WO2014202181A1 - Verfahren zur herstellung einer wässrigen zusammenstzung umfassend ein kondensat auf basis von silicium-verbindungen zur herstellung von antireflexionsbeschichtungen - Google Patents

Verfahren zur herstellung einer wässrigen zusammenstzung umfassend ein kondensat auf basis von silicium-verbindungen zur herstellung von antireflexionsbeschichtungen Download PDF

Info

Publication number
WO2014202181A1
WO2014202181A1 PCT/EP2014/001464 EP2014001464W WO2014202181A1 WO 2014202181 A1 WO2014202181 A1 WO 2014202181A1 EP 2014001464 W EP2014001464 W EP 2014001464W WO 2014202181 A1 WO2014202181 A1 WO 2014202181A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
composition
silicon compounds
range
radicals
Prior art date
Application number
PCT/EP2014/001464
Other languages
English (en)
French (fr)
Inventor
Klaus-Dieter Fritsche
Gerhard Tünker
Original Assignee
Ferro Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ferro Gmbh filed Critical Ferro Gmbh
Priority to CN201480034850.1A priority Critical patent/CN105358639B/zh
Priority to US14/898,879 priority patent/US10072158B2/en
Priority to EP14728831.0A priority patent/EP3010986B1/de
Publication of WO2014202181A1 publication Critical patent/WO2014202181A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/006Anti-reflective coatings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/08Cellulose derivatives
    • C08L1/26Cellulose ethers
    • C08L1/28Alkyl ethers
    • C08L1/284Alkyl ethers with hydroxylated hydrocarbon radicals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/02Polysilicates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/02Polysilicates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/43Thickening agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/02Polysilicates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/14Polysiloxanes containing silicon bound to oxygen-containing groups
    • C08G77/16Polysiloxanes containing silicon bound to oxygen-containing groups to hydroxyl groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/42Block-or graft-polymers containing polysiloxane sequences
    • C08G77/46Block-or graft-polymers containing polysiloxane sequences containing polyether sequences

Definitions

  • the present invention relates to processes for the preparation of an aqueous
  • a composition comprising a condensate based on silicon compounds and a composition obtainable according to the present process.
  • the composition can be used in particular for the production of antireflection coatings.
  • Document DE 199 18 811 A1 also discloses compositions containing specific polymers to produce an antireflection coating.
  • the compositions can be used to coat safety glasses.
  • Antireflection layers have a high content of MgF 2 .
  • the disadvantage here is in particular the price of MgF 2 .
  • improper disposal of the coated substrates can result in harmless and toxic hydrofluoric acid (HF).
  • HF hydrofluoric acid
  • porous layer can be applied by "bar-coating process", however, no specific example of this is found in this document
  • compositions not used The laid-open specification WO 03/027034 A2 describes antireflection coatings which have a particularly high mechanical stability. This property is achieved by the use of Si0 2 particles with a certain particle size distribution.
  • Antireflection layers which have a high content of surfactants.
  • Embodiment finds in which not high levels of these solvents is used.
  • compositions associated with a high cost are combustible depending on the nature and proportion of the organic solvents.
  • Solvents can be obtained, inter alia, in the publications
  • an object of the present invention to provide a process for the preparation of an aqueous composition comprising a condensate based on silicon compounds, with which compositions can be obtained in a particularly simple and cost-effective manner by means of the antireflection layers on substrates, in particular inorganic substrates can be obtained.
  • a further object was to provide compositions for the production of antireflection coatings which can be converted into coatings having a particularly high adhesive strength and mechanical stability. Furthermore, the process for preparing the composition should be able to be carried out without expensive post-treatment and purification of the reaction mixture obtained.
  • radicals X are identical or different and are hydrolyzable groups or hydroxyl groups
  • radicals R are identical or different and denote nonhydrolyzable groups and n is 0, 1, 2 or 3;
  • step iv) reacting at least part of the silicon compounds of the general formula (I) added in step iii) in a hydrolysis reaction.
  • composition can be obtained, which can be used for the production of antireflection coatings.
  • the composition can be carried on a substrate substantially without expensive security measures.
  • expensive fire protection measures can be dispensed with when using the composition.
  • compositions according to the invention show a high mechanical stability and a high adhesive strength on many substrates. Furthermore, the compositions of the invention can be inexpensive and
  • coated substrates have a surprisingly high transparency.
  • step i) of the process according to the invention at least one polymeric rheology control agent is introduced into water.
  • Rheology control agents in the context of the present invention are compounds which cause a strong viscosity influence of the composition.
  • the use of rheology control agents surprisingly prevents the formation of highly condensed large flocculated silicas become.
  • Preferred rheology control agents can be completely burned from a temperature of about 500 ° C.
  • the molecular weight of the rheology control agent is in the range of 50,000 g / mol to 20,000,000 g / mol, more preferably in the range of 100,000 g / mol to 2,000,000 g / mol, and especially preferably 200,000 g / mol to 1,000,000 g / mol.
  • Molecular weight refers to the weight average and can be determined, for example, by gel permeation chromatography (GPC).
  • Preferred rheology control agents include hydroxy groups. According to one
  • a rheology control agent in particular cellulose
  • Cellulose derivatives particularly preferably cellulose ethers and / or cellulose esters are used. These include in particular hydroxypropylmethylcelluloses.
  • polyacrylic acids, polyvinyl alcohols and polyacrylamides can be used as preferred rheology control agents, with the celluloses and / or cellulose derivatives set forth above being preferred over the polyacrylamides.
  • the amount of rheology control agent is preferably in the range of 0.1 wt% to 40 wt%, more preferably in the range of 0.5 wt% to 15 wt%, and especially preferably 1 wt%. % to 5 wt .-%, based on the weight of the mixture obtained in step i).
  • the water used in step i) is not subject to any particular limitations, the water should have a purity which does not preclude a subsequent use of the composition obtained.
  • the mixture obtained in step i) preferably comprises from 70% by weight to 99.9% by weight, more preferably in the range from 85% by weight to 99.5% by weight and especially preferably 95% by weight to 99% by weight of water, based on the weight of the mixture obtained in step i).
  • the incorporation of the polymeric rheology control agent into the water can be accomplished in any conventional manner.
  • the rheology control agent may be added as a solid or as an aqueous solution in water.
  • water can be added to the Rheology control agents are added.
  • the mixture obtained beispielswese be mixed by mechanical action.
  • the temperature of this mixing step may, for example, in the range of 0 ° C to 100 ° C, preferably 10 to 60 ° C, without this being a limitation.
  • an acidic catalyst is added in step ii). This addition may preferably be carried out in the mixture obtained in step i). Furthermore, the acidic catalyst may also be added to the water used in step i) and / or to the rheology control agent used in step i).
  • Acid catalysts are well known in the art, for example, organic and / or inorganic acids can be used.
  • the preferred acids include acetic acid, oxalic acid, hydrochloric acid (HCl), sulfuric acid (H 2 S0 4 ), phosphoric acid (H 3 P0 4 ) and / or nitric acid (HN0 3 ).
  • the amount of acid catalyst depends on the type of catalyst and the desired reaction rate of the hydrolysis reaction to be carried out in step iv).
  • amounts of acidic catalyst in the range preferably from 0.01 to 5 wt .-%, preferably 0.05 to 4 wt .-%, particularly preferably 0.1 to 3 wt .-% and especially preferably 0, 2 to 1 wt .-%, based on the mixture obtained in step ii).
  • the mixture obtained in step ii) preferably comprises from 70% by weight to 99.89% by weight, more preferably in the range from 80% by weight to 99.45% by weight and especially preferably 95% by weight to 99% by weight of water.
  • the amount of rheology control agent is preferably in the range of 0.1 wt% to 40 wt%, more preferably in the range of 0.5 wt% to 15 wt%, and especially preferably 1 wt%. % to 5 wt .-%, based on the weight of the mixture obtained in step ii).
  • the silicon compounds of the general formula (I) can be added to the mixture obtained in step i) and / or step ii) and / or one of the educts used, for example the water used, the rheology control agent and / or the acidic catalyst , Surprising advantages can be achieved by adding it to the mixture obtained in step i) or step ii), wherein addition to the mixture obtained in step ii) is particularly preferred.
  • the hydrolyzable groups are X.
  • C 1-6 alkoxy such as. Methoxy, ethoxy, n-propoxy, i -propoxy and butoxy
  • Aryloxy preferably C 6-10 aryloxy, such as. Phenoxy
  • acyloxy preferably C 1-6 acyloxy, such as. Acetoxy or propionyloxy
  • Alkylcarbonyl preferably C 2-7 - alkylcarbonyl, such as. Acetyl
  • R is a nonhydrolyzable organic radical which may optionally bear a functional group.
  • R are alkyl, preferably Ci -6 alkyl such as methyl, ethyl, n-propyl, isopropyl, n-butyl, s-butyl and t-butyl, pentyl, hexyl or
  • Alkenyl preferably C 2 6 alkenyl, such as. Vinyl, 1-propenyl, 2-propenyl and butenyl
  • Alkynyl preferably C 2- 6-alkynyl, such. Acetylenyl and propargyl
  • aryl preferably C 6-10 aryl, such as. As phenyl and naphthyl.
  • functional groups of the radical R are the epoxy, hydroxy, ether, amino, monoalkylamino, dialkylamino, amide, carboxy, mercapto, thio-ether, vinyl, acryloyloxy, methacryloxy, cyano , Halogen, aldehyde, alkylcarbonyl, sulfonic acid and phosphoric acid groups.
  • These functional groups are via alkylene, alkenylene or Arylene bridging groups, which may be interrupted by oxygen or sulfur atoms or NH groups, bonded to the silicon atom.
  • the bridge groups are derived z. B. from the abovementioned alkyl, alkenyl or aryl radicals.
  • the radicals R preferably contain 1 to 18, in particular 1 to 8 carbon atoms.
  • the radicals R and X mentioned may optionally contain one or more customary substituents, such as.
  • substituents such as.
  • the silicon compounds of the general formula I are hydrolyzable and condensable via the radicals X.
  • An inorganic network with Si-O-Si units is built up via these hydrolytically condensable groups.
  • the radicals R are among the usual
  • silicon compounds of the general formula SiX 4 in which the radicals X are identical or different and are hydrolyzable groups or hydroxyl groups, are used for the preparation of the condensate.
  • Constraints of the general public are concrete examples of such silicon compounds SiCl 4 , HSiCl 3 , Si (OCH 3 ) 4 , Si (OOCCH 3 ) 4 , Si (OC 2 H 5 ) 4 and Si (OC 3 H 7 ) 4 , where Tetraalkoxysilanes, for example Si (OCH 3 ) 4 (TMOS), Si (OCH 2 CH 3 ) 4 (TEOS) or
  • Si (OC 3 H 7 ) 4 are particularly preferred.
  • the compounds mentioned can be used individually or as a mixture.
  • the proportion of silicon compounds of the general formula S1X is preferably in the range from 0% by weight to 100% by weight, more preferably in the range from 40% by weight to 100% by weight and especially preferably 80 to 100% by weight. -%, based on the total amount of monomeric silicon compounds. According to a particularly preferred variant of the present invention, essentially only
  • Condensate preferably a mixture of silanes are used which comprises at least one silicon compound of the formula RSiX 3 , in which the radicals X are the same or different and are hydrolyzable groups or hydroxyl groups and the radical R is a non-hydrolyzable groups.
  • the proportion of silicon compounds of the general formula RSiX 3 is preferably at most 80% by weight, particularly preferably at most 10% by weight, based on the total amount of monomeric silicon compounds.
  • the condensate can be obtained by condensation of a mixture comprising at least one silicon compound of the formula R 2 SiX 2 in which the radicals X are the same or different and represent hydrolyzable groups or hydroxyl groups and the radicals R are the same or different and not mean hydrolyzable groups.
  • the compounds mentioned can be used individually or as a mixture.
  • the proportion of silicon compounds of the general formula R 2 SiX 2 is preferably at most 20% by weight, particularly preferably at most 10% by weight, based on the total amount of monomeric silicon compounds.
  • the condensate can be obtained by condensing a mixture comprising at least one silicon compound of the formula R 3 SiX in which the radical X is a hydrolyzable group or a hydroxyl group and the radicals R are the same or different and non-hydrolyzable Mean groups.
  • Silanes of the general formula (I) are either commercially available or can be prepared by methods as described in "Chemie und Technologie der Silicones" (W. Noll, Verlag Chemie,
  • the amount of silicon compounds of general formula (I) may preferably be in the
  • seed particles are used to produce the condensate.
  • Preferred seed particles may have an average particle diameter in the range of 1 to 100 nm, preferably in the range of 3 to 80 nm, more preferably in the range of 5 to 50 nm.
  • the mean particle diameter refers to this
  • the seed particles preferably comprise Si0 2 , wherein the weight fraction of Si0 2 is preferably at least 50 wt .-%, particularly preferably at least 80 wt .-%, based on the total weight of the seed particles.
  • the proportion of seed particles may preferably be in the range from 0.01 to 20% by weight, preferably in the range from 0.1 to 10% by weight, more preferably in the range from 0.5 to 5% by weight on the weight of silicon compounds of the general formula (I).
  • amounts of acid catalyst in the range preferably from 0.01 to 5 wt .-%, preferably 0.05 to 3 wt .-%, particularly preferably 0.1 to 2 wt .-% and particularly preferably 0, 2 to 1 wt .-%, based on the mixture obtained in step iii).
  • the mixture obtained in step iii) preferably comprises from 70% by weight to 99.79% by weight, more preferably in the range from 80% by weight to 99% by weight and especially preferably from 95% by weight to 99% by weight .-% Water.
  • the amount of rheology control agent is preferably in the range of 0.1 wt% to 40 wt%, more preferably in the range of 0.5 wt% to 15 wt%, and especially preferably 1 wt%. % to 5 wt .-%, based on the weight of the mixture obtained in step iii).
  • step iv) the reaction can also be referred to as polycondensation, through which a condensate is obtained.
  • at least 40%, preferably at least 80%, particularly preferably at least 95% of the silicon compounds added in step iii) are usually reacted, so that the proportion of monomeric silicon compounds of the formula (I) after the hydrolysis step iv ) is at most 60%, preferably at most 20%, particularly preferably at most 5%, based on the weight of the silicon compounds originally added in step iii).
  • the hydrolysis is preferably carried out at temperatures between 0 and 130 ° C, preferably between 15 and 40 ° C, wherein an overpressure can be used to carry out the reaction at high temperatures.
  • the duration of the hydrolysis reaction results from the reactivity of the silicon compound used, the pH and the reaction temperature.
  • the silicon compound used the pH and the reaction temperature.
  • Reaction time can be selected so that a condensate is obtained in the composition which is in a colloidally disperse form.
  • steps i), ii), iii) and iv) are carried out in the order i), ii), iii) and iv)
  • the proportion of Si0 2 condensate in the composition obtainable according to the invention is preferably in the range from 0.01% by weight to 10% by weight, particularly preferably in the range from 0.1% by weight to 5% by weight.
  • This proportion refers to the weight of the Si0 2 - condensate after hydrolysis, without organic constituents. This content is particularly easily obtained from the weight of a layer obtained by a burning process, based on the weight before firing.
  • the layer thickness of the antireflection coating can be adjusted.
  • Coating composition is chosen so that as little excess water must be separated. Preferably, at most 20% by weight, more preferably at most 5% by weight, of water must be separated from the composition after hydrolysis. According to a particularly preferred embodiment, no water is separated off after the hydrolysis. Furthermore, the amounts of released alcohol or other organic compounds which are formed from the silicon compounds by the hydrolysis, so small that they need not be separated.
  • the condensate may be present in the composition in a colloidally disperse form in which the condensate is particulate in the composition. Furthermore, it can be provided that particles, preferably silica sols, are added to the condensate. As a result, the properties of the condensate can be special
  • Preferred particles in particular silica sols, can have an average particle diameter in the range from 1 to 100 nm, preferably in the range from 3 to 80 nm, more preferably in the range of 5 to 50 nm.
  • Particle diameter refers to the number average and can be determined, for example, by microscopic methods.
  • the particles preferably comprise SiO 2 , wherein the weight fraction of SiO 2 is preferably at least 50% by weight, particularly preferably at least 80% by weight, based on the total weight of the particles.
  • the proportion of particles added after step iv) may preferably be in the range from 0.01 to 20% by weight, preferably in the range from 0.1 to 10% by weight, more preferably in the range from 0.25 to 5% by weight. %, based on the weight of the composition obtainable according to the invention.
  • the hydrolysis reaction according to step iv) is carried out without the presence of effective proportions of additives, preferably surface-active substances.
  • an additive preferably a surface-active substance, may be added to the composition obtained after the hydrolysis reaction according to step iv).
  • Surfactants include, among others, nonionic surfactants, anionic surfactants and cationic surfactants. Among others, phosphoric acid ester surfactants and silicone surfactants, preferably polyether-modified siloxanes, are preferred.
  • the HLB value of preferred surfactants is in the range of 11 to 19, more preferably in the range of 12 to 18, as determined by Davies.
  • Composition is preferably in the range of 0.005 wt .-% to 2 wt .-%, particularly preferably in the range of 0.05 wt .-% to 0.5 wt .-%, based on the
  • composition set forth above which can be obtained by the process according to the invention, is furthermore the subject of the present invention.
  • the composition is characterized in particular by a low proportion of low molecular weight organic compounds, which is preferably at most 10 wt .-%, more preferably at most 5 wt .-% and particularly preferably at most 4 wt .-%.
  • low molecular weight Organic compounds preferably have a molecular weight of at most 400 g / mol, preferably at most 200 g / mol and particularly preferably at most 80 g / mol.
  • the composition obtainable by the process is applied to a suitable substrate.
  • conventional coating methods can be used, for. As dipping, flooding, pulling, pouring, spinning, spraying, painting, screen printing or roller coating.
  • the applied composition may preferably be dried (at room temperature or slightly elevated temperature).
  • Preferred layer thicknesses (in the wet state) are 10 to 50 ⁇ , in particular 15 to 25 ⁇ .
  • the organic constituents for example the rheology control agent and the radicals R optionally present in the polycondensate, can be removed by heating.
  • the temperatures used depend on the thermal stability of the coated substrates and the organic constituents to be removed. The result is a purely inorganic
  • Antireflection coating which is thermally strong.
  • the heating is preferably carried out at temperatures in the range of 500 ° C to 1000 ° C, more preferably in the range of 550 to 700 ° C.
  • the fire can be done in conventional Flachglasbrenn- or hardening furnaces.
  • composition of the invention may be applied to mineral glasses to reduce reflection.
  • the antireflection coating according to the invention can, for. B. for anti-reflection and increase the transmission of cathode ray tubes,
  • Instrument displays spectacle lenses, screens, solar collectors, windows, etc.
  • Preferred substrates provided with an antireflection coating may, for example, have a transmission of at least 95%, preferably at least 96%.
  • the coating can be applied both on one side and on both sides, with a double-sided application often leads to a particularly high transmission or low reflection.
  • the present invention will be explained in more detail by way of examples, without thereby limiting the invention.
  • Example 1 Preparation of a coating composition comprising a polycondensate
  • TEOS Tetraethoxysilane
  • Composition was obtained, which was grown on a glass substrate.
  • Coating composition had a viscosity of 1.5 Pa * s at a shear rate of 0.2-1. After application, the coating was dried at 120 ° C for 10 minutes and fired at 600 ° C for 5 minutes. The result was a dark blue reflective antireflective layer with minor stains.
  • Example 2
  • Example 1 was substantially repeated except that after the hydrolysis, 0.1% by weight of a surfactant (polyether-modified siloxane, Byk 348 available from Byk Chemicals Japan) was added.
  • a surfactant polyether-modified siloxane, Byk 348 available from Byk Chemicals Japan
  • Example 1 was substantially repeated except that 0.1% by weight of a surfactant (Byk 348 available from Byk Chemicals Japan) was added prior to hydrolysis.
  • a surfactant Byk 348 available from Byk Chemicals Japan
  • a dark blue reflecting antireflection layer was obtained, which had substantially more optical defects than the layer of Example 1, resulting in clearly visible spots.
  • Hydroxypropyl cellulose (Klucel L available from Hercules, molecular weight is about 95000 g / mol) was added and stirred for 60 minutes at 30 ° C to obtain a clear solution.
  • 1.363 g of tetraethoxysilane was stirred in and hydrolyzed for 60 minutes.
  • In the resulting mixture were stirred in 0.661 g Kostrosol 3550.
  • the resulting composition was screen-printed (100T sieve) on flat glass to form a smooth layer. After application, the coating was fired at 690 ° C. The result was a blue to violet reflective anti-reflective coating.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Paints Or Removers (AREA)
  • Silicon Polymers (AREA)

Abstract

Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung einer wässrigen Zusammensetzung umfassend ein Kondensat auf Basis von Silicium-Verbindungen, umfassend die Schritte: i) Einbringen zumindest eines polymeren Rheologie-Steuerungsmittels in Wasser; ü) Zugabe zumindest eines sauren Katalysators; iii) Zugabe zumindest einer Silicium-Verbindungen der allgemeinen Formel (I) RnSiX4-n, in der die Reste X gleich oder verschieden sind und hydrolysierbare Gruppen oder Hydroxylgruppen bedeuten, die Reste R gleich oder verschieden sind und nicht hydrolysierbare Gruppen bedeuten und n 0, 1, 2 oder 3 ist; und iv) Durchführung einer Hydrolysereaktion zumindest eines Teils der in Schritt iii) zugegebenen Silicium-Verbindungen der allgemeinen Formel (I). Darüber hinaus beschreibt die vorliegende Erfindung eine Zusammensetzung erhältlich durch das erfindungsgemäße Verfahren.

Description

Verfahren zur Herstellung einer wässrigen Zusammensetzung umfassend ein Kondensat auf Basis von Silicium- Verbindungen zur Herstellung von Antireflexionsbeschichtungen
Die vorliegende Erfindung betrifft Verfahren zur Herstellung einer wässrigen
Zusammensetzung umfassend ein Kondensat auf Basis von Silicium- Verbindungen sowie eine Zusammensetzung erhältlich gemäß dem vorliegenden Verfahren. Die Zusammensetzung kann insbesondere zur Herstellung von Antireflexionsbeschichtungen eingesetzt werden.
Beim Durchgang von Licht durch die Grenzfläche zweier Medien mit unterschiedlichem Brechungsindex wird ein Teil der Strahlung reflektiert. Beim senkrechten Einfall von Licht auf eine Glasscheibe mit dem Brechungsindex n = 1 ,5 beträgt der reflektierte Anteil insgesamt ca. 8%. Fällt das Licht schräg auf die Grenzfläche, wird in der Regel ein weitaus größerer Anteil reflektiert. Für viele Anwendungen ist eine hohe Reflexion unerwünscht, da diese zu einer Abnahme der Transmission führt.
Daher wurden Versuche unternommen diese Reflexion zu vermindern. Beispielsweise wurden Oberflächen mit einer hochporösen Beschichtung versehen, um dieses Ziel zu erreichen. Derartige Beschichtungen sind beispielsweise in DE 196 42 419 AI, DE 199 18 81 1 AI, DE 10 2004 027842 AI, DE 10 2006 001078 AI, WO 03/027034 A2, DE 100 51 724 AI, DE 100 51 725 AI und WO 2008/14523 AI dargelegt.
Die Druckschrift DE 196 42 419 AI beschreibt die Verwendung von spezifischen Polymeren zur Herstellung von Zusammensetzungen, mit denen Antireflexionsbeschichtungen erhältlich sind, die jedoch große Mengen an organischen Lösungsmitteln enthalten.
In dem Dokument DE 199 18 811 AI werden ebenfalls Zusammensetzungen dargelegt, die spezielle Polymere enthalten, um eine Antireflexionsbeschichtung herzustellen. Insbesondere können die Zusammensetzungen eingesetzt werden, um Sicherheitsgläser zu beschichten. Die in der Offenlegungsschrift DE 10 2004 027842 AI beschriebenen
Antireflexionsschichten weisen einen hohen Anteil an MgF2 auf. Nachteilig ist hierbei insbesondere der Preis von MgF2. Darüber hinaus kann bei unsachgemäßer Entsorgung der beschichteten Substrate unweitschädliche und giftige Flusssäure (HF) entstehen. Eine mehrschichtige Antireflexionsbeschichtung wird in DE 10 2006 001078 AI dargelegt, wobei die Beschichtung eine dichte und eine poröse Schicht aufweist. Die dichte Schicht umfasst im Allgemeinen Fluoride, so dass diese Beschichtung die zuvor dargelegten
Nachteile aufweist. Zwar wird beschrieben, dass die poröse Schicht durch„Bar-Coating- Verfahren" aufgetragen werden kann. Allerdings findet sich in dieser Druckschrift kein konkretes Ausfuhrungsbeispiel hierfür. Polymere werden zur Herstellung der
Zusammensetzungen nicht eingesetzt. Die Offenlegungsschrift WO 03/027034 A2 beschreibt Antireflexionsbeschichtungen, die eine besonders hohe mechanische Stabilität aufweisen. Diese Eigenschaft wird durch die Verwendung von Si02-Partikeln mit einer bestimmten Partikelgrößenverteilung erzielt.
Weiterhin offenbaren die Druckschriften DE 100 51 724 AI und EP 0 130 801 AI
Beschichtungslösungen zur Herstellung von Antireflexionsschichten. Darüber hinaus legt die Veröffentlichung DE 100 51 725 AI Zusammensetzungen zur Herstellung von
Antireflexionsschichten dar, die einen hohen Anteil an Tensiden aufweisen.
Siebdruckfähige Si02-Sole, die zur Herstellung von Antireflexionsbeschichtungen geeignet sind, werden beispielsweise in WO 2008/14523 AI dargelegt.
Die zuvor dargelegten Druckschriften lehren, dass die Verwendung von organischen
Lösungsmitteln notwendig ist, wobei sich zumindest in den Beispielen keine
Ausfuhrungsform findet, in der nicht hohe Anteile an diesen Lösungsmitteln eingesetzt wird.
Nachteilig ist hierbei, dass durch den hohen Anteil an organischen Lösungsmitteln viele Sicherheitsmaßnahmen notwendig sind, so dass die Verarbeitung der
Beschichtungszusammensetzungen mit einem hohen Aufwand verbunden ist. So sind die Zusammensetzungen, je nach Art und Anteil der organischen Lösungsmittel brennbar.
Problematisch sind insbesondere Lösungsmitteldämpfe, die entzündlich oder explosiv sein können. Ferner kann das organische Lösungsmittel zu einer Geruchsbelästigung fuhren, so dass Filteranlagen notwendig sind. Weiterhin werden die Lösungsmittel teilweise zurückgewonnen oder wiederverwendet. Diese Vorgehensweise ist ebenfalls mit Kosten verbunden.
Beschichtungszusammensetzungen, die ohne die Verwendung von organischen
Lösungsmitteln erhalten werden können, sind unter anderem in den Druckschriften
DE 40 20 316 AI, DE 196 49 953 AI und EP 0 675 128 AI beschrieben. Allerdings eignen sich diese Beschichtungszusammensetzungen nicht zur Herstellung von
Antireflexbeschichtungen. Weiterhin werden hierfür relativ teure wassermischbare
Siliciumverbindungen benötigt.
In Anbetracht des Standes der Technik ist es nun Aufgabe der vorliegenden Erfindung ein Verfahren zur Herstellung einer wässrigen Zusammensetzung umfassend ein Kondensat auf Basis von Silicium- Verbindungen zur Verfügung zu stellen, mit denen besonders einfach und kostengünstig Zusammensetzungen erhältlich sind, durch die Antireflexionsschichten auf Substraten, insbesondere anorganischen Substraten erhalten werden können. Insbesondere sollte das Verfahren zur Beschichtung von Substraten ohne aufwendige
Sicherheitsmaßnahmen durchgeführt werden können, wobei nach Möglichkeit eine nichtbrennbare Zusammensetzung eingesetzt werden sollte. Eine weitere Aufgabe bestand darin Zusammensetzungen zur Herstellung von Antireflexionsschichten bereitzustellen, die in Beschichtungen mit einer besonders hohen Haftfestigkeit und mechanischen Stabilität überführt werden können. Ferner sollte das Verfahren zur Herstellung der Zusammensetzung ohne aufwendige Nachbehandlung und Aufreinigung der erhaltenen Reaktionsmischung durchgeführt werden können. Gelöst werden diese sowie weitere nicht explizit genannte Aufgaben, die jedoch aus den hierin einleitend diskutierten Zusammenhängen ohne weiteres ableitbar oder erschließbar sind, durch ein Verfahren mit allen Merkmalen des Patentanspruchs 1. Zweckmäßige Abwandlungen des erfindungsgemäßen Verfahrens werden in Unteransprüchen 2 bis 9 unter Schutz gestellt. Hinsichtlich der Zusammensetzung stellt der Gegenstand des Anspruchs 10 eine Lösung der zugrunde liegenden Aufgabe bereit. Gegenstand der vorliegenden Erfindung ist ein Verfahren zur Herstellung einer wässrigen Zusammensetzung, enthaltend ein Kondensat auf Basis von Silicium- Verbindungen, umfassend die Schritte:
i) Einbringen zumindest eines polymeren Rheologie-Steuerungsmittels in Wasser;
ii) Zugabe zumindest eines sauren Katalysators;
iii) Zugabe zumindest einer Silicium- Verbindungen der allgemeinen Formel (I)
RnSiX4-n (I),
in der die Reste X gleich oder verschieden sind und hydrolysierbare Gruppen oder Hydroxylgruppen bedeuten, die Reste R gleich oder verschieden sind und nicht hydrolysierbare Gruppen bedeuten und n 0, 1, 2 oder 3 ist; und
iv) Umsetzung zumindest eines Teils der in Schritt iii) zugegebenen Silicium- Verbindungen der allgemeinen Formel (I) in einer Hydrolysereaktion.
Hierdurch kann überraschend auf besonders einfache und wirtschaftliche Weise eine
Zusammensetzung erhalten werden, die zur Herstellung von Antireflexionsbeschichtungen eingesetzt werden kann. Hierbei kann die Zusammensetzung im Wesentlichen ohne aufwendige Sicherheitsmaßnahmen auf ein Substrat getragen werden. Weiterhin kann bei der Verwendung der Zusammensetzung auf teure Brandschutzmaßnahmen verzichtet werden. Ferner kann das Verfahren zur Herstellung der Zusammensetzung ohne kostspielige
Aufreinigung oder Nachbehandlung der Reaktionsmischung durchgeführt werden.
Die durch die erfindungsgemäßen Zusammensetzungen erhältlichen Beschichtungen zeigen eine hohe mechanische Stabilität und eine hohe Haftfestigkeit auf vielen Substraten. Des Weiteren können die erfindungsgemäßen Zusammensetzungen kostengünstig und
umweltfreundlich hergestellt und verarbeitet werden. Die beschichteten Substrate weisen hierbei eine überraschend hohe Transparenz auf.
In Schritt i) des erfindungsgemäßen Verfahrens wird zumindest ein polymeres Rheologie- Steuerungsmittel in Wasser eingebracht. Rheologie-Steuerungsmittel im Sinne der vorliegenden Erfindung sind Verbindungen, die eine starke Viskositätsbeeinflussung der Zusammensetzung bewirken. Durch die Verwendung von Rheologie-Steuerungsmittel kann überraschend die Bildung stark kondensierter großer geflockter Kieselsäuren verhindert werden. Bevorzugte Rheologie-Steuerungsmittel können ab einer Temperatur von ca. 500°C vollständig verbrannt werden.
Vorzugsweise liegt das Molekulargewicht des Rheologie-Steuerungsmittels im Bereich von 50000 g/mol bis 20000000 g/mol, besonders bevorzugt im Bereich von 100000 g/mol bis 2000000 g/mol und speziell bevorzugt 200000 g/mol bis 1000000 g/mol. Das
Molekulargewicht bezieht sich hierbei auf das Gewichtsmittel und kann beispielsweise über Gel-Permeations-Chromatographie (GPC) bestimmt werden. Bevorzugte Rheologie-Steuerungsmittel umfassen Hydroxygruppen. Gemäß einem
besonderen Aspekt können als Rheologie-Steuerungsmittel insbesondere Cellulose,
Cellulosederivate, besonders bevorzugt Celluloseether und/oder Celluloseester eingesetzt werden. Hierzu gehören insbesondere Hydroxypropylmethylcellulosen. Weiterhin können Polyacrylsäuren, Polyvinylalkohole und Polyacrylamide als bevorzugte Rheologie-Steuerungsmittel eingesetzt werden, wobei die zuvor dargelegten Cellulosen und/oder Cellulosederivate gegenüber den Polyacrylamiden bevorzugt sind.
Die Menge an Rheologie-Steuerungsmittel liegt vorzugsweise im Bereich von 0,1 Gew.-% bis 40 Gew.-%, besonders bevorzugt im Bereich von 0,5 Gew.-% bis 15 Gew.-% und speziell bevorzugt 1 Gew.-% bis 5 Gew.-%, bezogen auf das Gewicht der in Schritt i) erhaltenen Mischung.
Das in Schritt i) eingesetzte Wasser unterliegt keinen besonderen Begrenzungen, wobei das Wasser eine Reinheit aufweisen sollte, die einer nachfolgenden Verwendung der erhaltenen Zusammensetzung nicht entgegensteht. Die in Schritt i) erhaltene Mischung umfasst vorzugsweise 70 Gew.-% bis 99,9 Gew.-%, besonders bevorzugt im Bereich von 85 Gew.-% bis 99,5 Gew.-% und speziell bevorzugt 95 Gew.-% bis 99 Gew.-% Wasser, bezogen auf das Gewicht der in Schritt i) erhaltenen Mischung.
Das Einbringen des polymeren Rheologie-Steuerungsmittels in das Wasser kann auf jede übliche Weise erfolgen. Beispielsweise kann das Rheologie-Steuerungsmittel als Feststoff oder als wässrige Lösung in Wasser gegeben werden. Weiterhin kann Wasser zu dem Rheologie-Steuerungsmittel zugegeben werden. Hierbei kann die erhaltene Mischung beispielswese durch mechanische Einwirkung vermischt werden. Die Temperatur dieses Mischschrittes kann beispielsweise im Bereich von 0°C bis 100°C, vorzugsweise 10 bis 60°C liegen, ohne dass hierdurch eine Begrenzung erfolgen soll.
Erfindungsgemäß wird in Schritt ii) ein saurer Katalysator zugegeben. Diese Zugabe kann vorzugsweise in die in Schritt i) erhaltene Mischung erfolgen. Weiterhin kann der saure Katalysator auch in das in Schritt i) eingesetzte Wasser und/oder zu dem in Schritt i) eingesetzten Rheologie-Steuerungsmittel gegeben werden.
Saure Katalysatoren sind in der Fachwelt weithin bekannt, wobei beispielsweise organische und/oder anorganische Säuren verwendet werden können. Zu den bevorzugten Säuren gehören unter anderem Essigsäure, Oxalsäure, Salzsäure (HCl), Schwefelsäure (H2S04), Phosphorsäure (H3P04) und/oder Salpetersäure (HN03).
Die Menge an saurem Katalysator ist von der Art des Katalysators und von der angestrebten Reaktionsgeschwindigkeit der in Schritt iv) durchzuführenden Hydrolysereaktion abhängig.
Überraschende Vorteile lassen sich durch Mengen an saurem Katalysator im Bereich bevorzugt von 0,01 bis 5 Gew.-%, vorzugsweise 0,05 bis 4 Gew.-%, besonders bevorzugt 0,1 bis 3 Gew.-% und speziell bevorzugt 0,2 bis 1 Gew.-%, bezogen auf die in Schritt ii) erhaltene Mischung.
Die in Schritt ii) erhaltene Mischung umfasst vorzugsweise 70 Gew.-% bis 99,89 Gew.-%, besonders bevorzugt im Bereich von 80 Gew.-% bis 99,45 Gew.-% und speziell bevorzugt 95 Gew.-% bis 99 Gew.-% Wasser.
Die Menge an Rheologie-Steuerungsmittel liegt vorzugsweise im Bereich von 0,1 Gew.-% bis 40 Gew.-%, besonders bevorzugt im Bereich von 0,5 Gew.-% bis 15 Gew.-% und speziell bevorzugt 1 Gew.-% bis 5 Gew.-%, bezogen auf das Gewicht der in Schritt ii) erhaltenen Mischung. In Schritt iii) des vorliegenden Verfahrens wird eine Silicium-Verbindungen der allgemeinen Formel
RnSiX4-n (I), in der die Reste X gleich oder verschieden sind und hydrolysierbare Gruppen oder Hydroxylgruppen bedeuten, die Reste R gleich oder verschieden sind und nicht hydrolysierbare Gruppen bedeuten und n 0, 1, 2 oder 3 ist, zugegeben.
Hierbei kann die Silicium-Verbindungen der allgemeinen Formel (I) der in Schritt i) und/oder Schritt ii) erhaltenen Mischung und/oder einem der eingesetzten Edukte, beispielsweise dem eingesetzten Wasser, dem Rheologie-Steuerungsmittel und/oder dem sauren Katalysator zugegebenen werden. Überraschende Vorteile können durch die Zugabe in die in Schritt i) oder Schritt ii) erhaltenen Mischung erzielt werden, wobei eine Zugabe in die in Schritt ii) erhaltene Mischung besonders bevorzugt ist.
Bei den Silicium-Verbindungen der Formel I sind die hydrolysierbaren Gruppen X
beispielsweise Wasserstoff oder Halogen, vorzugsweise F, Cl, Br oder I; Alkoxy,
vorzugsweise C1-6-Alkoxy, wie z. B. Methoxy, Ethoxy, n-Propoxy, i-Propoxy und Butoxy; Aryloxy, vorzugsweise C6-10-Aryloxy, wie z. B. Phenoxy; Acyloxy; vorzugsweise C1-6- Acyloxy, wie z. B. Acetoxy oder Propionyloxy; Alkylcarbonyl, vorzugsweise C2-7- Alkylcarbonyl, wie z. B. Acetyl; Amino, Monoalkylamino oder Dialkylamino mit vorzugsweise 1 bis 12, insbesondere 1 bis 6 Kohlenstoffatomen.
In Formel I bedeutet R einen nicht hydrolysierbaren organischen Rest, der gegebenenfalls eine funktionelle Gruppe tragen kann. Beispiele für R sind Alkyl, vorzugsweise Ci-6-Alkyl, wie Methyl, Ethyl, n-Propyl, Isopropyl, n-Butyl, s-Butyl und t-Butyl, Pentyl, Hexyl oder
Cyclohexyl; Alkenyl, vorzugsweise C2 6-Alkenyl, wie z. B. Vinyl, 1-Propenyl, 2-Propenyl und Butenyl; Alkinyl, vorzugsweise C2-6-Alkinyl, wie z. B. Acetylenyl und Propargyl; und Aryl, vorzugsweise C6-10-Aryl, wie z. B. Phenyl und Naphthyl.
Spezielle Beispiele funktionelle Gruppen des Restes R sind die Epoxy-, Hydroxy-, Ether-, Amino-, Monoalkylamino-, Dialkylamino-, Amid-, Carboxy-, Mercapto, Thio-ether-, Vinyl-, Acryloxy-, Methacryloxy-, Cyano-, Halogen-, Aldehyd-, Alkylcarbonyl-, Sulfonsäure- und Phosphorsäuregruppe. Diese funktionellen Gruppen sind über Alkylen-, Alkenylen- oder Arylen-Brückengruppen, die durch Sauerstoff- oder Schwefelatome oder NH-Gruppen unterbrochen sein können, an das Siliciumatom gebunden. Die genannten Brückengruppen leiten sich z. B. von den oben genannten Alkyl-, Alkenyl- oder Arylresten ab. Die Reste R enthalten vorzugsweise 1 bis 18, insbesondere 1 bis 8 Kohlenstoffatome. Die genannten Reste R und X können gegebenenfalls einen oder mehrere übliche Substituenten, wie z. B. Halogen, Alkyl, Hydroxyalkyl, Alkoxy, Aryl, Aryloxy, Alkylcarbonyl, Alkoxycarbonyl, Furfuryl, Tetrahydrofurfuryl, Amino, Monoalkylamino, Dialkylamino, Trialkylammonium, Amido, Hydroxy, Formyl, Carboxy, Mercapto, Cyano, Isocyanato, Nitro, Epoxy, S03H oder P04H2, aufweisen.
Die Silicium- Verbindungen der allgemeinen Formel I sind über die Reste X hydrolysierbar und kondensierbar. Über diese hydrolytisch kondensierbaren Gruppen wird ein anorganisches Netzwerk mit Si-O-Si-Einheiten aufgebaut. Die Reste R sind unter den üblichen
Kondensationsbedingungen im Gegensatz zu den Resten X gegenüber einer Hydrolyse stabil.
In einer bevorzugten Ausführungsform werden zur Herstellung des Kondensats Silicium- Verbindungen der allgemeinen Formel SiX4, in der die Reste X gleich oder verschieden sind und hydrolysierbare Gruppen oder Hydroxylgruppen bedeuten, eingesetzt. Ohne
Einschränkung der Allgemeinheit sind konkrete Beispiele für derartige Silicium- Verbindungen SiCl4, HSiCl3, Si(OCH3)4, Si(OOCCH3)4, Si(OC2H5)4 und Si(OC3H7)4, wobei Tetraalkoxysilane, beispielsweise Si(OCH3)4 (TMOS), Si(OCH2CH3)4 (TEOS) oder
Si(OC3H7)4 besonders bevorzugt sind. Die genannten Verbindungen können einzeln oder als Mischung eingesetzt werden. Der Anteil an Silicium- Verbindungen der allgemeinen Formel S1X liegt vorzugsweise im Bereich von 0 Gew.-% bis 100 Gew.-% besonders bevorzugt im Bereich von 40 Gew.-% bis 100 Gew.-% und speziell bevorzugt 80 bis 100 Gew.-%, bezogen auf die Gesamtmenge an monomeren Silicium-Verbindungen. Gemäß einer besonders bevorzugten Varianten der vorliegenden Erfindung werden im Wesentlichen nur
Verbindungen der allgemeinen Formel SiX4 in Schritt iii) als Silicium-Verbindungen eingesetzt. Durch die Verwendung von hohen Anteilen an Silicium-Verbindungen der allgemeinen Formel SiX4 die Brennzeiten relativ kurz gehalten werden. Weiterhin können durch die Verwendung von hohen Anteilen an Silicium-Verbindungen der allgemeinen Formel S1X4 auf besonders einfache und kostengünstige Weise sehr haftfeste Beschichtungen auf Substraten erhalten werden, die eine ausgezeichnete optische Qualität haben. Gemäß einem weiteren Aspekt der vorliegenden Erfindung kann zur Herstellung des
Kondensats vorzugsweise eine Mischung von Silanen eingesetzt werden, die mindestens eine Silicium- Verbindung der Formel RSiX3 umfasst, in der die Reste X gleich oder verschieden sind und hydrolysierbare Gruppen oder Hydroxylgruppen bedeuten und der Rest R eine nicht hydrolysierbare Gruppen bedeutet. Ohne Einschränkung der allgemeinen Lehre sind konkrete Beispiele für derartige Silicium- Verbindungen Cl3SiCH3, Si(CH3)(OC2H5)3, Cl3Si(C2H5), Si(C2H5)(OC2H5)3, Si(OC2H5)3(CH2-CH=CH2), Si(OOCCH3)3(CH2-CH=CH2),
Cl3Si(CH=CH2), Si(CH=CH2)(OC2H5)3, Si(CH=CH2)(OC2H4OCH3)3 und
Si(CH=CH2)(OOCCH3)3. Die genannten Verbindungen können einzeln oder als Mischung eingesetzt werden. Der Anteil an Silicium- Verbindungen der allgemeinen Formel RSiX3 beträgt vorzugsweise höchstens 80 Gew.-%, besonders bevorzugt höchstens 10 Gew.-% bezogen auf die Gesamtmenge an monomeren Silicium- Verbindungen. Weiterhin kann das Kondensat durch Kondensation einer Mischung erhalten werden, die mindestens eine Silicium- Verbindung der Formel R2SiX2 umfasst, in der die Reste X gleich oder verschieden sind und hydrolysierbare Gruppen oder Hydroxylgruppen bedeuten und die Reste R gleich oder verschieden sind und nicht hydrolysierbare Gruppen bedeuten. Ohne Einschränkung der allgemeinen Lehre sind konkrete Beispiele für derartige Silicium- Verbindungen Cl2Si(CH3)2, Si(CH3)2(OC2H5)2, Si(C2H5)2(OC2H5)2, Cl2Si(CH=CH2)(CH3), Si(CH3)2(OCH3)2, Cl2Si(C6H5)2, und Si(C6H5)2(OC2H5)2. Die genannten Verbindungen können einzeln oder als Mischung eingesetzt werden. Der Anteil an Silicium- Verbindungen der allgemeinen Formel R2SiX2 beträgt vorzugsweise höchstens 20 Gew.-%, besonders bevorzugt höchstens 10 Gew.-% bezogen auf die Gesamtmenge an monomeren Silicium- Verbindungen.
Darüber hinaus kann das Kondensat durch Kondensation einer Mischung erhalten werden, die mindestens eine Silicium- Verbindung der Formel R3SiX umfasst, in der der Rest X eine hydrolysierbare Gruppe oder eine Hydroxylgruppe bedeutet und die Reste R gleich oder ver- schieden sind und nicht hydrolysierbare Gruppen bedeuten. Ohne Einschränkung der allgemeinen Lehre sind konkrete Beispiele für derartige Silicium- Verbindungen
(C6H5)3SiOH, Si(CH3)3(OC2H5) und Si(CH2CH3)3(OC2H5). Die genannten Verbindungen können einzeln oder als Mischung eingesetzt werden. Der Anteil an Silicium- Verbindungen der allgemeinen Formel R3SiX beträgt vorzugsweise höchstens 20 Gew.-%, besonders bevorzugt höchstens 10 Gew.-% bezogen auf die Gesamtmenge an monomeren Silicium- Verbindungen. Silane der allgemeinen Formel (I) sind entweder käuflich erwerbbar oder nach Methoden herstellbar wie in "Chemie und Technologie der Silicone" (W. Noll, Verlag Chemie,
Weinheim/Bergstraße, 1968) beschrieben. Sie können entweder als solche oder in
vorkondensierter Form eingesetzt werden. Die Menge an Silicium- Verbindungen der allgemeinen Formel (I) kann vorzugsweise im
Bereich von 0,1 Gew.-% bis 40 Gew.-%, besonders bevorzugt im Bereich von 0,5 Gew.-% bis 15 Gew.-% und speziell bevorzugt 1 Gew.-% bis 5 Gew.-%, bezogen auf die in Schritt iii) erhaltene Mischung. Ferner kann vorgesehen sein, dass zur Herstellung des Kondensats Saatteilchen eingesetzt werden. Bevorzugte Saatteilchen können einen mittleren Partikeldurchmesser im Bereich von 1 bis 100 nm, vorzugsweise im Bereich von 3 bis 80 nm, besonders bevorzugt im Bereich von 5 bis 50 nm aufweisen. Der mittlere Partikeldurchmesser bezieht sich hierbei auf das
Zahlenmittel und kann beispielsweise über mikroskopische Methoden ermittelt werden. Die Saatteilchen umfassen vorzugsweise Si02, wobei der Gewichtsanteil an Si02 bevorzugt mindestens 50 Gew.-%, besonders bevorzugt mindestens 80 Gew.-% beträgt, bezogen auf das Gesamtgewicht der Saatteilchen.
Der Anteil an Saatteilchen kann vorzugsweise im Bereich von 0,01 bis 20 Gew.-%, bevorzugt im Bereich von 0,1 bis 10 Gew.-%,besonders bevorzugt im Bereich von 0,5 bis 5 Gew.-% liegen, bezogen auf das Gewicht an Silicium- Verbindungen der allgemeinen Formel (I).
Überraschende Vorteile lassen sich durch Mengen an saurem Katalysator im Bereich bevorzugt von 0,01 bis 5 Gew.-%, vorzugsweise 0,05 bis 3 Gew.-%, besonders bevorzugt 0,1 bis 2 Gew.-% und speziell bevorzugt 0,2 bis 1 Gew.-%, bezogen auf die in Schritt iii) erhaltene Mischung. Die in Schritt iii) erhaltene Mischung umfasst vorzugsweise 70 Gew.-% bis 99,79 Gew.-%, besonders bevorzugt im Bereich von 80 Gew.-% bis 99 Gew.-% und speziell bevorzugt 95 Gew.-% bis 99 Gew.-% Wasser. Die Menge an Rheologie-Steuerungsmittel liegt vorzugsweise im Bereich von 0,1 Gew.-% bis 40 Gew.-%, besonders bevorzugt im Bereich von 0,5 Gew.-% bis 15 Gew.-% und speziell bevorzugt 1 Gew.-% bis 5 Gew.-%, bezogen auf das Gewicht der in Schritt iii) erhaltenen Mischung. In Schritt iv) wird eine Hydrolysereaktion zumindest eines Teils der in Schritt iii)
zugegebenen Silicium- Verbindung der allgemeinen Formel (I) durchgeführt. Hierdurch entsteht ein anorganisches Netzwerk, so dass die Reaktion auch als Polykondensation bezeichnet werden kann, durch die ein Kondensat erhalten wird. Der Anteil der Silicium, der in Schritt iv) umgesetzt wird, bezogen auf die in Schritt iii) zugegebene Menge, ergibt sich aus dem Umsatzgrad. Je nach Reaktionsführung und Partikelgröße werden üblich mindestens 40%, bevorzugt mindestens 80%, besonders bevorzugt mindestens 95% der in Schritt iii) zugegebenen Silicium- Verbindungen umgesetzt, so dass der Anteil der monomeren Silicium- Verbindungen der Formel (I) nach dem Hydrolyseschritt iv) höchstens 60 %, vorzugsweise höchstens 20%, besonders bevorzugt höchstens 5% bezogen auf das Gewicht der ursprünglich in Schritt iii) zugegebenen Silicium- Verbindungen, beträgt.
Die Hydrolyse erfolgt bevorzugt bei Temperaturen zwischen 0 und 130°C, vorzugsweise zwischen 15 und 40°C, wobei zur Durchführung der Reaktion bei hohen Temperaturen ein Überdruck angewandt werden kann.
Die Dauer der Hydrolysereaktion ergibt sich aus der Reaktivität der eingesetzten Silicium- Verbindung, dem pH- Wert sowie der Reaktionstemperatur. Im Allgemeinen kann die
Reaktionsdauer so gewählt werden, dass ein Kondensat in der Zusammensetzung erhalten wird, welches in einer kolloidal-dispersen Form vorliegt.
Die Art des zu erzielenden Kondensats ist aus dem einleitend beschriebenen Stand der Technik an sich bekannt, wobei diese Druckschriften, jedoch die zuvor dargelegten
Unterschiede, insbesondere die Verwendung von großen Mengen an Lösungsmitteln aufweisen. Weitere Hinweise hierzu finden sich in den Dokumenten DE 27 58 414, DE 27 58 415, DE 30 11 761, DE 38 26 715 und DE 38 35 968.
Ferner kann vorgesehen sein, dass die Schritte i), ii), iii) und iv) in der Reihenfolge i), ii), iii) und iv) durchgeführt werden
Der Anteil an Si02-Kondensat in der erfindungsgemäß erhältlichen Zusammensetzung liegt vorzugsweise im Bereich von 0,01 Gew.-% bis 10 Gew.-%, besonders bevorzugt im Bereich von 0,1 Gew.-% bis 5 Gew.-%. Dieser Anteil bezieht sich auf das Gewicht des Si02- Kondensats nach der Hydrolyse, ohne organische Bestandteile. Dieser Gehalt ergibt sich besonders einfach aus dem Gewicht einer durch einen Brennvorgang erhaltenen Schicht, bezogen auf das Gewicht vor dem Brennen.
Durch den Anteil an Si02-Kondensat in der Zusammensetzung kann beispielsweise die Schichtdicke der Antireflexionsbeschichtung eingestellt werden.
Überraschend kann die Wassermenge bei der Herstellung der
Beschichtungszusammensetzung so gewählt wird, dass möglichst wenig überschüssiges Wasser abgetrennt werden muss. Bevorzugt müssen höchstens 20 Gew.-%, besonders bevorzugt höchstens 5 Gew. -% Wasser nach der Hydrolyse aus der Zusammensetzung abgetrennt werden. Gemäß einer besonders bevorzugten Ausführungsform wird nach der Hydrolyse kein Wasser abgetrennt. Weiterhin sind die Mengen an freigesetztem Alkohol oder anderen organischen Verbindungen, die aus den Silicium- Verbindungen durch die Hydrolyse entstehen, so gering, dass diese nicht abgetrennt werden müssen.
Gemäß einem besonderen Aspekt der vorliegenden Erfindung kann das Kondensat in der Zusammensetzung in einer kolloidal-dispersen Form vorliegen, in der das Kondensat partikelförmig in der Zusammensetzung vorhanden ist. Ferner kann vorgesehen sein, dass dem Kondensat Partikel, vorzugsweise Kieselsole zugesetzt werden. Hierdurch können die Eigenschaften des Kondensats besonderen
Erfordernissen angepasst werden. Bevorzugte Partikel, insbesondere Kieselsole können einen mittleren Partikeldurchmesser im Bereich von 1 bis 100 nm, vorzugsweise im Bereich von 3 bis 80 nm, besonders bevorzugt im Bereich von 5 bis 50 nm aufweisen. Der mittlere
Partikeldurchmesser bezieht sich hierbei auf das Zahlenmittel und kann beispielsweise über mikroskopische Methoden ermittelt werden. Die Partikel umfassen vorzugsweise Si02, wobei der Gewichtsanteil an Si02 bevorzugt mindestens 50 Gew.-%, besonders bevorzugt mindestens 80 Gew.-% beträgt, bezogen auf das Gesamtgewicht der Partikel.
Der Anteil an nach Schritt iv) zugegebenen Partikeln kann vorzugsweise im Bereich von 0,01 bis 20 Gew.-%, bevorzugt im Bereich von 0,1 bis 10 Gew.-%,besonders bevorzugt im Bereich von 0,25 bis 5 Gew.-% liegen, bezogen auf das Gewicht der erfindungsgemäß erhältlichen Zusammensetzung.
Gemäß einer bevorzugten Ausführungsform wird die Hydrolysereaktion gemäß Schritt iv) ohne die Gegenwart von wirksamen Anteilen an Additiven, vorzugsweise oberflächenaktiven Stoffen durchgeführt. Zur Verbesserung der Eigenschaften der Antireflexschicht kann der erhaltenen Zusammensetzung nach der Hydrolysereaktion gemäß Schritt iv) ein Additiv, vorzugsweise oberflächenaktiver Stoff zugegebenen werden. Zu den bevorzugten
oberflächenaktiven Stoffen gehören unter anderem nichtionische Tenside, anionische Tenside und kationische Tenside. Hierbei sind unter anderem Phosphorsäureester-Tenside und Silikontenside, vorzugsweise polyethermodifizierte Siloxane bevorzugt. Der HLB-Wert bevorzugter oberflächenaktiven Stoffe liegt im Bereich von 11 bis 19, besonders bevorzugt im Bereich von 12 bis 18, bestimmt gemäß Davies.
Der Anteil an oberflächenaktiven Stoffen in der erfindungsgemäß erhältlichen
Zusammensetzung liegt vorzugsweise im Bereich von 0,005 Gew.-% bis 2 Gew.-%, besonders bevorzugt im Bereich von 0,05 Gew.-% bis 0,5 Gew.-%, bezogen auf das
Gesamtgewicht der Zusammensetzung nach Zugabe des oberflächenaktiven Stoffs.
Die zuvor dargelegte Zusammensetzung, die nach dem erfindungsgemäßen Verfahren erhältlich ist, ist weiterhin Gegenstand der vorliegenden Erfindung. Hierbei zeichnet sich die Zusammensetzung insbesondere durch einen geringen Anteil an niedermolekularen organischen Verbindungen aus, der vorzugsweise höchstens 10 Gew.-%, besonders bevorzugt höchstens 5 Gew.-% und besonders bevorzugt höchstens 4 Gew.-% beträgt. Niedermolekulare organische Verbindungen weisen bevorzugt ein Molekulargewicht von höchstens 400 g/mol, vorzugsweise höchstens 200 g/mol und besonders bevorzugt höchstens 80 g/mol auf.
Zur Herstellung einer Antireflexbeschichtung wird die gemäß dem Verfahren erhältliche Zusammensetzung auf ein geeignetes Substrat aufgebracht. Für diese Beschichtung können übliche Beschichtungsverfahren Verwendung finden, z. B. Tauchen, Fluten, Ziehen, Gießen, Schleudern, Spritzen, Aufstreichen, Siebdruck oder Rollercoating. Hierbei sind
Ziehverfahren, Flutverfahren und Gießverfahren, insbesondere das Vorhanggießen besonders bevorzugt.
Vor der Ausbildung der Antireflex-Eigenschaften kann die aufgetragene Zusammensetzung vorzugsweise (bei Raumtemperatur oder leicht erhöhter Temperatur) getrocknet werden. Bevorzugte Schichtdicken (im nassen Zustand) liegen bei 10 bis 50 μπι, insbesondere 15 bis 25 μηι.
Nach dem Auftragen der Zusammensetzung können die organischen Bestandteile, beispielsweise das Rheologie-Steuerungsmittel und die gegebenenfalls im Polykondensat vorhandenen Reste R, durch Erhitzen entfernt werden. Die dabei angewandten Temperaturen richten sich selbstverständlich nach der thermischen Stabilität der beschichteten Substrate und der zu entfernenden organischen Bestandteile. Es resultiert eine rein anorganische
Antireflexionsbeschichtung, die thermisch stark belastbar ist. Das Erhitzen erfolgt vorzugsweise bei Temperaturen im Bereich von 500 °C bis 1000°C, besonders bevorzugt im Bereich von 550 bis 700°C. Der Brand kann in üblichen Flachglasbrenn- oder Härteöfen erfolgen. *
Die erfindungsgemäße Zusammensetzung kann auf mineralische Gläser aufgetragen werden, um die Reflexion zu mindern. Die erfindungsgemäße Antireflexionsbeschichtung kann z. B. zur Entspiegelung und Erhöhung der Transmission von Kathodenstrahlröhren,
Instrumentenanzeigen, Brillengläsern, Bildschirmen, Solarkollektoren, Fenstern, etc.
eingesetzt werden.
Bevorzugte mit einer Antireflexionsbeschichtung versehene Substrate können beispielsweise eine Transmission von mindestens 95%, bevorzugt mindestens 96% aufweisen. Hierbei kann die Beschichtung sowohl einseitig als auch beidseitig aufgetragen werden, wobei ein beidseitiger Auftrag vielfach zu einer besonders hohen Transmission bzw. einer geringen Reflexion führt. Nachfolgend wird die vorliegende Erfindung anhand von Beispielen näher erläutert, ohne dass hierdurch eine Begrenzung der Erfindung erfolgen soll.
Beispiel 1 Herstellung einer Beschichtungszusammensetzung umfassend ein Polykondensat aus
Tetraethoxysilan (TEOS).
Zu 46,766 g Wasser wurden 1,25 g Hydroxypropylcellulose (Nisso M erhältlich von Nisso Chemical Europe GmbH, Viskosität einer wässrigen Lösung mit 2 Gew.-% Nisso M beträgt ca. 150 bis 400 mPa»s, gemessen bei 20°C, Molekulargewicht beträgt ca. 620000 g/mol) zugegeben und 30 Minuten bei 30°C gerührt, um eine klare Lösung zu erhalten, in die in einem zweiten Schritt 0,25g HN03 beigefügt wurden. In die erhaltene Mischung wurden 1,734g Tetraethoxysilan eingerührt, wobei nach 18 Stunden bei 30°C eine klare
Zusammensetzung erhalten wurde, die auf ein Glassubstrat aufgezogen wurde. Die
Beschichtungszusammensetzung hatte bei einer Scherrate von 0,2s- 1 eine Viskosität von l,5Pa*s Nach dem Auftrag wurde die Beschichtung bei 120°C 10 Minuten getrocknet und 5 Minuten bei 600°C gebrannt. Es entstand eine dunkelblau reflektierende Antireflexschicht, die geringfügige Flecken aufwies. Beispiel 2
Das Beispiel 1 wurde im Wesentlichen wiederholt, wobei jedoch nach der Hydrolyse 0,1 Gew.-% eines oberflächenaktiven Stoffs (polyethermodifiziertes Siloxan, Byk 348 erhältlich von Byk Chemicals Japan) zugegeben wurde.
Es wurde eine dunkelblau reflektierende Antireflexschicht erhalten, die gegenüber der Schicht des Beispiels 1 weniger optische Fehler aufwies. Beispiel 3
Das Beispiel 1 wurde im Wesentlichen wiederholt, wobei jedoch vor der Hydrolyse 0,1 Gew.-% eines oberflächenaktiven Stoffs (Byk 348 erhältlich von Byk Chemicals Japan) zugegeben wurde.
Es wurde eine dunkelblau reflektierende Antireflexschicht erhalten, die gegenüber der Schicht des Beispiels 1 wesentlich mehr optische Fehler aufwies, wobei deutlich sichtbare Flecken entstanden.
Vergleichsbeispiel 1
Zu 10 ml Wasser wurden drei Tropfen TEOS zugegeben, wobei die Silicium- Verbindung nicht in dem Wasser durch Rühren dispergiert werden konnte. Die Zugabe von 2 Tropfen HN03 führte zur Bildung von weißen opaken Flöckchen, ohne dass die Entstehung einer zweckmäßigen Zusammensetzung beobachtet werden konnte.
Beispiel 4 Zu 95,5 g Wasser, welches 0,263 g H2S04 50%-ig enthielt, wurden 2,2 g
Hydroxypropylcellulose (Klucel L erhältlich von Hercules, Molekulargewicht beträgt ca. 95000 g/mol) zugegeben und 60 Minuten bei 30°C gerührt, um eine klare Lösung zu erhalten. In die erhaltene Mischung wurden 1,363 g Tetraethoxysilan eingerührt und für 60 Minuten hydrolysiert. In die erhaltene Mischung wurden 0,661 g Köstrosol 3550 eingerührt. Die erhaltene Zusammensetzung wurde mittels Siebdruck (Sieb 100T) auf Flachglas aufgebracht, wobei eine glatte Schicht entstand. Nach dem Auftrag wurde die Beschichtung bei 690°C gebrannt. Es entstand eine blau bis violett reflektierende Antireflexschicht.

Claims

Patentansprüche
Verfahren zur Herstellung einer wässrigen Zusammensetzung umfassend ein
Kondensat auf Basis von Silicium- Verbindungen, umfassend die Schritte:
i) Einbringen zumindest eines polymeren Rheologie-Steuerungsmittels in
Wasser;
ii) Zugabe zumindest eines sauren Katalysators;
iii) Zugabe zumindest einer Silicium- Verbindungen der allgemeinen Formel (I)
Figure imgf000018_0001
in der die Reste X gleich oder verschieden sind und hydrolysierbare Gruppen oder Hydroxylgruppen bedeuten, die Reste R gleich oder verschieden sind und nicht hydrolysierbare Gruppen bedeuten und n 0, 1, 2 oder 3 ist; und iv) Durchführung einer Hydrolysereaktion zumindest eines Teils der in Schritt iii) zugegebenen Silicium-Verbindungen der allgemeinen Formel (I).
Verfahren gemäß Anspruch 1 , dadurch gekennzeichnet, dass die Schritte i), ii), iii) und iv) in der Reihenfolge i), ii), iii) und iv) durchgeführt werden.
Verfahren gemäß Anspruch 1 , dadurch gekennzeichnet, dass das Rheologie- Steuerungsmittel ein Molekulargewicht Mw im Bereich von 1000 bis 2000000 g/mol aufweist.
Verfahren gemäß mindestens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass zur Herstellung der Zusammensetzung in Schritt 0,1 Gew.-% bis 40 Gew.-% Rheologie-Steuerungsmittel eingesetzt werden, bezogen auf das Gewicht der in Schritt i) erhaltenen Mischung.
Verfahren gemäß mindestens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass Rheologie-Steuerungsmittel ein Polyacrylamid, Cellulose oder ein Cellulose-Derivat ist.
Verfahren gemäß mindestens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass mindestens eine Silicium- Verbindung der Formel SiX4 eingesetzt wird, in der die Reste X gleich oder verschieden sind und hydrolysierbare Gruppen oder Hydroxylgruppen bedeuten.
Verfahren gemäß mindestens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Anteil der Silicium- Verbindung gemäß Formel SiX4 im Bereich von 80 Gew.-% bis 100 Gew.-% liegt, bezogen auf die Gesamtmenge an monomeren Silicium- Verbindungen.
Verfahren gemäß mindestens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Anteil an niedermolekularen organischen Verbindungen höchstens 10 Gew.-% beträgt, bezogen auf das Gesamtgewicht der Zusammensetzung.
Verfahren gemäß mindestens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass ein oberflächenaktiver Stoff nach Durchführung des Schrittes iv) der Zusammensetzung zugegeben wird.
Zusammensetzung erhältlich nach einem Verfahren gemäß mindestens einem der vorhergehenden Ansprüche.
PCT/EP2014/001464 2013-06-18 2014-05-30 Verfahren zur herstellung einer wässrigen zusammenstzung umfassend ein kondensat auf basis von silicium-verbindungen zur herstellung von antireflexionsbeschichtungen WO2014202181A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201480034850.1A CN105358639B (zh) 2013-06-18 2014-05-30 用于生产抗反射涂层的包含基于硅化合物的缩合物的水性组合物的方法
US14/898,879 US10072158B2 (en) 2013-06-18 2014-05-30 Method for producing an aqueous composition comprising a condensate based on silicon compounds for producing antireflective coatings
EP14728831.0A EP3010986B1 (de) 2013-06-18 2014-05-30 Verfahren zur herstellung einer wässrigen zusammenstzung umfassend ein kondensat auf basis von silicium-verbindungen zur herstellung von antireflexionsbeschichtungen

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102013010105.0A DE102013010105A1 (de) 2013-06-18 2013-06-18 Verfahren zur Herstellung einer wässrigen Zusammensetzung umfassend ein Kondensat auf Basis von Silicium-Verbindungen zur Herstellung von Antireflexionsbeschichtungen
DE102013010105.0 2013-06-18

Publications (1)

Publication Number Publication Date
WO2014202181A1 true WO2014202181A1 (de) 2014-12-24

Family

ID=50897528

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2014/001464 WO2014202181A1 (de) 2013-06-18 2014-05-30 Verfahren zur herstellung einer wässrigen zusammenstzung umfassend ein kondensat auf basis von silicium-verbindungen zur herstellung von antireflexionsbeschichtungen

Country Status (5)

Country Link
US (1) US10072158B2 (de)
EP (1) EP3010986B1 (de)
CN (1) CN105358639B (de)
DE (1) DE102013010105A1 (de)
WO (1) WO2014202181A1 (de)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2721829A1 (de) * 1976-05-14 1977-11-17 Sanraku Ocean Co Verfahren zur herstellung eines hydrophilen komplexen gels zur immobilisierung mikrobieller zellen
WO2008145253A1 (de) * 2007-05-31 2008-12-04 Ferro Gmbh Einbrennbare siebdruckfähige antireflexbeschichtung für glas

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2758414A1 (de) 1977-12-28 1979-07-12 Fraunhofer Ges Forschung Kieselsaeureheteropolykondensate, verfahren zu deren herstellung und deren verwendung bei der zuechtung lebender zellen
DE2758415A1 (de) 1977-12-28 1979-07-12 Fraunhofer Ges Forschung Kieselsaeureheteropolykondensate, verfahren zu deren herstellung und deren verwendung als membranen und adsorbentien
DE3011761C2 (de) 1980-03-26 1983-11-24 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V., 8000 München Verfahren zum Verbinden von Substraten durch Heißsiegeln
US4535026A (en) 1983-06-29 1985-08-13 The United States Of America As Represented By The United States Department Of Energy Antireflective graded index silica coating, method for making
DE3826715A1 (de) 1988-08-05 1990-02-22 Fraunhofer Ges Forschung Verfahren zum beschichten von substraten mit einem isolierenden ueberzug
DE3835968A1 (de) 1988-10-21 1990-06-21 Fraunhofer Ges Forschung Verfahren zur herstellung von materialien mit einem strukturierten ueberzug
DE4020316B4 (de) 1990-06-26 2004-07-08 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zur Herstellung eines Lacks und dessen Verwendung
DE69429335T2 (de) 1994-03-31 2002-08-22 Sivento Inc., Parsippany Verfahren zur Herstellung stabiler wässriger Silan-Zusammensetzungen
US5585186A (en) * 1994-12-12 1996-12-17 Minnesota Mining And Manufacturing Company Coating composition having anti-reflective, and anti-fogging properties
DE19642419A1 (de) 1996-10-14 1998-04-16 Fraunhofer Ges Forschung Verfahren und Beschichtungszusammensetzung zur Herstellung einer Antireflexionsbeschichtung
DE19649953A1 (de) 1996-12-03 1998-06-04 Huels Chemische Werke Ag Fluoralkyl-funktionelle Organopolysiloxan-haltige Zusammensetzungen auf Wasserbasis, Verfahren zu deren Herstellung sowie deren Verwendung
EP0973639A4 (de) * 1997-04-10 2000-07-19 Corning Inc Optischer artikel mit reflexfreier beschichtung, entsprechendes beschichtungsmaterial und beschichtungsverfahren
DE19918811A1 (de) 1999-04-26 2000-11-02 Fraunhofer Ges Forschung Vorgespanntes, mit einer wischfesten, porösen SiO¶2¶-Antireflex-Schicht versehenes Sicherheitsglas u. Verfahren z. d. Herstellung
DE19946712A1 (de) * 1999-09-29 2001-04-05 Inst Neue Mat Gemein Gmbh Verfahren und Zusammensetzungen zum Bedrucken von Substraten
DE10051724A1 (de) 2000-10-18 2002-05-02 Flabeg Gmbh & Co Kg Thermisch vorgespanntes Glas mit einer abriebfesten, porösen SiO¶2¶-Antireflexschicht
DE10051725A1 (de) 2000-10-18 2002-05-02 Merck Patent Gmbh Wäßrige Beschichtungslösung für abriebfeste SiO2-Antireflexschichten
DE10146687C1 (de) 2001-09-21 2003-06-26 Flabeg Solarglas Gmbh & Co Kg Glas mit einer porösen Antireflex-Oberflächenbeschichtung sowie Verfahren zur Herstellung des Glases und Verwendung eines derartigen Glases
DE102004027842A1 (de) 2004-06-08 2006-01-12 Institut für Neue Materialien Gemeinnützige GmbH Abrieb- und kratzfeste Beschichtungen mit niedriger Brechzahl auf einem Substrat
US20060154044A1 (en) 2005-01-07 2006-07-13 Pentax Corporation Anti-reflection coating and optical element having such anti-reflection coating for image sensors
JP4949692B2 (ja) * 2006-02-07 2012-06-13 東京応化工業株式会社 低屈折率シリカ系被膜形成用組成物
WO2008014523A2 (en) 2006-07-28 2008-01-31 Futurelogic, Inc. Methods and apparatus for a downloadable financial transaction printer
US20130034653A1 (en) * 2011-08-01 2013-02-07 Intermolecular, Inc. Antireflective silica coatings based on sol-gel technique with controllable pore size, density, and distribution by manipulation of inter-particle interactions using pre-functionalized particles and additives

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2721829A1 (de) * 1976-05-14 1977-11-17 Sanraku Ocean Co Verfahren zur herstellung eines hydrophilen komplexen gels zur immobilisierung mikrobieller zellen
WO2008145253A1 (de) * 2007-05-31 2008-12-04 Ferro Gmbh Einbrennbare siebdruckfähige antireflexbeschichtung für glas

Also Published As

Publication number Publication date
EP3010986B1 (de) 2020-09-23
DE102013010105A1 (de) 2014-12-18
US10072158B2 (en) 2018-09-11
EP3010986A1 (de) 2016-04-27
US20170190918A1 (en) 2017-07-06
CN105358639A (zh) 2016-02-24
CN105358639B (zh) 2019-12-06

Similar Documents

Publication Publication Date Title
EP1181256B1 (de) Vorgespanntes, mit einer wischfesten, porösen sio2-antireflex-schicht versehenes sicherheitsglas und verfahren zu dessen herstellung
EP0835849B1 (de) Verfahren und Beschichtungszusammensetzung zur Herstellung einer Antireflexionsbeschichtung
EP1355993B1 (de) Verfahren zur herstellung lösungsmittelarmer sol-gel-systeme
DE2506202C3 (de) Wäßriges Überzugsmittel
EP1429997B1 (de) Neuartiges hybrid-sol zur herstellung abriebfester sio 2 antireflexschichten
EP0587667B1 (de) Beschichtungszusammensetzungen auf der basis von fluorhaltigen anorganischen polykondensaten, deren herstellung und deren verwendung
EP0851845B1 (de) DÜNNE SiO 2-FOLIEN, VERFAHREN ZU IHRER HERSTELLUNG UND IHRE VERWENDUNG
DE102004037045A1 (de) Wässrige Silan-Nanokomposite
EP2155622B1 (de) Einbrennbare siebdruckfähige antireflexbeschichtung für glas
DE102010002356A1 (de) Zusammensetzungen von mit oligomeren Siloxanolen funktionalisierten Metalloxiden und deren Verwendung
WO2018202472A1 (de) Wässrige sol-gel-zusammensetzung als lagerstabile vorstufe für zinkstaubfarben
EP1230187A1 (de) Beschichtungszusammensetzung auf basis organisch modifizierter anorganischer kondensate
DE3917535A1 (de) Verfahren zur herstellung kratzfester materialien und zusammensetzung hierfuer
EP0542022B1 (de) Modifizierte, transparente, wässrige Alkalisilicat-Lösung, Verfahren zu deren Herstellung und deren Verwendung zur Herstellung von transparenten Hydrogelen
EP3010986B1 (de) Verfahren zur herstellung einer wässrigen zusammenstzung umfassend ein kondensat auf basis von silicium-verbindungen zur herstellung von antireflexionsbeschichtungen
DE10361632A1 (de) Substrate mit nanoporöser, kohlenstoffhaltiger Beschichtung, Verfahren zu deren Herstellung und deren Verwendung
DE3876424T2 (de) Beschichtungszusammensetzung.
DE19653480B4 (de) Verfahren zur Herstellung von Überzügen auf Substraten und ein Beschichtungsmaterial hierzu
DE102007057908A1 (de) Beschichtungsmittel
JP6105281B2 (ja) アルミニウム顔料組成物及びその製造方法
DE60001105T2 (de) Verfahren zum aufbringen einer selbstreinigenden beschichtung aus photokatalytischen teilchen auf ein substrat
DE69800352T2 (de) Wasserstoffunktionelles silyliertes Polymethylsilsesquioxan

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480034850.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14728831

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14898879

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2014728831

Country of ref document: EP