WO2014203456A1 - Solid-state imaging device and method for driving same - Google Patents
Solid-state imaging device and method for driving same Download PDFInfo
- Publication number
- WO2014203456A1 WO2014203456A1 PCT/JP2014/002713 JP2014002713W WO2014203456A1 WO 2014203456 A1 WO2014203456 A1 WO 2014203456A1 JP 2014002713 W JP2014002713 W JP 2014002713W WO 2014203456 A1 WO2014203456 A1 WO 2014203456A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- transfer
- photoelectric conversion
- conversion unit
- electrodes
- shift register
- Prior art date
Links
- 238000003384 imaging method Methods 0.000 title claims abstract description 75
- 238000000034 method Methods 0.000 title claims description 9
- 238000006243 chemical reaction Methods 0.000 claims abstract description 149
- 239000007772 electrode material Substances 0.000 claims description 25
- 239000000758 substrate Substances 0.000 claims description 20
- 239000004065 semiconductor Substances 0.000 claims description 16
- 238000001514 detection method Methods 0.000 claims description 8
- 238000005070 sampling Methods 0.000 claims description 7
- 238000004519 manufacturing process Methods 0.000 claims description 2
- 239000010410 layer Substances 0.000 claims 13
- 239000002356 single layer Substances 0.000 claims 1
- 108091006146 Channels Proteins 0.000 description 55
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 7
- 229920005591 polysilicon Polymers 0.000 description 7
- 239000000470 constituent Substances 0.000 description 6
- 239000007769 metal material Substances 0.000 description 4
- 230000035945 sensitivity Effects 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 229910052814 silicon oxide Inorganic materials 0.000 description 3
- 239000003086 colorant Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 239000010937 tungsten Substances 0.000 description 2
- 108010075750 P-Type Calcium Channels Proteins 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000004397 blinking Effects 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 238000002366 time-of-flight method Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/14—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
- H01L27/144—Devices controlled by radiation
- H01L27/146—Imager structures
- H01L27/148—Charge coupled imagers
- H01L27/14831—Area CCD imagers
- H01L27/14837—Frame-interline transfer
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/14—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
- H01L27/144—Devices controlled by radiation
- H01L27/146—Imager structures
- H01L27/148—Charge coupled imagers
- H01L27/14806—Structural or functional details thereof
- H01L27/14812—Special geometry or disposition of pixel-elements, address lines or gate-electrodes
- H01L27/14818—Optical shielding
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N25/00—Circuitry of solid-state image sensors [SSIS]; Control thereof
- H04N25/50—Control of the SSIS exposure
- H04N25/57—Control of the dynamic range
- H04N25/58—Control of the dynamic range involving two or more exposures
- H04N25/581—Control of the dynamic range involving two or more exposures acquired simultaneously
- H04N25/583—Control of the dynamic range involving two or more exposures acquired simultaneously with different integration times
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N25/00—Circuitry of solid-state image sensors [SSIS]; Control thereof
- H04N25/70—SSIS architectures; Circuits associated therewith
- H04N25/71—Charge-coupled device [CCD] sensors; Charge-transfer registers specially adapted for CCD sensors
- H04N25/73—Charge-coupled device [CCD] sensors; Charge-transfer registers specially adapted for CCD sensors using interline transfer [IT]
Definitions
- the present disclosure relates to a solid-state imaging device and a driving method thereof.
- a pixel is configured by arranging on the photodiode a color filter that transmits only a specific visible light wavelength component. It is the current mainstream to restore a necessary color component by a set of pixels.
- a color filter that transmits three primary colors of red (R), green (G), and blue (B) as a set of pixels is arranged on a photodiode, and the three primary colors are different from each other.
- Each pixel is individually detected, and wavelength data is complemented by neighboring pixels by signal processing to generate a color image.
- the amount of light that is reflected by the object in the irradiation space and reaches the solid-state imaging device is measured, and from the result, the solid-state imaging device is measured.
- a system that realizes distance image sensing of the so-called Time-of-Flight method that calculates the distance to the distance is proposed (for example, see Patent Document 1).
- a solid-state imaging device suitable for this application only the infrared light component is transmitted so that the infrared light signal to be detected is not buried in the signal generated by the light (environment light) emitted from the surroundings of the object.
- a pixel having a configuration in which a filter is arranged on a photodiode is used.
- a photoelectric conversion unit visible light conversion unit with a visible light filter and an infrared light filter are installed. It is necessary to dispose the photoelectric conversion unit (infrared light conversion unit) in the same imaging plane.
- the two photoelectric conversion unit groups are arranged in an offset sub-sampling manner, and they are arranged in combination by shifting one phase in both the horizontal direction and the vertical direction.
- the timing for applying the readout drive pulse to the signal readout gate electrode installed in the photodiode of each of the visible light conversion unit and the infrared light conversion unit is determined independently for each of the visible light conversion unit and the infrared light conversion unit. Must be controlled.
- the gate electrode for signal readout is divided and arranged in a floating island shape, and the gate electrode is connected by a metal wiring formed above the gate electrode film, it can be visualized by designing the wiring layer layout. It is possible to independently control the application timing of the read drive pulse in each of the light conversion unit and the infrared light conversion unit.
- the area occupied by the wiring layer with respect to the area of the photoelectric conversion unit is increased as compared with the conventional case, so that the aperture ratio of the photoelectric conversion unit is reduced and the sensitivity to detect visible light / infrared light is increased. It will decline.
- the manufacturing cost increases, and the propagation delay of the read drive pulse between the center and the outer edge of the imaging unit is increased. It becomes more conspicuous and good image information cannot be obtained.
- CMOS Complementary Metal-Oxide Semiconductor
- the present disclosure includes an imaging unit in which two photoelectric conversion unit groups arranged in an offset sub-sampling manner are combined by shifting one phase in both the horizontal direction and the vertical direction.
- Solid-state imaging that can independently control the timing of applying a read drive pulse to the signal readout gate electrode of each group, and that can simultaneously control the photoelectric conversion units in one photoelectric conversion unit group
- a solid-state imaging device includes a photoelectric conversion unit that is arranged in an offset sub-sampling manner in the horizontal direction and the vertical direction, and converts incident light into signal charges by photoelectric conversion.
- Each of the photoelectric conversion units included in the first photoelectric conversion unit group and the photoelectric conversion unit included in the first photoelectric conversion unit group has a first photoelectric conversion unit group and a second photoelectric conversion unit group.
- the surface of the semiconductor substrate on which the imaging unit arranged so as to form a square lattice as a whole is combined by shifting the phase by one in both the horizontal direction and the vertical direction, and the photoelectric conversion unit A light receiving portion from which a light shielding film is excluded so that light is irradiated to the light receiving portion, a plurality of transfer channels arranged between the light receiving portions and extending in the vertical direction, and a front surface in the same plane on the transfer channel.
- the first transfer electrode, the second transfer electrode, the third transfer electrode, and the fourth transfer electrode which are repeatedly arranged in the vertical direction, the transfer channel, and the first to fourth transfer electrodes,
- a high voltage pulse is applied to any one of the fourth transfer electrodes once or continuously several times, and is output from the photoelectric conversion unit moved from the photoelectric conversion unit group to the transfer channel.
- a plurality of vertical shift registers that transfer signal charges in the vertical direction of the imaging unit and a horizontal line that is connected to the last stage of the vertical shift registers and transfers signal charges transferred from the vertical shift registers in the horizontal direction.
- a shift register; and a charge detection unit that is connected to the last stage of the horizontal shift register and converts a signal charge transferred from the horizontal shift register into a voltage signal.
- the first to fourth transfer electrodes are repeatedly arranged three times in an arbitrary order within a section equal to a distance twice as long as the interval in which the light receiving portions are arranged in the square lattice shape, In any two vertical shift registers arranged adjacent to each other, the arrangement order of the first to fourth transfer electrodes is an offset of two electrodes.
- each photodiode in one photoelectric conversion unit group When the transfer electrode located at the closest distance from the center of (PD) and having the largest area in contact with the PD is set as a signal read gate electrode and a read drive pulse is applied, each of the PDs in the other photoelectric conversion unit group A read drive pulse is applied to a transfer electrode that is located at a distance from the center and has a small area in contact with the PD.
- the read drive pulse can be applied at an appropriate timing, and the exposure time can be set to an optimum time.
- FIG. 4 is a cross-sectional view taken along line A-A ′ of FIG. 3.
- FIG. 4 is a sectional view taken along line B-B ′ of FIG. 3.
- FIG. 4 is a sectional view taken along line C-C ′ of FIG. 3.
- 3 is a timing chart illustrating an operation example of the solid-state imaging device of FIG. 1.
- 8 is a timing chart showing an example of a timing chart in the charge readout period of FIG. FIG.
- FIG. 8 is a timing chart showing another example of the timing chart in the charge reading period of FIG. 7.
- FIG. 8 is a timing chart showing an example of a timing chart in the horizontal scanning period of FIG. 7.
- FIG. 13 is a cross-sectional view taken along line A-A ′ of FIG. 12.
- FIG. 13 is a sectional view taken along line B-B ′ of FIG. 12.
- FIG. 13 is a cross-sectional view taken along line C-C ′ of FIG. 12. It is a principal part top view of the solid-state imaging device which concerns on 3rd Embodiment.
- FIG. 18 is a cross-sectional view taken along line A-A ′ of FIG. 17.
- FIG. 18 is a cross-sectional view taken along line B-B ′ of FIG. 17.
- FIG. 22 is a cross-sectional view taken along line A-A ′ of FIG. 21.
- FIG. 22 is a cross-sectional view taken along line B-B ′ of FIG. 21.
- FIG. 1 is a configuration diagram illustrating an example of a main part of the solid-state imaging device according to the first embodiment.
- This solid-state imaging device is arranged in a matrix on a semiconductor substrate, and is provided corresponding to a plurality of photoelectric conversion units 100 (100a, 100b) that convert incident light into signal charges, and columns of photoelectric conversion units 100.
- a vertical shift register 101 that transfers signal charges read from the conversion unit 100 in the column direction (vertical direction), and a horizontal shift register 102 that transfers signal charges transferred by the vertical shift register 101 in the row direction (horizontal direction).
- a charge detection unit 103 that converts the signal charge transferred by the horizontal shift register 102 into a voltage signal and outputs the voltage signal.
- the photoelectric conversion unit 100 includes photoelectric conversion units 100a and 100b.
- the photoelectric conversion units 100a and 100b are arranged in an offset sub-sampling manner, and the first photoelectric conversion unit group 104a is formed by a plurality of photoelectric conversion units 100a.
- the second photoelectric conversion unit group 104b is formed by the plurality of photoelectric conversion units 100b.
- the imaging unit includes photoelectric conversion unit groups 104a and 104b.
- the photoelectric conversion units 100a and 100b included in the photoelectric conversion unit groups 104a and 104b are arranged on the semiconductor substrate by being combined with each other while shifting the phase by one in both the horizontal and vertical directions.
- the output terminal of the substrate bias circuit 105 that converts the externally applied voltage DCIN into a desired voltage value is connected to the substrate of the solid-state imaging device via the diode 106, and the potential of the photoelectric conversion unit 100 is held at a value suitable for exposure. Has been.
- ⁇ SUB is input to the substrate of the solid-state imaging device via the coupling capacitor 107.
- a high voltage pulse of 20 V for example, is applied to ⁇ SUB
- the substrate voltage of the solid-state imaging device rises
- the signal charges of the photoelectric conversion unit 100 are all reset and discharged to the substrate
- the high voltage pulse of ⁇ SUB falls. This time becomes the exposure start time of the solid-state imaging device.
- the vertical shift register 101 is configured by repeatedly arranging transfer electrodes V1 to V4 in a predetermined order. In each of the vertical shift registers 101, the transfer electrodes V1 to V4 are arranged so that their order has an offset of two electrodes.
- Corresponding drive pulses ⁇ V1, ⁇ V2, ⁇ V3, and ⁇ V4 are supplied to the transfer electrodes V1 to V4 of the vertical shift register 101, respectively.
- the signal charge generated in the photoelectric conversion unit 100a by exposure moves to the transfer channel 2 of the vertical shift register 101 when a high voltage (H) is applied to ⁇ V1.
- H high voltage
- M medium voltage
- L low voltage
- Reference numeral 110 in FIG. 1 illustrates this state.
- the signal charge generated in the photoelectric conversion unit 100b moves to the transfer channel of the vertical shift register 101 when a high voltage (H) is applied to ⁇ V3.
- a medium voltage (M) is applied to ⁇ V2 and ⁇ V4, and a low voltage (L) is applied to ⁇ V1, and signal charges are held in transfer channel 2 below the transfer gate to which ⁇ V2, ⁇ V3, and ⁇ V4 are applied. .
- the signal charge that has moved to the vertical shift register 101 moves in the transfer channel 2 by switching the voltages of ⁇ V1, ⁇ V2, ⁇ V3, and ⁇ V4 to a medium voltage (M) and a low voltage (L) in a predetermined order.
- the shift register 102 is reached.
- the signal charge that has reached the horizontal shift register 102 moves to the end of the horizontal shift register 102 by switching the voltages of ⁇ H1, ⁇ H2, and ⁇ HL between a high voltage (H) and a medium voltage (H) in a predetermined order.
- the terminal of the horizontal shift register 102 is connected to the power supply voltage VDD when a high voltage (H) is applied from ⁇ R, and is determined to be a constant potential. However, when ⁇ R is switched to a low voltage, the terminal shifts to a floating state. Become. When the signal charge reaches this state, a signal voltage corresponding to the amount of charge is output from the Vout terminal to the outside of the solid-state imaging device via the charge detection unit 103.
- the charge detection unit 103 includes, for example, a buffer amplifier that lowers the output impedance and sends out a signal.
- FIGS. 2 and 3 are plan views of the main part of the solid-state imaging device according to the first embodiment.
- a solid-state imaging device that employs four-phase driving in the vertical shift register 101 will be described.
- the light receiving unit 1 (1a, 1b) is disposed on the semiconductor substrate.
- the light receiving unit 1 includes light receiving units 1a and 1b, and photoelectric conversion units 100a and 100b including photodiodes are formed on a semiconductor substrate below the light receiving units 1a and 1b. As a result, signal charges corresponding to the amount of incident light are generated and accumulated for a certain period.
- the light receiving unit 1a corresponds to the photoelectric conversion unit 100a
- the light receiving unit 1b corresponds to the photoelectric conversion unit 100b.
- a transfer channel 2 extending in the vertical direction is arranged between the two light receiving portions 1a and 1b arranged in the horizontal direction.
- the transfer channel 2 generates a potential distribution that transfers signal charges in the vertical direction.
- transfer electrodes 3 On the transfer channel 2 extending in the vertical direction, transfer electrodes 3 to which transfer pulses ⁇ V1, ⁇ V2, ⁇ V3, and ⁇ V4 having different phases are arranged.
- the transfer electrode 3 refers to a conductive film such as polysilicon formed on the transfer channel 2 via an oxide film. What is formed at a position off the transfer channel 2 is regarded as a wiring even if it is integrally formed of the same material as the transfer electrode 3.
- the transfer electrode 3 includes a first transfer electrode 3-1 to which a transfer pulse ⁇ V1 is supplied, a second transfer electrode 3-2 to which a transfer pulse ⁇ V2 is supplied, and a third transfer electrode 3- to which a transfer pulse ⁇ V3 is supplied.
- the transfer pulses ⁇ V1, ⁇ V2, ⁇ V3, ⁇ V4 are, for example, ⁇ 6V to 0V.
- first transfer electrode 3-1 to the fourth transfer electrode 3-4 correspond to the transfer electrodes V1 to V4 in FIG. 1, respectively.
- the second transfer electrode 3-2 and the fourth transfer electrode 3-4 are formed on the same plane, and the insulating film 21 is formed on the surfaces of the second transfer electrode 3-2 and the fourth transfer electrode 3-4. Thereafter, a two-layer transfer electrode structure in which the first transfer electrode 3-1 and the third transfer electrode 3-3 are formed on the insulating film 21 is employed.
- the first transfer electrode 3-1, the second transfer electrode 3-2, the third transfer electrode 3-3, and the fourth transfer electrode 3-4 are arranged in such a manner that the first transfer electrode 3-1, the second transfer electrode 3-4 A transfer electrode 3-2, a third transfer electrode 3-3, and a fourth transfer electrode 3-4, which are arranged in this order, are arranged repeatedly in the vertical direction with a basic configuration.
- “upward” described in this paper indicates a direction reversed 180 ° from a direction toward the horizontal shift register 102 on the surface of the semiconductor substrate, and “downward” indicates a direction toward the horizontal shift register 102.
- the transfer electrode 3 and the transfer channel 2 constitute a vertical shift register 101 arranged in common for each column of the light receiving units 1 arranged in the vertical direction. Twelve transfer electrodes 3 are arranged so as to correspond to one set of light receiving unit 1a and light receiving unit 1b.
- an inter-light receiving portion wiring 4 is formed between the light receiving portions 1a and 1b arranged in the vertical direction.
- the transfer electrode 3 is connected by the inter-light receiving portion wiring 4 made of polysilicon formed integrally with the transfer electrode 3 in two vertical shift registers 101 adjacent in the horizontal direction.
- the first transfer electrode 3-1 is connected by the light receiving portion wiring 4-1.
- the second transfer electrode 3-2 is connected by a light receiving portion wiring 4-2.
- the third transfer electrode 3-3 is connected by a light receiving portion wiring 4-3.
- the fourth transfer electrode 3-4 is connected by a light receiving portion wiring 4-4.
- the light receiving portion wiring 4 when it is not necessary to distinguish in particular, it will be simply referred to as the light receiving portion wiring 4.
- the light receiving unit wirings 4-1 and 4-2 are formed in a region between the light receiving units in which the light receiving unit 1a is disposed above and the light receiving unit 1b is disposed below.
- the light receiving unit wirings 4-3 and 4-4 are formed in the region between the light receiving units in which the light receiving unit 1b is disposed above and the light receiving unit 1a is disposed below.
- the light receiving portion wiring 4-1 is formed in an upper layer of the insulating film 21 formed on the surface of the light receiving portion wiring 4-2.
- the light receiving portion wiring 4-3 is formed in an upper layer of the insulating film 21 formed on the surface of the light receiving portion wiring 4-4.
- the inter-light-receiving-unit wiring 4-1 disposed between the 2N + 1th (N is an integer equal to or greater than 0) vertical shift register 101 and the 2 (N + 1) th vertical shift register 101 is the 2N + 1th vertical
- Two first transfer electrodes 3-1 included in the shift register 101 are connected to one first transfer electrode 3-1 included in the 2 (N + 1) th vertical shift register 101.
- the one located above has a distance from the center of the light receiving unit 1 a among the transfer electrodes 3 in the vicinity of the light receiving unit 1 a. the nearest.
- the transfer electrode 3 having the shortest distance from the center of the light receiving unit 1 among the transfer electrodes 3 in the vicinity of the light receiving unit 1 in any light receiving unit 1 will be referred to as “the closest electrode of the light receiving unit 1”.
- the inter-light-receiving portion wiring 4-2 arranged between the 2N + 1th vertical shift register 101 and the 2 (N + 1) th vertical shift register 101 includes two second transfer electrodes included in the 2N + 1th vertical shift register 101. 3-2 is connected to one second transfer electrode 3-2 included in the 2 (N + 1) th vertical shift register 101. Of the two second transfer electrodes 3-2 connected in the 2N + 1-th vertical shift register 101, the one located above is adjacent to the nearest electrode of the light receiving unit 1 a below.
- the inter-light-receiving portion wiring 4-3 disposed between the 2N + 1th vertical shift register 101 and the 2 (N + 1) th vertical shift register 101 includes two third transfer electrodes included in the 2N + 1th vertical shift register 101. 3-3 is connected to two third transfer electrodes 3-3 included in the 2 (N + 1) th vertical shift register 101. Of the two third transfer electrodes 3-3 connected in the 2N + 1-th vertical shift register 101, the one positioned above is the closest electrode of the light receiving unit 1b. Of the two third transfer electrodes 3-3 connected in the 2 (N + 1) th vertical shift register 101, the one positioned below is the closest electrode of the light receiving unit 1b.
- the inter-light-receiving-unit wiring 4-4 disposed between the 2N + 1th vertical shift register 101 and the 2 (N + 1) th vertical shift register 101 includes two fourth transfer electrodes included in the 2N + 1th vertical shift register 101. 3-4 is connected to two fourth transfer electrodes 3-4 included in the 2 (N + 1) th vertical shift register 101. Among these, the upper one of the two fourth transfer electrodes 3-4 connected in the 2N + 1-th vertical shift register 101 is adjacent to the nearest electrode of the light receiving unit 1b below. Of the two fourth transfer electrodes 3-4 connected in the 2 (N + 1) th vertical shift register 101, the one positioned below is adjacent to the nearest electrode of the light receiving unit 1b below. .
- the inter-light-receiving-unit wiring 4-1 arranged between the 2 (N + 1) th vertical shift register 101 and the 2N + 3rd vertical shift register 101 includes two second light receiving lines included in the 2 (N + 1) th vertical shift register 101.
- One transfer electrode 3-1 and two first transfer electrodes 3-1 included in the 2N + 3rd vertical shift register 101 are connected.
- the one located above is the closest electrode of the light receiving unit 1 a.
- the inter-light-receiving-unit wiring 4-2 arranged between the 2 (N + 1) th vertical shift register 101 and the 2N + 3rd vertical shift register 101 includes two second second lines included in the 2 (N + 1) th vertical shift register 101.
- the transfer electrode 3-2 is connected to two second transfer electrodes 3-2 included in the 2N + 3rd vertical shift register 101. Of the two second transfer electrodes 3-2 connected in the 2 (N + 1) -th vertical shift register 101, the one located above is adjacent to the nearest electrode of the light receiving unit 1a below.
- An inter-light-receiving portion wiring 4-3 disposed between the 2 (N + 1) th vertical shift register 101 and the 2N + 3rd vertical shift register 101 is provided by two 2nd (N + 1) th vertical shift registers 101.
- the third transfer electrode 3-3 is connected to one third transfer electrode 3-3 included in the 2N + 3rd vertical shift register 101.
- the one located above is the closest electrode of the light receiving unit 1b.
- the inter-light-receiving-unit wiring 4-4 disposed between the 2 (N + 1) th vertical shift register 101 and the 2N + 3rd vertical shift register 101 has two second shift bits included in the 2 (N + 1) th vertical shift register 101.
- the four transfer electrodes 3-4 are connected to one fourth transfer electrode 3-4 included in the 2N + 3rd vertical shift register 101.
- the one located above is adjacent to the nearest electrode of the light receiving unit 1b below.
- a shunt wiring 5 (transfer electrode driving second wiring) is disposed on the transfer electrode 3 via an insulating film.
- the shunt wiring 5 is wired in a direction parallel to the vertical direction of the vertical shift register 101, and projects in the horizontal direction in the gap of the light receiving unit 1, and the direction in which every other pixel projects is 180 ° different.
- the shunt wiring 5 is connected to the light receiving section wiring 4 at the contact section 6.
- the shunt wiring 5 includes a first shunt wiring 5-1 supplied with the transfer pulse ⁇ V1, a second shunt wiring 5-2 supplied with the transfer pulse ⁇ V2, and a third shunt supplied with the transfer pulse ⁇ V3.
- the contact portion 6 includes a contact portion 6-1 connected to the first shunt wiring 5-1, a contact portion 6-2 connected to the second shunt wiring 5-2, and a contact connected to the third shunt wiring 5-3.
- a contact portion 6-4 connected to the fourth shunt wiring 5-4.
- it will only be described as the contact portion 6.
- the shunt wiring 5 is formed of a metal material such as polysilicon or tungsten.
- a metal material such as polysilicon or tungsten.
- FIG. 4 is a cross-sectional view taken along line AA ′ of FIG. 3
- FIG. 5 is a cross-sectional view taken along line BB ′ of FIG. 3
- FIG. 6 is a cross-sectional view taken along line CC ′ of FIG. .
- 4 to 6 are cross-sectional views of the light receiving unit 1a shown in FIG. 3, but for the cross-sectional view of the light receiving unit 1b shown in FIG. 3, the symbols in FIGS. 4 to 6 correspond to the light receiving unit 1b. What is necessary is just to replace with the part to do.
- a semiconductor substrate 10 made of, for example, n-type silicon is used.
- a p-type well 11 is formed in the semiconductor substrate 10.
- An n-type region 12 is formed in the p-type well 11, and a p-type region 13 is formed on the surface side of the n-type region 12.
- the light receiving portion 1 is constituted by a photodiode having a pn junction between the n-type region 12 and the p-type well 11. Since the p-type region 13 is formed on the surface side of the n-type region 12, an embedded photodiode with reduced dark current is configured.
- a p-type well 14 is formed adjacent to the n-type region 12, and a transfer channel 2 composed of the n-type region is formed in the p-type well 14. Adjacent to the transfer channel 2, a p-type channel stop portion 16 is formed for preventing signal charges from flowing in and out between the adjacent light receiving portions 1.
- the readout channel 17 is between the light receiving unit 1 and the transfer channel 2 on the left side of the light receiving unit 1.
- the transfer electrode 3 made of polysilicon is formed via the gate insulating film 20. If the readout channel 17 has the potential distribution controlled by the voltage of the first transfer electrode 3-1, the readout channel 17 a has the signal charge of the light receiving unit 1 a when the potential distribution of the readout channel 17 a is controlled. Read to left transfer channel 2. Although the read channel 17a is not shown, the reference numeral 17 in FIG. 4 may be read as the read channel 17a.
- the readout channel 17b has the potential distribution controlled by the voltage of the third transfer electrode 3-3 among the readout channels 17, the signal charge of the light receiving portion 1b is obtained when the potential distribution of the readout channel 17b is controlled.
- the readout channel 17b corresponds to the reference numeral 17 in FIG. 4 when the light receiving portion 1b in FIG. 3 is cut in the A-A ′ direction.
- An insulating film 21 made of, for example, silicon oxide is formed so as to cover the second transfer electrode 3-2, the fourth transfer electrode 3-4, and the light receiving portion wirings 4-2 and 4-4.
- Inter-light-receiving portion wirings 4-1 and 4-3 are formed on the inter-light-receiving portion wirings 4-2 and 4-4 with an insulating film 21 interposed therebetween.
- a light shielding film 7 is formed on the insulating films 21 and 22.
- a shunt wiring 5 is formed on the light shielding film 7 via a planarizing film 23.
- the insulating film 21 and the light shielding film 7 thereabove have openings formed in part of the contact portions 6-2 and 6-4, and the shunt wiring 5 and the transfer electrode 3 are connected inside the openings. .
- the insulating film 22 and the light shielding film 7 thereabove have openings in the contact portions 6-1 and 6-3, and the shunt wiring 5 and the transfer electrode 3 are connected inside the openings.
- a barrier metal may be interposed without directly connecting the metal material constituting the shunt wiring 5 and the transfer electrode 3 in the contact portion 6. .
- a planarizing film, a color filter, and an on-chip lens may be formed on the light shielding film 7 as necessary.
- FIG. 7 is a timing chart showing an operation example of the solid-state imaging device according to the present embodiment
- FIG. 8 is an example of a timing chart in the charge readout period shown in FIG. 9 is an example of a timing chart in the charge reading period shown in FIG. 7,
- FIG. 10 is an example of a timing chart in the horizontal scanning period shown in FIG.
- the photoelectric conversion unit 100 When light enters the light receiving unit 1, the photoelectric conversion unit 100 generates a signal charge (electrons in this example) corresponding to the amount of incident light by photoelectric conversion and accumulates the signal charge in the n-type region 12 of the photoelectric conversion unit 100 for a certain period.
- a signal charge electrospray in this example
- the transfer channel 2 After the signal charge of the photoelectric conversion unit 100a is read out to the transfer channel 2, four-phase transfer pulses ⁇ V1 to ⁇ V4 are supplied to the transfer electrode 3, the potential distribution of the transfer channel 2 is controlled, and the signal charge is Forwarded to In this transfer, the signal charge moves downward by two electrodes from the read position, and is transferred below the second transfer electrode 3-2, the third transfer electrode 3-3, and the fourth transfer electrode 3-4. This is performed until the channel 2 is accumulated.
- the signal charges of the photoelectric conversion unit 100a previously read to the transfer channel 2 are the second transfer electrode 3-2 and the third transfer electrode 3 which are positioned one stage above the read channel 17b of the photoelectric conversion unit 100b. ⁇ 3, since it is accumulated in the transfer channel 2 below the fourth transfer electrode 3-4, it is separated from the read channel 17b, so that it mixes with the signal charge of the photoelectric conversion unit 100b even when a read pulse is applied. There is no.
- the exposure time is the time when the application of the readout pulse is completed, or a high voltage (for example, 25 V) is applied to the n-type well in the deep part of the semiconductor substrate 10 to deplete all the photoelectric conversion units 100 at the same time.
- a high voltage for example, 25 V
- a low voltage for example, 6V
- the signal charges accumulated in the photoelectric conversion unit 100a and the photoelectric conversion unit 100b can be read out to the transfer channel 2 at different times, exposure relating to the photoelectric conversion unit 100a and the photoelectric conversion unit 100b is performed. It is possible to set different times.
- the signal charge of the photoelectric conversion unit 100a is read first, and the signal charge of the photoelectric conversion unit 100b is read later, but this order may be reversed. Further, the signal charge of either one of the photoelectric conversion units 100a and 100b may be read twice. The two exposure times may be different.
- the vertical shift register 101 stores the signal charges.
- an area in which one of the photoelectric conversion units 100a and 100b can be read one more time and accumulated in the transfer channel 2 is left.
- first, four-phase transfer pulses ⁇ V1 to ⁇ V4 are supplied to the transfer electrode 3 to control the potential distribution of the transfer channel 2 and transfer the signal charges in the vertical direction.
- the fourth transfer electrode 3-4, the first transfer electrode 3-1 and the second transfer electrode 3-2 adjacent to the photoelectric conversion unit 100a The signal charge is transferred in the vertical direction until a region where no charge is accumulated moves to the lower transfer channel 2.
- a read pulse is applied to the first transfer electrode 3-1, and the signal charge of the photoelectric conversion unit 100a is read.
- the readout pulse can be set at an arbitrary time, and therefore the exposure time can be different from the previous one.
- the second transfer electrode 3-2, the third transfer electrode 3-3, and the fourth transfer electrode 3-4 adjacent to the photoelectric conversion unit 100b.
- the signal charge is transferred in the vertical direction until a region where no charge is accumulated moves to the lower transfer channel 2.
- a read pulse is applied to the third transfer electrode 3-3 to read the signal charge of the photoelectric conversion unit 100b.
- the signal charge on the bottom line of the vertical shift register 101 (the bottom row of the photoelectric conversion unit 100) is transferred to the horizontal shift register 102.
- the horizontal scanning period shown in FIG. 10 (corresponding to the horizontal line scanning period in FIG. 7)
- signal charges are transferred in the horizontal direction.
- the signal charge is transferred in the horizontal direction by the horizontal shift register 102 and sent to the charge detection unit 103.
- the charge detection unit 103 the signal charge is converted into a voltage corresponding to the signal charge amount and output.
- the signal charge of the photoelectric conversion unit 100 can be read out at three different exposure times.
- the three exposure times can be assigned, for example, 2: 1 to the photoelectric conversion unit 100a and the photoelectric conversion unit 100b.
- the photoelectric conversion unit 100 to which the two exposure times are assigned can make the two exposure times different, for example, by acquiring the signal charges for the long exposure and the short exposure in the same frame.
- an image having a wider dynamic range than an image that can be acquired by a normal single exposure can be acquired.
- a normal image can be acquired in the same frame.
- time-of-flight range image sensing using two exposure times. For example, with respect to signal charges accumulated in the photoelectric conversion unit 100 according to the amount of light that is reflected by an object in the irradiation space and reaches the solid-state imaging device when infrared light emitted from a light source that performs pulsed light emission operation is first-time In the exposure time, the signal charge is read after one light emission cycle is completely completed, and in the second exposure time, the signal charge is read in the middle of the light emission cycle. By calculating the image information acquired in this manner, the distance from the object to the solid-state imaging device can be calculated. Also at this time, a normal image can be acquired for the other photoelectric conversion unit 100 in the same frame.
- the signal charges of the photoelectric conversion unit 100 that is not read out may be discarded by applying a high voltage to the n-type well in the deep part of the semiconductor substrate 10. Also in this case, it is possible to acquire an image with a wide dynamic range by acquiring the signal charges of the long exposure and the short exposure in the same frame and performing image composition processing.
- the exposure time of 3 times is assigned to the photoelectric conversion unit 100a and the photoelectric conversion unit 100b at 2: 0 or 1: 1, and the signal charge of the remaining exposure time is not read from the photoelectric conversion unit 100, It is also possible to accumulate only spontaneously generated charges in the transfer channel 2.
- the amount of noise signals such as smear electrons generated by dark current generated from lattice defects existing inside the transfer channel 2 or the surface of the insulating film 20 or light entering from the gap between the light shielding film 7 and the substrate is measured. If a noise component is subtracted from a normal image, a high-definition image with a good S / N ratio can be acquired.
- the opening area of the light receiving portion 1a is smaller than the opening area of the light receiving portion 1b.
- the opening area is uniform in the photoelectric conversion unit group 104a.
- the photoelectric conversion unit group 104b has a uniform size. For this reason, if the exposure time is adjusted in accordance with the sensitivity characteristics of the light receiving portions 1a and 1b, it is possible to obtain high-quality images free from spots for the photoelectric conversion portion group 104a and the photoelectric conversion portion group 104b. is there.
- FIG. 11 and FIG. 12 are main part plan views of the solid-state imaging device according to the second embodiment.
- the first transfer electrode 3-1 is connected by the inter-light-receiving unit wiring 4-1a and the inter-light-receiving unit wiring 4-1b.
- the second transfer electrode 3-2 is connected by the inter-light-receiving portion wiring 4-2a and the inter-light-receiving portion wiring 4-2b.
- the inter-light-receiving-unit wiring 4-1 a disposed between the 2N + 1-th vertical shift register 101 and the 2 (N + 1) -th vertical shift register 101 is one first included in the 2N + 1-th vertical shift register 101.
- One transfer electrode 3-1 is connected to two first transfer electrodes 3-1 included in the 2 (N + 1) th vertical shift register 101.
- the one located above is the closest electrode of the light receiving unit 1 a.
- the inter-light-receiving portion wiring 4-1b disposed between the 2N + 1th vertical shift register 101 and the 2 (N + 1) th vertical shift register 101 includes two first transfer electrodes 3 included in the 2N + 1th vertical shift register 101. ⁇ 1 and one first transfer electrode 3-1 included in the 2 (N + 1) th vertical shift register 101 are connected. Of the two first transfer electrodes 3-1 connected in the 2N + 1-th vertical shift register 101, the one positioned above is the closest electrode of the light receiving unit 1 a.
- the inter-light-receiving-unit wiring 4-2a disposed between the 2N + 1th vertical shift register 101 and the 2 (N + 1) th vertical shift register 101 includes one second transfer electrode 3 included in the 2N + 1th vertical shift register 101. -2 and two second transfer electrodes 3-2 included in the 2 (N + 1) th vertical shift register 101 are connected. Of the two second transfer electrodes 3-2 connected in the 2 (N + 1) -th vertical shift register 101, the one located above is adjacent to the nearest electrode of the light receiving unit 1a below.
- the inter-light-receiving-unit wiring 4-2b disposed between the 2N + 1th vertical shift register 101 and the 2 (N + 1) th vertical shift register 101 includes two second transfer electrodes 3 included in the 2N + 1th vertical shift register 101. -2 and one second transfer electrode 3-2 included in the 2 (N + 1) th vertical shift register 101 are connected. Of the two second transfer electrodes 3-2 connected in the 2N + 1-th vertical shift register 101, the one located above is adjacent to the nearest electrode of the light receiving unit 1 a below.
- FIG. 13 is a cross-sectional view taken along line AA ′ in FIG. 12
- FIG. 14 is a cross-sectional view taken along line BB ′ in FIG. 12
- FIG. 15 is a cross-sectional view taken along line CC ′ in FIG. FIG.
- the inter-light-receiving portion wiring 4-1a is formed in the upper layer of the insulating film 21 formed on the surface of the inter-light-receiving portion wiring 4-2a in the gap between the light-receiving portions 1 arranged in the vertical direction.
- the light receiving portion wiring 4-1b is formed in an upper layer of the insulating film 21 formed on the surface of the light receiving portion wiring 4-2b.
- the inter-light-receiving portion wiring 4-3a is formed on the upper layer of the insulating film 21 formed on the surface of the inter-light-receiving portion wiring 4-4a, and the inter-light-receiving portion wiring 4-3b is formed on the surface of the inter-light-receiving portion wiring 4-4b. It is formed in the upper layer of the formed insulating film 21.
- the third transfer electrode 3-3 is connected by the inter-light-receiving unit wiring 4-3a and the inter-light-receiving unit wiring 4-3b.
- 3-4 are connected by a light receiving portion wiring 4-4a and a light receiving portion wiring 4-4b.
- the inter-light-receiving-part wiring 4-3a disposed between the 2 (N + 1) th vertical shift register 101 and the 2N + 3th vertical shift register 101 is included in the 2 (N + 1) th vertical shift register 101.
- One third transfer electrode 3-3 is connected to two third transfer electrodes 3-3 included in the 2N + 3rd vertical shift register 101.
- the two third transfer electrodes 3-3 connected in the 2N + 3rd vertical shift register 101 the one positioned above is the closest electrode of the light receiving unit 1b.
- the inter-light-receiving-unit wiring 4-3b disposed between the 2 (N + 1) th vertical shift register 101 and the 2N + 3rd vertical shift register 101 includes two third third circuits included in the 2 (N + 1) th vertical shift register 101.
- the transfer electrode 3-1 is connected to one third transfer electrode 3-3 included in the 2N + 3rd vertical shift register 101.
- the one located above is the closest electrode of the light receiving unit 1b.
- the inter-light-receiving-unit wiring 4-4a disposed between the 2 (N + 1) th vertical shift register 101 and the 2N + 3rd vertical shift register 101 is one fourth included in the 2 (N + 1) th vertical shift register 101.
- the transfer electrode 3-4 is connected to the two fourth transfer electrodes 3-4 included in the 2N + 3rd vertical shift register 101.
- the one located above is adjacent to the nearest electrode of the light receiving unit 1b below.
- the inter-light-receiving-unit wiring 4-4b disposed between the 2 (N + 1) th vertical shift register 101 and the 2N + 3rd vertical shift register 101 includes two fourth fourth shifters included in the 2 (N + 1) th vertical shift register 101.
- the transfer electrode 3-4 is connected to one fourth transfer electrode 3-4 included in the 2N + 3rd vertical shift register 101.
- the one located above is adjacent to the nearest electrode of the light receiving unit 1b below.
- a second shunt wiring 5-2 and a third shunt wiring 5-3 are arranged on the 2N + 1th vertical shift register 101.
- the second shunt wiring 5-2 is connected to the light receiving section wiring 4-2a and the light receiving section wiring 4-2b through the contact section 6-2.
- the third shunt wiring 5-3 is connected to the light receiving section wirings 4-3a and 4-3b through the contact section 6-3.
- a first shunt wiring 5-1 and a fourth shunt wiring 5-4 are arranged on the 2 (N + 1) th vertical shift register 101.
- the first shunt wiring 5-1 is connected to the light receiving section wiring 4-1a and the light receiving section wiring 4-1b through the contact section 6-1.
- the fourth shunt wiring 5-4 is connected to the light receiving section wiring 4-4a and the light receiving section wiring 4-4b through the contact section 6-4.
- each of the inter-light-receiving portion wirings 4 is connected to the three transfer electrodes 3, so that the area where the inter-light-receiving portion wiring 4 is spread is small, and as a result, the opening area of the light-receiving portion 1 is increased. It is possible. For this reason, it is possible to acquire an image with high sensitivity characteristics for each of the photoelectric conversion unit groups 104a and 104b.
- FIG. 16 and FIG. 17 are main part plan views of the solid-state imaging device according to the third embodiment.
- the fourth transfer electrode 3-4 is connected by the inter-light-receiving unit wiring 4-4a and the inter-light-receiving unit wiring 4-4b. ing.
- the second transfer electrode 3-2 is connected by the inter-light-receiving unit wiring 4-2a and the inter-light-receiving unit wiring 4-2b.
- the first transfer electrode 3-1 and the third transfer electrode 3-3 are not connected by the inter-light-receiving portion wiring 4, but are arranged in a floating island shape.
- FIG. 18 is a cross-sectional view taken along the line A-A ′ of FIG. 17, and FIG. 19 is a cross-sectional view taken along the line B-B ′ of FIG. 17.
- the first shunt wiring 5-1 and the third shunt wiring 5-3 extending in the vertical direction through the insulating film 21 are disposed, and the contacts are respectively contacted.
- the parts 6-1 and 6-3 are connected to the first transfer electrode 3-1 and the third transfer electrode 3-3.
- An insulating film 22 made of, for example, silicon oxide is formed so as to cover the first shunt wiring 5-1 and the third shunt wiring 5-3.
- a light shielding film 7 is formed so as to cover the insulating films 21 and 22.
- an insulating film 21 is formed on the light receiving portion wirings 4-2a, 4-2b, 4-4a, and 4-4b, and a light shielding film 7 is formed so as to cover the insulating film 21.
- a planarizing film 23 made of, for example, silicon oxide is formed so as to cover the light shielding film 7.
- a second shunt wiring 5-2 and a fourth shunt wiring 5-4 extending in the vertical direction are arranged.
- a second shunt wiring 5-2 is disposed on the 2N + 1th transfer channel 2
- a fourth shunt wiring 5-4 is disposed on the 2 (N + 1) th transfer channel 2.
- the second shunt wiring 5-2 and the fourth shunt wiring 5-4 project horizontally in the gap between the light receiving portions 1.
- the second shunt wiring 5-2 is connected to the light receiving section wirings 4-2a and 4-2b at the contact section 6-2
- the fourth shunt wiring 5-4 is connected to the light receiving section wiring 4-4a at the contact section 6-4. , 4-4b.
- the second transfer electrode 3-2 and the fourth transfer electrode 3-4 which are the first layer electrode materials, are connected by the inter-light receiving portion wiring 4, and the first layer electrode material is the first layer electrode material. Since the transfer electrode 3-1 and the third transfer electrode 3-3 are not connected by the inter-light-receiving portion wiring 4, there is no region where the first layer electrode material and the second layer electrode material overlap.
- the shunt wiring 5 is formed of a metal film
- a wiring having the same signal delay characteristic can be formed with a smaller film thickness than when formed of polysilicon. Therefore, in the present embodiment, it is possible to further reduce the height from the light receiving surface to the uppermost wiring layer, and as a result, light incident from an oblique direction is less likely to be blocked by the wiring layer. A large amount of light reaches the light receiving unit 1. Therefore, in the present embodiment, it is possible to realize a solid-state imaging device capable of acquiring a clear image even when a dark subject is imaged.
- FIG. 20 and FIG. 21 are plan views of main parts of a solid-state imaging device according to the fourth embodiment.
- 22 is a cross-sectional view taken along the line A-A ′ in FIG. 21, and
- FIG. 23 is a cross-sectional view taken along the line B-B ′ in FIG. 21.
- the first shunt wiring 5-1, the third shunt wiring 5-3, and the light shielding film 7 are formed separately, but in the present embodiment, the first shunt wiring 5-1.
- the third shunt wiring 5-3 is also used as the light shielding film 7.
- reference numeral 8-1 denotes a light shielding film / shunt wiring having the functions of the first shunt wiring 5-1 and the light shielding film 7 in the third embodiment.
- Reference numeral 8-3 denotes a light-shielding film / shunt wiring having functions of the second shunt wiring 5-3 and the light-shielding film 7 in the third embodiment.
- the light shielding film / shunt wirings 8-1 and 8-3 are formed on the transfer electrode 3 with an insulating film 21 interposed therebetween. It is formed to be divided into two.
- the light shielding film / shunt wirings 8-1 and 8-3 are arranged to extend in a direction parallel to the vertical shift register 101.
- the height from the light receiving surface to the uppermost wiring layer can be reduced, and as a result, light incident from an oblique direction is less likely to be blocked by the wiring layer, and more The amount of light can reach the light receiving unit. Therefore, in the present embodiment, it is possible to realize a solid-state imaging device capable of acquiring a clear image even with a dark subject.
- the photoelectric conversion units included in the two photoelectric conversion unit groups are arranged in an offset sub-sampling manner, and they are combined by shifting the phase of one pixel in both the horizontal direction and the vertical direction.
- the present invention can be applied to a solid-state imaging device to be arranged.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Power Engineering (AREA)
- Electromagnetism (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Solid State Image Pick-Up Elements (AREA)
- Transforming Light Signals Into Electric Signals (AREA)
Abstract
This invention provides a solid-state imaging device in which exposure durations for two groups of photoelectric conversion units can be controlled independently. Said solid-state imaging device is provided with the following: an imaging unit that has groups of photoelectric conversion units laid out in an offset subsampling pattern; light-receiving sections; a plurality of transfer channels that extend vertically; first through fourth transfer electrodes laid out in a repeating fashion along the transfer channels; and a plurality of vertical shift registers that vertically transfer signal charge outputted from the photoelectric conversion units. The first through fourth transfer electrodes are laid out in an arbitrary order so as to repeat three times in an interval equal to twice the spacing with which the photoelectric conversion units and the light-receiving sections are arranged, and the arrangement order of the first through fourth transfer electrodes is offset by two electrodes between two vertical shift registers.
Description
本開示は、固体撮像装置およびその駆動方法に関する。
The present disclosure relates to a solid-state imaging device and a driving method thereof.
可視光や放射線などの外部から入力される電磁波を、光電変換素子であるフォトダイオードを画素としてライン状もしくはマトリクス状に複数個配列した撮像部で検知して、信号電荷(光電子)を生成・蓄積し、画像情報を出力する固体撮像装置が様々な分野で使われている。
Generates and accumulates signal charges (photoelectrons) by detecting electromagnetic waves input from outside, such as visible light and radiation, using an image pickup unit in which multiple photodiodes, which are photoelectric conversion elements, are arranged in a line or matrix form However, solid-state imaging devices that output image information are used in various fields.
ここで、可視光カラー画像の取得を目的とする固体撮像装置の場合には、特定の可視光波長成分のみを透過するようなカラーフィルターをフォトダイオード上に配置して画素を構成し、複数個の画素の組によって必要な色成分を復元することが現在の主流となっている。
Here, in the case of a solid-state imaging device for the purpose of obtaining a visible light color image, a pixel is configured by arranging on the photodiode a color filter that transmits only a specific visible light wavelength component. It is the current mainstream to restore a necessary color component by a set of pixels.
具体的には、例えば、画素の組として赤(R)、緑(G)、青(B)の光の3原色をそれぞれ透過するカラーフィルターをフォトダイオード上に配置し、3原色光をそれぞれ異なる画素で個別に検出して、信号処理によって波長データを近接画素どうしで補完しあってカラー画像を生成する。
Specifically, for example, a color filter that transmits three primary colors of red (R), green (G), and blue (B) as a set of pixels is arranged on a photodiode, and the three primary colors are different from each other. Each pixel is individually detected, and wavelength data is complemented by neighboring pixels by signal processing to generate a color image.
一方、近年、可視光領域以外の波長成分も検知することで、可視光成分だけを検知していた場合では実現し得ない新たなアプリケーションを実現する仕組みも考えられている。
On the other hand, in recent years, a mechanism for realizing a new application that cannot be realized when only a visible light component is detected by detecting a wavelength component outside the visible light region has been considered.
一例としては、点滅動作もしくは発光強度変調を行う光源から照射された赤外光について、照射空間内の物体で反射されて固体撮像装置へ到達する光量を測定し、その結果から物体から固体撮像装置までの距離を算出する、いわゆるTime-of-Flight方式の距離画像センシングを実現するシステムが提案されている(例えば、特許文献1参照)。この用途に適した固体撮像装置においては、検知したい赤外光の信号が物体の周囲から発せられる光(環境光)で発生する信号に埋もれてしまわないように、赤外光成分のみを透過するフィルターをフォトダイオード上に配置した構成の画素が用いられる。
As an example, for infrared light irradiated from a light source that performs blinking operation or emission intensity modulation, the amount of light that is reflected by the object in the irradiation space and reaches the solid-state imaging device is measured, and from the result, the solid-state imaging device is measured. A system that realizes distance image sensing of the so-called Time-of-Flight method that calculates the distance to the distance is proposed (for example, see Patent Document 1). In a solid-state imaging device suitable for this application, only the infrared light component is transmitted so that the infrared light signal to be detected is not buried in the signal generated by the light (environment light) emitted from the surroundings of the object. A pixel having a configuration in which a filter is arranged on a photodiode is used.
1つの固体撮像装置で、可視光カラー画像の撮影と距離画像のセンシングとを同時に行うためには、可視光フィルターが設置された光電変換部(可視光変換部)と、赤外光フィルターが設置された光電変換部(赤外光変換部)とを同一撮像面内に配置する必要がある。また、同一撮像面内に配置された2つの光電変換部群から出力される双方の画像信号について、水平方向、垂直方向のそれぞれに対して均等に高い解像度で画像情報を標本化するためには、2つの光電変換部群をそれぞれオフセットサブサンプリング状に配列し、それらを水平方向・垂直方向共に一個分の位相をずらして組み合わせて配置する形態が望ましい。
In order to simultaneously capture a visible light color image and sense a distance image with a single solid-state imaging device, a photoelectric conversion unit (visible light conversion unit) with a visible light filter and an infrared light filter are installed. It is necessary to dispose the photoelectric conversion unit (infrared light conversion unit) in the same imaging plane. In order to sample image information with high resolution equally in both the horizontal direction and the vertical direction for both image signals output from the two photoelectric conversion unit groups arranged in the same imaging plane. It is desirable that the two photoelectric conversion unit groups are arranged in an offset sub-sampling manner, and they are arranged in combination by shifting one phase in both the horizontal direction and the vertical direction.
ここで、可視光変換部を使った撮像において良好な画質を得るためには、被写体周辺の明るさに応じた露光時間の制御が求められる。一方、赤外光変換部においては、被写体周辺の明るさに関係なく、赤外光源の発光動作と同期した露光時間の制御が求められる。したがって、可視光変換部・赤外光変換部それぞれのフォトダイオードに設置された信号読み出し用ゲート電極に読み出し駆動パルスを印加するタイミングを、可視光変換部・赤外光変換部のそれぞれについて独立に制御しなければならない。
Here, in order to obtain a good image quality in imaging using the visible light conversion unit, it is necessary to control the exposure time according to the brightness around the subject. On the other hand, the infrared light conversion unit is required to control the exposure time in synchronization with the light emission operation of the infrared light source regardless of the brightness around the subject. Therefore, the timing for applying the readout drive pulse to the signal readout gate electrode installed in the photodiode of each of the visible light conversion unit and the infrared light conversion unit is determined independently for each of the visible light conversion unit and the infrared light conversion unit. Must be controlled.
しかしながら、特許文献2に示すような従来の一般的なCCD(Charge Coupled Device)型イメージセンサでは、ゲート電極膜が水平方向の画素同士で繋がっているため、可視光変換部・赤外光変換部それぞれの読み出し駆動パルスの印加タイミングを独立に制御することができない。
However, in the conventional general CCD (Charge Coupled Device) type image sensor as shown in Patent Document 2, since the gate electrode film is connected by the pixels in the horizontal direction, the visible light conversion unit / infrared light conversion unit The application timing of each read drive pulse cannot be controlled independently.
ここで、信号読み出し用ゲート電極を分断して浮島状に配置し、ゲート電極膜よりも上層に形成される金属配線でゲート電極を結線する構造を採用すれば、配線層のレイアウトの工夫で可視光変換部・赤外光変換部それぞれの読み出し駆動パルスの印加タイミングを独立に制御することが可能となる。
Here, if the gate electrode for signal readout is divided and arranged in a floating island shape, and the gate electrode is connected by a metal wiring formed above the gate electrode film, it can be visualized by designing the wiring layer layout. It is possible to independently control the application timing of the read drive pulse in each of the light conversion unit and the infrared light conversion unit.
しかし、この場合は、光電変換部の面積に対して配線層が占める面積が従来よりも増大してしまうため、光電変換部の開口率が低下し、可視光・赤外光を検知する感度が低下してしまう。また、配線層面積の増大を回避するために配線幅を微細化することも考えうるが、この場合は、製造コストが増大するうえ、撮像部の中心と外縁とで読み出し駆動パルスの伝搬遅延がより顕著になってしまい、良好な画像情報を得ることができない。
However, in this case, the area occupied by the wiring layer with respect to the area of the photoelectric conversion unit is increased as compared with the conventional case, so that the aperture ratio of the photoelectric conversion unit is reduced and the sensitivity to detect visible light / infrared light is increased. It will decline. In addition, it is conceivable to reduce the wiring width in order to avoid an increase in the wiring layer area. However, in this case, the manufacturing cost increases, and the propagation delay of the read drive pulse between the center and the outer edge of the imaging unit is increased. It becomes more conspicuous and good image information cannot be obtained.
CMOS(Complementary Metal-Oxide Semiconductor)型イメージセンサでは、近年、裏面照射構造や光導波路構造などの開発が進み、配線本数が多少増加しても感度低下や読み出し駆動パルスの伝搬遅延は課題にはならない。しかし、CMOS型イメージセンサは、全ての光電変換部で露光時間を統一することが困難であるという、距離画像センシングにとって致命的な課題を有している。
In recent years, CMOS (Complementary Metal-Oxide Semiconductor) type image sensors have been developed for backside illumination structures, optical waveguide structures, etc., and even if the number of wires increases slightly, sensitivity reduction and propagation delay of read drive pulses are not a problem. . However, the CMOS image sensor has a fatal problem for distance image sensing that it is difficult to unify the exposure time in all the photoelectric conversion units.
上述した課題に鑑み、本開示は、オフセットサブサンプリング状に配置された2つの光電変換部群を水平方向・垂直方向共に一個分の位相をずらして組み合わせた撮像部を有し、2つの光電変換部群それぞれの信号読み出し用ゲート電極に読み出し駆動パルスを印加するタイミングを独立して制御することができ、且つ、1つの光電変換部群における光電変換部を一斉に制御することが可能な固体撮像装置を提供することを目的とする。
In view of the above-described problems, the present disclosure includes an imaging unit in which two photoelectric conversion unit groups arranged in an offset sub-sampling manner are combined by shifting one phase in both the horizontal direction and the vertical direction. Solid-state imaging that can independently control the timing of applying a read drive pulse to the signal readout gate electrode of each group, and that can simultaneously control the photoelectric conversion units in one photoelectric conversion unit group An object is to provide an apparatus.
上述した目的を達成するために、本開示の一形態に係る固体撮像装置は、水平方向および垂直方向にオフセットサブサンプリング状に配置され、光電変換によって入射光を信号電荷に変換する光電変換部を含む、第1光電変換部群および第2光電変換部群を有し、前記第1光電変換部群に含まれる前記光電変換部および前記第2光電変換部群に含まれる前記光電変換部のそれぞれが、前記水平方向および前記垂直方向共に1個分の位相をずらして組み合わせられて、全体が正方格子状になるように配列された撮像部と、前記光電変換部が形成された半導体基板の表面に光が照射されるように遮光膜が排除された受光部と、前記受光部間に配置されて、前記垂直方向に伸びる複数の転送チャネルと、前記転送チャネル上において同一平面に前記垂直方向に繰り返し配置された、第1転送電極、第2転送電極、第3転送電極、および第4転送電極と、前記転送チャネルと前記第1~第4転送電極とを有し、前記第1~第4転送電極のいずれか1つの転送電極に高電圧パルスを1回、もしくは複数回連続して印加して、前記光電変換部群から前記転送チャネルへ移動させた光電変換部から出力される信号電荷を、前記撮像部の前記垂直方向に転送する複数の垂直シフトレジスタと、前記垂直シフトレジスタの最終段に接続され、前記垂直シフトレジスタから転送される信号電荷を前記水平方向に転送する水平シフトレジスタと、前記水平シフトレジスタの最終段に接続され、前記水平シフトレジスタから転送される信号電荷を電圧信号に変換する電荷検出部とを備え、前記光電変換部および前記受光部が前記正方格子状に配列されている間隔の2倍の距離に等しい区間内において、前記第1~第4転送電極が任意の順番で3回繰り返して配置され、前記水平方向に隣り合って配置される任意の2つの前記垂直シフトレジスタにおいて、前記第1~第4転送電極の配列順番が2電極分のオフセットとなっていることを特徴とする。
In order to achieve the above-described object, a solid-state imaging device according to an embodiment of the present disclosure includes a photoelectric conversion unit that is arranged in an offset sub-sampling manner in the horizontal direction and the vertical direction, and converts incident light into signal charges by photoelectric conversion. Each of the photoelectric conversion units included in the first photoelectric conversion unit group and the photoelectric conversion unit included in the first photoelectric conversion unit group has a first photoelectric conversion unit group and a second photoelectric conversion unit group. However, the surface of the semiconductor substrate on which the imaging unit arranged so as to form a square lattice as a whole is combined by shifting the phase by one in both the horizontal direction and the vertical direction, and the photoelectric conversion unit A light receiving portion from which a light shielding film is excluded so that light is irradiated to the light receiving portion, a plurality of transfer channels arranged between the light receiving portions and extending in the vertical direction, and a front surface in the same plane on the transfer channel. The first transfer electrode, the second transfer electrode, the third transfer electrode, and the fourth transfer electrode, which are repeatedly arranged in the vertical direction, the transfer channel, and the first to fourth transfer electrodes, A high voltage pulse is applied to any one of the fourth transfer electrodes once or continuously several times, and is output from the photoelectric conversion unit moved from the photoelectric conversion unit group to the transfer channel. A plurality of vertical shift registers that transfer signal charges in the vertical direction of the imaging unit and a horizontal line that is connected to the last stage of the vertical shift registers and transfers signal charges transferred from the vertical shift registers in the horizontal direction. A shift register; and a charge detection unit that is connected to the last stage of the horizontal shift register and converts a signal charge transferred from the horizontal shift register into a voltage signal. The first to fourth transfer electrodes are repeatedly arranged three times in an arbitrary order within a section equal to a distance twice as long as the interval in which the light receiving portions are arranged in the square lattice shape, In any two vertical shift registers arranged adjacent to each other, the arrangement order of the first to fourth transfer electrodes is an offset of two electrodes.
本態様によれば、オフセットサブサンプリング状に配置された2つの光電変換部群を水平方向・垂直方向共に一個分の位相をずらして組み合わせた撮像部において、一方の光電変換部群の各フォトダイオード(PD)の中心から最も近い距離に位置し、PDに接する面積が最も大きい転送電極を信号読み出し用ゲート電極と設定して読み出し駆動パルスを印加した場合、他方の光電変換部群における各PDの中心から遠い距離に位置し、PDに接する面積が小さい転送電極に読み出し駆動パルスが印加されることになる。このため、一方の光電変換部群の信号電荷のみが転送チャネルへ読み出され、他方の光電変換部群の信号電荷はPD内に保持することが可能となる。したがって、2つの光電変換部群それぞれにおいて、適切なタイミングで読み出し駆動パルスを印加することが可能となり、露光時間を各々最適な時間に設定することが可能となる。
According to this aspect, in the imaging unit in which two photoelectric conversion unit groups arranged in an offset sub-sampling manner are combined by shifting the phase by one in both the horizontal direction and the vertical direction, each photodiode in one photoelectric conversion unit group When the transfer electrode located at the closest distance from the center of (PD) and having the largest area in contact with the PD is set as a signal read gate electrode and a read drive pulse is applied, each of the PDs in the other photoelectric conversion unit group A read drive pulse is applied to a transfer electrode that is located at a distance from the center and has a small area in contact with the PD. Therefore, only the signal charge of one photoelectric conversion unit group is read out to the transfer channel, and the signal charge of the other photoelectric conversion unit group can be held in the PD. Therefore, in each of the two photoelectric conversion unit groups, the read drive pulse can be applied at an appropriate timing, and the exposure time can be set to an optimum time.
以下、各実施形態について、図面を参照して説明する。なお、本開示について、以下の実施形態及び図面を用いて説明を行うが、これは例示を目的としており、本開示がこれらに限定されることを意図しない。つまり、以下の実施形態で示される数字、構成要素、構成要素の配置位置、構成要素の材料及び構成要素の接続形態、タイミング、タイミングの順序などは、一例であり、本開示を限定する主旨ではない。
Hereinafter, each embodiment will be described with reference to the drawings. In addition, although this indication is demonstrated using the following embodiment and drawing, this is for the purpose of illustration and this indication is not intended to be limited to these. That is, the numbers, constituent elements, the arrangement positions of the constituent elements, the material of the constituent elements, the connection form of the constituent elements, the timing, the order of the timings, and the like shown in the following embodiments are merely examples, Absent.
本開示は、請求の範囲だけによって限定される。よって、以下の実施形態における構成要素のうち、本開示の最上位概念を示す独立請求項に記載されていない構成要素については、本開示の課題を達成するのに必ずしも必要ではないが、より好ましい形態を構成するものとして説明される。また、図面において、実質的に同一の構成、動作、及び効果を表す要素については、同一の符号を付す。
This disclosure is limited only by the claims. Therefore, among the constituent elements in the following embodiments, constituent elements that are not described in the independent claims indicating the highest concept of the present disclosure are not necessarily required to achieve the problems of the present disclosure, but are more preferable. It will be described as constituting a form. In the drawings, elements that represent substantially the same configuration, operation, and effect are denoted by the same reference numerals.
(第1の実施形態)
図1は、第1の実施形態に係る固体撮像装置の要部の一例を示す構成図である。 (First embodiment)
FIG. 1 is a configuration diagram illustrating an example of a main part of the solid-state imaging device according to the first embodiment.
図1は、第1の実施形態に係る固体撮像装置の要部の一例を示す構成図である。 (First embodiment)
FIG. 1 is a configuration diagram illustrating an example of a main part of the solid-state imaging device according to the first embodiment.
この固体撮像装置は、半導体基板に行列状に配置され、入射光を信号電荷に変換する複数の光電変換部100(100a,100b)と、光電変換部100の列に対応して設けられ、光電変換部100から読み出された信号電荷を列方向(垂直方向)に転送する垂直シフトレジスタ101と、垂直シフトレジスタ101によって転送された信号電荷を行方向(水平方向)に転送する水平シフトレジスタ102と、水平シフトレジスタ102によって転送された信号電荷を電圧信号に変換して出力する電荷検出部103とを備えることを特徴とする。
This solid-state imaging device is arranged in a matrix on a semiconductor substrate, and is provided corresponding to a plurality of photoelectric conversion units 100 (100a, 100b) that convert incident light into signal charges, and columns of photoelectric conversion units 100. A vertical shift register 101 that transfers signal charges read from the conversion unit 100 in the column direction (vertical direction), and a horizontal shift register 102 that transfers signal charges transferred by the vertical shift register 101 in the row direction (horizontal direction). And a charge detection unit 103 that converts the signal charge transferred by the horizontal shift register 102 into a voltage signal and outputs the voltage signal.
光電変換部100は、光電変換部100a,100bからなり、光電変換部100a,100bはそれぞれ、オフセットサブサンプリング状に配列されており、複数の光電変換部100aにより第1の光電変換部群104aが、複数の光電変換部100bにより第2の光電変換部群104bが形成される。なお、撮像部には、光電変換部群104a,104bなどが含まれる。
The photoelectric conversion unit 100 includes photoelectric conversion units 100a and 100b. The photoelectric conversion units 100a and 100b are arranged in an offset sub-sampling manner, and the first photoelectric conversion unit group 104a is formed by a plurality of photoelectric conversion units 100a. The second photoelectric conversion unit group 104b is formed by the plurality of photoelectric conversion units 100b. The imaging unit includes photoelectric conversion unit groups 104a and 104b.
光電変換部群104a,104bに含まれる光電変換部100a,100bはそれぞれ、水平方向・垂直方向共に一個分の位相をずらして互いに組み合わされて半導体基板上に配置されている。
The photoelectric conversion units 100a and 100b included in the photoelectric conversion unit groups 104a and 104b are arranged on the semiconductor substrate by being combined with each other while shifting the phase by one in both the horizontal and vertical directions.
外部印加電圧DCINを所望の電圧値に変換する基板バイアス回路105の出力端子が固体撮像装置の基板にダイオード106を介して接続されており、光電変換部100のポテンシャルが露光に適した値に保持されている。
The output terminal of the substrate bias circuit 105 that converts the externally applied voltage DCIN into a desired voltage value is connected to the substrate of the solid-state imaging device via the diode 106, and the potential of the photoelectric conversion unit 100 is held at a value suitable for exposure. Has been.
固体撮像装置の基板にはカップリングコンデンサ107を介してφSUBが入力される。φSUBに例えば20Vなどの高電圧パルスが印加されると、固体撮像装置の基板電圧が上昇し、光電変換部100の信号電荷がすべてリセットされて基板に排出され、φSUBの高電圧パルスが立ち下がった時刻が固体撮像装置の露光開始時刻となる。
ΦSUB is input to the substrate of the solid-state imaging device via the coupling capacitor 107. When a high voltage pulse of 20 V, for example, is applied to φSUB, the substrate voltage of the solid-state imaging device rises, the signal charges of the photoelectric conversion unit 100 are all reset and discharged to the substrate, and the high voltage pulse of φSUB falls. This time becomes the exposure start time of the solid-state imaging device.
垂直シフトレジスタ101は、転送電極V1~V4が所定の順序で繰り返し配置されて構成される。垂直シフトレジスタ101それぞれにおいて、転送電極V1~V4は、その順番が2電極分のオフセットを有するように配置されている。
The vertical shift register 101 is configured by repeatedly arranging transfer electrodes V1 to V4 in a predetermined order. In each of the vertical shift registers 101, the transfer electrodes V1 to V4 are arranged so that their order has an offset of two electrodes.
垂直シフトレジスタ101の転送電極V1~V4には、それぞれ、対応する駆動パルスφV1,φV2,φV3,φV4が供給される。露光により光電変換部100aに発生した信号電荷はφV1に高電圧(H)を印加したときに垂直シフトレジスタ101の転送チャネル2に移動する。このとき、φV2およびφV4は中電圧(M)、φV3には低電圧(L)が印加されており、信号電荷はφV1,φV2,φV4が印加される転送ゲート下の転送チャネル内に保持される。図1の符号110はこの状態を例示している。図示はしないが、光電変換部100bに発生した信号電荷はφV3に高電圧(H)を印加したときに垂直シフトレジスタ101の転送チャネルに移動する。このときは、φV2およびφV4に中電圧(M)、φV1に低電圧(L)を印加して、信号電荷をφV2,φV3,φV4が印加される転送ゲートの下の転送チャネル2内に保持する。
Corresponding drive pulses φV1, φV2, φV3, and φV4 are supplied to the transfer electrodes V1 to V4 of the vertical shift register 101, respectively. The signal charge generated in the photoelectric conversion unit 100a by exposure moves to the transfer channel 2 of the vertical shift register 101 when a high voltage (H) is applied to φV1. At this time, medium voltage (M) is applied to φV2 and φV4, and low voltage (L) is applied to φV3, and signal charges are held in the transfer channel under the transfer gate to which φV1, φV2, and φV4 are applied. . Reference numeral 110 in FIG. 1 illustrates this state. Although not shown, the signal charge generated in the photoelectric conversion unit 100b moves to the transfer channel of the vertical shift register 101 when a high voltage (H) is applied to φV3. At this time, a medium voltage (M) is applied to φV2 and φV4, and a low voltage (L) is applied to φV1, and signal charges are held in transfer channel 2 below the transfer gate to which φV2, φV3, and φV4 are applied. .
垂直シフトレジスタ101に移動した信号電荷はφV1,φV2,φV3,φV4の電圧を所定の順序で中電圧(M)と低電圧(L)に切り替えることによって、転送チャネル2の中を移動し、水平シフトレジスタ102に到達する。水平シフトレジスタ102に到達した信号電荷はφH1,φH2,φHLの電圧を所定の順序で高電圧(H)と中電圧(H)に切り替えることによって、水平シフトレジスタ102の終端部まで移動する。
The signal charge that has moved to the vertical shift register 101 moves in the transfer channel 2 by switching the voltages of φV1, φV2, φV3, and φV4 to a medium voltage (M) and a low voltage (L) in a predetermined order. The shift register 102 is reached. The signal charge that has reached the horizontal shift register 102 moves to the end of the horizontal shift register 102 by switching the voltages of φH1, φH2, and φHL between a high voltage (H) and a medium voltage (H) in a predetermined order.
水平シフトレジスタ102の終端部はφRから高電圧(H)が印加されると電源電圧VDDに電位的に接続され、一定の電位に決定されているが、φRが低電圧に切り替わるとフローティング状態になる。その状態に信号電荷が到達することにより、電荷量に応じた信号電圧が電荷検出部103を介してVout端子から固体撮像装置の外部に出力される。なお、電荷検出部103は、例えば、出力インピーダンスを下げて信号を送り出すバッファーアンプを含んでいる。
The terminal of the horizontal shift register 102 is connected to the power supply voltage VDD when a high voltage (H) is applied from φR, and is determined to be a constant potential. However, when φR is switched to a low voltage, the terminal shifts to a floating state. Become. When the signal charge reaches this state, a signal voltage corresponding to the amount of charge is output from the Vout terminal to the outside of the solid-state imaging device via the charge detection unit 103. The charge detection unit 103 includes, for example, a buffer amplifier that lowers the output impedance and sends out a signal.
図2および図3は、第1の実施形態に係る固体撮像装置の要部平面図である。本実施形態では、垂直シフトレジスタ101において4相駆動を採用する固体撮像装置について説明する。
2 and 3 are plan views of the main part of the solid-state imaging device according to the first embodiment. In the present embodiment, a solid-state imaging device that employs four-phase driving in the vertical shift register 101 will be described.
半導体基板上に受光部1(1a,1b)が配置されている。受光部1は、受光部1a,1bからなり、受光部1a,1bの下の半導体基板にはフォトダイオードからなる光電変換部100a,100bが形成されている。これにより、入射光量に応じた信号電荷が生成され、一定期間蓄積される。なお、受光部1aには光電変換部100aが対応し、受光部1bには光電変換部100bが対応している。
The light receiving unit 1 (1a, 1b) is disposed on the semiconductor substrate. The light receiving unit 1 includes light receiving units 1a and 1b, and photoelectric conversion units 100a and 100b including photodiodes are formed on a semiconductor substrate below the light receiving units 1a and 1b. As a result, signal charges corresponding to the amount of incident light are generated and accumulated for a certain period. The light receiving unit 1a corresponds to the photoelectric conversion unit 100a, and the light receiving unit 1b corresponds to the photoelectric conversion unit 100b.
水平方向に並ぶ2つの受光部1a,1bの間に、垂直方向に伸びる転送チャネル2が配置されている。転送チャネル2は、信号電荷を垂直方向に転送するポテンシャル分布を生成する。
A transfer channel 2 extending in the vertical direction is arranged between the two light receiving portions 1a and 1b arranged in the horizontal direction. The transfer channel 2 generates a potential distribution that transfers signal charges in the vertical direction.
垂直方向に伸びる転送チャネル2上には、位相が異なる転送パルスφV1,φV2,φV3,φV4が供給される転送電極3が配列している。本実施形態では、転送電極3は転送チャネル2上に酸化膜を介して形成される例えばポリシリコンなどの導電性膜のことを称する。転送チャネル2上から外れた位置に形成されているものは、たとえ転送電極3と同一の材料で一体成型されているものであっても配線と見なす。転送電極3は、転送パルスφV1が供給される第1転送電極3-1と、転送パルスφV2が供給される第2転送電極3-2と、転送パルスφV3が供給される第3転送電極3-3と、転送パルスφV4が供給される第4転送電極3-4を含んでいる。なお、特に区別する必要がない場合に、単に転送電極3と記載する。転送パルスφV1,φV2,φV3,φV4は例えば-6V~0Vである。
On the transfer channel 2 extending in the vertical direction, transfer electrodes 3 to which transfer pulses φV1, φV2, φV3, and φV4 having different phases are arranged. In this embodiment, the transfer electrode 3 refers to a conductive film such as polysilicon formed on the transfer channel 2 via an oxide film. What is formed at a position off the transfer channel 2 is regarded as a wiring even if it is integrally formed of the same material as the transfer electrode 3. The transfer electrode 3 includes a first transfer electrode 3-1 to which a transfer pulse φV1 is supplied, a second transfer electrode 3-2 to which a transfer pulse φV2 is supplied, and a third transfer electrode 3- to which a transfer pulse φV3 is supplied. 3 and a fourth transfer electrode 3-4 to which a transfer pulse φV4 is supplied. Note that when there is no need to distinguish between them, they are simply referred to as transfer electrodes 3. The transfer pulses φV1, φV2, φV3, φV4 are, for example, −6V to 0V.
また、第1転送電極3-1~第4転送電極3-4は、図1の転送電極V1~V4にそれぞれ対応している。
Further, the first transfer electrode 3-1 to the fourth transfer electrode 3-4 correspond to the transfer electrodes V1 to V4 in FIG. 1, respectively.
本実施形態では、第2転送電極3-2と第4転送電極3-4を同一平面に形成し、第2転送電極3-2と第4転送電極3-4の表面に絶縁膜21を形成した後に、第1転送電極3-1と第3転送電極3-3を絶縁膜21の上層に形成する二層転送電極構造を採用している。
In the present embodiment, the second transfer electrode 3-2 and the fourth transfer electrode 3-4 are formed on the same plane, and the insulating film 21 is formed on the surfaces of the second transfer electrode 3-2 and the fourth transfer electrode 3-4. Thereafter, a two-layer transfer electrode structure in which the first transfer electrode 3-1 and the third transfer electrode 3-3 are formed on the insulating film 21 is employed.
第1転送電極3-1、第2転送電極3-2、第3転送電極3-3、第4転送電極3-4は、上方から下方に向けて、第1転送電極3-1、第2転送電極3-2、第3転送電極3-3、第4転送電極3-4の順番に並べられたものを基本構成として、垂直方向に繰り返し配置されている。ここで、本稿で述べる「上方」とは半導体基板表面上において水平シフトレジスタ102へ向かう方向から180°反転した方向を示し、「下方」とは水平シフトレジスタ102へ向かう方向を示す。上記の転送電極3と転送チャネル2とにより、垂直方向に並ぶ受光部1の列毎に共通して配置された垂直シフトレジスタ101が構成される。1組の受光部1aと受光部1bに対応するように12個の転送電極3が配置される。
The first transfer electrode 3-1, the second transfer electrode 3-2, the third transfer electrode 3-3, and the fourth transfer electrode 3-4 are arranged in such a manner that the first transfer electrode 3-1, the second transfer electrode 3-4 A transfer electrode 3-2, a third transfer electrode 3-3, and a fourth transfer electrode 3-4, which are arranged in this order, are arranged repeatedly in the vertical direction with a basic configuration. Here, “upward” described in this paper indicates a direction reversed 180 ° from a direction toward the horizontal shift register 102 on the surface of the semiconductor substrate, and “downward” indicates a direction toward the horizontal shift register 102. The transfer electrode 3 and the transfer channel 2 constitute a vertical shift register 101 arranged in common for each column of the light receiving units 1 arranged in the vertical direction. Twelve transfer electrodes 3 are arranged so as to correspond to one set of light receiving unit 1a and light receiving unit 1b.
垂直方向に並ぶ受光部1aと受光部1bの間隙の領域には、受光部間配線4が形成されている。転送電極3は、水平方向に隣接する2つの垂直シフトレジスタ101において、転送電極3と一体形成されたポリシリコンから成る受光部間配線4で連結されている。
Between the light receiving portions 1a and 1b arranged in the vertical direction, an inter-light receiving portion wiring 4 is formed. The transfer electrode 3 is connected by the inter-light receiving portion wiring 4 made of polysilicon formed integrally with the transfer electrode 3 in two vertical shift registers 101 adjacent in the horizontal direction.
具体的に、第1転送電極3-1は受光部間配線4-1により連結されている。第2転送電極3-2は受光部間配線4-2により連結されている。第3転送電極3-3は受光部間配線4-3により連結されている。第4転送電極3-4は受光部間配線4-4により連結されている。なお、特に区別する必要がない場合に、単に受光部間配線4と記載する。
Specifically, the first transfer electrode 3-1 is connected by the light receiving portion wiring 4-1. The second transfer electrode 3-2 is connected by a light receiving portion wiring 4-2. The third transfer electrode 3-3 is connected by a light receiving portion wiring 4-3. The fourth transfer electrode 3-4 is connected by a light receiving portion wiring 4-4. In addition, when it is not necessary to distinguish in particular, it will be simply referred to as the light receiving portion wiring 4.
受光部間配線4-1,4-2は上方に受光部1a、下方に受光部1bが配置される受光部間領域に形成される。受光部間配線4-3,4-4は上方に受光部1b、下方に受光部1aが配置される受光部間領域に形成される。
The light receiving unit wirings 4-1 and 4-2 are formed in a region between the light receiving units in which the light receiving unit 1a is disposed above and the light receiving unit 1b is disposed below. The light receiving unit wirings 4-3 and 4-4 are formed in the region between the light receiving units in which the light receiving unit 1b is disposed above and the light receiving unit 1a is disposed below.
受光部間配線4-1は受光部間配線4-2の表面に形成された絶縁膜21の上層に形成されている。受光部間配線4-3は受光部間配線4-4の表面に形成された絶縁膜21の上層に形成されている。
The light receiving portion wiring 4-1 is formed in an upper layer of the insulating film 21 formed on the surface of the light receiving portion wiring 4-2. The light receiving portion wiring 4-3 is formed in an upper layer of the insulating film 21 formed on the surface of the light receiving portion wiring 4-4.
以下、転送電極3と受光部間配線4との配置について説明する。
Hereinafter, the arrangement of the transfer electrode 3 and the light receiving portion wiring 4 will be described.
図2において、2N+1番目(Nは0以上の整数)の垂直シフトレジスタ101と2(N+1)番目の垂直シフトレジスタ101との間に配置される受光部間配線4-1は、2N+1番目の垂直シフトレジスタ101に含まれる2つの第1転送電極3-1と、2(N+1)番目の垂直シフトレジスタ101に含まれる1つの第1転送電極3-1とを連結する。2N+1番目の垂直シフトレジスタ101において連結される2つの第1転送電極3-1のうち上方に位置するものは、受光部1aの近傍の転送電極3の中で受光部1aの中心からの距離が最も近い。以下、任意の受光部1において受光部1の近傍の転送電極3の中で受光部1の中心からの距離が最も近い転送電極3を「受光部1の最近接電極」と表記することとする。
In FIG. 2, the inter-light-receiving-unit wiring 4-1 disposed between the 2N + 1th (N is an integer equal to or greater than 0) vertical shift register 101 and the 2 (N + 1) th vertical shift register 101 is the 2N + 1th vertical Two first transfer electrodes 3-1 included in the shift register 101 are connected to one first transfer electrode 3-1 included in the 2 (N + 1) th vertical shift register 101. Of the two first transfer electrodes 3-1 connected in the 2N + 1-th vertical shift register 101, the one located above has a distance from the center of the light receiving unit 1 a among the transfer electrodes 3 in the vicinity of the light receiving unit 1 a. the nearest. Hereinafter, the transfer electrode 3 having the shortest distance from the center of the light receiving unit 1 among the transfer electrodes 3 in the vicinity of the light receiving unit 1 in any light receiving unit 1 will be referred to as “the closest electrode of the light receiving unit 1”. .
2N+1番目の垂直シフトレジスタ101と2(N+1)番目の垂直シフトレジスタ101との間に配置される受光部間配線4-2は、2N+1番目の垂直シフトレジスタ101に含まれる2つの第2転送電極3-2と、2(N+1)番目の垂直シフトレジスタ101に含まれる1つの第2転送電極3-2とを連結する。2N+1番目の垂直シフトレジスタ101において連結される2つの第2転送電極3-2のうち上方に位置するものは受光部1aの最近接電極に対してその下方において隣り合っている。
The inter-light-receiving portion wiring 4-2 arranged between the 2N + 1th vertical shift register 101 and the 2 (N + 1) th vertical shift register 101 includes two second transfer electrodes included in the 2N + 1th vertical shift register 101. 3-2 is connected to one second transfer electrode 3-2 included in the 2 (N + 1) th vertical shift register 101. Of the two second transfer electrodes 3-2 connected in the 2N + 1-th vertical shift register 101, the one located above is adjacent to the nearest electrode of the light receiving unit 1 a below.
2N+1番目の垂直シフトレジスタ101と2(N+1)番目の垂直シフトレジスタ101との間に配置される受光部間配線4-3は、2N+1番目の垂直シフトレジスタ101に含まれる2つの第3転送電極3-3と、2(N+1)番目の垂直シフトレジスタ101に含まれる2つの第3転送電極3-3とを連結する。2N+1番目の垂直シフトレジスタ101において連結される2つの第3転送電極3-3のうち上方に位置するものは受光部1bの最近接電極である。また、2(N+1)番目の垂直シフトレジスタ101において連結される2つの第3転送電極3-3のうち下方に位置するものは受光部1bの最近接電極である。
The inter-light-receiving portion wiring 4-3 disposed between the 2N + 1th vertical shift register 101 and the 2 (N + 1) th vertical shift register 101 includes two third transfer electrodes included in the 2N + 1th vertical shift register 101. 3-3 is connected to two third transfer electrodes 3-3 included in the 2 (N + 1) th vertical shift register 101. Of the two third transfer electrodes 3-3 connected in the 2N + 1-th vertical shift register 101, the one positioned above is the closest electrode of the light receiving unit 1b. Of the two third transfer electrodes 3-3 connected in the 2 (N + 1) th vertical shift register 101, the one positioned below is the closest electrode of the light receiving unit 1b.
2N+1番目の垂直シフトレジスタ101と2(N+1)番目の垂直シフトレジスタ101との間に配置される受光部間配線4-4は、2N+1番目の垂直シフトレジスタ101に含まれる2つの第4転送電極3-4と、2(N+1)番目の垂直シフトレジスタ101に含まれる2つの第4転送電極3-4とを連結する。このうち、2N+1番目の垂直シフトレジスタ101において連結される2つの第4転送電極3-4のうち上方に位置するものは受光部1bの最近接電極に対してその下方において隣り合っている。また、2(N+1)番目の垂直シフトレジスタ101において連結される2つの第4転送電極3-4のうち下方に位置するものは受光部1bの最近接電極に対してその下方において隣り合っている。
The inter-light-receiving-unit wiring 4-4 disposed between the 2N + 1th vertical shift register 101 and the 2 (N + 1) th vertical shift register 101 includes two fourth transfer electrodes included in the 2N + 1th vertical shift register 101. 3-4 is connected to two fourth transfer electrodes 3-4 included in the 2 (N + 1) th vertical shift register 101. Among these, the upper one of the two fourth transfer electrodes 3-4 connected in the 2N + 1-th vertical shift register 101 is adjacent to the nearest electrode of the light receiving unit 1b below. Of the two fourth transfer electrodes 3-4 connected in the 2 (N + 1) th vertical shift register 101, the one positioned below is adjacent to the nearest electrode of the light receiving unit 1b below. .
2(N+1)番目の垂直シフトレジスタ101と2N+3番目の垂直シフトレジスタ101との間に配置される受光部間配線4-1は、2(N+1)番目の垂直シフトレジスタ101に含まれる2つの第1転送電極3-1と、2N+3番目の垂直シフトレジスタ101に含まれる2つの第1転送電極3-1とを連結する。2(N+1)番目の垂直シフトレジスタ101において連結される2つの第1転送電極3-1のうち上方に位置するものは受光部1aの最近接電極である。
The inter-light-receiving-unit wiring 4-1 arranged between the 2 (N + 1) th vertical shift register 101 and the 2N + 3rd vertical shift register 101 includes two second light receiving lines included in the 2 (N + 1) th vertical shift register 101. One transfer electrode 3-1 and two first transfer electrodes 3-1 included in the 2N + 3rd vertical shift register 101 are connected. Of the two first transfer electrodes 3-1 connected in the 2 (N + 1) th vertical shift register 101, the one located above is the closest electrode of the light receiving unit 1 a.
2(N+1)番目の垂直シフトレジスタ101と2N+3番目の垂直シフトレジスタ101の間に配置される受光部間配線4-2は、2(N+1)番目の垂直シフトレジスタ101に含まれる2つの第2転送電極3-2と、2N+3番目の垂直シフトレジスタ101に含まれる2つの第2転送電極3-2とを連結する。2(N+1)番目の垂直シフトレジスタ101において連結される2つの第2転送電極3-2のうち上方に位置するものは受光部1aの最近接電極に対してその下方において隣り合っている。
The inter-light-receiving-unit wiring 4-2 arranged between the 2 (N + 1) th vertical shift register 101 and the 2N + 3rd vertical shift register 101 includes two second second lines included in the 2 (N + 1) th vertical shift register 101. The transfer electrode 3-2 is connected to two second transfer electrodes 3-2 included in the 2N + 3rd vertical shift register 101. Of the two second transfer electrodes 3-2 connected in the 2 (N + 1) -th vertical shift register 101, the one located above is adjacent to the nearest electrode of the light receiving unit 1a below.
2(N+1)番目の垂直シフトレジスタ101と2N+3番目の垂直シフトレジスタ101との間に配置される受光部間配線4-3は、2(N+1)番目の垂直シフトレジスタ101に含まれる2つの第3転送電極3-3と、2N+3番目の垂直シフトレジスタ101に含まれる1つの第3転送電極3-3とを連結する。2(N+1)番目の垂直シフトレジスタ101において連結される2つ第3転送電極3-3のうち上方に位置するものは受光部1bの最近接電極である。
An inter-light-receiving portion wiring 4-3 disposed between the 2 (N + 1) th vertical shift register 101 and the 2N + 3rd vertical shift register 101 is provided by two 2nd (N + 1) th vertical shift registers 101. The third transfer electrode 3-3 is connected to one third transfer electrode 3-3 included in the 2N + 3rd vertical shift register 101. Of the two third transfer electrodes 3-3 connected in the 2 (N + 1) th vertical shift register 101, the one located above is the closest electrode of the light receiving unit 1b.
2(N+1)番目の垂直シフトレジスタ101と2N+3番目の垂直シフトレジスタ101との間に配置される受光部間配線4-4は、2(N+1)番目の垂直シフトレジスタ101に含まれる2つの第4転送電極3-4と、2N+3番目の垂直シフトレジスタ101に含まれる1つの第4転送電極3-4とを連結する。2(N+1)番目の垂直シフトレジスタ101において連結される2つの第4転送電極3-4のうち上方に位置するものは受光部1bの最近接電極に対してその下方において隣り合っている。
The inter-light-receiving-unit wiring 4-4 disposed between the 2 (N + 1) th vertical shift register 101 and the 2N + 3rd vertical shift register 101 has two second shift bits included in the 2 (N + 1) th vertical shift register 101. The four transfer electrodes 3-4 are connected to one fourth transfer electrode 3-4 included in the 2N + 3rd vertical shift register 101. Of the two fourth transfer electrodes 3-4 connected in the 2 (N + 1) th vertical shift register 101, the one located above is adjacent to the nearest electrode of the light receiving unit 1b below.
また、図3に示すように、転送電極3上には、絶縁膜を介してシャント配線5(転送電極駆動用第2配線)が配置されている。シャント配線5は、垂直シフトレジスタ101の垂直方向と並行する方向に配線され、受光部1の間隙において、水平方向に張り出しており、一画素置きに張り出す方向が180°異なっている。
Further, as shown in FIG. 3, a shunt wiring 5 (transfer electrode driving second wiring) is disposed on the transfer electrode 3 via an insulating film. The shunt wiring 5 is wired in a direction parallel to the vertical direction of the vertical shift register 101, and projects in the horizontal direction in the gap of the light receiving unit 1, and the direction in which every other pixel projects is 180 ° different.
シャント配線5はコンタクト部6において受光部間配線4に接続されている。具体的にシャント配線5は、転送パルスφV1が供給される第1シャント配線5-1と、転送パルスφV2が供給される第2シャント配線5-2と、転送パルスφV3が供給される第3シャント配線5-3と、転送パルスφV4が供給される第4シャント配線5-4とから成っている。なお、特に区別する必要がない場合に、単にシャント配線5と記載する。コンタクト部6は、第1シャント配線5-1と接続するコンタクト部6-1と、第2シャント配線5-2と接続するコンタクト部6-2と、第3シャント配線5-3と接続するコンタクト部6-3と、第4シャント配線5-4と接続するコンタクト部6-4とを含んでいる。なお、特に区別する必要がない場合に、単にコンタクト部6と記載する。
The shunt wiring 5 is connected to the light receiving section wiring 4 at the contact section 6. Specifically, the shunt wiring 5 includes a first shunt wiring 5-1 supplied with the transfer pulse φV1, a second shunt wiring 5-2 supplied with the transfer pulse φV2, and a third shunt supplied with the transfer pulse φV3. The wiring 5-3 and the fourth shunt wiring 5-4 to which the transfer pulse φV4 is supplied. In addition, when it is not necessary to distinguish in particular, it will be simply referred to as shunt wiring 5. The contact portion 6 includes a contact portion 6-1 connected to the first shunt wiring 5-1, a contact portion 6-2 connected to the second shunt wiring 5-2, and a contact connected to the third shunt wiring 5-3. And a contact portion 6-4 connected to the fourth shunt wiring 5-4. In addition, when it is not necessary to distinguish in particular, it will only be described as the contact portion 6.
シャント配線5は、ポリシリコン、あるいはタングステン等の金属材料により形成される。シャント配線5として、金属材料を用いる場合には、ポリシリコンを用いる場合に比べて、膜厚や配線幅を小さくしても同等の抵抗値が得られるため、受光部1の周縁に発生する段差を緩和できるという利点がある。
The shunt wiring 5 is formed of a metal material such as polysilicon or tungsten. When a metal material is used as the shunt wiring 5, an equivalent resistance value can be obtained even if the film thickness and the wiring width are reduced as compared with the case where polysilicon is used. There is an advantage that can be relaxed.
図4は図3のA-A’線における断面図であり、図5は図3のB-B’線における断面図であり、図6は図3のC-C’線における断面図である。なお、図4~図6は、図3に示す受光部1aの断面図であるが、図3に示す受光部1bの断面図については、図4~図6の符号を、受光部1bに相当する部分に読み替えればよい。
4 is a cross-sectional view taken along line AA ′ of FIG. 3, FIG. 5 is a cross-sectional view taken along line BB ′ of FIG. 3, and FIG. 6 is a cross-sectional view taken along line CC ′ of FIG. . 4 to 6 are cross-sectional views of the light receiving unit 1a shown in FIG. 3, but for the cross-sectional view of the light receiving unit 1b shown in FIG. 3, the symbols in FIGS. 4 to 6 correspond to the light receiving unit 1b. What is necessary is just to replace with the part to do.
本実施形態では、例えばn型シリコンからなる半導体基板10が用いられる。半導体基板10には、p型ウェル11が形成されている。p型ウェル11内には、n型領域12が形成され、n型領域12よりも表面側にはp型領域13が形成されている。n型領域12とp型ウェル11とのpn接合によるフォトダイオードによって受光部1が構成される。n型領域12の表面側にp型領域13が形成されていることにより、暗電流を低減した埋め込みフォトダイオードが構成される。
In the present embodiment, a semiconductor substrate 10 made of, for example, n-type silicon is used. A p-type well 11 is formed in the semiconductor substrate 10. An n-type region 12 is formed in the p-type well 11, and a p-type region 13 is formed on the surface side of the n-type region 12. The light receiving portion 1 is constituted by a photodiode having a pn junction between the n-type region 12 and the p-type well 11. Since the p-type region 13 is formed on the surface side of the n-type region 12, an embedded photodiode with reduced dark current is configured.
n型領域12に隣接してp型ウェル14が形成されており、p型ウェル14内にn型領域からなる転送チャネル2が形成されている。転送チャネル2に隣接して、隣接する受光部1間での信号電荷の流出入を防止するためのp型のチャネルストップ部16が形成されている。図示する例では、受光部1と、受光部1の左側の転送チャネル2との間が、読み出しチャネル17となる。
A p-type well 14 is formed adjacent to the n-type region 12, and a transfer channel 2 composed of the n-type region is formed in the p-type well 14. Adjacent to the transfer channel 2, a p-type channel stop portion 16 is formed for preventing signal charges from flowing in and out between the adjacent light receiving portions 1. In the example shown in the figure, the readout channel 17 is between the light receiving unit 1 and the transfer channel 2 on the left side of the light receiving unit 1.
種々の半導体領域が形成された半導体基板10上には、ゲート絶縁膜20を介してポリシリコンからなる転送電極3が形成されている。読み出しチャネル17のうち、第1転送電極3-1の電圧によりポテンシャル分布が制御されるものを読み出しチャネル17aとすると、受光部1aの信号電荷は読み出しチャネル17aのポテンシャル分布が制御されたときに、左側の転送チャネル2に読み出される。なお、読み出しチャネル17aは図示されていないが、図4における符号17を読み出しチャネル17aと読み替えればよい。
On the semiconductor substrate 10 on which various semiconductor regions are formed, the transfer electrode 3 made of polysilicon is formed via the gate insulating film 20. If the readout channel 17 has the potential distribution controlled by the voltage of the first transfer electrode 3-1, the readout channel 17 a has the signal charge of the light receiving unit 1 a when the potential distribution of the readout channel 17 a is controlled. Read to left transfer channel 2. Although the read channel 17a is not shown, the reference numeral 17 in FIG. 4 may be read as the read channel 17a.
一方、読み出しチャネル17のうち、第3転送電極3-3の電圧によりポテンシャル分布が制御されるものを読み出しチャネル17bとすると、受光部1bの信号電荷は読み出しチャネル17bのポテンシャル分布が制御されたときに左側の転送チャネル2に読み出される。つまり、読み出しチャネル17bとは、図3の受光部1bをA-A’方向で切った場合における図4の符号17に相当する。
On the other hand, if the readout channel 17b has the potential distribution controlled by the voltage of the third transfer electrode 3-3 among the readout channels 17, the signal charge of the light receiving portion 1b is obtained when the potential distribution of the readout channel 17b is controlled. To the left transfer channel 2. That is, the readout channel 17b corresponds to the reference numeral 17 in FIG. 4 when the light receiving portion 1b in FIG. 3 is cut in the A-A ′ direction.
第2転送電極3-2、第4転送電極3-4および受光部間配線4-2,4-4を被覆するように、例えば酸化シリコンからなる絶縁膜21が形成されている。受光部間配線4-2,4-4上には、絶縁膜21を介して受光部間配線4-1,4-3が形成されている。絶縁膜21,22上には遮光膜7が形成されている。遮光膜7の上層には、平坦化膜23を介してシャント配線5が形成されている。
An insulating film 21 made of, for example, silicon oxide is formed so as to cover the second transfer electrode 3-2, the fourth transfer electrode 3-4, and the light receiving portion wirings 4-2 and 4-4. Inter-light-receiving portion wirings 4-1 and 4-3 are formed on the inter-light-receiving portion wirings 4-2 and 4-4 with an insulating film 21 interposed therebetween. A light shielding film 7 is formed on the insulating films 21 and 22. A shunt wiring 5 is formed on the light shielding film 7 via a planarizing film 23.
絶縁膜21およびその上層の遮光膜7には、コンタクト部6-2,6-4の一部において開口が形成されており、開口の内側においてシャント配線5と転送電極3とが接続されている。絶縁膜22およびその上層の遮光膜7には、コンタクト部6-1,6-3において開口が形成されており、開口の内側においてシャント配線5と転送電極3とが接続されている。なお、シャント配線5として、タングステンなどの金属材料を用いる場合には、コンタクト部6においてシャント配線5を構成する金属材料と転送電極3とを直接接続せずに、バリアメタルを介在させてもよい。
The insulating film 21 and the light shielding film 7 thereabove have openings formed in part of the contact portions 6-2 and 6-4, and the shunt wiring 5 and the transfer electrode 3 are connected inside the openings. . The insulating film 22 and the light shielding film 7 thereabove have openings in the contact portions 6-1 and 6-3, and the shunt wiring 5 and the transfer electrode 3 are connected inside the openings. When a metal material such as tungsten is used as the shunt wiring 5, a barrier metal may be interposed without directly connecting the metal material constituting the shunt wiring 5 and the transfer electrode 3 in the contact portion 6. .
なお、図示はしないが、遮光膜7の上層には必要に応じて、平坦化膜、カラーフィルター、およびオンチップレンズが形成されていてもよい。
Although not shown, a planarizing film, a color filter, and an on-chip lens may be formed on the light shielding film 7 as necessary.
次に、上記の本実施形態に係る固体撮像装置の動作について図7~図10を用いて説明する。
Next, the operation of the solid-state imaging device according to the present embodiment will be described with reference to FIGS.
図7は、本実施形態に係る固体撮像装置の動作例を示すタイミングチャートであり、図8は、図7に示す電荷読み出し期間におけるタイミングチャートの例である。図9は、図7に示す電荷読み出し期間におけるタイミングチャートの例であり、図10は、図7に示す水平走査期間におけるタイミングチャートの例である。
FIG. 7 is a timing chart showing an operation example of the solid-state imaging device according to the present embodiment, and FIG. 8 is an example of a timing chart in the charge readout period shown in FIG. 9 is an example of a timing chart in the charge reading period shown in FIG. 7, and FIG. 10 is an example of a timing chart in the horizontal scanning period shown in FIG.
受光部1に光が入射すると、光電変換部100において、光電変換により入射光量に応じた信号電荷(本例では電子)が生成され、光電変換部100のn型領域12内で一定期間蓄積される。
When light enters the light receiving unit 1, the photoelectric conversion unit 100 generates a signal charge (electrons in this example) corresponding to the amount of incident light by photoelectric conversion and accumulates the signal charge in the n-type region 12 of the photoelectric conversion unit 100 for a certain period. The
まず、光電変換部100aによる光電変換により生成された信号電荷が読み出される場合について説明する。
First, a case where the signal charge generated by photoelectric conversion by the photoelectric conversion unit 100a is read will be described.
例えば、図7~図9においてφV1がHになり、第1転送電極3-1に読み出しパルスが供給されると、光電変換部100aの読み出しチャネル17aのポテンシャル分布が制御されて、光電変換部100aに蓄積された全ての信号電荷が転送チャネル2に読み出される。読み出しパルスの電圧は例えば13Vである。このとき、図7~図9におけるφV3はLであり、第3転送電極3-3には-6Vが印加される。また、図7~図9におけるφV2,φV4はともにMであり、第2転送電極3-2及び第4転送電極3-4には0Vが印加される。
For example, in FIG. 7 to FIG. 9, when φV1 becomes H and a read pulse is supplied to the first transfer electrode 3-1, the potential distribution of the read channel 17a of the photoelectric conversion unit 100a is controlled, and the photoelectric conversion unit 100a All the signal charges stored in are transferred to the transfer channel 2. The voltage of the read pulse is 13V, for example. At this time, φV3 in FIGS. 7 to 9 is L, and −6V is applied to the third transfer electrode 3-3. 7 to 9, both φV2 and φV4 are M, and 0 V is applied to the second transfer electrode 3-2 and the fourth transfer electrode 3-4.
図7~図9において、φV1がHからMに遷移することによって読み出しパルスの印加期間が終了し、第1転送電極3-1に印加される電圧が0Vに切り替わると、光電変換部100aに蓄積されていた信号電荷は光電変換部100aに隣接した第4転送電極3-4、第1転送電極3-1、第2転送電極3-2の下の転送チャネル2内に蓄積された状態となっている(図1の符号110参照)。
In FIG. 7 to FIG. 9, when φV1 transitions from H to M, the readout pulse application period ends, and when the voltage applied to the first transfer electrode 3-1 is switched to 0V, it accumulates in the photoelectric conversion unit 100a. The signal charges that have been stored are accumulated in the transfer channel 2 below the fourth transfer electrode 3-4, the first transfer electrode 3-1, and the second transfer electrode 3-2 adjacent to the photoelectric conversion unit 100a. (See reference numeral 110 in FIG. 1).
光電変換部100aの信号電荷が転送チャネル2に読み出された後、転送電極3に4相の転送パルスφV1~φV4が供給され、転送チャネル2のポテンシャル分布が制御されて、信号電荷が垂直方向に転送される。この転送は、信号電荷が、読み出された位置から2電極分下方に移動して、第2転送電極3-2、第3転送電極3-3、第4転送電極3-4の下の転送チャネル2に蓄積される状態になるまで行われる。
After the signal charge of the photoelectric conversion unit 100a is read out to the transfer channel 2, four-phase transfer pulses φV1 to φV4 are supplied to the transfer electrode 3, the potential distribution of the transfer channel 2 is controlled, and the signal charge is Forwarded to In this transfer, the signal charge moves downward by two electrodes from the read position, and is transferred below the second transfer electrode 3-2, the third transfer electrode 3-3, and the fourth transfer electrode 3-4. This is performed until the channel 2 is accumulated.
次に、光電変換部100bによる光電変換により生成された信号電荷が読み出される場合について説明する。
Next, a case where signal charges generated by photoelectric conversion by the photoelectric conversion unit 100b are read will be described.
図7~図9においてφV3がHになり、第3転送電極3-3に読み出しパルスが供給されると、光電変換部100bの読み出しチャネル17bのポテンシャル分布が制御されて、光電変換部100bに蓄積された全ての信号電荷が転送チャネル2に読み出される。このとき、図7~図9におけるφV1はLであり、第1転送電極3-1には-6Vが印加される。また、図7~図9におけるφV2,φV4はMであり、第2転送電極3-2及び第4転送電極3-4には0Vが印加される。このとき、先に転送チャネル2に読み出された光電変換部100aの信号電荷は光電変換部100bの読み出しチャネル17bから1段分上方に位置する第2転送電極3-2、第3転送電極3-3、第4転送電極3-4の下の転送チャネル2に蓄積されているため、読み出しチャネル17bから離れているため、読み出しパルスが印加されても光電変換部100bの信号電荷と混ざり合うことはない。
7 to 9, when φV3 becomes H and a read pulse is supplied to the third transfer electrode 3-3, the potential distribution of the read channel 17b of the photoelectric conversion unit 100b is controlled and accumulated in the photoelectric conversion unit 100b. All the signal charges are read out to the transfer channel 2. At this time, φV1 in FIGS. 7 to 9 is L, and −6V is applied to the first transfer electrode 3-1. In FIGS. 7 to 9, φV2 and φV4 are M, and 0V is applied to the second transfer electrode 3-2 and the fourth transfer electrode 3-4. At this time, the signal charges of the photoelectric conversion unit 100a previously read to the transfer channel 2 are the second transfer electrode 3-2 and the third transfer electrode 3 which are positioned one stage above the read channel 17b of the photoelectric conversion unit 100b. −3, since it is accumulated in the transfer channel 2 below the fourth transfer electrode 3-4, it is separated from the read channel 17b, so that it mixes with the signal charge of the photoelectric conversion unit 100b even when a read pulse is applied. There is no.
図7~図9において、φV3がHからMに遷移することによって読み出しパルスの印加期間が終了し、第3転送電極3-3に印加される電圧が0Vに切り替わると、光電変換部100bに蓄積されていた信号電荷は光電変換部100bに隣接した第2転送電極3-2、第3転送電極3-3、第4転送電極3-4の下の転送チャネル2に蓄積された状態となる。
In FIG. 7 to FIG. 9, when φV3 transitions from H to M, the readout pulse application period ends, and when the voltage applied to the third transfer electrode 3-3 is switched to 0 V, the voltage is accumulated in the photoelectric conversion unit 100b. The signal charge thus stored is accumulated in the transfer channel 2 below the second transfer electrode 3-2, the third transfer electrode 3-3, and the fourth transfer electrode 3-4 adjacent to the photoelectric conversion unit 100b.
ここで、露光時間は、上記読み出しパルスの印加が終了した時刻、もしくは半導体基板10の深部のn型ウェルに高電圧(例えば25V)を印加して全ての光電変換部100を一斉に空乏化させた後にn型ウェルへの印加電圧を低電圧(例えば6V)に切り替えた時刻を開始時刻として、転送チャネル2に信号電荷が読み出された時刻を終了時刻とする時間と等価である。
Here, the exposure time is the time when the application of the readout pulse is completed, or a high voltage (for example, 25 V) is applied to the n-type well in the deep part of the semiconductor substrate 10 to deplete all the photoelectric conversion units 100 at the same time. This is equivalent to the time when the time when the applied voltage to the n-type well is switched to a low voltage (for example, 6V) after that is the start time and the time when the signal charge is read out to the transfer channel 2 is the end time.
したがって、本実施形態では、光電変換部100a及び光電変換部100bに蓄積された信号電荷をそれぞれ異なる時刻に転送チャネル2に読み出すことが可能であるため、光電変換部100a及び光電変換部100bに関する露光時間をそれぞれ異なる時間に設定することが可能である。
Accordingly, in the present embodiment, since the signal charges accumulated in the photoelectric conversion unit 100a and the photoelectric conversion unit 100b can be read out to the transfer channel 2 at different times, exposure relating to the photoelectric conversion unit 100a and the photoelectric conversion unit 100b is performed. It is possible to set different times.
本実施形態では、図8および図9に示すように、光電変換部100aの信号電荷を先に読み出し、光電変換部100bの信号電荷を後で読み出しているが、この順序は逆でもよい。また、光電変換部100a,100bのどちらか一方の信号電荷を2回読み出してもよい。2回の露光時間はそれぞれ異なってもよい。
In this embodiment, as shown in FIGS. 8 and 9, the signal charge of the photoelectric conversion unit 100a is read first, and the signal charge of the photoelectric conversion unit 100b is read later, but this order may be reversed. Further, the signal charge of either one of the photoelectric conversion units 100a and 100b may be read twice. The two exposure times may be different.
ここで、光電変換部100a,100bの信号電荷についてそれぞれ1回ずつの読み出し、もしくは光電変換部100a,100bのどちらか一方の信号電荷について2回の読み出しが終了した時点で、垂直シフトレジスタ101には、光電変換部100a,100bのどちらか一方をさらにもう1回読み出して、転送チャネル2に蓄積することが可能な領域(図2の符号120参照)が残されている。
Here, when the signal charges of the photoelectric conversion units 100a and 100b are each read once, or the signal charges of either one of the photoelectric conversion units 100a and 100b are read twice, the vertical shift register 101 stores the signal charges. In this case, an area (see reference numeral 120 in FIG. 2) in which one of the photoelectric conversion units 100a and 100b can be read one more time and accumulated in the transfer channel 2 is left.
この領域に信号電荷を読み出して蓄積させる場合は、まず、転送電極3に4相の転送パルスφV1~φV4を供給して転送チャネル2のポテンシャル分布を制御し、信号電荷を垂直方向に転送させる。例えば、光電変換部100aの信号電荷を読み出す場合は(図8参照)、光電変換部100aに隣接する第4転送電極3-4、第1転送電極3-1、第2転送電極3-2の下の転送チャネル2に電荷が蓄積されていない領域が移るまで信号電荷を垂直方向に転送させる。そして、第1転送電極3-1に読み出しパルスを印加して光電変換部100aの信号電荷を読み出す。この読み出しパルスは任意の時刻に設定することが可能であり、従って、露光時間も先のものと異ならせることが可能である。
When reading and accumulating signal charges in this region, first, four-phase transfer pulses φV1 to φV4 are supplied to the transfer electrode 3 to control the potential distribution of the transfer channel 2 and transfer the signal charges in the vertical direction. For example, when reading the signal charge of the photoelectric conversion unit 100a (see FIG. 8), the fourth transfer electrode 3-4, the first transfer electrode 3-1 and the second transfer electrode 3-2 adjacent to the photoelectric conversion unit 100a The signal charge is transferred in the vertical direction until a region where no charge is accumulated moves to the lower transfer channel 2. Then, a read pulse is applied to the first transfer electrode 3-1, and the signal charge of the photoelectric conversion unit 100a is read. The readout pulse can be set at an arbitrary time, and therefore the exposure time can be different from the previous one.
一方、光電変換部100bの信号電荷を読み出す場合は(図9参照)、光電変換部100bに隣接する第2転送電極3-2、第3転送電極3-3、第4転送電極3-4の下の転送チャネル2に電荷が蓄積されていない領域が移るまで信号電荷を垂直方向に転送させる。そして、第3転送電極3-3に読み出しパルスを印加して光電変換部100bの信号電荷を読み出す。
On the other hand, when reading the signal charge of the photoelectric conversion unit 100b (see FIG. 9), the second transfer electrode 3-2, the third transfer electrode 3-3, and the fourth transfer electrode 3-4 adjacent to the photoelectric conversion unit 100b. The signal charge is transferred in the vertical direction until a region where no charge is accumulated moves to the lower transfer channel 2. Then, a read pulse is applied to the third transfer electrode 3-3 to read the signal charge of the photoelectric conversion unit 100b.
なお、図10に示す水平ブランキング期間において、垂直シフトレジスタ101の最下ライン(光電変換部100の最下行)の信号電荷が水平シフトレジスタ102へ転送される。そして、図10に示す水平走査期間(図7の水平ライン走査期間に相当)において、信号電荷が水平方向に転送される。このように、信号電荷が垂直方向に転送された後、水平シフトレジスタ102により信号電荷が水平方向に転送されて電荷検出部103に送られる。電荷検出部103では、信号電荷は信号電荷量に応じた電圧に変換されて出力される。
Note that in the horizontal blanking period shown in FIG. 10, the signal charge on the bottom line of the vertical shift register 101 (the bottom row of the photoelectric conversion unit 100) is transferred to the horizontal shift register 102. In the horizontal scanning period shown in FIG. 10 (corresponding to the horizontal line scanning period in FIG. 7), signal charges are transferred in the horizontal direction. As described above, after the signal charge is transferred in the vertical direction, the signal charge is transferred in the horizontal direction by the horizontal shift register 102 and sent to the charge detection unit 103. In the charge detection unit 103, the signal charge is converted into a voltage corresponding to the signal charge amount and output.
次に、上記の本実施形態に係る固体撮像装置の効果について説明する。
Next, effects of the solid-state imaging device according to the present embodiment will be described.
本実施形態では3つの異なる露光時間で光電変換部100の信号電荷を読み出すことが可能である。3つの露光時間は、上述したように光電変換部100aと光電変換部100bに対して、例えば2:1で割り当てることができる。2回の露光時間を割り当てた方の光電変換部100は、2回の露光時間をそれぞれ異ならせることが可能であり、例えば、長時間露光と短時間露光の信号電荷を同一フレームで取得して画像合成処理を施すことにより、通常の1回露光で取得できる画像よりもダイナミックレンジの広い画像を取得することができる。このとき、他方の光電変換部100については、同じフレームで、通常の画像を取得することができる。
In this embodiment, the signal charge of the photoelectric conversion unit 100 can be read out at three different exposure times. As described above, the three exposure times can be assigned, for example, 2: 1 to the photoelectric conversion unit 100a and the photoelectric conversion unit 100b. The photoelectric conversion unit 100 to which the two exposure times are assigned can make the two exposure times different, for example, by acquiring the signal charges for the long exposure and the short exposure in the same frame. By performing the image composition processing, an image having a wider dynamic range than an image that can be acquired by a normal single exposure can be acquired. At this time, for the other photoelectric conversion unit 100, a normal image can be acquired in the same frame.
また、2つの露光時間を使って、Time-of-Flight方式の距離画像センシングを実現することができる。例えば、パルス発光動作を行う光源から照射された赤外光が照射空間内の物体で反射されて固体撮像装置へ到達する光量に応じて光電変換部100に蓄積される信号電荷について、1回目の露光時間においては発光の1周期が完全に終了した後で信号電荷を読み出し、2回目の露光時間においては発光周期の途中で信号電荷を読み出す。このようにして取得した画像情報を演算することにより、物体から固体撮像装置までの距離を算出することができる。このときも同じフレームで、他方の光電変換部100については通常の画像を取得することができる。すなわち、光電変換部100aにRGB画素、光電変換部100bに赤外光画素を割り当てた撮像装置の場合、周囲の明るさに合わせた最適な露光時間で光電変換部100aから取得したカラー画像と、パルス発光と同期した赤外光画素の間欠読み出し動作により光電変換部100bから取得した距離画像とを同一フレームで取得することが可能である。
Also, it is possible to realize time-of-flight range image sensing using two exposure times. For example, with respect to signal charges accumulated in the photoelectric conversion unit 100 according to the amount of light that is reflected by an object in the irradiation space and reaches the solid-state imaging device when infrared light emitted from a light source that performs pulsed light emission operation is first-time In the exposure time, the signal charge is read after one light emission cycle is completely completed, and in the second exposure time, the signal charge is read in the middle of the light emission cycle. By calculating the image information acquired in this manner, the distance from the object to the solid-state imaging device can be calculated. Also at this time, a normal image can be acquired for the other photoelectric conversion unit 100 in the same frame. That is, in the case of an imaging apparatus in which RGB pixels are allocated to the photoelectric conversion unit 100a and infrared light pixels are allocated to the photoelectric conversion unit 100b, a color image acquired from the photoelectric conversion unit 100a with an optimal exposure time according to the ambient brightness, It is possible to acquire the distance image acquired from the photoelectric conversion unit 100b in the same frame by the intermittent readout operation of the infrared light pixels synchronized with the pulse light emission.
また、3つの露光時間を光電変換部100aと光電変換部100bに対して2:0あるいは3:0で割り当てることも可能である。この場合は、読み出さない方の光電変換部100の信号電荷は、半導体基板10の深部のn型ウェルに高電圧を印加して廃棄すればよい。この場合も、長時間露光と短時間露光との信号電荷を同一フレームで取得して画像合成処理を施すことによりダイナミックレンジの広い画像を取得することができる。
It is also possible to assign three exposure times to the photoelectric conversion unit 100a and the photoelectric conversion unit 100b at 2: 0 or 3: 0. In this case, the signal charges of the photoelectric conversion unit 100 that is not read out may be discarded by applying a high voltage to the n-type well in the deep part of the semiconductor substrate 10. Also in this case, it is possible to acquire an image with a wide dynamic range by acquiring the signal charges of the long exposure and the short exposure in the same frame and performing image composition processing.
また、3回の露光時間を光電変換部100aと光電変換部100bに対して2:0もしくは1:1で割り当て、残りの1回分の露光時間の信号電荷は光電変換部100からは読み出さず、転送チャネル2に自然発生した電荷のみを蓄積させることも可能である。この場合は、転送チャネル2の内部や絶縁膜20の表面などに存在する格子欠陥から発生した暗電流や遮光膜7と基板の隙間から入り込んだ光によって発生したスミア電子などのノイズ信号量を計測することが可能となり、通常の画像からノイズ成分を差し引けば、S/N比の良い高精細な画像を取得することが可能となる。
Further, the exposure time of 3 times is assigned to the photoelectric conversion unit 100a and the photoelectric conversion unit 100b at 2: 0 or 1: 1, and the signal charge of the remaining exposure time is not read from the photoelectric conversion unit 100, It is also possible to accumulate only spontaneously generated charges in the transfer channel 2. In this case, the amount of noise signals such as smear electrons generated by dark current generated from lattice defects existing inside the transfer channel 2 or the surface of the insulating film 20 or light entering from the gap between the light shielding film 7 and the substrate is measured. If a noise component is subtracted from a normal image, a high-definition image with a good S / N ratio can be acquired.
また、全ての光電変換部100a及び全ての光電変換部100bのそれぞれについて、同時に信号電荷を読み出すことが可能であるため、撮像装置にメカシャッタを搭載していない場合においても、動きの速い被写体について、歪みのない画像データを取得することが可能である。
In addition, since it is possible to simultaneously read out the signal charges for each of all the photoelectric conversion units 100a and all the photoelectric conversion units 100b, even when a mechanical shutter is not mounted on the imaging apparatus, It is possible to acquire image data without distortion.
ポリシリコンなどの導電性膜に覆われていない面積を「開口面積」とすると、本実施形態においては、受光部1aの開口面積は受光部1bの開口面積よりも小さい。しかし、開口面積は光電変換部群104aにおいて一律の大きさである。また、光電変換部群104bにおいても一律の大きさである。このため、受光部1a,1bのそれぞれの感度特性に合わせて露光時間を調整すれば、光電変換部群104a及び光電変換部群104bのそれぞれに関して斑のない良質な画像を取得することが可能である。
Assuming that the area not covered with the conductive film such as polysilicon is “opening area”, in this embodiment, the opening area of the light receiving portion 1a is smaller than the opening area of the light receiving portion 1b. However, the opening area is uniform in the photoelectric conversion unit group 104a. Further, the photoelectric conversion unit group 104b has a uniform size. For this reason, if the exposure time is adjusted in accordance with the sensitivity characteristics of the light receiving portions 1a and 1b, it is possible to obtain high-quality images free from spots for the photoelectric conversion portion group 104a and the photoelectric conversion portion group 104b. is there.
(第2の実施形態)
以下、第2の実施形態に係る固体撮像装置について、第1の実施形態と異なる点を中心に説明する。 (Second Embodiment)
Hereinafter, the solid-state imaging device according to the second embodiment will be described focusing on differences from the first embodiment.
以下、第2の実施形態に係る固体撮像装置について、第1の実施形態と異なる点を中心に説明する。 (Second Embodiment)
Hereinafter, the solid-state imaging device according to the second embodiment will be described focusing on differences from the first embodiment.
図11および図12は、第2の実施形態に係る固体撮像装置の要部平面図である。
FIG. 11 and FIG. 12 are main part plan views of the solid-state imaging device according to the second embodiment.
本実施形態では、水平方向に並ぶ2N+1番目と2(N+1)番目の垂直シフトレジスタ101において、第1転送電極3-1は、受光部間配線4-1a及び受光部間配線4-1bにより連結されており、第2転送電極3-2は受光部間配線4-2a及び受光部間配線4-2bにより連結されている。
In the present embodiment, in the 2N + 1-th and 2 (N + 1) -th vertical shift registers 101 arranged in the horizontal direction, the first transfer electrode 3-1 is connected by the inter-light-receiving unit wiring 4-1a and the inter-light-receiving unit wiring 4-1b. The second transfer electrode 3-2 is connected by the inter-light-receiving portion wiring 4-2a and the inter-light-receiving portion wiring 4-2b.
具体的に、2N+1番目の垂直シフトレジスタ101と2(N+1)番目の垂直シフトレジスタ101の間に配置される受光部間配線4-1aは、2N+1番目の垂直シフトレジスタ101に含まれる1つの第1転送電極3-1と、2(N+1)番目の垂直シフトレジスタ101に含まれる2つの第1転送電極3-1とを連結する。2(N+1)番目の垂直シフトレジスタ101において連結される2つの第1転送電極3-1のうち上方に位置するものは受光部1aの最近接電極である。
Specifically, the inter-light-receiving-unit wiring 4-1 a disposed between the 2N + 1-th vertical shift register 101 and the 2 (N + 1) -th vertical shift register 101 is one first included in the 2N + 1-th vertical shift register 101. One transfer electrode 3-1 is connected to two first transfer electrodes 3-1 included in the 2 (N + 1) th vertical shift register 101. Of the two first transfer electrodes 3-1 connected in the 2 (N + 1) th vertical shift register 101, the one located above is the closest electrode of the light receiving unit 1 a.
2N+1番目の垂直シフトレジスタ101と2(N+1)番目の垂直シフトレジスタ101の間に配置される受光部間配線4-1bは、2N+1番目の垂直シフトレジスタ101に含まれる2つの第1転送電極3-1と、2(N+1)番目の垂直シフトレジスタ101に含まれる1つの第1転送電極3-1とを連結する。2N+1番目の垂直シフトレジスタ101において連結される2つの第1転送電極3-1のうち上方に位置するものは受光部1aの最近接電極である。
The inter-light-receiving portion wiring 4-1b disposed between the 2N + 1th vertical shift register 101 and the 2 (N + 1) th vertical shift register 101 includes two first transfer electrodes 3 included in the 2N + 1th vertical shift register 101. −1 and one first transfer electrode 3-1 included in the 2 (N + 1) th vertical shift register 101 are connected. Of the two first transfer electrodes 3-1 connected in the 2N + 1-th vertical shift register 101, the one positioned above is the closest electrode of the light receiving unit 1 a.
2N+1番目の垂直シフトレジスタ101と2(N+1)番目の垂直シフトレジスタ101の間に配置される受光部間配線4-2aは、2N+1番目の垂直シフトレジスタ101に含まれる1つの第2転送電極3-2と、2(N+1)番目の垂直シフトレジスタ101に含まれる2つの第2転送電極3-2とを連結する。2(N+1)番目の垂直シフトレジスタ101において連結される2つの第2転送電極3-2のうち上方に位置するものは受光部1aの最近接電極に対してその下方において隣り合っている。
The inter-light-receiving-unit wiring 4-2a disposed between the 2N + 1th vertical shift register 101 and the 2 (N + 1) th vertical shift register 101 includes one second transfer electrode 3 included in the 2N + 1th vertical shift register 101. -2 and two second transfer electrodes 3-2 included in the 2 (N + 1) th vertical shift register 101 are connected. Of the two second transfer electrodes 3-2 connected in the 2 (N + 1) -th vertical shift register 101, the one located above is adjacent to the nearest electrode of the light receiving unit 1a below.
2N+1番目の垂直シフトレジスタ101と2(N+1)番目の垂直シフトレジスタ101の間に配置される受光部間配線4-2bは、2N+1番目の垂直シフトレジスタ101に含まれる2つの第2転送電極3-2と、2(N+1)番目の垂直シフトレジスタ101に含まれる1つの第2転送電極3-2とを連結する。2N+1番目の垂直シフトレジスタ101において連結される2つの第2転送電極3-2のうち上方に位置するものは受光部1aの最近接電極に対してその下方において隣り合っている。
The inter-light-receiving-unit wiring 4-2b disposed between the 2N + 1th vertical shift register 101 and the 2 (N + 1) th vertical shift register 101 includes two second transfer electrodes 3 included in the 2N + 1th vertical shift register 101. -2 and one second transfer electrode 3-2 included in the 2 (N + 1) th vertical shift register 101 are connected. Of the two second transfer electrodes 3-2 connected in the 2N + 1-th vertical shift register 101, the one located above is adjacent to the nearest electrode of the light receiving unit 1 a below.
図13は、図12のA-A’線における断面図であり、図14は、図12のB-B’線における断面図であり、図15は、図12のC-C’線における断面図である。
13 is a cross-sectional view taken along line AA ′ in FIG. 12, FIG. 14 is a cross-sectional view taken along line BB ′ in FIG. 12, and FIG. 15 is a cross-sectional view taken along line CC ′ in FIG. FIG.
図11~図15に示すように、受光部間配線4-1aは垂直方向に並ぶ受光部1の間隙において、受光部間配線4-2aの表面に形成された絶縁膜21の上層に形成され、受光部間配線4-1bは受光部間配線4-2bの表面に形成された絶縁膜21の上層に形成される。また、受光部間配線4-3aは受光部間配線4-4aの表面に形成された絶縁膜21の上層に形成され、受光部間配線4-3bは受光部間配線4-4bの表面に形成された絶縁膜21の上層に形成されている。
As shown in FIGS. 11 to 15, the inter-light-receiving portion wiring 4-1a is formed in the upper layer of the insulating film 21 formed on the surface of the inter-light-receiving portion wiring 4-2a in the gap between the light-receiving portions 1 arranged in the vertical direction. The light receiving portion wiring 4-1b is formed in an upper layer of the insulating film 21 formed on the surface of the light receiving portion wiring 4-2b. The inter-light-receiving portion wiring 4-3a is formed on the upper layer of the insulating film 21 formed on the surface of the inter-light-receiving portion wiring 4-4a, and the inter-light-receiving portion wiring 4-3b is formed on the surface of the inter-light-receiving portion wiring 4-4b. It is formed in the upper layer of the formed insulating film 21.
また、2(N+1)番目と2N+3番目の垂直シフトレジスタ101において、第3転送電極3-3が受光部間配線4-3a及び受光部間配線4-3bにより連結されており、第4転送電極3-4が受光部間配線4-4a及び受光部間配線4-4bにより連結されている。
In the 2 (N + 1) th and 2N + 3rd vertical shift registers 101, the third transfer electrode 3-3 is connected by the inter-light-receiving unit wiring 4-3a and the inter-light-receiving unit wiring 4-3b. 3-4 are connected by a light receiving portion wiring 4-4a and a light receiving portion wiring 4-4b.
具体的に、2(N+1)番目の垂直シフトレジスタ101と2N+3番目の垂直シフトレジスタ101の間に配置される受光部間配線4-3aは、2(N+1)番目の垂直シフトレジスタ101に含まれる1つの第3転送電極3-3と、2N+3番目の垂直シフトレジスタ101に含まれる2つの第3転送電極3-3とを連結する。2N+3番目の垂直シフトレジスタ101において連結される2つの第3転送電極3-3のうち上方に位置するものは受光部1bの最近接電極である。
Specifically, the inter-light-receiving-part wiring 4-3a disposed between the 2 (N + 1) th vertical shift register 101 and the 2N + 3th vertical shift register 101 is included in the 2 (N + 1) th vertical shift register 101. One third transfer electrode 3-3 is connected to two third transfer electrodes 3-3 included in the 2N + 3rd vertical shift register 101. Of the two third transfer electrodes 3-3 connected in the 2N + 3rd vertical shift register 101, the one positioned above is the closest electrode of the light receiving unit 1b.
2(N+1)番目の垂直シフトレジスタ101と2N+3番目の垂直シフトレジスタ101の間に配置される受光部間配線4-3bは、2(N+1)番目の垂直シフトレジスタ101に含まれる2つの第3転送電極3-1と、2N+3番目の垂直シフトレジスタ101に含まれる1つの第3転送電極3-3とを連結する。2(N+1)番目の垂直シフトレジスタ101において連結される2つの第3転送電極3-3のうち上方に位置するものは受光部1bの最近接電極である。
The inter-light-receiving-unit wiring 4-3b disposed between the 2 (N + 1) th vertical shift register 101 and the 2N + 3rd vertical shift register 101 includes two third third circuits included in the 2 (N + 1) th vertical shift register 101. The transfer electrode 3-1 is connected to one third transfer electrode 3-3 included in the 2N + 3rd vertical shift register 101. Of the two third transfer electrodes 3-3 connected in the 2 (N + 1) th vertical shift register 101, the one located above is the closest electrode of the light receiving unit 1b.
2(N+1)番目の垂直シフトレジスタ101と2N+3番目の垂直シフトレジスタ101の間に配置される受光部間配線4-4aは、2(N+1)番目の垂直シフトレジスタ101に含まれる1つの第4転送電極3-4と、2N+3番目の垂直シフトレジスタ101に含まれる2つの第4転送電極3-4とを連結する。2N+3番目の垂直シフトレジスタ101において連結される2つの第4転送電極3-4のうち上方に位置するものは受光部1bの最近接電極に対してその下方において隣り合っている。
The inter-light-receiving-unit wiring 4-4a disposed between the 2 (N + 1) th vertical shift register 101 and the 2N + 3rd vertical shift register 101 is one fourth included in the 2 (N + 1) th vertical shift register 101. The transfer electrode 3-4 is connected to the two fourth transfer electrodes 3-4 included in the 2N + 3rd vertical shift register 101. Of the two fourth transfer electrodes 3-4 connected in the 2N + 3rd vertical shift register 101, the one located above is adjacent to the nearest electrode of the light receiving unit 1b below.
2(N+1)番目の垂直シフトレジスタ101と2N+3番目の垂直シフトレジスタ101の間に配置される受光部間配線4-4bは、2(N+1)番目の垂直シフトレジスタ101に含まれる2つの第4転送電極3-4と、2N+3番目の垂直シフトレジスタ101に含まれる1つの第4転送電極3-4とを連結する。2(N+1)番目の垂直シフトレジスタ101において連結される2つの第4転送電極3-4のうち上方に位置するものは受光部1bの最近接電極に対してその下方において隣り合っている。
The inter-light-receiving-unit wiring 4-4b disposed between the 2 (N + 1) th vertical shift register 101 and the 2N + 3rd vertical shift register 101 includes two fourth fourth shifters included in the 2 (N + 1) th vertical shift register 101. The transfer electrode 3-4 is connected to one fourth transfer electrode 3-4 included in the 2N + 3rd vertical shift register 101. Of the two fourth transfer electrodes 3-4 connected in the 2 (N + 1) th vertical shift register 101, the one located above is adjacent to the nearest electrode of the light receiving unit 1b below.
図12において、2N+1番目の垂直シフトレジスタ101上には第2シャント配線5-2及び第3シャント配線5-3が配置されている。第2シャント配線5-2はコンタクト部6-2を介して受光部間配線4-2a及び受光部間配線4-2bに接続される。第3シャント配線5-3はコンタクト部6-3を介して受光部間配線4-3a及び4-3bに接続される。
In FIG. 12, a second shunt wiring 5-2 and a third shunt wiring 5-3 are arranged on the 2N + 1th vertical shift register 101. The second shunt wiring 5-2 is connected to the light receiving section wiring 4-2a and the light receiving section wiring 4-2b through the contact section 6-2. The third shunt wiring 5-3 is connected to the light receiving section wirings 4-3a and 4-3b through the contact section 6-3.
2(N+1)番目の垂直シフトレジスタ101上には第1シャント配線5-1及び第4シャント配線5-4が配置されている。第1シャント配線5-1はコンタクト部6-1を介して受光部間配線4-1a及び受光部間配線4-1bに接続される。第4シャント配線5-4はコンタクト部6-4を介して受光部間配線4-4a及び受光部間配線4-4bに接続される。
On the 2 (N + 1) th vertical shift register 101, a first shunt wiring 5-1 and a fourth shunt wiring 5-4 are arranged. The first shunt wiring 5-1 is connected to the light receiving section wiring 4-1a and the light receiving section wiring 4-1b through the contact section 6-1. The fourth shunt wiring 5-4 is connected to the light receiving section wiring 4-4a and the light receiving section wiring 4-4b through the contact section 6-4.
以上、本実施形態によると、受光部間配線4それぞれは3つの転送電極3と接続されるため、受光部間配線4が敷き詰められる面積が小さく、その結果、受光部1の開口面積を大きくすることが可能である。このため、光電変換部群104a,104bのそれぞれに関して感度特性の高い画像を取得することが可能である。
As described above, according to the present embodiment, each of the inter-light-receiving portion wirings 4 is connected to the three transfer electrodes 3, so that the area where the inter-light-receiving portion wiring 4 is spread is small, and as a result, the opening area of the light-receiving portion 1 is increased. It is possible. For this reason, it is possible to acquire an image with high sensitivity characteristics for each of the photoelectric conversion unit groups 104a and 104b.
(第3の実施形態)
以下、第3の実施形態に係る固体撮像装置について、第1および第2の実施形態と異なる点を中心に説明する。 (Third embodiment)
Hereinafter, the solid-state imaging device according to the third embodiment will be described focusing on differences from the first and second embodiments.
以下、第3の実施形態に係る固体撮像装置について、第1および第2の実施形態と異なる点を中心に説明する。 (Third embodiment)
Hereinafter, the solid-state imaging device according to the third embodiment will be described focusing on differences from the first and second embodiments.
図16および図17は、第3の実施形態に係る固体撮像装置の要部平面図である。
FIG. 16 and FIG. 17 are main part plan views of the solid-state imaging device according to the third embodiment.
本実施形態では、水平方向に並ぶ2N+1番目と2(N+1)番目の垂直シフトレジスタ101において、第4転送電極3-4は受光部間配線4-4a及び受光部間配線4-4bにより連結されている。
In the present embodiment, in the 2N + 1-th and 2 (N + 1) -th vertical shift registers 101 arranged in the horizontal direction, the fourth transfer electrode 3-4 is connected by the inter-light-receiving unit wiring 4-4a and the inter-light-receiving unit wiring 4-4b. ing.
また、2(N+1)番目と2N+3番目の垂直シフトレジスタ101において、第2転送電極3-2が受光部間配線4-2a及び受光部間配線4-2bにより連結されている。
Further, in the 2 (N + 1) th and 2N + 3rd vertical shift registers 101, the second transfer electrode 3-2 is connected by the inter-light-receiving unit wiring 4-2a and the inter-light-receiving unit wiring 4-2b.
垂直シフトレジスタ101それぞれにおいて、第1転送電極3-1及び第3転送電極3-3は、受光部間配線4で連結されておらず、浮島状に配置されている。
In each of the vertical shift registers 101, the first transfer electrode 3-1 and the third transfer electrode 3-3 are not connected by the inter-light-receiving portion wiring 4, but are arranged in a floating island shape.
図18は、図17のA-A’線における断面図であり、図19は、図17のB-B’線における断面図である。
18 is a cross-sectional view taken along the line A-A ′ of FIG. 17, and FIG. 19 is a cross-sectional view taken along the line B-B ′ of FIG. 17.
図16~図19に示すように、転送電極3上には、絶縁膜21を介して垂直方向に伸びる第1シャント配線5-1及び第3シャント配線5-3が配置されており、それぞれコンタクト部6-1,6-3において第1転送電極3-1、及び第3転送電極3-3に接続されている。
As shown in FIGS. 16 to 19, on the transfer electrode 3, the first shunt wiring 5-1 and the third shunt wiring 5-3 extending in the vertical direction through the insulating film 21 are disposed, and the contacts are respectively contacted. The parts 6-1 and 6-3 are connected to the first transfer electrode 3-1 and the third transfer electrode 3-3.
第1シャント配線5-1及び第3シャント配線5-3を被覆するように、例えば酸化シリコンからなる絶縁膜22が形成されている。そして、絶縁膜21,22を被覆するように遮光膜7が形成されている。
An insulating film 22 made of, for example, silicon oxide is formed so as to cover the first shunt wiring 5-1 and the third shunt wiring 5-3. A light shielding film 7 is formed so as to cover the insulating films 21 and 22.
また、受光部間配線4-2a,4-2b,4-4a,4-4b上には絶縁膜21が形成され、絶縁膜21を被覆するように遮光膜7が形成されている。
Further, an insulating film 21 is formed on the light receiving portion wirings 4-2a, 4-2b, 4-4a, and 4-4b, and a light shielding film 7 is formed so as to cover the insulating film 21.
さらに、遮光膜7を被覆するように、例えば酸化シリコンからなる平坦化膜23が形成されている。そして、平坦化膜23上には、垂直方向に伸びる第2シャント配線5-2及び第4シャント配線5-4が配置されている。2N+1番目の転送チャネル2上には第2シャント配線5-2が配置され、2(N+1)番目の転送チャネル2上には第4シャント配線5-4が配置されている。
Further, a planarizing film 23 made of, for example, silicon oxide is formed so as to cover the light shielding film 7. On the planarizing film 23, a second shunt wiring 5-2 and a fourth shunt wiring 5-4 extending in the vertical direction are arranged. A second shunt wiring 5-2 is disposed on the 2N + 1th transfer channel 2, and a fourth shunt wiring 5-4 is disposed on the 2 (N + 1) th transfer channel 2.
第2シャント配線5-2及び第4シャント配線5-4は、受光部1の間隙において水平方向に張り出している。第2シャント配線5-2はコンタクト部6-2において受光部間配線4-2a,4-2bに接続され、第4シャント配線5-4はコンタクト部6-4において受光部間配線4-4a,4-4bに接続される。
The second shunt wiring 5-2 and the fourth shunt wiring 5-4 project horizontally in the gap between the light receiving portions 1. The second shunt wiring 5-2 is connected to the light receiving section wirings 4-2a and 4-2b at the contact section 6-2, and the fourth shunt wiring 5-4 is connected to the light receiving section wiring 4-4a at the contact section 6-4. , 4-4b.
本実施形態においては、第1層電極材である第2転送電極3-2及び第4転送電極3-4のみが受光部間配線4で連結されており、第2層電極材である第1転送電極3-1及び第3転送電極3-3は受光部間配線4で連結されていないため、第1層電極材と第2層電極材とが重なる領域が存在しない。
In the present embodiment, only the second transfer electrode 3-2 and the fourth transfer electrode 3-4, which are the first layer electrode materials, are connected by the inter-light receiving portion wiring 4, and the first layer electrode material is the first layer electrode material. Since the transfer electrode 3-1 and the third transfer electrode 3-3 are not connected by the inter-light-receiving portion wiring 4, there is no region where the first layer electrode material and the second layer electrode material overlap.
また、シャント配線5を金属膜で形成した場合は、ポリシリコンで形成した場合よりも小さい膜厚で同等の信号遅延特性を有する配線を形成することができる。したがって、本実施形態においては、受光面から最上層の配線層までの高さをさらに小さくすることが可能であり、その結果、斜め方向から入射した光が配線層に遮られることが少なく、より多くの光量が受光部1に到達するようになる。したがって、本実施形態においては、暗い被写体を撮像した場合であっても、鮮明な画像を取得することが可能な固体撮像装置を実現できる。
Further, when the shunt wiring 5 is formed of a metal film, a wiring having the same signal delay characteristic can be formed with a smaller film thickness than when formed of polysilicon. Therefore, in the present embodiment, it is possible to further reduce the height from the light receiving surface to the uppermost wiring layer, and as a result, light incident from an oblique direction is less likely to be blocked by the wiring layer. A large amount of light reaches the light receiving unit 1. Therefore, in the present embodiment, it is possible to realize a solid-state imaging device capable of acquiring a clear image even when a dark subject is imaged.
(第4の実施形態)
以下、第4の実施形態に係る固体撮像装置について、第3の実施形態と異なる点を中心に説明する。 (Fourth embodiment)
Hereinafter, the solid-state imaging device according to the fourth embodiment will be described focusing on differences from the third embodiment.
以下、第4の実施形態に係る固体撮像装置について、第3の実施形態と異なる点を中心に説明する。 (Fourth embodiment)
Hereinafter, the solid-state imaging device according to the fourth embodiment will be described focusing on differences from the third embodiment.
図20および図21は、第4の実施形態に係る固体撮像装置の要部平面図である。また、図22は、図21のA-A’線における断面図であり、図23は、図21のB-B’線における断面図である。
FIG. 20 and FIG. 21 are plan views of main parts of a solid-state imaging device according to the fourth embodiment. 22 is a cross-sectional view taken along the line A-A ′ in FIG. 21, and FIG. 23 is a cross-sectional view taken along the line B-B ′ in FIG. 21.
例えば第3の実施形態では、第1シャント配線5-1及び第3シャント配線5-3、ならびに遮光膜7はそれぞれ別々に形成されているが、本実施形態では、第1シャント配線5-1及び第3シャント配線5-3を、遮光膜7と兼用することを特徴とする。
For example, in the third embodiment, the first shunt wiring 5-1, the third shunt wiring 5-3, and the light shielding film 7 are formed separately, but in the present embodiment, the first shunt wiring 5-1. The third shunt wiring 5-3 is also used as the light shielding film 7.
具体的に、図20~図23において、符号8-1は、第3の実施形態における、第1シャント配線5-1および遮光膜7の機能を有する遮光膜兼シャント配線である。また、符号8-3は、第3の実施形態における、第2シャント配線5-3および遮光膜7の機能を有する遮光膜兼シャント配線である。
Specifically, in FIGS. 20 to 23, reference numeral 8-1 denotes a light shielding film / shunt wiring having the functions of the first shunt wiring 5-1 and the light shielding film 7 in the third embodiment. Reference numeral 8-3 denotes a light-shielding film / shunt wiring having functions of the second shunt wiring 5-3 and the light-shielding film 7 in the third embodiment.
図20~図23に示すように、遮光膜兼シャント配線8-1,8-3は、転送電極3上に絶縁膜21を介して形成され、かつ、転送電極3上に間隙をあけて2つに分断されるように形成されている。そして、遮光膜兼シャント配線8-1,8-3は、垂直シフトレジスタ101と並行する方向に延びるように配置されている。
As shown in FIGS. 20 to 23, the light shielding film / shunt wirings 8-1 and 8-3 are formed on the transfer electrode 3 with an insulating film 21 interposed therebetween. It is formed to be divided into two. The light shielding film / shunt wirings 8-1 and 8-3 are arranged to extend in a direction parallel to the vertical shift register 101.
本実施形態においては、受光面から最上層の配線層までの高さをより低くすることが可能であり、その結果、斜め方向から入射した光が配線層に遮られることが少なく、より多くの光量が受光部に到達することができる。したがって、本実施形態においては暗い被写体でも鮮明な画像を取得することが可能な固体撮像装置を実現できる。
In the present embodiment, the height from the light receiving surface to the uppermost wiring layer can be reduced, and as a result, light incident from an oblique direction is less likely to be blocked by the wiring layer, and more The amount of light can reach the light receiving unit. Therefore, in the present embodiment, it is possible to realize a solid-state imaging device capable of acquiring a clear image even with a dark subject.
なお、上記各実施形態において、シャント配線よりも上層の構造は種々の変更が可能である。また、本開示の要旨を逸脱しない範囲で、種々の変更が可能である。
In each of the above-described embodiments, the structure above the shunt wiring can be variously changed. In addition, various modifications can be made without departing from the scope of the present disclosure.
本開示に係る固体撮像装置は、2つの光電変換部群に含まれる各光電変換部をそれぞれオフセットサブサンプリング状に配列し、それらを水平方向・垂直方向共に一画素分の位相をずらして組み合わせて配置する固体撮像装置に適用可能である。
In the solid-state imaging device according to the present disclosure, the photoelectric conversion units included in the two photoelectric conversion unit groups are arranged in an offset sub-sampling manner, and they are combined by shifting the phase of one pixel in both the horizontal direction and the vertical direction. The present invention can be applied to a solid-state imaging device to be arranged.
1,1a,1b 受光部
2 転送チャネル
3,3-1,3-2,3-3,3-4 転送電極
4,4-1,4-2,4-3,4-4 受光部間配線
4-1a,4-1b,4-2a,4-2b,4-3a,4-3b,4-4a,4-4b 受光部間配線
100,100a,100b 光電変換部
101 垂直シフトレジスタ
102 水平シフトレジスタ
103 電荷検出部
104a,104b 光電変換部群 1, 1a, 1bLight receiving part 2 Transfer channel 3,3-1,3-2,3-3,3-4 Transfer electrode 4,4-1,4-2,4-3,4-4 Light receiving part wiring 4-1a, 4-1b, 4-2a, 4-2b, 4-3a, 4-3b, 4-4a, 4-4b Light receiving unit wiring 100, 100a, 100b Photoelectric conversion unit 101 Vertical shift register 102 Horizontal shift Register 103 Charge detection unit 104a, 104b Photoelectric conversion unit group
2 転送チャネル
3,3-1,3-2,3-3,3-4 転送電極
4,4-1,4-2,4-3,4-4 受光部間配線
4-1a,4-1b,4-2a,4-2b,4-3a,4-3b,4-4a,4-4b 受光部間配線
100,100a,100b 光電変換部
101 垂直シフトレジスタ
102 水平シフトレジスタ
103 電荷検出部
104a,104b 光電変換部群 1, 1a, 1b
Claims (8)
- 水平方向および垂直方向にオフセットサブサンプリング状に配置され、光電変換によって入射光を信号電荷に変換する光電変換部を含む、第1光電変換部群および第2光電変換部群を有し、前記第1光電変換部群に含まれる前記光電変換部および前記第2光電変換部群に含まれる前記光電変換部のそれぞれが、前記水平方向および前記垂直方向共に1個分の位相をずらして組み合わせられて、全体が正方格子状になるように配列された撮像部と、
前記光電変換部が形成された半導体基板の表面に光が照射されるように遮光膜が排除された受光部と、
前記受光部間に配置されて、前記垂直方向に伸びる複数の転送チャネルと、
前記転送チャネル上において同一平面に前記垂直方向に繰り返し配置された、第1転送電極、第2転送電極、第3転送電極、および第4転送電極と、
前記転送チャネルと前記第1~第4転送電極とを有し、前記第1~第4転送電極のいずれか1つの転送電極に高電圧パルスを1回、もしくは複数回連続して印加して、前記光電変換部群から前記転送チャネルへ移動させた信号電荷を、前記撮像部の前記垂直方向に転送する複数の垂直シフトレジスタと、
前記垂直シフトレジスタの最終段に接続され、前記垂直シフトレジスタから転送される信号電荷を前記水平方向に転送する水平シフトレジスタと、
前記水平シフトレジスタの最終段に接続され、前記水平シフトレジスタから転送される信号電荷を電圧信号に変換する電荷検出部とを備え、
前記光電変換部および前記受光部が前記正方格子状に配列されている間隔の2倍の距離に等しい区間内において、前記第1~第4転送電極が任意の順番で3回繰り返して配置され、
前記水平方向に隣り合って配置される任意の2つの前記垂直シフトレジスタにおいて、前記第1~第4転送電極の配列順番が2電極分のオフセットとなっている
ことを特徴とする固体撮像装置。 A first photoelectric conversion unit group and a second photoelectric conversion unit group, which are arranged in an offset sub-sampling manner in a horizontal direction and a vertical direction and include a photoelectric conversion unit that converts incident light into a signal charge by photoelectric conversion; Each of the photoelectric conversion units included in one photoelectric conversion unit group and the photoelectric conversion units included in the second photoelectric conversion unit group are combined by shifting the phase by one in both the horizontal direction and the vertical direction. An imaging unit arranged so as to form a square lattice as a whole,
A light receiving portion from which a light shielding film is excluded so that light is irradiated onto the surface of the semiconductor substrate on which the photoelectric conversion portion is formed;
A plurality of transfer channels disposed between the light receiving portions and extending in the vertical direction;
A first transfer electrode, a second transfer electrode, a third transfer electrode, and a fourth transfer electrode, which are repeatedly arranged in the vertical direction on the transfer channel,
Including the transfer channel and the first to fourth transfer electrodes, and applying a high voltage pulse to one of the first to fourth transfer electrodes once or a plurality of times, A plurality of vertical shift registers that transfer the signal charges moved from the photoelectric conversion unit group to the transfer channel in the vertical direction of the imaging unit;
A horizontal shift register connected to the final stage of the vertical shift register and transferring the signal charge transferred from the vertical shift register in the horizontal direction;
A charge detector connected to the last stage of the horizontal shift register and converting a signal charge transferred from the horizontal shift register into a voltage signal;
The first to fourth transfer electrodes are repeatedly arranged three times in an arbitrary order within a section equal to a distance twice the interval in which the photoelectric conversion unit and the light receiving unit are arranged in a square lattice pattern,
The solid-state imaging device according to any one of the two vertical shift registers arranged adjacent to each other in the horizontal direction, wherein the arrangement order of the first to fourth transfer electrodes is an offset of two electrodes. - 請求項1の個体撮像装置において、
前記第1~第4転送電極は、第1層電極材または第2層電極材で構成され、前記正方格子状に配列された受光部の間の領域において、前記水平方向に繰り返して配列される前記転送チャネルのうち隣り合う2つの前記転送チャネル上に配置される前記第1層電極材または前記第2層電極材からなる前記第1~第4転送電極のそれぞれである3個ないしは4個の電極が、前記第1~第4転送電極と同一の電極材で一体成型された受光部間配線により同一電極材で連結され、
且つ、前記高電圧パルスが印加されて前記光電変換部群の信号電荷が直接移動してくる電極と、前記受光部のうち前記第1光電変換部群もしくは前記第2光電変換部群のいずれか一方の半導体基板の厚さ方向の表面側上方に位置する受光部との間の領域において、前記4電極の連結を成す配線が形成されており、
他方の前記光電変換部群の半導体基板の厚さ方向の表面側上方に位置する受光部と、前記高電圧が印加されて前記光電変換部群の信号電荷が直接移動してくる電極との間の領域には、前記4電極の連結の一部を成す配線が形成されていない
ことを特徴とする固体撮像装置。 The individual imaging apparatus according to claim 1,
The first to fourth transfer electrodes are composed of a first layer electrode material or a second layer electrode material, and are repeatedly arranged in the horizontal direction in a region between the light receiving portions arranged in a square lattice shape. Three or four of the first to fourth transfer electrodes made of the first layer electrode material or the second layer electrode material arranged on two adjacent transfer channels of the transfer channels. The electrodes are connected by the same electrode material by the inter-light-receiving portion wiring formed integrally with the same electrode material as the first to fourth transfer electrodes,
In addition, an electrode to which the signal charges of the photoelectric conversion unit group are directly moved when the high voltage pulse is applied, and either the first photoelectric conversion unit group or the second photoelectric conversion unit group among the light receiving units. In a region between the light receiving portion located on the upper surface side in the thickness direction of one semiconductor substrate, a wiring that connects the four electrodes is formed,
Between the other light receiving unit located on the upper surface side in the thickness direction of the semiconductor substrate of the photoelectric conversion unit group and the electrode to which the signal charge of the photoelectric conversion unit group directly moves when the high voltage is applied The solid-state imaging device is characterized in that a wiring forming a part of the connection of the four electrodes is not formed in the region. - 請求項1に記載の固体撮像装置において、
前記第1~第4転送電極は、第1層電極材または第2層電極材で構成され、前記正方格子状に配列された受光部の間の領域において、前記第1~第4転送電極と同一の電極材で一体成型された受光部間配線により前記第1層電極材または前記第2層電極材からなる前記第1~第4転送電極のそれぞれである3個の電極が連結され、
且つ、垂直方向において隣り合う2つの同一電極材の前記受光部間配線において、それぞれ連結する前記3電極の中の2電極が位置する前記転送チャネルが異なり、
且つ、前記隣り合う2つの同一電極材の受光部間配線が連結する合計6個の前記転送電極は、前記第1~第4転送電極の中のいずれか2つを含む
ことを特徴とする固体撮像装置。 The solid-state imaging device according to claim 1,
The first to fourth transfer electrodes are formed of a first layer electrode material or a second layer electrode material, and in the region between the light receiving portions arranged in a square lattice shape, the first to fourth transfer electrodes Three electrodes which are each of the first to fourth transfer electrodes made of the first layer electrode material or the second layer electrode material are connected by the wiring between the light receiving parts integrally molded with the same electrode material,
And in the wiring between the light receiving parts of two identical electrode materials adjacent in the vertical direction, the transfer channel in which two of the three electrodes to be connected are located is different,
In addition, the total of six transfer electrodes to which the adjacent inter-light-receiving-part wirings of the same two electrode materials are connected include any two of the first to fourth transfer electrodes. Imaging device. - 請求項1に記載の固体撮像装置において、
前記第1~第4転送電極は、単層の電極材で構成され、前記正方格子状に配列された受光部の間の領域において、前記第1~第4転送電極と同一の電極材で一体成型された受光部間配線により3個の電極が連結され、
且つ、垂直方向において隣り合う2つの前記受光部間配線において、前記2つの受光部間配線がそれぞれ連結する前記3電極の中の2電極が位置する前記転送チャネルが異なり、
且つ、前記隣り合う2つの受光部間配線が連結する合計6個の前記転送電極は、前記第1~第4転送電極の中のいずれか2つを含み、
且つ、前記連結された転送電極の間に、連結されていない前記転送電極が1個ずつ位置する
ことを特徴とする固体撮像装置。 The solid-state imaging device according to claim 1,
The first to fourth transfer electrodes are formed of a single layer electrode material, and are integrated with the same electrode material as the first to fourth transfer electrodes in a region between the light receiving portions arranged in a square lattice pattern. Three electrodes are connected by the molded wiring between the light receiving parts,
And, in the two inter-light receiving portion wirings adjacent in the vertical direction, the transfer channel where the two electrodes among the three electrodes to which the two inter-light receiving portion wirings are connected is different,
In addition, the total of six transfer electrodes connected by the two adjacent light receiving unit wirings include any two of the first to fourth transfer electrodes,
The solid-state imaging device is characterized in that the unconnected transfer electrodes are located one by one between the connected transfer electrodes. - 請求項1に記載の固体撮像装置を駆動する方法であって、
前記第1~第4転送電極のいずれか1つの転送電極に高電圧パルスを1回、もしくは複数回連続して印加して、前記第1光電変換部群もしくは第2光電変換部群のいずれか一方から信号電荷を前記転送チャネルへ移動させ、他方の前記光電変換部群の信号電荷は移動させない動作と、
前記動作を、前記水平シフトレジスタが信号電荷を転送していない一続きの期間内に1回、2回、もしくは3回繰り返して行う工程と、
前記動作の繰り返しごとに、前記転送チャネルに移動した信号電荷を前記転送チャネル内の異なる領域に保持する工程と、
前記動作の繰り返しの全施行が終了した後に、前記垂直シフトレジスタから前記水平シフトレジスタへ前記信号電荷を転送する動作を開始する工程とを備えている
ことを特徴とする固体撮像装置の駆動方法。 A method for driving the solid-state imaging device according to claim 1,
Either one of the first photoelectric conversion unit group or the second photoelectric conversion unit group is applied by applying a high voltage pulse once or a plurality of times to any one of the first to fourth transfer electrodes. An operation of moving the signal charge from one side to the transfer channel and not moving the signal charge of the other photoelectric conversion unit group;
Repeating the operation once, twice, or three times within a continuous period in which the horizontal shift register is not transferring signal charges;
Holding the signal charge moved to the transfer channel in a different region in the transfer channel for each repetition of the operation;
And a step of starting an operation of transferring the signal charge from the vertical shift register to the horizontal shift register after all the repetition of the operation is completed. - 請求項5に記載の固体撮像装置の駆動方法において、
前記動作を、前記水平シフトレジスタが信号電荷を転送していない一続きの期間内に1回、もしくは2回繰り返して行う場合において、
前記転送チャネル内に前記信号電荷が含まれない領域を生成する工程と、
前記生成する工程の後、前記垂直シフトレジスタおよび前記水平シフトレジスタを駆動させて、前記信号電荷が含まれない領域に混入したノイズ信号電荷を前記電荷検出部で電圧信号に変換して出力する工程とを備えている
ことを特徴とする固体撮像装置の駆動方法。 The solid-state imaging device driving method according to claim 5,
In the case where the operation is repeated once or twice in a continuous period in which the horizontal shift register does not transfer the signal charge,
Generating a region not including the signal charge in the transfer channel;
After the generating step, driving the vertical shift register and the horizontal shift register to convert a noise signal charge mixed in a region not including the signal charge into a voltage signal by the charge detection unit and outputting the voltage signal A method for driving a solid-state imaging device. - 請求項5に記載の固体撮像装置の駆動方法において、
前記動作を、前記水平シフトレジスタが信号電荷を転送していない一続きの期間内に2回、もしくは3回繰り返して行う場合において、
前記動作の繰り返しの1回目と2回目、もしくは2回目と3回目において、前記信号電荷を前記転送チャネルへ移動させる対象となる前記光電変換部群が異なる
ことを特徴とする固体撮像装置の駆動方法。 The solid-state imaging device driving method according to claim 5,
In the case where the operation is repeated twice or three times within a continuous period in which the horizontal shift register is not transferring signal charges,
The method for driving a solid-state imaging device, wherein the photoelectric conversion unit groups to which the signal charges are moved to the transfer channel are different between the first and second times or the second and third times of the repetition of the operation . - 請求項5に記載の固体撮像装置の駆動方法において、
前記第1~第4転送電極は第1層電極材または第2層電極材で構成され、前記固体撮像装置の製造工程において前記第1層電極材が形成された後に前記第2層電極材が形成され、前記第1~第4転送電極のうち前記高電圧が印加される転送電極が第2層電極材であることを特徴とする固体撮像装置の駆動方法。 The solid-state imaging device driving method according to claim 5,
The first to fourth transfer electrodes are composed of a first layer electrode material or a second layer electrode material, and the second layer electrode material is formed after the first layer electrode material is formed in the manufacturing process of the solid-state imaging device. The method of driving a solid-state imaging device, wherein the transfer electrode formed and applied with the high voltage among the first to fourth transfer electrodes is a second layer electrode material.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013126386A JP2016149381A (en) | 2013-06-17 | 2013-06-17 | Solid-state image pickup device and driving method |
JP2013-126386 | 2013-06-17 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014203456A1 true WO2014203456A1 (en) | 2014-12-24 |
Family
ID=52104210
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/002713 WO2014203456A1 (en) | 2013-06-17 | 2014-05-23 | Solid-state imaging device and method for driving same |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2016149381A (en) |
WO (1) | WO2014203456A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110278396A (en) * | 2018-03-16 | 2019-09-24 | 松下知识产权经营株式会社 | Photographic device |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0258983A (en) * | 1988-08-24 | 1990-02-28 | Oki Electric Ind Co Ltd | Solid-state image pickup device |
JP2008008700A (en) * | 2006-06-28 | 2008-01-17 | Fujifilm Corp | Range image sensor |
JP2011198790A (en) * | 2010-03-17 | 2011-10-06 | Sony Corp | Solid-state imaging apparatus, and imaging apparatus |
-
2013
- 2013-06-17 JP JP2013126386A patent/JP2016149381A/en active Pending
-
2014
- 2014-05-23 WO PCT/JP2014/002713 patent/WO2014203456A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0258983A (en) * | 1988-08-24 | 1990-02-28 | Oki Electric Ind Co Ltd | Solid-state image pickup device |
JP2008008700A (en) * | 2006-06-28 | 2008-01-17 | Fujifilm Corp | Range image sensor |
JP2011198790A (en) * | 2010-03-17 | 2011-10-06 | Sony Corp | Solid-state imaging apparatus, and imaging apparatus |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110278396A (en) * | 2018-03-16 | 2019-09-24 | 松下知识产权经营株式会社 | Photographic device |
Also Published As
Publication number | Publication date |
---|---|
JP2016149381A (en) | 2016-08-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11223758B2 (en) | Solid-state imaging device, method for driving the same, and electronic device for improved autofocusing accuracy | |
US9843751B2 (en) | Solid-state image sensor and camera system | |
US10403672B2 (en) | Solid-state imaging device with pixels having first and second photoelectric conversion units, driving method therefor, and electronic apparatus | |
JP5267867B2 (en) | Imaging device | |
KR100331995B1 (en) | Arrangement of circuits in pixels, each circuit shared by a plurality of pixels, in image sensing apparatus | |
US9591244B2 (en) | Solid-state imaging device having plural hybrid pixels with dual storing function | |
US9398237B2 (en) | Image sensor with floating diffusion interconnect capacitor | |
US8111311B2 (en) | Image sensing device and image sensing system | |
TWI412271B (en) | Solid-state imaging device, camera, and electronic device | |
US20180342558A1 (en) | Solid state image sensor, method for manufacturing the same, and electronic device | |
JP5629995B2 (en) | Imaging device and imaging apparatus | |
KR20100096003A (en) | Solid-state imaging device and electronic apparatus | |
KR20150067005A (en) | Solid-state imaging device | |
JP2017076872A (en) | Imaging element | |
KR100837454B1 (en) | Solid-state image sensing device | |
KR101248436B1 (en) | Pixel circuit of image sensor with wide dynamic range and operating method thereof | |
KR20100039246A (en) | Solid state imaging device | |
WO2019069532A1 (en) | Solid-state imaging element and solid-state imaging device | |
WO2018087975A1 (en) | Solid-state image pickup element, solid-state image pickup element driving method, and electronic device | |
WO2014203456A1 (en) | Solid-state imaging device and method for driving same | |
CN109804617B (en) | Image sensor and control method thereof | |
CN112352420B (en) | Image pickup element and image pickup device | |
JPWO2020067503A1 (en) | Image sensor and image sensor | |
JP2008010879A (en) | Solid state imaging apparatus | |
JP2008252020A (en) | Solid-state imaging element |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14813673 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
NENP | Non-entry into the national phase |
Ref country code: JP |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14813673 Country of ref document: EP Kind code of ref document: A1 |