WO2014199849A1 - Method for producing functional water, device for producing functional water, and instrument equipped with said device - Google Patents

Method for producing functional water, device for producing functional water, and instrument equipped with said device Download PDF

Info

Publication number
WO2014199849A1
WO2014199849A1 PCT/JP2014/064469 JP2014064469W WO2014199849A1 WO 2014199849 A1 WO2014199849 A1 WO 2014199849A1 JP 2014064469 W JP2014064469 W JP 2014064469W WO 2014199849 A1 WO2014199849 A1 WO 2014199849A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
aqueous liquid
voltage
electrodes
functional water
Prior art date
Application number
PCT/JP2014/064469
Other languages
French (fr)
Japanese (ja)
Inventor
棚橋正治
棚橋正和
寺島健太郎
Original Assignee
有限会社ターナープロセス
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 有限会社ターナープロセス, シャープ株式会社 filed Critical 有限会社ターナープロセス
Publication of WO2014199849A1 publication Critical patent/WO2014199849A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F1/46114Electrodes in particulate form or with conductive and/or non conductive particles between them
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F2001/46119Cleaning the electrodes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus
    • C02F2201/46105Details relating to the electrolytic devices
    • C02F2201/4612Controlling or monitoring
    • C02F2201/46125Electrical variables
    • C02F2201/4613Inversing polarity
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/16Regeneration of sorbents, filters

Definitions

  • the present invention relates to a method for generating functional water, a functional water generating device, and a device using the same.
  • an anode and a cathode are arranged so as to sandwich a diaphragm, and water is electrolyzed simultaneously at the anode and the cathode.
  • alkaline water having a high ORP and acidic water having a low ORP are always generated as a set.
  • the conventional method of blowing gas from the outside requires a gas supply source, which is costly and troublesome. Further, regarding the method of electrolyzing water, the conventional method has a problem that the change in pH accompanying the change in redox potential cannot be controlled. In the method described in JP-A-11-57715, alkaline water having a high ORP and acidic water having a low ORP are generated at the same time. Therefore, when only one is used, the other needs to be discarded.
  • an object of the present invention is to provide a novel method and apparatus that can easily produce an aqueous liquid that is weakly acidic and has a low redox potential.
  • This method is a method of generating functional water using a container in which an aqueous liquid is disposed and first and second electrodes disposed in the container, and (i) the first and second electrodes By applying a voltage between the first electrode and the second electrode while the electrode is immersed in the aqueous liquid, and electrolyzing water on the surface of the first electrode; and A step of adsorbing ions in the aqueous liquid on the surface of the second electrode; and (ii) a voltage in a direction opposite to the step of (i) between the first electrode and the second electrode. And the step of electrolyzing water on the surface of the first electrode and releasing the ions adsorbed on the surface of the second electrode into the aqueous liquid in this order.
  • the present invention also provides one functional water generator.
  • the functional water generating device applies a voltage between a container in which an aqueous liquid is disposed, first and second electrodes disposed in the container, and the first electrode and the second electrode.
  • the controller includes: (i) applying the voltage between the first electrode and the second electrode in a state where the first and second electrodes are immersed in the aqueous liquid; Electrolyzing water on the surface of the electrode and adsorbing ions in the aqueous liquid to the surface of the second electrode; and (ii) between the first electrode and the second electrode.
  • step (i) water is electrolyzed on the surface of the first electrode, and the ions adsorbed on the surface of the second electrode are The step of releasing into the aqueous liquid is performed in this order.
  • the method of the present invention for producing functional water is a method for producing functional water using a container in which an aqueous liquid is arranged and first and second electrodes arranged in the container.
  • aqueous liquid (A) the aqueous liquid used in the method and apparatus of the present invention.
  • steps (i) and (ii) described later are performed in this order.
  • the container in which the aqueous liquid (A) is disposed may or may not be sealed. By performing the process in a sealed state, the concentration of dissolved gas in the aqueous liquid (A) can be increased.
  • the apparatus of the present invention for generating functional water includes a container in which an aqueous liquid (A) is disposed, first and second electrodes disposed in the container, a first electrode, and a second electrode.
  • a controller performs the process (i) and (ii) mentioned later in this order. That is, the apparatus of the present invention is an apparatus for carrying out the method of the present invention. Therefore, the matters described for the method of the present invention can be applied to the apparatus of the present invention, and the items described for the apparatus of the present invention can be applied to the method of the present invention.
  • steps (i) and (ii) are usually performed in a batch mode.
  • the batch system means that after adding a predetermined amount of the aqueous liquid (A) to the container (electrolysis container), the process is executed without substantially taking in and out the aqueous liquid (A) in the container. To do. For example, if the variation of the volume of the aqueous liquid (A) in the container is 20 vol% or less, it can be regarded as a batch system.
  • the aqueous liquid (A) is a liquid that is electrolyzed by the method of the present invention, and includes water.
  • the aqueous liquid (A) is an aqueous solution in which the solvent is only water, but may contain a solvent other than water.
  • the ratio of water in the solvent is usually in the range of 50 to 100% by weight, for example, in the range of 80 to 100% by weight or 90 to 100% by weight.
  • the aqueous liquid (A) contains other ions in addition to hydrogen ions (H + ) and hydroxide ions (OH ⁇ ).
  • the aqueous liquid (A) contains a cation other than hydrogen ions and an anion other than hydroxide ions.
  • examples of the aqueous liquid (A) include tap water.
  • cations other than hydrogen ions may be collectively referred to as “cations (L + )” regardless of their charge number
  • anions other than hydroxide ions may be referred to as “anions (L)” regardless of their charge number.
  • L -) "and there is a case to be collectively. Also.
  • a cation (L + ) and an anion (L ⁇ ) may be collectively referred to as an ion (L).
  • the aqueous liquid (A) contains a cation (L + ).
  • the anion is adsorbed on the second electrode in the step (i)
  • the aqueous liquid (A) contains an anion (L ⁇ ).
  • the aqueous liquid (A) may be an aqueous solution in which a salt is dissolved.
  • an aqueous liquid for example, tap water
  • an aqueous liquid for example, tap water
  • an aqueous liquid having a conductivity in the range of 100 ⁇ S / cm to 1000 ⁇ S / cm (for example, 100 ⁇ S / cm to 300 ⁇ S / cm) is electrolyzed. It is possible.
  • a compound that generates ions for example, a salt such as KCl or NaCl
  • a salt such as KCl or NaCl
  • the salt to be added is preferably such that the ions produced thereby do not react within the electrolysis potential of water.
  • step (i) a voltage (DC voltage) is applied between the first electrode and the second electrode while the first and second electrodes are immersed in the aqueous liquid (A).
  • DC voltage DC voltage
  • water is electrolyzed on the surface of the first electrode, and ions (ions (L)) in the aqueous liquid (A) are adsorbed on the surface of the second electrode.
  • the pH of the aqueous liquid (A) is changed.
  • the redox potential of the aqueous liquid (A) (hereinafter sometimes referred to as “ORP”) changes.
  • step (ii) a voltage (DC voltage) is applied between the first electrode and the second electrode in the opposite direction to step (i).
  • DC voltage DC voltage
  • water is electrolyzed on the surface of the first electrode, and ions adsorbed on the surface of the second electrode are released into the aqueous liquid (A).
  • the pH of the aqueous liquid (A) is changed.
  • ORP of aqueous liquid (A) changes with process (ii).
  • step (ii) a voltage is applied between the first electrode and the second electrode in a state where the first and second electrodes are immersed in the aqueous liquid (A) that has undergone step (i).
  • a constant voltage may be applied or the voltage may be changed.
  • a voltage may be applied so that a constant current flows between the electrodes.
  • a constant voltage may be applied or the voltage may be changed.
  • a voltage may be applied so that a constant current flows between the electrodes.
  • the first electrode is an anode (between the first electrode and the second electrode in a state where the first and second electrodes are immersed in the aqueous liquid (A)).
  • a voltage is applied so that the second electrode becomes a cathode (cathode).
  • oxygen gas and hydrogen ions are generated on the surface of the first electrode, and cations (L + ) in the aqueous liquid (A) are adsorbed on the surface of the second electrode.
  • the pH of the aqueous liquid (A) is lowered.
  • the ORP of the aqueous liquid (A) changes.
  • a constant voltage may be applied or the voltage may be changed.
  • a voltage may be applied so that a constant current flows between the electrodes.
  • voltage may be applied until the pH is in the range of 2.5 to 4.5 (for example, in the range of 3.0 to 4.0).
  • step (ii) of the first example a voltage is applied so that the first electrode becomes a cathode (so that the second electrode becomes an anode) between the first electrode and the second electrode. Is applied. By applying this voltage, hydrogen gas and hydroxide ions are generated on the surface of the first electrode, and cations (L + ) adsorbed on the surface of the second electrode are released into the aqueous liquid. By this step (ii), the pH of the aqueous liquid (A) is increased. That is, according to step (ii) of the first example, the aqueous liquid (A) that has become acidic or weakly acidic in step (i) can be made weakly acidic, neutral, or weakly alkaline.
  • the dissolved hydrogen concentration of the aqueous liquid (A) is increased by the step (ii) of the first example, and the ORP of the aqueous liquid (A) is decreased. That is, according to the present invention, it is possible to easily obtain an aqueous liquid (A) that is weakly acidic or neutral and has a low ORP. In another aspect, according to the present invention, it is possible to easily obtain an aqueous liquid (A) that is weakly acidic or neutral and has a high dissolved hydrogen concentration.
  • water having a high dissolved hydrogen concentration for example, water having a dissolved hydrogen concentration of 0.1 ppm or more
  • hydroogen water water having a high dissolved hydrogen concentration
  • acidic water or weakly acidic water is produced in step (i), and is made weakly acidic to almost neutral in step (ii).
  • substantially neutral means, for example, that the pH is in the range of 6.0 to 8.0.
  • the aqueous liquid (A) obtained by this invention can be used for various uses as functional water. Examples of such applications include drinking applications, plant growing applications, air cleaning applications, and hairdressing applications.
  • the first electrode is a cathode between the first electrode and the second electrode in a state where the first and second electrodes are immersed in the aqueous liquid (A).
  • a voltage is applied so that the second electrode becomes the anode.
  • hydrogen gas and hydroxide ions are generated on the surface of the first electrode, and the anions (L ⁇ ) in the aqueous liquid (A) are adsorbed on the surface of the second electrode.
  • the pH of the aqueous liquid (A) is increased.
  • the ORP of the aqueous liquid (A) changes.
  • the voltage is set so that the first electrode becomes an anode (the second electrode becomes a cathode) between the first electrode and the second electrode. Is applied. By applying this voltage, oxygen gas and hydrogen ions are generated on the surface of the first electrode, and anions (L ⁇ ) adsorbed on the surface of the second electrode are released into the aqueous liquid. By this step (ii), the pH of the aqueous liquid (A) is lowered. That is, according to step (ii) of the second example, the aqueous liquid (A) that has become alkaline or weakly alkaline in step (i) can be made weakly alkaline, neutral, or weakly acidic.
  • the dissolved hydrogen concentration of the aqueous liquid (A) is decreased and the ORP of the aqueous liquid (A) is increased by the step (ii) of the second example. That is, according to the present invention, it is possible to easily obtain a weakly alkaline or neutral aqueous liquid (A) having a high ORP. In one example, it is possible to obtain an aqueous liquid (A) having a pH in the range of 6.0 to 6.5 and an ORP in the range of 344 to 532 mV. In another aspect, according to the present invention, it is possible to easily obtain an aqueous liquid (A) that is weakly alkaline or neutral and has a low dissolved hydrogen concentration.
  • the pH of the aqueous liquid (functional water) after passing through the step (ii) by changing the conditions of each step and the pH and ORP of the aqueous liquid (A) before being treated in the step (i) The ORP can be set to a predetermined value.
  • functional water having pH and ORP in a predetermined range can be easily produced.
  • weak acid means that pH is 3.0 or more and less than 6.0.
  • weak alkalinity means that the pH is greater than 8.0 and 11.0 or less.
  • the controller included in the device of the present invention includes, for example, an arithmetic processing device and a storage device.
  • the controller may include an integrated circuit in which the arithmetic processing device and the storage device are integrated.
  • the storage device stores a program for executing various processes (for example, steps (i) and (ii)).
  • the arithmetic processing unit generates functional water by executing the stored program.
  • Known devices can be applied to these arithmetic processing devices and storage devices.
  • the device of the present invention may include an input device for inputting settings desired by the user and a display device for indicating the state of the device.
  • a display device for indicating the state of the device.
  • Known input devices and display devices can be used.
  • a touch panel that serves as both an input device and a display device may be used.
  • the container used in the present invention is not particularly limited as long as it can hold the aqueous liquid (A), and may be a container formed using a resin, for example.
  • the first electrode is an electrode that is more susceptible to water electrolysis than the second electrode.
  • An example of the first electrode is a metal electrode.
  • a material having a hydrogen overvoltage smaller than the material present on the surface of the second electrode is present on the surface of the first electrode.
  • Platinum is present on the surface of the first electrode of an example.
  • a preferred example of the first electrode is a metal electrode coated with platinum, for example, a titanium electrode coated with platinum.
  • the second electrode is an electrode that can reversibly adsorb ions.
  • the second electrode may include a conductive substance capable of reversibly adsorbing ions (hereinafter sometimes referred to as “conductive substance (C)”).
  • the conductive material (C) is in the form of a sheet.
  • the conductive substance (C) can adsorb ions reversibly. That is, the conductive substance (C) can release the adsorbed ions.
  • the conductive substance (C) for example, a substance that forms an electric double layer on the surface by adsorbing ions in a solution can be used.
  • ions having a sign opposite to the surface charge are adsorbed on the surface of the conductive material (C). For example, an anion is adsorbed when the surface charge is a positive charge, and a cation is adsorbed when the surface charge is a negative charge.
  • the conductive substance (C) a conductive substance having a large specific surface area can be used.
  • a carbon material can be used.
  • activated carbon is preferably used because of its large specific surface area.
  • the conductive substance (C) may be a conductive sheet formed by aggregating granular activated carbon, or a conductive sheet formed by aggregating granular activated carbon and conductive carbon.
  • it may be an activated carbon block formed by solidifying activated carbon particles, a sheet formed of activated carbon fibers, or a composite of these.
  • the sheet formed of activated carbon fibers include a cloth formed of activated carbon fibers.
  • the activated carbon fiber cloth include activated carbon fiber cloths manufactured by Nippon Kainol Co., Ltd. (product numbers such as ACC-5092-10, ACC-5092-15, and ACC-5092-20).
  • the specific surface area of the conductive material (C) is, for example, 300 m 2 / g or more, and preferably 900 m 2 / g or more.
  • the upper limit of the specific surface area is not particularly limited, but may be, for example, 5000 m 2 / g or less or 2500 m 2 / g or less.
  • “specific surface area” is a value measured by the BET method using nitrogen gas.
  • the first electrode includes platinum disposed on the surface
  • the second electrode includes activated carbon disposed on the surface. According to this configuration, functional water can be generated efficiently.
  • the first and second electrodes may be flat (sheet-like) electrodes.
  • the phrase “flat plate” is not limited to the shape of a plate.
  • the meaning of the phrase “flat” includes “flat” and “two-dimensional”.
  • the plate-like electrode include, in addition to a general plate-like electrode, a linear electrode arranged in a plate shape and an expanded metal.
  • the first and second electrodes may be electrodes through which gas can pass or flat electrodes through which gas can pass. Such electrodes include electrodes composed of linear electrodes and expanded metals. Only the first electrode may be a flat electrode through which gas can pass. Note that the electrode through which the gas can pass is an electrode through which the liquid can pass (that is, an electrode through which the gas and the liquid can pass) from another viewpoint.
  • the outer shape of the first and second electrodes is not limited, and may be, for example, a square shape. Moreover, there is no limitation in the size (outside size) of the first and second electrodes, and it can be selected according to the application. In addition, the distance between the first electrode and the second electrode can be arbitrarily set in consideration of the application. A plurality of first electrodes and a plurality of second electrodes may be used. In that case, the first electrode and the second electrode may be alternately arranged.
  • each of the first and second electrodes is a flat electrode.
  • the first and second electrodes are arranged in parallel with each other so as to face each other in parallel to the vertical direction. According to this structure, functional water can be generated particularly efficiently.
  • vertical direction means a direction parallel to the direction of gravity.
  • horizontal direction means a direction parallel to a plane orthogonal to the direction of gravity.
  • parallel includes a case where it can be regarded as substantially parallel. For example, an inclination within 5 ° is included in the parallel range.
  • the first electrode is disposed above the second electrode.
  • the first and second electrodes are preferably flat electrodes, and are arranged in parallel to each other so as to be parallel to the horizontal direction and to face each other. According to this structure, functional water can be generated particularly efficiently.
  • the first electrode may be a flat electrode through which gas can pass.
  • both the first and second electrodes may be flat electrodes through which gas can pass.
  • the flat plate-like first and second electrodes may be disposed so as to be inclined with respect to the horizontal direction.
  • the first electrode and the second electrode may be arranged parallel to each other and inclined with respect to the horizontal direction so that the first electrode is arranged above.
  • Increasing the volume of the portion of the aqueous liquid (A) through which the generated gas passes can be achieved by tilting it in the horizontal direction as compared to arranging the first and second electrodes in parallel in the vertical direction. Can do.
  • a general DC power supply can be used as the power supply included in the apparatus of the present invention.
  • the power source may be an AC-DC converter that converts an AC voltage obtained from an outlet into a DC voltage.
  • the power source may be a power generation device such as a solar cell or a fuel cell or a battery (a primary battery and a secondary battery).
  • the apparatus of this invention contains the functional water production
  • the apparatus of the present invention may further include a pipe for taking out and using the functional water generated by the functional water generator.
  • the connection part of the container contained in the functional water generating apparatus and in which the functional water is generated and the pipe may be located above the first electrode.
  • the connecting portion between the container in which the functional water is generated and the piping may be located above the first electrode.
  • the connecting portion between the container in which the functional water is generated and the pipe may be disposed closer to the first electrode than to the second electrode. According to this configuration, it is easy to use an aqueous liquid (functional water) whose physical properties have changed in the vicinity of the first electrode.
  • the above piping may be connected to a diffusion unit for misting or steaming the functional water. Moreover, the said piping may be connected to the container for hold
  • Examples of the device of the present invention include a functional water generator for beverages, a functional water generator for plant cultivation, an air purifier, and a hairdressing and beauty device.
  • Embodiment 1 An example of the method and apparatus of the present invention is described below.
  • the apparatus 100 of Embodiment 1 for producing functional water is shown in FIG.
  • the 1 includes a container 10, first and second electrodes 11 and 12 disposed in the container 10, a power source 13, and a controller 20.
  • the power supply 13 includes a switching circuit for changing the polarity of the supplied voltage.
  • the controller 20 controls the DC voltage (DC current) supplied from the power supply 13.
  • the first electrode 11 is a titanium electrode coated with platinum.
  • a preferred example of the first electrode 11 is an electrode through which gas can pass.
  • the second electrode 12 is an electrode including an activated carbon fiber cloth and a current collector in contact therewith.
  • the first and second electrodes 11 and 12 both have a flat plate shape (sheet shape) with a rectangular outer shape.
  • the container 10 is a container mainly made of resin.
  • the container 10 may include a water supply port 10a as shown in FIG.
  • the water supply port 10a can be closed with a lid. That is, the container 10 can be used as a sealed container.
  • the container 10 may include a valve or the like for releasing the internal gas to the outside of the container 10 when the internal pressure in the container 10 increases excessively.
  • the container 10 may be opened, and in step (ii), the container 10 may be in a sealed state or a state close thereto.
  • the first electrode 11 and the second electrode 12 are arranged in parallel to each other so as to be parallel to the vertical direction and to face each other.
  • the arrangement of the first and second electrodes 11 and 12 may be different from the arrangement shown in FIG. An example of such an apparatus 100a is shown in FIG.
  • the first electrode 11 and the second electrode 12 are each arranged in parallel with the horizontal direction. Further, these electrodes are arranged in parallel to each other so that the first electrode 11 is arranged above the second electrode 12 and are opposed to each other. In the apparatus 100a of FIG. 2, it is preferable that the 1st electrode 11 is an electrode which lets gas pass.
  • the aqueous liquid 31 is placed in the container 10.
  • the aqueous liquid 31 is tap water, for example.
  • the pH is in the range of 5.8 to 8.6
  • the ORP is in the range of +300 to +750 mV.
  • step (i) is performed.
  • the controller 20 controls the power supply 13 and applies a DC voltage between the first electrode 11 and the second electrode 12 so that the first electrode 11 becomes an anode.
  • a voltage at which oxygen gas is generated from at least the first electrode 11 is applied.
  • a voltage in the range of 20 to 80 volts may be applied.
  • the voltage to be applied can be reduced to about 5 volts by adding a salt such as KCl or NaCl (the same applies to step (ii)).
  • the cation (L + ) in the aqueous liquid 31 is adsorbed on the activated carbon fiber cloth of the second electrode 12.
  • examples of the cation (L + ) include not only a cation having a valence of 1 but also a polyvalent cation (for example, divalent or trivalent such as Ca 2+ , Mg 2+ and Fe 3+). Of cations). Therefore, in the step (i), the hardness of the aqueous liquid 31 is usually reduced.
  • step (i) the pH of the aqueous liquid 31 is lowered by the hydrogen ions generated on the surface of the first electrode 11.
  • the oxygen concentration generated in the surface of the first electrode 11 usually increases the dissolved oxygen concentration in the aqueous liquid 31, and as a result, the ORP of the aqueous liquid 31 may increase. However, the ORP may decrease depending on conditions.
  • the pH of the aqueous liquid 31 is in the range of 2.5 to 4.5 (
  • the voltage is applied until it becomes within the range of 3.0 to 4.0.
  • the ORP at this time is in the range of ⁇ 100 to +250 mV (eg, ⁇ 50 to +100 mV).
  • step (ii) is performed with the first and second electrodes 11 and 12 immersed in the aqueous liquid 31 that has undergone step (i).
  • the controller 20 controls the power supply 13 and applies a DC voltage between the first electrode 11 and the second electrode 12 so that the first electrode 11 becomes a cathode. That is, a voltage is applied in the opposite direction to the step (i).
  • a voltage at which hydrogen gas is generated from at least the first electrode 11 is applied. For example, a voltage in the range of 20 to 80 volts may be applied.
  • step (ii) the pH of the aqueous liquid 31 is increased by hydroxide ions generated on the surface of the first electrode 11.
  • step (ii) the hydrogen gas generated on the surface of the first electrode 11 increases the dissolved hydrogen concentration in the aqueous liquid 31, and as a result, the ORP of the aqueous liquid 31 decreases.
  • an aqueous liquid 31 having a pH near neutral and a low ORP is obtained.
  • pH and ORP of the aqueous liquid 31 obtained can be adjusted by changing the kind of aqueous liquid 31 to be used, and the application conditions of voltage.
  • the aqueous liquid 31 (functional water) having a pH in the range of 4.5 to 8.0 and an ORP (oxidation-reduction potential based on the standard hydrogen electrode) in the range of ⁇ 450 to +200 mV. ) Can be obtained.
  • ORP is represented by a numerical value
  • the ORP is represented by a numerical value with reference to a standard hydrogen electrode.
  • the aqueous liquid (functional water) obtained by the method and apparatus of the present invention can also be used as it is for drinking or face washing.
  • the effect of removing in-vivo active oxygen by dissolved hydrogen is expected.
  • the functional water obtained in the first example described above is used for washing the face, activation of the skin by the astrogen effect, skin tightening effect, disinfection effect, skin aging prevention effect by dissolved hydrogen, etc. There is expected.
  • the apparatus using the functional water generator of the present invention may include a diffusion unit that discharges the obtained aqueous liquid (functional water) into the air in the form of mist or steam. That is, humidification with functional water is possible by diffusing the obtained functional water (for example, hydrogen water) into the air.
  • a diffusion unit that discharges the obtained aqueous liquid (functional water) into the air in the form of mist or steam. That is, humidification with functional water is possible by diffusing the obtained functional water (for example, hydrogen water) into the air.
  • FIG. 4 An example of the apparatus of the present invention including the functional water generating apparatus and the diffusing apparatus of the present invention is shown in FIG. 4 includes a main body part 210, a container 10, a first electrode 11, a second electrode 12, a diffusion part 220, a pipe 221, and an on-off valve 222.
  • Device 200 includes an input device and a display device (both not shown). Note that the device 200 may include a touch panel that serves as both an input device and a display device.
  • the main body 210 includes a power supply 13 and a controller (control device) 20.
  • the container 10, the first electrode 11, the second electrode 12, the power supply 13, and the controller 20 are the same as those of the device 100 described in the first embodiment, and thus redundant description is omitted. That is, the device 200 includes the device 100 described in the first embodiment. However, in the apparatus 200 in FIG. 4, the container 10 provided with the water supply port 10a is used. Note that the arrangement of the electrodes may be the same as that of the device 100a of FIG. An example of such a device 200a is shown in FIG.
  • the diffusion unit 220 includes a mechanism for diffusing functional water.
  • a known mechanism used in a humidifier or a mist generator can be applied to such a mechanism.
  • a mechanism that does not involve heating is preferable from the viewpoint of maintaining the dissolved hydrogen concentration.
  • the container 10 of the apparatus 100 and the diffusion unit 220 are connected by a pipe 221.
  • the movement of the aqueous liquid 31 from the container 10 to the diffusion unit 220 may be performed, for example, by providing a pump or the like at a predetermined location (for example, the diffusion unit 220).
  • the diffusing unit 220 may be disposed below the container 10 and the aqueous liquid 31 may be moved according to the height difference.
  • the on-off valve 222 provided in the pipe 221, the aqueous liquid 31 in the device 200 can be moved.
  • Two terminals (not shown) connected to the first and second electrodes 11 and 12 are provided on a part of the outside of the container 10.
  • two terminals for outputting electric power supplied from the power supply 13 are also provided in a part of the main body 210.
  • the two terminals of the container 10 and the two terminals of the main body 210 are formed so as to be connected when the container 10 is set on the main body 210. Therefore, it is possible to apply a voltage from the power supply 13 to the first and second electrodes 11 and 12 by setting the container 10 in the main body 210.
  • the first and second electrodes 11 and 12 may be integrated as an electrode unit that can be attached to and detached from the container 10. By doing so, the replacement and maintenance of the electrodes are facilitated.
  • the container 10 of the device 200 is formed to be detachable from the main body 210. According to this configuration, the water remaining in the container 10 after washing the first and second electrodes 11 and 12 can be easily discarded by removing the container 10 from the main body 210. This facilitates maintenance by the user. Further, since it is possible to prevent water from splashing on the main body 210 and the like during cleaning, malfunction due to a short circuit or the like can be prevented.
  • the controller 20 is connected to the power source 13, the diffusion unit 220, the on-off valve 222, and other devices (for example, an input device, a display device, etc.), and controls them as necessary. Moreover, the controller 200 takes in the signal input from the input device as necessary and reflects it in the control.
  • the aqueous liquid 31 is supplied from the water supply port 10a.
  • steps (i) and (ii) are performed as described for the device 100 to obtain functional water.
  • the obtained functional water is diffused from the diffusion unit 220 and used.
  • the connecting portion between the pipe 221 and the container 10 may be disposed at a position higher than the first electrode 11.
  • An example of such a device 200b is shown in FIG.
  • the device 200b includes a device 100a.
  • a connection part (water intake) 221 a between the pipe 221 and the container 10 is located above the first electrode 11. From another viewpoint, the connection portion 221 a is closer to the first electrode 11 than the second electrode 12.
  • step (i) hydrogen ions (H + ) are generated on the surface of the first electrode 11 and the aqueous liquid 31 in the vicinity of the first electrode 11 is acidified. That is, the pH is lowered in the vicinity of the first electrode 11, and a pH concentration gradient is generated.
  • step (ii) is performed in this state, the aqueous liquid 31 above the first electrode 11 becomes weakly acidic to neutral due to an increase in pH, and ORP is generated by hydrogen gas generated at the first electrode 11. Decreases.
  • connection part (water intake) 221a is arrange
  • the aqueous liquid 31 below the connection part 221a will remain.
  • the cation for example, hardness component
  • the cation adsorbed on the second electrode 12 is left in the remaining aqueous liquid 31.
  • FIG. 7 shows a flowchart of an example of processing including these steps.
  • the flowchart shown in FIG. 7 is merely an example of processing.
  • the aqueous liquid 31 at the time when step (ii) is completed may be discarded.
  • Embodiments 1 and 2 have described the first example described above (when the first electrode is used as an anode in step (i)). However, the second example described above can be implemented by reversing the direction of voltage application in steps (i) and (ii).
  • Example 1 In Example 1, an experiment was performed using the apparatus 100 shown in FIG. As the first electrode 11, an electrode in which a plurality of platinum-coated titanium wires were arranged in a stripe shape was used. As the second electrode 12, a stack of three activated carbon fiber cloths (size: 70 mm ⁇ 90 mm) was used. The distance between the electrodes was 15 mm. The two electrodes were arranged in parallel to each other as shown in FIG. In addition, 100 mL of 0.1 wt% KCl aqueous solution was placed in the container 10 as the aqueous liquid 31.
  • a DC voltage was applied between the first electrode 11 and the second electrode 12 so that the first electrode 11 became an anode (step (i)). Specifically, a voltage was applied between the electrodes for 150 seconds so that a current of 0.20 A flows between the electrodes (total amount of electricity is 30 A ⁇ sec). Next, a DC voltage was applied between the first electrode 11 and the second electrode 12 so that the first electrode became a cathode without replacing the aqueous liquid 31 (step (ii)). Specifically, a voltage was applied between the electrodes for 80 seconds so that a current of 0.25 A flows between the electrodes (total amount of electricity is 20 A ⁇ sec). Table 1 shows the results of this voltage application for five samples.
  • Example 1 As shown in Table 1, under the conditions of Example 1, an aqueous liquid having a pH of about 5.6 to 6.2 and an ORP of about -138 to 36 mV was obtained.
  • Example 2 In Example 2, the same experiment as in Example 1 was performed, except that the voltage application conditions in step (ii) were changed.
  • step (i) of Example 2 as in Example 1, a voltage was applied between the electrodes for 150 seconds so that a current of 0.20 A flows between the electrodes (total amount of electricity is 30 A ⁇ sec).
  • step (ii) a voltage was applied between the electrodes for 120 seconds so that a current of 0.20 A flows between the electrodes (total amount of electricity is 24 A ⁇ sec). Table 2 shows the results of this voltage application for five samples.
  • Example 2 As shown in Table 2, under the conditions of Example 2, an aqueous liquid having a pH of about 7.0 to 7.5 and an ORP of about -435 to -420 mV was obtained.
  • FIG. 8 shows the distribution of the aqueous liquid finally obtained in Example 1 and Example 2.
  • FIG. 8 also shows a line with a hydrogen partial pressure of 100% and a line with an oxygen partial pressure of 100%.
  • the range of pH and ORP can be controlled by changing the voltage application conditions in steps (i) and (ii) (the same applies to the following examples).
  • step (i) weakly acidic water having a pH of about 3.0 to 3.2 can be obtained by electrolysis of 500 mL of aqueous liquid 31 at 500 mA for 240 seconds.
  • step (ii) 500 mL of the aqueous liquid 31 is electrolyzed at 500 mA for 150 seconds, so that the pH is in the range of 6.3 to 6.8 and the ORP is about ⁇ 140 to ⁇ 260 mV. Neutral reduced water in the range can be obtained.
  • Example 3 In Example 3, the experiment was performed using the apparatus 100a shown in FIG. As the first electrode 11, an expanded metal made of titanium and coated with platinum was used. As the second electrode 12, a sheet-like activated carbon electrode was used. The outer shapes of these electrodes were 90 mm ⁇ 70 mm, respectively. The distance between the electrodes was 10 mm. The two electrodes were arranged as shown in FIG.
  • the container 10 was charged with 300 mL of tap water having a pH of 7.5 and a conductivity of 180 ⁇ S / cm. Next, a DC voltage was applied between the first electrode 11 and the second electrode 12 so that the first electrode 11 became an anode. Specifically, a voltage was applied so that a constant current of 500 mA flows between the first electrode 11 and the second electrode 12. The voltage at this time was 60 volts or less. By performing electrolysis at a current value of 500 mA for 180 to 240 seconds, weakly acidic water having a pH of about 3.0 to 3.2 was obtained.
  • a DC voltage was applied between the first electrode 11 and the second electrode 12 so that the first electrode 11 became a cathode.
  • a voltage was applied so that a constant current of 500 mA flows between the first electrode 11 and the second electrode 12.
  • the voltage at this time was 50 volts or less.
  • weakly acidic water having a pH of about 3.6 was obtained.
  • various functional waters for example, a pH of 3.5 or more and less than 6 (for example, a pH in the range of 3.5 to 5.5) in a weakly acidic region, Reduced water having an ORP of about ⁇ 300 to ⁇ 50 mV).
  • FIG. 9 shows changes in physical properties of water in the container 10 in the above steps (i) and (ii) of Example 3.
  • FIG. 9 also shows a line with a hydrogen partial pressure of 100% and a line with an oxygen partial pressure of 100%.
  • step (i) of Example 3 As shown in FIG. 9, pH was lowered and ORP was lowered by voltage application in step (i). Moreover, pH rose and ORP fell by the voltage application of process (ii).
  • the reason why ORP has decreased in step (i) of Example 3 is not clear at present, but one possibility is that hydrogen is applied to the second electrode 12 during voltage application in step (i). When gas is generated and the hydrogen gas rises, oxygen dissolved in the water generated at the anode is partially expelled into the hydrogen gas, and as a result, the dissolved hydrogen concentration in the aqueous liquid 31 may increase. There is sex.
  • the behavior of the change in the physical properties of the aqueous liquid 31 is different between the case where the flat electrodes are arranged in parallel in the vertical direction and the case where the flat electrodes are arranged in parallel in the horizontal direction. Different. Therefore, the arrangement of the electrodes may be changed according to the application of the device.
  • the above equipment (and the generated hydrogen water) can be preferably used for hairdressing and beauty applications such as face washing.
  • Water with a high dissolved hydrogen concentration and a low oxidation-reduction potential (ORP) of about -500 to 0 mV is called so-called reduced water, and it is expected to have an anti-aging effect on the skin, especially for cosmetics. (Reference: Hot Spring Science, Vol. 55, p. 55-63, 2005).
  • the functional water obtained by the present invention can be used for plant breeding applications (watering by watering, spraying on crops, etc.) in addition to hairdressing and beauty applications.
  • the present invention can be used for a functional water generation method and apparatus, and a device including the same.

Abstract

A device disclosed is equipped with: a container (10) in which an aqueous liquid (31) is to be placed; an electrode (11) and an electrode (12); an electric power supply (13); and a controller (20). The controller (20) implements steps (i) and (ii) in this order. In step (i), a voltage is applied between the electrode (11) and the electrode (12), thereby electrolyzing water on the surface of the electrode (11) and adsorbing ions in the aqueous liquid (31) onto the surface of the electrode (12). In step (ii), a voltage is applied between the electrode (11) and the electrode (12) in the direction opposite to the direction employed in step (i), thereby electrolyzing water on the surface of the electrode (11) and releasing the ions adsorbed on the surface of the electrode (12) into the aqueous liquid (31).

Description

機能水を生成する方法ならびに機能水生成装置およびそれを用いた機器Method for generating functional water, functional water generating device and equipment using the same
 本発明は、機能水を生成する方法、ならびに、機能水生成装置およびそれを用いた機器に関する。 The present invention relates to a method for generating functional water, a functional water generating device, and a device using the same.
 従来から、酸化還元電位(Oxidation-Reduction Potential(ORP))が低い液体の調製方法が提案されてきた。たとえば、水素ガスや窒素ガスを水に吹き込んで、液体中の溶存水素量や溶存酸素量を変化させ、それによって水の酸化還元電位を低減する方法が提案されている(たとえば特開2005-901号公報)。また、水を電気分解することによって、水の酸化還元電位を変化させる方法も提案されている(たとえば特開平11-57715号公報)。特開平11-57715号公報に記載の方法では、隔膜を挟むようにアノードおよびカソードを配置し、アノードおよびカソードで同時に水を電気分解する。この方法では、ORPが高いアルカリ水とORPが低い酸性水とが必ずセットで生成される。 Conventionally, a method for preparing a liquid having a low oxidation-reduction potential (ORP) has been proposed. For example, a method has been proposed in which hydrogen gas or nitrogen gas is blown into water to change the amount of dissolved hydrogen or dissolved oxygen in the liquid, thereby reducing the redox potential of water (for example, JP-A-2005-901). Issue gazette). In addition, a method for changing the oxidation-reduction potential of water by electrolyzing water has been proposed (for example, JP-A-11-57715). In the method described in JP-A-11-57715, an anode and a cathode are arranged so as to sandwich a diaphragm, and water is electrolyzed simultaneously at the anode and the cathode. In this method, alkaline water having a high ORP and acidic water having a low ORP are always generated as a set.
特開2005-901号公報JP-A-2005-901 特開平11-57715号公報Japanese Patent Laid-Open No. 11-57715
 しかし、外部からガスを吹き込む従来の方法はガスの供給源が必要になり、コストや手間がかかる。また、水を電気分解する方法に関しては、従来の方法では、酸化還元電位の変化に伴うpHの変化を制御できないという問題があった。また、特開平11-57715号公報に記載の方法では、ORPが高いアルカリ水とORPが低い酸性水とが同時に生成されるため、一方のみを利用する場合には他方を廃棄する必要がある。 However, the conventional method of blowing gas from the outside requires a gas supply source, which is costly and troublesome. Further, regarding the method of electrolyzing water, the conventional method has a problem that the change in pH accompanying the change in redox potential cannot be controlled. In the method described in JP-A-11-57715, alkaline water having a high ORP and acidic water having a low ORP are generated at the same time. Therefore, when only one is used, the other needs to be discarded.
 このような状況において、本発明は、弱酸性で酸化還元電位が低い水性液体を容易に作製できる新規な方法および装置を提供することを目的の1つとする。 In such a situation, an object of the present invention is to provide a novel method and apparatus that can easily produce an aqueous liquid that is weakly acidic and has a low redox potential.
 上記目的を達成するために、本発明は1つの方法を提供する。この方法は、水性液体が配置される容器と、前記容器内に配置される第1および第2の電極とを用いて機能水を生成する方法であって、(i)前記第1および第2の電極が前記水性液体に浸漬された状態で前記第1の電極と前記第2の電極との間に電圧を印加することによって、前記第1の電極の表面で水を電気分解させ、且つ、前記第2の電極の表面に前記水性液体中のイオンを吸着させる工程と、(ii)前記第1の電極と前記第2の電極との間に前記(i)の工程とは逆方向に電圧を印加することによって、前記第1の電極の表面で水を電気分解させ、且つ、前記第2の電極の表面に吸着された前記イオンを前記水性液体中に放出させる工程とをこの順に含む。 In order to achieve the above object, the present invention provides one method. This method is a method of generating functional water using a container in which an aqueous liquid is disposed and first and second electrodes disposed in the container, and (i) the first and second electrodes By applying a voltage between the first electrode and the second electrode while the electrode is immersed in the aqueous liquid, and electrolyzing water on the surface of the first electrode; and A step of adsorbing ions in the aqueous liquid on the surface of the second electrode; and (ii) a voltage in a direction opposite to the step of (i) between the first electrode and the second electrode. And the step of electrolyzing water on the surface of the first electrode and releasing the ions adsorbed on the surface of the second electrode into the aqueous liquid in this order.
 また、本発明は1つの機能水生成装置を提供する。その機能水生成装置は、水性液体が配置される容器と、前記容器内に配置される第1および第2の電極と、前記第1の電極と前記第2の電極との間に電圧を印加するための電源と、コントローラとを含む。前記コントローラは、(i)前記第1および第2の電極が前記水性液体に浸漬された状態で前記第1の電極と前記第2の電極との間に電圧を印加することによって、前記第1の電極の表面で水を電気分解させ、且つ、前記第2の電極の表面に前記水性液体中のイオンを吸着させる工程と、(ii)前記第1の電極と前記第2の電極との間に前記(i)の工程とは逆方向に電圧を印加することによって、前記第1の電極の表面で水を電気分解させ、且つ、前記第2の電極の表面に吸着された前記イオンを前記水性液体中に放出させる工程とをこの順に実行する。 The present invention also provides one functional water generator. The functional water generating device applies a voltage between a container in which an aqueous liquid is disposed, first and second electrodes disposed in the container, and the first electrode and the second electrode. Including a power supply and a controller. The controller includes: (i) applying the voltage between the first electrode and the second electrode in a state where the first and second electrodes are immersed in the aqueous liquid; Electrolyzing water on the surface of the electrode and adsorbing ions in the aqueous liquid to the surface of the second electrode; and (ii) between the first electrode and the second electrode. In addition, by applying a voltage in the opposite direction to the step (i), water is electrolyzed on the surface of the first electrode, and the ions adsorbed on the surface of the second electrode are The step of releasing into the aqueous liquid is performed in this order.
 本発明によれば、弱酸性で酸化還元電位が低い水性液体を容易に作製できる。 According to the present invention, it is possible to easily produce an aqueous liquid that is weakly acidic and has a low redox potential.
本発明の装置の一例を模式的に示す図である。It is a figure which shows typically an example of the apparatus of this invention. 本発明の装置の他の一例を模式的に示す図である。It is a figure which shows typically another example of the apparatus of this invention. 図1に示した装置の動作の一例を示す図である。It is a figure which shows an example of operation | movement of the apparatus shown in FIG. 図1に示した装置の動作の他の一例を示す図である。It is a figure which shows another example of operation | movement of the apparatus shown in FIG. 本発明の機器の一例を模式的に示す図である。It is a figure which shows typically an example of the apparatus of this invention. 本発明の機器の他の一例を模式的に示す図である。It is a figure which shows typically another example of the apparatus of this invention. 本発明の機器のその他の一例を模式的に示す図である。It is a figure which shows typically another example of the apparatus of this invention. 本発明の機器の動作の一例を示すフローチャートである。It is a flowchart which shows an example of operation | movement of the apparatus of this invention. 実施例1および2の実験結果の一部を示す図である。It is a figure which shows a part of experimental result of Example 1 and 2. FIG. 実施例3の実験結果を示す図である。It is a figure which shows the experimental result of Example 3.
 以下、本発明の実施形態について説明する。なお、以下の説明では、本発明の実施形態について例を挙げて説明するが、本発明は以下で説明する例に限定されない。以下の説明では、具体的な数値や材料を例示する場合があるが、本発明の効果が得られる限り、他の数値や材料を適用してもよい。また、図面を用いた説明では、同様の部分に同一の符号を付して重複する説明を省略する場合がある。 Hereinafter, embodiments of the present invention will be described. In the following description, embodiments of the present invention will be described by way of examples, but the present invention is not limited to the examples described below. In the following description, specific numerical values and materials may be exemplified, but other numerical values and materials may be applied as long as the effects of the present invention can be obtained. Moreover, in the description using drawing, the same code | symbol may be attached | subjected to the same part and the overlapping description may be abbreviate | omitted.
 (機能水の生成方法および生成装置)
 機能水を生成するための本発明の方法は、水性液体が配置される容器と、当該容器内に配置される第1および第2の電極とを用いて機能水を生成する方法である。以下では、本発明の方法および装置で用いられる水性液体を「水性液体(A)」という場合がある。この方法では、後述する工程(i)および(ii)がこの順に行われる。なお、以下の工程(i)および(ii)は、水性液体(A)が配置される容器を密閉状態として行ってもよいし、そうでなくてもよい。容器を密閉状態として工程を行うことによって、水性液体(A)中の溶存ガス濃度を高めることができる。
(Method and apparatus for generating functional water)
The method of the present invention for producing functional water is a method for producing functional water using a container in which an aqueous liquid is arranged and first and second electrodes arranged in the container. Hereinafter, the aqueous liquid used in the method and apparatus of the present invention may be referred to as “aqueous liquid (A)”. In this method, steps (i) and (ii) described later are performed in this order. In the following steps (i) and (ii), the container in which the aqueous liquid (A) is disposed may or may not be sealed. By performing the process in a sealed state, the concentration of dissolved gas in the aqueous liquid (A) can be increased.
 機能水を生成するための本発明の装置は、水性液体(A)が配置される容器と、当該容器内に配置される第1および第2の電極と、第1の電極と第2の電極との間に電圧(通常、直流電圧)を印加するための電源と、コントローラとを含む。そして、コントローラは、後述する工程(i)および(ii)をこの順に実行する。すなわち、本発明の装置は、本発明の方法を実施するための装置である。そのため、本発明の方法について説明した事項は本発明の装置に適用でき、本発明の装置について説明した事項は本発明の方法に適用できる。 The apparatus of the present invention for generating functional water includes a container in which an aqueous liquid (A) is disposed, first and second electrodes disposed in the container, a first electrode, and a second electrode. A power supply for applying a voltage (usually a direct current voltage) between and a controller. And a controller performs the process (i) and (ii) mentioned later in this order. That is, the apparatus of the present invention is an apparatus for carrying out the method of the present invention. Therefore, the matters described for the method of the present invention can be applied to the apparatus of the present invention, and the items described for the apparatus of the present invention can be applied to the method of the present invention.
 本発明の方法および装置において、工程(i)および(ii)は、通常、バッチ方式で行われる。バッチ方式とは、容器(電解容器)に所定量の水性液体(A)を加えた後は、容器内の水性液体(A)の出し入れを実質的に行うことなく、工程を実行することを意味する。たとえば、容器内の水性液体(A)の体積の変動が20vol%以下ならば、実質的にバッチ方式とみなせる。 In the method and apparatus of the present invention, steps (i) and (ii) are usually performed in a batch mode. The batch system means that after adding a predetermined amount of the aqueous liquid (A) to the container (electrolysis container), the process is executed without substantially taking in and out the aqueous liquid (A) in the container. To do. For example, if the variation of the volume of the aqueous liquid (A) in the container is 20 vol% or less, it can be regarded as a batch system.
 水性液体(A)は、本発明の方法で電気分解される液体であり、水を含む。通常、水性液体(A)は溶媒が水のみである水溶液であるが、水以外の溶媒を含んでもよい。溶媒に占める水の割合は、通常50~100重量%の範囲にあり、たとえば80~100重量%や90~100重量%の範囲にある。 The aqueous liquid (A) is a liquid that is electrolyzed by the method of the present invention, and includes water. Usually, the aqueous liquid (A) is an aqueous solution in which the solvent is only water, but may contain a solvent other than water. The ratio of water in the solvent is usually in the range of 50 to 100% by weight, for example, in the range of 80 to 100% by weight or 90 to 100% by weight.
 水性液体(A)は、水素イオン(H)および水酸化物イオン(OH)に加えて、それら以外のイオンを含む。通常、水性液体(A)は、水素イオン以外の陽イオンと、水酸化物イオン以外の陰イオンとを含む。水性液体(A)の例には、水道水も含まれる。以下では、水素イオン以外の陽イオンをその電荷数にかかわらず「陽イオン(L)」と総称する場合があり、水酸化物イオン以外の陰イオンをその電荷数にかかわらず「陰イオン(L)」と総称する場合がある。また。陽イオン(L)と陰イオン(L)とを総称してイオン(L)という場合がある。工程(i)において第2の電極に陽イオンを吸着させる場合、水性液体(A)は、陽イオン(L)を含む。工程(i)において第2の電極に陰イオンを吸着させる場合、水性液体(A)は、陰イオン(L)を含む。 The aqueous liquid (A) contains other ions in addition to hydrogen ions (H + ) and hydroxide ions (OH ). Usually, the aqueous liquid (A) contains a cation other than hydrogen ions and an anion other than hydroxide ions. Examples of the aqueous liquid (A) include tap water. Hereinafter, cations other than hydrogen ions may be collectively referred to as “cations (L + )” regardless of their charge number, and anions other than hydroxide ions may be referred to as “anions (L)” regardless of their charge number. L -) "and there is a case to be collectively. Also. A cation (L + ) and an anion (L ) may be collectively referred to as an ion (L). When the cation is adsorbed on the second electrode in the step (i), the aqueous liquid (A) contains a cation (L + ). When the anion is adsorbed on the second electrode in the step (i), the aqueous liquid (A) contains an anion (L ).
 水性液体(A)の導電率が高いほど、水性液体(A)の電気分解に必要な電圧を低くすることができる。そのため、水性液体(A)は、塩を溶解させた水溶液であってもよい。しかし、取り扱いおよび入手が容易な水性液体(たとえば水道水)を水性液体(A)として用いることができれば便利である。本発明の装置では、適切な構成を採用することによって、導電率が100μS/cm~1000μS/cmの範囲(たとえば100μS/cm~300μS/cm)にある水性液体(たとえば水道水)を電気分解することが可能である。 The higher the conductivity of the aqueous liquid (A), the lower the voltage required for the electrolysis of the aqueous liquid (A). Therefore, the aqueous liquid (A) may be an aqueous solution in which a salt is dissolved. However, it is convenient if an aqueous liquid (for example, tap water) that is easy to handle and obtain can be used as the aqueous liquid (A). In the apparatus of the present invention, by adopting an appropriate configuration, an aqueous liquid (for example, tap water) having a conductivity in the range of 100 μS / cm to 1000 μS / cm (for example, 100 μS / cm to 300 μS / cm) is electrolyzed. It is possible.
 なお、水性液体(A)の導電率が低すぎる場合には、イオンを生じさせる化合物(たとえばKClやNaClなどの塩)を水性液体(A)に溶解させてもよい。添加する塩に限定はない。添加する塩は、それによって生じるイオンが、水の電気分解の電位内で反応しないものであることが望ましい。 If the conductivity of the aqueous liquid (A) is too low, a compound that generates ions (for example, a salt such as KCl or NaCl) may be dissolved in the aqueous liquid (A). There is no limitation on the salt to be added. The salt to be added is preferably such that the ions produced thereby do not react within the electrolysis potential of water.
 工程(i)では、第1および第2の電極が水性液体(A)に浸漬された状態で第1の電極と第2の電極との間に電圧(直流電圧)を印加する。この電圧印加によって、第1の電極の表面で水を電気分解させ、且つ、水性液体(A)中のイオン(イオン(L))を第2の電極の表面に吸着させる。工程(i)によって、水性液体(A)のpHが変化する。また、水性液体(A)の酸化還元電位(以下、「ORP」という場合がある)が変化する。 In step (i), a voltage (DC voltage) is applied between the first electrode and the second electrode while the first and second electrodes are immersed in the aqueous liquid (A). By applying this voltage, water is electrolyzed on the surface of the first electrode, and ions (ions (L)) in the aqueous liquid (A) are adsorbed on the surface of the second electrode. By the step (i), the pH of the aqueous liquid (A) is changed. Further, the redox potential of the aqueous liquid (A) (hereinafter sometimes referred to as “ORP”) changes.
 次に、工程(ii)では、第1の電極と第2の電極との間に工程(i)とは逆方向に電圧(直流電圧)を印加する。この電圧印加によって、第1の電極の表面で水を電気分解させ、且つ、第2の電極の表面に吸着されたイオンを水性液体(A)中に放出させる。工程(ii)によって、水性液体(A)のpHが変化する。また、工程(ii)によって、水性液体(A)のORPが変化する。工程(ii)では、工程(i)を経た水性液体(A)に第1および第2の電極が浸漬された状態で第1の電極と第2の電極との間に電圧を印加する。 Next, in step (ii), a voltage (DC voltage) is applied between the first electrode and the second electrode in the opposite direction to step (i). By applying this voltage, water is electrolyzed on the surface of the first electrode, and ions adsorbed on the surface of the second electrode are released into the aqueous liquid (A). By the step (ii), the pH of the aqueous liquid (A) is changed. Moreover, ORP of aqueous liquid (A) changes with process (ii). In step (ii), a voltage is applied between the first electrode and the second electrode in a state where the first and second electrodes are immersed in the aqueous liquid (A) that has undergone step (i).
 工程(i)では、一定の電圧を印加してもよいし、電圧を変化させてもよい。たとえば、工程(i)では、電極間に定電流が流れるように電圧を印加してもよい。工程(ii)では、一定の電圧を印加してもよいし、電圧を変化させてもよい。たとえば、工程(ii)では、電極間に定電流が流れるように電圧を印加してもよい。 In step (i), a constant voltage may be applied or the voltage may be changed. For example, in step (i), a voltage may be applied so that a constant current flows between the electrodes. In step (ii), a constant voltage may be applied or the voltage may be changed. For example, in step (ii), a voltage may be applied so that a constant current flows between the electrodes.
 (第1の例)
 以下では、第1の例として、工程(i)において、第1の電極と第2の電極との間に第1の電極がアノードとなるように電圧を印加する場合について説明する。
(First example)
Hereinafter, as a first example, a case where a voltage is applied between the first electrode and the second electrode so that the first electrode serves as an anode in the step (i) will be described.
 第1の例の工程(i)では、第1および第2の電極が水性液体(A)に浸漬された状態で第1の電極と第2の電極との間に第1の電極がアノード(陽極)となるように(且つ第2の電極がカソード(陰極)となるように)電圧を印加する。この電圧印加によって、第1の電極の表面で酸素ガスと水素イオンとを発生させ、且つ、水性液体(A)中の陽イオン(L)を第2の電極の表面に吸着させる。この工程(i)によって、水性液体(A)のpHが低下する。また、水性液体(A)のORPが変化する。 In the step (i) of the first example, the first electrode is an anode (between the first electrode and the second electrode in a state where the first and second electrodes are immersed in the aqueous liquid (A)). A voltage is applied so that the second electrode becomes a cathode (cathode). By applying this voltage, oxygen gas and hydrogen ions are generated on the surface of the first electrode, and cations (L + ) in the aqueous liquid (A) are adsorbed on the surface of the second electrode. By this step (i), the pH of the aqueous liquid (A) is lowered. Further, the ORP of the aqueous liquid (A) changes.
 工程(i)では、一定の電圧を印加してもよいし、電圧を変化させてもよい。たとえば、電極間に定電流が流れるように電圧を印加してもよい。また、工程(i)では、pHが2.5~4.5の範囲(たとえば3.0~4.0の範囲)となるまで電圧印加を行ってもよい。 In step (i), a constant voltage may be applied or the voltage may be changed. For example, a voltage may be applied so that a constant current flows between the electrodes. In step (i), voltage may be applied until the pH is in the range of 2.5 to 4.5 (for example, in the range of 3.0 to 4.0).
 次に、第1の例の工程(ii)では、第1の電極と第2の電極との間に第1の電極がカソードとなるように(第2の電極がアノードとなるように)電圧を印加する。この電圧印加によって、第1の電極の表面で水素ガスと水酸化物イオンとを発生させ、且つ、第2の電極の表面に吸着された陽イオン(L)を水性液体中に放出させる。この工程(ii)によって、水性液体(A)のpHが上昇する。すなわち、第1の例の工程(ii)によれば、工程(i)で酸性または弱酸性となった水性液体(A)を、弱酸性や中性や弱アルカリ性とすることが可能である。また、第1の例の工程(ii)によって、水性液体(A)の溶存水素濃度が上昇し、水性液体(A)のORPが低下する。すなわち、本発明によれば、弱酸性または中性でORPが低い水性液体(A)を容易に得ることが可能である。別の観点では、本発明によれば、弱酸性または中性で溶存水素濃度が高い水性液体(A)を容易に得ることが可能である。以下では、溶存水素濃度が高い水(たとえば溶存水素濃度が0.1ppm以上の水)を単に「水素水」という場合がある。 Next, in step (ii) of the first example, a voltage is applied so that the first electrode becomes a cathode (so that the second electrode becomes an anode) between the first electrode and the second electrode. Is applied. By applying this voltage, hydrogen gas and hydroxide ions are generated on the surface of the first electrode, and cations (L + ) adsorbed on the surface of the second electrode are released into the aqueous liquid. By this step (ii), the pH of the aqueous liquid (A) is increased. That is, according to step (ii) of the first example, the aqueous liquid (A) that has become acidic or weakly acidic in step (i) can be made weakly acidic, neutral, or weakly alkaline. Moreover, the dissolved hydrogen concentration of the aqueous liquid (A) is increased by the step (ii) of the first example, and the ORP of the aqueous liquid (A) is decreased. That is, according to the present invention, it is possible to easily obtain an aqueous liquid (A) that is weakly acidic or neutral and has a low ORP. In another aspect, according to the present invention, it is possible to easily obtain an aqueous liquid (A) that is weakly acidic or neutral and has a high dissolved hydrogen concentration. Hereinafter, water having a high dissolved hydrogen concentration (for example, water having a dissolved hydrogen concentration of 0.1 ppm or more) may be simply referred to as “hydrogen water”.
 第1の例の一例では、工程(i)で酸性水または弱酸性水を作製し、それを工程(ii)で弱酸性~ほぼ中性とする。この明細書において、「ほぼ中性」とは、たとえばpHが6.0~8.0の範囲にあることを意味する。本発明の方法および装置によれば、pHが4.5~8.0の範囲にあり、ORPが-450~+250mVの範囲にある水性液体(A)を得ることが可能である。また、上記方法によれば、pHが4.0~6.0の範囲にあり、ORPが-150~0mVの範囲にある水性液体(A)を得ることが可能である。本発明で得られる水性液体(A)は、機能水として様々な用途に用いることができる。そのような用途の例には、飲用用途、植物育成用途、空気清浄用途、および理美容用途が含まれる。 In one example of the first example, acidic water or weakly acidic water is produced in step (i), and is made weakly acidic to almost neutral in step (ii). In this specification, “substantially neutral” means, for example, that the pH is in the range of 6.0 to 8.0. According to the method and apparatus of the present invention, it is possible to obtain an aqueous liquid (A) having a pH in the range of 4.5 to 8.0 and an ORP in the range of −450 to +250 mV. Further, according to the above method, it is possible to obtain an aqueous liquid (A) having a pH in the range of 4.0 to 6.0 and an ORP in the range of −150 to 0 mV. The aqueous liquid (A) obtained by this invention can be used for various uses as functional water. Examples of such applications include drinking applications, plant growing applications, air cleaning applications, and hairdressing applications.
 (第2の例)
 以下では、第2の例として、工程(i)において、第1の電極と第2の電極との間に第1の電極がカソードとなるように電圧を印加する場合について説明する。
(Second example)
Hereinafter, as a second example, a case where a voltage is applied between the first electrode and the second electrode so that the first electrode serves as a cathode in step (i) will be described.
 第2の例の工程(i)では、第1および第2の電極が水性液体(A)に浸漬された状態で第1の電極と第2の電極との間に第1の電極がカソードとなるように(且つ第2の電極がアノードとなるように)電圧を印加する。この電圧印加によって、第1の電極の表面で水素ガスと水酸化物イオンとを発生させ、且つ、水性液体(A)中の陰イオン(L)を第2の電極の表面に吸着させる。この工程(i)によって、水性液体(A)のpHが上昇する。また、水性液体(A)のORPが変化する。 In step (i) of the second example, the first electrode is a cathode between the first electrode and the second electrode in a state where the first and second electrodes are immersed in the aqueous liquid (A). A voltage is applied so that the second electrode becomes the anode. By applying this voltage, hydrogen gas and hydroxide ions are generated on the surface of the first electrode, and the anions (L ) in the aqueous liquid (A) are adsorbed on the surface of the second electrode. By this step (i), the pH of the aqueous liquid (A) is increased. Further, the ORP of the aqueous liquid (A) changes.
 次に、第2の例の工程(ii)では、第1の電極と第2の電極との間に第1の電極がアノードとなるように(第2の電極がカソードとなるように)電圧を印加する。この電圧印加によって、第1の電極の表面で酸素ガスと水素イオンとを発生させ、且つ、第2の電極の表面に吸着された陰イオン(L)を水性液体中に放出させる。この工程(ii)によって、水性液体(A)のpHが低下する。すなわち、第2の例の工程(ii)によれば、工程(i)でアルカリ性または弱アルカリ性となった水性液体(A)を、弱アルカリ性や中性や弱酸性とすることが可能である。また、第2の例の工程(ii)によって、水性液体(A)の溶存水素濃度が低下し、水性液体(A)のORPが上昇する。すなわち、本発明によれば、弱アルカリ性または中性でORPが高い水性液体(A)を容易に得ることが可能である。一例では、pHが6.0~6.5の範囲でORPが344~532mVの範囲にある水性液体(A)を得ることが可能である。別の観点では、本発明によれば、弱アルカリ性または中性で溶存水素濃度が低い水性液体(A)を容易に得ることが可能である。 Next, in the step (ii) of the second example, the voltage is set so that the first electrode becomes an anode (the second electrode becomes a cathode) between the first electrode and the second electrode. Is applied. By applying this voltage, oxygen gas and hydrogen ions are generated on the surface of the first electrode, and anions (L ) adsorbed on the surface of the second electrode are released into the aqueous liquid. By this step (ii), the pH of the aqueous liquid (A) is lowered. That is, according to step (ii) of the second example, the aqueous liquid (A) that has become alkaline or weakly alkaline in step (i) can be made weakly alkaline, neutral, or weakly acidic. In addition, the dissolved hydrogen concentration of the aqueous liquid (A) is decreased and the ORP of the aqueous liquid (A) is increased by the step (ii) of the second example. That is, according to the present invention, it is possible to easily obtain a weakly alkaline or neutral aqueous liquid (A) having a high ORP. In one example, it is possible to obtain an aqueous liquid (A) having a pH in the range of 6.0 to 6.5 and an ORP in the range of 344 to 532 mV. In another aspect, according to the present invention, it is possible to easily obtain an aqueous liquid (A) that is weakly alkaline or neutral and has a low dissolved hydrogen concentration.
 なお、各工程の条件、および、工程(i)で処理される前の水性液体(A)のpHやORPを変えることによって、工程(ii)を経た後の水性液体(機能水)のpHおよびORPを所定の値とすることが可能である。以上に説明したように、本発明によれば、pHおよびORPが所定の範囲にある機能水を容易に製造できる。特開平11-57715号公報に記載の方法とは異なり、本発明によれば、弱酸性~中性でORPが低い水性液体のみを製造することが可能である。また、本発明によれば、弱アルカリ性~中性でORPが高い水性液体のみを製造することが可能である。なお、この明細書において、弱酸性とは、pHが3.0以上6.0未満であることを意味する。また、この明細書において、弱アルカリ性とは、pHが8.0より大きく11.0以下であることを意味する。 In addition, the pH of the aqueous liquid (functional water) after passing through the step (ii) by changing the conditions of each step and the pH and ORP of the aqueous liquid (A) before being treated in the step (i) The ORP can be set to a predetermined value. As described above, according to the present invention, functional water having pH and ORP in a predetermined range can be easily produced. Unlike the method described in JP-A-11-57715, according to the present invention, it is possible to produce only a weakly acidic to neutral aqueous liquid having a low ORP. Further, according to the present invention, it is possible to produce only an aqueous liquid having weak alkalinity to neutrality and high ORP. In addition, in this specification, weak acid means that pH is 3.0 or more and less than 6.0. In this specification, weak alkalinity means that the pH is greater than 8.0 and 11.0 or less.
 本発明の装置に含まれるコントローラは、たとえば、演算処理装置と記憶装置とを含む。なお、コントローラは、演算処理装置と記憶装置とが一体となった集積回路を含んでもよい。記憶装置には、各種処理(たとえば工程(i)および(ii))を実行するためのプログラムが格納される。演算処理装置は、格納されたプログラムを実行することによって機能水を生成させる。これらの演算処理装置および記憶装置には、公知のものを適用できる。 The controller included in the device of the present invention includes, for example, an arithmetic processing device and a storage device. Note that the controller may include an integrated circuit in which the arithmetic processing device and the storage device are integrated. The storage device stores a program for executing various processes (for example, steps (i) and (ii)). The arithmetic processing unit generates functional water by executing the stored program. Known devices can be applied to these arithmetic processing devices and storage devices.
 また、本発明の装置は、使用者が希望する設定を入力するための入力装置や、装置の状態を示すための表示装置を備えてもよい。それらの入力装置および表示装置には、公知のものを適用できる。たとえば、入力装置と表示装置とを兼ねるタッチパネルを用いてもよい。 Also, the device of the present invention may include an input device for inputting settings desired by the user and a display device for indicating the state of the device. Known input devices and display devices can be used. For example, a touch panel that serves as both an input device and a display device may be used.
 本発明で用いられる容器は、水性液体(A)を保持できるものである限り特に限定はなく、たとえば樹脂を用いて形成された容器であってもよい。 The container used in the present invention is not particularly limited as long as it can hold the aqueous liquid (A), and may be a container formed using a resin, for example.
 上記第1の電極は、第2の電極に比べて水の電気分解が生じやすい電極である。第1の電極の一例は金属電極である。上述した第1の例における典型的な一例では、第2の電極の表面に存在する材料よりも水素過電圧が小さい材料が、第1の電極の表面に存在する。一例の第1の電極の表面には、白金が存在する。第1の電極の好ましい一例は、白金でコートされた金属電極であり、たとえば、白金でコートされたチタン電極である。 The first electrode is an electrode that is more susceptible to water electrolysis than the second electrode. An example of the first electrode is a metal electrode. In a typical example in the first example described above, a material having a hydrogen overvoltage smaller than the material present on the surface of the second electrode is present on the surface of the first electrode. Platinum is present on the surface of the first electrode of an example. A preferred example of the first electrode is a metal electrode coated with platinum, for example, a titanium electrode coated with platinum.
 第2の電極は、イオンを可逆的に吸着できる電極である。第2の電極は、イオンを可逆的に吸着できる導電性物質(以下、「導電性物質(C)」という場合がある)を含んでもよい。 The second electrode is an electrode that can reversibly adsorb ions. The second electrode may include a conductive substance capable of reversibly adsorbing ions (hereinafter sometimes referred to as “conductive substance (C)”).
 典型的な一例では、導電性物質(C)はシート状である。導電性物質(C)は、可逆的にイオンを吸着できる。すなわち、導電性物質(C)は、吸着したイオンを放出することが可能である。導電性物質(C)としては、たとえば、溶液内でイオンを吸着することによって表面に電気二重層が形成されるような物質を用いることができる。導電性物質(C)の表面に表面電荷が存在する場合、その表面電荷と反対の符号を有するイオンが導電性物質(C)の表面に吸着されると考えられる。たとえば、表面電荷がプラス電荷である場合には陰イオンが吸着され、表面電荷がマイナス電荷である場合には陽イオンが吸着されると考えられる。 In a typical example, the conductive material (C) is in the form of a sheet. The conductive substance (C) can adsorb ions reversibly. That is, the conductive substance (C) can release the adsorbed ions. As the conductive substance (C), for example, a substance that forms an electric double layer on the surface by adsorbing ions in a solution can be used. When surface charge is present on the surface of the conductive material (C), it is considered that ions having a sign opposite to the surface charge are adsorbed on the surface of the conductive material (C). For example, an anion is adsorbed when the surface charge is a positive charge, and a cation is adsorbed when the surface charge is a negative charge.
 導電性物質(C)には、比表面積が大きい導電性物質を用いることができ、たとえば、炭素材料を用いることができる。炭素材料の中でも、活性炭は比表面積が大きいため、好ましく用いられる。たとえば、導電性物質(C)は、粒状活性炭を凝集させることによって形成された導電性シートであってもよいし、粒状活性炭と導電性カーボンとを凝集させることによって形成された導電性シートであってもよいし、活性炭粒子を固めることによって形成された活性炭ブロックであってもよいし、活性炭繊維で形成されたシートであってもよいし、これらの複合体であってもよい。活性炭繊維で形成されたシートの例には、活性炭繊維で形成されたクロス(cloth)が含まれる。活性炭繊維クロスの例としては、日本カイノール株式会社製の活性炭繊維クロス(品番がたとえばACC-5092-10、ACC-5092-15、ACC-5092-20)などが挙げられる。 As the conductive substance (C), a conductive substance having a large specific surface area can be used. For example, a carbon material can be used. Among the carbon materials, activated carbon is preferably used because of its large specific surface area. For example, the conductive substance (C) may be a conductive sheet formed by aggregating granular activated carbon, or a conductive sheet formed by aggregating granular activated carbon and conductive carbon. Alternatively, it may be an activated carbon block formed by solidifying activated carbon particles, a sheet formed of activated carbon fibers, or a composite of these. Examples of the sheet formed of activated carbon fibers include a cloth formed of activated carbon fibers. Examples of the activated carbon fiber cloth include activated carbon fiber cloths manufactured by Nippon Kainol Co., Ltd. (product numbers such as ACC-5092-10, ACC-5092-15, and ACC-5092-20).
 導電性物質(C)の比表面積は、たとえば300m/g以上であり、好ましくは900m/g以上である。比表面積の上限に特に限定はないが、たとえば5000m/g以下や2500m/g以下であってもよい。なお、この明細書において、「比表面積」とは、窒素ガスを用いたBET法で測定された値である。 The specific surface area of the conductive material (C) is, for example, 300 m 2 / g or more, and preferably 900 m 2 / g or more. The upper limit of the specific surface area is not particularly limited, but may be, for example, 5000 m 2 / g or less or 2500 m 2 / g or less. In this specification, “specific surface area” is a value measured by the BET method using nitrogen gas.
 本発明の好ましい一例では、第1の電極は表面に配置された白金を含み、第2の電極は表面に配置された活性炭を含む。この構成によれば、機能水を効率よく生成できる。 In a preferred example of the present invention, the first electrode includes platinum disposed on the surface, and the second electrode includes activated carbon disposed on the surface. According to this configuration, functional water can be generated efficiently.
 第1および第2の電極は、平板状(シート状)の電極であってもよい。この明細書において「平板状」という語句は、板の形状のみに限定されない。「平板状」という語句の意味には、「フラットな」および「2次元状」という意味が含まれる。平板状の電極の例には、一般的な板状の電極に加えて、線状の電極を平板状に配置したものや、エキスパンドメタルが含まれる。また、第1および第2の電極は、ガスが通過可能な電極であってもよく、ガスが通過可能な平板状の電極であってもよい。そのような電極には、線状の電極で構成した電極やエキスパンドメタルが含まれる。第1の電極のみが、ガスが通過可能な平板状の電極であってもよい。なお、ガスが通過可能な電極は、別の観点では、液体が通過可能な電極(すなわち、ガスおよび液体が通過可能な電極)である。 The first and second electrodes may be flat (sheet-like) electrodes. In this specification, the phrase “flat plate” is not limited to the shape of a plate. The meaning of the phrase “flat” includes “flat” and “two-dimensional”. Examples of the plate-like electrode include, in addition to a general plate-like electrode, a linear electrode arranged in a plate shape and an expanded metal. In addition, the first and second electrodes may be electrodes through which gas can pass or flat electrodes through which gas can pass. Such electrodes include electrodes composed of linear electrodes and expanded metals. Only the first electrode may be a flat electrode through which gas can pass. Note that the electrode through which the gas can pass is an electrode through which the liquid can pass (that is, an electrode through which the gas and the liquid can pass) from another viewpoint.
 第1および第2の電極の外形に限定はなく、たとえば四角形状であってもよい。また、第1および第2の電極のサイズ(外形のサイズ)に限定はなく、用途に応じて選択できる。また、第1の電極と第2の電極との間の距離も用途等を考慮して任意に設定できる。また、複数の第1の電極と複数の第2の電極とを用いてもよい。その場合、第1の電極と第2の電極とが交互に配置されてもよい。 The outer shape of the first and second electrodes is not limited, and may be, for example, a square shape. Moreover, there is no limitation in the size (outside size) of the first and second electrodes, and it can be selected according to the application. In addition, the distance between the first electrode and the second electrode can be arbitrarily set in consideration of the application. A plurality of first electrodes and a plurality of second electrodes may be used. In that case, the first electrode and the second electrode may be alternately arranged.
 電極について、好ましい2つの例を以下に説明する。1つの例(1)では、第1および第2の電極はそれぞれ平板状の電極である。そして、それらの第1および第2の電極は、垂直方向と平行に、且つ、対向するように互いに平行に配置されている。この構成によれば、機能水を特に効率よく生成できる。なお、この明細書において「垂直方向」とは、重力の向きと平行な方向を意味する。また、この明細書において「水平方向」とは、重力の向きに直交する面と平行な方向を意味する。また、この明細書において、「平行」という意味には、実質的に平行とみなせる場合が含まれ、たとえば5°以内の傾きは平行の範囲に含まれる。 Two preferred examples of electrodes will be described below. In one example (1), each of the first and second electrodes is a flat electrode. The first and second electrodes are arranged in parallel with each other so as to face each other in parallel to the vertical direction. According to this structure, functional water can be generated particularly efficiently. In this specification, “vertical direction” means a direction parallel to the direction of gravity. In this specification, “horizontal direction” means a direction parallel to a plane orthogonal to the direction of gravity. Further, in this specification, the meaning of “parallel” includes a case where it can be regarded as substantially parallel. For example, an inclination within 5 ° is included in the parallel range.
 また、他の例(2)では、第1の電極は、第2の電極の上方に位置するように配置される。この例(2)において、好ましくは、第1および第2の電極は、それぞれ平板状の電極であり、水平方向と平行に、且つ、対向するように互いに平行に配置される。この構成によれば、機能水を特に効率よく生成できる。 In another example (2), the first electrode is disposed above the second electrode. In this example (2), the first and second electrodes are preferably flat electrodes, and are arranged in parallel to each other so as to be parallel to the horizontal direction and to face each other. According to this structure, functional water can be generated particularly efficiently.
 上記の例(1)および例(2)において、第1の電極は、ガスが通過可能な平板状の電極であってもよい。また、上記の例(1)および例(2)において、第1および第2の電極は共に、ガスが通過可能な平板状の電極であってもよい。 In the above examples (1) and (2), the first electrode may be a flat electrode through which gas can pass. In the above examples (1) and (2), both the first and second electrodes may be flat electrodes through which gas can pass.
 なお、平板状の第1および第2の電極を、水平方向に対して傾けて配置してもよい。たとえば、第1の電極が上方に配置されるように、第1の電極と第2の電極とを互いに平行に、且つ、水平方向に対して傾けて配置してもよい。水平方向に傾けて配置することによって、第1および第2の電極を垂直方向に平行に配置する場合と比べて、水性液体(A)のうち発生したガスが通過する部分の体積を増加させることができる。 The flat plate-like first and second electrodes may be disposed so as to be inclined with respect to the horizontal direction. For example, the first electrode and the second electrode may be arranged parallel to each other and inclined with respect to the horizontal direction so that the first electrode is arranged above. Increasing the volume of the portion of the aqueous liquid (A) through which the generated gas passes can be achieved by tilting it in the horizontal direction as compared to arranging the first and second electrodes in parallel in the vertical direction. Can do.
 本発明の装置に含まれる電源には、一般的な直流電源を用いることができる。電源は、コンセントから得られる交流電圧を直流電圧に変換するAC-DCコンバータであってもよい。また、電源は、太陽電池や燃料電池などの発電装置や電池(一次電池および二次電池)であってもよい。 A general DC power supply can be used as the power supply included in the apparatus of the present invention. The power source may be an AC-DC converter that converts an AC voltage obtained from an outlet into a DC voltage. The power source may be a power generation device such as a solar cell or a fuel cell or a battery (a primary battery and a secondary battery).
 (機能水生成装置を含む機器)
 本発明の機器は、上述した機能水生成装置を含む。本発明の機能水生成装置以外の部分には、その機器で用いられている公知の構成を適用してもよい。
(Equipment including functional water generator)
The apparatus of this invention contains the functional water production | generation apparatus mentioned above. You may apply the well-known structure used with the apparatus to parts other than the functional water generating apparatus of this invention.
 本発明の機器は、機能水生成装置で生成された機能水を取り出して利用するための配管をさらに備えてもよい。そして、機能水生成装置に含まれる容器であって機能水が生成される容器と配管との接続部が、第1の電極よりも上方に位置していてもよい。たとえば、上記の例(2)における電極の配置において、機能水が生成される容器と配管との接続部が、第1の電極よりも上方に位置していてもよい。この構成によれば、第1の電極の上方で生成された機能水を利用できるため、所定の機能水が得られやすくなる。たとえば、pHが弱酸性でORPが低い機能水を得られやすくなる。 The apparatus of the present invention may further include a pipe for taking out and using the functional water generated by the functional water generator. And the connection part of the container contained in the functional water generating apparatus and in which the functional water is generated and the pipe may be located above the first electrode. For example, in the arrangement of the electrodes in Example (2) above, the connecting portion between the container in which the functional water is generated and the piping may be located above the first electrode. According to this structure, since the functional water produced | generated above the 1st electrode can be utilized, it becomes easy to obtain predetermined functional water. For example, it becomes easy to obtain functional water having a weak pH and a low ORP.
 本発明の機器の一例では、機能水が生成される容器と配管との接続部が、第2の電極よりも第1の電極の近くに配置されていてもよい。この構成によれば、第1の電極近傍で物性が変化した水性液体(機能水)を利用しやすくなる。 In one example of the device of the present invention, the connecting portion between the container in which the functional water is generated and the pipe may be disposed closer to the first electrode than to the second electrode. According to this configuration, it is easy to use an aqueous liquid (functional water) whose physical properties have changed in the vicinity of the first electrode.
 上記配管は、機能水をミスト化またはスチーム化するための拡散部に接続されていてもよい。また、上記配管は、機能水を保持するための容器に接続されていてもよい。 The above piping may be connected to a diffusion unit for misting or steaming the functional water. Moreover, the said piping may be connected to the container for hold | maintaining functional water.
 本発明の機器の例には、飲料用の機能水生成器、植物育成用の機能水生成器、空気清浄機、および理美容機器が含まれる。 Examples of the device of the present invention include a functional water generator for beverages, a functional water generator for plant cultivation, an air purifier, and a hairdressing and beauty device.
 (実施形態1)
 本発明の方法および装置について、以下に一例を説明する。機能水を生成するための実施形態1の装置100を図1に示す。
(Embodiment 1)
An example of the method and apparatus of the present invention is described below. The apparatus 100 of Embodiment 1 for producing functional water is shown in FIG.
 図1の装置100は、容器10、容器10内に配置された第1および第2の電極11および12、電源13、およびコントローラ20を含む。電源13は、供給する電圧の極性を変化させるためのスイッチング回路を含む。コントローラ20によって、電源13から供給される直流電圧(直流電流)が制御される。 1 includes a container 10, first and second electrodes 11 and 12 disposed in the container 10, a power source 13, and a controller 20. The power supply 13 includes a switching circuit for changing the polarity of the supplied voltage. The controller 20 controls the DC voltage (DC current) supplied from the power supply 13.
 第1の電極11は、白金でコートされたチタン電極である。第1の電極11の好ましい一例は、ガスが通過可能な電極である。第2の電極12は、活性炭繊維クロスとそれに接触した集電体とを含む電極である。第1および第2の電極11および12は、いずれも、外形が四角形の平板状(シート状)の形状を有する。 The first electrode 11 is a titanium electrode coated with platinum. A preferred example of the first electrode 11 is an electrode through which gas can pass. The second electrode 12 is an electrode including an activated carbon fiber cloth and a current collector in contact therewith. The first and second electrodes 11 and 12 both have a flat plate shape (sheet shape) with a rectangular outer shape.
 容器10は、主に樹脂からなる容器である。容器10は、図4に示すように給水口10aを備えてもよい。給水口10aは、蓋で閉じることができる。すなわち、容器10は密閉容器として利用できる。ただし、容器10は、容器10内の内圧が上昇しすぎたときに内部のガスを容器10の外部に放出するための弁などを備えてもよい。なお、工程(i)では容器10を開放状態にし、工程(ii)では、容器10を密閉状態またはそれに近い状態としてもよい。 The container 10 is a container mainly made of resin. The container 10 may include a water supply port 10a as shown in FIG. The water supply port 10a can be closed with a lid. That is, the container 10 can be used as a sealed container. However, the container 10 may include a valve or the like for releasing the internal gas to the outside of the container 10 when the internal pressure in the container 10 increases excessively. In step (i), the container 10 may be opened, and in step (ii), the container 10 may be in a sealed state or a state close thereto.
 装置100において、第1の電極11および第2の電極12はそれぞれ、垂直方向と平行に、且つ、対向するように互いに平行に配置されている。なお、第1および第2の電極11および12の配置は、図1の配置とは異なってもよい。そのような一例の装置100aを、図2に示す。 In the apparatus 100, the first electrode 11 and the second electrode 12 are arranged in parallel to each other so as to be parallel to the vertical direction and to face each other. The arrangement of the first and second electrodes 11 and 12 may be different from the arrangement shown in FIG. An example of such an apparatus 100a is shown in FIG.
 図2の装置100aでは、第1の電極11および第2の電極12はそれぞれ、水平方向と平行に配置されている。また、それらの電極は、第1の電極11が第2の電極12の上方に配置されるように、且つ、対向するように互いに平行に配置されている。図2の装置100aでは、第1の電極11が、ガスを通過させる電極であることが好ましい。 2, the first electrode 11 and the second electrode 12 are each arranged in parallel with the horizontal direction. Further, these electrodes are arranged in parallel to each other so that the first electrode 11 is arranged above the second electrode 12 and are opposed to each other. In the apparatus 100a of FIG. 2, it is preferable that the 1st electrode 11 is an electrode which lets gas pass.
 図1の装置100を用いて本発明の方法を実施する場合の一例について以下に説明する。なお、図2の装置100aを用いる場合でも、同様の手順で本発明の方法を実施できる。 An example when the method of the present invention is implemented using the apparatus 100 of FIG. 1 will be described below. Even when the apparatus 100a of FIG. 2 is used, the method of the present invention can be carried out in the same procedure.
 まず、容器10内に水性液体31を配置する。水性液体31は、たとえば水道水である。一般的な水道水の場合、pHが5.8~8.6の範囲にあり、ORPが+300~+750mVの範囲にある。次に、工程(i)を実施する。具体的には、コントローラ20は電源13を制御し、第1の電極11と第2の電極12との間に、第1の電極11がアノードとなるように直流電圧を印加する。このとき、少なくとも第1の電極11から酸素ガスが発生する電圧を印加する。たとえば、20~80ボルトの範囲にある電圧を印加してもよい。なお、KClやNaClなどの塩を加えることによって、印加する電圧を5ボルト程度まで下げることも可能である(工程(ii)においても同様である)。 First, the aqueous liquid 31 is placed in the container 10. The aqueous liquid 31 is tap water, for example. In general tap water, the pH is in the range of 5.8 to 8.6, and the ORP is in the range of +300 to +750 mV. Next, step (i) is performed. Specifically, the controller 20 controls the power supply 13 and applies a DC voltage between the first electrode 11 and the second electrode 12 so that the first electrode 11 becomes an anode. At this time, a voltage at which oxygen gas is generated from at least the first electrode 11 is applied. For example, a voltage in the range of 20 to 80 volts may be applied. Note that the voltage to be applied can be reduced to about 5 volts by adding a salt such as KCl or NaCl (the same applies to step (ii)).
 工程(i)の電圧印加によって、図3Aに示すように、第1の電極11の表面では、水が電気分解されて水素イオンと酸素ガスとが発生する。一方、第2の電極12の表面では、水性液体31中の陽イオン(L)が第2の電極12の活性炭繊維クロスに吸着される。なお、上述したように、陽イオン(L)の例には価数が1価の陽イオンだけでなく多価の陽イオン(たとえばCa2+、Mg2+やFe3+などの2価や3価の陽イオン)も含まれる。そのため、工程(i)では、通常、水性液体31の硬度が低下する。 By applying the voltage in the step (i), as shown in FIG. 3A, water is electrolyzed on the surface of the first electrode 11 to generate hydrogen ions and oxygen gas. On the other hand, on the surface of the second electrode 12, the cation (L + ) in the aqueous liquid 31 is adsorbed on the activated carbon fiber cloth of the second electrode 12. As described above, examples of the cation (L + ) include not only a cation having a valence of 1 but also a polyvalent cation (for example, divalent or trivalent such as Ca 2+ , Mg 2+ and Fe 3+). Of cations). Therefore, in the step (i), the hardness of the aqueous liquid 31 is usually reduced.
 工程(i)では、第1の電極11の表面で発生した水素イオンによって、水性液体31のpHが低下する。また、工程(i)では、通常、第1の電極11の表面で発生した酸素ガスによって水性液体31中の溶存酸素濃度が上昇し、その結果、水性液体31のORPが上昇することがある。ただし、条件によってはORPが低下する場合がある。 In step (i), the pH of the aqueous liquid 31 is lowered by the hydrogen ions generated on the surface of the first electrode 11. In step (i), the oxygen concentration generated in the surface of the first electrode 11 usually increases the dissolved oxygen concentration in the aqueous liquid 31, and as a result, the ORP of the aqueous liquid 31 may increase. However, the ORP may decrease depending on conditions.
 使用する水性液体31の種類によっても異なるが、pHが6~8の範囲にある水道水を水性液体31として用いる場合の一例では、水性液体31のpHが2.5~4.5の範囲(たとえば3.0~4.0の範囲)となるまで電圧印加を行う。このときのORPは、一例では、-100~+250mVの範囲(たとえば-50~+100mV)の範囲にある。 Although depending on the type of aqueous liquid 31 to be used, in an example in which tap water having a pH in the range of 6 to 8 is used as the aqueous liquid 31, the pH of the aqueous liquid 31 is in the range of 2.5 to 4.5 ( For example, the voltage is applied until it becomes within the range of 3.0 to 4.0. In this example, the ORP at this time is in the range of −100 to +250 mV (eg, −50 to +100 mV).
 次に、工程(i)を経た水性液体31に第1および第2の電極11および12を浸漬した状態で、工程(ii)を実施する。具体的には、コントローラ20は、電源13を制御し、第1の電極11と第2の電極12との間に、第1の電極11がカソードとなるように直流電圧を印加する。すなわち、工程(i)とは逆方向に電圧を印加する。このとき、少なくとも第1の電極11から水素ガスが発生する電圧を印加する。たとえば、20~80ボルトの範囲にある電圧を印加してもよい。 Next, step (ii) is performed with the first and second electrodes 11 and 12 immersed in the aqueous liquid 31 that has undergone step (i). Specifically, the controller 20 controls the power supply 13 and applies a DC voltage between the first electrode 11 and the second electrode 12 so that the first electrode 11 becomes a cathode. That is, a voltage is applied in the opposite direction to the step (i). At this time, a voltage at which hydrogen gas is generated from at least the first electrode 11 is applied. For example, a voltage in the range of 20 to 80 volts may be applied.
 工程(ii)の電圧印加によって、図3Bに示すように、第1の電極11の表面では、水が電気分解されて水酸化物イオンと水素ガスとが発生する。一方、第2の電極12の表面では、その表面に吸着されていた陽イオン(L)が水性液体31中に放出される。 By applying the voltage in the step (ii), as shown in FIG. 3B, water is electrolyzed on the surface of the first electrode 11 to generate hydroxide ions and hydrogen gas. On the other hand, on the surface of the second electrode 12, cations (L + ) adsorbed on the surface are released into the aqueous liquid 31.
 工程(ii)では、第1の電極11の表面で発生した水酸化物イオンによって、水性液体31のpHが上昇する。また、工程(ii)では、第1の電極11の表面で発生した水素ガスによって水性液体31中の溶存水素濃度が上昇し、その結果、水性液体31のORPが低下する。 In step (ii), the pH of the aqueous liquid 31 is increased by hydroxide ions generated on the surface of the first electrode 11. In step (ii), the hydrogen gas generated on the surface of the first electrode 11 increases the dissolved hydrogen concentration in the aqueous liquid 31, and as a result, the ORP of the aqueous liquid 31 decreases.
 上記工程によって、pHが中性近傍でORPが低い水性液体31が得られる。なお、使用する水性液体31の種類や電圧の印加条件を変えることによって、得られる水性液体31のpHおよびORPを調整できる。本発明の方法および装置によれば、pHが4.5~8.0の範囲にあり、ORP(標準水素電極基準の酸化還元電位)が-450~+200mVの範囲にある水性液体31(機能水)を得ることが可能である。また、本発明の方法および装置によれば、pHが4.0~6.0の範囲にあり、ORPが-200~+100mV程度の範囲にある水性液体31を得ることが可能である。本発明によれば、従来の方法および装置と比較して、比較的酸性度が高いpH領域においても溶存水素量が多い水性液体31を得ることが可能である。なお、この明細書においてORPを数値で表す場合、そのORPは標準水素電極を基準としたときの数値で表されている。 By the above process, an aqueous liquid 31 having a pH near neutral and a low ORP is obtained. In addition, pH and ORP of the aqueous liquid 31 obtained can be adjusted by changing the kind of aqueous liquid 31 to be used, and the application conditions of voltage. According to the method and apparatus of the present invention, the aqueous liquid 31 (functional water) having a pH in the range of 4.5 to 8.0 and an ORP (oxidation-reduction potential based on the standard hydrogen electrode) in the range of −450 to +200 mV. ) Can be obtained. Further, according to the method and apparatus of the present invention, it is possible to obtain the aqueous liquid 31 having a pH in the range of 4.0 to 6.0 and an ORP in the range of about −200 to +100 mV. According to the present invention, it is possible to obtain an aqueous liquid 31 having a large amount of dissolved hydrogen even in a pH range where the acidity is relatively high as compared with the conventional method and apparatus. In this specification, when ORP is represented by a numerical value, the ORP is represented by a numerical value with reference to a standard hydrogen electrode.
 本発明の方法および装置によって得られた水性液体(機能水)は、飲用や洗顔等にそのまま利用することも可能である。上述した第1の例で得られた機能水を飲用する場合は、溶存水素による生体内活性酸素の除去効果が期待される。また、上述した第1の例で得られた機能水を洗顔に利用する場合は、アストリンゼン効果による皮膚等の活性化、肌の引き締め効果、消毒効果の他、溶存水素による肌の老化防止作用等が期待される。 The aqueous liquid (functional water) obtained by the method and apparatus of the present invention can also be used as it is for drinking or face washing. When drinking the functional water obtained in the first example described above, the effect of removing in-vivo active oxygen by dissolved hydrogen is expected. In addition, when the functional water obtained in the first example described above is used for washing the face, activation of the skin by the astrogen effect, skin tightening effect, disinfection effect, skin aging prevention effect by dissolved hydrogen, etc. There is expected.
 本発明の機能水生成装置を用いる機器は、得られた水性液体(機能水)をミストまたはスチームの形で空気中に放出する拡散部を備えてもよい。すなわち、得られた機能水(たとえば水素水)を空気中に拡散させることによって、機能水による加湿が可能である。 The apparatus using the functional water generator of the present invention may include a diffusion unit that discharges the obtained aqueous liquid (functional water) into the air in the form of mist or steam. That is, humidification with functional water is possible by diffusing the obtained functional water (for example, hydrogen water) into the air.
 ミスト発生装置を用いて弱酸性の機能水をミスト化することによって、pHの変動を抑制でき、また、スチーム化に比べて溶存水素濃度の低減を抑制できる。そのため、機能水を空気中に放出する際(人体に噴射する場合も含まれる)に、機能水の効果が低減することを抑制できる。弱酸性でORPが低い機能水を空間中に噴射することによって、加湿効果だけでなく、酸性水が有する殺菌効果による細菌感染の予防などが期待される。また、弱酸性でORPが低い機能水を肌に作用させた場合、アストリンゼン効果による皮膚等の活性化、肌の引き締め効果、消毒効果の他、溶存水素による肌の老化防止作用等が期待される。 PH By making weakly acidic functional water mist using a mist generating device, fluctuations in pH can be suppressed, and reduction in dissolved hydrogen concentration can be suppressed as compared to steaming. Therefore, when functional water is discharged into the air (including the case where the functional water is injected into the human body), it can be suppressed that the effect of the functional water is reduced. By spraying the functional water having a weak acidity and low ORP into the space, not only the humidification effect but also the prevention of bacterial infection due to the bactericidal effect of the acidic water is expected. In addition, when functional water with low acidity and low ORP is allowed to act on the skin, activation of the skin, etc. by the astrogen effect, skin tightening effect, disinfection effect, skin aging prevention effect by dissolved hydrogen, etc. are expected .
 (実施形態2)
 本発明の機能水生成装置と拡散装置とを含む本発明の機器の一例を図4に示す。図4の機器200は、本体部210、容器10、第1の電極11、第2の電極12、拡散部220、配管221、および開閉弁222を含む。また、機器200は、入力装置および表示装置(いずれも図示せず)を含む。なお、機器200は、入力装置と表示装置とを兼ねるタッチパネルを備えてもよい。
(Embodiment 2)
An example of the apparatus of the present invention including the functional water generating apparatus and the diffusing apparatus of the present invention is shown in FIG. 4 includes a main body part 210, a container 10, a first electrode 11, a second electrode 12, a diffusion part 220, a pipe 221, and an on-off valve 222. Device 200 includes an input device and a display device (both not shown). Note that the device 200 may include a touch panel that serves as both an input device and a display device.
 本体部210は、電源13およびコントローラ(制御装置)20を含む。容器10、第1の電極11、第2の電極12、電源13およびコントローラ20は、実施形態1で説明した装置100と同様であるため、重複する説明を省略する。すなわち、機器200は、実施形態1で説明した装置100を含む。ただし、図4での機器200では、給水口10aを備える容器10を用いている。なお、電極の配置を、図2の装置100aと同様の配置としてもよい。そのような機器200aの一例を図5に示す。 The main body 210 includes a power supply 13 and a controller (control device) 20. The container 10, the first electrode 11, the second electrode 12, the power supply 13, and the controller 20 are the same as those of the device 100 described in the first embodiment, and thus redundant description is omitted. That is, the device 200 includes the device 100 described in the first embodiment. However, in the apparatus 200 in FIG. 4, the container 10 provided with the water supply port 10a is used. Note that the arrangement of the electrodes may be the same as that of the device 100a of FIG. An example of such a device 200a is shown in FIG.
 拡散部220は、機能水を拡散するための機構を含む。そのような機構には、加湿器やミスト発生器で用いられる公知の機構を適用できる。ただし、機能水を加熱すると溶存水素濃度が低下するため、溶存水素濃度を維持する観点では、加熱を伴わない機構が好ましい。 The diffusion unit 220 includes a mechanism for diffusing functional water. A known mechanism used in a humidifier or a mist generator can be applied to such a mechanism. However, since the dissolved hydrogen concentration decreases when functional water is heated, a mechanism that does not involve heating is preferable from the viewpoint of maintaining the dissolved hydrogen concentration.
 装置100の容器10と拡散部220とは、配管221によって接続されている。容器10から拡散部220への水性液体31の移動は、たとえば、ポンプ等を所定の場所(たとえば拡散部220)に設けて行ってもよい。また、拡散部220を容器10よりも下方に配置し、高低差によって水性液体31を移動させてもよい。配管221に設けられている開閉弁222を開くことによって、機器200内の水性液体31を移動させることができる。 The container 10 of the apparatus 100 and the diffusion unit 220 are connected by a pipe 221. The movement of the aqueous liquid 31 from the container 10 to the diffusion unit 220 may be performed, for example, by providing a pump or the like at a predetermined location (for example, the diffusion unit 220). Alternatively, the diffusing unit 220 may be disposed below the container 10 and the aqueous liquid 31 may be moved according to the height difference. By opening the on-off valve 222 provided in the pipe 221, the aqueous liquid 31 in the device 200 can be moved.
 容器10の外側の一部には、第1および第2の電極11および12と接続された2つの端子(図示せず)が設けられている。また、本体部210の一部にも、電源13から供給される電力を出力するための2つの端子が設けられている。容器10の2つの端子と本体部210の2つの端子とは、容器10を本体部210にセットしたときに接続されるように形成される。そのため、容器10を本体部210にセットすることによって、電源13から第1および第2の電極11および12に電圧を印加することが可能となる。なお、第1および第2の電極11および12を、容器10に着脱可能な電極ユニットとして一体化してもよい。そのようにすることによって、電極の交換やメンテナンスが容易になる。 Two terminals (not shown) connected to the first and second electrodes 11 and 12 are provided on a part of the outside of the container 10. In addition, two terminals for outputting electric power supplied from the power supply 13 are also provided in a part of the main body 210. The two terminals of the container 10 and the two terminals of the main body 210 are formed so as to be connected when the container 10 is set on the main body 210. Therefore, it is possible to apply a voltage from the power supply 13 to the first and second electrodes 11 and 12 by setting the container 10 in the main body 210. The first and second electrodes 11 and 12 may be integrated as an electrode unit that can be attached to and detached from the container 10. By doing so, the replacement and maintenance of the electrodes are facilitated.
 機器200の容器10は、本体部210に対して着脱可能に形成される。この構成によれば、第1および第2の電極11および12を洗浄した後に容器10内に残存した水を、容器10を本体部210から取り外すことによって簡単に捨てることができる。そのため、ユーザーによるメンテナンスが容易になる。また、洗浄時に本体部210等に水がかかることを防止できるため、回路のショート等による誤作動を防止できる。 The container 10 of the device 200 is formed to be detachable from the main body 210. According to this configuration, the water remaining in the container 10 after washing the first and second electrodes 11 and 12 can be easily discarded by removing the container 10 from the main body 210. This facilitates maintenance by the user. Further, since it is possible to prevent water from splashing on the main body 210 and the like during cleaning, malfunction due to a short circuit or the like can be prevented.
 コントローラ20は、電源13、拡散部220、開閉弁222、およびその他の機器(たとえば入力装置や表示装置など)に接続されており、必要に応じてそれらを制御する。また、コントローラ200は、入力装置から入力された信号を必要に応じて取り込んで制御に反映させる。 The controller 20 is connected to the power source 13, the diffusion unit 220, the on-off valve 222, and other devices (for example, an input device, a display device, etc.), and controls them as necessary. Moreover, the controller 200 takes in the signal input from the input device as necessary and reflects it in the control.
 機器200の動作の一例について以下に説明する。まず、給水口10aから水性液体31を供給する。次に、装置100について説明したように工程(i)および(ii)を実施し、機能水を得る。得られた機能水は、拡散部220から拡散されて利用される。 An example of the operation of the device 200 will be described below. First, the aqueous liquid 31 is supplied from the water supply port 10a. Next, steps (i) and (ii) are performed as described for the device 100 to obtain functional water. The obtained functional water is diffused from the diffusion unit 220 and used.
 なお、配管221と容器10との接続部を、第1の電極11よりも高い位置に配置してもよい。そのような機器200bの一例を図6に示す。機器200bは、装置100aを含む。機器200bでは、配管221と容器10との接続部(取水口)221aが、第1の電極11よりも上方の位置にある。別の観点では、接続部221aは、第2の電極12よりも第1の電極11に近い。 Note that the connecting portion between the pipe 221 and the container 10 may be disposed at a position higher than the first electrode 11. An example of such a device 200b is shown in FIG. The device 200b includes a device 100a. In the device 200 b, a connection part (water intake) 221 a between the pipe 221 and the container 10 is located above the first electrode 11. From another viewpoint, the connection portion 221 a is closer to the first electrode 11 than the second electrode 12.
 上述したように、工程(i)では、第1の電極11の表面で水素イオン(H)が発生し、第1の電極11の近傍の水性液体31は酸性化する。すなわち、第1の電極11の近傍ではpHが低くなり、pHの濃度勾配が生じる。この状態で工程(ii)を実施すると、第1の電極11の上方の水性液体31は、pHが上昇して弱酸性~中性になるとともに、第1の電極11で発生する水素ガスによってORPが低下する。その結果、第1の電極11の上方では、溶存水素濃度が高い、還元性の弱酸性水が得られやすい。そのため、図6に示すように、接続部(取水口)221aを第1の電極11の上方に配置することによって、第1の電極11の上方にある水性液体31を取水することによって、pHが低く溶存水素濃度が高い機能水が得られやすくなる。 As described above, in the step (i), hydrogen ions (H + ) are generated on the surface of the first electrode 11 and the aqueous liquid 31 in the vicinity of the first electrode 11 is acidified. That is, the pH is lowered in the vicinity of the first electrode 11, and a pH concentration gradient is generated. When step (ii) is performed in this state, the aqueous liquid 31 above the first electrode 11 becomes weakly acidic to neutral due to an increase in pH, and ORP is generated by hydrogen gas generated at the first electrode 11. Decreases. As a result, it is easy to obtain reducing weakly acidic water having a high dissolved hydrogen concentration above the first electrode 11. Therefore, as shown in FIG. 6, by placing the connecting portion (water intake port) 221 a above the first electrode 11, the aqueous liquid 31 above the first electrode 11 is taken in, so that the pH is reduced. Functional water with low dissolved hydrogen concentration is easily obtained.
 なお、接続部(取水口)221aを第1の電極11の上方に配置した場合、接続部221aよりも下方の水性液体31は残留することになる。この水に対し、工程(ii)の電圧印加と同じ方向に電圧を印加して電流を流すことによって、第2の電極12に吸着された陽イオン(たとえば硬度成分)を、残留した水性液体31中に放出させることができる。陽イオンが放出された水性液体31を廃棄することによって、第2の電極12のイオン吸着能を維持することができる。これらの工程を含む処理の一例のフローチャートを、図7に示す。ただし、図7に示すフローチャートは処理の一例にすぎない。たとえば、工程(ii)が終了した時点の水性液体31を廃棄してもよい。 In addition, when the connection part (water intake) 221a is arrange | positioned above the 1st electrode 11, the aqueous liquid 31 below the connection part 221a will remain. By applying a voltage to this water in the same direction as the voltage application in the step (ii) and causing a current to flow, the cation (for example, hardness component) adsorbed on the second electrode 12 is left in the remaining aqueous liquid 31. Can be released inside. By discarding the aqueous liquid 31 from which the cations have been released, the ion adsorption ability of the second electrode 12 can be maintained. FIG. 7 shows a flowchart of an example of processing including these steps. However, the flowchart shown in FIG. 7 is merely an example of processing. For example, the aqueous liquid 31 at the time when step (ii) is completed may be discarded.
 実施形態1および2では上述した第1の例(工程(i)において第1の電極をアノードとする場合)について説明した。しかし、工程(i)および(ii)における電圧印加の方向を逆にすることによって、上述した第2の例を実施できる。 Embodiments 1 and 2 have described the first example described above (when the first electrode is used as an anode in step (i)). However, the second example described above can be implemented by reversing the direction of voltage application in steps (i) and (ii).
 以下に、実施例によって本発明をさらに詳細に説明する。 Hereinafter, the present invention will be described in more detail with reference to examples.
 (実施例1)
 実施例1では、図1に示した装置100を用いて実験を行った。第1の電極11には、白金コートした複数のチタン線をストライプ状に配置した電極を用いた。第2の電極12には、活性炭繊維クロス(サイズ:70mm×90mm)を3枚重ねたものを用いた。電極間距離は15mmとした。2つの電極は、図1に示すように互いに平行に配置した。また、容器10には、水性液体31として、0.1wt%のKCl水溶液を100mL配置した。
(Example 1)
In Example 1, an experiment was performed using the apparatus 100 shown in FIG. As the first electrode 11, an electrode in which a plurality of platinum-coated titanium wires were arranged in a stripe shape was used. As the second electrode 12, a stack of three activated carbon fiber cloths (size: 70 mm × 90 mm) was used. The distance between the electrodes was 15 mm. The two electrodes were arranged in parallel to each other as shown in FIG. In addition, 100 mL of 0.1 wt% KCl aqueous solution was placed in the container 10 as the aqueous liquid 31.
 次に、第1の電極11がアノードとなるように第1の電極11と第2の電極12との間に直流電圧を印加した(工程(i))。具体的には、0.20Aの電流が電極間に流れるように、電極間に150秒間電圧を印加した(トータルの電気量は30A・sec)。次に、水性液体31を入れ替えることなく、第1の電極がカソードとなるように第1の電極11と第2の電極12との間に直流電圧を印加した(工程(ii))。具体的には、0.25Aの電流が電極間に流れるように、電極間に80秒間電圧を印加した(トータルの電気量は20A・sec)。この電圧印加を5つのサンプルについて行った結果を表1に示す。 Next, a DC voltage was applied between the first electrode 11 and the second electrode 12 so that the first electrode 11 became an anode (step (i)). Specifically, a voltage was applied between the electrodes for 150 seconds so that a current of 0.20 A flows between the electrodes (total amount of electricity is 30 A · sec). Next, a DC voltage was applied between the first electrode 11 and the second electrode 12 so that the first electrode became a cathode without replacing the aqueous liquid 31 (step (ii)). Specifically, a voltage was applied between the electrodes for 80 seconds so that a current of 0.25 A flows between the electrodes (total amount of electricity is 20 A · sec). Table 1 shows the results of this voltage application for five samples.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、実施例1の条件では、pHが5.6~6.2程度でORPが-138~36mV程度の水性液体が得られた。 As shown in Table 1, under the conditions of Example 1, an aqueous liquid having a pH of about 5.6 to 6.2 and an ORP of about -138 to 36 mV was obtained.
 (実施例2)
 実施例2では、工程(ii)における電圧印加の条件を変えたことを除いて、実施例1と同様の実験を行った。実施例2の工程(i)では、実施例1と同様に、0.20Aの電流が電極間に流れるように、電極間に150秒間電圧を印加した(トータルの電気量は30A・sec)。次の工程(ii)では、0.20Aの電流が電極間に流れるように、電極間に120秒間電圧を印加した(トータルの電気量は24A・sec)。この電圧印加を5つのサンプルについて行った結果を表2に示す。
(Example 2)
In Example 2, the same experiment as in Example 1 was performed, except that the voltage application conditions in step (ii) were changed. In step (i) of Example 2, as in Example 1, a voltage was applied between the electrodes for 150 seconds so that a current of 0.20 A flows between the electrodes (total amount of electricity is 30 A · sec). In the next step (ii), a voltage was applied between the electrodes for 120 seconds so that a current of 0.20 A flows between the electrodes (total amount of electricity is 24 A · sec). Table 2 shows the results of this voltage application for five samples.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、実施例2の条件では、pHが7.0~7.5程度でORPが-435~-420mV程度の水性液体が得られた。 As shown in Table 2, under the conditions of Example 2, an aqueous liquid having a pH of about 7.0 to 7.5 and an ORP of about -435 to -420 mV was obtained.
 実施例1および実施例2で最終的に得られた水性液体の分布を図8に示す。なお、図8には、水素分圧100%の線および酸素分圧100%の線も示す。工程(ii)において流れる電気量を増やすことによって、実施例1のpHおよびORPが、実施例2のpHおよびORPに移動した。 FIG. 8 shows the distribution of the aqueous liquid finally obtained in Example 1 and Example 2. FIG. 8 also shows a line with a hydrogen partial pressure of 100% and a line with an oxygen partial pressure of 100%. By increasing the amount of electricity flowing in step (ii), the pH and ORP of Example 1 moved to the pH and ORP of Example 2.
 なお、工程(i)および(ii)における電圧印加条件を変化させることによって、pHおよびORPの範囲を制御することができる(以下の実施例においても同様である)。たとえば、工程(i)において、500mLの水性液体31に対して500mAで240秒間電気分解を行うことによって、pHが3.0~3.2程度の弱酸性水を得ることも可能である。また、工程(ii)において、500mLの水性液体31に対して、500mAで150秒間電気分解を行うことによって、pHが6.3~6.8の範囲にあり、ORPが-140~-260mV程度の範囲にある中性の還元水を得ることができる。 In addition, the range of pH and ORP can be controlled by changing the voltage application conditions in steps (i) and (ii) (the same applies to the following examples). For example, in step (i), weakly acidic water having a pH of about 3.0 to 3.2 can be obtained by electrolysis of 500 mL of aqueous liquid 31 at 500 mA for 240 seconds. Further, in step (ii), 500 mL of the aqueous liquid 31 is electrolyzed at 500 mA for 150 seconds, so that the pH is in the range of 6.3 to 6.8 and the ORP is about −140 to −260 mV. Neutral reduced water in the range can be obtained.
 (実施例3)
 実施例3では、図2に示した装置100aを用いて実験を行った。第1の電極11には、チタンからなるエキスパンドメタルに白金コートしたものを用いた。第2の電極12には、シート状の活性炭電極を用いた。それらの電極の外形は、それぞれ、90mm×70mmであった。また、電極間距離は10mmとした。2つの電極は、図2に示すように配置した。
(Example 3)
In Example 3, the experiment was performed using the apparatus 100a shown in FIG. As the first electrode 11, an expanded metal made of titanium and coated with platinum was used. As the second electrode 12, a sheet-like activated carbon electrode was used. The outer shapes of these electrodes were 90 mm × 70 mm, respectively. The distance between the electrodes was 10 mm. The two electrodes were arranged as shown in FIG.
 容器10には、pHが7.5で導電率が180μS/cmの水道水300mLを入れた。次に、第1の電極11がアノードとなるように第1の電極11と第2の電極12との間に直流電圧を印加した。具体的には、第1の電極11と第2の電極12との間に500mAの定電流が流れるように電圧を印加した。このときの電圧は、60ボルト以下であった。500mAの電流値で180~240秒間電気分解を行うことによって、pHが3.0~3.2程度の弱酸性水が得られた。 The container 10 was charged with 300 mL of tap water having a pH of 7.5 and a conductivity of 180 μS / cm. Next, a DC voltage was applied between the first electrode 11 and the second electrode 12 so that the first electrode 11 became an anode. Specifically, a voltage was applied so that a constant current of 500 mA flows between the first electrode 11 and the second electrode 12. The voltage at this time was 60 volts or less. By performing electrolysis at a current value of 500 mA for 180 to 240 seconds, weakly acidic water having a pH of about 3.0 to 3.2 was obtained.
 次に、第1の電極11がカソードとなるように第1の電極11と第2の電極12との間に直流電圧を印加した。具体的には、第1の電極11と第2の電極12との間に500mAの定電流が流れるように電圧を印加した。このときの電圧は、50ボルト以下であった。500mAの電流値で20秒間電気分解を行うことによって、pHが3.6程度の弱酸性水が得られた。工程(ii)における電圧の印加条件を変更することによって、様々な機能水(たとえば、pHが3.5以上6未満(たとえばpHが3.5~5.5の範囲)の弱酸性領域で、ORPが-300~-50mV程度の還元水)を生成することができる。 Next, a DC voltage was applied between the first electrode 11 and the second electrode 12 so that the first electrode 11 became a cathode. Specifically, a voltage was applied so that a constant current of 500 mA flows between the first electrode 11 and the second electrode 12. The voltage at this time was 50 volts or less. By performing electrolysis at a current value of 500 mA for 20 seconds, weakly acidic water having a pH of about 3.6 was obtained. By changing the voltage application conditions in step (ii), various functional waters (for example, a pH of 3.5 or more and less than 6 (for example, a pH in the range of 3.5 to 5.5) in a weakly acidic region, Reduced water having an ORP of about −300 to −50 mV).
 実施例3の上記工程(i)および(ii)における容器10内の水の物性の変化を図9に示す。なお、図9には、水素分圧100%の線および酸素分圧100%の線も示す。 FIG. 9 shows changes in physical properties of water in the container 10 in the above steps (i) and (ii) of Example 3. FIG. 9 also shows a line with a hydrogen partial pressure of 100% and a line with an oxygen partial pressure of 100%.
 図9に示すように、工程(i)の電圧印加によって、pHが低下し、ORPが低下した。また、工程(ii)の電圧印加によって、pHが上昇し、ORPが低下した。なお、実施例3の工程(i)においてORPが低下した理由は、現在のところ明確ではないが、1つの可能性としては、工程(i)の電圧印加の際に第2の電極12で水素ガスが発生し、その水素ガスが上昇する際に、陽極で発生して水中に溶存した酸素が部分的に水素ガス中に追い出され、その結果、水性液体31中の溶存水素濃度が上昇した可能性がある。 As shown in FIG. 9, pH was lowered and ORP was lowered by voltage application in step (i). Moreover, pH rose and ORP fell by the voltage application of process (ii). The reason why ORP has decreased in step (i) of Example 3 is not clear at present, but one possibility is that hydrogen is applied to the second electrode 12 during voltage application in step (i). When gas is generated and the hydrogen gas rises, oxygen dissolved in the water generated at the anode is partially expelled into the hydrogen gas, and as a result, the dissolved hydrogen concentration in the aqueous liquid 31 may increase. There is sex.
 上記実施例の結果によれば、平板状の電極を垂直方向に平行に配置した場合と、平板状の電極を水平方向に平行に配置した場合とでは、水性液体31の物性の変化の挙動が異なる。そのため、機器の用途に応じて、電極の配置を変えてもよい。 According to the results of the above examples, the behavior of the change in the physical properties of the aqueous liquid 31 is different between the case where the flat electrodes are arranged in parallel in the vertical direction and the case where the flat electrodes are arranged in parallel in the horizontal direction. Different. Therefore, the arrangement of the electrodes may be changed according to the application of the device.
 上記の機器(および生成された水素水)は、洗顔等の理美容の用途に好ましく用いることができる。溶存水素濃度が高く酸化還元電位(ORP)が-500~0mV程度と低い水は、いわゆる還元水と呼ばれており、特に理美容用途については、肌に対するアンチエージング効果を奏するものとして期待されている(参考文献:温泉科学、第55巻、p.55~63、2005年)。 The above equipment (and the generated hydrogen water) can be preferably used for hairdressing and beauty applications such as face washing. Water with a high dissolved hydrogen concentration and a low oxidation-reduction potential (ORP) of about -500 to 0 mV is called so-called reduced water, and it is expected to have an anti-aging effect on the skin, especially for cosmetics. (Reference: Hot Spring Science, Vol. 55, p. 55-63, 2005).
 また、本発明で得られる機能水は、理美容用途の他にも、植物育成用途(ジョウロ等による散水、作物への噴霧、等)に用いることができる。 Moreover, the functional water obtained by the present invention can be used for plant breeding applications (watering by watering, spraying on crops, etc.) in addition to hairdressing and beauty applications.
 以上、本発明の実施形態につき説明したが、本発明の範囲はこれに限定されるものではなく、発明の趣旨を逸脱しない範囲で種々の変更を加えて実施することができる。 The embodiment of the present invention has been described above, but the scope of the present invention is not limited to this, and various modifications can be made without departing from the spirit of the invention.
 本発明は、機能水の生成方法および生成装置、およびそれを含む機器に利用できる。 The present invention can be used for a functional water generation method and apparatus, and a device including the same.

Claims (17)

  1.  水性液体が配置される容器と、前記容器内に配置される第1および第2の電極とを用いて機能水を生成する方法であって、
     (i)前記第1および第2の電極が前記水性液体に浸漬された状態で前記第1の電極と前記第2の電極との間に電圧を印加することによって、前記第1の電極の表面で水を電気分解させ、且つ、前記第2の電極の表面に前記水性液体中のイオンを吸着させる工程と、
     (ii)前記第1の電極と前記第2の電極との間に前記(i)の工程とは逆方向に電圧を印加することによって、前記第1の電極の表面で水を電気分解させ、且つ、前記第2の電極の表面に吸着された前記イオンを前記水性液体中に放出させる工程とをこの順に含む、方法。
    A method of generating functional water using a container in which an aqueous liquid is disposed, and first and second electrodes disposed in the container,
    (I) A surface of the first electrode by applying a voltage between the first electrode and the second electrode in a state where the first and second electrodes are immersed in the aqueous liquid. Electrolyzing water and adsorbing ions in the aqueous liquid to the surface of the second electrode;
    (Ii) electrolyzing water on the surface of the first electrode by applying a voltage between the first electrode and the second electrode in a direction opposite to the step (i), And releasing the ions adsorbed on the surface of the second electrode into the aqueous liquid in this order.
  2.  前記(i)の工程において、前記第1の電極と前記第2の電極との間に前記第1の電極がアノードとなるように電圧を印加することによって、前記第1の電極の表面で酸素ガスと水素イオンとを発生させ、且つ、前記第2の電極の表面に前記水性液体中の陽イオンを吸着させ、
     前記(ii)の工程において、前記第1の電極と前記第2の電極との間に前記第1の電極がカソードとなるように電圧を印加することによって、前記第1の電極の表面で水素ガスと水酸化物イオンとを発生させ、且つ、前記第2の電極の表面に吸着された前記陽イオンを前記水性液体中に放出させる、請求項1に記載の方法。
    In the step (i), a voltage is applied between the first electrode and the second electrode so that the first electrode becomes an anode, whereby oxygen is generated on the surface of the first electrode. Generating gas and hydrogen ions, and adsorbing cations in the aqueous liquid on the surface of the second electrode;
    In the step (ii), a voltage is applied between the first electrode and the second electrode so that the first electrode becomes a cathode, whereby hydrogen is generated on the surface of the first electrode. The method according to claim 1, wherein gas and hydroxide ions are generated, and the cation adsorbed on the surface of the second electrode is released into the aqueous liquid.
  3.  前記(i)の工程において、前記第1の電極と前記第2の電極との間に前記第1の電極がカソードとなるように電圧を印加することによって、前記第1の電極の表面で水素ガスと水酸化物イオンとを発生させ、且つ、前記第2の電極の表面に前記水性液体中の陰イオンを吸着させ、
     前記(ii)の工程において、前記第1の電極と前記第2の電極との間に前記第1の電極がアノードとなるように電圧を印加することによって、前記第1の電極の表面で酸素ガスと水素イオンとを発生させ、且つ、前記第2の電極の表面に吸着された前記陰イオンを前記水性液体中に放出させる、請求項1に記載の方法。
    In the step (i), a voltage is applied between the first electrode and the second electrode so that the first electrode becomes a cathode, whereby hydrogen is generated on the surface of the first electrode. Generating gas and hydroxide ions, and adsorbing the anions in the aqueous liquid on the surface of the second electrode;
    In the step (ii), a voltage is applied between the first electrode and the second electrode so that the first electrode becomes an anode, whereby oxygen is generated on the surface of the first electrode. The method according to claim 1, wherein gas and hydrogen ions are generated and the anions adsorbed on the surface of the second electrode are released into the aqueous liquid.
  4.  前記第1の電極は表面に配置された白金を含み、
     前記第2の電極は表面に配置された活性炭を含む、請求項1に記載の方法。
    The first electrode includes platinum disposed on a surface;
    The method of claim 1, wherein the second electrode comprises activated carbon disposed on a surface.
  5.  前記第1および第2の電極はそれぞれ平板状の電極であり、
     前記第1および第2の電極は、垂直方向と平行に、且つ、対向するように互いに平行に配置されている、請求項1に記載の方法。
    Each of the first and second electrodes is a flat electrode,
    The method according to claim 1, wherein the first and second electrodes are arranged in parallel to each other so as to be parallel to the vertical direction and to face each other.
  6.  前記第1および第2の電極はそれぞれ平板状の電極であり、
     前記第1および第2の電極は、水平方向と平行に、且つ、対向するように互いに平行に、且つ、前記第1の電極が前記第2の電極の上方に位置するように配置されている、請求項1に記載の方法。
    Each of the first and second electrodes is a flat electrode,
    The first and second electrodes are arranged in parallel to the horizontal direction, in parallel to each other so as to face each other, and so that the first electrode is located above the second electrode. The method of claim 1.
  7.  前記第1の電極は、ガスが通過可能な平板状の電極である、請求項6に記載の方法。 The method according to claim 6, wherein the first electrode is a flat electrode through which a gas can pass.
  8.  水性液体が配置される容器と、前記容器内に配置される第1および第2の電極と、前記第1の電極と前記第2の電極との間に電圧を印加するための電源と、コントローラとを含む、機能水生成装置であって、
     前記コントローラは、
     (i)前記第1および第2の電極が前記水性液体に浸漬された状態で前記第1の電極と前記第2の電極との間に電圧を印加することによって、前記第1の電極の表面で水を電気分解させ、且つ、前記第2の電極の表面に前記水性液体中のイオンを吸着させる工程と、
     (ii)前記第1の電極と前記第2の電極との間に前記(i)の工程とは逆方向に電圧を印加することによって、前記第1の電極の表面で水を電気分解させ、且つ、前記第2の電極の表面に吸着された前記イオンを前記水性液体中に放出させる工程とをこの順に実行する、機能水生成装置。
    A container in which an aqueous liquid is disposed, first and second electrodes disposed in the container, a power source for applying a voltage between the first electrode and the second electrode, and a controller A functional water generator comprising:
    The controller is
    (I) A surface of the first electrode by applying a voltage between the first electrode and the second electrode in a state where the first and second electrodes are immersed in the aqueous liquid. Electrolyzing water and adsorbing ions in the aqueous liquid to the surface of the second electrode;
    (Ii) electrolyzing water on the surface of the first electrode by applying a voltage between the first electrode and the second electrode in a direction opposite to the step (i), And the functional water production | generation apparatus which performs the process to discharge | release the said ion adsorbed on the surface of the said 2nd electrode in the said aqueous liquid in this order.
  9.  前記コントローラは、
     前記(i)の工程において、前記第1の電極と前記第2の電極との間に前記第1の電極がアノードとなるように電圧を印加することによって、前記第1の電極の表面で酸素ガスと水素イオンとを発生させ、且つ、前記第2の電極の表面に前記水性液体中の陽イオンを吸着させ、
     前記(ii)の工程において、前記第1の電極と前記第2の電極との間に前記第1の電極がカソードとなるように電圧を印加することによって、前記第1の電極の表面で水素ガスと水酸化物イオンとを発生させ、且つ、前記第2の電極の表面に吸着された前記陽イオンを前記水性液体中に放出させる、請求項8に記載の機能水生成装置。
    The controller is
    In the step (i), a voltage is applied between the first electrode and the second electrode so that the first electrode becomes an anode, whereby oxygen is generated on the surface of the first electrode. Generating gas and hydrogen ions, and adsorbing cations in the aqueous liquid on the surface of the second electrode;
    In the step (ii), a voltage is applied between the first electrode and the second electrode so that the first electrode becomes a cathode, whereby hydrogen is generated on the surface of the first electrode. The functional water generating apparatus according to claim 8, wherein gas and hydroxide ions are generated and the cation adsorbed on the surface of the second electrode is released into the aqueous liquid.
  10.  前記コントローラは、
     前記(i)の工程において、前記第1の電極と前記第2の電極との間に前記第1の電極がカソードとなるように電圧を印加することによって、前記第1の電極の表面で水素ガスと水酸化物イオンとを発生させ、且つ、前記第2の電極の表面に前記水性液体中の陰イオンを吸着させ、
     前記(ii)の工程において、前記第1の電極と前記第2の電極との間に前記第1の電極がアノードとなるように電圧を印加することによって、前記第1の電極の表面で酸素ガスと水素イオンとを発生させ、且つ、前記第2の電極の表面に吸着された前記陰イオンを前記水性液体中に放出させる、請求項8に記載の機能水生成装置。
    The controller is
    In the step (i), a voltage is applied between the first electrode and the second electrode so that the first electrode becomes a cathode, whereby hydrogen is generated on the surface of the first electrode. Generating gas and hydroxide ions, and adsorbing the anions in the aqueous liquid on the surface of the second electrode;
    In the step (ii), a voltage is applied between the first electrode and the second electrode so that the first electrode becomes an anode, whereby oxygen is generated on the surface of the first electrode. The functional water generating apparatus according to claim 8, wherein gas and hydrogen ions are generated and the anions adsorbed on the surface of the second electrode are released into the aqueous liquid.
  11.  前記第1の電極は表面に配置された白金を含み、
     前記第2の電極は表面に配置された活性炭を含む、請求項8に記載の機能水生成装置。
    The first electrode includes platinum disposed on a surface;
    The functional water generating apparatus according to claim 8, wherein the second electrode includes activated carbon disposed on a surface.
  12.  前記第1および第2の電極はそれぞれ平板状の電極であり、
     前記第1および第2の電極は、垂直方向と平行に、且つ、対向するように互いに平行に配置されている、請求項8に記載の機能水生成装置。
    Each of the first and second electrodes is a flat electrode,
    The functional water generating device according to claim 8, wherein the first and second electrodes are arranged in parallel to each other so as to be parallel to and perpendicular to the vertical direction.
  13.  前記第1および第2の電極はそれぞれ平板状の電極であり、
     前記第1および第2の電極は、水平方向と平行に、且つ、対向するように互いに平行に、且つ、前記第1の電極が前記第2の電極の上方に位置するように配置されている、請求項8に記載の機能水生成装置。
    Each of the first and second electrodes is a flat electrode,
    The first and second electrodes are arranged in parallel to the horizontal direction, in parallel to each other so as to face each other, and so that the first electrode is located above the second electrode. The functional water generating apparatus according to claim 8.
  14.  前記第1の電極は、ガスが通過可能な平板状の電極である、請求項13に記載の機能水生成装置。 The functional water generating device according to claim 13, wherein the first electrode is a flat electrode through which gas can pass.
  15.  請求項8に記載の機能水生成装置を含む、機器。 Equipment including the functional water generator according to claim 8.
  16.  前記機能水生成装置で生成された機能水を取り出して利用するための配管をさらに備え、
     前記機能水生成装置に含まれる容器であって前記機能水が生成される容器と前記配管との接続部が、前記第1の電極よりも上方に位置している、請求項15に記載の機器。
    It further comprises piping for taking out and using the functional water generated by the functional water generator,
    The apparatus according to claim 15, wherein a connection portion between the pipe, which is a container included in the functional water generation device and in which the functional water is generated, is located above the first electrode. .
  17.  理美容機器である、請求項15に記載の機器。 The device according to claim 15, which is a hairdressing and beauty device.
PCT/JP2014/064469 2013-06-12 2014-05-30 Method for producing functional water, device for producing functional water, and instrument equipped with said device WO2014199849A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-123422 2013-06-12
JP2013123422 2013-06-12

Publications (1)

Publication Number Publication Date
WO2014199849A1 true WO2014199849A1 (en) 2014-12-18

Family

ID=52022147

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/064469 WO2014199849A1 (en) 2013-06-12 2014-05-30 Method for producing functional water, device for producing functional water, and instrument equipped with said device

Country Status (1)

Country Link
WO (1) WO2014199849A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016185238A (en) * 2015-03-27 2016-10-27 シャープ株式会社 Mist generator
JP2018086617A (en) * 2016-11-28 2018-06-07 八藤 眞 Reduced hydrogen water generator

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005325447A (en) * 2004-04-13 2005-11-24 Global Tokai:Kk Auxiliary apparatus for water electrolyzer, water electrolyzer and multiport rotary valve
WO2009157388A1 (en) * 2008-06-23 2009-12-30 有限会社ターナープロセス Sterilization method and sterilization device
JP2011132678A (en) * 2009-12-22 2011-07-07 Tanah Process Co Ltd Apparatus and method for preparing toilet bowl flushing water
JP2011131118A (en) * 2009-12-22 2011-07-07 Tanah Process Co Ltd Method and apparatus for preparing spray water for plant
JP2013193024A (en) * 2012-03-19 2013-09-30 Sharp Corp Ion concentration regulator

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005325447A (en) * 2004-04-13 2005-11-24 Global Tokai:Kk Auxiliary apparatus for water electrolyzer, water electrolyzer and multiport rotary valve
WO2009157388A1 (en) * 2008-06-23 2009-12-30 有限会社ターナープロセス Sterilization method and sterilization device
JP2011132678A (en) * 2009-12-22 2011-07-07 Tanah Process Co Ltd Apparatus and method for preparing toilet bowl flushing water
JP2011131118A (en) * 2009-12-22 2011-07-07 Tanah Process Co Ltd Method and apparatus for preparing spray water for plant
JP2013193024A (en) * 2012-03-19 2013-09-30 Sharp Corp Ion concentration regulator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016185238A (en) * 2015-03-27 2016-10-27 シャープ株式会社 Mist generator
JP2018086617A (en) * 2016-11-28 2018-06-07 八藤 眞 Reduced hydrogen water generator

Similar Documents

Publication Publication Date Title
JP4461271B2 (en) Portable hardness adjustment device for adjusting the hardness of drinking water
CA2892547C (en) An electrolyzed water generating method and a generator
JP5764179B2 (en) Electrolyzer for generating pH-controlled hypohalous acid aqueous solution for sterilization applications
JP3994417B2 (en) Liquid pH adjusting method and pH adjusting device
JP4392354B2 (en) High electrolysis cell
US20110108437A1 (en) Disinfection method and disinfection device
WO2015154702A1 (en) Air humidifier
KR101030721B1 (en) Apparatus for manufacturing hydrogen-abundant water
JP2011131118A (en) Method and apparatus for preparing spray water for plant
KR20130114311A (en) Sterilized humidifier of supplying sterilized vapor
JP6366360B2 (en) Method for producing electrolytic reduced water containing hydrogen molecules and apparatus for producing the same
WO2014199849A1 (en) Method for producing functional water, device for producing functional water, and instrument equipped with said device
KR101409649B1 (en) System for manufacturing hydrogen cosmetic
JP5210455B1 (en) Wash water generator
WO2015141858A1 (en) Electrolyzed-water generation device
RU80840U1 (en) DEVICE FOR INCREASING BIOLOGICAL ACTIVITY AND PURIFICATION OF WATER (OPTIONS)
JP4597263B1 (en) Electrolyzed water production apparatus and electrolyzed water production method using the same
JP2015230108A (en) Ion generation type humidifier
TW201321310A (en) Method for generating biocide
JP2012196643A (en) Apparatus for producing hypochlorous acid water or the like
KR20130081578A (en) Electrically regenerative water softening apparatus and method of operating the same
KR20120067142A (en) Softener having sterilized water chamber and method for working the same
KR102311195B1 (en) Apparatus and method for controlling electrodes
JP2015016414A (en) Reduced water generator
RU2351546C2 (en) Method for reduction of oxidation-reduction potential of water

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14810916

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14810916

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP