WO2014199885A1 - Multi-angle colorimeter - Google Patents

Multi-angle colorimeter Download PDF

Info

Publication number
WO2014199885A1
WO2014199885A1 PCT/JP2014/064906 JP2014064906W WO2014199885A1 WO 2014199885 A1 WO2014199885 A1 WO 2014199885A1 JP 2014064906 W JP2014064906 W JP 2014064906W WO 2014199885 A1 WO2014199885 A1 WO 2014199885A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical path
light
optical
unit
angle
Prior art date
Application number
PCT/JP2014/064906
Other languages
French (fr)
Japanese (ja)
Inventor
良隆 寺岡
克敏 ▲鶴▼谷
亘 山口
慎一 飯田
利夫 河野
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2015522736A priority Critical patent/JPWO2014199885A1/en
Publication of WO2014199885A1 publication Critical patent/WO2014199885A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/0242Control or determination of height or angle information of sensors or receivers; Goniophotometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • G01J3/0218Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows using optical fibers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/46Measurement of colour; Colour measuring devices, e.g. colorimeters
    • G01J3/50Measurement of colour; Colour measuring devices, e.g. colorimeters using electric radiation detectors
    • G01J3/502Measurement of colour; Colour measuring devices, e.g. colorimeters using electric radiation detectors using a dispersive element, e.g. grating, prism
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/46Measurement of colour; Colour measuring devices, e.g. colorimeters
    • G01J3/50Measurement of colour; Colour measuring devices, e.g. colorimeters using electric radiation detectors
    • G01J3/504Goniometric colour measurements, for example measurements of metallic or flake based paints

Definitions

  • the present invention relates to a multi-angle colorimeter that receives light emitted from a sample at multiple angles and performs spectral colorimetry.
  • Metallic paint and pearl color paint used for automobile paintings, etc. may appear to vary in color depending on the direction of the observer due to the effect of the internal glittering material, so the paint evaluation (evaluation of paint color) A multi-angle colorimeter that illuminates or receives light at multiple angles is used.
  • a multi-angle colorimeter In a multi-angle colorimeter, light emitted from a sample is generally guided to a spectroscopic unit, and the spectrum of the light is measured in the spectroscopic unit.
  • spectroscopic elements such as a diffraction grating and a linear variable filter are not used. It is expensive and has a certain size. For this reason, in a multi-angle colorimeter that receives light at a plurality of angles with respect to a sample, providing a spectroscopic unit for each light reception angle causes an increase in manufacturing cost and an increase in size of the apparatus.
  • the bundle fiber has a drawback that the effective area of the core portion is small with respect to the total area of the fiber end face and the loss of the light amount is large. There was a problem that it was reduced. In addition, the bundle fiber is more expensive than other light guide members, and there is a problem that the manufacturing cost of the colorimeter increases when this is used.
  • the present invention has been made in view of such circumstances, and provides a multi-angle colorimeter that receives light at a plurality of angles with respect to a sample while suppressing an increase in manufacturing cost and a decrease in SN ratio. With the goal.
  • the invention according to the first aspect of the present invention includes: (a) an irradiation unit that irradiates a sample with irradiation light; and (b) a surface of the sample in response to irradiation with the irradiation light.
  • a second light guide that receives the measurement light guided through the selected optical path, which is one of the plurality of first optical paths, and guides the measurement light through the second optical path; and (d) the second light guide.
  • a selection unit that drives and variably selects the selected optical path; and (e) a spectroscopic unit that receives and separates the measurement light guided through the second optical path, and the selection unit includes the selected optical path.
  • the optical path on the upstream side of the second optical path is switched to select the selected optical path, and any one of the plurality of first optical paths is selected as the selected optical path as the downstream optical path in the second optical path. This is also the same, and by switching the selected optical path for the plurality of first optical paths, multi-angle measurement that performs colorimetry using spectral results for the plurality of measurement lights corresponding to the plurality of angles. It is a color meter.
  • the invention according to a second aspect of the present invention is the multi-angle colorimeter according to the first aspect of the present invention, wherein the second light guide part reflects light incident from the selected optical path.
  • An optical element having a reflective surface, and the selection unit has a drive unit that rotates the optical element about one axis, and is in accordance with a rotation stop position of the optical element rotated by the drive unit.
  • the upstream optical path in the second optical path is selectively switched, and the selected optical path is selected from the plurality of first optical paths.
  • the invention according to a third aspect of the present invention is the multi-angle colorimeter according to the second aspect of the present invention, wherein the optical element reflects the light incident from the selected optical path.
  • the invention according to a fourth aspect of the present invention is the multi-angle colorimeter according to the third aspect of the present invention, wherein the first and second reflecting surfaces maintain an angular relationship with each other in the optical element. In the state of rotation, the first and second reflecting surfaces are maintained at a constant angle with respect to a plane perpendicular to the one axis.
  • the invention according to a fifth aspect of the present invention is the multi-angle colorimeter according to the first aspect of the present invention, wherein the second light guide part reflects light incident from the selected optical path.
  • An optical element having a reflecting surface, and the selection unit includes a drive unit that displaces the optical element in a linear bidirectional manner, and is in accordance with a drive stop position of the optical element displaced by the drive unit.
  • the upstream optical path in the second optical path is selectively switched, and the selected optical path is selected from the plurality of first optical paths.
  • the invention according to a sixth aspect of the present invention is the multi-angle colorimeter according to the fifth aspect of the present invention, wherein the reflecting surface is constant with respect to the direction of the linear displacement of the optical element. Is maintained at an angle of
  • the invention according to a seventh aspect of the present invention is the multi-angle colorimeter according to the first aspect of the present invention, wherein the second light guide portion includes an optical fiber, and the selection portion is the A drive unit that displaces the position or angle of the light incident part that is an opening on the upstream side of the optical fiber, and the upstream of the second optical path according to the position or angle of the light incident part displaced by the drive part
  • the optical path on the side is selectively switched, and the selected optical path is selected from the plurality of first optical paths.
  • the invention according to an eighth aspect of the present invention is the multi-angle colorimeter according to any one of the first to seventh aspects of the present invention, wherein the measurement light is guided through the plurality of first optical paths. Are spectrally measured by a single spectroscopic unit.
  • the light obtained at different angles with respect to the measurement point is spectroscopically switched by switching the selected optical path for the plurality of first optical paths. Lead to color measurement. Therefore, compared to a multi-angle colorimeter with a configuration in which a spectroscopic unit is provided for each light receiving angle, measurement errors due to individual differences among a plurality of spectroscopic units are reduced. There is an advantage that the apparatus is reduced and the apparatus can be made compact.
  • the selection optical path is selected by the selection unit driving the second light guide unit. Specifically, the optical path on the upstream side of the second optical path is switched by the selection unit so that the downstream optical path in the selected optical path and the upstream optical path in the second optical path are optically connected, and a plurality of first optical paths are switched.
  • One optical path is selected as the selected optical path from one optical path. For this reason, it is possible to guide light obtained at a plurality of light receiving angles to one spectroscopic unit without using a bundle fiber.
  • the downstream optical path in the second optical path is Identical.
  • the light guided through the second optical path is incident on the spectroscopic unit at the same position and angle. Therefore, compared to a multi-angle colorimeter with a configuration in which the position and angle of light incident on the spectroscopic unit are different for each guided light path, the measurement error due to the non-identity of the light receiving position and the light receiving angle at the spectroscopic unit There is an advantage that is reduced.
  • FIG. 1st Embodiment it is a schematic diagram explaining the positional relationship of a measuring device main body and the measurement surface of a to-be-measured object. It is a figure which shows the functional structural example of the multi-angle colorimeter 100 which concerns on 1st Embodiment. In 1st Embodiment, it is a figure which shows the positional relationship of the optical system of the 2nd light guide part 27 periphery. It is a schematic diagram which shows a mode that a to-be-selected optical path is switched in 1st Embodiment.
  • 3rd Embodiment it is a figure which shows the positional relationship of the optical system of the 2nd light guide part 27 periphery.
  • 1st Embodiment it is the figure which showed the relationship between the drive stop position of the mirror MR, and the optical path of measurement light.
  • 1st Embodiment it is the figure which showed the relationship between the drive stop position of the mirror MR, and the optical path of measurement light.
  • 3rd Embodiment it is the figure which showed the relationship between the drive stop position of the mirror MR, and the optical path of measurement light.
  • FIG. 1 is a perspective view showing an appearance of a multi-angle colorimeter 100 according to the first embodiment.
  • FIG. 2 is a schematic diagram for explaining the positional relationship between the measuring instrument main body and the measurement surface of the object to be measured.
  • the multi-angle colorimeter 100 is composed of a box-shaped measuring instrument body 2 in which constituent elements (see FIG. 3) described later are accommodated.
  • the measuring instrument main body 2 includes a measurement opening 3 drilled in the bottom wall and an operation display panel 4 which is disposed at a suitable surface and includes a display showing the measurement results, an operation switch, and the like, and is portable. Configures a portable colorimeter.
  • FIG. 2 is a schematic diagram for explaining the angle between the central axis of the measuring instrument main body of the multi-angle colorimeter and the measurement surface of the measurement sample.
  • the measurement by the multi-angle colorimeter 100 is performed with the measurement opening 3 facing the measurement object 5 (sample), and the surface of the measurement object 5 facing the measurement opening 3 is the measurement surface. 5a.
  • FIG. 3 is a diagram showing a basic functional configuration of the unidirectional illumination multidirectional light receiving type multi-angle colorimeter 100 according to the first embodiment of the present invention.
  • the configuration and functions of the multi-angle colorimeter 100 will be described with reference to FIG. Further, in each of the drawings after FIG. 3, right-handed XYZ coordinates are attached as necessary for the purpose of clarifying the arrangement relationship of each part.
  • the multi-angle colorimeter 100 generally irradiates a predetermined measurement point P on the object to be measured 5 with light, and spectrally decomposes the reflected light from the measurement point P to convert it into an electrical signal.
  • a detection unit 40 and a control unit 70 that controls each unit of the multi-angle colorimeter 100 and processes a signal about the reflected light acquired by the light detection unit 40 are provided.
  • the light detection unit 40 irradiates a predetermined measurement point P on the object to be measured 5 with the first light r1 (irradiation light) and the first light r1.
  • the second light r2 (measurement light) emitted from the measurement surface 5a of the sample is received at a plurality of different angles with respect to the measurement surface 5a, and a plurality of first optical paths corresponding to the plurality of angles.
  • a first light guide 20 for guiding the second light r2 through the second light r2 guided through the second optical path and the second light r2 guided through the selected optical path which is one of the plurality of first optical paths.
  • the irradiation unit 10 side is referred to as “upstream side” and the spectroscopy unit 30 side in the progression of light from the irradiation unit 10 until the first light r1 is emitted and incident on the spectroscopy unit 30. Is expressed as “downstream”.
  • the irradiation unit 10 includes, for example, a light source composed of a xenon flash lamp, a restriction plate that restricts light from the light source, and a collimator lens (none of which are shown).
  • the light emitting circuit 11 that emits light from the light source is provided in the vicinity of the irradiation unit 10.
  • the light emitting circuit 11 is, for example, a main capacitor for applying a DC high voltage of several hundred volts to the electrode of the light source, a charging circuit for charging the main capacitor, and a trigger composed of a metal wire wound in close contact with the light source.
  • a trigger generation circuit for applying an alternating high voltage of tens of thousands of volts to the electrode for example, a semiconductor switch element made of IGBT, and a drive circuit for applying a drive voltage to the semiconductor switch element are provided.
  • FIG. 4 shows the second light guide unit 27 (mirror MR), the downstream side of the first light guide unit 20 (the emission ports B21 to B26 side of the optical fibers 21 to 26), and the spectrum in the multi-angle colorimeter 100.
  • 4 is a schematic diagram showing a positional relationship with a unit 30.
  • the first light guide 20 has a plurality of optical fibers 21 to 26 (six in this embodiment).
  • the optical fibers 21 to 26 are single-core optical fibers having incident ports B11 to B16 at one end and emitting ports B21 to B26 at the other end.
  • the entrances B11 to B16 are arranged at positions where the second light r2 emitted from the measurement point P of the object to be measured 5 is received at different angles with respect to the surface (FIG. 3). ), And the emission ports B21 to B26 are arranged at positions optically opposed to the second light guide unit 27 (mirror MR) operated by the selection unit 29 (FIG. 4).
  • the light guided by the optical fibers 21 to 26 in the second light r2 is referred to as light r21 to r26, respectively.
  • a light receiving window for focusing the second light r2 emitted from the measurement point P (typically constituted by an aperture and a convex lens).
  • entrances B11 to B16 are provided at the image forming positions of the light receiving windows. Therefore, the light r21 to r26 emitted from the measurement point P can be guided to the emission ports B21 to B26 through the optical fibers 21 to 26.
  • the second light guide unit 27 receives one light (light guided through the selected optical path) of the light r21 to r26 emitted from the emission ports B21 to B26 of the optical fibers 21 to 26, and splits the light.
  • This is an optical system that guides to the entrance slit 31 of the unit 30, and includes various known mirrors such as a mirror MR (FIGS. 4 to 8, 10 to 15), a prism PR (FIGS. 16 to 18), and an optical fiber FB (FIG. 19). These optical elements can be used.
  • a mode in which the mirror MR is used as the second light guide unit 27 in the present embodiment will be described, and modes (FIGS. 16 to 18) in which the prism PR is used in the fourth embodiment to be described later will be described in the fifth embodiment.
  • An embodiment (FIG. 19) using a fiber in the form will be described.
  • the selection unit 29 is a part that variably selects a selected optical path that is one of the plurality of first optical paths (each optical path corresponding to the optical fibers 21 to 26) of the first light guide unit 20.
  • the selection unit 29 includes a support shaft 291 that rotatably supports the mirror MR, and a drive unit 292 (typically a motor) that rotates the support shaft 291 around the Y axis.
  • a drive unit 292 typically a motor
  • FIG. 4 A case will be described in which a configuration in which the mirror MR of the optical unit 27 is rotated about the Y axis (about one axis) is employed (FIG. 4).
  • the selected optical path is selected according to the rotation stop position of the mirror MR (optical element) rotated by the drive unit 292.
  • the optical element 28 for guiding the light r21 to r26 emitted from the respective exit ports B21 to B26 to the spectroscopic unit 30. (Typically a lens) is provided.
  • the multi-angle colorimeter 100 is configured to receive the measurement light at a plurality of angles by the single spectroscopic unit 30, the multi-angle colorimetry having a configuration in which the spectroscopic unit is provided for each light receiving angle.
  • advantages such as a reduction in measurement error due to individual differences among a plurality of spectroscopic units, a reduction in manufacturing cost by reducing the number of spectroscopic units, and a compact colorimeter.
  • first optical path “selected optical path”, and “second optical path”, which are the optical paths of the second light r2 used in this specification, mean the meaning of the configuration of this embodiment as an example.
  • First optical path an optical path defined by the first light guide 20 (in the present embodiment, for each of the optical fibers 21 to 26). After the lights r21 to r26 are emitted from the sample surface, the optical fibers 21 to 26 are used.
  • Optical paths from the exit ports B21 to B26 (b) optical path to be selected; one optical path guided by the selection unit 29 toward the second light guide unit 27 among the plurality of first optical paths; (c) Second optical path; an optical path that can switch the downstream side of the optical path by the selector 29, and the light guided through the selected optical path is emitted from the exit ports B21 to B26 and then incident on the entrance slit 31.
  • Optical path to It becomes the correspondence relationship.
  • first optical path corresponding to the light r21 to r26 may be particularly referred to as “first optical path L11 to L16”, and the second optical path may be particularly referred to as “second optical path L21 to L26”.
  • FIG. 5 to FIG. 8 are schematic diagrams showing how the selection unit 29 selects the selected optical path.
  • two optical fibers 21 and 26 out of the six optical fibers 21 to 26 are shown. Only shown.
  • the lights r21 and r26 are drawn as light rays, but in reality they may be light beams.
  • the optical axes of the light beams r21 and r26 emitted from the emission ports B21 and B26 exist in the same XZ plane, and the mirror MR has a reflection surface RS1 of 45 relative to the XZ plane.
  • the support shaft 291 is supported by the support shaft 291 so as to be rotatable around the Y axis.
  • the optical axis of the light and the reflection of the mirror MR A point where the surface RS intersects is called a point PT (FIGS. 5 to 8).
  • the relative positional relationship between the mirror MR and the optical fibers 21 and 26 is adjusted so that the points PT are the same in the two optical fibers 21 and 26.
  • the spectroscopic unit 30 is disposed at a position where the reflected light from the mirror MR of the light guided through the optical fibers 21 and 26 enters the entrance slit 31.
  • the point PT is a point through which the axial center line of the support shaft 291 passes in the reflecting surface RS1, and is a point that does not move due to the rotation of the mirror MR.
  • the shutter T1 when the shutter T1 is closed, the shutter T6 is opened, and the reflecting surface RS1 of the mirror MR faces the optical fiber 26, the light r21. Is guided by the first optical path L11 and then blocked by the shutter T1, and the light r26 is guided by the first optical path L16 and then by the second optical path L26 and enters the entrance slit 31.
  • the first optical path L16 is selected as the selected optical path.
  • the optical path upstream of the second optical path is selected by the selector 29 so that the downstream optical path in the first optical path L11, which is the selected optical path, and the upstream optical path in the second optical path are optically connected. It is switched (switched from the second optical path L26 to the second optical path L21). This switching is performed by stopping the rotation at the timing when the reflecting surface RS1 of the mirror MR optically opposes the emission port B21.
  • the light r26 is guided by the first optical path L16 and then blocked by the shutter T6, and the light r21 is guided by the first optical path L11 (selected optical path). After that, the light is guided through the second optical path L21 and enters the entrance slit 31.
  • the spectroscopic unit 30 is compared with the multi-angle colorimeter having a configuration in which the position and angle of light incident on the spectroscopic unit are different for each of the guided light paths.
  • the optical paths of the six optical fibers 21 to 26 on the exit B21 to B26 side (downstream side) exist in the same XZ plane, and the mirror MR has a reflection surface RS1 with respect to the XZ plane.
  • the drive unit 292 and the support shaft 291 are supported so as to be rotatable around the Y axis so as to have an inclination of 45 degrees.
  • the optical axis of the light and the mirror MR The point at which the reflecting surface RS1 intersects is called a point PT.
  • the relative positional relationship between the mirror MR and the optical fibers 21 to 26 is adjusted so that the point PT is the same among the six optical fibers 21 to 26. In other words, downstream of the optical fibers 21 to 26 (a fixed length including the exit ports B21 to B26) so that the light r21 to r26 can be irradiated at the same angle (45 degrees) toward the point PT of the mirror MR.
  • the spectroscopic unit 30 is arranged at a position where the reflected light from the mirror MR of the light r21 to r26 guided through the optical fibers 21 to 26 enters the incident slit 31.
  • the opening and closing of the shutters T1 to T6 is controlled, and the downstream optical path in the selected optical path and the upstream optical path in the second optical path are optically connected.
  • one optical path can be selected as the selected optical path from among the plurality of first optical paths L11 to L16.
  • FIG. 4 illustrates the case where the first optical path L14 is selected as the selected optical path.
  • the downstream optical paths (optical paths on the spectroscopic unit 30 side) in the second optical paths L21 to L26 are the same. (FIGS. 5 and 8). For this reason, the lights r21 to r26 are incident on the incident slit 31 of the spectroscopic unit 30 at the same position and angle.
  • the spectroscopic unit 30 (FIG. 3) separates incident light beams incident through the second optical paths L21 to L26 by the second light guide unit 27 for each wavelength and outputs spectroscopic data corresponding to the light intensity.
  • the spectroscopic unit 30 includes a concave diffraction grating 32 and a line sensor 33 (one-dimensional photoelectric conversion element).
  • the emitted lights r21 to r26 from the optical fibers 21 to 26 are incident on the spectroscopic unit 30 in time sequence in accordance with the switching operation of the selected optical path described above. It is diffracted and reflected by the concave diffraction grating 32 and received by the line sensor 33.
  • the line sensor 33 converts the incident light into an electrical signal.
  • the mode of using the transmission type diffraction grating in addition to the mode of performing the spectrum using the reflection type diffraction grating as in the present embodiment, the mode of using the transmission type diffraction grating, or an optical element having a spatially different bandpass ( Various known spectroscopic sections such as an embodiment that typically uses a filter) can be employed.
  • control unit 70 Operation Display Panel 4, Memory Unit 60
  • control unit 70 Operation Display Panel 4
  • memory unit 60 Memory Unit 60
  • the control unit 70, the operation display panel 4, and the memory unit 60 will be described as electrical configurations in the multi-angle colorimeter 100.
  • the control unit 70 has a measurement control unit 71 and a calculation unit 72 as functional blocks, and controls the operation of each unit of the multi-angle colorimeter 100 according to a control program stored in the memory unit 60. It is configured by an electronic circuit such as an A / D converter.
  • the measurement control unit 71 causes the light source of the irradiation unit 10 to emit light by the operator of the multi-angle colorimeter 100 operating the measurement switch 65 to perform color measurement in the light detection unit 40. In addition, the measurement control unit 71 displays the calculation result by the calculation unit 72 on the display unit 66 as the measurement result.
  • the calculation unit 72 obtains a light detection value (spectral reflection characteristic) based on the electrical signal output from the light detection unit 40, and color information at the measurement point P of the object 5 to be measured based on the detection value. (E.g., tristimulus values).
  • the operation display panel 4 includes a measurement switch 65 for a user of the multi-angle colorimeter 100 to instruct measurement start, a display unit 66 (typically a liquid crystal panel) for displaying a measurement result, and the like.
  • the memory unit 60 includes a RAM, an EEPROM, etc., and temporarily stores measurement results and stores a control program for operating the control unit 70.
  • FIG. 9 is a flowchart illustrating the flow of the color measurement operation realized in the multi-angle colorimeter 100. Since the individual functions of each unit have already been described, only the overall flow will be described here.
  • the measuring instrument body 2 is opposed to the surface of the object to be measured 5 so that the central axis 2n of the measuring instrument body 2 (normal line of the measurement aperture 3) and the normal line 5n of the measuring surface 5a coincide with each other, and the irradiation unit It is assumed that the process proceeds to step ST1 (at the start of measurement) with 10 turned off.
  • step ST1 the irradiation controller 10 is turned on by the measurement controller 71.
  • step ST2 the measurement control unit 71 opens the shutter T1, closes the shutters T2 to T6, and the selection unit 29 detects the light r21 using the first optical path L11 as the selected optical path, by the spectroscopic unit 30. Then, based on the detection result, the detection value is acquired by the calculation unit 72 and stored in the memory unit 60.
  • step ST3 the measurement control unit 71 opens the shutter T2, closes the shutters T1 and T3 to T6, and the selection unit 29 detects the light r22 with the first optical path L12 as the selected optical path by the spectroscopic unit 30. Then, based on the detection result, the detection value is acquired by the calculation unit 72 and stored in the memory unit 60.
  • step ST4 the measurement control unit 71 opens the shutter T3, closes the shutters T1, T2, and T4 to T6, and the selection unit 29 detects the light r23 with the first optical path L13 as the selected optical path and the spectral unit 30. Then, based on the detection result, the detection value is acquired by the calculation unit 72 and stored in the memory unit 60.
  • step ST5 the measurement control unit 71 opens the shutter T4, closes the shutters T1 to T3, T5, and T6, and the selection unit 29 detects the light r24 using the first optical path L14 as the selected optical path and the light splitting unit 30. Then, based on the detection result, the detection value is acquired by the calculation unit 72 and stored in the memory unit 60.
  • step ST6 the measurement control unit 71 opens the shutter T5, closes the shutters T1 to T4, and T6, and the selection unit 29 detects the light r25 using the first optical path L15 as the selected optical path by the spectroscopic unit 30. Then, based on the detection result, the detection value is acquired by the calculation unit 72 and stored in the memory unit 60.
  • step ST7 the measurement control unit 71 opens the shutter T6, closes the shutters T1 to T5, and the selection unit 29 detects the light r26 using the first optical path L16 as the selected optical path, by the spectroscopic unit 30. Then, based on the detection result, the detection value is acquired by the calculation unit 72 and stored in the memory unit 60.
  • step ST8 the measurement control unit 71 turns off the irradiation unit 10.
  • step ST9 the computing unit 72 calculates the color information of the DUT 5 at the measurement point P based on the six light detection values corresponding to the lights r21 to r26 stored in the memory unit 60.
  • step ST10 the measurement control unit 71 displays the color information of the device under test 5 at the measurement point P calculated by the calculation unit 72 on the display unit 66 as a measurement result, whereby the operation flow is completed.
  • the selected optical paths are sequentially switched for the plurality of first optical paths L11 to L16 (FIGS. 5 to 8), so that different angles with respect to the measurement point P are obtained.
  • the light r21 to r26 obtained in step 1 can be guided to a single spectroscopic unit 30 to perform spectroscopic colorimetry.
  • the colorimeter can be reduced in size and cost.
  • the internal parts can be shared by using a single spectroscopic unit 30 in common, it is not necessary to consider individual differences between spectroscopic units that occur when using a plurality of spectroscopic units.
  • the second optical path is selected by the selector 29 so that the downstream optical path in the selected optical path and the upstream optical path in the second optical path are optically connected. Is switched, and one optical path is selected as the selected optical path from among the plurality of first optical paths L11 to L16 (FIGS. 5 to 8).
  • the selection of the selected optical path is performed by driving the second light guide unit 27 (rotating the mirror MR).
  • the upstream side of the second optical path is branched, and the optical path downstream of the plurality of first optical paths and the upstream of the second optical path
  • the multi-angle colorimeter selects one light to be guided to the spectroscopic unit by selecting one optical path pair from a plurality of corresponding optical path pairs.
  • the multi-angle colorimeter in which the light guide is not driven) and the multi-angle colorimeter 100 in the present embodiment are different in technical characteristics in optical path selection.
  • the multi-angle colorimeter 100 of the present embodiment can guide the light r21 to r26 obtained at a plurality of light receiving angles to the single spectroscopic unit 30 without using a bundle fiber. For this reason, the point that there is much light quantity loss in the light guide which was a defect of the bundle fiber is solved, and colorimetry with a high SN ratio can be realized. Furthermore, a multi-angle colorimeter can be manufactured at a lower cost than when a bundle fiber is used.
  • the downstream optical path (on the spectroscopic unit 30 side) in the second optical path. are the same. Therefore, the lights r21 to r26 guided through the second optical paths L21 to L26 are incident on the spectroscopic unit 30 at the same position and angle.
  • the light received by the spectroscopic unit 30 is compared with the multi-angle colorimeter having a configuration in which the position and angle of light incident on the spectroscopic unit are different for each of the guided light paths.
  • the selection unit 29 optically connects the downstream optical path in one optical path (selected optical path) of the plurality of first optical paths L11 to L16 and the upstream optical path in the second optical paths L21 to L26. As described above, the optical path on the upstream side of the second optical paths L21 to L26 can be switched, (Condition 2) The downstream optical paths in the second optical paths L21 to L26 are the same even when any of the plurality of first optical paths L11 to L16 is selected as the selected optical path.
  • the multi-angle colorimeter 100 has been described as an example of the multi-angle colorimeter that satisfies both conditions.
  • FIG. 10 is a schematic diagram illustrating configurations of the first light guide unit 20, the second light guide unit 27, the selection unit 29, and the spectroscopic unit 30 of the multi-angle colorimeter 100A according to the second embodiment. Further, in FIG. 10 and the subsequent drawings, the same reference numerals are given to the same elements as those in the first embodiment.
  • FIG. 10 as in FIGS. 5 to 8, only two optical fibers 21 and 26 among the six optical fibers 21 to 26 are illustrated for the purpose of simplifying the description.
  • 100A also has optical fibers 21 to 26.
  • the multi-angle colorimeter 100A differs from the above-mentioned multi-angle colorimeter 100 in that the angles of the exits B21 to B26 with respect to the XZ plane (in FIG. 10, the angles of the exits B21 and B26) and the mirror with respect to the XZ plane Only the angle of the MR reflection surface RS1 is used, and the remaining configuration is the same as that of the multi-angle colorimeter 100.
  • an arrangement relationship in which the incident angle and the reflection angle to the mirror MR are larger than 45 degrees may be used.
  • a multi-angle colorimeter in which the incident angle and the reflection angle on the mirror MR are smaller than 45 degrees may be used.
  • the light beams r21 to r26 are irradiated onto the mirror MR at an incident angle other than 45 degrees as in the multi-angle colorimeter 100A of the second embodiment, for example, downstream of the optical fibers 21 to 26 (emission ports B21 to B26) Can be employed in a plane corresponding to the conical side surface when viewed from the point PT toward the point PT.
  • FIG. 11 is a schematic diagram illustrating configurations of the first light guide unit 20, the second light guide unit 27, the selection unit 29, and the spectroscopic unit 30 of the multi-angle colorimeter 100B according to the third embodiment.
  • FIG. 11 only three optical fibers 21, 22, and 23 among the six optical fibers 21 to 26 are shown for the purpose of simplifying the explanation, but the multi-angle colorimeter 100 B is also multi-angle colorimetry. Similar to the total 100, it has six optical fibers 21-26.
  • the multi-angle colorimeter 100B is different from the above-mentioned multi-angle colorimeter 100 in the arrangement relationship of the optical fibers 21 to 26 and the switching operation of the second optical paths L21 to L26, and the remaining configuration is the multi-angle colorimetry.
  • the total is the same as 100.
  • the emission ports B21 to B26 of the optical fibers 21 to 26 are emitted in the Y direction so that the lights r21 to r26 are emitted in the ⁇ X direction at predetermined intervals in the Y direction.
  • the mirror MR is supported by the support shaft 291 in a state where the reflection surface RS1 is inclined by 45 degrees with respect to the XZ plane and perpendicular to the XY plane, and the support shaft 291 and the mirror MR supported by the support shaft 291 are driven by the drive unit 292b.
  • a linear motor is displaced in the ⁇ Y direction (linear bidirectional).
  • the upstream optical path and the downstream optical path in the second optical paths L21 to L26 are selectively switched according to the driving stop position of the mirror MR driven by the driving unit 292b.
  • the displacement amount is made to correspond to the predetermined interval, so that the irradiation position of the optical axis when the light beams r21 to r26 are irradiated onto the mirror MR.
  • the spectroscopic unit 30 is arranged at a position where the reflected light from the mirror MR of the light r21 to r26 guided through the optical fibers 21 to 26 enters the incident slit 31. Because of such a configuration, the multi-angle colorimeter 100B of the third embodiment can satisfy the above conditions 1 and 2.
  • FIG. 12 shows the relationship between the rotation stop position of the mirror MR and the optical path of the measurement light when the drive unit 292 (FIG. 4) is ideally controlled in the multi-angle colorimeter 100 of the first embodiment.
  • FIG. FIG. 13 shows the rotation stop position of the mirror MR when the drive unit 292 is controlled to stop rotating at a certain angle from the ideal rotation stop position in the multi-angle colorimeter 100 of the first embodiment. It is the figure which showed the relationship with the optical path of measurement light.
  • FIG. 14 shows the drive stop position (Y-direction displacement amount) of the mirror MR and the optical path of the measurement light when the drive unit 292b (FIG. 11) is ideally controlled in the multi-angle colorimeter 100B of the third embodiment. It is the figure which showed the relationship.
  • FIG. 15 shows the drive stop position (Y of the mirror MR when the drive unit 292b is controlled to stop driving with a certain distance in the Y direction from the ideal drive stop position in the multi-angle colorimeter 100B of the third embodiment. It is the figure which showed the relationship between (direction displacement amount) and the optical path of measurement light.
  • the optical path when the drive units 292 and 292b are ideally controlled is indicated by dotted arrows, and the drive units 292 and 292b have a certain level from the ideal control.
  • the optical path in the case of being controlled by shifting is indicated by a solid arrow.
  • the light incident on the mirror MR (second light guide unit 27)
  • the light incident at the ideal position and angle is shifted from the “incident light IL1”, the ideal position and angle.
  • the incident light is referred to as “incident light IL2”.
  • the light emitted from the mirror MR (second light guide unit 27) is referred to as “emitted light RL1” and “emitted light RL2”.
  • the incident light IL1 and the incident light IL2 are actually light that follows the same optical path in the spectrometer 30. However, the incident light IL1 and the incident light IL2 enter the mirror MR (second light guide unit 27) due to the presence or absence of the drive control deviation. The light has a different incident angle or incident position. Due to this, the outgoing light RL1 and the outgoing light RL2 become light that follows different optical paths in the spectrometer 30.
  • the selection unit 29 switches the second optical paths L21 to L26 by rotating the mirror MR about the Y axis.
  • the incident light IL2 (FIG. 13) in the case where the mirror MR is rotated and stopped at a certain angle from the ideal rotation stop position is different from the incident light IL1 (FIG. 12) that is ideal in design. It is incident on the mirror MR at an angle.
  • the emitted light RL2 is also emitted at a different angle from the emitted light RL1.
  • the switching of the second optical paths L21 to L26 by the selection unit 29 is performed by the direct movement of the mirror MR.
  • the reflecting surface RS1 is maintained at a constant angle with respect to the linear displacement direction of the mirror MR (optical element).
  • the reflecting surface RS1 maintained at a constant angle with respect to the linear displacement direction (Y direction) of the mirror MR is used, even if the mirror MR is displaced linearly (Y direction), The traveling direction of the light reflected from the reflecting surface (emitted light RL) does not vary. Specifically, even if the incident light IL2 (FIG.
  • the mirror 15 is generated when a position shift occurs at the drive stop position of the mirror MR, the mirror has the same incident angle as the incident light IL1 (FIG. 14) that is ideal in design.
  • the light enters the MR, and the outgoing light RL2 is also emitted at the same angle as the outgoing light RL1.
  • the angular deviation of the emitted light RL that can occur in the multi-angle colorimeter 100 according to the first embodiment (the angular deviation in the downstream optical path of the second optical path) is generated. It does not occur, and the light guided from the selected optical path can be guided to the entrance slit 31 at a certain angle.
  • the measurement accuracy is further improved if the configuration does not cause an angular shift of the light irradiated to the spectroscopic unit 30 as in the multi-angle colorimeter 100B of the third embodiment (FIGS. 14 and 15). .
  • the distance between the second optical paths L21 to L26 is shortened so that the mirror The positional deviation of the incident position on the incident slit 31 due to the positional deviation of the MR rotation stop position can be reduced, and the measurement error can be reduced.
  • FIG. 16 is a schematic diagram illustrating configurations of the first light guide unit 20, the second light guide unit 27 (prism PR), the selection unit 29, and the spectroscopic unit 30 of the multi-angle colorimeter 100C according to the fourth embodiment. It is.
  • FIG. 16 only two optical fibers 21 and 26 of the six optical fibers 21 to 26 are shown for the purpose of simplifying the description.
  • the multi-angle colorimeter 100C is also the multi-angle colorimeter 100C.
  • six optical fibers 21 to 26 are provided.
  • the multi-angle colorimeter 100C is different from the multi-angle colorimeter 100 of the first embodiment in that a prism PR is used as the second light guide 27 instead of the mirror MR, and the remaining configuration is a multi-colorimeter. This is the same as the angle colorimeter 100.
  • a prism PR for example, a rhombus prism (FIGS. 16 to 18) having reflection surfaces RS2 and RS3 that cause internal reflection parallel to two opposing surfaces can be used.
  • the light r21 to r26 guided through one optical path (selected optical path) among the plurality of first optical paths L11 to L16 is the first reflection surface RS2 and the second reflection in the prism PR.
  • the light is reflected by the surface RS3 and guided to the entrance slit 31 of the spectroscopic unit 30.
  • the upstream optical path in the second optical paths L21 to L26 is selectively switched according to the rotation stop position of the prism PR rotated by the driving unit 292, and the plurality of first optical paths L11 to L16 are selected.
  • the selected optical path is selected.
  • the main role of the prism PR (the role as the second light guide 27) is the same as that of the mirror MR in the multi-angle colorimeter 100. That is, the prism PR is rotated by the drive unit 292 to switch the upstream optical path of the second optical paths L21 to L26 and guided through one of the first optical paths L11 to L16 (selected optical path). The light is guided to the entrance slit 31 of the spectroscopic unit 30. Further, the downstream optical paths in the second optical paths L21 to L26 are the same even when any of the plurality of first optical paths L11 to L16 is selected as the selected optical path.
  • 17 and 18 are diagrams showing the relationship between the rotation stop position of the prism PR and the optical path of the measurement light in the multi-angle colorimeter 100C of the fourth embodiment.
  • FIG. 17 is a diagram showing the relationship between the rotation stop position of the prism PR and the optical path of the measurement light when the drive unit 292 is ideally controlled in the multi-angle colorimeter 100C.
  • FIG. 18 shows the relationship between the rotation stop position of the prism PR and the optical path of the measurement light when the drive unit 292 is controlled to stop rotation by deviating from the ideal rotation stop position in the multi-angle colorimeter 100C. It is the figure which showed the relationship.
  • the optical path when the drive unit 292 (FIG. 16) is ideally controlled is indicated by a dotted arrow (FIG. 17), and the optical path when the drive unit 292 is controlled by a certain degree of deviation from the ideal control is indicated by a solid arrow. (FIG. 18).
  • the incident light IL1 and the incident light IL2 are actually light that follows the same optical path in the spectroscope 30.
  • the prism PR The incident light or the incident position on the second light guide 27
  • the outgoing light RL1 and the outgoing light RL2 become light that follows different optical paths in the spectrometer 30.
  • the first reflecting surface RS2 and the second reflecting surface RS3 are fixedly formed in parallel with each other in a prism PR (optical element).
  • the first reflecting surface RS2 and the second reflecting surface RS3 are rotated while being maintained at a constant angle with respect to the plane XZ perpendicular to the Y axis, which is the rotation axis.
  • the incident light IL2 (FIG. 18) when the mirror MR is rotated and deviated from the ideal rotation stop angle by a certain angle
  • the incident light IL1 (FIG. 17) that is ideal in design.
  • the emitted light RL2 emitted through the reflecting surfaces RS2 and RS3 fixedly formed parallel to each other in the prism PR is also emitted at the same angle as the emitted light RL1. That is, even if the posture of the prism PR slightly varies due to the shift in the rotation stop angle, the shift in the reflection direction that occurs on the first reflection surface RS2 is offset by the shift in the reflection direction on the second reflection surface RS3. 2
  • the traveling direction of the light emitted from the light guide unit (the angle of the emitted light RL) is maintained constant.
  • the angular deviation of the emitted light RL (the angular deviation in the downstream optical path of the second optical path) that can occur in the multi-angle colorimeter 100 according to the first embodiment described above. It does not occur, and the light guided from the selected optical path can be guided to the entrance slit 31 at a certain angle. As a result, the measurement accuracy is further improved as in the multi-angle colorimeter 100B of the third embodiment.
  • FIG. 19 is a schematic diagram illustrating configurations of the first light guide unit 20, the second light guide unit 27 (optical fiber FB), the selection unit 29, and the spectroscopic unit 30 of the multi-angle colorimeter 100D according to the fifth embodiment.
  • FIG. 19 is a schematic diagram illustrating configurations of the first light guide unit 20, the second light guide unit 27 (optical fiber FB), the selection unit 29, and the spectroscopic unit 30 of the multi-angle colorimeter 100D according to the fifth embodiment.
  • FIG. 19 only two optical fibers 21 and 26 of the six optical fibers 21 to 26 are illustrated for the purpose of simplifying the explanation, but the multi-angle colorimeter 100D is also shown in FIG. Similarly to the above, six optical fibers 21 to 26 are provided.
  • the multi-angle colorimeter 100D is different from the multi-angle colorimeter 100 of the first embodiment in that an optical fiber FB is used as the second light guide 27 instead of the mirror MR, and the remaining configuration is as follows. The same as the multi-angle colorimeter 100.
  • optical fiber FB for example, a single-core fiber (FIG. 19) having a large core diameter on the incident side as compared with the exit numerical apertures of the optical fibers 21 to 26 of the first light guide unit 20 can be used.
  • the multi-angle colorimeter 100D includes a drive unit 292 that displaces the position or angle of the light incident unit B17 that is the opening on the upstream side of the optical fiber FB as the selection unit 29. For this reason, the upstream optical path in the second optical paths L21 to L26 is selectively switched according to the position or angle of the light incident section B17 displaced by the driving section 292, and the plurality of first optical paths L11 to L16 are changed. The selected optical path is selected.
  • the rotation mechanism using a motor etc. can be utilized similarly to 1st Embodiment.
  • the lights r21 to r26 guided through one optical path (selected optical path) among the plurality of first optical paths L11 to L16 are guided to the entrance slit 31 of the spectroscopic unit 30 through the optical fiber FB.
  • the main role of the optical fiber FB (the role as the second light guide 27) is the same as that of the mirror MR in the multi-angle colorimeter 100. That is, the optical fiber FB is driven by the drive unit 292 to switch the position and angle of the light incident part B17 of the optical fiber FB (switch the optical path on the upstream side of the second optical paths L21 to L26), and the first optical path
  • the light guided through one optical path (selected optical path) among L11 to L16 is guided to the entrance slit 31 of the spectroscopic unit 30.
  • the downstream optical paths in the second optical paths L21 to L26 are the same even when any of the plurality of first optical paths L11 to L16 is selected as the selected optical path.
  • the optical fiber FB having a large core diameter on the incident side as compared with the exit numerical apertures of the optical fibers 21 to 26 of the first light guide unit 20 (FIG. 19). ) Can be used.
  • an optical fiber having a low correlation between the incident position and incident angle of the incident light IL and the outgoing position and angle of the emitted light RL that is, an optical fiber having high mixing properties
  • the optical fiber FB Even if a deviation occurs, the influence of the deviation hardly occurs when the outgoing light RL enters the spectroscopic unit 30.
  • the improvement of the mixing property of the optical fiber FB can be realized by an aspect in which the light guide distance of the optical fiber FB is increased in addition to an aspect in which components having high mixing properties are used for fiber formation.
  • the second light guide 27 can receive the light r21 to r26 guided through the first optical paths L11 to L16 at the one point, and the light r21 to r26. Can be emitted in the same direction, the above conditions 1 and 2 can be satisfied.
  • the multi-angle colorimeters 100 and 100A of the first and second embodiments belong to this type. That is, as a typical example of this type, a plurality of optical fibers 21 to 21 are arranged in a radial plane centered at one point (point PT in the above embodiment) or in a plane corresponding to a side surface of a cone having one point as a vertex. 26 (the downstream side of the first optical paths L11 to L16) is directed to the one point, and the optical element (mirror MR, etc.) of the second light guide unit 27 is rotated around one axis by the selection unit 29. Thus, there is a multi-angle colorimeter in which the light r21 to r26 received at the one point is emitted in the same direction (direction in which the spectroscopic unit 30 is arranged).
  • the second light guide 27 can receive the parallel lights r21 to r26 guided through the first optical paths L11 to L16, and the parallel lights r21 to r26. If it is possible to emit light from the same position while maintaining the directional relationship (parallel), the above condition 1 and condition 2 can be satisfied.
  • the multi-angle colorimeters 100B and 100C of the third and fourth embodiments belong to this type. That is, as a typical example of this type, the downstream sides of the plurality of optical fibers 21 to 26 (downstream sides of the first optical paths L11 to L16) are arranged in parallel, and the optical element of the second light guide unit 27 is selected by the selection unit 29. (Mirror MR, prism PR, etc.) are displaced along one axis or rotated around one axis, so that the light r21 to r26 is directed from the same position of the second light guide 27 in the same direction (toward the spectroscopic unit 30). E) An emitted multi-angle colorimeter.
  • ⁇ 3.3 Mixing type multi-angle colorimeter> In the mixing-type multi-angle colorimeter, a light guide having high optical mixing property is used as the second light guide 27, so that the incident positions and incident angles of the lights r21 to r26 to the second light guide 27 are determined. The emission position and the emission angle from the second light guide unit 27 do not depend on (or the dependency ratio is sufficiently small).
  • the multi-angle colorimeter 100D of the fifth embodiment belongs to this type. That is, as a typical example of this type, the upstream optical path is the downstream side of the selected optical path while the downstream optical path of the optical element (such as the optical fiber FB) of the second light guide unit 27 is kept constant. By being switched by the selection unit 29 so as to be optically connected to the optical path, the light guided through the selected optical path is mixed by the second light guide unit 27 and emitted in the same direction (toward the spectroscopic unit 30). Multi-angle colorimeter.
  • the selection unit 29 has a drive mechanism (one-axis rotation mechanism, one-axis displacement mechanism, etc.) for one degree of freedom. If it is possible, it is enough. Note that the present invention can be implemented even if these conditions are not satisfied. In this case, a necessary optical path is selected by combination driving with two or more degrees of freedom such as a combination of displacement and rotation.
  • FIG. 20 is a functional block diagram of the multi-angle colorimeter 100, 100A to 100D of each of the above embodiments
  • FIG. 21 is a functional block diagram of a multi-angle colorimeter 100E as a modification.
  • 20 shows a state in which the light r21 is guided to the single spectroscopic unit 30 in the multi-angle colorimeters 100, 100A to 100D.
  • the light r21 in the multi-angle colorimeter 100E is a spectroscopic unit 30A.
  • the light r24 is guided to the spectroscopic unit 30B.
  • the mode in which all of the lights r21 to r26 are guided to the single spectroscopic unit 30 has been described.
  • the embodiment is not limited to this.
  • a plurality of spectroscopic units 30A and 30B may be provided, and the light r21 to r26 may be guided to any of the spectroscopic units.
  • the above-described spectral colorimetry operation is performed in parallel on the light beams r21 to r23 guided to the spectroscopic unit 30A and the light beams r24 to r26 guided to the spectroscopic unit 30B. Therefore, the time required for the color measurement can be shortened.
  • the multi-angle colorimeter 100, 100A to 100D of the above embodiment since the spectral colorimetry is performed by the single spectroscopic unit 30, a plurality of spectroscopic units 30A, 30B are used like the multi-angle colorimeter 100E. Compared with the configuration in which the apparatus is provided, the manufacturing cost can be reduced and the apparatus can be downsized. In addition, it is not necessary to consider measurement errors due to individual differences between the spectroscopic units 30.
  • the present invention is not limited to this. That is, the first light guide unit 20 only needs to be configured to be able to guide the second light r2 through the plurality of first optical paths corresponding to the light reception angles, and is in positions corresponding to the plurality of light reception angles.
  • Various known optical elements such as a configuration in which a mirror is arranged can be substituted.
  • the configuration in which the shutters T1 to T6 are provided around the exit ports B21 to B26 of the optical fibers 21 to 26 has been described. It may be provided.
  • the opening / closing control of the shutters T1 to T6 and the rotation control of the mirror MR are mechanically integrated. It may be broken.
  • a rhombus prism PR (FIGS. 16 to 18) having reflection surfaces RS2 and RS3 that cause internal reflection on two opposing surfaces is used as the second light guide unit 27.
  • the two reflecting surfaces RS2 and RS3 need only be opposed to each other while maintaining a certain angular relationship during rotation, and need not necessarily be in a parallel relationship.
  • the same effect can be obtained by using two mirrors that are formed to face each other while maintaining the angular relationship between the reflecting surfaces instead of the prism PR.
  • the multi-angle colorimeters 100 and 100A to 100D of the above-described embodiments have been described as configuration examples that satisfy the conditions 1 and 2. However, as long as the conditions 1 and 2 are satisfied, the optical fibers 21 to 26 are used. Change in the incident ports B11 to B16 (change of the light receiving angle of the measurement light), change of the arrangement of the optical fibers 21 to 26 at the exit ports B21 to B26, change of the number of light guide paths of the first light guide unit 20, etc. You may change the design.
  • the present invention can be freely combined with each embodiment, modified with any component in each embodiment, or omitted with any component in each embodiment.

Abstract

A selection unit drives a second light guiding section and variably selects a selected optical path. More specifically, the selection unit switches an upstream optical path in a second optical path so that a downstream optical path in the selected optical path and the upstream optical path in the second optical path are optically connected, and a single optical path is selected from among a plurality of first optical paths as the selected optical path. Thus, light obtained at a plurality of light reception angles can be guided to a single spectroscopy unit without the use of a fiber bundle. As a result, it is possible to make a colorimeter more compact and inexpensive, eliminate the drawback of fiber bundles of high loss of light during light guiding, and achieve colorimetry having a high signal-to-noise ratio.

Description

マルチアングル測色計Multi-angle colorimeter
 本発明は、試料から出射される光を多角度で受光し分光測色するマルチアングル測色計に関するものである。 The present invention relates to a multi-angle colorimeter that receives light emitted from a sample at multiple angles and performs spectral colorimetry.
 自動車の塗装などに用いられるメタリック塗装やパールカラー塗装などは、内部の光輝材の影響で観察者の方向によって色彩が異なるように見えることがあるため、その塗装評価(塗装色の評価)には複数角度で照明もしくは受光をおこなうマルチアングル測色計が用いられる。 Metallic paint and pearl color paint used for automobile paintings, etc. may appear to vary in color depending on the direction of the observer due to the effect of the internal glittering material, so the paint evaluation (evaluation of paint color) A multi-angle colorimeter that illuminates or receives light at multiple angles is used.
 マルチアングル測色計では、試料から出射された光を分光ユニットまで導光し、分光ユニットにおいて当該光のスペクトルを測定するのが一般的であるが、回折格子やリニア可変フィルタ等の分光素子は高価であり一定の大きさを有する。このため、試料に対して複数角度で受光をおこなうマルチアングル測色計において、受光角度毎にそれぞれ分光ユニットを設けることは製造コストの増加や装置の大型化の原因となっていた。 In a multi-angle colorimeter, light emitted from a sample is generally guided to a spectroscopic unit, and the spectrum of the light is measured in the spectroscopic unit. However, spectroscopic elements such as a diffraction grating and a linear variable filter are not used. It is expensive and has a certain size. For this reason, in a multi-angle colorimeter that receives light at a plurality of angles with respect to a sample, providing a spectroscopic unit for each light reception angle causes an increase in manufacturing cost and an increase in size of the apparatus.
 この課題を解決するため、特許文献1に開示されるマルチアングル測色計では、測色対象となる試料表面での反射光を分光ユニットに導くための構成として、試料側(光の進行における上流側)に2つの開口部を有し分光ユニット側(光の進行における下流側)に1つの開口を有する二股のバンドルファイバが利用されている。また、特許文献2においても、別個の導光部材によって導かれる複数の測定光を1つの分光ユニットに導くための構成としてバンドルファイバが利用されている。 In order to solve this problem, in the multi-angle colorimeter disclosed in Patent Document 1, as a configuration for guiding the reflected light on the surface of the sample to be colorimetric to the spectroscopic unit, the sample side (upstream in the progress of light) A bifurcated bundle fiber having two openings on the side) and one opening on the spectroscopic unit side (downstream side in the travel of light) is used. Also in Patent Document 2, a bundle fiber is used as a configuration for guiding a plurality of measurement lights guided by separate light guide members to one spectroscopic unit.
国際公開第2012/147488号International Publication No. 2012/147488 特開2011-64676号公報JP 2011-64676 A
 しかしながら、バンドルファイバには、ファイバ端面の全面積に対するコア部の有効面積が小さく光量のロスが大きいという欠点があり、測色計にバンドルファイバを用いると測定の信号雑音比(以下、「SN比」とよぶ)が低下するという問題があった。また、バンドルファイバは他の導光部材に比べて高価であり、これを用いると測色計の製造コストが増加するという問題があった。 However, the bundle fiber has a drawback that the effective area of the core portion is small with respect to the total area of the fiber end face and the loss of the light amount is large. There was a problem that it was reduced. In addition, the bundle fiber is more expensive than other light guide members, and there is a problem that the manufacturing cost of the colorimeter increases when this is used.
 本発明は、このような事情に鑑みてなされたものであり、製造コストの増加およびSN比の低下を抑制しつつ、試料に対して複数角度で受光をおこなうマルチアングル測色計を提供することを目的とする。 The present invention has been made in view of such circumstances, and provides a multi-angle colorimeter that receives light at a plurality of angles with respect to a sample while suppressing an increase in manufacturing cost and a decrease in SN ratio. With the goal.
 上記課題を解決するため、本発明の第1の態様にかかる発明は、(a)試料に照射光を照射する照射部と、(b)前記照射光の照射に応答して前記試料の表面から出射する測定光を、前記表面に対して互いに異なる複数の角度で受光し、当該複数の角度に対応した複数の第1光路を通じて前記測定光を導光する第1導光部と、(c)前記複数の第1光路のうちの1の光路である被選択光路を通じて導かれた前記測定光を受光し、第2光路を通じて導く第2導光部と、(d)前記第2導光部を駆動して前記被選択光路を可変に選択する選択部と、(e)前記第2光路を通じて導かれた前記測定光を受光して分光する分光部と、を備え、前記選択部は、前記被選択光路における下流側の光路と前記第2光路における上流側の光路とが光学的に接続するように、前記第2光路の上流側の光路を切り替えて、前記被選択光路の選択を行い、前記第2光路における下流側の光路は、前記複数の第1光路のいずれが前記被選択光路として選択された場合においても同一とされており、前記複数の第1光路について前記被選択光路を切り替えることにより、前記複数の角度に対応した複数の前記測定光について分光結果を用いた測色を行うマルチアングル測色計である。 In order to solve the above-mentioned problem, the invention according to the first aspect of the present invention includes: (a) an irradiation unit that irradiates a sample with irradiation light; and (b) a surface of the sample in response to irradiation with the irradiation light. (C) a first light guide unit that receives emitted measurement light at a plurality of different angles with respect to the surface and guides the measurement light through a plurality of first optical paths corresponding to the plurality of angles; A second light guide that receives the measurement light guided through the selected optical path, which is one of the plurality of first optical paths, and guides the measurement light through the second optical path; and (d) the second light guide. A selection unit that drives and variably selects the selected optical path; and (e) a spectroscopic unit that receives and separates the measurement light guided through the second optical path, and the selection unit includes the selected optical path. In order for the downstream optical path in the selection optical path and the upstream optical path in the second optical path to be optically connected, The optical path on the upstream side of the second optical path is switched to select the selected optical path, and any one of the plurality of first optical paths is selected as the selected optical path as the downstream optical path in the second optical path. This is also the same, and by switching the selected optical path for the plurality of first optical paths, multi-angle measurement that performs colorimetry using spectral results for the plurality of measurement lights corresponding to the plurality of angles. It is a color meter.
 本発明の第2の態様にかかる発明は、本発明の第1の態様にかかるマルチアングル測色計であって、前記第2導光部は、前記被選択光路から入射される光を反射する反射面を有する光学素子を有し、前記選択部は、前記光学素子を1軸周りに回動させる駆動部を有し、前記駆動部によって回動される前記光学素子の回動停止位置に応じて、前記第2光路における上流側の光路が選択的に切り替えられ、前記複数の第1光路の中から前記被選択光路が選択される。 The invention according to a second aspect of the present invention is the multi-angle colorimeter according to the first aspect of the present invention, wherein the second light guide part reflects light incident from the selected optical path. An optical element having a reflective surface, and the selection unit has a drive unit that rotates the optical element about one axis, and is in accordance with a rotation stop position of the optical element rotated by the drive unit. Thus, the upstream optical path in the second optical path is selectively switched, and the selected optical path is selected from the plurality of first optical paths.
 本発明の第3の態様にかかる発明は、本発明の第2の態様にかかるマルチアングル測色計であって、前記光学素子は、前記被選択光路から入射される光を反射する第1の反射面と、前記第1の反射面と対向して形成され、前記第1の反射面より出射される反射光を反射する第2の反射面とを有し、前記第1および第2の反射面は、共通の前記駆動部によって1軸周りに回動される。 The invention according to a third aspect of the present invention is the multi-angle colorimeter according to the second aspect of the present invention, wherein the optical element reflects the light incident from the selected optical path. A reflective surface; and a second reflective surface that is formed to face the first reflective surface and reflects the reflected light emitted from the first reflective surface. The surface is rotated around one axis by the common drive unit.
 本発明の第4の態様にかかる発明は、本発明の第3の態様にかかるマルチアングル測色計であって、前記第1および第2の反射面は、前記光学素子において互いに角度関係を維持した状態で固定形成されており、前記回動において、前記第1および第2の反射面は前記1軸に垂直な平面に対して一定の角度に維持されている。 The invention according to a fourth aspect of the present invention is the multi-angle colorimeter according to the third aspect of the present invention, wherein the first and second reflecting surfaces maintain an angular relationship with each other in the optical element. In the state of rotation, the first and second reflecting surfaces are maintained at a constant angle with respect to a plane perpendicular to the one axis.
 本発明の第5の態様にかかる発明は、本発明の第1の態様にかかるマルチアングル測色計であって、前記第2導光部は、前記被選択光路から入射される光を反射する反射面を有する光学素子を有し、前記選択部は、前記光学素子を直線状の双方向に変位させる駆動部を有し、前記駆動部によって変位される前記光学素子の駆動停止位置に応じて、前記第2光路における上流側の光路が選択的に切り替えられ、前記複数の第1光路の中から前記被選択光路が選択される。 The invention according to a fifth aspect of the present invention is the multi-angle colorimeter according to the first aspect of the present invention, wherein the second light guide part reflects light incident from the selected optical path. An optical element having a reflecting surface, and the selection unit includes a drive unit that displaces the optical element in a linear bidirectional manner, and is in accordance with a drive stop position of the optical element displaced by the drive unit. The upstream optical path in the second optical path is selectively switched, and the selected optical path is selected from the plurality of first optical paths.
 本発明の第6の態様にかかる発明は、本発明の第5の態様にかかるマルチアングル測色計であって、前記反射面は、前記光学素子の前記直線状の変位の方向に対して一定の角度に維持されている。 The invention according to a sixth aspect of the present invention is the multi-angle colorimeter according to the fifth aspect of the present invention, wherein the reflecting surface is constant with respect to the direction of the linear displacement of the optical element. Is maintained at an angle of
 本発明の第7の態様にかかる発明は、本発明の第1の態様にかかるマルチアングル測色計であって、前記第2導光部は、光ファイバを有し、前記選択部は、前記光ファイバの上流側の開口である入光部の位置又は角度を変位させる駆動部を有し、前記駆動部によって変位される前記入光部の位置又は角度に応じて、前記第2光路における上流側の光路が選択的に切り替えられ、前記複数の第1光路の中から前記被選択光路が選択される。 The invention according to a seventh aspect of the present invention is the multi-angle colorimeter according to the first aspect of the present invention, wherein the second light guide portion includes an optical fiber, and the selection portion is the A drive unit that displaces the position or angle of the light incident part that is an opening on the upstream side of the optical fiber, and the upstream of the second optical path according to the position or angle of the light incident part displaced by the drive part The optical path on the side is selectively switched, and the selected optical path is selected from the plurality of first optical paths.
 本発明の第8の態様にかかる発明は、本発明の第1の態様ないし第7の態様のいずれかにかかるマルチアングル測色計であって、前記複数の第1光路を通じて導かれる前記測定光の全てが、単一の前記分光部によって分光測色される。 The invention according to an eighth aspect of the present invention is the multi-angle colorimeter according to any one of the first to seventh aspects of the present invention, wherein the measurement light is guided through the plurality of first optical paths. Are spectrally measured by a single spectroscopic unit.
 本発明の第1の態様ないし第8の態様にかかるマルチアングル測色計では、複数の第1光路について被選択光路を切り替えることにより、測定点に対してそれぞれ異なる角度で得られた光を分光部に導き、分光測色を行う。このため、受光角度毎にそれぞれ分光部を設ける構成のマルチアングル測色計に比べ、複数の分光部間の個体差に起因する測定誤差が低減される、分光部の数を減らすことにより製造コストが低下する、装置をコンパクト化できる等の利点がある。 In the multi-angle colorimeter according to the first aspect to the eighth aspect of the present invention, the light obtained at different angles with respect to the measurement point is spectroscopically switched by switching the selected optical path for the plurality of first optical paths. Lead to color measurement. Therefore, compared to a multi-angle colorimeter with a configuration in which a spectroscopic unit is provided for each light receiving angle, measurement errors due to individual differences among a plurality of spectroscopic units are reduced. There is an advantage that the apparatus is reduced and the apparatus can be made compact.
 また、本発明の第1の態様ないし第8の態様にかかるマルチアングル測色計では、選択部が第2導光部を駆動することによって被選択光路が選択される。具体的には、被選択光路における下流側の光路と第2光路における上流側の光路とが光学的に接続するように、選択部によって第2光路の上流側の光路が切り替えられ、複数の第1光路の中から一の光路が被選択光路として選択される。このため、バンドルファイバを利用することなく、複数の受光角度で得られた光を一の分光部に導くことができる。したがって、バンドルファイバの欠点であった導光における光量ロスが多いという点が解消され、高いSN比での測色を実現できる。さらに、バンドルファイバを利用する場合に比べ、安価にマルチアングル測色計を製造可能となる。 In the multi-angle colorimeter according to the first to eighth aspects of the present invention, the selection optical path is selected by the selection unit driving the second light guide unit. Specifically, the optical path on the upstream side of the second optical path is switched by the selection unit so that the downstream optical path in the selected optical path and the upstream optical path in the second optical path are optically connected, and a plurality of first optical paths are switched. One optical path is selected as the selected optical path from one optical path. For this reason, it is possible to guide light obtained at a plurality of light receiving angles to one spectroscopic unit without using a bundle fiber. Therefore, the point that there is a large amount of light loss in the light guide, which was a defect of the bundle fiber, is solved, and color measurement with a high SN ratio can be realized. Furthermore, a multi-angle colorimeter can be manufactured at a lower cost than when a bundle fiber is used.
 また、本発明の第1の態様ないし第8の態様にかかるマルチアングル測色計では、異なる第1光路が被選択光路として選択された場合であっても、第2光路における下流側の光路が同一とされている。その結果、第2光路を通じて導かれる光は、同一の位置および角度で分光部に入射される。したがって、導光される光路ごとに分光部へ入射される光の位置および角度が異なる構成のマルチアングル測色計に比べ、分光部での受光位置および受光角度の非同一性に起因する測定誤差が低減されるという利点がある。 In the multi-angle colorimeter according to the first to eighth aspects of the present invention, even if a different first optical path is selected as the selected optical path, the downstream optical path in the second optical path is Identical. As a result, the light guided through the second optical path is incident on the spectroscopic unit at the same position and angle. Therefore, compared to a multi-angle colorimeter with a configuration in which the position and angle of light incident on the spectroscopic unit are different for each guided light path, the measurement error due to the non-identity of the light receiving position and the light receiving angle at the spectroscopic unit There is an advantage that is reduced.
第1実施形態に係るマルチアングル測色計の外観を示す斜視図である。It is a perspective view which shows the external appearance of the multi-angle colorimeter which concerns on 1st Embodiment. 第1実施形態において、測定器本体と被測定物の測定面との位置関係を説明する模式図である。In 1st Embodiment, it is a schematic diagram explaining the positional relationship of a measuring device main body and the measurement surface of a to-be-measured object. 第1実施形態に係るマルチアングル測色計100の機能的な構成例を示す図である。It is a figure which shows the functional structural example of the multi-angle colorimeter 100 which concerns on 1st Embodiment. 第1実施形態において、第2導光部27周辺の光学系の位置関係を示す図である。In 1st Embodiment, it is a figure which shows the positional relationship of the optical system of the 2nd light guide part 27 periphery. 第1実施形態において、被選択光路を切り替える様子を示す模式図である。It is a schematic diagram which shows a mode that a to-be-selected optical path is switched in 1st Embodiment. 第1実施形態において、被選択光路を切り替える様子を示す模式図である。It is a schematic diagram which shows a mode that a to-be-selected optical path is switched in 1st Embodiment. 第1実施形態において、被選択光路を切り替える様子を示す模式図である。It is a schematic diagram which shows a mode that a to-be-selected optical path is switched in 1st Embodiment. 第1実施形態において、被選択光路を切り替える様子を示す模式図である。It is a schematic diagram which shows a mode that a to-be-selected optical path is switched in 1st Embodiment. 第1実施形態に係るマルチアングル測色計100の動作フローを示す図である。It is a figure which shows the operation | movement flow of the multi-angle colorimeter 100 which concerns on 1st Embodiment. 第2実施形態において、第2導光部27周辺の光学系の位置関係を示す図である。In 2nd Embodiment, it is a figure which shows the positional relationship of the optical system of the 2nd light guide part 27 periphery. 第3実施形態において、第2導光部27周辺の光学系の位置関係を示す図である。In 3rd Embodiment, it is a figure which shows the positional relationship of the optical system of the 2nd light guide part 27 periphery. 第1実施形態において、ミラーMRの駆動停止位置と測定光の光路との関係を示した図である。In 1st Embodiment, it is the figure which showed the relationship between the drive stop position of the mirror MR, and the optical path of measurement light. 第1実施形態において、ミラーMRの駆動停止位置と測定光の光路との関係を示した図である。In 1st Embodiment, it is the figure which showed the relationship between the drive stop position of the mirror MR, and the optical path of measurement light. 第3実施形態において、ミラーMRの駆動停止位置と測定光の光路との関係を示した図である。In 3rd Embodiment, it is the figure which showed the relationship between the drive stop position of the mirror MR, and the optical path of measurement light. 第3実施形態において、ミラーMRの駆動停止位置と測定光の光路との関係を示した図である。In 3rd Embodiment, it is the figure which showed the relationship between the drive stop position of the mirror MR, and the optical path of measurement light. 第4実施形態において、第2導光部27周辺の光学系の位置関係を示す図である。In 4th Embodiment, it is a figure which shows the positional relationship of the optical system of the 2nd light guide part 27 periphery. 第4実施形態において、プリズムPRの回動停止位置と測定光の光路との関係を示した図である。In 4th Embodiment, it is the figure which showed the relationship between the rotation stop position of the prism PR, and the optical path of measurement light. 第4実施形態において、プリズムPRの回動停止位置と測定光の光路との関係を示した図である。In 4th Embodiment, it is the figure which showed the relationship between the rotation stop position of the prism PR, and the optical path of measurement light. 第5実施形態において、第2導光部27周辺の光学系の位置関係を示す図である。In 5th Embodiment, it is a figure which shows the positional relationship of the optical system of the 2nd light guide part 27 periphery. 各実施形態における、マルチアングル測色計の機能ブロック図である。It is a functional block diagram of a multi-angle colorimeter in each embodiment. 変形例における、マルチアングル測色計の機能ブロック図である。It is a functional block diagram of a multi-angle colorimeter in a modification.
 <1 第1実施形態>
 <1.1 外観と使用態様>
 図1は、第1実施形態に係るマルチアングル測色計100の外観を示す斜視図である。図2は、測定器本体と被測定物の測定面との位置関係を説明する模式図である。
<1 First Embodiment>
<1.1 Appearance and usage>
FIG. 1 is a perspective view showing an appearance of a multi-angle colorimeter 100 according to the first embodiment. FIG. 2 is a schematic diagram for explaining the positional relationship between the measuring instrument main body and the measurement surface of the object to be measured.
 図1に示すように、このマルチアングル測色計100は、後述する各構成要素(図3参照)が収容された箱形状の測定器本体2からなる。この測定器本体2は、底壁に穿設された測定用開口3と、表面適所に配設され、測定結果を示すディスプレイや操作スイッチなどを備えた操作表示パネル4とを備え、持ち運び可能なポータブル測色計を構成している。 As shown in FIG. 1, the multi-angle colorimeter 100 is composed of a box-shaped measuring instrument body 2 in which constituent elements (see FIG. 3) described later are accommodated. The measuring instrument main body 2 includes a measurement opening 3 drilled in the bottom wall and an operation display panel 4 which is disposed at a suitable surface and includes a display showing the measurement results, an operation switch, and the like, and is portable. Configures a portable colorimeter.
 図2は同マルチアングル測色計の測定器本体の中心軸と測定試料の測定面との角度を説明する模式図である。図2に示すように、マルチアングル測色計100による測定は測定用開口3を被測定物5(試料)に向けて行われ、測定用開口3に対向する被測定物5の表面が測定面5aとなる。 FIG. 2 is a schematic diagram for explaining the angle between the central axis of the measuring instrument main body of the multi-angle colorimeter and the measurement surface of the measurement sample. As shown in FIG. 2, the measurement by the multi-angle colorimeter 100 is performed with the measurement opening 3 facing the measurement object 5 (sample), and the surface of the measurement object 5 facing the measurement opening 3 is the measurement surface. 5a.
 そして、測定器本体2の中心軸2n(測定用開口3の法線)と測定面5aの法線5nとが一致するように測定器本体2が被測定物5に当接された状態で、マルチアングル測色計100の測定動作が行われる。 Then, in a state where the measuring instrument body 2 is in contact with the object to be measured 5 so that the central axis 2n of the measuring instrument body 2 (normal line of the measurement opening 3) and the normal line 5n of the measuring surface 5a coincide with each other, The measurement operation of the multi-angle colorimeter 100 is performed.
 <1.2 マルチアングル測色計100の構成>
 図3は、この発明の第1実施形態に係る一方向照明多方向受光タイプのマルチアングル測色計100の基本的な機能構成を示す図である。以下、図3を参照しながら、マルチアングル測色計100が有する構成および機能を説明する。また、図3以降の各図において、必要に応じて、各部の配置関係を明確にする目的で右手系のXYZ座標を付す。
<1.2 Configuration of Multi-angle Colorimeter 100>
FIG. 3 is a diagram showing a basic functional configuration of the unidirectional illumination multidirectional light receiving type multi-angle colorimeter 100 according to the first embodiment of the present invention. Hereinafter, the configuration and functions of the multi-angle colorimeter 100 will be described with reference to FIG. Further, in each of the drawings after FIG. 3, right-handed XYZ coordinates are attached as necessary for the purpose of clarifying the arrangement relationship of each part.
 マルチアングル測色計100は、大略的に、被測定物5上の所定の測定点Pに光を照射し、当該測定点Pからの反射光をスペクトル分解して電気的な信号に変換する光検出部40と、マルチアングル測色計100の各部を制御するとともに光検出部40によって取得される上記反射光についての信号を処理する制御部70とを備える。 The multi-angle colorimeter 100 generally irradiates a predetermined measurement point P on the object to be measured 5 with light, and spectrally decomposes the reflected light from the measurement point P to convert it into an electrical signal. A detection unit 40 and a control unit 70 that controls each unit of the multi-angle colorimeter 100 and processes a signal about the reflected light acquired by the light detection unit 40 are provided.
 <1.2.1 光検出部40>
 図3に示すように、光検出部40は、被測定物5上の所定の測定点Pに第1の光r1(照射光)を照射する照射部10と、第1の光r1の照射に応答して前記試料の測定面5aから出射する第2の光r2(測定光)をその測定面5aに対して互いに異なる複数の角度で受光し、当該複数の角度に対応した複数の第1光路を通じて第2の光r2を導光する第1導光部20と、複数の第1光路のうちの1の光路である被選択光路を通じて導かれた第2の光r2を第2光路を通じて導く第2導光部27と、第2導光部27を駆動して被選択光路を可変に選択する選択部29と、第2光路を通じて導かれた第2の光r2を受光して分光する分光部30とを備える。
<1.2.1 Photodetector 40>
As shown in FIG. 3, the light detection unit 40 irradiates a predetermined measurement point P on the object to be measured 5 with the first light r1 (irradiation light) and the first light r1. In response, the second light r2 (measurement light) emitted from the measurement surface 5a of the sample is received at a plurality of different angles with respect to the measurement surface 5a, and a plurality of first optical paths corresponding to the plurality of angles. A first light guide 20 for guiding the second light r2 through the second light r2 guided through the second optical path and the second light r2 guided through the selected optical path which is one of the plurality of first optical paths. 2 light guide section 27, selection section 29 that drives second light guide section 27 to variably select the selected optical path, and spectroscopic section that receives and splits second light r2 guided through the second optical path 30.
 以下、光検出部40の各部について詳細に説明する。なお、本明細書中においては、照射部10から第1の光r1が出射されて分光部30に入射されるまでの光の進行において、照射部10側を「上流側」、分光部30側を「下流側」と表現する。 Hereinafter, each part of the light detection unit 40 will be described in detail. In the present specification, the irradiation unit 10 side is referred to as “upstream side” and the spectroscopy unit 30 side in the progression of light from the irradiation unit 10 until the first light r1 is emitted and incident on the spectroscopy unit 30. Is expressed as “downstream”.
 照射部10は、例えば、キセノンフラッシュランプからなる光源と、光源からの光線を規制する規制板と、コリメートレンズとから構成される(いずれも図示せず)。この光源を発光させる発光回路11は、照射部10の近傍に設けられている。 The irradiation unit 10 includes, for example, a light source composed of a xenon flash lamp, a restriction plate that restricts light from the light source, and a collimator lens (none of which are shown). The light emitting circuit 11 that emits light from the light source is provided in the vicinity of the irradiation unit 10.
 発光回路11は、例えば、数百Vの直流高電圧を光源の電極に印加するためのメインコンデンサ、このメインコンデンサを充電するための充電回路、光源に密着して巻かれた金属ワイヤからなるトリガ電極に数万Vの交流高電圧を印加するためのトリガ発生回路、例えばIGBTからなる半導体スイッチ素子、およびこの半導体スイッチ素子に駆動電圧を印加するための駆動回路を有してなる。 The light emitting circuit 11 is, for example, a main capacitor for applying a DC high voltage of several hundred volts to the electrode of the light source, a charging circuit for charging the main capacitor, and a trigger composed of a metal wire wound in close contact with the light source. A trigger generation circuit for applying an alternating high voltage of tens of thousands of volts to the electrode, for example, a semiconductor switch element made of IGBT, and a drive circuit for applying a drive voltage to the semiconductor switch element are provided.
 図4は、マルチアングル測色計100における、第2導光部27(ミラーMR)と、第1導光部20の下流側(光ファイバ21~26の出射口B21~B26側)と、分光部30との位置関係を示す模式図である。 FIG. 4 shows the second light guide unit 27 (mirror MR), the downstream side of the first light guide unit 20 (the emission ports B21 to B26 side of the optical fibers 21 to 26), and the spectrum in the multi-angle colorimeter 100. 4 is a schematic diagram showing a positional relationship with a unit 30. FIG.
 第1導光部20は、複数の光ファイバ21~26(本実施形態では6本)を有する。光ファイバ21~26は、その一端に入射口B11~B16を有し、他端に出射口B21~B26を有する単芯の光ファイバである。 The first light guide 20 has a plurality of optical fibers 21 to 26 (six in this embodiment). The optical fibers 21 to 26 are single-core optical fibers having incident ports B11 to B16 at one end and emitting ports B21 to B26 at the other end.
 各光ファイバ21~26について、その入射口B11~B16は被測定物5の測定点Pから出射する第2の光r2を当該表面に対して互いに異なる角度で受光する位置に配され(図3)、その出射口B21~B26は選択部29によって動作される第2導光部27(ミラーMR)と光学的に対向する位置に配される(図4)。以下の説明においては、第2の光r2のうち光ファイバ21~26によって導光される光を、それぞれ光r21~r26と呼ぶ。 In each of the optical fibers 21 to 26, the entrances B11 to B16 are arranged at positions where the second light r2 emitted from the measurement point P of the object to be measured 5 is received at different angles with respect to the surface (FIG. 3). ), And the emission ports B21 to B26 are arranged at positions optically opposed to the second light guide unit 27 (mirror MR) operated by the selection unit 29 (FIG. 4). In the following description, the light guided by the optical fibers 21 to 26 in the second light r2 is referred to as light r21 to r26, respectively.
 被測定物5の測定点Pと入射口B11~B16との間には、測定点Pから出射される第2の光r2を集束する受光窓(典型的には、しぼりと凸レンズによって構成される)が配され、この受光窓の結像位置に入射口B11~B16が設けられる。このため、測定点Pから射出される光r21~r26を光ファイバ21~26を通じて出射口B21~B26まで導光することができる。 Between the measurement point P of the object to be measured 5 and the entrances B11 to B16, a light receiving window for focusing the second light r2 emitted from the measurement point P (typically constituted by an aperture and a convex lens). ), And entrances B11 to B16 are provided at the image forming positions of the light receiving windows. Therefore, the light r21 to r26 emitted from the measurement point P can be guided to the emission ports B21 to B26 through the optical fibers 21 to 26.
 第2導光部27は、光ファイバ21~26の出射口B21~B26より出射される光r21~r26のうち1の光(被選択光路を導かれた光)を受光し、当該光を分光部30の入射スリット31に導く光学系であり、ミラーMR(図4~図8、図10~図15)、プリズムPR(図16~図18)、光ファイバFB(図19)など公知の種々の光学素子を利用することができる。以下では、まず本実施形態において第2導光部27としてミラーMRを利用する態様について説明し、後述する第4実施形態においてプリズムPRを利用する態様(図16~図18)を、第5実施形態においてファイバを利用する態様(図19)を説明する。 The second light guide unit 27 receives one light (light guided through the selected optical path) of the light r21 to r26 emitted from the emission ports B21 to B26 of the optical fibers 21 to 26, and splits the light. This is an optical system that guides to the entrance slit 31 of the unit 30, and includes various known mirrors such as a mirror MR (FIGS. 4 to 8, 10 to 15), a prism PR (FIGS. 16 to 18), and an optical fiber FB (FIG. 19). These optical elements can be used. In the following, first, a mode in which the mirror MR is used as the second light guide unit 27 in the present embodiment will be described, and modes (FIGS. 16 to 18) in which the prism PR is used in the fourth embodiment to be described later will be described in the fifth embodiment. An embodiment (FIG. 19) using a fiber in the form will be described.
 選択部29は、第1導光部20の複数の第1光路(光ファイバ21~26に対応する各光路)のうちの1の光路である被選択光路を可変に選択する部分である。 The selection unit 29 is a part that variably selects a selected optical path that is one of the plurality of first optical paths (each optical path corresponding to the optical fibers 21 to 26) of the first light guide unit 20.
 選択部29の一例として、ミラーMRを回動可能に支持する支持軸291と、支持軸291をY軸周りに回動させる駆動部292(典型的にはモータ)とを有し、第2導光部27のミラーMRをY軸周り(1軸周り)に回動させる構成を採用する場合について説明する(図4)。この場合、駆動部292によって回動されるミラーMR(光学素子)の回動停止位置に応じて、被選択光路が選択される。 As an example of the selection unit 29, the selection unit 29 includes a support shaft 291 that rotatably supports the mirror MR, and a drive unit 292 (typically a motor) that rotates the support shaft 291 around the Y axis. A case will be described in which a configuration in which the mirror MR of the optical unit 27 is rotated about the Y axis (about one axis) is employed (FIG. 4). In this case, the selected optical path is selected according to the rotation stop position of the mirror MR (optical element) rotated by the drive unit 292.
 出射口B21~B26とミラーMRとの間には、機構的もしくは光学的なシャッタT1~T6が設けられる。また、シャッタT1~T6とミラーMRとの間およびミラーMRと分光部30との間には、各出射口B21~B26より出射された光r21~r26を分光部30に導くための光学素子28(典型的にはレンズ)が設けられている。 Between the exit ports B21 to B26 and the mirror MR, mechanical or optical shutters T1 to T6 are provided. Further, between the shutters T1 to T6 and the mirror MR and between the mirror MR and the spectroscopic unit 30, the optical element 28 for guiding the light r21 to r26 emitted from the respective exit ports B21 to B26 to the spectroscopic unit 30. (Typically a lens) is provided.
 このような構成となっているので、一のシャッタを開口している間、他のシャッタを閉口し、選択部29によってミラーMRを所定の角度回動することで、一の受光角度から得られる光のみ(図4においては光r24)をミラーMRに導光することが可能となる。そして、シャッタT1~T6の開閉およびミラーMRの回動を制御し、各入射口B11~B16から入射される光r21~r26のうちミラーMRに導光される一の光を時間順次に切り替えることで、分光部30における測定光の時分割受光が実現され、単一の分光部30で各受光角度に対応する光を受光する構成が可能になる。 With this configuration, while one shutter is open, the other shutter is closed, and the mirror MR is rotated by a predetermined angle by the selection unit 29, so that it can be obtained from one light receiving angle. Only light (light r24 in FIG. 4) can be guided to the mirror MR. Then, the opening and closing of the shutters T1 to T6 and the rotation of the mirror MR are controlled, and one of the lights r21 to r26 incident from the incident ports B11 to B16 is sequentially switched over time. Thus, the time division light reception of the measurement light in the spectroscopic unit 30 is realized, and a configuration in which the light corresponding to each light receiving angle is received by the single spectroscopic unit 30 becomes possible.
 このように、本実施形態のマルチアングル測色計100は単一の分光部30で複数角度の測定光を受光できる構成であるので、受光角度毎にそれぞれ分光部を設ける構成のマルチアングル測色計に比べ、複数の分光部間の個体差に起因する測定誤差が低減される、分光部の数を減らすことにより製造コストが低下する、測色計をコンパクト化できる等の利点がある。 As described above, since the multi-angle colorimeter 100 according to the present embodiment is configured to receive the measurement light at a plurality of angles by the single spectroscopic unit 30, the multi-angle colorimetry having a configuration in which the spectroscopic unit is provided for each light receiving angle. Compared to a meter, there are advantages such as a reduction in measurement error due to individual differences among a plurality of spectroscopic units, a reduction in manufacturing cost by reducing the number of spectroscopic units, and a compact colorimeter.
 ここで、本明細書中で用いる第2の光r2の光路である「第1光路」、「被選択光路」および「第2光路」の各語について、本実施形態の構成を例としてその意味を整理する。すなわち、
 (a) 第1光路;第1導光部20(本実施形態では、光ファイバ21~26ごと)に規定される光路で、光r21~r26が試料表面より出射されてから光ファイバ21~26の出射口B21~B26から出射されるまでの光路、
 (b) 被選択光路;選択部29によって選択される光路で、複数の第1光路のうち第2導光部27に向けて導かれる1の光路、
 (c) 第2光路;選択部29によって当該光路の下流側を切り替え可能な光路であり、被選択光路を導かれた光が出射口B21~B26から出射されてから入射スリット31に入射されるまでの光路、
という対応関係となる。
Here, the terms “first optical path”, “selected optical path”, and “second optical path”, which are the optical paths of the second light r2 used in this specification, mean the meaning of the configuration of this embodiment as an example. To organize. That is,
(a) First optical path; an optical path defined by the first light guide 20 (in the present embodiment, for each of the optical fibers 21 to 26). After the lights r21 to r26 are emitted from the sample surface, the optical fibers 21 to 26 are used. Optical paths from the exit ports B21 to B26
(b) optical path to be selected; one optical path guided by the selection unit 29 toward the second light guide unit 27 among the plurality of first optical paths;
(c) Second optical path; an optical path that can switch the downstream side of the optical path by the selector 29, and the light guided through the selected optical path is emitted from the exit ports B21 to B26 and then incident on the entrance slit 31. Optical path to,
It becomes the correspondence relationship.
 また、以下の説明では、光r21~r26に対応する第1光路を特に「第1光路L11~L16」、第2光路を特に「第2光路L21~L26」とよぶ場合がある。 In the following description, the first optical path corresponding to the light r21 to r26 may be particularly referred to as “first optical path L11 to L16”, and the second optical path may be particularly referred to as “second optical path L21 to L26”.
 図5~図8は、選択部29によって被選択光路の選択を行う様子を示す模式図であり、説明を簡単化するため6本の光ファイバ21~26のうち2本の光ファイバ21,26のみを図示している。また、図を簡略化する目的で、光r21,r26を光線として描いているが、実際には光束であっても構わない。 FIG. 5 to FIG. 8 are schematic diagrams showing how the selection unit 29 selects the selected optical path. To simplify the explanation, two optical fibers 21 and 26 out of the six optical fibers 21 to 26 are shown. Only shown. In addition, for the purpose of simplifying the drawing, the lights r21 and r26 are drawn as light rays, but in reality they may be light beams.
 なお、図5~図8においては、出射口B21,B26より出射される光r21,r26の光軸が同一のXZ平面内に存在し、ミラーMRはその反射面RS1がXZ平面に対して45度の傾きとなるよう支持軸291によってY軸周りに回動可能に支持されている。 5 to 8, the optical axes of the light beams r21 and r26 emitted from the emission ports B21 and B26 exist in the same XZ plane, and the mirror MR has a reflection surface RS1 of 45 relative to the XZ plane. The support shaft 291 is supported by the support shaft 291 so as to be rotatable around the Y axis.
 2本の光ファイバ21,26の出射口B21,B26より出射された光がミラーMRの反射面RS1に対して入射角45度で入射される際に、当該光の光軸とミラーMRの反射面RSとが交わる点を点PTと呼ぶ(図5~図8)。そして、2本の光ファイバ21,26において点PTが同一となるよう、ミラーMRと光ファイバ21,26との相対的な位置関係が調整されている。また、分光部30は、光ファイバ21,26を通じて導かれた光のミラーMRでの反射光がその入射スリット31に入射される位置に配される。なお、点PTは、反射面RS1のうち支持軸291の軸心線が通る点であり、ミラーMRの回動によって動かない点である。 When light emitted from the emission ports B21 and B26 of the two optical fibers 21 and 26 is incident on the reflection surface RS1 of the mirror MR at an incident angle of 45 degrees, the optical axis of the light and the reflection of the mirror MR A point where the surface RS intersects is called a point PT (FIGS. 5 to 8). The relative positional relationship between the mirror MR and the optical fibers 21 and 26 is adjusted so that the points PT are the same in the two optical fibers 21 and 26. Further, the spectroscopic unit 30 is disposed at a position where the reflected light from the mirror MR of the light guided through the optical fibers 21 and 26 enters the entrance slit 31. The point PT is a point through which the axial center line of the support shaft 291 passes in the reflecting surface RS1, and is a point that does not move due to the rotation of the mirror MR.
 以上のような配置関係となっているため、図5に示すように、シャッタT1が閉口し、シャッタT6が開口されており、ミラーMRの反射面RS1が光ファイバ26と対向するときには、光r21は第1光路L11を導かれた後シャッタT1によって遮られ、光r26は第1光路L16を導かれた後第2光路L26を導かれて入射スリット31へ入射される。このように、図5に示す状態では、第1光路L16が被選択光路として選択されている。 Since the arrangement relationship is as described above, as shown in FIG. 5, when the shutter T1 is closed, the shutter T6 is opened, and the reflecting surface RS1 of the mirror MR faces the optical fiber 26, the light r21. Is guided by the first optical path L11 and then blocked by the shutter T1, and the light r26 is guided by the first optical path L16 and then by the second optical path L26 and enters the entrance slit 31. Thus, in the state shown in FIG. 5, the first optical path L16 is selected as the selected optical path.
 そして、入射スリット31に導く光を光r26から光r21に切り替える際、言い換えると被選択光路を第1光路L16から第1光路L11に切り替える際には、一旦シャッタT1,T6が閉口され、駆動部292によってミラーMRを支持する支持軸291がY軸周りに回動される(図6、図7)。 When the light guided to the entrance slit 31 is switched from the light r26 to the light r21, in other words, when the selected optical path is switched from the first optical path L16 to the first optical path L11, the shutters T1 and T6 are once closed, and the drive unit The support shaft 291 that supports the mirror MR is rotated about the Y-axis by 292 (FIGS. 6 and 7).
 このとき、被選択光路である第1光路L11における下流側の光路と第2光路における上流側の光路とが光学的に接続するように、選択部29によって前記第2光路の上流側の光路が切り替えられる(第2光路L26から第2光路L21へ切り替えられる)。この切替は、ミラーMRの反射面RS1が出射口B21と光学的に対向するタイミングで上記回動が停止されることによって行われる。 At this time, the optical path upstream of the second optical path is selected by the selector 29 so that the downstream optical path in the first optical path L11, which is the selected optical path, and the upstream optical path in the second optical path are optically connected. It is switched (switched from the second optical path L26 to the second optical path L21). This switching is performed by stopping the rotation at the timing when the reflecting surface RS1 of the mirror MR optically opposes the emission port B21.
 そして、シャッタT1が開口されると、図8に示すように、光r26は第1光路L16を導かれた後シャッタT6で遮られ、光r21は第1光路L11(被選択光路)を導かれた後第2光路L21を導かれて入射スリット31へ入射される。 When the shutter T1 is opened, as shown in FIG. 8, the light r26 is guided by the first optical path L16 and then blocked by the shutter T6, and the light r21 is guided by the first optical path L11 (selected optical path). After that, the light is guided through the second optical path L21 and enters the entrance slit 31.
 また、上述した各部(出射口B21~B26、ミラーMR、分光部30など)の配置関係から分かるように、本実施形態のマルチアングル測色計100では、異なる第1光路L11,L16が被選択光路として選択された場合であっても、第2光路L21,L26における下流側の光路は同一とされている(図5、図8)。 Further, as can be seen from the arrangement relationship of the above-described units (emission ports B21 to B26, mirror MR, spectroscopic unit 30, etc.), in the multi-angle colorimeter 100 of this embodiment, different first optical paths L11 and L16 are selected. Even when the optical paths are selected, the downstream optical paths in the second optical paths L21 and L26 are the same (FIGS. 5 and 8).
 このため、光r21,r26は、分光部30の入射スリット31に同一の位置および角度で入射される。その結果、図5~図8に示すマルチアングル測色計では、導光される光路ごとに分光部へ入射される光の位置および角度が異なる構成のマルチアングル測色計に比べ、分光部30での受光位置および受光角度の非同一性に起因する測定誤差が低減されるという利点がある。 Therefore, the lights r21 and r26 are incident on the incident slit 31 of the spectroscopic unit 30 at the same position and angle. As a result, in the multi-angle colorimeter shown in FIG. 5 to FIG. 8, the spectroscopic unit 30 is compared with the multi-angle colorimeter having a configuration in which the position and angle of light incident on the spectroscopic unit are different for each of the guided light paths. There is an advantage that the measurement error due to the non-identity of the light receiving position and the light receiving angle is reduced.
 ここまで、図5~図8を参照しつつ、2本の光ファイバ21,26についての被選択光路の切替手順を説明したが、これは6本の光ファイバ21~26(図4)であっても同様である。以下では図4を参照しつつ、本実施形態のマルチアングル測色計100における被選択光路の切替手順を説明する。なお、図4における各部の配置関係も、図5~図8で簡単化して説明したものと同様である。 Up to this point, the procedure for switching the selected optical paths for the two optical fibers 21 and 26 has been described with reference to FIGS. 5 to 8. This is for the six optical fibers 21 to 26 (FIG. 4). But the same is true. Hereinafter, a procedure for switching the selected optical path in the multi-angle colorimeter 100 of the present embodiment will be described with reference to FIG. Note that the arrangement relationship of each part in FIG. 4 is the same as that described in FIGS. 5 to 8 in a simplified manner.
 具体的には、6本の光ファイバ21~26の出射口B21~B26側(下流側)での光路は同一のXZ平面内に存在し、ミラーMRはその反射面RS1がXZ平面に対して45度の傾きとなるよう駆動部292および支持軸291によってY軸周りに回動可能に支持されている。 Specifically, the optical paths of the six optical fibers 21 to 26 on the exit B21 to B26 side (downstream side) exist in the same XZ plane, and the mirror MR has a reflection surface RS1 with respect to the XZ plane. The drive unit 292 and the support shaft 291 are supported so as to be rotatable around the Y axis so as to have an inclination of 45 degrees.
 また、光ファイバ21~26の出射口B21~B26から出射された光r21~r26がミラーMRの反射面RS1に対して入射角45度で入射される際に、当該光の光軸とミラーMRの反射面RS1とが交わる点を点PTと呼ぶ。そして、6本の光ファイバ21~26において点PTが同一となるよう、ミラーMRと光ファイバ21~26との相対的な位置関係が調整されている。言い換えると、ミラーMRの点PTに向けて同じ角度(45度)で光r21~r26を照射可能となるように、光ファイバ21~26の下流側(出射口B21~B26を含む一定長さ)が、点PTから見て放射状に拡がる面(XZ平面)内に配される(図4)。そして、分光部30は、光ファイバ21~26を通じて導かれた光r21~r26のミラーMRでの反射光がその入射スリット31に入射される位置に配される。 Further, when the light r21 to r26 emitted from the emission ports B21 to B26 of the optical fibers 21 to 26 are incident on the reflecting surface RS1 of the mirror MR at an incident angle of 45 degrees, the optical axis of the light and the mirror MR The point at which the reflecting surface RS1 intersects is called a point PT. The relative positional relationship between the mirror MR and the optical fibers 21 to 26 is adjusted so that the point PT is the same among the six optical fibers 21 to 26. In other words, downstream of the optical fibers 21 to 26 (a fixed length including the exit ports B21 to B26) so that the light r21 to r26 can be irradiated at the same angle (45 degrees) toward the point PT of the mirror MR. Are arranged in a plane (XZ plane) radially expanding from the point PT (FIG. 4). The spectroscopic unit 30 is arranged at a position where the reflected light from the mirror MR of the light r21 to r26 guided through the optical fibers 21 to 26 enters the incident slit 31.
 したがって、図5~図8で説明した場合と同様に、シャッタT1~T6の開閉を制御するとともに、被選択光路における下流側の光路と第2光路における上流側の光路とが光学的に接続するように選択部29によって第2光路の上流側の光路を切り替えることで、複数の第1光路L11~L16の中から一の光路を被選択光路として選択することができる。 Accordingly, as in the case described with reference to FIGS. 5 to 8, the opening and closing of the shutters T1 to T6 is controlled, and the downstream optical path in the selected optical path and the upstream optical path in the second optical path are optically connected. Thus, by switching the upstream optical path of the second optical path by the selection unit 29, one optical path can be selected as the selected optical path from among the plurality of first optical paths L11 to L16.
 被測定物5の測色時には、この被選択光路の切替を時間順次に行うことで、各入射口B11~B16から入射される光r21~r26のうち分光部30に導光される一の光を切り替え、分光部30における測定光の時分割受光が実現される。なお、図4には、第1光路L14が被選択光路として選択された場合を図示している。 At the time of colorimetry of the object 5 to be measured, one light guided to the spectroscopic unit 30 among the light r21 to r26 incident from each of the entrances B11 to B16 is performed by sequentially switching the selected optical path. And the time division light reception of the measurement light in the spectroscopic unit 30 is realized. FIG. 4 illustrates the case where the first optical path L14 is selected as the selected optical path.
 また、上述したように、異なる第1光路L11~L16が被選択光路として選択された場合であっても、第2光路L21~L26における下流側の光路(分光部30側での光路)は同一とされている(図5、図8)。このため、光r21~r26は、分光部30の入射スリット31に同一の位置および角度で入射される。 As described above, even when different first optical paths L11 to L16 are selected as the selected optical paths, the downstream optical paths (optical paths on the spectroscopic unit 30 side) in the second optical paths L21 to L26 are the same. (FIGS. 5 and 8). For this reason, the lights r21 to r26 are incident on the incident slit 31 of the spectroscopic unit 30 at the same position and angle.
 分光部30(図3)は、第2導光部27によって第2光路L21~L26を通じて入射される入射光線を波長ごとに分離して光強度に応じた分光データを出力する。分光部30は、凹面回折格子32とラインセンサ33(1次元の光電変換素子)とを備える。 The spectroscopic unit 30 (FIG. 3) separates incident light beams incident through the second optical paths L21 to L26 by the second light guide unit 27 for each wavelength and outputs spectroscopic data corresponding to the light intensity. The spectroscopic unit 30 includes a concave diffraction grating 32 and a line sensor 33 (one-dimensional photoelectric conversion element).
 したがって、本実施形態のマルチアングル測色計100では、各光ファイバ21~26からの出射光r21~r26が、上述した被選択光路の切替動作に伴って時間順次に分光部30に入射され、凹面回折格子32で回折反射されてラインセンサ33で受光される。そして、ラインセンサ33によって、入射光が電気的な信号にそれぞれ変換される。 Therefore, in the multi-angle colorimeter 100 of the present embodiment, the emitted lights r21 to r26 from the optical fibers 21 to 26 are incident on the spectroscopic unit 30 in time sequence in accordance with the switching operation of the selected optical path described above. It is diffracted and reflected by the concave diffraction grating 32 and received by the line sensor 33. The line sensor 33 converts the incident light into an electrical signal.
 なお、分光部30としては、本実施形態のように反射型の回折格子を利用して分光する態様の他、透過型の回折格子を利用する態様、空間的に異なるバンドパスを有する光学素子(典型的にはフィルタ)を利用する態様など公知の種々の分光部を採用することができる。 As the spectroscopic unit 30, in addition to the mode of performing the spectrum using the reflection type diffraction grating as in the present embodiment, the mode of using the transmission type diffraction grating, or an optical element having a spatially different bandpass ( Various known spectroscopic sections such as an embodiment that typically uses a filter) can be employed.
 <1.2.2 制御部70、操作表示パネル4、メモリ部60>
 以下、マルチアングル測色計100における電気的構成として、制御部70、操作表示パネル4、メモリ部60について説明する。
<1.2.2 Control Unit 70, Operation Display Panel 4, Memory Unit 60>
Hereinafter, the control unit 70, the operation display panel 4, and the memory unit 60 will be described as electrical configurations in the multi-angle colorimeter 100.
 制御部70は、機能ブロックとして測定制御部71および演算部72を有し、メモリ部60に格納されている制御プログラムに従ってマルチアングル測色計100の各部の動作を制御する部分であり、CPUやA/D変換器などの電子回路によって構成される。 The control unit 70 has a measurement control unit 71 and a calculation unit 72 as functional blocks, and controls the operation of each unit of the multi-angle colorimeter 100 according to a control program stored in the memory unit 60. It is configured by an electronic circuit such as an A / D converter.
 測定制御部71は、マルチアングル測色計100の操作者に測定スイッチ65が操作されることによって、照射部10の光源を発光させて光検出部40における測色を実行する。また、測定制御部71は、演算部72による算出結果を測定結果として表示部66に表示する。 The measurement control unit 71 causes the light source of the irradiation unit 10 to emit light by the operator of the multi-angle colorimeter 100 operating the measurement switch 65 to perform color measurement in the light detection unit 40. In addition, the measurement control unit 71 displays the calculation result by the calculation unit 72 on the display unit 66 as the measurement result.
 演算部72は、光検出部40から出力される電気的な信号に基づいて光の検出値(分光反射特性)をそれぞれ求め、該検出値に基づいて被測定物5の測定点Pにおける色情報(例えば、三刺激値)を得る。 The calculation unit 72 obtains a light detection value (spectral reflection characteristic) based on the electrical signal output from the light detection unit 40, and color information at the measurement point P of the object 5 to be measured based on the detection value. (E.g., tristimulus values).
 操作表示パネル4は、マルチアングル測色計100の使用者が測定開始を指示するための測定スイッチ65や、測定結果を表示する表示部66(典型的には液晶パネル)などを備える。 The operation display panel 4 includes a measurement switch 65 for a user of the multi-angle colorimeter 100 to instruct measurement start, a display unit 66 (typically a liquid crystal panel) for displaying a measurement result, and the like.
 メモリ部60は、RAMやEEPROMなどからなり、測定結果などを一時的に保管するとともに、制御部70を動作させるための制御プログラムを記憶する。 The memory unit 60 includes a RAM, an EEPROM, etc., and temporarily stores measurement results and stores a control program for operating the control unit 70.
 <1.3 マルチアングル測色計100の制御例>
 続いて、図9を参照しつつ、マルチアングル測色計の制御例を説明する。以下の動作は、制御部70が、メモリ部60内に記憶されているプログラムに従って自動的に実行する。
<1.3 Example of control of multi-angle colorimeter 100>
Next, a control example of the multi-angle colorimeter will be described with reference to FIG. The following operation is automatically executed by the control unit 70 according to a program stored in the memory unit 60.
 図9は、マルチアングル測色計100において実現される測色動作のフローを例示するフローチャートである。既に各部の個別機能の説明は行ったため、ここでは全体の流れのみ説明する。なお、測定器本体2の中心軸2n(測定用開口3の法線)と測定面5aの法線5nとが一致するように測定器本体2を被測定物5の表面に対向させ、照射部10を消灯した状態で、ステップST1(測定開始時)に移行するものとする。 FIG. 9 is a flowchart illustrating the flow of the color measurement operation realized in the multi-angle colorimeter 100. Since the individual functions of each unit have already been described, only the overall flow will be described here. The measuring instrument body 2 is opposed to the surface of the object to be measured 5 so that the central axis 2n of the measuring instrument body 2 (normal line of the measurement aperture 3) and the normal line 5n of the measuring surface 5a coincide with each other, and the irradiation unit It is assumed that the process proceeds to step ST1 (at the start of measurement) with 10 turned off.
 ステップST1では、測定制御部71により、照射部10を点灯する。 In step ST1, the irradiation controller 10 is turned on by the measurement controller 71.
 ステップST2では、測定制御部71により、シャッタT1を開口、シャッタT2~T6を閉口し、選択部29により第1光路L11を被選択光路として光r21を分光部30で検出する。そして、この検出結果を基に、演算部72により検出値を取得し、メモリ部60にて記憶する。 In step ST2, the measurement control unit 71 opens the shutter T1, closes the shutters T2 to T6, and the selection unit 29 detects the light r21 using the first optical path L11 as the selected optical path, by the spectroscopic unit 30. Then, based on the detection result, the detection value is acquired by the calculation unit 72 and stored in the memory unit 60.
 ステップST3では、測定制御部71により、シャッタT2を開口、シャッタT1、T3~T6を閉口し、選択部29により第1光路L12を被選択光路として光r22を分光部30で検出する。そして、この検出結果を基に、演算部72により検出値を取得し、メモリ部60にて記憶する。 In step ST3, the measurement control unit 71 opens the shutter T2, closes the shutters T1 and T3 to T6, and the selection unit 29 detects the light r22 with the first optical path L12 as the selected optical path by the spectroscopic unit 30. Then, based on the detection result, the detection value is acquired by the calculation unit 72 and stored in the memory unit 60.
 ステップST4では、測定制御部71により、シャッタT3を開口、シャッタT1、T2、T4~T6を閉口し、選択部29により第1光路L13を被選択光路として光r23を分光部30で検出する。そして、この検出結果を基に、演算部72により検出値を取得し、メモリ部60にて記憶する。 In step ST4, the measurement control unit 71 opens the shutter T3, closes the shutters T1, T2, and T4 to T6, and the selection unit 29 detects the light r23 with the first optical path L13 as the selected optical path and the spectral unit 30. Then, based on the detection result, the detection value is acquired by the calculation unit 72 and stored in the memory unit 60.
 ステップST5では、測定制御部71により、シャッタT4を開口、シャッタT1~T3、T5、T6を閉口し、選択部29により第1光路L14を被選択光路として光r24を分光部30で検出する。そして、この検出結果を基に、演算部72により検出値を取得し、メモリ部60にて記憶する。 In step ST5, the measurement control unit 71 opens the shutter T4, closes the shutters T1 to T3, T5, and T6, and the selection unit 29 detects the light r24 using the first optical path L14 as the selected optical path and the light splitting unit 30. Then, based on the detection result, the detection value is acquired by the calculation unit 72 and stored in the memory unit 60.
 ステップST6では、測定制御部71により、シャッタT5を開口、シャッタT1~T4、T6を閉口し、選択部29により第1光路L15を被選択光路として光r25を分光部30で検出する。そして、この検出結果を基に、演算部72により検出値を取得し、メモリ部60にて記憶する。 In step ST6, the measurement control unit 71 opens the shutter T5, closes the shutters T1 to T4, and T6, and the selection unit 29 detects the light r25 using the first optical path L15 as the selected optical path by the spectroscopic unit 30. Then, based on the detection result, the detection value is acquired by the calculation unit 72 and stored in the memory unit 60.
 ステップST7では、測定制御部71により、シャッタT6を開口、シャッタT1~T5を閉口し、選択部29により第1光路L16を被選択光路として光r26を分光部30で検出する。そして、この検出結果を基に、演算部72により検出値を取得し、メモリ部60にて記憶する。 In step ST7, the measurement control unit 71 opens the shutter T6, closes the shutters T1 to T5, and the selection unit 29 detects the light r26 using the first optical path L16 as the selected optical path, by the spectroscopic unit 30. Then, based on the detection result, the detection value is acquired by the calculation unit 72 and stored in the memory unit 60.
 ステップST8では、測定制御部71により、照射部10を消灯する。 In step ST8, the measurement control unit 71 turns off the irradiation unit 10.
 ステップST9では、演算部72により、メモリ部60にて記憶された光r21~r26に対応する6つの光検出値に基づいて、測定点Pにおける被測定物5の色情報を算出する。 In step ST9, the computing unit 72 calculates the color information of the DUT 5 at the measurement point P based on the six light detection values corresponding to the lights r21 to r26 stored in the memory unit 60.
 ステップST10では、測定制御部71が、演算部72によって算出された測定点Pにおける被測定物5の色情報を測定結果として表示部66に表示することで、本動作フローが終了される。 In step ST10, the measurement control unit 71 displays the color information of the device under test 5 at the measurement point P calculated by the calculation unit 72 on the display unit 66 as a measurement result, whereby the operation flow is completed.
 <1.4 マルチアングル測色計100の効果>
 以下、本実施形態におけるマルチアングル測色計100の主な効果についてまとめる。
<1.4 Effects of the multi-angle colorimeter 100>
Hereinafter, the main effects of the multi-angle colorimeter 100 according to the present embodiment will be summarized.
 (1)本実施形態のマルチアングル測色計100では、複数の第1光路L11~L16について順次に被選択光路を切り替えることにより(図5~図8)、測定点Pに対してそれぞれ異なる角度で得られた光r21~r26を単一の分光部30に導き、分光測色を行うことができる。 (1) In the multi-angle colorimeter 100 according to the present embodiment, the selected optical paths are sequentially switched for the plurality of first optical paths L11 to L16 (FIGS. 5 to 8), so that different angles with respect to the measurement point P are obtained. The light r21 to r26 obtained in step 1 can be guided to a single spectroscopic unit 30 to perform spectroscopic colorimetry.
 このため、測色計の小型化や低コスト化を達成することができる。また、単一の分光部30を共通的に用いることによって、その内部部品が共有化できるため、複数の分光部を用いる場合に生じる分光部間の個体差を考慮せずにすむ。 Therefore, the colorimeter can be reduced in size and cost. In addition, since the internal parts can be shared by using a single spectroscopic unit 30 in common, it is not necessary to consider individual differences between spectroscopic units that occur when using a plurality of spectroscopic units.
 (2)本実施形態のマルチアングル測色計100においては、被選択光路における下流側の光路と第2光路における上流側の光路とが光学的に接続するように、選択部29によって第2光路の上流側の光路が切り替えられ、複数の第1光路L11~L16の中から一の光路が被選択光路として選択される(図5~図8)。そして、この被選択光路の選択は、第2導光部27の駆動(ミラーMRの回動)によって行われる。 (2) In the multi-angle colorimeter 100 of the present embodiment, the second optical path is selected by the selector 29 so that the downstream optical path in the selected optical path and the upstream optical path in the second optical path are optically connected. Is switched, and one optical path is selected as the selected optical path from among the plurality of first optical paths L11 to L16 (FIGS. 5 to 8). The selection of the selected optical path is performed by driving the second light guide unit 27 (rotating the mirror MR).
 このため、例えば第2導光部としてバンドルファイバを利用するマルチアングル測色計のように、第2光路の上流側が分岐し、複数の第1光路の下流側の各光路と第2光路の上流側の各光路とが予めそれぞれ対応していて、対応する複数の光路対の中から一の光路対を選択することで分光部に導く一の光を選択するマルチアングル測色計(すなわち、第2導光部が駆動されることのないマルチアングル測色計)と、本実施形態におけるマルチアングル測色計100とは、光路選択における技術的特徴が異なる。 For this reason, for example, as in a multi-angle colorimeter that uses a bundle fiber as the second light guide unit, the upstream side of the second optical path is branched, and the optical path downstream of the plurality of first optical paths and the upstream of the second optical path The multi-angle colorimeter (that is, the first optical path) selects one light to be guided to the spectroscopic unit by selecting one optical path pair from a plurality of corresponding optical path pairs. 2) The multi-angle colorimeter in which the light guide is not driven) and the multi-angle colorimeter 100 in the present embodiment are different in technical characteristics in optical path selection.
 既述の通り、本実施形態のマルチアングル測色計100では、バンドルファイバを利用することなく、複数の受光角度で得られた光r21~r26を単一の分光部30に導くことができる。このため、バンドルファイバの欠点であった導光における光量ロスが多いという点が解消され、高いSN比での測色を実現できる。さらに、バンドルファイバを利用する場合に比べ、安価にマルチアングル測色計を製造可能となる。 As described above, the multi-angle colorimeter 100 of the present embodiment can guide the light r21 to r26 obtained at a plurality of light receiving angles to the single spectroscopic unit 30 without using a bundle fiber. For this reason, the point that there is much light quantity loss in the light guide which was a defect of the bundle fiber is solved, and colorimetry with a high SN ratio can be realized. Furthermore, a multi-angle colorimeter can be manufactured at a lower cost than when a bundle fiber is used.
 (3)本実施形態のマルチアングル測色計100では、異なる第1光路L11~L16が被選択光路として選択された場合であっても、第2光路における下流側の光路(分光部30側での光路)は同一とされている。このため、第2光路L21~L26を通じて導かれる光r21~r26は、同一の位置および角度で分光部30に入射される。 (3) In the multi-angle colorimeter 100 of the present embodiment, even if different first optical paths L11 to L16 are selected as the selected optical paths, the downstream optical path (on the spectroscopic unit 30 side) in the second optical path. Are the same. Therefore, the lights r21 to r26 guided through the second optical paths L21 to L26 are incident on the spectroscopic unit 30 at the same position and angle.
 したがって、本実施形態のマルチアングル測色計100では、導光される光路ごとに分光部へ入射される光の位置および角度が異なる構成のマルチアングル測色計に比べ、分光部30での受光位置および受光角度の非同一性に起因する測定誤差が低減されるという利点がある。 Therefore, in the multi-angle colorimeter 100 according to the present embodiment, the light received by the spectroscopic unit 30 is compared with the multi-angle colorimeter having a configuration in which the position and angle of light incident on the spectroscopic unit are different for each of the guided light paths. There is an advantage that the measurement error due to the non-identity of the position and the light receiving angle is reduced.
 <2 その他の実施形態>
 上記第1実施形態では、
 (条件1) 選択部29によって、複数の第1光路L11~L16のうち一の光路(被選択光路)における下流側の光路と第2光路L21~L26における上流側の光路とが光学的に接続するように、第2光路L21~L26の上流側の光路を切り替え可能であり、
 (条件2) 第2光路L21~L26における下流側の光路は、複数の第1光路L11~L16のいずれが被選択光路として選択された場合においても同一とされている、
の両条件を満たすマルチアングル測色計の一例として、マルチアングル測色計100を説明した。
<2 Other Embodiments>
In the first embodiment,
(Condition 1) The selection unit 29 optically connects the downstream optical path in one optical path (selected optical path) of the plurality of first optical paths L11 to L16 and the upstream optical path in the second optical paths L21 to L26. As described above, the optical path on the upstream side of the second optical paths L21 to L26 can be switched,
(Condition 2) The downstream optical paths in the second optical paths L21 to L26 are the same even when any of the plurality of first optical paths L11 to L16 is selected as the selected optical path.
The multi-angle colorimeter 100 has been described as an example of the multi-angle colorimeter that satisfies both conditions.
 以下、この条件1,2を満足する他の態様のマルチアングル測色計100A~100Dについて説明する。なお、以下の各実施形態において、上記第1実施形態のマルチアングル測色計100と同様の構成および効果については重複説明を省略する。 Hereinafter, other embodiments of the multi-angle colorimeters 100A to 100D that satisfy the conditions 1 and 2 will be described. In each of the following embodiments, redundant description of the same configuration and effects as those of the multi-angle colorimeter 100 of the first embodiment will be omitted.
 <2.1 第2実施形態のマルチアングル測色計100A>
 図10は、第2実施形態にかかるマルチアングル測色計100Aの第1導光部20、第2導光部27、選択部29、および分光部30の構成を示した模式図である。また、図10および以降の各図において、上記第1実施形態と同一の要素については同一の符号を付す。
<2.1 Multi-angle Colorimeter 100A of Second Embodiment>
FIG. 10 is a schematic diagram illustrating configurations of the first light guide unit 20, the second light guide unit 27, the selection unit 29, and the spectroscopic unit 30 of the multi-angle colorimeter 100A according to the second embodiment. Further, in FIG. 10 and the subsequent drawings, the same reference numerals are given to the same elements as those in the first embodiment.
 図10では、図5~図8と同様、説明を簡単にする目的で6本の光ファイバ21~26のうち2本の光ファイバ21,26のみを図示しているが、マルチアングル測色計100Aもマルチアングル測色計100と同様に光ファイバ21~26を有する。 In FIG. 10, as in FIGS. 5 to 8, only two optical fibers 21 and 26 among the six optical fibers 21 to 26 are illustrated for the purpose of simplifying the description. Similarly to the multi-angle colorimeter 100, 100A also has optical fibers 21 to 26.
 マルチアングル測色計100Aが上述のマルチアングル測色計100と異なるのは、XZ平面に対する出射口B21~B26の角度(図10においては、出射口B21,B26の角度)、およびXZ平面に対するミラーMRの反射面RS1の角度のみであり、残余の構成はマルチアングル測色計100と同様である。 The multi-angle colorimeter 100A differs from the above-mentioned multi-angle colorimeter 100 in that the angles of the exits B21 to B26 with respect to the XZ plane (in FIG. 10, the angles of the exits B21 and B26) and the mirror with respect to the XZ plane Only the angle of the MR reflection surface RS1 is used, and the remaining configuration is the same as that of the multi-angle colorimeter 100.
 すなわち、上記条件1,2を満足する構成であれば、第2実施形態で示す図10のように、ミラーMRへの入射角度および反射角度が45度より大きくなる配置関係であっても構わない。同様に、上記条件1,2を満足する構成であれば、ミラーMRへの入射角度および反射角度が45度より小さくなるマルチアングル測色計であっても構わない。 That is, as long as the above-described conditions 1 and 2 are satisfied, as shown in FIG. 10 shown in the second embodiment, an arrangement relationship in which the incident angle and the reflection angle to the mirror MR are larger than 45 degrees may be used. . Similarly, as long as the above conditions 1 and 2 are satisfied, a multi-angle colorimeter in which the incident angle and the reflection angle on the mirror MR are smaller than 45 degrees may be used.
 第2実施形態のマルチアングル測色計100Aのように45度以外の入射角度で光r21~r26がミラーMRに照射される場合、例えば、光ファイバ21~26の下流側(出射口B21~B26を含む一定長さ)を、点PTから見て円錐形状の側面に相当する面内に点PTに向けて配する構成を採用することができる。 When the light beams r21 to r26 are irradiated onto the mirror MR at an incident angle other than 45 degrees as in the multi-angle colorimeter 100A of the second embodiment, for example, downstream of the optical fibers 21 to 26 (emission ports B21 to B26) Can be employed in a plane corresponding to the conical side surface when viewed from the point PT toward the point PT.
 <2.2 第3実施形態のマルチアングル測色計100B>
 図11は、第3実施形態にかかるマルチアングル測色計100Bの第1導光部20、第2導光部27、選択部29、および分光部30の構成を示した模式図である。
<2.2 Multi-angle Colorimeter 100B of Third Embodiment>
FIG. 11 is a schematic diagram illustrating configurations of the first light guide unit 20, the second light guide unit 27, the selection unit 29, and the spectroscopic unit 30 of the multi-angle colorimeter 100B according to the third embodiment.
 図11では、説明を簡単にする目的で6本の光ファイバ21~26のうち3本の光ファイバ21,22,23のみを図示しているが、マルチアングル測色計100Bもマルチアングル測色計100と同様に6本の光ファイバ21~26を有する。 In FIG. 11, only three optical fibers 21, 22, and 23 among the six optical fibers 21 to 26 are shown for the purpose of simplifying the explanation, but the multi-angle colorimeter 100 B is also multi-angle colorimetry. Similar to the total 100, it has six optical fibers 21-26.
 マルチアングル測色計100Bが上述のマルチアングル測色計100と異なるのは、光ファイバ21~26の配置関係、および第2光路L21~L26の切替動作であり、残余の構成はマルチアングル測色計100と同様である。 The multi-angle colorimeter 100B is different from the above-mentioned multi-angle colorimeter 100 in the arrangement relationship of the optical fibers 21 to 26 and the switching operation of the second optical paths L21 to L26, and the remaining configuration is the multi-angle colorimetry. The total is the same as 100.
 具体的には、マルチアングル測色計100Bにおいては、光r21~r26がY方向に所定間隔をあけて-X方向に出射されるよう、光ファイバ21~26の出射口B21~B26がY方向に沿って配列される。また、ミラーMRはその反射面RS1がXZ平面に対して45度傾きXY平面に対して垂直となる状態で支持軸291に支持され、支持軸291およびこれに支持されるミラーMRは駆動部292b(例えば、リニアモータ)によって±Y方向(直線状の双方向)に変位される。また、駆動部292bによって駆動されるミラーMRの駆動停止位置に応じて、第2光路L21~L26における上流側の光路および下流側の光路が選択的に切り替えられる。 Specifically, in the multi-angle colorimeter 100B, the emission ports B21 to B26 of the optical fibers 21 to 26 are emitted in the Y direction so that the lights r21 to r26 are emitted in the −X direction at predetermined intervals in the Y direction. Arranged along. The mirror MR is supported by the support shaft 291 in a state where the reflection surface RS1 is inclined by 45 degrees with respect to the XZ plane and perpendicular to the XY plane, and the support shaft 291 and the mirror MR supported by the support shaft 291 are driven by the drive unit 292b. (For example, a linear motor) is displaced in the ± Y direction (linear bidirectional). Further, the upstream optical path and the downstream optical path in the second optical paths L21 to L26 are selectively switched according to the driving stop position of the mirror MR driven by the driving unit 292b.
 このため、駆動部292bによってミラーMRを±Y方向に変位する際に、その変位量を上記所定間隔と対応させることで、光r21~r26がミラーMRに照射される際の光軸の照射位置を同一とすることができる。そして、分光部30は、光ファイバ21~26を通じて導かれた光r21~r26のミラーMRでの反射光がその入射スリット31に入射される位置に配される。このような構成となっているので、第3実施形態のマルチアングル測色計100Bは、上記条件1,2を満足することができる。 For this reason, when the mirror MR is displaced in the ± Y direction by the drive unit 292b, the displacement amount is made to correspond to the predetermined interval, so that the irradiation position of the optical axis when the light beams r21 to r26 are irradiated onto the mirror MR. Can be the same. The spectroscopic unit 30 is arranged at a position where the reflected light from the mirror MR of the light r21 to r26 guided through the optical fibers 21 to 26 enters the incident slit 31. Because of such a configuration, the multi-angle colorimeter 100B of the third embodiment can satisfy the above conditions 1 and 2.
 <2.2.1 第3実施形態のマルチアングル測色計100Bの効果>
 図12~図15を参照しつつ、第3実施形態のマルチアングル測色計100Bの効果について説明する。
<2.2.1 Effect of Multi-angle Colorimeter 100B of Third Embodiment>
The effect of the multi-angle colorimeter 100B of the third embodiment will be described with reference to FIGS.
 図12は、上記第1実施形態のマルチアングル測色計100において、駆動部292(図4)が理想的に制御された場合のミラーMRの回動停止位置と測定光の光路との関係を示した図である。図13は、上記第1実施形態のマルチアングル測色計100において、駆動部292が理想的な回動停止位置から一定角度ずれて回動停止制御された場合のミラーMRの回動停止位置と測定光の光路との関係を示した図である。 FIG. 12 shows the relationship between the rotation stop position of the mirror MR and the optical path of the measurement light when the drive unit 292 (FIG. 4) is ideally controlled in the multi-angle colorimeter 100 of the first embodiment. FIG. FIG. 13 shows the rotation stop position of the mirror MR when the drive unit 292 is controlled to stop rotating at a certain angle from the ideal rotation stop position in the multi-angle colorimeter 100 of the first embodiment. It is the figure which showed the relationship with the optical path of measurement light.
 図14は、第3実施形態のマルチアングル測色計100Bにおいて、駆動部292b(図11)が理想的に制御された場合のミラーMRの駆動停止位置(Y方向変位量)と測定光の光路との関係を示した図である。図15は、第3実施形態のマルチアングル測色計100Bにおいて、駆動部292bが理想的な駆動停止位置からY方向に一定距離ずれて駆動停止制御された場合のミラーMRの駆動停止位置(Y方向変位量)と測定光の光路との関係を示した図である。 FIG. 14 shows the drive stop position (Y-direction displacement amount) of the mirror MR and the optical path of the measurement light when the drive unit 292b (FIG. 11) is ideally controlled in the multi-angle colorimeter 100B of the third embodiment. It is the figure which showed the relationship. FIG. 15 shows the drive stop position (Y of the mirror MR when the drive unit 292b is controlled to stop driving with a certain distance in the Y direction from the ideal drive stop position in the multi-angle colorimeter 100B of the third embodiment. It is the figure which showed the relationship between (direction displacement amount) and the optical path of measurement light.
 また、図12~図15および後述する図17,図18に共通して、駆動部292,292bが理想制御された場合の光路を点線矢印で示し、駆動部292,292bが理想制御から一定程度ずれて制御された場合の光路を実線矢印で示す。 Also, in common with FIGS. 12 to 15 and FIGS. 17 and 18 to be described later, the optical path when the drive units 292 and 292b are ideally controlled is indicated by dotted arrows, and the drive units 292 and 292b have a certain level from the ideal control. The optical path in the case of being controlled by shifting is indicated by a solid arrow.
 以下の説明では、ミラーMR(第2導光部27)に入射される光のうち、理想的な位置および角度で入射される光を「入射光IL1」、理想的な位置および角度からずれて入射される光を「入射光IL2」と呼ぶ。また、ミラーMR(第2導光部27)より出射される光を同様に、「出射光RL1」、「出射光RL2」と呼ぶ。 In the following description, among the light incident on the mirror MR (second light guide unit 27), the light incident at the ideal position and angle is shifted from the “incident light IL1”, the ideal position and angle. The incident light is referred to as “incident light IL2”. Similarly, the light emitted from the mirror MR (second light guide unit 27) is referred to as “emitted light RL1” and “emitted light RL2”.
 なお、入射光IL1および入射光IL2は、実際には分光器30内の同一光路を辿る光であるが、上記駆動制御ずれの有無に起因してミラーMR(第2導光部27)への入射角度あるいは入射位置が異なる光となる。これに起因して、出射光RL1および出射光RL2は、分光器30内の異なる光路を辿る光となる。 The incident light IL1 and the incident light IL2 are actually light that follows the same optical path in the spectrometer 30. However, the incident light IL1 and the incident light IL2 enter the mirror MR (second light guide unit 27) due to the presence or absence of the drive control deviation. The light has a different incident angle or incident position. Due to this, the outgoing light RL1 and the outgoing light RL2 become light that follows different optical paths in the spectrometer 30.
 既述の通り、上記第1実施形態のマルチアングル測色計100においては、選択部29による第2光路L21~L26の切替がミラーMRをY軸周りに回動することによって行われる。このため、ミラーMRが理想的な回動停止位置から一定角度ずれて回動停止された場合の入射光IL2(図13)は、設計上理想とされる入射光IL1(図12)とは異なる角度でミラーMRに入射される。その結果、出射光RL2も出射光RL1とは異なる角度で出射される。 As described above, in the multi-angle colorimeter 100 of the first embodiment, the selection unit 29 switches the second optical paths L21 to L26 by rotating the mirror MR about the Y axis. For this reason, the incident light IL2 (FIG. 13) in the case where the mirror MR is rotated and stopped at a certain angle from the ideal rotation stop position is different from the incident light IL1 (FIG. 12) that is ideal in design. It is incident on the mirror MR at an angle. As a result, the emitted light RL2 is also emitted at a different angle from the emitted light RL1.
 他方、第3実施形態のマルチアングル測色計100Bにおいては、選択部29による第2光路L21~L26の切替が、ミラーMRの直動によって行われる。また、反射面RS1は、ミラーMR(光学素子)の直線状の変位の方向に対して一定の角度に維持されている。このように、ミラーMRの直線状の変位の方向(Y方向)に関して一定の角度に維持された反射面RS1を使用しているため、ミラーMRが直線状(Y方向)に変位しても、この反射面から反射された光(出射光RL)の進行方向は変動しない。具体的には、ミラーMRの駆動停止位置に位置ずれが生じた場合の入射光IL2(図15)であっても、設計上理想とされる入射光IL1(図14)と同じ入射角でミラーMRに入射され、出射光RL2も出射光RL1と同じ角度で出射される。 On the other hand, in the multi-angle colorimeter 100B of the third embodiment, the switching of the second optical paths L21 to L26 by the selection unit 29 is performed by the direct movement of the mirror MR. The reflecting surface RS1 is maintained at a constant angle with respect to the linear displacement direction of the mirror MR (optical element). Thus, since the reflecting surface RS1 maintained at a constant angle with respect to the linear displacement direction (Y direction) of the mirror MR is used, even if the mirror MR is displaced linearly (Y direction), The traveling direction of the light reflected from the reflecting surface (emitted light RL) does not vary. Specifically, even if the incident light IL2 (FIG. 15) is generated when a position shift occurs at the drive stop position of the mirror MR, the mirror has the same incident angle as the incident light IL1 (FIG. 14) that is ideal in design. The light enters the MR, and the outgoing light RL2 is also emitted at the same angle as the outgoing light RL1.
 したがって、第3実施形態のマルチアングル測色計100Bでは、上記第1実施形態のマルチアングル測色計100で生じうる出射光RLの角度ずれ(第2光路の下流側光路においての角度ずれ)が生じることはなく、被選択光路より導かれた光を一定の角度で入射スリット31に導くことができる。 Therefore, in the multi-angle colorimeter 100B according to the third embodiment, the angular deviation of the emitted light RL that can occur in the multi-angle colorimeter 100 according to the first embodiment (the angular deviation in the downstream optical path of the second optical path) is generated. It does not occur, and the light guided from the selected optical path can be guided to the entrance slit 31 at a certain angle.
 なお、第1実施形態のマルチアングル測色計100で生じ得る分光部30へ照射される光の位置ずれや角度ずれ(図13)は、この発明の本質を損なうほどのものではなく、実質的に一定(第2光路L21~L26の下流側は同一とされている)と見ることができる。 Note that the positional deviation and angular deviation (FIG. 13) of the light applied to the spectroscopic unit 30 that can occur in the multi-angle colorimeter 100 of the first embodiment are not so much as to impair the essence of the present invention. (The downstream side of the second optical paths L21 to L26 is the same).
 しかしながら、そのようなわずかな誤差(ずれ)ではあっても、それを極力小さくし、あるいは解消することは、測定精度のさらなる向上を実現するために好ましい。そこで、第3実施形態のマルチアングル測色計100Bのように、分光部30へ照射される光の角度ずれが生じない構成であれば、測定精度はより向上される(図14、図15)。 However, it is preferable to reduce or eliminate such a slight error (displacement) as much as possible in order to further improve the measurement accuracy. Therefore, the measurement accuracy is further improved if the configuration does not cause an angular shift of the light irradiated to the spectroscopic unit 30 as in the multi-angle colorimeter 100B of the third embodiment (FIGS. 14 and 15). .
 また、上記第1実施形態のマルチアングル測色計100のようにミラーMRの回動によって第2光路L21~L26を切り替える場合には、第2光路L21~L26の距離を短くすることで、ミラーMRの回動停止位置の位置ずれに起因する入射スリット31への入射位置の位置ずれを小さくし、測定誤差を軽減することができる。 Further, when the second optical paths L21 to L26 are switched by the rotation of the mirror MR as in the multi-angle colorimeter 100 of the first embodiment, the distance between the second optical paths L21 to L26 is shortened so that the mirror The positional deviation of the incident position on the incident slit 31 due to the positional deviation of the MR rotation stop position can be reduced, and the measurement error can be reduced.
 <2.3 第4実施形態のマルチアングル測色計100C>
 図16は、第4実施形態にかかるマルチアングル測色計100Cの第1導光部20、第2導光部27(プリズムPR)、選択部29、および分光部30の構成を示した模式図である。
<2.3 Multi-angle Colorimeter 100C of Fourth Embodiment>
FIG. 16 is a schematic diagram illustrating configurations of the first light guide unit 20, the second light guide unit 27 (prism PR), the selection unit 29, and the spectroscopic unit 30 of the multi-angle colorimeter 100C according to the fourth embodiment. It is.
 図16では、説明を簡単にする目的で6本の光ファイバ21~26のうち2本の光ファイバ21,26のみを図示しているが、マルチアングル測色計100Cもマルチアングル測色計100と同様に6本の光ファイバ21~26を有する。 In FIG. 16, only two optical fibers 21 and 26 of the six optical fibers 21 to 26 are shown for the purpose of simplifying the description. However, the multi-angle colorimeter 100C is also the multi-angle colorimeter 100C. Similarly to the above, six optical fibers 21 to 26 are provided.
 マルチアングル測色計100Cが第1実施形態のマルチアングル測色計100と異なるのは、第2導光部27としてミラーMRではなくプリズムPRを利用している点であり、残余の構成はマルチアングル測色計100と同様である。プリズムPRとしては、例えば、内部反射を引き起こす反射面RS2,RS3を対向する2面に平行に有する菱形プリズム(図16~図18)を利用することができる。 The multi-angle colorimeter 100C is different from the multi-angle colorimeter 100 of the first embodiment in that a prism PR is used as the second light guide 27 instead of the mirror MR, and the remaining configuration is a multi-colorimeter. This is the same as the angle colorimeter 100. As the prism PR, for example, a rhombus prism (FIGS. 16 to 18) having reflection surfaces RS2 and RS3 that cause internal reflection parallel to two opposing surfaces can be used.
 図16に示すように、複数の第1光路L11~L16のうち一の光路(被選択光路)を導かれた光r21~r26は、プリズムPR内の第1の反射面RS2および第2の反射面RS3で反射されて、分光部30の入射スリット31に導かれる。 As shown in FIG. 16, the light r21 to r26 guided through one optical path (selected optical path) among the plurality of first optical paths L11 to L16 is the first reflection surface RS2 and the second reflection in the prism PR. The light is reflected by the surface RS3 and guided to the entrance slit 31 of the spectroscopic unit 30.
 また、駆動部292によって回動されるプリズムPRの回動停止位置に応じて、第2光路L21~L26における上流側の光路が選択的に切り替えられ、複数の第1光路L11~L16の中から前記被選択光路が選択される。 Further, the upstream optical path in the second optical paths L21 to L26 is selectively switched according to the rotation stop position of the prism PR rotated by the driving unit 292, and the plurality of first optical paths L11 to L16 are selected. The selected optical path is selected.
 このように、プリズムPRの主たる役割(第2導光部27としての役割)は、マルチアングル測色計100におけるミラーMRと同様である。すなわち、プリズムPRは、駆動部292に回動されることによって第2光路L21~L26の上流側の光路を切り替え、第1光路L11~L16のうち一の光路(被選択光路)を通じて導かれた光を分光部30の入射スリット31に導く。また、第2光路L21~L26における下流側の光路は、複数の第1光路L11~L16のいずれが被選択光路として選択された場合においても同一とされている。 Thus, the main role of the prism PR (the role as the second light guide 27) is the same as that of the mirror MR in the multi-angle colorimeter 100. That is, the prism PR is rotated by the drive unit 292 to switch the upstream optical path of the second optical paths L21 to L26 and guided through one of the first optical paths L11 to L16 (selected optical path). The light is guided to the entrance slit 31 of the spectroscopic unit 30. Further, the downstream optical paths in the second optical paths L21 to L26 are the same even when any of the plurality of first optical paths L11 to L16 is selected as the selected optical path.
 <2.3.1 第4実施形態のマルチアングル測色計100Cの効果>
 図17および図18を参照しつつ、第4実施形態のマルチアングル測色計100Cの効果について説明する。
<2.3.1 Effect of Multi-angle Colorimeter 100C of Fourth Embodiment>
The effect of the multi-angle colorimeter 100C of the fourth embodiment will be described with reference to FIGS.
 図17および図18は、第4実施形態のマルチアングル測色計100Cにおいて、プリズムPRの回動停止位置と測定光の光路との関係を示した図である。 17 and 18 are diagrams showing the relationship between the rotation stop position of the prism PR and the optical path of the measurement light in the multi-angle colorimeter 100C of the fourth embodiment.
 図17は、マルチアングル測色計100Cにおいて、駆動部292が理想的に制御された場合のプリズムPRの回動停止位置と測定光の光路との関係を示した図である。図18は、マルチアングル測色計100Cにおいて、駆動部292が理想的な回動停止位置から一定角度ずれて回動停止制御された場合のプリズムPRの回動停止位置と測定光の光路との関係を示した図である。 FIG. 17 is a diagram showing the relationship between the rotation stop position of the prism PR and the optical path of the measurement light when the drive unit 292 is ideally controlled in the multi-angle colorimeter 100C. FIG. 18 shows the relationship between the rotation stop position of the prism PR and the optical path of the measurement light when the drive unit 292 is controlled to stop rotation by deviating from the ideal rotation stop position in the multi-angle colorimeter 100C. It is the figure which showed the relationship.
 既述の通り、駆動部292(図16)が理想制御された場合の光路を点線矢印(図17)で示し、駆動部292が理想制御から一定程度ずれて制御された場合の光路を実線矢印(図18)で示す。 As described above, the optical path when the drive unit 292 (FIG. 16) is ideally controlled is indicated by a dotted arrow (FIG. 17), and the optical path when the drive unit 292 is controlled by a certain degree of deviation from the ideal control is indicated by a solid arrow. (FIG. 18).
 また、図12~図15と同様に、入射光IL1および入射光IL2は、実際には分光器30内の同一光路を辿る光であるが、上記駆動制御ずれの有無に起因してプリズムPR(第2導光部27)への入射角度あるいは入射位置が異なる光となる。これに起因して、出射光RL1および出射光RL2は、分光器30内の異なる光路を辿る光となる。 Similarly to FIGS. 12 to 15, the incident light IL1 and the incident light IL2 are actually light that follows the same optical path in the spectroscope 30. However, the prism PR ( The incident light or the incident position on the second light guide 27) is different. Due to this, the outgoing light RL1 and the outgoing light RL2 become light that follows different optical paths in the spectrometer 30.
 第4実施形態のマルチアングル測色計100Cにおいては、第1の反射面RS2と第2の反射面RS3とはプリズムPR(光学素子)において互いに平行に固定形成されている。そして、第1の反射面RS2および第2の反射面RS3は、回動軸であるY軸に垂直な平面XZに対して一定の角度に維持されて回動される。 In the multi-angle colorimeter 100C of the fourth embodiment, the first reflecting surface RS2 and the second reflecting surface RS3 are fixedly formed in parallel with each other in a prism PR (optical element). The first reflecting surface RS2 and the second reflecting surface RS3 are rotated while being maintained at a constant angle with respect to the plane XZ perpendicular to the Y axis, which is the rotation axis.
 このため、ミラーMRが理想的な回動停止角度から一定角度ずれて回動停止された場合の入射光IL2(図18)であっても、設計上理想とされる入射光IL1(図17)と同じ入射角でプリズムPRに入射される。その結果、プリズムPRにおいて互いに平行に固定形成された反射面RS2,RS3を介して出射される出射光RL2も出射光RL1と同じ角度で出射される。すなわち、回動停止角度のずれによってプリズムPRの姿勢が若干変動しても、第1の反射面RS2に生じる反射方向のずれは第2の反射面RS3での反射方向のずれによって相殺され、第2導光部から出射する光の進行方向(出射光RLの角度)は一定に維持される。 For this reason, even if the incident light IL2 (FIG. 18) when the mirror MR is rotated and deviated from the ideal rotation stop angle by a certain angle, the incident light IL1 (FIG. 17) that is ideal in design. Is incident on the prism PR at the same incident angle. As a result, the emitted light RL2 emitted through the reflecting surfaces RS2 and RS3 fixedly formed parallel to each other in the prism PR is also emitted at the same angle as the emitted light RL1. That is, even if the posture of the prism PR slightly varies due to the shift in the rotation stop angle, the shift in the reflection direction that occurs on the first reflection surface RS2 is offset by the shift in the reflection direction on the second reflection surface RS3. 2 The traveling direction of the light emitted from the light guide unit (the angle of the emitted light RL) is maintained constant.
 したがって、第4実施形態のマルチアングル測色計100Cでは、上記第1実施形態のマルチアングル測色計100で生じうる出射光RLの角度ずれ(第2光路の下流側光路においての角度ずれ)が生じることはなく、被選択光路より導かれた光を一定の角度で入射スリット31に導くことができる。その結果、第3実施形態のマルチアングル測色計100Bと同様、測定精度はより向上される。 Therefore, in the multi-angle colorimeter 100C according to the fourth embodiment, the angular deviation of the emitted light RL (the angular deviation in the downstream optical path of the second optical path) that can occur in the multi-angle colorimeter 100 according to the first embodiment described above. It does not occur, and the light guided from the selected optical path can be guided to the entrance slit 31 at a certain angle. As a result, the measurement accuracy is further improved as in the multi-angle colorimeter 100B of the third embodiment.
 <2.4 第5実施形態のマルチアングル測色計100D>
 図19は、第5実施形態にかかるマルチアングル測色計100Dの第1導光部20、第2導光部27(光ファイバFB)、選択部29、および分光部30の構成を示した模式図である。
<2.4 Multi-angle Colorimeter 100D of Fifth Embodiment>
FIG. 19 is a schematic diagram illustrating configurations of the first light guide unit 20, the second light guide unit 27 (optical fiber FB), the selection unit 29, and the spectroscopic unit 30 of the multi-angle colorimeter 100D according to the fifth embodiment. FIG.
 図19では、説明を簡単にする目的で6本の光ファイバ21~26のうち2本の光ファイバ21,26のみを図示しているが、マルチアングル測色計100Dもマルチアングル測色計100と同様に6本の光ファイバ21~26を有する。 In FIG. 19, only two optical fibers 21 and 26 of the six optical fibers 21 to 26 are illustrated for the purpose of simplifying the explanation, but the multi-angle colorimeter 100D is also shown in FIG. Similarly to the above, six optical fibers 21 to 26 are provided.
 マルチアングル測色計100Dが第1実施形態のマルチアングル測色計100と異なるのは、第2導光部27としてミラーMRではなく光ファイバFBを利用している点であり、残余の構成はマルチアングル測色計100と同様である。 The multi-angle colorimeter 100D is different from the multi-angle colorimeter 100 of the first embodiment in that an optical fiber FB is used as the second light guide 27 instead of the mirror MR, and the remaining configuration is as follows. The same as the multi-angle colorimeter 100.
 光ファイバFBとしては、例えば、第1導光部20の光ファイバ21~26の出射開口数に比べ、入射側のコア径が大きい単芯ファイバ(図19)を利用することができる。 As the optical fiber FB, for example, a single-core fiber (FIG. 19) having a large core diameter on the incident side as compared with the exit numerical apertures of the optical fibers 21 to 26 of the first light guide unit 20 can be used.
 また、マルチアングル測色計100Dは、選択部29として、光ファイバFBの上流側の開口である入光部B17の位置又は角度を変位する駆動部292を有する。このため、駆動部292によって変位される入光部B17の位置又は角度に応じて、第2光路L21~L26における上流側の光路が選択的に切り替えられ、複数の第1光路L11~L16の中から被選択光路が選択される。なお、駆動部292としては、第1実施形態と同様モータ等を用いた回動機構を利用できる。 Further, the multi-angle colorimeter 100D includes a drive unit 292 that displaces the position or angle of the light incident unit B17 that is the opening on the upstream side of the optical fiber FB as the selection unit 29. For this reason, the upstream optical path in the second optical paths L21 to L26 is selectively switched according to the position or angle of the light incident section B17 displaced by the driving section 292, and the plurality of first optical paths L11 to L16 are changed. The selected optical path is selected. In addition, as the drive part 292, the rotation mechanism using a motor etc. can be utilized similarly to 1st Embodiment.
 そして、複数の第1光路L11~L16のうち一の光路(被選択光路)を導かれた光r21~r26は、光ファイバFBを通じて分光部30の入射スリット31に導かれる。 The lights r21 to r26 guided through one optical path (selected optical path) among the plurality of first optical paths L11 to L16 are guided to the entrance slit 31 of the spectroscopic unit 30 through the optical fiber FB.
 このように、光ファイバFBの主たる役割(第2導光部27としての役割)は、マルチアングル測色計100におけるミラーMRと同様である。すなわち、光ファイバFBは、駆動部292に駆動されることによって当該光ファイバFBの入光部B17の位置および角度を切り替え(第2光路L21~L26の上流側の光路を切り替え)、第1光路L11~L16のうち一の光路(被選択光路)を通じて導かれた光を分光部30の入射スリット31に導く。また、第2光路L21~L26における下流側の光路は、複数の第1光路L11~L16のいずれが被選択光路として選択された場合においても同一とされている。 Thus, the main role of the optical fiber FB (the role as the second light guide 27) is the same as that of the mirror MR in the multi-angle colorimeter 100. That is, the optical fiber FB is driven by the drive unit 292 to switch the position and angle of the light incident part B17 of the optical fiber FB (switch the optical path on the upstream side of the second optical paths L21 to L26), and the first optical path The light guided through one optical path (selected optical path) among L11 to L16 is guided to the entrance slit 31 of the spectroscopic unit 30. Further, the downstream optical paths in the second optical paths L21 to L26 are the same even when any of the plurality of first optical paths L11 to L16 is selected as the selected optical path.
 <2.4.1 第5実施形態のマルチアングル測色計100Dの効果>
 上述したように、第5実施形態のマルチアングル測色計100Dでは、第1導光部20の光ファイバ21~26の出射開口数に比べ、入射側のコア径が大きい光ファイバFB(図19)を利用することができる。
<2.4.1 Effect of Multi-Angle Colorimeter 100D of Fifth Embodiment>
As described above, in the multi-angle colorimeter 100D of the fifth embodiment, the optical fiber FB having a large core diameter on the incident side as compared with the exit numerical apertures of the optical fibers 21 to 26 of the first light guide unit 20 (FIG. 19). ) Can be used.
 このため、駆動部292による回動停止位置が設計上の理想位置から多少ずれた場合であっても、被選択光路を導かれた光を光ファイバFBの入射側端部より入射することが可能となる。 For this reason, even if the rotation stop position by the drive unit 292 is slightly deviated from the ideal design position, the light guided through the selected optical path can be incident from the incident side end of the optical fiber FB. It becomes.
 また、光ファイバFBとして、入射光ILの入射位置および入射角度と出射光RLの出射位置および出射角度との相関が低い光ファイバ、すなわちミキシング性の高い光ファイバを利用すれば、回動停止位置にずれが生じたとしても分光部30に出射光RLが入射される際に当該ずれの影響が生じ難い。なお、光ファイバFBのミキシング性の高めることは、ミキシング性の高い部品をファイバ形成に利用する態様の他、光ファイバFBの導光距離を長くする態様によっても実現される。 Further, if an optical fiber having a low correlation between the incident position and incident angle of the incident light IL and the outgoing position and angle of the emitted light RL, that is, an optical fiber having high mixing properties, is used as the optical fiber FB. Even if a deviation occurs, the influence of the deviation hardly occurs when the outgoing light RL enters the spectroscopic unit 30. In addition, the improvement of the mixing property of the optical fiber FB can be realized by an aspect in which the light guide distance of the optical fiber FB is increased in addition to an aspect in which components having high mixing properties are used for fiber formation.
 <3 マルチアングル測色計100,100A~100Dの類型>
 以上説明したマルチアングル測色計100,100A~100Dについて、第2導光部27および選択部29による光路選択という観点から、上記各マルチアングル測色計を以下の類型で分類する。
<3 Types of multi-angle colorimeter 100, 100A-100D>
The multi-angle colorimeters 100 and 100A to 100D described above are classified into the following types from the viewpoint of optical path selection by the second light guide unit 27 and the selection unit 29.
 <3.1 同一位置入射型のマルチアングル測色計>
 同一位置入射型のマルチアングル測色計では、第1導光部20によって導かれる第1光路L11~L16を光ファイバ21~26の出射口B21~B26より下流側に仮想的に延長した場合に、各光路L11~L16の当該延長線が一点で交わる。
<3.1 Multi-angle colorimeter of the same position incidence type>
In the multi-angle colorimeter of the same position incidence type, when the first optical paths L11 to L16 guided by the first light guide 20 are virtually extended downstream from the exit ports B21 to B26 of the optical fibers 21 to 26, The extension lines of the optical paths L11 to L16 intersect at one point.
 したがって、この類型のマルチアングル測色計においては、第2導光部27が、第1光路L11~L16を通じて導かれる光r21~r26を当該一点で受光可能であり、かつ、この光r21~r26を同一方向に出射可能であれば、上記条件1および条件2を満足することができる。 Therefore, in this type of multi-angle colorimeter, the second light guide 27 can receive the light r21 to r26 guided through the first optical paths L11 to L16 at the one point, and the light r21 to r26. Can be emitted in the same direction, the above conditions 1 and 2 can be satisfied.
 上記第1および第2実施形態のマルチアングル測色計100,100Aがこの類型に属する。すなわち、この類型の典型例としては、一点(上記実施形態では点PT)を中心とする放射状の面内、或いは一点を頂点とする円錐の側面に相当する面内に、複数の光ファイバ21~26の下流側(第1光路L11~L16の下流側)が当該一点を向くよう配され、選択部29によって第2導光部27の光学素子(ミラーMRなど)が一軸周りに回動されることで当該一点で受光された光r21~r26が同一方向(分光部30の配される方向)に出射されるマルチアングル測色計が挙げられる。 The multi-angle colorimeters 100 and 100A of the first and second embodiments belong to this type. That is, as a typical example of this type, a plurality of optical fibers 21 to 21 are arranged in a radial plane centered at one point (point PT in the above embodiment) or in a plane corresponding to a side surface of a cone having one point as a vertex. 26 (the downstream side of the first optical paths L11 to L16) is directed to the one point, and the optical element (mirror MR, etc.) of the second light guide unit 27 is rotated around one axis by the selection unit 29. Thus, there is a multi-angle colorimeter in which the light r21 to r26 received at the one point is emitted in the same direction (direction in which the spectroscopic unit 30 is arranged).
 <3.2 同一角度入射型のマルチアングル測色計>
 同一角度入射型のマルチアングル測色計では、第1導光部20によって導かれる第1光路L11~L16を光ファイバ21~26の出射口B21~B26より下流側に仮想的に延長した場合、各光路が平行となる。
<3.2 Multi-angle colorimeter of the same angle incidence type>
In the same angle incident type multi-angle colorimeter, when the first optical paths L11 to L16 guided by the first light guide unit 20 are virtually extended downstream from the emission ports B21 to B26 of the optical fibers 21 to 26, Each optical path is parallel.
 したがって、この類型のマルチアングル測色計においては、第2導光部27が、第1光路L11~L16を通じて導かれる各平行光r21~r26を受光可能であり、かつ、各平行光r21~r26の方向関係(平行であること)を維持した状態で同一位置から出射可能であれば、上記条件1および条件2を満足することができる。 Therefore, in this type of multi-angle colorimeter, the second light guide 27 can receive the parallel lights r21 to r26 guided through the first optical paths L11 to L16, and the parallel lights r21 to r26. If it is possible to emit light from the same position while maintaining the directional relationship (parallel), the above condition 1 and condition 2 can be satisfied.
 上記第3および第4実施形態のマルチアングル測色計100B,100Cがこの類型に属する。すなわち、この類型の典型例としては、複数の光ファイバ21~26の下流側(第1光路L11~L16の下流側)が平行に配され、選択部29によって第2導光部27の光学素子(ミラーMR、プリズムPRなど)が一軸に沿って変位、或いは一軸周りに回動されることで、光r21~r26が第2導光部27の同一位置から同一方向に(分光部30に向けて)出射されるマルチアングル測色計が挙げられる。 The multi-angle colorimeters 100B and 100C of the third and fourth embodiments belong to this type. That is, as a typical example of this type, the downstream sides of the plurality of optical fibers 21 to 26 (downstream sides of the first optical paths L11 to L16) are arranged in parallel, and the optical element of the second light guide unit 27 is selected by the selection unit 29. (Mirror MR, prism PR, etc.) are displaced along one axis or rotated around one axis, so that the light r21 to r26 is directed from the same position of the second light guide 27 in the same direction (toward the spectroscopic unit 30). E) An emitted multi-angle colorimeter.
 <3.3 ミキシング型のマルチアングル測色計>
 ミキシング型のマルチアングル測色計では、第2導光部27として光ミキシング性の高い導光部が利用されるため、光r21~r26の第2導光部27への入射位置および入射角度に、第2導光部27からの出射位置および出射角度が依存しない(或いは、依存割合が十分に小さい)。
<3.3 Mixing type multi-angle colorimeter>
In the mixing-type multi-angle colorimeter, a light guide having high optical mixing property is used as the second light guide 27, so that the incident positions and incident angles of the lights r21 to r26 to the second light guide 27 are determined. The emission position and the emission angle from the second light guide unit 27 do not depend on (or the dependency ratio is sufficiently small).
 上記第5実施形態のマルチアングル測色計100Dがこの類型に属する。すなわち、この類型の典型例としては、第2導光部27の光学素子(光ファイバFBなど)の下流側の光路が一定に保たれた状態で上流側の光路が被選択光路における下流側の光路と光学的に接続するように選択部29によって切り替えられることで、被選択光路を通じて導かれた光が第2導光部27でミキシングされ同一方向に(分光部30に向けて)出射されるマルチアングル測色計が挙げられる。 The multi-angle colorimeter 100D of the fifth embodiment belongs to this type. That is, as a typical example of this type, the upstream optical path is the downstream side of the selected optical path while the downstream optical path of the optical element (such as the optical fiber FB) of the second light guide unit 27 is kept constant. By being switched by the selection unit 29 so as to be optically connected to the optical path, the light guided through the selected optical path is mixed by the second light guide unit 27 and emitted in the same direction (toward the spectroscopic unit 30). Multi-angle colorimeter.
 <3.4 その他の類型のマルチアングル測色計>
 以上、3つの類型のマルチアングル測色計について説明したが、これらの類型では既述の通り、選択部29に1つの自由度についての駆動機構(一軸回動機構、一軸変位機構など)を持たせれば足りる。なお、これらの条件を満たさない場合でも本発明の実施は可能であり、その場合には、変位と回動との組み合わせなど2以上の自由度の組み合わせ駆動によって必要な光路選択がなされる。
<3.4 Other types of multi-angle colorimeter>
The three types of multi-angle colorimeters have been described above. In these types, as described above, the selection unit 29 has a drive mechanism (one-axis rotation mechanism, one-axis displacement mechanism, etc.) for one degree of freedom. If it is possible, it is enough. Note that the present invention can be implemented even if these conditions are not satisfied. In this case, a necessary optical path is selected by combination driving with two or more degrees of freedom such as a combination of displacement and rotation.
 <4 変形例>
 以上、本発明の実施形態について説明してきたが、本発明は、上記各実施形態に限定されるものではなく種々の変形が可能である。
<4 Modification>
As mentioned above, although embodiment of this invention has been described, this invention is not limited to said each embodiment, A various deformation | transformation is possible.
 図20は上記各実施形態のマルチアングル測色計100,100A~100Dにおける機能ブロック図を示し、図21は変形例としてのマルチアングル測色計100Eにおける機能ブロック図を示す。なお、図20では、マルチアングル測色計100,100A~100Dにおいて光r21が単一の分光部30に導かれる様子を示し、図21では、マルチアングル測色計100Eにおいて光r21が分光部30Aに導かれ、光r24が分光部30Bに導かれる様子を示している。 FIG. 20 is a functional block diagram of the multi-angle colorimeter 100, 100A to 100D of each of the above embodiments, and FIG. 21 is a functional block diagram of a multi-angle colorimeter 100E as a modification. 20 shows a state in which the light r21 is guided to the single spectroscopic unit 30 in the multi-angle colorimeters 100, 100A to 100D. In FIG. 21, the light r21 in the multi-angle colorimeter 100E is a spectroscopic unit 30A. The light r24 is guided to the spectroscopic unit 30B.
 図20に示すように、上記各実施形態のマルチアングル測色計100,100A~100Dでは、光r21~r26の全てが単一の分光部30に導かれる態様について説明したが、本発明の実施態様はこれに限られるものではない。例えば、図21に示すように、複数の分光部30A,30B(本変形例では2つ)が設けられ、光r21~r26がいずれかの分光部に導かれる態様であってもよい。 As shown in FIG. 20, in the multi-angle colorimeters 100, 100A to 100D of each of the above embodiments, the mode in which all of the lights r21 to r26 are guided to the single spectroscopic unit 30 has been described. The embodiment is not limited to this. For example, as shown in FIG. 21, a plurality of spectroscopic units 30A and 30B (two in this modification) may be provided, and the light r21 to r26 may be guided to any of the spectroscopic units.
 本変形例のマルチアングル測色計100Eの場合、分光部30Aに導かれる光r21~r23と、分光部30Bに導かれる光r24~r26とについて並列的に既述の分光測色動作を行うことが可能となるので、当該測色に要する時間を短縮することが可能となる。他方、上記実施形態のマルチアングル測色計100,100A~100Dの場合、単一の分光部30にて分光測色を行うため、マルチアングル測色計100Eのように複数の分光部30A,30Bを設ける構成に比べて、製造コストの低下および装置の小型化を達成することができる。また、分光部30間の個体差に起因する測定誤差を考慮する必要もない。 In the case of the multi-angle colorimeter 100E of this modification, the above-described spectral colorimetry operation is performed in parallel on the light beams r21 to r23 guided to the spectroscopic unit 30A and the light beams r24 to r26 guided to the spectroscopic unit 30B. Therefore, the time required for the color measurement can be shortened. On the other hand, in the case of the multi-angle colorimeter 100, 100A to 100D of the above embodiment, since the spectral colorimetry is performed by the single spectroscopic unit 30, a plurality of spectroscopic units 30A, 30B are used like the multi-angle colorimeter 100E. Compared with the configuration in which the apparatus is provided, the manufacturing cost can be reduced and the apparatus can be downsized. In addition, it is not necessary to consider measurement errors due to individual differences between the spectroscopic units 30.
 上記各実施形態では、第1導光部20として、光ファイバ21~26を利用する態様について説明したが、これに限られるものではない。すなわち、第1導光部20は、第2の光r2をその受光角度に対応した複数の第1光路を通じて導光することができる構成であれば足り、複数の受光角度に対応する位置にそれぞれミラーを配置する構成など、公知の種々の光学素子で代替可能である。 In each of the above-described embodiments, the aspect in which the optical fibers 21 to 26 are used as the first light guide unit 20 has been described. However, the present invention is not limited to this. That is, the first light guide unit 20 only needs to be configured to be able to guide the second light r2 through the plurality of first optical paths corresponding to the light reception angles, and is in positions corresponding to the plurality of light reception angles. Various known optical elements such as a configuration in which a mirror is arranged can be substituted.
 上記各実施形態では、シャッタT1~T6が光ファイバ21~26の出射口B21~B26周辺に設けられる構成について説明したが、シャッタT1~T6は光ファイバ21~26の入射口B11~B16周辺に設けられてもよい。なお、上記第1実施形態のようにシャッタT1~T6が出射口B21~B26周辺に設けられる構成においては、シャッタT1~T6の開閉制御とミラーMRの回動制御とが機構的に一体として行われてもよい。 In each of the above-described embodiments, the configuration in which the shutters T1 to T6 are provided around the exit ports B21 to B26 of the optical fibers 21 to 26 has been described. It may be provided. In the configuration in which the shutters T1 to T6 are provided around the exit ports B21 to B26 as in the first embodiment, the opening / closing control of the shutters T1 to T6 and the rotation control of the mirror MR are mechanically integrated. It may be broken.
 上記第4実施形態のマルチアングル測色計100Cでは、第2導光部27として、内部反射を引き起こす反射面RS2,RS3を対向する2面に有する菱形プリズムPR(図16~図18)を利用する態様について説明したが、これに限られるものではない。例えば、2つの反射面RS2,RS3は、回動中に一定の角度関係を維持した状態で対向されていれば足り、必ずしも平行関係でなくともよい。また、当該プリズムPRの代わりに、互いの反射面が角度関係を維持した状態で対向して形成された2枚のミラーを利用しても同様の効果を得ることができる。 In the multi-angle colorimeter 100C of the fourth embodiment, a rhombus prism PR (FIGS. 16 to 18) having reflection surfaces RS2 and RS3 that cause internal reflection on two opposing surfaces is used as the second light guide unit 27. Although the aspect which performs is demonstrated, it is not restricted to this. For example, the two reflecting surfaces RS2 and RS3 need only be opposed to each other while maintaining a certain angular relationship during rotation, and need not necessarily be in a parallel relationship. Further, the same effect can be obtained by using two mirrors that are formed to face each other while maintaining the angular relationship between the reflecting surfaces instead of the prism PR.
 なお、2枚のミラーMRを利用する場合においても、上記第4実施形態のプリズムPRと同様、第1および第2の反射面が固定形成され、共通の駆動部292によって駆動されることが望ましい。この結果、2枚のミラーMR間で駆動部による変位差が生じることを防止できる。 Even when two mirrors MR are used, it is desirable that the first and second reflecting surfaces are fixedly formed and driven by a common drive unit 292, as in the prism PR of the fourth embodiment. . As a result, it is possible to prevent a displacement difference due to the drive unit between the two mirrors MR.
 上記条件1,2を満足する構成例として上記各実施形態のマルチアングル測色計100,100A~100Dについて説明したが、上記条件1,2を満足する範囲内であれば、光ファイバ21~26の入射口B11~B16における配置変更(測定光の受光角度の変更)、光ファイバ21~26の出射口B21~B26における配置変更、第1導光部20の導光経路数の変更など、種々の設計変更を施しても構わない。 The multi-angle colorimeters 100 and 100A to 100D of the above-described embodiments have been described as configuration examples that satisfy the conditions 1 and 2. However, as long as the conditions 1 and 2 are satisfied, the optical fibers 21 to 26 are used. Change in the incident ports B11 to B16 (change of the light receiving angle of the measurement light), change of the arrangement of the optical fibers 21 to 26 at the exit ports B21 to B26, change of the number of light guide paths of the first light guide unit 20, etc. You may change the design.
 また、本発明は、その発明の範囲内において、各実施形態の自由な組み合わせ、あるいは各実施形態の任意の構成要素の変形、もしくは各実施形態において任意の構成要素の省略が可能である。 Also, within the scope of the present invention, the present invention can be freely combined with each embodiment, modified with any component in each embodiment, or omitted with any component in each embodiment.
 100,100A~100E マルチアングル測色計
 2 測定器本体
 3 測定用開口
 5 被測定物
 10 照射部
 20 第1導光部
 21~26 光ファイバ
 27 第2導光部
 29 選択部
 30 分光部
 40 光検出部
 60 メモリ部
 70 制御部
 71 測定制御部
 72 演算部
 FB 光ファイバ
 L11~L16 第1光路
 L21~L26 第2光路
 MR ミラー(反射面を有する光学素子)
 PR プリズム(第1および第2の反射面を有する光学素子)
 RS1~3 反射面
DESCRIPTION OF SYMBOLS 100,100A-100E Multi-angle colorimeter 2 Measuring device main body 3 Measurement opening 5 Measured object 10 Irradiation part 20 1st light guide part 21-26 Optical fiber 27 2nd light guide part 29 Selection part 30 Spectroscopic part 40 Light Detection unit 60 Memory unit 70 Control unit 71 Measurement control unit 72 Calculation unit FB Optical fiber L11 to L16 First optical path L21 to L26 Second optical path MR mirror (an optical element having a reflection surface)
PR prism (optical element having first and second reflecting surfaces)
RS1-3 reflective surface

Claims (8)

  1.  (a) 試料に照射光を照射する照射部と、
     (b) 前記照射光の照射に応答して前記試料の表面から出射する測定光を、前記表面に対して互いに異なる複数の角度で受光し、当該複数の角度に対応した複数の第1光路を通じて前記測定光を導光する第1導光部と、
     (c) 前記複数の第1光路のうちの1の光路である被選択光路を通じて導かれた前記測定光を受光し、第2光路を通じて導く第2導光部と、
     (d) 前記第2導光部を駆動して前記被選択光路を可変に選択する選択部と、
     (e) 前記第2光路を通じて導かれた前記測定光を受光して分光する分光部と、
    を備え、
     前記選択部は、前記被選択光路における下流側の光路と前記第2光路における上流側の光路とが光学的に接続するように、前記第2光路の上流側の光路を切り替えて、前記被選択光路の選択を行い、
     前記第2光路における下流側の光路は、前記複数の第1光路のいずれが前記被選択光路として選択された場合においても同一とされており、
     前記複数の第1光路について前記被選択光路を切り替えることにより、前記複数の角度に対応した複数の前記測定光について分光結果を用いた測色を行うことを特徴とするマルチアングル測色計。
    (a) an irradiation unit for irradiating the sample with irradiation light;
    (b) The measurement light emitted from the surface of the sample in response to the irradiation of the irradiation light is received at a plurality of different angles with respect to the surface, and through a plurality of first optical paths corresponding to the plurality of angles. A first light guide for guiding the measurement light;
    (c) a second light guide unit that receives the measurement light guided through the selected optical path, which is one of the plurality of first optical paths, and guides the measurement light through the second optical path;
    (d) a selection unit that drives the second light guide unit to variably select the selected optical path;
    (e) a spectroscopic unit that receives and separates the measurement light guided through the second optical path;
    With
    The selection unit switches the optical path on the upstream side of the second optical path so that the downstream optical path on the selected optical path and the upstream optical path on the second optical path are optically connected to each other. Select the optical path,
    The downstream optical path in the second optical path is the same even when any of the plurality of first optical paths is selected as the selected optical path,
    A multi-angle colorimeter that performs colorimetry using spectral results for a plurality of measurement lights corresponding to the plurality of angles by switching the selected optical paths for the plurality of first optical paths.
  2.  請求項1に記載のマルチアングル測色計であって、
     前記第2導光部は、前記被選択光路から入射される光を反射する反射面を有する光学素子を有し、
     前記選択部は、前記光学素子を1軸周りに回動させる駆動部を有し、
     前記駆動部によって回動される前記光学素子の回動停止位置に応じて、前記第2光路における上流側の光路が選択的に切り替えられ、前記複数の第1光路の中から前記被選択光路が選択されることを特徴とするマルチアングル測色計。
    The multi-angle colorimeter according to claim 1,
    The second light guide unit includes an optical element having a reflection surface that reflects light incident from the selected optical path,
    The selection unit has a drive unit that rotates the optical element around one axis,
    The upstream optical path in the second optical path is selectively switched according to the rotation stop position of the optical element rotated by the drive unit, and the selected optical path is selected from the plurality of first optical paths. Multi-angle colorimeter characterized by being selected.
  3.  請求項2に記載のマルチアングル測色計であって、
     前記光学素子は、前記被選択光路から入射される光を反射する第1の反射面と、
     前記第1の反射面と対向して形成され、前記第1の反射面より出射される反射光を反射する第2の反射面とを有し、
     前記第1および第2の反射面は、共通の前記駆動部によって1軸周りに回動されることを特徴とするマルチアングル測色計。
    The multi-angle colorimeter according to claim 2,
    The optical element includes a first reflecting surface that reflects light incident from the selected optical path;
    A second reflecting surface that is formed opposite to the first reflecting surface and reflects the reflected light emitted from the first reflecting surface;
    The multi-angle colorimeter, wherein the first and second reflecting surfaces are rotated about one axis by the common driving unit.
  4.  請求項3に記載のマルチアングル測色計であって、
     前記第1および第2の反射面は、前記光学素子において互いに角度関係を維持した状態で固定形成されており、
     前記回動において、前記第1および第2の反射面は前記1軸に垂直な平面に対して一定の角度に維持されていることを特徴とするマルチアングル測色計。
    The multi-angle colorimeter according to claim 3,
    The first and second reflecting surfaces are fixedly formed while maintaining an angular relationship with each other in the optical element,
    In the rotation, the first and second reflecting surfaces are maintained at a fixed angle with respect to a plane perpendicular to the one axis.
  5.  請求項1に記載のマルチアングル測色計であって、
     前記第2導光部は、前記被選択光路から入射される光を反射する反射面を有する光学素子を有し、
     前記選択部は、前記光学素子を直線状の双方向に変位させる駆動部を有し、
     前記駆動部によって変位される前記光学素子の駆動停止位置に応じて、前記第2光路における上流側の光路が選択的に切り替えられ、前記複数の第1光路の中から前記被選択光路が選択されることを特徴とするマルチアングル測色計。
    The multi-angle colorimeter according to claim 1,
    The second light guide unit includes an optical element having a reflection surface that reflects light incident from the selected optical path,
    The selection unit has a drive unit that displaces the optical element in a linear bidirectional manner,
    The upstream optical path in the second optical path is selectively switched according to the driving stop position of the optical element displaced by the driving unit, and the selected optical path is selected from the plurality of first optical paths. Multi-angle colorimeter characterized by that.
  6.  請求項5に記載のマルチアングル測色計であって、
     前記反射面は、前記光学素子の前記直線状の変位の方向に対して一定の角度に維持されていることを特徴とするマルチアングル測色計。
    The multi-angle colorimeter according to claim 5,
    The multi-angle colorimeter, wherein the reflecting surface is maintained at a constant angle with respect to the linear displacement direction of the optical element.
  7.  請求項1に記載のマルチアングル測色計であって、
     前記第2導光部は、光ファイバを有し、
     前記選択部は、前記光ファイバの上流側の開口である入光部の位置又は角度を変位させる駆動部を有し、
     前記駆動部によって変位される前記入光部の位置又は角度に応じて、前記第2光路における上流側の光路が選択的に切り替えられ、前記複数の第1光路の中から前記被選択光路が選択されることを特徴とするマルチアングル測色計。
    The multi-angle colorimeter according to claim 1,
    The second light guide has an optical fiber,
    The selection unit includes a drive unit that displaces a position or an angle of a light incident unit that is an opening on the upstream side of the optical fiber,
    The upstream optical path in the second optical path is selectively switched according to the position or angle of the light incident section displaced by the drive section, and the selected optical path is selected from the plurality of first optical paths. A multi-angle colorimeter characterized by
  8.  請求項1ないし請求項7に記載のいずれかのマルチアングル測色計であって、
     前記複数の第1光路を通じて導かれる前記測定光の全てが、単一の前記分光部によって分光測色されることを特徴とするマルチアングル測色計。
    The multi-angle colorimeter according to any one of claims 1 to 7,
    A multi-angle colorimeter, wherein all of the measurement light guided through the plurality of first optical paths is spectrally measured by a single spectroscopic unit.
PCT/JP2014/064906 2013-06-13 2014-06-05 Multi-angle colorimeter WO2014199885A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015522736A JPWO2014199885A1 (en) 2013-06-13 2014-06-05 Multi-angle colorimeter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013124451 2013-06-13
JP2013-124451 2013-06-13

Publications (1)

Publication Number Publication Date
WO2014199885A1 true WO2014199885A1 (en) 2014-12-18

Family

ID=52022181

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/064906 WO2014199885A1 (en) 2013-06-13 2014-06-05 Multi-angle colorimeter

Country Status (2)

Country Link
JP (1) JPWO2014199885A1 (en)
WO (1) WO2014199885A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018037973A1 (en) * 2016-08-26 2019-06-20 コニカミノルタ株式会社 Optical unit for multi-angle optical characteristic measuring apparatus and multi-angle optical characteristic measuring apparatus
CN114441041A (en) * 2022-01-25 2022-05-06 武汉精立电子技术有限公司 Filter type imaging colorimeter

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6472033A (en) * 1987-09-14 1989-03-16 Toshiba Corp Photometric system for automatic chemical analysis
JPH0530740U (en) * 1991-10-02 1993-04-23 三菱電機株式会社 Spectrometer
JPH06160272A (en) * 1992-11-19 1994-06-07 Olympus Optical Co Ltd Optical tomographic imaging system
JPH085548A (en) * 1994-06-22 1996-01-12 Technol Res Assoc Of Medical & Welfare Apparatus Light scanning apparatus
JP2000002654A (en) * 1998-06-12 2000-01-07 Suzuki Motor Corp Immunoreaction measuring apparatus
JP2001050817A (en) * 1999-08-10 2001-02-23 Minolta Co Ltd Multiangle colorimeter
JP2001508340A (en) * 1997-01-13 2001-06-26 メディスペクトラ インコーポレーテッド Spatially resolved optical measurements
JP2003126648A (en) * 2001-10-22 2003-05-07 Ishikawajima Harima Heavy Ind Co Ltd Method for injecting ammonia in combustion gas and apparatus thereof

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6472033A (en) * 1987-09-14 1989-03-16 Toshiba Corp Photometric system for automatic chemical analysis
JPH0530740U (en) * 1991-10-02 1993-04-23 三菱電機株式会社 Spectrometer
JPH06160272A (en) * 1992-11-19 1994-06-07 Olympus Optical Co Ltd Optical tomographic imaging system
JPH085548A (en) * 1994-06-22 1996-01-12 Technol Res Assoc Of Medical & Welfare Apparatus Light scanning apparatus
JP2001508340A (en) * 1997-01-13 2001-06-26 メディスペクトラ インコーポレーテッド Spatially resolved optical measurements
JP2000002654A (en) * 1998-06-12 2000-01-07 Suzuki Motor Corp Immunoreaction measuring apparatus
JP2001050817A (en) * 1999-08-10 2001-02-23 Minolta Co Ltd Multiangle colorimeter
JP2003126648A (en) * 2001-10-22 2003-05-07 Ishikawajima Harima Heavy Ind Co Ltd Method for injecting ammonia in combustion gas and apparatus thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018037973A1 (en) * 2016-08-26 2019-06-20 コニカミノルタ株式会社 Optical unit for multi-angle optical characteristic measuring apparatus and multi-angle optical characteristic measuring apparatus
CN114441041A (en) * 2022-01-25 2022-05-06 武汉精立电子技术有限公司 Filter type imaging colorimeter
CN114441041B (en) * 2022-01-25 2024-02-23 武汉精立电子技术有限公司 Filter type imaging colorimeter

Also Published As

Publication number Publication date
JPWO2014199885A1 (en) 2017-02-23

Similar Documents

Publication Publication Date Title
EP2703794B1 (en) Multi-angle colorimeter
US9921050B2 (en) Spectral control system
US7355712B2 (en) Apparatus for measuring goniometric reflection property of sample
CN102680098A (en) Spectral measurement device
WO2014199885A1 (en) Multi-angle colorimeter
WO2012131812A1 (en) Spectroscope
GB2479012A (en) Aligning a collection fibre with a sampling region in an emission measurement system
US7149033B2 (en) UV visual light beam combiner
WO2016208456A1 (en) Multiangle colorimeter
KR20100110301A (en) Spectrometer measuring head for analyzing characteristic variables of liquid, pasty or solid substances
CN101464191A (en) Miniature optical spectrometer based on stepping motor
US20170045397A1 (en) Device for analysing a specimen and corresponding method
US20220019068A1 (en) Assembly for switching optical path and optical microscope including the assembly
TWI728177B (en) Spectrophotometer
US9404799B2 (en) Tandem dispersive range monochromator
JP3473524B2 (en) Spectrometer
JP2015001389A (en) Spectroscope and multi-angle colorimeter
JPS5973741A (en) Spectrophotometer
WO2004070330A1 (en) Monochromator and spectrophotometer
CN113544479A (en) Spectrophotometer
JP2007078603A (en) Spectrophotometer
HU226833B1 (en) Method and apparatus for quantitative measuring based on light intensity measurement

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14811229

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015522736

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14811229

Country of ref document: EP

Kind code of ref document: A1