WO2014201710A1 - 一种检测流体物性的传感器 - Google Patents

一种检测流体物性的传感器 Download PDF

Info

Publication number
WO2014201710A1
WO2014201710A1 PCT/CN2013/078009 CN2013078009W WO2014201710A1 WO 2014201710 A1 WO2014201710 A1 WO 2014201710A1 CN 2013078009 W CN2013078009 W CN 2013078009W WO 2014201710 A1 WO2014201710 A1 WO 2014201710A1
Authority
WO
WIPO (PCT)
Prior art keywords
vibrating body
sensor
excitation
physical properties
fluid
Prior art date
Application number
PCT/CN2013/078009
Other languages
English (en)
French (fr)
Inventor
韩德福
李鹏
Original Assignee
广州天禾自动化实业有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州天禾自动化实业有限公司 filed Critical 广州天禾自动化实业有限公司
Publication of WO2014201710A1 publication Critical patent/WO2014201710A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N11/00Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties
    • G01N11/10Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties by moving a body within the material
    • G01N11/16Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties by moving a body within the material by measuring damping effect upon oscillatory body
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N9/00Investigating density or specific gravity of materials; Analysing materials by determining density or specific gravity
    • G01N9/002Investigating density or specific gravity of materials; Analysing materials by determining density or specific gravity using variation of the resonant frequency of an element vibrating in contact with the material submitted to analysis

Definitions

  • the present invention relates to a sensor, and more particularly to a sensor for detecting physical properties of a fluid, such as density, viscosity, and the like. Background technique
  • the phrase "physical properties" as used herein refers to physical parameters of a fluid, including but not limited to the density, viscosity, compositional content, etc. of the fluid.
  • the current methods for detecting the density or viscosity of fluids on-line are complex and require a large sample pretreatment system that does not rapidly detect changes in fluid density, viscosity or liquid composition. In the actual production process, fast and accurate detection of performance parameters helps to control the production process in time and ensure product quality.
  • a sensor for detecting physical properties of a fluid comprising a vibrating body exposed to a fluid, and an excitation means for exciting the vibration of the vibrating body and detecting means for detecting a vibration frequency and/or a vibration amplitude of the vibrating body.
  • the vibrating body includes a magnetic material
  • the excitation device includes an excitation end disposed adjacent to the vibrating body
  • the detecting device includes a feedback end disposed adjacent to the vibrating body.
  • the excitation device includes a vibration source with a magnetic material, a transmission rod connecting the vibration source and the vibration body, and an excitation end disposed adjacent to the vibration source to excite the vibration source to vibrate.
  • the detecting device includes a feedback end disposed adjacent to the vibration source to detect a vibration frequency of the vibrating body.
  • the vibration source is a rectangular parallelepiped, and the excitation end and the detection end are respectively disposed at positions adjacent to both end portions of the vibration source, and the transmission rod is disposed substantially at the vibration source.
  • the position of the central symmetry line is a rectangular parallelepiped, and the excitation end and the detection end are respectively disposed at positions adjacent to both end portions of the vibration source, and the transmission rod is disposed substantially at the vibration source.
  • the vibrating body is an axisymmetric structure with a straight line on which the transmission rod is located.
  • the vibrating body is a flat structure or a rotating body structure.
  • the device further includes a housing configured to receive the excitation device and the detection device, the bottom surface of the housing has a hollow isolation sleeve, and the transmission rod passes through the isolation sleeve Connecting to the vibrating body; a top surface of the housing has a hollow extension rod, and the excitation end and the feedback end respectively have a plurality of signal lines, and the signal line passes through the extension rod to transmit the excitation end and the feedback Lead out.
  • the mounting base further includes a protective cover fixed to the mounting base and configured to surround the vibrating body.
  • the method further includes one or more of the following:
  • a temperature sensor located in the fluid.
  • the present invention also discloses a sensor device in which the sensor according to any of the above aspects is provided.
  • the present invention also discloses a sensing system comprising a plurality of sensor devices or sensors involved in the above technical solutions.
  • the senor in the technical solution has a simple structure and a flexible installation method.
  • the sensor can be used in the laboratory or in a pipeline installation, in the field, to detect fluid properties online.
  • the inventor found that the detection speed is fast, the reaction is sensitive, and the detection range is wide.
  • the vibrating body can vibrate in the fluid, the vibrating body can be vibrated in the cleaning liquid to achieve the effect of automatic cleaning, and the decontamination effect is obvious and the operation is convenient.
  • FIG. 1 is a schematic structural view of an embodiment of a sensor according to the present invention.
  • FIG. 2 is a schematic structural view of an embodiment of the sensor of the present invention.
  • FIG. 3 is a schematic structural view of an embodiment of the sensor of the present invention.
  • FIG. 4 is a schematic structural view of an embodiment of the sensor of the present invention.
  • Figure 5 is a schematic structural view of an embodiment of the sensor of the present invention.
  • FIG. 6 is a schematic structural view of a vibrating body in an embodiment of the sensor according to the present invention.
  • FIG. 7 is a schematic structural view of a vibrating body in an embodiment of the sensor according to the present invention.
  • the present invention relates to a sensor for detecting the physical properties of a fluid 11, for example, for detecting physical parameters such as density and viscosity of the fluid 11.
  • Embodiments of the present invention include a vibrating body 20 exposed to the fluid 11, and an excitation device 30 for exciting the vibration of the vibrating body 20 and a detecting device 40 for detecting the vibration frequency of the vibrating body 20.
  • the fluid 11 is housed in the container 10, the excitation device 30 can drive the vibrating body 20 to vibrate at different frequencies, and the detecting device 40 can detect the vibration frequency of the vibrating body 20.
  • the detection object may be the vibration frequency and/or the vibration amplitude of the vibrating body 20 using various existing detection means during the detection of the vibration frequency of the vibrating body 20, it should be understood that other embodiments of the present invention
  • the time, the speed, the energy of the vibrating body 20, or other variable capable of reflecting the vibration of the vibrating body 20 may be detected, and the vibration frequency and/or the vibration amplitude of the vibrating body 20 may be indirectly converted.
  • the data obtained in this indirect measurement should be understood as the detection of the amplitude of vibration and/or the frequency of vibration as described in the present invention.
  • the inherent vibration frequency is fixed or the amount of change is small.
  • the exciting device 30 drives the vibrating body 20 to vibrate at or near the natural frequency of the vibrating body 20, the vibrating body 20 has the largest vibration amplitude.
  • the vibrating body 20 in this state is in a resonance state, and the resonance frequency of the vibrating body 20 can be obtained. Since the frequency and amplitude of the resonance state are closely related to the physical properties such as the viscosity and density of the medium in which the vibrating body 20 is placed, the physical properties of the fluid 11 can be understood or judged. Further, when the vibrating body 20 is contaminated by the medium, the effect of automatic cleaning can be achieved by changing the vibration frequency and increasing the amplitude.
  • fluid includes both liquids and gases
  • the sensor of the present invention may also generally be used to measure the physical properties of a liquid
  • an embodiment of the invention is described herein to place the vibrating body 20 in a liquid.
  • the invention is not limited thereto, and in some embodiments, the vibrating body 20 may also vibrate in a gas, even in a crystal.
  • FIG. 1 is a schematic structural view of an embodiment of a sensor according to the present invention.
  • the sensor for detecting the physical properties of the fluid 11 includes a vibrating body 20 exposed to the fluid 11, and an excitation device 30 for exciting the vibrating body 20 and for detecting. Detection of vibration frequency and/or vibration amplitude of the vibrating body 20 Measuring device 40.
  • This embodiment uses electromagnetically driven vibrating body 20 to vibrate.
  • a fluid 11 is contained in a container 10, and the vibrating body 20 contains a magnetic material such as AlNi(Co), FeCr(Co), FeCrMo, FeAlC, FeCo(V)(W).
  • Re-Co represents rare earth element
  • Re-Fe and AIM Co
  • FeCrCo, etc. may also be FeCrCo, PtCo, MnAlC, CuNiFe, AlMnAg, etc., or ferrites including MO ⁇ 6Fe203, M represents Ba , Sr, Pb or SrCa, LaCa.
  • it may be an electromagnetic type device, for example, a coil connected to an alternating current power source, and magnetically generated by the principle of electromagnetic induction.
  • the excitation device 30 includes an excitation end 31 disposed adjacent to the vibrating body 20, and the detection device 40 includes a feedback end 41 disposed adjacent to the vibrating body 20.
  • the excitation end 31 can be connected to an alternating current power source such that the excitation end 31 excites the vibrating body 20 to generate vibration by electromagnetic conversion under the action of an alternating voltage.
  • the vibration frequency of the vibrating body 20 can be changed.
  • the feedback end 41 can be a vibration amplitude and/or a vibration frequency of the vibrating body 20.
  • the feedback terminal 41 may be a coil such that the vibrating body 20 and the feedback terminal 41 can generate an induced electromotive force by electromagnetic conversion, and when the induced electromotive force is detected to be at or near a peak value, the vibrating body 20 can be considered to be in a resonance state.
  • the resonance frequency of the vibrating body 20 is related to the inherent properties of the vibrating body 20, so that the physical properties of the fluid 11 can be known, for example, viscosity or density can be known.
  • FIG. 2 is a schematic view showing the structure of an embodiment of the sensor of the present invention.
  • the excitation device 30 includes a vibration source 32 with a magnetic material, a transmission rod 30 connecting the vibration source 32 and the vibrating body 20, and a vibration source 32 disposed adjacent to the vibration source 32 to excite the vibration source 32.
  • the magnetic material and the excitation end 31 reference may be made to the above related content, and no further description is made here.
  • the vibration source 32 is a rectangular parallelepiped, and the excitation end 31 and the feedback end 41 are respectively disposed at positions adjacent to both end portions of the vibration source 32, and the transmission rod 30 is generally disposed at
  • the position of the center symmetry line of the vibration source 32 is such that the excitation end 31 drives the vibration source 32 at a small input, and the vibration source 32 can drive the vibration body 20 to vibrate; on the other hand, the vibration source 32 can also oscillate.
  • An induced electromotive force is generated at the feedback end 41, and the vibration of the vibrating body 20 can be detected by detecting the induced electromotive force, and the frequency in the case where the induced electromotive force is close to or peaked is the resonant frequency.
  • FIG. 3 is a schematic structural view of an embodiment of the sensor of the present invention.
  • the embodiment shown in FIG. 3 further includes a housing 50 configured to receive the excitation device 30 and the detection device 40, the bottom surface 51 of the housing 50 having a hollow isolation sleeve 53 through which the drive rod 30 is worn
  • the isolation sleeve 53 is connected to the vibrating body 20.
  • the upper end of the isolation sleeve 53 is fixed to the mounting base 60.
  • the upper end of the transmission rod 30 is fixedly connected to the vibration source 32, and the lower end passes through the isolation sleeve 53, and is fixed to the lower end of the isolation sleeve 53, and is fixed to the vibrating body 20.
  • the vibration source 32 can transmit the vibration of the vibration source 32 to the vibrating body 20 through the transmission rod 30.
  • the top surface of the housing 50 has a hollow extension rod 52, and the excitation end 31 and the feedback end 41 respectively have a plurality of signal lines, and the signal line passes through the extension rod 52 to the excitation end 31 and The feedback terminal 41 leads.
  • the researchers were pleased to find that the use of the above-described structure to fix the excitation end 31 and the feedback end 41 not only provides protection, but also makes it easier to use the sensor in actual operation.
  • the excitation end 31 is taken out from the extension rod 52 through a plurality of excitation signal lines 311, and the feedback end 41 is taken out from the extension rod 52 through a plurality of feedback signal lines 411.
  • the excitation signal line 311 and the feedback signal line 411 are respectively exchanged.
  • the power supply can be connected to the relevant processing circuit or device, and is convenient and reliable to use.
  • FIG. 4 is a block diagram showing an embodiment of the sensor of the present invention.
  • the embodiment shown in FIG. 4 further includes a filler 54 filled in the interior of the extension rod 52 and the housing 50, the bottom surface 51 of the filler 54 being adjacent to the excitation end 31 and/or the feedback end 41, Therefore, the excitation signal line 311 and the feedback signal line 411 are fixed, so that the signal line is difficult to fall off and the components in the housing 50 can be isolated from the outside, preventing external water vapor or dust from entering the life of the component, and enhancing the reliability of the sensor. Sex.
  • the filler 54 may be completely filled as shown, for example, the extension rod 52 and a portion inside the casing 50 may be filled with a material such as epoxy resin or rubber, and only a part of the space may be filled.
  • FIG. 5 is a block diagram showing an embodiment of the sensor of the present invention.
  • the embodiment shown in Fig. 5 further includes a mounting base 60, and a protective cover 61 fixed to the mounting base 60 and configured to surround the vibrating body 20, in addition to the above embodiment.
  • the vibrating body 20 is surrounded by the protective cover 61, so that the vibrating body 20 can be protected from being damaged or bumped.
  • the protective cover 61 may be a rotating surface, and the upper end is fixed on the mounting base 60, for example, welded to the mounting base 60.
  • a plurality of strip-shaped bodies may be fixed, and the top end thereof is fixed on the mounting base 60.
  • the downward extension of the lower portion also serves to protect the vibrating body 20.
  • the protective cover 61 may have a mesh structure, and it may also function to protect the vibrating body 20 after surrounding the vibrating body 20.
  • the sensor further includes a temperature sensor 62 disposed in the fluid 11 other than the container 10 and in contact with the fluid 11.
  • the material of the protective film may be one or more of a diamond film, a black diamond film, and a tetrafluoro film, so that the sensor can be utilized in a highly polluted environment to prevent contamination of a region in contact with the fluid 11.
  • the above "region in contact with the fluid 11" may be, but not limited to, the surface of the vibrating body 20 and the surface of the transmission rod 30.
  • the surface of the temperature sensor 62 can also be provided with the protective film to prevent the temperature sensor 62 from being contaminated, thereby increasing the service life of the temperature sensor 62.
  • the temperature sensor 62 is mounted in various forms, for example, the temperature sensor 62 can be mounted in a sleeve, and one end of the sleeve is welded to the mounting base 60.
  • the vibrating body 20 may be an axisymmetric structure with the linear line of the transmission rod 30 as an axis, that is, the transmission rod 30 is fixed on the central symmetry line of the vibrating body 20 or close to the central symmetry line of the vibrating body 20, the researchers found
  • the vibrating body 20 of this structure has a better implementation effect, and the detection of the resonant frequency is more rapid and convenient.
  • Figure 6 is a schematic structural view of the vibrating body 20 in an embodiment of the sensor according to the present invention.
  • the vibrating body 20 shown in Fig. 6 has a flat plate structure.
  • FIG. 7 is a schematic structural view of a vibrating body 20 in an embodiment of the sensor of the present invention.
  • a rotating body structure which is a curved surface formed by defining a plane curve rotating about a fixed line (symmetry axis 21) in a plane in which it is located, the closing
  • the geometry enclosed by the surface can be, for example, a sphere, a cylinder or a cone, a cylinder, and the like.
  • the resonant frequency and amplitude of the vibration are mainly related to the density of the medium.
  • the higher the frequency the lower the density.
  • the sensor is used to detect viscosity
  • the vibrating body 20 is a rotating body structure
  • its resonant frequency and amplitude are mainly related to the viscosity of the medium.
  • the higher the frequency the lower the viscosity.
  • the sensor involved in the above embodiment can also detect the change in the physical properties of the fluid 11.
  • the vibrating body 20 When the vibrating body 20 is placed in a resonant state at a fixed frequency, when the amplitude is lowered, it is indicated that the temperature, viscosity, or density of the fluid 11 has changed, and the more the amplitude falls, the larger the change, and the change in the physical properties of the fluid 11 can be qualitatively detected.
  • Re-searching the resonant frequency can quantitatively detect the amount of change in the physical properties of the fluid.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Measuring Volume Flow (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

一种检测流体(11)物性的传感器,包括暴露于流体(11)中的振动体(20),以及用于激励所述振动体(20)振动的激励装置(30)和用于检测所述振动体(20)的振动频率和/或振动幅度的检测装置(40)。该传感器结构简单,安装方式灵活;其既可以实验室使用,也可以管道安装,在线检测流体(11)物性。

Description

一种检测流体物性的传感器 技术领域
本发明涉及一种传感器, 尤其是一种用于检测流体物性, 例如密度、 粘度等物理参数的 传感器。 背景技术
在许多工业领域中, 例如石油、 化工的生产过程中, 经常需要检测液体的物性, 例如粘 度、 密度和流体组份的变化。 此处使用短语 "物性"是指流体的物理参数, 包括但不限于流 体的密度、 粘度、 组分含量等。 目前在线检测流体的密度或粘度的方法都很复杂, 需要一个 庞大的样品预处理系统, 不能快速检测流体的密度、 粘度或液体组份的变化。 在实际生产过 程中, 快速准确的检测性能参数, 有助于及时控制生产过程, 保证产品质量。
有鉴于此, 实在有必要提供一种操作方便, 成本低廉的, 能够对流体的物性, 或者至少 一种物理参数进行检测的传感器。 发明内容
针对现有技术的不足, 本发明的目的在于提供一种检测流体物性的传感器, 其操作简单 方便, 能够方便地至少对流体的一种物理参数进行测量。
为此, 本发明采用的技术方案如下:
一种检测流体物性的传感器, 包括暴露于流体之中的振动体, 以及用于激励所述振动体 振动的激励装置和用于检测所述振动体的振动频率和 /或振动幅度的检测装置。
作为上述技术方案的一种改进, 所述振动体包含有磁性材料, 所述激励装置包括配置于 临近所述振动体的激励端, 所述检测装置包括配置于临近所述振动体的反馈端。
作为上述技术方案的一种改进, 所述激励装置包括带磁性材料的振动源、 连接所述振动 源和振动体的传动杆和配置于临近所述振动源以激励所述振动源振动的激励端; 所述检测装 置包括配置于临近所述振动源以检测所述振动体的振动频率的反馈端。
作为上述技术方案的一种改进, 所述振动源为长方体, 所述激励端和检测端分别配置在 临近所述振动源的两端部的位置, 所述传动杆大体设于所述振动源的中心对称线的位置。
作为上述任一技术方案的一种改进, 所述振动体为以传动杆所在的直线为轴的轴对称结 构。
作为上述任一技术方案的一种改进, 所述振动体为平板状结构或者旋转体结构。 作为上述任一技术方案的一种改进, 还包括配置为容纳所述激励装置和检测装置的壳体, 所述壳体的底面具有中空的隔离套管, 所述传动杆穿过该隔离套管与所述振动体连接; 所述 壳体的顶面具有中空的延长杆, 所述激励端和反馈端分别具有若干信号线, 所述信号线穿过 所述延长杆将所述激励端和反馈端引出。
作为上述任一技术方案的一种改进, 还包括填充于所述延长杆和所述壳体的内部的填充 物, 所述填充物的底面临近所述激励端和 /或反馈端。
作为上述任一技术方案的一种改进, 还包括安装基座, 以及固定于所述安装基座上且配 置成将所述振动体包围的保护罩。
作为上述任一技术方案的一种改进, 还包括如下一项或多项:
A、 至少在除容器以外、 且与流体接触的区域覆盖有一层保护膜;
B、 设于流体之中的温度传感器。
另外, 本发明还公开了一种传感器装置, 该传感器装置中设有上述任一技术方案涉及的 传感器。
本发明还公开了一种传感系统, 该传感系统包含有若干上述技术方案涉及的传感器装置 或者传感器。
与现有技术相比, 该技术方案中的传感器结构简单, 安装方式灵活。 该传感器既可以实 验室使用, 也可以管道安装, 现场使用, 在线检测流体物性。 发明人在实际验证过程中发现 其检测速度快, 反应灵敏, 检测范围宽。
此外, 由于振动体可以在流体之中振动, 从而将振动体置于清洗液中振动即可达到自动 清洗的效果, 去污效果明显、 操作方便。 附图说明
图 1是本发明所述传感器的一实施方式的结构示意图;
图 2是本发明所述传感器的一实施方式的结构示意图;
图 3是本发明所述传感器的一实施方式的结构示意图;
图 4是本发明所述传感器的一实施方式的结构示意图;
图 5是本发明所述传感器的一实施方式的结构示意图;
图 6是本发明所述传感器的一实施方式中振动体的结构示意图;
图 7是本发明所述传感器的一实施方式中振动体的结构示意图;
图中:
10 容器; 11 流体; 20—振动体; 21—对称轴; 30—激励装置; 31—激励端; 311—激 励信号线; 32_振动源; 30_传动杆; 40_检测装置; 41_反馈端; 411_反馈信号线; 50_ 壳体; 51_底面; 52_延长杆; 53_隔离套管; 54_填充物; 60_安装基座; 61_保护罩; 62_温度传感器。 具体实施方式
在下面对优选实施例的描述中, 参考作为本发明一部分的附图, 在附图中通过说明而示 出了本发明在其中可以被实施的特定实施例。 应当理解, 可使用其他实施例, 并且可以进行 结构变化, 而不背离本发明实施例的范围。
本发明涉及一种传感器, 可以检测流体 11物性, 例如可以对流体 11 的密度、 粘度等物 理参数进行检测。 本发明的实施例包括暴露在流体 11之中的振动体 20, 以及用于激励所述 振动体 20振动的激励装置 30和用于检测所述振动体 20的振动频率的检测装置 40。 流体 11 盛装在容器 10之中, 激励装置 30可以驱动振动体 20在不同频率的情况下进行振动, 而检测 装置 40则可以检测出振动体 20的振动频率。尽管在对振动体 20的振动频率进行检测过程中, 其检测对象可以是使用现有的各种检测手段对振动体 20 的振动频率和 /或振动幅度, 但是应 当理解, 本发明的其他实施例中, 也可以是对振动体 20的时间、 速度、 能量或者其他能够反 映振动体 20的振动情况的变量进行检测, 从而能够间接换算得到振动体 20的振动频率和 /或 振动幅度。 在这种间接测量得到数据, 应当理解为本发明中所述的对振动幅度和 /或振动频率 的检测。
众所周知, 在包括振动体 20和流体 11的振动体 20系中, 其固有的振动频率是固定的或 者变化量较小的。 在激励装置 30以振动体 20系的固有频率或者接近该固有频率驱动振动体 20振动时, 振动体 20的振动幅度最大。 此时可以认为该状态下的振动体 20处于谐振状态, 从而可以得到振动体 20系的谐振频率。 由于谐振状态的频率和振幅与振动体 20所处介质的 粘度和密度等物性密切相关, 从而可以了解或者判断流体 11的物性。 另外, 当振动体 20被 介质污染时, 可通过改变振动频率、 增大振幅达到自动清洗的效果。
尽管此处使用的术语 "流体"包括液体和气体, 而且本发明所述的传感器可能通常也应 用于对液体的物性进行测量,例如这里借以描述本发明的实施例就是将振动体 20放置在液体 之中, 但是本发明不限于此, 在某些实施例中, 振动体 20亦可以在气体, 甚至在晶体之中振 动。
参见图 1, 图 1是本发明所述传感器的一实施方式的结构示意图。 如图 1所示, 本实施例 提供的一种检测流体 11物性的传感器, 包括暴露于流体 11之中的振动体 20, 以及用于激励 所述振动体 20振动的激励装置 30和用于检测所述振动体 20的振动频率和 /或振动幅度的检 测装置 40。 本实施例采用电磁驱动振动体 20振动。
在图 1示出的例子中, 流体 11盛装在容器 10之中, 所述振动体 20包含有磁性材料, 例 如是 AlNi(Co)、 FeCr(Co)、 FeCrMo、 FeAlC、 FeCo(V)(W) Re -Co (Re代表稀土元素)、 Re—Fe以及 AIM (Co)、 FeCrCo等; 也可以是 FeCrCo、 PtCo、 MnAlC、 CuNiFe和 AlMnAg 等, 或者铁氧体类包括 MO · 6Fe203, M代表 Ba、 Sr、 Pb或 SrCa、 LaCa。 此外, 也可以是 电磁类的装置, 例如可以是连接交流电源的线圈, 利用电磁感应原理产生磁性。
所述激励装置 30包括配置于临近所述振动体 20的激励端 31,所述检测装置 40包括配置 于临近所述振动体 20的反馈端 41。 示例性的, 激励端 31可以与交流电源连接, 使得激励端 31在交流电压的作用下通过电磁转换激励振动体 20产生振动。 改变交流电源的交流电压的 频率, 即可改变振动体 20的振动频率。 另外, 反馈端 41可以对振动体 20的振动幅度和 /或 振动频率。例如反馈端 41可以是一线圈, 使得振动体 20与反馈端 41可以通过电磁转换产生 感应电动势, 当检测到感应电动势最大或者接近峰值时, 可以认为振动体 20处于谐振状态。 而如上所述, 振动体 20系的谐振频率与振动体 20系的固有属性有关, 从而可以了解到流体 11的物性, 例如可以了解到粘度或者密度等。
参见图 2, 图 2是本发明所述传感器的一实施方式的结构示意图。 如图 2所示, 所述激励 装置 30包括带磁性材料的振动源 32、 连接所述振动源 32和振动体 20的传动杆 30和配置于 临近所述振动源 32以激励所述振动源 32振动的激励端 31 ; 所述检测装置 40包括配置于临 近所述振动源 32以检测所述振动体 20的振动频率的反馈端 41。 关于磁性材料和激励端 31 的描述可以参阅上述的相关内容, 此处不再进行赘述。
图 2示出的实施例中, 所述振动源 32为长方体, 所述激励端 31和反馈端 41分别配置在 临近所述振动源 32的两端部的位置,所述传动杆 30大体设于所述振动源 32的中心对称线的 位置, 这样使得激励端 31在较小的输入下驱动振动源 32, 振动源 32即可带动振动体 20振 动; 另外一方面, 振动源 32的摆动也可以在反馈端 41产生感应电动势, 通过检测该感应电 动势即可检测到振动体 20的振动情况,在感应电动势接近或者为峰值的情况下的频率即为谐 振频率。
在某些实施例中, 如图 3所示, 图 3是本发明所述传感器的一实施方式的结构示意图。 图 3示出的实施例中, 还包括配置为容纳所述激励装置 30和检测装置 40的壳体 50, 所述壳 体 50的底面 51具有中空的隔离套管 53,所述传动杆 30穿过该隔离套管 53与所述振动体 20 连接。 其中, 所述的隔离套管 53的上端与安装基座 60固定。 传动杆 30的上端与振动源 32 固定连接, 下端穿过隔离套管 53, 与隔离套管 53的下端固定后, 与振动体 20固定。 这样, 所述振动源 32可以通过传动杆 30将振动源 32的振动传递给振动体 20。 另外, 所述壳体 50的顶面具有中空的延长杆 52, 所述激励端 31和反馈端 41分别具有若 干信号线, 所述信号线穿过所述延长杆 52将所述激励端 31和反馈端 41引出。研究人员欣喜 的发现, 使用上述的结构将激励端 31和反馈端 41固定, 不仅能够起到保护的作用, 而且能 够在实际操作中更为方便的使用该传感器。例如, 激励端 31通过若干激励信号线 311从延长 杆 52引出, 而反馈端 41则通过若干反馈信号线 411从延长杆 52引出, 使用时, 将激励信号 线 311和反馈信号线 411分别与交流电源和相关的处理电路或装置连接即可,使用方便可靠。
参见图 4, 图 4是本发明所述传感器的一实施方式的结构示意图。 图 4示出的实施例还包 括填充于所述延长杆 52和所述壳体 50的内部的填充物 54, 所述填充物 54的底面 51临近所 述激励端 31和 /或反馈端 41, 从而将激励信号线 311和反馈信号线 411固定, 使得信号线难 以脱落并且可以将壳体 50内的元件与外界隔离,防止外界的水汽或者灰尘进入影响元器件的 使用寿命, 增强了传感器的可靠性。填充物 54可以如图示出的完全填充, 例如可以使用环氧 树脂或者橡胶等材料将延长杆 52以及壳体 50内部的部分完成填充, 此外也可以仅仅对其中 的部分空间进行填充。
参见图 5, 图 5是本发明所述传感器的一实施方式的结构示意图。在图 5示出的实施例在 上述实施例的基础上, 还包括安装基座 60, 以及固定于所述安装基座 60上且配置成将所述 振动体 20包围的保护罩 61。 使用保护罩 61包围在振动体 20, 从而能够保护振动体 20避免 被损坏或者碰伤。 其中, 保护罩 61可以是一旋转面, 上端固定在安装基座 60上, 例如焊接 在安装基座 60上; 此外, 也可以是若干的条状体, 其顶端固定在安装基座 60上, 下部向下 延伸也可以起到对振动体 20进行保护的作用。 另外, 保护罩 61也可以是网状的结构, 其将 振动体 20进行包围后同样也可以起到对振动体 20进行保护的作用。
此外, 在某些实施方式中, 该传感器还包括在除容器 10以外、 且与流体 11接触的区域 覆盖有一层保护膜, 和 /或设于流体 11之中的温度传感器 62。保护膜的材质可以是金刚石膜、 黑金刚膜和四氟膜中的一种或多种, 使得该传感器可以利用在污染较为严重的环境之中, 防 止与流体 11接触的区域被污染。 其中, 上述的 "与流体 11接触的区域"可以是, 但不限于 振动体 20的表面、 传动杆 30的表面。 在具有温度传感器 62的实施例中, 该温度传感器 62 的表面也可以设置该保护膜, 防止温度传感器 62被污染, 提高温度传感器 62的使用寿命。 其中, 温度传感器 62的安装方式具有多种形式, 例如可以将温度传感器 62安装在套管内, 套管的一端焊接在安装基座 60上。
另外, 所述振动体 20可以是以传动杆 30所在的直线为轴的轴对称结构, 即传动杆 30固 定在振动体 20的中心对称线上或者接近振动体 20的中心对称线, 研究人员发现该结构的振 动体 20具有更好的实施效果, 对于谐振频率的检测更为迅速和方便。 例如可以参见图 6, 图 6是本发明所述传感器的一实施方式中振动体 20的结构示意图。 图 6示出的振动体 20为平 板状结构。 该平板状结构具有较小的厚度, 以及较大的面积, 其形状可以是多种, 例如可以 是具有对称轴 21的圆形、 正方形、 长方形、 三角形或者锥形等等。 此外, 参见图 7, 图 7是 本发明所述传感器的一实施方式中振动体 20的结构示意图。 图 7示出的振动体 20的结构也 可以是旋转体结构,旋转体结构是指定义一条平面曲线绕着它所在的平面内的一条定直线(对 称轴 21 ) 旋转所形成的曲面, 该封闭的曲面围成的几何体, 例如可以是球体、 圆柱体或者圆 锥体、 圆筒等等。
在实际应用过程中, 研究人员意外地发现, 根据传感器检测流体 11的物性的不同, 振动 体 20的形状具有较大的影响。例如当传感器用来检测流体 11的密度时, 振动体 20为平板状 结构时, 其振动的谐振频率和振幅主要和介质密度相关, 一定的温度下, 频率越高, 密度越 小。 当传感器用来检测粘度时, 振动体 20为旋转体结构时, 其谐振频率和振幅主要和介质粘 度相关。 一定的温度下, 频率越高, 粘度越小。
此外, 上述的实施例中涉及的传感器也可以检测流体 11 的物性变化。 将振动体 20配置 于在固定频率的谐振状态下, 当振幅下降时, 说明流体 11的温度、 粘度或密度已经变化, 振 幅下降越多, 变化越大, 可定性检测流体 11物性的变化。 重新搜索谐振频率, 可定量检测流 体 11物性变化量。
应该理解, 本发明并不局限于上述实施方式, 凡是对本发明的各种改动或变型不脱离本 发明的精神和范围, 倘若这些改动和变型属于本发明的权利要求和等同技术范围之内, 则本 发明也意味着包含这些改动和变型。

Claims

权 利 要 求 书
1、 一种检测流体物性的传感器, 其特征在于, 包括暴露于流体之中的振动体, 以及用于 激励所述振动体振动的激励装置和用于检测所述振动体的振动频率和 /或振动幅度的检测装 置。
2、 如权利要求 1所述的检测流体物性的传感器, 其特征在于, 所述振动体包含有磁性材 料, 所述激励装置包括配置于临近所述振动体的激励端, 所述检测装置包括配置于临近所述 振动体的反馈端。
3、 如权利要求 1所述的检测流体物性的传感器, 其特征在于, 所述激励装置包括带磁性 材料的振动源、 连接所述振动源和振动体的传动杆和配置于临近所述振动源以激励所述振动 源振动的激励端; 所述检测装置包括配置于临近所述振动源以检测所述振动体的振动频率的 反馈端。
4、 如权利要求 3所述的检测流体物性的传感器, 其特征在于, 所述振动源为长方体, 所 述激励端和检测端分别配置在临近所述振动源的两端部的位置, 所述传动杆大体设于所述振 动源的中心对称线的位置。
5、 如权利要求 4所述的检测流体物性的传感器, 其特征在于, 所述振动体为以传动杆所 在的直线为轴的轴对称结构。
6、 如权利要求 5所述的检测流体物性的传感器, 其特征在于, 所述振动体为平板状结构 或者旋转体结构。
7、 如权利要求 3所述的检测流体物性的传感器, 其特征在于, 还包括配置为容纳所述激 励装置和检测装置的壳体, 所述壳体的底面具有中空的隔离套管, 所述传动杆穿过该隔离套 管与所述振动体连接; 所述壳体的顶面具有中空的延长杆, 所述激励端和反馈端分别具有若 干信号线, 所述信号线穿过所述延长杆将所述激励端和反馈端引出。
8、 如权利要求 7所述的检测流体物性的传感器, 其特征在于, 还包括填充于所述延长杆 和所述壳体的内部的填充物, 所述填充物的底面临近所述激励端和 /或反馈端。
9、 如权利要求 1所述的检测流体物性的传感器, 其特征在于, 还包括安装基座, 以及固 定于所述安装基座上且配置成将所述振动体包围的保护罩。
10、 如权利要求 9所述的检测流体物性的传感器, 其特征在于, 还包括如下一项或多项:
A、 至少在除容器以外、 且与流体接触的区域覆盖有一层保护膜;
B、 设于流体之中的温度传感器。
PCT/CN2013/078009 2013-06-18 2013-06-26 一种检测流体物性的传感器 WO2014201710A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310242808.6 2013-06-18
CN2013102428086A CN103323367A (zh) 2013-06-18 2013-06-18 一种检测流体物性的传感器

Publications (1)

Publication Number Publication Date
WO2014201710A1 true WO2014201710A1 (zh) 2014-12-24

Family

ID=49192254

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/078009 WO2014201710A1 (zh) 2013-06-18 2013-06-26 一种检测流体物性的传感器

Country Status (2)

Country Link
CN (1) CN103323367A (zh)
WO (1) WO2014201710A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105004633B (zh) * 2015-06-24 2018-02-13 广东工业大学 基于纳米线垂直阵列的流体粘度检测装置及检测方法
CN106814007A (zh) * 2015-12-01 2017-06-09 广西大学 一种流体测量仪计算机控制系统
US10161919B2 (en) * 2016-10-25 2018-12-25 Fisher Controls International Llc Acoustic emission sensors with integral acoustic generators

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4566181A (en) * 1983-04-08 1986-01-28 National Metal And Refining Company, Ltd. Rotational vibratory viscometer transducer and circuit
CN1069337A (zh) * 1991-07-23 1993-02-24 Vaf仪器有限公司 粘度计
CN2315563Y (zh) * 1998-04-10 1999-04-21 中国石油化工总公司 振动式在线粘度变送器
CN1439870A (zh) * 2003-03-19 2003-09-03 张滨华 一种采用纵向振动模式的谐振式密度计
CN203324138U (zh) * 2013-06-18 2013-12-04 广州天禾自动化实业有限公司 一种检测流体物性的传感器

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10057974A1 (de) * 2000-11-22 2002-05-23 Endress Hauser Gmbh Co Verfahren und Vorrichtung zur Feststellung und/oder Überwachung des Füllstands eines Mediums in einem Behälter bzw. zur Ermittlung der Dichte eines Mediums in einem Behälter
CN102183440B (zh) * 2011-03-01 2013-02-27 清华大学 一种振动式粘度计
CN102749266B (zh) * 2012-07-19 2016-12-21 青岛澳邦量器有限责任公司 流体特性测量器及测量流体密度的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4566181A (en) * 1983-04-08 1986-01-28 National Metal And Refining Company, Ltd. Rotational vibratory viscometer transducer and circuit
CN1069337A (zh) * 1991-07-23 1993-02-24 Vaf仪器有限公司 粘度计
CN2315563Y (zh) * 1998-04-10 1999-04-21 中国石油化工总公司 振动式在线粘度变送器
CN1439870A (zh) * 2003-03-19 2003-09-03 张滨华 一种采用纵向振动模式的谐振式密度计
CN203324138U (zh) * 2013-06-18 2013-12-04 广州天禾自动化实业有限公司 一种检测流体物性的传感器

Also Published As

Publication number Publication date
CN103323367A (zh) 2013-09-25

Similar Documents

Publication Publication Date Title
CN101371132B (zh) 自励、自感知压电悬臂梁传感器
US20130139576A1 (en) Coupled Torsional Resonators Viscometer
CN107407588B (zh) 用于工业控制和自动化的现场设备的电磁驱动单元/接收单元
US7694552B2 (en) High quality factor resonators for liquid immersion biological and chemical sensors
RU2012116010A (ru) Системы и способы измерения импеданса для определения компонентов твердых и текучих объектов
CN109374729B (zh) 一种声学微质量传感器及检测方法
KR20110080307A (ko) 오일점도 프로브와 이를 구비하는 오일점도 모니터링 장치 및 방법
CN105842100B (zh) 一种电磁激励的无线qcm-d传感器检测系统
US3145559A (en) Method of and apparatus for determining physical properties of materials
WO2014201710A1 (zh) 一种检测流体物性的传感器
JP2003254812A (ja) 容器内の媒体の充填高さの測定のための方法及び充填高さ測定装置
US10557744B2 (en) Apparatus for determining and/or monitoring at least one process variable
CN104165819B (zh) 一种在线实时磁性颗粒监测系统
US11783976B2 (en) Coil and transformer having such a coil
US3449940A (en) Apparatus for measuring physical properties of materials
CN105865962B (zh) 一种电磁激励的无线qcm-d气相检测系统及方法
US3282084A (en) Apparatus for determining physical properties of materials
CN107407586A (zh) 具有调谐元件的电子振动传感器
US6828912B2 (en) Resonant tube sensor
Heinisch et al. Resonant steel tuning forks for precise inline viscosity and mass density measurements in harsh environments
JP4923178B2 (ja) 部材中の水素濃度測定方法と水素濃度測定装置
US4158959A (en) Apparatus for measuring the physical properties of material
RU2377506C1 (ru) Устройство для измерения уровня жидкости
JP4924109B2 (ja) 物質測定装置および物質測定方法
Xue et al. Modeling and design of magnetoelastic micro-resonator system for ultrasensitive mass sensing applications

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13887504

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13887504

Country of ref document: EP

Kind code of ref document: A1