WO2014201835A1 - 一种高压流体混合泵控制系统及流体抽吸控制方法 - Google Patents

一种高压流体混合泵控制系统及流体抽吸控制方法 Download PDF

Info

Publication number
WO2014201835A1
WO2014201835A1 PCT/CN2013/090478 CN2013090478W WO2014201835A1 WO 2014201835 A1 WO2014201835 A1 WO 2014201835A1 CN 2013090478 W CN2013090478 W CN 2013090478W WO 2014201835 A1 WO2014201835 A1 WO 2014201835A1
Authority
WO
WIPO (PCT)
Prior art keywords
mixing pump
control system
pressure fluid
piston
drive screw
Prior art date
Application number
PCT/CN2013/090478
Other languages
English (en)
French (fr)
Inventor
冯永仁
周明高
郝桂青
于志杰
郝仲田
Original Assignee
中国海洋石油总公司
中海油田服务股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国海洋石油总公司, 中海油田服务股份有限公司 filed Critical 中国海洋石油总公司
Priority to US14/770,827 priority Critical patent/US10208736B2/en
Publication of WO2014201835A1 publication Critical patent/WO2014201835A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B9/00Piston machines or pumps characterised by the driving or driven means to or from their working members
    • F04B9/02Piston machines or pumps characterised by the driving or driven means to or from their working members the means being mechanical
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/06Control using electricity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/02Stopping, starting, unloading or idling control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/20Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00 by changing the driving speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • F04B53/14Pistons, piston-rods or piston-rod connections
    • F04B53/144Adaptation of piston-rods
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B9/00Piston machines or pumps characterised by the driving or driven means to or from their working members
    • F04B9/08Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid
    • F04B9/10Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid the fluid being liquid
    • F04B9/103Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid the fluid being liquid having only one pumping chamber
    • F04B9/105Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid the fluid being liquid having only one pumping chamber reciprocating movement of the pumping member being obtained by a double-acting liquid motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H25/00Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms
    • F16H25/18Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms for conveying or interconverting oscillating or reciprocating motions
    • F16H25/20Screw mechanisms
    • F16H25/2015Means specially adapted for stopping actuators in the end position; Position sensing means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/02Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using mechanical means
    • G01D5/04Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using mechanical means using levers; using cams; using gearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B2201/00Pump parameters
    • F04B2201/02Piston parameters
    • F04B2201/0201Position of the piston

Definitions

  • the invention relates to the technical field of formation pressure testing, in particular to a high pressure fluid mixing pump control system and a fluid suction control method.
  • a displacement sensor As shown in Fig. 1, a schematic diagram of a conventional high-pressure fluid mixing pump control system is provided.
  • a displacement sensor In order to obtain precise suction control, a displacement sensor needs to be installed in the pumping cylinder, and a complicated control system needs to be designed.
  • the control system includes four mechanical hydraulic valves, various hydraulic components and sensors. The piston cylinder is controlled by various complicated combination commands, and the displacement distance of the piston is measured by the displacement sensor to control the suction. The purpose of quantity.
  • the above-mentioned existing high-pressure fluid mixing pump control system has the following drawbacks: 1) The structure is very complicated, and various combinations of commands are required to complete, and the operation is complicated; 2) the accuracy is not high, and the order of amplification is required during the execution process, the operator According to the feedback information of the sensor, the accuracy is not high due to the delay of data transmission. The actual measurement error is about 10%. 3) The reliability is affected, because the hydraulic system is easily affected by the outside world, so the external interference If the cleanliness of the hydraulic oil is not enough, it will affect the stable operation of the system and even lead to the paralysis of the entire control system.
  • the prior art has at least the following technical defects: In order to cooperate with the use of the displacement sensor, it is necessary to design a complicated hydraulic control circuit, which makes the entire hydraulic system very complicated; at the same time, due to the delay of data transmission, the fluid volume control accuracy is also affected. It is difficult to achieve high precision requirements. Therefore, the existing high-pressure fluid mixing pump has a problem that the control precision is not high or the structure is too complicated to meet the demand for use. Summary of the invention In order to solve the problems of the prior art, the present invention provides a high pressure fluid mixing pump control system, the system comprising a drive screw, and a resolver sensor, wherein:
  • One end of the drive screw is connected to the cylinder piston of the mixing pump, and the other end of the drive screw is connected to the resolver sensor directly or through a rotating member coaxially rotating with the drive screw.
  • the rotating member coaxially rotating with the driving screw may include a speed increaser, and the other end of the driving screw may be coupled to the connecting shaft through a bearing and a rotating nut, and the connecting shaft and the adding The speeders are connected.
  • the system can also include an electric gate that can be coupled to the speed increaser.
  • the present invention also provides a fluid suction control method based on the above-described high pressure fluid mixing pump control system, the method comprising:
  • the resolver sensor measures the number of revolutions of the drive screw or the rotating member; and obtains a linear displacement amount of the piston based on the number of revolutions;
  • the suction amount of the mixing pump is obtained based on the linear displacement amount of the piston.
  • the method may further include: controlling a rotational speed of the drive screw by the speed increaser.
  • the method may also include: controlling activation and deactivation of the mixing pump by the electric gate.
  • the embodiment of the invention realizes the precise control by mechanical means, converts the linear motion of the piston into a rotary motion, and accurately measures the rotation angle by using the cyclone sensor, thereby obtaining the piston displacement amount, and finally obtaining the suction volume; meanwhile, the speed increaser is also designed. And the electric gate is used to control the start and stop of the mixing pump.
  • the embodiment of the invention has the advantages of simple structure, compactness, good stability and reliability.
  • Figure 1 is a schematic view showing the composition of a conventional high pressure fluid mixing pump control system
  • FIG. 2 is a schematic view showing the composition of a high pressure fluid mixing pump control system according to an embodiment of the present invention.
  • the high pressure fluid mixing pump control system in the embodiment of the present invention mainly comprises: a driving screw 1, a bearing 2, a rotating nut 3, a connecting shaft 4, a speed increasing device 5, an electric brake 6 and a resolver sensor 7,
  • the driving screw 1 is connected with the piston of the piston cylinder, and the linear motion of the piston is converted into a rotary motion by the driving screw 1, the bearing 2, and the rotating nut 3;
  • the speed increasing device 5 increases the rotating speed, thereby reducing the transmission torque.
  • the electric brake 6 is used for braking the piston to achieve the purpose of controlling the movement of the piston;
  • the resolver sensor 7 is used for measuring the rotational speed of the speed increaser 5, and finally obtaining the suction amount of the mixing pump.
  • the specific operation of the high-pressure fluid mixing pump control system of the embodiment of the present invention is as follows: When the formation fluid needs to be extracted, the piston moves linearly, and the linear motion of the piston is converted into a rotary motion by the lead screw 1, the bearing 2, the rotating nut 3, and the like.
  • the speed increaser 5 and the electric brake 6 are used to control the start and stop of the mixing pump, and the rotation sensor 7 is used to accurately measure the rotation angle, thereby obtaining the piston displacement amount, and finally obtaining an accurate suction amount, thereby achieving precise control of the fluid suction volume. purpose.
  • the high-pressure fluid mixing pump control system provided by the embodiment of the present invention completely adopts the mechanical control mode and is not affected by the outside world, so the precision is very high, and the structure is simple, compact, stable and reliable.
  • a fluid suction control method is further provided in the embodiment of the present invention, the method mainly comprising:
  • the method may further include: controlling the rotational speed of the drive screw by the speed increaser.
  • the method may further include: controlling the start and stop of the mixing pump by the electric gate.
  • the high-pressure fluid mixing pump control system provided by the embodiment of the invention completely converts the linear motion of the piston into a rotary motion by using mechanical control, and accurately measures the rotation angle by using a resolver sensor, thereby obtaining the piston displacement amount, and finally obtaining the suction volume, and the precision is very high. High, simple, compact, stable and reliable.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Reciprocating Pumps (AREA)
  • Regulating Braking Force (AREA)
  • Rotary Pumps (AREA)
  • Control Of Positive-Displacement Pumps (AREA)

Abstract

一种高压流体混合泵控制系统及流体抽吸控制方法,该系统包括传动丝杠和旋变传感器,其中:传动丝杠的一端与混合泵的油缸活塞相连,传动丝杠的另一端直接或者通过与传动丝杠同轴转动的转动件与旋变传感器相连接,该高压流体混合泵控制系统通过机械方式实现精密控制,将活塞的直线运动转化为旋转运动,利用旋变传感器精确测量旋转角度,进而获得活塞位移量,最终得到抽吸体积;同时,还设计了增速器及电闸,用于控制混合泵的启动与停止,与现有技术相比,该高压流体混合泵控制系统具有结构简单、紧凑、稳定可靠性好等优点。

Description

一种高压流体混合泵控制系统及流体抽吸控制方法
技术领域
本发明涉及地层压力测试技术领域, 尤其涉及一种高压流体混合泵控制 系统及流体抽吸控制方法。
背景技术
在进行地层压力测试时, 要求在最短的时间内获得地层流体的精确值, 为实现这一目标, 精确控制抽吸流体的体积显得至关重要。
目前, 对高压流体混合泵抽取量的控制大多通过位移传感器来实现。 如 图 1所示为已有的一种高压流体混合泵控制系统的示意图, 为获得精密的抽 吸量控制, 需在泵抽油缸内安装位移传感器, 同时需设计一套复杂的控制系 统。 参见图 1 , 该控制系统中包括 4个机械液压阀、 各种液压元件及传感器; 通过各种复杂的组合命令, 对活塞缸进行控制, 同时利用位移传感器计量活 塞的移动距离, 达到控制抽吸量的目的。
上述已有的高压流体混合泵控制系统具有以下弊端: 1 )结构非常复杂, 需要各种组合命令才能完成, 操作比较复杂; 2 )精度不高, 在执行过程中需 下放大量的命令, 操作人员根据传感器反馈的信息进行控制, 由于受数据传 输的延迟,往往精度不高,经过实际测量误差在 10%左右; 3 )可靠性受影响, 因液压系统很容易受外界的影响, 因而外界的干扰, 如液压油的清洁度不够 都会影响系统的稳定运行, 甚至导致整个控制系统的瘫痪。
因而, 现有技术至少存在如下技术缺陷: 为配合位移传感器的使用必须 设计一套复杂的液压控制回路, 使得整个液压系统非常复杂; 同时, 受数据 传输的延迟, 流体体积控制精度亦受影响, 很难达到高精度的要求。 因此, 现有的高压流体混合泵存在控制精度不高或结构太复杂, 无法艮好地满足使 用需求的问题。 发明内容 为了解决现有技术存在的问题, 本发明提供了一种高压流体混合泵控制 系统, 所述系统包括传动丝杠, 和旋变传感器, 其中:
所述传动丝杠的一端与混合泵的油缸活塞相连, 所述传动丝杠的另一端 直接或者通过与所述传动丝杠同轴转动的转动件与所述旋变传感器相连接。
与所述传动丝杠同轴转动的所述转动件可包括增速器, 并且所述传动丝 杠的另一端可通过轴承及旋转螺母与连接轴相连接, 通过所述连接轴与所述 增速器相连接。
所述系统还可包括电闸, 所述电闸可与所述增速器相连接。
本发明还提供了一种基于上述的高压流体混合泵控制系统的流体抽吸控 制方法, 所述方法包括:
所述旋变传感器计量所述传动丝杠、 或者所述转动件的旋转圈数; 基于所述旋转圈数得到所述活塞的直线位移量;
基于所述活塞的直线位移量得到所述混合泵的抽吸量。
所述方法还可包括: 通过所述增速器控制所述传动丝杠的转速。
所述方法还可包括: 通过所述电闸控制所述混合泵的启动与停止。
本发明实施例通过机械方式实现精密控制, 将活塞的直线运动转化为旋 转运动, 利用旋变传感器精确测量旋转角度, 进而获得活塞位移量, 最终得 到抽吸体积; 同时, 还设计了增速器及电闸, 用于控制混合泵的启动与停止。 与现有技术相比, 本发明实施例具有结构简单、 紧凑、 稳定可靠性好等优点。
本发明的其它特征和优点将在随后的说明书中阐述, 并且, 部分地从说 明书中变得显而易见, 或者通过实施本发明而了解。 本发明的目的和其他优 点可通过在说明书、权利要求书以及附图中所特别指出的结构来实现和获得。
附图概述
附图用来提供对本发明技术方案的进一步理解, 并且构成说明书的一部 分, 与本发明实施例一起用于解释本发明的技术方案, 并不构成对本发明技 术方案的限制。 图 1是已有的高压流体混合泵控制系统的组成示意图;
图 2是本发明实施例的高压流体混合泵控制系统的组成示意图。
本发明的较佳实施方式
下文中将结合附图对本发明的实施例进行详细说明。 需要说明的是, 在 不冲突的情况下, 本发明实施例及实施例中的特征可以相互任意组合。
如图 2所示, 本发明实施例中的高压流体混合泵控制系统主要包括: 传 动丝杠 1、 轴承 2、旋转螺母 3、 连接轴 4、 增速器 5、 电闸 6和旋变传感器 7 , 其中, 传动丝杠 1 与活塞缸的活塞相连, 活塞的直线运动通过传动丝杠 1、 轴承 2、 旋转螺母 3转化为旋转运动; 增速器 5提高转动速度, 从而降低传 动扭矩。 电闸 6用于将活塞制动, 达到控制活塞运动的目的; 旋变传感器 7 用于计量增速器 5的旋转圈速, 并最终获得混合泵的抽吸量。
本发明实施例的高压流体混合泵控制系统的具体操作如下: 当需要抽取 地层流体时, 活塞作直线运动, 通过丝杠 1、 轴承 2、 旋转螺母 3等将活塞的 直线运动转化为旋转运动, 并通过增速器 5和电闸 6控制混合泵的启动与停 止, 利用旋变传感器 7精确测量旋转角度, 进而获得活塞位移量, 最终得到 精确的抽吸量, 从而达到精确控制流体抽吸体积的目的。
综上所述, 本发明实施例提供的高压流体混合泵控制系统, 完全釆用机 械控制方式, 不受外界的影响, 因而精度非常高, 且结构简单、 紧凑、 稳定 可靠。
此外, 基于上述的高压流体混合泵控制系统, 本发明实施例中还提供了 一种流体抽吸控制方法, 该方法主要包括:
1 )旋变传感器计量传动丝杠、 或者转动件的旋转圈数;
2 )基于旋转圈数得到活塞的直线位移量;
3 )基于活塞的直线位移量得到混合泵的抽吸量。
该方法还可包括: 通过增速器控制传动丝杠的转速。 该方法还可包括: 通过电闸控制混合泵的启动与停止。
虽然本发明所揭露的实施方式如上, 但所述的内容仅为便于理解本发明 而釆用的实施方式, 并非用以限定本发明。 任何本发明所属领域内的技术人 员, 在不脱离本发明所揭露的精神和范围的前提下, 可以在实施的形式及细 节上进行任何的修改与变化, 但本发明的专利保护范围, 仍须以所附的权利 要求书所界定的范围为准。
工业实用性
本发明实施例提供的高压流体混合泵控制系统完全釆用机械控制将活塞 的直线运动转化为旋转运动, 利用旋变传感器精确测量旋转角度, 进而获得 活塞位移量, 最终得到抽吸体积, 精度非常高, 且结构简单、 紧凑、 稳定可 靠。

Claims

权 利 要 求 书
1、 一种高压流体混合泵控制系统, 包括:
传动丝杠, 和
旋变传感器,
其中, 所述传动丝杠的一端与混合泵的油缸活塞相连, 所述传动丝杠的 另一端直接或者通过与所述传动丝杠同轴转动的转动件与所述旋变传感器相 连接。
2、 如权利要求 1所述的系统, 其中,
与所述传动丝杠同轴转动的所述转动件包括增速器,
所述传动丝杠的另一端通过轴承及旋转螺母与连接轴相连接, 并通过所 述连接轴与所述增速器相连接。
3、 如权利要求 1或 2所述的系统, 还包括:
电闸, 所述电闸与所述增速器相连接。
4、一种使用权利要求 1至 3之任一项所述的高压流体混合泵控制系统进 行流体抽吸控制的方法, 所述方法包括:
所述旋变传感器计量所述传动丝杠、 或者所述转动件的旋转圈数; 基于所述旋转圈数得到所述活塞的直线位移量;
基于所述活塞的直线位移量得到所述混合泵的抽吸量。
5、 如权利要求 4所述的方法, 还包括:
通过所述增速器控制所述传动丝杠的转速。
6、 如权利要求 4或 5所述的方法, 还包括:
通过所述电闸控制所述混合泵的启动与停止。
PCT/CN2013/090478 2013-06-18 2013-12-25 一种高压流体混合泵控制系统及流体抽吸控制方法 WO2014201835A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/770,827 US10208736B2 (en) 2013-06-18 2013-12-25 High-pressure fluid mixing pump control system and fluid suction control method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2013102414401A CN103437989A (zh) 2013-06-18 2013-06-18 一种高压流体混合泵控制系统及流体抽吸控制方法
CN201310241440.1 2013-06-18

Publications (1)

Publication Number Publication Date
WO2014201835A1 true WO2014201835A1 (zh) 2014-12-24

Family

ID=49691692

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/090478 WO2014201835A1 (zh) 2013-06-18 2013-12-25 一种高压流体混合泵控制系统及流体抽吸控制方法

Country Status (3)

Country Link
US (1) US10208736B2 (zh)
CN (1) CN103437989A (zh)
WO (1) WO2014201835A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103437989A (zh) 2013-06-18 2013-12-11 中国海洋石油总公司 一种高压流体混合泵控制系统及流体抽吸控制方法
CN105569655A (zh) * 2015-12-31 2016-05-11 中国海洋石油总公司 泵抽模块和测井仪器
CN107906070A (zh) * 2017-11-13 2018-04-13 上海交通大学 一种数字液压缸
CN108708951A (zh) * 2018-06-22 2018-10-26 青岛科技大学 一种同轴线的直线运动和旋转运动转换器
CN108916339B (zh) * 2018-08-06 2021-10-08 安徽天裕汽车零部件制造有限公司 一种汽车零部件加工台液压旋转驱动结构
CN109681480B (zh) * 2019-01-29 2024-01-23 中国重型机械研究院股份公司 一种管端水压试验机增压器及方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4591320A (en) * 1984-01-31 1986-05-27 Pope Kenneth E Submersible pumping unit
CN101745163A (zh) * 2008-11-28 2010-06-23 德昌电机(深圳)有限公司 注射泵
CN201650642U (zh) * 2009-12-02 2010-11-24 公安部第一研究所 精密柱塞计量泵
CN102755858A (zh) * 2011-04-25 2012-10-31 许宏 一种带电驱动的金刚石压机
CN102809562A (zh) * 2012-07-27 2012-12-05 中国石油天然气股份有限公司 原油乳化稳定性评价仪
JP2013028273A (ja) * 2011-07-28 2013-02-07 Hitachi Automotive Systems Ltd 電動倍力装置
CN103277292A (zh) * 2013-06-14 2013-09-04 中国海洋石油总公司 一种高压流体混合泵精密控制装置及控制方法
CN103437989A (zh) * 2013-06-18 2013-12-11 中国海洋石油总公司 一种高压流体混合泵控制系统及流体抽吸控制方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI87740C (fi) * 1990-05-04 1994-04-08 Biohit Oy Pipett
JP2932892B2 (ja) * 1993-05-27 1999-08-09 ダイキン工業株式会社 超高圧発生装置
US7533560B2 (en) * 2003-09-22 2009-05-19 Canadian Logging Systems Corp. Horizontal binocular microscope for vertically gravitated and floating samples
US7337920B2 (en) * 2004-04-23 2008-03-04 A.C. Dispensing Equipment, Inc. Fluid dispensing apparatus
CN200981294Y (zh) 2006-11-20 2007-11-28 湖北航天双龙专用汽车有限公司 混凝土搅拌车自动前卸料装置
CN200982194Y (zh) * 2006-12-05 2007-11-28 北京华能通达能源科技有限公司 电缆泵抽式地层测试取样器
CN201924922U (zh) * 2011-03-28 2011-08-10 濮阳市濮能实业有限公司 一种小直径地层测试取样器
CN102121491A (zh) * 2011-04-15 2011-07-13 厦门大学 一种带位置传感装置的液压缸
CN102162359B (zh) * 2011-04-18 2013-02-13 中国海洋石油总公司 一种地层测试器用高精密泵抽装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4591320A (en) * 1984-01-31 1986-05-27 Pope Kenneth E Submersible pumping unit
CN101745163A (zh) * 2008-11-28 2010-06-23 德昌电机(深圳)有限公司 注射泵
CN201650642U (zh) * 2009-12-02 2010-11-24 公安部第一研究所 精密柱塞计量泵
CN102755858A (zh) * 2011-04-25 2012-10-31 许宏 一种带电驱动的金刚石压机
JP2013028273A (ja) * 2011-07-28 2013-02-07 Hitachi Automotive Systems Ltd 電動倍力装置
CN102809562A (zh) * 2012-07-27 2012-12-05 中国石油天然气股份有限公司 原油乳化稳定性评价仪
CN103277292A (zh) * 2013-06-14 2013-09-04 中国海洋石油总公司 一种高压流体混合泵精密控制装置及控制方法
CN103437989A (zh) * 2013-06-18 2013-12-11 中国海洋石油总公司 一种高压流体混合泵控制系统及流体抽吸控制方法

Also Published As

Publication number Publication date
US20160097377A1 (en) 2016-04-07
US10208736B2 (en) 2019-02-19
CN103437989A (zh) 2013-12-11

Similar Documents

Publication Publication Date Title
WO2014201835A1 (zh) 一种高压流体混合泵控制系统及流体抽吸控制方法
CN201466875U (zh) 一种机电作动器
CN105841732B (zh) 一种电涡流传感器静态自动校准系统
CN104864061B (zh) 一种电液混合驱动的丝杠传动系统及其控制方法
WO2022188308A1 (zh) 压力仪表测量精度检测用液体介质的压力控制系统及方法
CN102384815A (zh) 一种压力计检定装置
CN110685879B (zh) 一种连续比例调节流量的斜轴式柱塞泵变量机构
CN102519669B (zh) 压力或差压传感器的压力波动标定装置及其标定方法
CN103925945B (zh) 一种旋转式电磁执行器性能测试装置
CN101963484B (zh) 发动机气门升程的万向检测装置
CN107356369A (zh) 一种水力测功器测量标定系统
CN104792972B (zh) 便携式液压系统空气含气量测试装置
CN207114093U (zh) 一种水力测功器测量标定系统
CN103575933A (zh) 振动式发动机转速测量仪校准装置及方法
CN203757159U (zh) 电动阀门开度检测装置
CN103656797B (zh) 一种注射泵
CN103344373B (zh) 一种对压力传感器进行压力波动标定的方法
CN201811820U (zh) 一种压力计检定装置
CN205879234U (zh) 一种电动执行机构lts行程力矩传感器
CN103277292A (zh) 一种高压流体混合泵精密控制装置及控制方法
CN104748651A (zh) 一种传动机构空回量的检测方法及装置
CN208845448U (zh) 双气缸驱动的同步运动控制装置
CN203657721U (zh) 一种传动机构空回量的检测装置
CN201780075U (zh) 发动机气门升程的万向检测装置
CN204327072U (zh) 双向可逆调速调容测压缸

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13887362

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14770827

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13887362

Country of ref document: EP

Kind code of ref document: A1