。
 また、本発明に従う、上述の方向性電磁鋼板を用いた変圧器鉄心は、鉄損をより低減することができ、結果として変圧器の高効率化に寄与することができる。
 Si:3.2質量%、C:0.07質量%、Mn:0.06質量%、Ni:0.05質量%、Al:0.027質量%、N:0.008質量%およびSe:0.02質量%を含有し、残部Feおよび不可避的不純物からなる鋼スラブを1450℃に加熱して1.8mm厚に熱間圧延した。その後、中間焼鈍を挟む2回の冷間圧延を行い、最終板厚0.23mmとした方向性電磁鋼板用冷延板に、脱炭を兼ねる一次再結晶焼鈍を施した。次いで、MgOを主成分とした焼鈍分離剤を塗布し、二次再結晶過程と純化過程を含む最終仕上げ焼鈍を施し、フォルステライト被膜を有する方向性電磁鋼板を得た。その後、60%のコロイダルシリカとリン酸アルミニウムからなる絶縁コートを片面当たり乾燥後重量で5g/m2塗布し、800℃にて焼付けた。
 ここで、磁気特性の指標として、励磁周波数50Hzの交流磁場で1.7Tまで磁化したときの鋼板1kgあたりの鉄損をW17/50とし、磁場の強さ800A/mにおける磁束密度をB8とする。上記得られた鋼板の鉄損W17/50および磁束密度B8を、単板磁気測定装置を用いて測定した結果、それぞれ0.83W/kg、1.94Tであった。
 この方向性電磁鋼板に対して、さらに電子ビーム照射を用いて、鋼板の圧延方向と直交する方向へ線状に歪みを導入することを、圧延方向に照射間隔d(mm)を置いて繰り返して、磁区細分化を施した鉄心素材用の鋼板を作製した。ここで、電子ビームの照射条件は表1の記載のとおりである。次いで、得られた鋼板を100mm幅にスリットし、斜角切断により鉄心素材となる鋼板を作製し、試験用変圧器として3相3脚積み鉄心の油入変圧器を作製した。鉄心は外形500mm×500mm、窓100mm×300mm、積み厚100mmであり、鉄心重量は約145kgである。鉄心のヨーク、脚をガラステープで結束した後、厚さ2mmの構造用鋼板を当てて平坦に押さえ、さらにヨークに治具を当ててボルトで締め付けた。この試験用変圧器を磁束密度1.7T、周波数50Hzの交流で励磁し、試験用変圧器の鉄損として無負荷損を測定した。
 また、それぞれの電子ビームの照射条件に対して、レーザ形状計を用いて鋼板形状を測定した。鋼板形状の測定にあたり、100mm幅の鋼帯を長さ100mmに切り、電子ビームを照射した面を測定面として平坦なステージ上に載せ、鋼板の圧延方向の両端をステージに密着するようにテープで固定した。レーザ形状計で、鋼板の中心位置を基準点として、圧延方向50mmの表面プロファイルを測定し、電子ビームの照射間隔d(mm)毎に、ステージからの高さの最大値、最小値を調べて、高さの最大値と最小値との差を求め、長さ50mm全長で高さの差の平均値h(mm)を求めた。また、単板磁気測定装置を用いて、鉄心素材用の鋼板の鉄損を測定した。
 試作変圧器の鉄損、照射間隔d、高さの差の平均値hおよびdに対するhの比h/dを表1にさらに示す。また、鋼板の鉄損も併せて示す。
Figure JPOXMLDOC01-appb-T000001
 表1から、鉄心素材となる鋼板の鉄損は同程度であるにも関わらず、dに対するhの比h/dが0.0025以上0.015以下であれば、試作変圧器の鉄損を低減できることがわかる。
 本発明に従って、歪みの導入によって磁区細分化を施した方向性電磁鋼板に、平坦面上に置いたときの適切な形状を与えることによって、変圧器における鉄損を確実に低減することができる。
 1 鋼板
 d  歪みの繰り返し間隔
 h  高さの差の平均値

Claims (4)

  1.  鋼板の圧延方向と交差する方向へ線状に歪みを導入することを、前記圧延方向に間隔を置いて繰り返して磁区細分化を施した方向性電磁鋼板であって、
     前記歪みの圧延方向への繰り返し間隔をd(mm)とし、前記鋼板を平坦面上に置いたときの、該鋼板表面の歪みを導入した線部分中心における前記平坦面からの高さと、該線部分の相互間隔の等分点における前記平坦面からの高さとの差の平均値をh(mm)としたとき、前記dに対する前記hの比h/dが、0.0025以上0.015以下であることを特徴とする方向性電磁鋼板。
  2.  前記dが3mm以上6mm以下である、請求項1に記載の方向性電磁鋼板。
  3.  前記歪みは、電子ビーム照射により形成される、請求項1または2に記載の方向性電磁鋼板。
  4.  請求項1~3のいずれか1項に記載の方向性電磁鋼板を用いた変圧器鉄心。
PCT/JP2014/002804 2013-06-19 2014-05-27 方向性電磁鋼板およびそれを用いた変圧器鉄心 WO2014203464A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US14/894,697 US10559410B2 (en) 2013-06-19 2014-05-27 Grain-oriented electrical steel sheet and transformer iron core using same
RU2016101317A RU2620833C1 (ru) 2013-06-19 2014-05-27 Лист текстурированной электротехнической стали и стальной сердечник трансформатора, в котором он используется
CN201480034559.4A CN105339510A (zh) 2013-06-19 2014-05-27 取向性电磁钢板及使用该取向性电磁钢板的变压器铁芯
EP14814563.4A EP3012332B1 (en) 2013-06-19 2014-05-27 Grain-oriented electrical steel sheet and transformer iron core using same
KR1020167000437A KR101607909B1 (ko) 2013-06-19 2014-05-27 방향성 전자 강판 및 그것을 이용한 변압기 철심

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013128825A JP5668795B2 (ja) 2013-06-19 2013-06-19 方向性電磁鋼板およびそれを用いた変圧器鉄心
JP2013-128825 2013-06-19

Publications (2)

Publication Number Publication Date
WO2014203464A1 true WO2014203464A1 (ja) 2014-12-24
WO2014203464A8 WO2014203464A8 (ja) 2015-11-19

Family

ID=52104216

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/002804 WO2014203464A1 (ja) 2013-06-19 2014-05-27 方向性電磁鋼板およびそれを用いた変圧器鉄心

Country Status (7)

Country Link
US (1) US10559410B2 (ja)
EP (1) EP3012332B1 (ja)
JP (1) JP5668795B2 (ja)
KR (1) KR101607909B1 (ja)
CN (1) CN105339510A (ja)
RU (1) RU2620833C1 (ja)
WO (1) WO2014203464A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2741585C1 (ru) * 2018-01-31 2021-01-27 ДжФЕ СТИЛ КОРПОРЕЙШН Текстурированный лист из электротехнической стали, наборный сердечник трансформатора из текстурированного листа из электротехнической стали и способ изготовления наборного сердечника
CN111868272B (zh) * 2018-03-20 2022-11-15 日本制铁株式会社 方向性电磁钢板的制造方法以及方向性电磁钢板
RU2744690C1 (ru) * 2018-03-30 2021-03-15 ДжФЕ СТИЛ КОРПОРЕЙШН Железный сердечник трансформатора
US11961647B2 (en) 2018-03-30 2024-04-16 Jfe Steel Corporation Iron core for transformer
KR102500997B1 (ko) 2018-12-05 2023-02-16 제이에프이 스틸 가부시키가이샤 방향성 전자 강판 및 그의 제조 방법
KR102276850B1 (ko) * 2019-12-19 2021-07-12 주식회사 포스코 방향성 전기강판 및 그 자구미세화 방법
CN114762911B (zh) * 2021-01-11 2023-05-09 宝山钢铁股份有限公司 一种低磁致伸缩取向硅钢及其制造方法
CN117265361A (zh) * 2022-06-13 2023-12-22 宝山钢铁股份有限公司 一种低磁致伸缩取向硅钢板的制造方法及取向硅钢板

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS572252B2 (ja) 1978-07-26 1982-01-14
JPH02277780A (ja) * 1988-10-26 1990-11-14 Kawasaki Steel Corp 低鉄損一方向性珪素鋼板及びその製造方法
JPH0672266B2 (ja) 1987-01-28 1994-09-14 川崎製鉄株式会社 超低鉄損一方向性珪素鋼板の製造方法
JP2012036445A (ja) * 2010-08-06 2012-02-23 Jfe Steel Corp 方向性電磁鋼板およびその製造方法
JP2012052228A (ja) 2010-08-06 2012-03-15 Jfe Steel Corp 方向性電磁鋼板

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK172081A (da) 1980-04-21 1981-10-22 Merck & Co Inc Mercaptoforbindelse og fremgangsmaade til fremstilling deraf
US5146063A (en) 1988-10-26 1992-09-08 Kawasaki Steel Corporation Low iron loss grain oriented silicon steel sheets and method of producing the same
JPH05179355A (ja) * 1992-01-06 1993-07-20 Kawasaki Steel Corp 低鉄損一方向性けい素鋼板の製造方法
JP3082460B2 (ja) 1992-08-31 2000-08-28 タカタ株式会社 エアバッグ装置
RU2016094C1 (ru) * 1992-09-02 1994-07-15 Новолипецкий металлургический комбинат им.Ю.В.Андропова Способ лазерной обработки крупнозернистой электротехнической анизотропной стали толщиной 0,15 - 0,30 мм
JP2002220642A (ja) * 2001-01-29 2002-08-09 Kawasaki Steel Corp 鉄損の低い方向性電磁鋼板およびその製造方法
WO2004083465A1 (ja) * 2003-03-19 2004-09-30 Nippon Steel Corporation 磁気特性の優れた方向性電磁鋼板とその製造方法
TWI305548B (en) * 2005-05-09 2009-01-21 Nippon Steel Corp Low core loss grain-oriented electrical steel sheet and method for producing the same
JP5927754B2 (ja) * 2010-06-29 2016-06-01 Jfeスチール株式会社 方向性電磁鋼板およびその製造方法
JP5919617B2 (ja) * 2010-08-06 2016-05-18 Jfeスチール株式会社 方向性電磁鋼板およびその製造方法
BR112013001358B1 (pt) * 2010-08-06 2019-07-02 Jfe Steel Corporation Chapa de aço elétrico de grãos orientados e método para a fabricação da mesma

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS572252B2 (ja) 1978-07-26 1982-01-14
JPH0672266B2 (ja) 1987-01-28 1994-09-14 川崎製鉄株式会社 超低鉄損一方向性珪素鋼板の製造方法
JPH02277780A (ja) * 1988-10-26 1990-11-14 Kawasaki Steel Corp 低鉄損一方向性珪素鋼板及びその製造方法
JP2012036445A (ja) * 2010-08-06 2012-02-23 Jfe Steel Corp 方向性電磁鋼板およびその製造方法
JP2012052228A (ja) 2010-08-06 2012-03-15 Jfe Steel Corp 方向性電磁鋼板

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3012332A4

Also Published As

Publication number Publication date
RU2620833C1 (ru) 2017-05-30
JP5668795B2 (ja) 2015-02-12
KR101607909B1 (ko) 2016-03-31
US20160133368A1 (en) 2016-05-12
WO2014203464A8 (ja) 2015-11-19
JP2015004090A (ja) 2015-01-08
EP3012332B1 (en) 2018-07-04
US10559410B2 (en) 2020-02-11
EP3012332A1 (en) 2016-04-27
CN105339510A (zh) 2016-02-17
EP3012332A4 (en) 2016-06-08
KR20160009707A (ko) 2016-01-26

Similar Documents

Publication Publication Date Title
JP5668795B2 (ja) 方向性電磁鋼板およびそれを用いた変圧器鉄心
JP5115641B2 (ja) 方向性電磁鋼板およびその製造方法
JP5754097B2 (ja) 方向性電磁鋼板およびその製造方法
KR101553497B1 (ko) 방향성 전자 강판 및 그 제조 방법
KR101421387B1 (ko) 방향성 전기 강판 및 그 제조 방법
WO2013099272A1 (ja) 方向性電磁鋼板およびその製造方法
WO2015111434A1 (ja) 方向性電磁鋼板およびその製造方法
JP2012036450A (ja) 方向性電磁鋼板およびその製造方法
KR20130025965A (ko) 방향성 전기 강판
WO2012001952A1 (ja) 方向性電磁鋼板およびその製造方法
WO2013118512A1 (ja) 方向性電磁鋼板
JP5712667B2 (ja) 方向性電磁鋼板の製造方法
JP5983306B2 (ja) 鉄損に優れた変圧器鉄心の製造方法
JP2012057232A (ja) 方向性電磁鋼板およびその製造方法
JP5565307B2 (ja) 方向性電磁鋼板の製造方法
JP2020105589A (ja) 方向性電磁鋼板およびその製造方法
JP5754170B2 (ja) 方向性電磁鋼板の製造方法
JP7459955B2 (ja) 方向性電磁鋼板
WO2022255014A1 (ja) 方向性電磁鋼板
WO2023167016A1 (ja) 三相三脚巻鉄心およびその製造方法
JP5691265B2 (ja) 方向性電磁鋼板の製造方法
JP2012067349A (ja) 方向性電磁鋼板の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480034559.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14814563

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14894697

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2014814563

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20167000437

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2016101317

Country of ref document: RU

Kind code of ref document: A