WO2014199847A1 - Corneal endothelial cell image pickup device - Google Patents

Corneal endothelial cell image pickup device Download PDF

Info

Publication number
WO2014199847A1
WO2014199847A1 PCT/JP2014/064423 JP2014064423W WO2014199847A1 WO 2014199847 A1 WO2014199847 A1 WO 2014199847A1 JP 2014064423 W JP2014064423 W JP 2014064423W WO 2014199847 A1 WO2014199847 A1 WO 2014199847A1
Authority
WO
WIPO (PCT)
Prior art keywords
corneal endothelial
endothelial cell
fixation target
light
main body
Prior art date
Application number
PCT/JP2014/064423
Other languages
French (fr)
Japanese (ja)
Inventor
兼一 坂上
将 中島
Original Assignee
株式会社トプコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社トプコン filed Critical 株式会社トプコン
Publication of WO2014199847A1 publication Critical patent/WO2014199847A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/107Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for determining the shape or measuring the curvature of the cornea
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/0075Apparatus for testing the eyes; Instruments for examining the eyes provided with adjusting devices, e.g. operated by control lever
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/14Arrangements specially adapted for eye photography

Definitions

  • the present invention relates to a corneal endothelial cell imaging apparatus for imaging corneal endothelial cells.
  • Such a corneal endothelial cell imaging device includes a slit light irradiation optical system that irradiates slit light obliquely toward the cornea of an eye to be examined, and a cornea that receives reflected light from the corneal endothelial cells of the cornea and images the corneal endothelial cells. And an endothelial cell photographing optical system.
  • a slit light irradiation optical system that irradiates slit light obliquely toward the cornea of an eye to be examined, and a cornea that receives reflected light from the corneal endothelial cells of the cornea and images the corneal endothelial cells.
  • an endothelial cell photographing optical system In such an apparatus for photographing corneal endothelial cells, photographing is performed with the subject's eye fixed, so the corneal endothelial cells in the central part of the cornea are photographed.
  • the fixation target in the periphery is difficult to see for the subject, and in particular, the external fixation target is difficult to see, and there is a problem that the gaze of the subject cannot be promptly guided. It was.
  • An object of the present invention is to provide a corneal endothelial cell imaging apparatus capable of promptly guiding a subject's line of sight to a fixed fixation target.
  • the invention according to claim 1 is a slit light irradiation optical system that irradiates slit light obliquely toward the cornea of an eye to be examined, and a corneal endothelium that receives reflected light from the corneal endothelial cells of the cornea and images the corneal endothelial cells.
  • An endothelial cell photographing optical system, an internal fixation target, an external fixation target, and the alignment detection means are provided in the apparatus main body, and the apparatus main body can move back and forth, right and left, up and down with respect to the eye to be examined.
  • a photographing device When the plurality of portions of the cornea are sequentially photographed by sequentially changing the fixation target to be lit, the apparatus main body is temporarily retracted every time photographing is completed.
  • the subject's line of sight can be promptly guided to the fixation target.
  • FIG. 1 is an optical layout diagram showing an optical system of a corneal endothelial cell imaging apparatus according to the present invention.
  • FIG. 5 is an optical arrangement diagram showing arrangement of optical members of an alignment index projection optical system and an internal fixation target projection optical system.
  • a corneal endothelial cell imaging device 100 shown in FIGS. 1 to 3 includes a base portion 302 provided on a base 301, and a device main body 303 provided on the base portion 302 and movable in the front, rear, left, right, up and down directions.
  • the jaw holder 305 provided on the upper part of the support 304 attached to the front part of the base 301, the forehead 307 held by the holding member 306 provided on the support 304, and the apparatus main body 303 are provided.
  • a display unit 310 is provided on the upper part of the support 304 attached to the front part of the base 301, the forehead 307 held by the holding member 306 provided on the support 304, and the apparatus main body 303.
  • the display unit 310 displays an imaged anterior segment image or corneal endothelial cell image, and can be freely moved to a desired position by motor control or manually.
  • a touch panel 312 (see FIG. 10) is attached to the screen of the display unit 310. By touching the touch panel 312, the apparatus main body 303 is moved in the front-rear direction, the up-down direction, and the left-right direction with respect to the eye to be examined. In addition to the above, various mode settings and operations can be performed.
  • an optical system of the corneal endothelial cell imaging apparatus 100 that images corneal endothelial cells is arranged.
  • the apparatus main body 303 On the front surface of the apparatus main body 303, as shown in FIG. 4, six external fixation target light sources 321 to 326 that are external fixation targets and four anterior segment illumination light sources that illuminate the anterior segment of the eye to be examined. 1, the slit light irradiation window 341 for irradiating the slit light toward the cornea of the eye to be examined, the incident window 342 into which the reflected light of the slit light reflected by the cornea enters, and the anterior eye portion of the eye to be examined are observed. Observation window 343 is provided.
  • the external fixation target light sources 321 to 326 and the anterior ocular segment illumination light source 1 are composed of, for example, light emitting diodes.
  • the external fixation target light sources 321 to 326 emit light when photographing corneal endothelial cells at a position far away from the central portion of the cornea.
  • the optical system of the corneal endothelial cell imaging apparatus 100 includes an anterior ocular segment observation optical system 10 for observing the anterior segment of the eye E and a corneal endothelial cell S2 of the eye E (see FIG. 8).
  • the anterior ocular segment observation optical system 10 includes an alignment index projection optical system 40 that projects an alignment index for detecting X and Y alignment, an alignment detection optical system 50 that detects X and Y alignment, and an internal fixation target. And an internal fixation target projection optical system 70 for projecting.
  • the corneal endothelial cell imaging optical system 30 is provided with a focusing position detection optical system (Z alignment detection optical system) 60.
  • the alignment index projection optical system 40, the alignment detection optical system 50, and the in-focus position detection optical system 60 constitute an alignment detection means.
  • the anterior ocular segment observation optical system 10 includes a half mirror 11, an objective lens 12, a half mirror 13, a diaphragm 14, an imaging lens 15, a light shielding plate 16, a CCD (light receiving element) 17, and the like. ing. O1 is the optical axis.
  • Adjustment index projection optical system As shown in FIG.
  • the alignment index projection optical system 40 includes an alignment index light source (point light source) 41 made of a light emitting diode, a condenser lens 42, a half mirror 43, a projection lens 44, and the half mirror 11.
  • 343G is a transparent observation window glass provided in the observation window 343.
  • the alignment detection optical system 50 includes a two-dimensional PSD (alignment detection sensor: position sensor) 51 as a position detection unit, and the half mirror 13 and the objective lens 12 of the anterior ocular segment observation optical system 10. And the half mirror 11 and the like are shared.
  • the alignment detection sensor 51 is disposed at a position conjugate with the virtual image R formed by the alignment index light at a substantially intermediate position between the corneal apex P and the corneal curvature center Q3 with respect to the objective lens 12.
  • Cornea reflection light based on the alignment index light enters the observation window 343 of the apparatus main body 303 and is guided to the objective lens 12.
  • a part of the light beam collected by the objective lens 12 is reflected by the half mirror 13 and imaged on the alignment detection sensor 51.
  • a detection signal corresponding to the position of the virtual image R image R ′ (not shown) of the alignment index light imaged on the alignment detection sensor 51 is output from the alignment detection sensor 51, and based on this detection signal.
  • a deviation amount between the left and right (X direction) and the top and bottom (Y direction) of the apparatus main body with respect to the eye E is detected.
  • the illumination light from the anterior segment illumination light source 1 is reflected by the cornea C, passes through the half mirror 11 and is guided to the objective lens 12.
  • a part of the light beam transmitted through the objective lens 12 is imaged on the CCD 17 by the imaging lens 15 after passing through the half mirror 13.
  • the signal detected by the CCD 17 is sent to the display unit 310 (see FIG. 10).
  • an image R ′′ of a virtual image R of the alignment index light is also formed on the CCD 17 at the same time. Therefore, as shown in FIG. On the screen 18, the anterior segment image E ′ of the eye E and the virtual image R ′′ of the alignment index light are displayed simultaneously.
  • symbol A is an annular pattern image indicating an allowable range of XY alignment in the left-right direction (X direction) and the up-down direction (Y direction), which is electrically displayed on the display unit 310. .
  • the examiner performs XY alignment by moving the apparatus body of the corneal endothelial cell imaging apparatus 100 so that the virtual image R ′′ falls within the range of the annular pattern image A.
  • the light shielding plate 16 shown in FIG. 5 is inserted into the optical path of the anterior ocular segment observation optical system 10 when observing and photographing corneal endothelial cells, and is detached from the optical path when observing the anterior segment.
  • the light path of the light shielding plate 16 is inserted / removed by a solenoid (not shown).
  • the internal fixation target projection optical system 70 includes a central fixation light-emitting diode (internal fixation target light source) 71 and a wide-angle light-emitting diode (internal fixation target).
  • Light sources 72 and 73 Light sources 72 and 73, a projection lens 44, light emitting diodes (internal fixation target light sources) 74a to 74h for internal peripheral fixation, and the half mirror 11.
  • the fixation light beam emitted from the light emitting diodes 71 to 73 is transmitted through the half mirror 43, converted into a parallel light beam by the projection lens 44, and projected onto the eye E through the half mirror 11 and the observation window glass 343G.
  • the fixation light beam emitted from the light emitting diodes 74a to 74h is projected onto the eye E through the half mirror 11 and the observation window glass 343G.
  • the light emitting diode 71 is turned on when photographing the central portion of the cornea C, the light emitting diodes 72 and 73 are turned on when photographing portions on both sides sandwiching the central portion, and the light emitting diodes 74a to 74h surround these portions. Light is emitted when photographing a peripheral part (inner peripheral part).
  • the light emitting diodes 74a to 74h may be arranged on the outer periphery in the same plane as the light emitting diodes 71 to 73. In this case, in addition to disposing individual light sources as shown in the figure, a two-dimensional display element such as a liquid crystal may be disposed to light only necessary portions.
  • the external fixation target light sources 321 to 326 are made to emit light when photographing the outer peripheral portion (outer peripheral portion) of the inner peripheral portion.
  • the corneal endothelial cell illumination optical system 20 includes an observation illumination optical system 120 and a photographing illumination optical system 220.
  • the observation illumination optical system 120 is an observation light source (infrared LED: illumination light source). ) 21, a slit 22, a dichroic mirror 23, an objective lens 24, and the like.
  • O2 is the optical axis.
  • the observation light beam emitted from the observation light source 21 passes through the slit 22, is reflected by the dichroic mirror 23, and is guided to the objective lens 24.
  • the observation light beam which is the slit illumination light condensed by the objective lens 24 illuminates the cornea C.
  • the photographing illumination optical system 220 includes a photographing illumination light source (photographing light source) 25 made of a white light emitting diode, a condenser mirror 226, a condenser lens 26, a slit 27, and the like, and an observation illumination optical system. 120 dichroic mirrors 23 and objective lens 24 are shared.
  • the imaging light source 25 may be a monochromatic light emitting diode that emits, for example, green or blue light.
  • the illumination light emitted from the photographing light source 25 is condensed by the condenser lens 26.
  • the illumination light is used as photographic light and passes through the slit 27 to become slit illumination light.
  • the slit illumination light in the visible wavelength region passes through the dichroic mirror 23, and the slit illumination light in the visible wavelength region is transmitted. It is guided to the objective lens 24.
  • the cornea C is illuminated by the slit illumination light transmitted through the objective lens 24.
  • the corneal endothelial cell imaging optical system 30 includes an objective lens 31, a half mirror 32, a mirror 34, a relay lens 35, a mask plate 130, a relay lens 132, a light shielding plate 131, a mirror 36, a CCD 17, and the like. O3 is this optical axis.
  • the mask plate 130 is disposed at a position conjugate with a line sensor and a CCD 17 described later.
  • the light shielding plate 131 is inserted into the optical path of the corneal endothelial cell imaging optical system 30 when observing the anterior segment of the eye, and is detached from the optical path when observing and capturing corneal endothelial cells. Insertion and removal are performed by a solenoid (not shown).
  • the slit illumination light reflected by the cornea C is guided to the objective lens 31.
  • Part of the reflected light beams R 1, R 2, R 3 (see FIG. 8) guided to the objective lens 31 passes through the half mirror 32 and enters the mask plate 130 via the mirror 34 and the relay lens 35.
  • the mask plate 130 is arranged so that the portions of the reflected light beams R1 and R3 from the corneal surface are shielded and the reflected light beam R2 of the corneal endothelial cells is transmitted while the alignment with the eye E is matched. .
  • the focus position detection optical system 60 includes an objective lens 31, a half mirror 32, and a line sensor 61.
  • the line sensor 61 is disposed substantially at a conjugate position with the cornea C, and optically along a direction corresponding to the thickness direction of the cornea C as shown in FIG.
  • FIG. 10 is a block diagram showing the configuration of the control system of the corneal endothelial cell imaging apparatus 100.
  • reference numeral 101 denotes a focus determination circuit that detects whether the corneal endothelial cell photographing optical system 30 is focused on the corneal endothelial cell S2 based on the light amount distribution of the line sensor 61.
  • the focus determination circuit 101 outputs a focus signal corresponding to the separation distance between the peak V of the intensity distribution of the reflected light beam shown in FIG. 11 and the center address Q of the line sensor 61, and the peak V and the center address Q coincide with each other. When this is done, a focus completion signal is output.
  • the apparatus main body 303 of the corneal endothelial cell imaging apparatus 100 When the apparatus main body 303 of the corneal endothelial cell imaging apparatus 100 is moved away from the eye E, the address of the peak V moves.
  • the apparatus main body 303 is set so that the corneal endothelial cell is focused when the address L of the peak V coincides with the center address Q. That is, when the Z alignment is completed, the corneal endothelial cell imaging optical system 30, that is, the corneal endothelial cell imaging device 100 is focused on the corneal endothelial cell S2.
  • Reference numeral 102 denotes an alignment determination circuit that determines alignment in the X and Y directions.
  • the alignment determination circuit 102 is based on a detection position of a signal by a virtual image R ′ (not shown) of alignment index light on the alignment detection sensor 51.
  • R ′ virtual image
  • the right and left (X direction) deviation amount and the vertical (Y direction) deviation amount between the optical axis of the eye E and the optical axis O1 of the apparatus main body 303 are determined.
  • the control device 104 controls the drivers D1 to D3 for driving the X, Y, and Z motors 201 to 203 based on the focus signal output from the focus determination circuit 101 and the amount of deviation in the X and Y directions determined by the alignment determination circuit 102. It is a control device.
  • the control device 104 displays the image on the display unit 310 based on the image on the CCD 17, or the anterior ocular segment illumination light source 1, the alignment index light source 41, the imaging light source 25, based on the operation of an operation unit (not shown). Light emission of the observation light source 21 and the like is controlled.
  • the control device 104 controls the light emission of the external fixation target light sources 321 to 326, the light emitting diodes 71 to 73, and the light emitting diodes 74a to 74h based on the operation of the operation unit.
  • X, Y, and Z motors 201 to 203 are motors that move the apparatus main body 303 of the corneal endothelial cell imaging apparatus 100 in the X, Y, and Z directions. [Operation] Next, the operation of the corneal endothelial cell imaging apparatus 100 configured as described above will be described.
  • the anterior segment illumination light source 1 shown in FIG. the light shielding plate 16 is retracted from the optical path, and the light shielding plate 131 is inserted into the optical path.
  • the illumination light from the anterior segment illumination light source 1 is reflected by the cornea C, and this reflected light enters the observation window 343 and passes through the half mirror 11, the objective lens 12, the half mirror 13, the stop 14, and the imaging lens 15.
  • the image of the anterior segment is formed on the CCD 17. Then, as shown in FIG. 7, the anterior segment image E ′ is displayed on the screen 18 of the display unit 310.
  • the internal fixation target projection optical system 70 causes the center fixation light-emitting diode 71 to emit light to fix the eye E to be examined.
  • the alignment index light source 41 of the alignment index projection optical system 40 (see FIG. 5A) emits light and emits alignment index light.
  • the alignment index light is condensed by the condenser lens 42 and reaches the projection lens 44 through the half mirror 43, and is converted into a parallel light beam K (see FIG. 6) by the projection lens 44. It is projected onto the cornea C of the optometry E.
  • the cornea reflected light based on the alignment index light enters the observation window 343, passes through the objective lens 12, is reflected by the half mirror 13, and an image R ′ (not shown) by the alignment index light is formed on the alignment detection sensor 51. Imaged.
  • the corneal reflection light transmitted through the half mirror 13 reaches the imaging lens 15, and an image R ′′ as a virtual image R (see FIG. 6) of the alignment index light is simultaneously formed on the CCD 17 by the imaging lens 15.
  • the anterior segment image E ′ of the eye E and the virtual image R ′′ of the alignment index light are displayed on the screen 18 of the display unit 310.
  • the examiner touches a predetermined portion of the touch panel 12 of the display unit 310 so that the virtual image R ′′ falls within the range of the annular pattern image A drawn electronically on the screen, thereby moving the apparatus main body 303 up and down. Move left and right to perform XY alignment.
  • the alignment determination circuit 102 obtains a deviation amount in the X and Y directions with respect to the apparatus main body 303 with respect to the eye E from the position of the image R ′ formed on the alignment detection sensor 51, and this deviation amount. Accordingly, the control device 104 controls the drivers D1 and D2 to move the device main body 303 in the X and Y directions to perform XY alignment.
  • the observation light beam emitted from the observation light source 21 shown in FIG. 5 illuminates the cornea C with the slit illumination light of infrared light as shown in FIG. 8 through the slit 22, the dichroic mirror 23 and the objective lens 24.
  • the reflected light beam by the slit illumination light from the cornea C includes a reflected light beam R1 on the surface of the cornea C, a reflected light beam R2 of the corneal endothelial cell S2, and a reflected light beam R3 of the corneal substance S3.
  • the slit illumination light reflected by the cornea C enters the incident window 342 shown in FIG. 1 and is guided to the objective lens 31, and part of the reflected light beams R 1, R 2, R 3 is reflected by the half mirror 32, and the line sensor 61. To reach.
  • the focus determination circuit 101 outputs a focus signal corresponding to the distance between the peak V of the intensity distribution shown in FIG. 11 and the center address Q of the line sensor 61 based on the amount of light received by each light receiving element of the line sensor 61. To do.
  • the control device 104 displays the marks 15S, 15P, and 15Ma on the display unit 310 based on the focus signal as shown in FIG.
  • the separation distance between the mark 15P and the mark 15Ma corresponds to the separation distance between the peak V of the intensity distribution and the center address Q of the line sensor 61 shown in FIG.
  • the examiner moves the apparatus main body so as to match the mark 15P with the mark 15Ma while looking at the display unit 310.
  • control device 104 controls the driver D3 based on the focus signal to drive the Z motor 203, and the device main body 303 so that the peak V coincides with the center address Q of the line sensor 61. Move back and forth.
  • the control device 104 stops the Z motor 203.
  • the reflected light beams R1, R2, and R3 transmitted through the half mirror 32 are guided to the mask plate 130 via the mirror 34 and the relay lens 35.
  • the mask plate 130 is arranged so that only the reflected light beam R2 is transmitted.
  • the reflected light beam R2 that has passed through the mask plate 130 passes through the relay lens 132, is reflected by the mirror 36, reaches the CCD 17, and an optical image is formed on the CCD 17 by the reflected light beam R2. That is, a corneal endothelium image is formed, and as shown in FIG. 12, the corneal endothelial cell image J is displayed on the screen 18 of the display unit 310, and the imaging light source 25 is emitted to perform imaging. That is, corneal endothelial cells in the central part of the cornea C are photographed.
  • one of the light emitting diodes 74a to 74h corresponding to the predetermined part is caused to emit light, and XY alignment or Z alignment is performed in the same manner as described above to photograph the part. .
  • the outer peripheral photographing mode for photographing the peripheral part of the cornea C is set, after the photographing is performed, the light emission of the observation light source 21 is stopped, and the light shielding plate 16 is retracted from the optical path. 131 is inserted into the optical path.
  • the external peripheral photographing mode is entered and any one of the external fixation target light sources 321 to 326 emits light.
  • the apparatus main body 303 is retracted by a predetermined distance with respect to the base portion 302. That is, the apparatus main body 303 moves backward by a predetermined distance with respect to the eye E.
  • one of the external fixation target light sources 321 to 326 emits light. Since the apparatus main body 303 is moved backward with respect to the eye E, the subject can easily see the external fixation target light sources 321 to 326 that are emitting light, and the line of sight is externally fixed target light source 321. To 326. For this reason, it is possible to promptly guide the subject's line of sight from the internal fixation target to the external fixation target.
  • the light emitted from the external fixation target light sources 321 to 326 may be blinking, or may be blinked for an initial predetermined time and then continuously emitted.
  • the alignment index light source 41 is caused to emit light, and XY alignment is performed in the same manner as described above.
  • XY alignment is completed, light emission of the alignment index light source 41 is stopped and infrared light is emitted from the observation light source 21.
  • the light shielding plate 16 is inserted into the optical path, and the light shielding plate 131 is detached from the optical path.
  • the apparatus main body 303 may be retracted to guide the subject's line of sight to the external fixation target.
  • the external fixation target light sources 321 to 326 may be used by the subject. Since the external fixation target light sources 321 to 326 may emit light without guiding the apparatus main body 303 backward, the line of sight of the subject may be guided.
  • the apparatus main body 303 when guiding the line of sight to the external fixation target light sources 321 to 326, the apparatus main body 303 is retracted, but from the state where the light is fixed to any one of the light emitting diodes 71 to 73, the internal peripheral fixation light source is shifted.
  • the apparatus main body 303 may be moved backward when guiding the line of sight to the light emitting diodes 74a to 74h for viewing.

Abstract

A corneal endothelial cell image pickup device (100) comprises the following: a slit-light emission optical system for emitting slit light; a corneal endothelial cell image pickup optical system for picking up images of corneal endothelial cells; an internal fixation target and external fixation target for causing an eye under test to turn in a specific direction; an alignment detection means for detecting the alignment of a device main body with respect to the eye under test; and a device main body (303) to which is disposed the slit-light emission optical system, corneal endothelial cell image pickup optical system, internal fixation target and external fixation target, and alignment detection means. The device main body (303) can move forward and back, left and right, and up and down with respect to the eye under test. The device main body (303) is temporarily retracted when picking up an image of corneal endothelial cells by lighting external fixation targets (321-326) after the alignment detection means has detected that alignment has been completed, and then causing the eye under test to turn towards the external fixation target.

Description

角膜内皮細胞撮影装置Corneal endothelial cell imaging device
 この発明は、角膜内皮細胞を撮影する角膜内皮細胞撮影装置に関する。 The present invention relates to a corneal endothelial cell imaging apparatus for imaging corneal endothelial cells.
 従来から、被検眼の角膜にスリット光を照射して角膜内皮細胞を撮影する角膜内皮細胞撮影装置が知られている(特許文献1参照)。 2. Description of the Related Art Conventionally, a corneal endothelial cell imaging device that images corneal endothelial cells by irradiating slit light on the cornea of an eye to be examined is known (see Patent Document 1).
 かかる角膜内皮細胞撮影装置は、被検眼の角膜に向けて斜めからスリット光を照射するスリット光照射光学系と、その角膜の角膜内皮細胞からの反射光を受光して角膜内皮細胞を撮影する角膜内皮細胞撮影光学系とを備えている。このような角膜内皮細胞撮影装置では、被検眼を固視させて撮影を行うため、角膜の中心部位の角膜内皮細胞を撮影することになる。このため、その中心部位の周辺の角膜内皮細胞を撮影する場合には、複数の内部固視標をそれぞれ異なる位置に設け、点灯する固視標を変えることによって被検眼の視線方向を変えてその周辺部の角膜内皮細胞を撮影することになる。 Such a corneal endothelial cell imaging device includes a slit light irradiation optical system that irradiates slit light obliquely toward the cornea of an eye to be examined, and a cornea that receives reflected light from the corneal endothelial cells of the cornea and images the corneal endothelial cells. And an endothelial cell photographing optical system. In such an apparatus for photographing corneal endothelial cells, photographing is performed with the subject's eye fixed, so the corneal endothelial cells in the central part of the cornea are photographed. For this reason, when photographing corneal endothelial cells around the central portion, a plurality of internal fixation targets are provided at different positions, and the fixation direction to be lit is changed to change the line-of-sight direction of the eye to be examined. The peripheral corneal endothelial cells are photographed.
特開2012-217512号公報JP 2012-217512 A
発明が解決しようとうする課題Problems to be Solved by the Invention
 しかしながら、周辺部にある固視標は、被検者にとっては見えにくく、特に外部固視標は見えにくいものとなっており、被検者の視線を速やかに誘導させることができないという問題があった。 However, the fixation target in the periphery is difficult to see for the subject, and in particular, the external fixation target is difficult to see, and there is a problem that the gaze of the subject cannot be promptly guided. It was.
 この発明の目的は、被検者の視線を点灯している固視標へ速やかに誘導させることのできる角膜内皮細胞撮影装置を提供することにある。 An object of the present invention is to provide a corneal endothelial cell imaging apparatus capable of promptly guiding a subject's line of sight to a fixed fixation target.
 請求項1の発明は、被検眼の角膜に向けて斜めからスリット光を照射するスリット光照射光学系と、前記角膜の角膜内皮細胞からの反射光を受光して角膜内皮細胞を撮影する角膜内皮細胞撮影光学系と、前記被検眼を所定の方向に向ける内部固視標及び外部固視標と、前記被検眼に対する装置本体のアライメントを検出するアライメント検出手段と、前記スリット光照射光学系と角膜内皮細胞撮影光学系と内部固視標及び外部固視標と前記アライメント検出手段が前記装置本体に設けられ、この装置本体が前記被検眼に対して前後,左右,上下に移動可能な角膜内皮細胞撮影装置であって、
 点灯する固視標を順次変更させて角膜の複数の部位を順次撮影していく際、撮影が完了する毎に、前記装置本体を一旦後退させることを特徴とする。
The invention according to claim 1 is a slit light irradiation optical system that irradiates slit light obliquely toward the cornea of an eye to be examined, and a corneal endothelium that receives reflected light from the corneal endothelial cells of the cornea and images the corneal endothelial cells. Cell imaging optical system, internal fixation target and external fixation target for directing the eye to be examined in a predetermined direction, alignment detection means for detecting alignment of the apparatus main body with respect to the eye to be examined, the slit light irradiation optical system, and the cornea An endothelial cell photographing optical system, an internal fixation target, an external fixation target, and the alignment detection means are provided in the apparatus main body, and the apparatus main body can move back and forth, right and left, up and down with respect to the eye to be examined. A photographing device,
When the plurality of portions of the cornea are sequentially photographed by sequentially changing the fixation target to be lit, the apparatus main body is temporarily retracted every time photographing is completed.
 この発明によれば、被検者の視線を固視標に速やかに誘導させることができる。 According to this invention, the subject's line of sight can be promptly guided to the fixation target.
この発明に係る角膜内皮細胞撮影装置の外観図を示した斜視図である。It is the perspective view which showed the external view of the corneal endothelial cell imaging device concerning this invention. 図1に示す表示部の位置を変えた場合を示した説明図である。It is explanatory drawing which showed the case where the position of the display part shown in FIG. 1 was changed. 図2に示す角膜内皮細胞撮影装置を逆方向からみた斜視図である。It is the perspective view which looked at the corneal-endothelial-cells imaging device shown in FIG. 2 from the reverse direction. 図1に示す角膜内皮細胞撮影装置の装置本体の前面を示した説明図である。It is explanatory drawing which showed the front surface of the apparatus main body of the corneal endothelial cell imaging device shown in FIG. この発明に係る角膜内皮細胞撮影装置の光学系を示した光学配置図である。1 is an optical layout diagram showing an optical system of a corneal endothelial cell imaging apparatus according to the present invention. アライメント指標投影光学系と内部固視標投影光学系の光学部材の配置を示した光学配置図である。FIG. 5 is an optical arrangement diagram showing arrangement of optical members of an alignment index projection optical system and an internal fixation target projection optical system. 角膜のアライメント指標光束の反射状態を示した説明図である。It is explanatory drawing which showed the reflection state of the alignment parameter | index light beam of a cornea. 前眼部とアライメント指標光と円環状パターンとを示した説明図である。It is explanatory drawing which showed the anterior eye part, the alignment parameter | index light, and the annular pattern. 角膜におけるスリット光束の反射状態を示した説明図である。It is explanatory drawing which showed the reflective state of the slit light beam in a cornea. 角膜とラインセンサとの位置関係と、ラインセンサの受光量の強度分布を示した説明図である。It is explanatory drawing which showed the positional relationship of a cornea and a line sensor, and intensity distribution of the light reception amount of a line sensor. 角膜内皮細胞撮影装置の制御系の構成を示したブロック図である。It is the block diagram which showed the structure of the control system of a corneal endothelial cell imaging device. 角膜内皮細胞像とラインセンサーの受光量との関係を示す説明図である。It is explanatory drawing which shows the relationship between a corneal endothelial cell image and the light reception amount of a line sensor. 表示部に表示される角膜内皮像を示した説明図である。It is explanatory drawing which showed the corneal endothelium image displayed on a display part.
 以下、この発明に係る角膜内皮細胞撮影装置の実施の形態である実施例を図面に基づいて説明する。 Hereinafter, an embodiment which is an embodiment of a corneal endothelial cell imaging apparatus according to the present invention will be described with reference to the drawings.
 図1ないし図3に示す角膜内皮細胞撮影装置100は、基台301の上に設けられたベース部302と、このベース部302の上に設けられた前後左右上下に移動可能な装置本体303と、基台301の前部に取り付けられた支持部304の上部に設けた顎受部305と、支持部304に設けた保持部材306によって保持された額当部307と、装置本体303に設けた表示部310とを有している。 A corneal endothelial cell imaging device 100 shown in FIGS. 1 to 3 includes a base portion 302 provided on a base 301, and a device main body 303 provided on the base portion 302 and movable in the front, rear, left, right, up and down directions. The jaw holder 305 provided on the upper part of the support 304 attached to the front part of the base 301, the forehead 307 held by the holding member 306 provided on the support 304, and the apparatus main body 303 are provided. And a display unit 310.
 表示部310は、撮像した前眼部像や角膜内皮細胞像を表示したりするものであり、所望の位置へモータ制御や手動により自由に移動させることができるようになっている。また、表示部310の画面にはタッチパネル312(図10参照)が貼着されており、タッチパネル312をタッチすることにより、被検眼に対して装置本体303を前後方向や上下方向や左右方向に移動させることができる他に、各種のモード設定や操作が行えるようになっている。 The display unit 310 displays an imaged anterior segment image or corneal endothelial cell image, and can be freely moved to a desired position by motor control or manually. A touch panel 312 (see FIG. 10) is attached to the screen of the display unit 310. By touching the touch panel 312, the apparatus main body 303 is moved in the front-rear direction, the up-down direction, and the left-right direction with respect to the eye to be examined. In addition to the above, various mode settings and operations can be performed.
 装置本体303内には、角膜内皮細胞を撮影する角膜内皮細胞撮影装置100の光学系が配置されている。 In the apparatus main body 303, an optical system of the corneal endothelial cell imaging apparatus 100 that images corneal endothelial cells is arranged.
 装置本体303の前面には、図4に示すように、6個の外部固視標である外部固視標光源321~326と、被検眼の前眼部を照明する4つの前眼部照明光源1と、スリット光を被検眼の角膜に向けて照射するためのスリット光照射窓341と、角膜で反射したスリット光の反射光が入射する入射窓342と、被検眼の前眼部を観察するための観察窓343とが設けられている。 On the front surface of the apparatus main body 303, as shown in FIG. 4, six external fixation target light sources 321 to 326 that are external fixation targets and four anterior segment illumination light sources that illuminate the anterior segment of the eye to be examined. 1, the slit light irradiation window 341 for irradiating the slit light toward the cornea of the eye to be examined, the incident window 342 into which the reflected light of the slit light reflected by the cornea enters, and the anterior eye portion of the eye to be examined are observed. Observation window 343 is provided.
 外部固視標光源321~326や前眼部照明光源1は例えば発光ダイオードなどで構成されている。 The external fixation target light sources 321 to 326 and the anterior ocular segment illumination light source 1 are composed of, for example, light emitting diodes.
 外部固視標光源321~326は、角膜の中心部位から大きく離れた部位の角膜内皮細胞を撮影する場合に発光させるものである。 The external fixation target light sources 321 to 326 emit light when photographing corneal endothelial cells at a position far away from the central portion of the cornea.
 角膜内皮細胞撮影装置100の光学系は、図5に示すように、被検眼Eの前眼部を観察する前眼部観察光学系10と、被検眼Eの角膜内皮細胞S2(図8参照)を照明する角膜内皮細胞照明光学系(スリット光照射光学系)20と、角膜内皮細胞S2を撮影する角膜内皮細胞撮影光学系30とを備えている。 As shown in FIG. 5, the optical system of the corneal endothelial cell imaging apparatus 100 includes an anterior ocular segment observation optical system 10 for observing the anterior segment of the eye E and a corneal endothelial cell S2 of the eye E (see FIG. 8). Corneal endothelial cell illumination optical system (slit light irradiation optical system) 20 and corneal endothelial cell imaging optical system 30 for imaging corneal endothelial cell S2.
 前眼部観察光学系10には、X,Yアライメントを検出するためのアライメント指標を投影するアライメント指標投影光学系40と、X,Yアライメントを検出するアライメント検出光学系50と、内部固視標を投影する内部固視標投影光学系70とが設けられている。 The anterior ocular segment observation optical system 10 includes an alignment index projection optical system 40 that projects an alignment index for detecting X and Y alignment, an alignment detection optical system 50 that detects X and Y alignment, and an internal fixation target. And an internal fixation target projection optical system 70 for projecting.
 角膜内皮細胞撮影光学系30には、合焦位置検出光学系(Zアライメント検出光学系)60が設けられている。そして、アライメント指標投影光学系40とアライメント検出光学系50と合焦位置検出光学系60とでアライメント検出手段が構成される。
[前眼部観察光学系]
 前眼部観察光学系10は、ハーフミラー11と、対物レンズ12と、ハーフミラー13と、絞り14と、結像レンズ15と、遮光板16と、CCD(受光素子)17などとを有している。O1はその光軸である。
[アライメント指標投影光学系]
 アライメント指標投影光学系40は、図5Aに示すように、発光ダイオードからなるアライメント指標光源(点光源)41と、集光レンズ42と、ハーフミラー43と、投影レンズ44と、ハーフミラー11とを有している。なお、343Gは、観察窓343に設けた透明な観察窓ガラスである。
The corneal endothelial cell imaging optical system 30 is provided with a focusing position detection optical system (Z alignment detection optical system) 60. The alignment index projection optical system 40, the alignment detection optical system 50, and the in-focus position detection optical system 60 constitute an alignment detection means.
[Anterior eye observation optical system]
The anterior ocular segment observation optical system 10 includes a half mirror 11, an objective lens 12, a half mirror 13, a diaphragm 14, an imaging lens 15, a light shielding plate 16, a CCD (light receiving element) 17, and the like. ing. O1 is the optical axis.
[Alignment index projection optical system]
As shown in FIG. 5A, the alignment index projection optical system 40 includes an alignment index light source (point light source) 41 made of a light emitting diode, a condenser lens 42, a half mirror 43, a projection lens 44, and the half mirror 11. Have. Note that 343G is a transparent observation window glass provided in the observation window 343.
 アライメント指標光源41から射出されたアライメント指標光は、集光レンズ42により集光されてハーフミラー43で反射されて投影レンズ44に達し、この投影レンズ44により平行光束K(図6参照)とされ、この平行光束Kがハーフミラー11を介して被検眼Eの角膜Cに導かれる。
[アライメント検出光学系]
 アライメント検出光学系50は、図5に示すように、位置検出手段としての2次元PSD(アライメント検出センサ:ポジションセンサ)51を有し、前眼部観察光学系10のハーフミラー13と対物レンズ12とハーフミラー11などを共用して構成される。
The alignment index light emitted from the alignment index light source 41 is collected by the condensing lens 42, reflected by the half mirror 43, and reaches the projection lens 44. The projection lens 44 generates a parallel light beam K (see FIG. 6). The parallel light beam K is guided to the cornea C of the eye E through the half mirror 11.
[Alignment detection optical system]
As shown in FIG. 5, the alignment detection optical system 50 includes a two-dimensional PSD (alignment detection sensor: position sensor) 51 as a position detection unit, and the half mirror 13 and the objective lens 12 of the anterior ocular segment observation optical system 10. And the half mirror 11 and the like are shared.
 アライメント検出センサ51は、 対物レンズ12に関して、図6に示すように角膜頂点Pと角膜曲率中心Q3の略中間位置にアライメント指標光により形成された虚像Rと共役な位置に配置されている。アライメント指標光に基づく角膜反射光は、装置本体303の観察窓343に入射して対物レンズ12に導かれる。この反射光は対物レンズ12により集光された光束の一部は、ハーフミラー13によって反射され、アライメント検出センサ51上に結像される。
 このとき、アライメント検出センサ51上に結像されるアライメント指標光の虚像Rの像R´(図示せず)の位置に応じた検出信号がアライメント検出センサ51から出力され、この検出信号に基づいて被検眼Eに対する装置本体の左右(X方向)と上下(Y方向)のズレ量が検出される。
As shown in FIG. 6, the alignment detection sensor 51 is disposed at a position conjugate with the virtual image R formed by the alignment index light at a substantially intermediate position between the corneal apex P and the corneal curvature center Q3 with respect to the objective lens 12. Cornea reflection light based on the alignment index light enters the observation window 343 of the apparatus main body 303 and is guided to the objective lens 12. A part of the light beam collected by the objective lens 12 is reflected by the half mirror 13 and imaged on the alignment detection sensor 51.
At this time, a detection signal corresponding to the position of the virtual image R image R ′ (not shown) of the alignment index light imaged on the alignment detection sensor 51 is output from the alignment detection sensor 51, and based on this detection signal. A deviation amount between the left and right (X direction) and the top and bottom (Y direction) of the apparatus main body with respect to the eye E is detected.
 ここで、アライメント指標光の像R´による信号が、アライメント検出センサ51上の所定範囲内にある状態のとき、XYアライメント完了状態とする。 Here, when the signal by the image R ′ of the alignment index light is in a predetermined range on the alignment detection sensor 51, the XY alignment is completed.
 前眼部照明光源1からの照明光は角膜Cにより反射され、ハーフミラー11を透過して対物レンズ12に導かれる。この対物レンズ12を透過した光束の一部は、ハーフミラー13を透過した後に結像レンズ15によりCCD17に結像される。CCD17により検出された信号は表示部310(図10参照)に送られる。被検眼Eと角膜内皮細胞撮影装置100とのアライメントが概ね合っているとき、アライメント指標光の虚像Rによる像R″もCCD17上に同時に形成されるので、図7に示すように表示部310の画面18に被検眼Eの前眼部像E´とアライメント指標光の虚像像R″とが同時に表示される。 The illumination light from the anterior segment illumination light source 1 is reflected by the cornea C, passes through the half mirror 11 and is guided to the objective lens 12. A part of the light beam transmitted through the objective lens 12 is imaged on the CCD 17 by the imaging lens 15 after passing through the half mirror 13. The signal detected by the CCD 17 is sent to the display unit 310 (see FIG. 10). When the eye E and the corneal endothelial cell imaging device 100 are substantially aligned, an image R ″ of a virtual image R of the alignment index light is also formed on the CCD 17 at the same time. Therefore, as shown in FIG. On the screen 18, the anterior segment image E ′ of the eye E and the virtual image R ″ of the alignment index light are displayed simultaneously.
 図7において、符号Aは左右方向(X方向)と上下方向(Y方向)に対してのXYアライメントの許容範囲を示す円環状パターン像であり、これは表示部310上に電気的に表示する。 In FIG. 7, symbol A is an annular pattern image indicating an allowable range of XY alignment in the left-right direction (X direction) and the up-down direction (Y direction), which is electrically displayed on the display unit 310. .
 検者は、虚像像R″が円環状パターン像Aの範囲内に納まるように角膜内皮細胞撮影装置100の装置本体を動かしてXYアライメントを行う。 The examiner performs XY alignment by moving the apparatus body of the corneal endothelial cell imaging apparatus 100 so that the virtual image R ″ falls within the range of the annular pattern image A.
 図5に示す遮光板16は、角膜内皮細胞の観察・撮影時に前眼部観察光学系10の光路に挿入され、前眼部の観察時にその光路から離脱される。遮光板16の光路の挿入離脱は図示しないソレノイドなどで行われる。
[内部固視標投影光学系]
 内部固視標投影光学系70は、図5及び図5Aに示すように、中心固視用の発光ダイオード(内部固視標光源)71と、中心部のワイド用の発光ダイオード(内部固視標光源)72,73と、投影レンズ44と、内部周辺固視用の発光ダイオード(内部固視標光源)74a~74hと、ハーフミラー11とを有している。発光ダイオード71~73で発光した固視用光束は、ハーフミラー43を透過し、投影レンズ44によって平行光束にされてハーフミラー11及び観察窓ガラス343Gを介して被検眼Eに投影される。
The light shielding plate 16 shown in FIG. 5 is inserted into the optical path of the anterior ocular segment observation optical system 10 when observing and photographing corneal endothelial cells, and is detached from the optical path when observing the anterior segment. The light path of the light shielding plate 16 is inserted / removed by a solenoid (not shown).
[Internal fixation target projection optical system]
As shown in FIGS. 5 and 5A, the internal fixation target projection optical system 70 includes a central fixation light-emitting diode (internal fixation target light source) 71 and a wide-angle light-emitting diode (internal fixation target). Light sources) 72 and 73, a projection lens 44, light emitting diodes (internal fixation target light sources) 74a to 74h for internal peripheral fixation, and the half mirror 11. The fixation light beam emitted from the light emitting diodes 71 to 73 is transmitted through the half mirror 43, converted into a parallel light beam by the projection lens 44, and projected onto the eye E through the half mirror 11 and the observation window glass 343G.
 また、発光ダイオード74a~74hから発光された固視用光束はハーフミラー11及び観察窓ガラス343Gを介して被検眼Eに投影される。 The fixation light beam emitted from the light emitting diodes 74a to 74h is projected onto the eye E through the half mirror 11 and the observation window glass 343G.
 発光ダイオード71は角膜Cの中心部位を撮影する場合に点灯させ、発光ダイオード72,73はその中心部位を挟む両側部分の部位を撮影する場合に点灯させ、発光ダイオード74a~74hはそれら部位を囲む周辺部の部位(内側周辺部位)を撮影する場合に発光させる。発光ダイオード74a~74hは発光ダイオード71~73と同一平面内の外周部に配置してもよい。この場合、図のように個別の光源を配置するほかに液晶などの2次元表示素子を配置して必要な個所のみを点灯してもよい。 The light emitting diode 71 is turned on when photographing the central portion of the cornea C, the light emitting diodes 72 and 73 are turned on when photographing portions on both sides sandwiching the central portion, and the light emitting diodes 74a to 74h surround these portions. Light is emitted when photographing a peripheral part (inner peripheral part). The light emitting diodes 74a to 74h may be arranged on the outer periphery in the same plane as the light emitting diodes 71 to 73. In this case, in addition to disposing individual light sources as shown in the figure, a two-dimensional display element such as a liquid crystal may be disposed to light only necessary portions.
 外部固視標光源321~326は、内側周辺部位の外側の周囲の部位(外側周辺部位)を撮影する場合に発光させる。
[角膜内皮細胞照明光学系]
 角膜内皮細胞照明光学系20は、図5に示すように観察用照明光学系120と撮影用照明光学系220とから構成され、観察用照明光学系120は観察用光源(赤外LED:照明光源)21と、スリット22と、ダイクロイックミラー23と、対物レンズ24などとを有する。O2はその光軸である。
The external fixation target light sources 321 to 326 are made to emit light when photographing the outer peripheral portion (outer peripheral portion) of the inner peripheral portion.
[Cornea Endothelial Cell Illumination Optical System]
As shown in FIG. 5, the corneal endothelial cell illumination optical system 20 includes an observation illumination optical system 120 and a photographing illumination optical system 220. The observation illumination optical system 120 is an observation light source (infrared LED: illumination light source). ) 21, a slit 22, a dichroic mirror 23, an objective lens 24, and the like. O2 is the optical axis.
 観察用光源21から射出された観察用光束は、スリット22を透過してダイクロイックミラー23により反射されて対物レンズ24に導かれる。対物レンズ24により集光されたスリット照明光である観察用光束は角膜Cを照明する。 The observation light beam emitted from the observation light source 21 passes through the slit 22, is reflected by the dichroic mirror 23, and is guided to the objective lens 24. The observation light beam which is the slit illumination light condensed by the objective lens 24 illuminates the cornea C.
 撮影用照明光学系220は、白色発光ダイオードからなる撮影用照明光源(撮影用光源)25と、集光鏡226と、集光レンズ26と、スリット27などとを有し、観察用照明光学系120のダイクロイックミラー23および対物レンズ24を共用して構成される。撮影用光源25は、単色の発光ダイオードで例えば緑色や青色などを発光するものでもよい。 The photographing illumination optical system 220 includes a photographing illumination light source (photographing light source) 25 made of a white light emitting diode, a condenser mirror 226, a condenser lens 26, a slit 27, and the like, and an observation illumination optical system. 120 dichroic mirrors 23 and objective lens 24 are shared. The imaging light source 25 may be a monochromatic light emitting diode that emits, for example, green or blue light.
 撮影用光源25から射出された照明光は集光レンズ26により集光される。その照明光は撮影光として用いられ、スリット27を透過してスリット照明光となり、このスリット照明光のうち可視波長域のスリット照明光がダイクロイックミラー23を透過し、可視波長域のスリット照明光が対物レンズ24に導かれる。対物レンズ24を透過したスリット照明光により角膜Cが照明される。
[角膜内皮細胞撮影光学系]
 角膜内皮細胞撮影光学系30は、対物レンズ31と、ハーフミラー32と、ミラー34と、リレーレンズ35と、マスク板130と、リレーレンズ132と、遮光板131と、ミラー36と、CCD17などとを有し、O3はこの光軸である。
The illumination light emitted from the photographing light source 25 is condensed by the condenser lens 26. The illumination light is used as photographic light and passes through the slit 27 to become slit illumination light. Of this slit illumination light, the slit illumination light in the visible wavelength region passes through the dichroic mirror 23, and the slit illumination light in the visible wavelength region is transmitted. It is guided to the objective lens 24. The cornea C is illuminated by the slit illumination light transmitted through the objective lens 24.
[Cornea Endothelial Cell Imaging Optical System]
The corneal endothelial cell imaging optical system 30 includes an objective lens 31, a half mirror 32, a mirror 34, a relay lens 35, a mask plate 130, a relay lens 132, a light shielding plate 131, a mirror 36, a CCD 17, and the like. O3 is this optical axis.
 マスク板130は、後述するラインセンサとCCD17と共役な位置に配置されている。 The mask plate 130 is disposed at a position conjugate with a line sensor and a CCD 17 described later.
 遮光板131は、前眼部観察時に角膜内皮細胞撮影光学系30の光路に挿入され、角膜内皮細胞の観察・撮影時にその光路から離脱される。挿入離脱は図示しないソレノイドなどで行われる。 The light shielding plate 131 is inserted into the optical path of the corneal endothelial cell imaging optical system 30 when observing the anterior segment of the eye, and is detached from the optical path when observing and capturing corneal endothelial cells. Insertion and removal are performed by a solenoid (not shown).
 角膜Cにより反射されたスリット照明光は、対物レンズ31に導かれる。対物レンズ31に導かれた反射光束R1、R2、R3(図8参照)の一部はハーフミラー32を透過し、ミラー34およびリレーレンズ35を介してマスク板130に入射する。 The slit illumination light reflected by the cornea C is guided to the objective lens 31. Part of the reflected light beams R 1, R 2, R 3 (see FIG. 8) guided to the objective lens 31 passes through the half mirror 32 and enters the mask plate 130 via the mirror 34 and the relay lens 35.
 このマスク板130は、被検眼Eへのアライメントが合致した状態で、角膜表面からの反射光束R1,R3の部分を遮光し、角膜内皮細胞の反射光束R2の部分を透過するように配置される。 The mask plate 130 is arranged so that the portions of the reflected light beams R1 and R3 from the corneal surface are shielded and the reflected light beam R2 of the corneal endothelial cells is transmitted while the alignment with the eye E is matched. .
 合焦位置検出光学系60は、対物レンズ31と、ハーフミラー32と、ラインセンサ61とを有している。ラインセンサ61は、角膜Cとほぼ共役位置に、且つ、図9に示すように光学的に角膜Cの厚み方向に対応する方向に沿って配置されている。 The focus position detection optical system 60 includes an objective lens 31, a half mirror 32, and a line sensor 61. The line sensor 61 is disposed substantially at a conjugate position with the cornea C, and optically along a direction corresponding to the thickness direction of the cornea C as shown in FIG.
 ラインセンサ61上に達する角膜Cでのスリット光束の反射光束の強度分布は図9に示すようなものとなる。強度分布のピークUは角膜Cの表面での反射光束によるピークであり、ピークVは角膜内皮細胞S2での反射光束のピークである。
[制御系]
 図10は角膜内皮細胞撮影装置100の制御系の構成を示すブロック図である。図10において、101はラインセンサ61の光量分布に基づいて角膜内皮細胞撮影光学系30が角膜内皮細胞S2に合焦しているかどうかを検出する合焦判断回路である。
The intensity distribution of the reflected light beam of the slit light beam at the cornea C reaching the line sensor 61 is as shown in FIG. The peak U of the intensity distribution is a peak due to the reflected light beam on the surface of the cornea C, and the peak V is a peak of the reflected light beam on the corneal endothelial cell S2.
[Control system]
FIG. 10 is a block diagram showing the configuration of the control system of the corneal endothelial cell imaging apparatus 100. In FIG. 10, reference numeral 101 denotes a focus determination circuit that detects whether the corneal endothelial cell photographing optical system 30 is focused on the corneal endothelial cell S2 based on the light amount distribution of the line sensor 61.
 合焦判断回路101は、図11に示す反射光束の強度分布のピークVとラインセンサ61の中心番地Qとの離間距離に応じた合焦信号を出力し、ピークVと中心番地Qとが一致したとき合焦完了信号を出力する。 The focus determination circuit 101 outputs a focus signal corresponding to the separation distance between the peak V of the intensity distribution of the reflected light beam shown in FIG. 11 and the center address Q of the line sensor 61, and the peak V and the center address Q coincide with each other. When this is done, a focus completion signal is output.
 角膜内皮細胞撮影装置100の装置本体303を被検眼Eに対して離反接近させると、ピークVの番地が移動する。装置本体303は、ピークVの番地Lが中心番地Qに一致したとき角膜内皮細胞に合焦されるように設定されている。すなわち、Zアライメントが完了したとき、角膜内皮細胞撮影光学系30つまり角膜内皮細胞撮影装置100は角膜内皮細胞S2に合焦される。 When the apparatus main body 303 of the corneal endothelial cell imaging apparatus 100 is moved away from the eye E, the address of the peak V moves. The apparatus main body 303 is set so that the corneal endothelial cell is focused when the address L of the peak V coincides with the center address Q. That is, when the Z alignment is completed, the corneal endothelial cell imaging optical system 30, that is, the corneal endothelial cell imaging device 100 is focused on the corneal endothelial cell S2.
 102はX,Y方向のアライメントを判定するアライメント判定回路であり、このアライメント判定回路102は、アライメント検出センサ51上でのアライメント指標光の虚像R´(図示せず)による信号の検出位置に基づいて、被検眼Eの光軸と装置本体303の光軸O1との左右(X方向)のズレ量と上下(Y方向)のズレ量とを判定する。 Reference numeral 102 denotes an alignment determination circuit that determines alignment in the X and Y directions. The alignment determination circuit 102 is based on a detection position of a signal by a virtual image R ′ (not shown) of alignment index light on the alignment detection sensor 51. Thus, the right and left (X direction) deviation amount and the vertical (Y direction) deviation amount between the optical axis of the eye E and the optical axis O1 of the apparatus main body 303 are determined.
 104は合焦判断回路101が出力する合焦信号やアライメント判定回路102が判定するX,Y方向のズレ量に基づいてX,Y,Zモータ201~203を駆動させるドライバD1~D3を制御する制御装置である。この制御装置104は、CCD17上の画像に基づいて表示部310にその画像を表示させたり、図示しない操作部の操作に基づいて前眼部照明光源1,アライメント指標光源41,撮影用光源25,観察用光源21などの発光を制御する。また、制御装置104は、操作部の操作などに基づいて外部固視標光源321~326や発光ダイオード71~73や発光ダイオード74a~74hの発光を制御する。 104 controls the drivers D1 to D3 for driving the X, Y, and Z motors 201 to 203 based on the focus signal output from the focus determination circuit 101 and the amount of deviation in the X and Y directions determined by the alignment determination circuit 102. It is a control device. The control device 104 displays the image on the display unit 310 based on the image on the CCD 17, or the anterior ocular segment illumination light source 1, the alignment index light source 41, the imaging light source 25, based on the operation of an operation unit (not shown). Light emission of the observation light source 21 and the like is controlled. The control device 104 controls the light emission of the external fixation target light sources 321 to 326, the light emitting diodes 71 to 73, and the light emitting diodes 74a to 74h based on the operation of the operation unit.
 X,Y,Zモータ201~203は、角膜内皮細胞撮影装置100の装置本体303をX,Y,Z方向へ移動させるモータである。
[動 作]
 次に、上記のように構成される角膜内皮細胞撮影装置100の動作について説明する。
X, Y, and Z motors 201 to 203 are motors that move the apparatus main body 303 of the corneal endothelial cell imaging apparatus 100 in the X, Y, and Z directions.
[Operation]
Next, the operation of the corneal endothelial cell imaging apparatus 100 configured as described above will be described.
 先ず、図5に示す前眼部照明光源1を発光させる。このとき、遮光板16は光路から退避され、遮光板131は光路に挿入される。 First, the anterior segment illumination light source 1 shown in FIG. At this time, the light shielding plate 16 is retracted from the optical path, and the light shielding plate 131 is inserted into the optical path.
 前眼部照明光源1からの照明光は角膜Cにより反射され、この反射光は、観察窓343に入射し、ハーフミラー11,対物レンズ12,ハーフミラー13,絞り14および結像レンズ15を介してCCD17に達し、CCD17上に前眼部像が結像される。そして、図7に示すように表示部310の画面18に前眼部像E′が表示される。 The illumination light from the anterior segment illumination light source 1 is reflected by the cornea C, and this reflected light enters the observation window 343 and passes through the half mirror 11, the objective lens 12, the half mirror 13, the stop 14, and the imaging lens 15. The image of the anterior segment is formed on the CCD 17. Then, as shown in FIG. 7, the anterior segment image E ′ is displayed on the screen 18 of the display unit 310.
 また、内部固視標投影光学系70は、中心固視用の発光ダイオード71を発光させて、被検眼Eを固視させておく。 Further, the internal fixation target projection optical system 70 causes the center fixation light-emitting diode 71 to emit light to fix the eye E to be examined.
 次いで、アライメント指標投影光学系40(図5A参照)のアライメント指標光源41は発光してアライメント指標光を射出する。このアライメント指標光は、集光レンズ42により集光されてハーフミラー43を介して投影レンズ44に達し、この投影レンズ44により平行光束K(図6参照)とされ、ハーフミラー11を介して被検眼Eの角膜Cに投影される。 Next, the alignment index light source 41 of the alignment index projection optical system 40 (see FIG. 5A) emits light and emits alignment index light. The alignment index light is condensed by the condenser lens 42 and reaches the projection lens 44 through the half mirror 43, and is converted into a parallel light beam K (see FIG. 6) by the projection lens 44. It is projected onto the cornea C of the optometry E.
 アライメント指標光に基づく角膜反射光は、観察窓343に入射し、対物レンズ12を通った後ハーフミラー13によって反射され、アライメント検出センサ51上にアライメント指標光による像R´(図示せず)が結像される。 The cornea reflected light based on the alignment index light enters the observation window 343, passes through the objective lens 12, is reflected by the half mirror 13, and an image R ′ (not shown) by the alignment index light is formed on the alignment detection sensor 51. Imaged.
 また、ハーフミラー13を透過する角膜反射光は、結像レンズ15に達し、この結像レンズ15によってアライメント指標光の虚像R(図6参照)による像R″がCCD17上に同時に形成される。このため、図7に示すように表示部310の画面18に被検眼Eの前眼部像E´とアライメント指標光の虚像像R″が表示される。検者は、虚像像R″が電子的に画面上に描いた円環状パターン像Aの範囲内に納まるように、表示部310のタッチパネル12の所定部分をタッチすることにより、装置本体303を上下左右に動かして、XYアライメントを行う。 Further, the corneal reflection light transmitted through the half mirror 13 reaches the imaging lens 15, and an image R ″ as a virtual image R (see FIG. 6) of the alignment index light is simultaneously formed on the CCD 17 by the imaging lens 15. For this reason, as shown in FIG. 7, the anterior segment image E ′ of the eye E and the virtual image R ″ of the alignment index light are displayed on the screen 18 of the display unit 310. The examiner touches a predetermined portion of the touch panel 12 of the display unit 310 so that the virtual image R ″ falls within the range of the annular pattern image A drawn electronically on the screen, thereby moving the apparatus main body 303 up and down. Move left and right to perform XY alignment.
 オートアライメントモードの場合には、アライメント検出センサ51上に結像された像R′の位置から被検眼Eに対する装置本体303に対するX,Y方向のズレ量をアライメント判定回路102が求め、このズレ量に応じて制御装置104はドライバD1,D2を制御して装置本体303をX,Y方向へ移動させてXYアライメントを行う。 In the case of the auto alignment mode, the alignment determination circuit 102 obtains a deviation amount in the X and Y directions with respect to the apparatus main body 303 with respect to the eye E from the position of the image R ′ formed on the alignment detection sensor 51, and this deviation amount. Accordingly, the control device 104 controls the drivers D1 and D2 to move the device main body 303 in the X and Y directions to perform XY alignment.
 XYアライメントが完了すると、アライメント指標光源41及び発光ダイオード71の発光は停止され、観察用光源21から赤外光が発光されるとともに、遮光板16が光路に挿入され、遮光板131が光路から離脱される。 When the XY alignment is completed, light emission of the alignment index light source 41 and the light emitting diode 71 is stopped, infrared light is emitted from the observation light source 21, the light shielding plate 16 is inserted into the optical path, and the light shielding plate 131 is detached from the optical path. Is done.
 図5に示す観察用光源21から射出された観察用光束は、スリット22,ダイクロイックミラー23および対物レンズ24を介して図8に示すように角膜Cを赤外光のスリット照明光で照明する。 The observation light beam emitted from the observation light source 21 shown in FIG. 5 illuminates the cornea C with the slit illumination light of infrared light as shown in FIG. 8 through the slit 22, the dichroic mirror 23 and the objective lens 24.
 角膜Cからのスリット照明光による反射光束は、角膜C表面の反射光束R1と角膜内皮細胞S2の反射光束R2と角膜実質S3の反射光束R3とを含む。 The reflected light beam by the slit illumination light from the cornea C includes a reflected light beam R1 on the surface of the cornea C, a reflected light beam R2 of the corneal endothelial cell S2, and a reflected light beam R3 of the corneal substance S3.
 角膜Cにより反射されたスリット照明光は、図1に示す入射窓342に入射し、対物レンズ31に導かれ、反射光束R1、R2、R3の一部はハーフミラー32で反射されてラインセンサ61に達する。 The slit illumination light reflected by the cornea C enters the incident window 342 shown in FIG. 1 and is guided to the objective lens 31, and part of the reflected light beams R 1, R 2, R 3 is reflected by the half mirror 32, and the line sensor 61. To reach.
 合焦判断回路101は、ラインセンサ61の各受光素子の受光量に基づいて、図11に示す強度分布のピークVとラインセンサ61の中心番地Qとの離間距離に応じた合焦信号を出力する。 The focus determination circuit 101 outputs a focus signal corresponding to the distance between the peak V of the intensity distribution shown in FIG. 11 and the center address Q of the line sensor 61 based on the amount of light received by each light receiving element of the line sensor 61. To do.
 制御装置104は、合焦信号に基づいて表示部310に、図7に示すように、マーク15S,15P,15Maを表示する。マーク15Pとマーク15Maとの間の離間距離は、図11に示す強度分布のピークVとラインセンサ61の中心番地Qとの離間距離に対応したものとなる。手動の場合、検者は表示部310を見ながら、マーク15Pをマーク15Maに一致させるように装置本体を移動させる。 The control device 104 displays the marks 15S, 15P, and 15Ma on the display unit 310 based on the focus signal as shown in FIG. The separation distance between the mark 15P and the mark 15Ma corresponds to the separation distance between the peak V of the intensity distribution and the center address Q of the line sensor 61 shown in FIG. In the case of manual operation, the examiner moves the apparatus main body so as to match the mark 15P with the mark 15Ma while looking at the display unit 310.
 オートアライメントモードの場合、制御装置104は、その合焦信号に基づいてドライバD3を制御してZモータ203を駆動させ、ピークVとラインセンサ61の中心番地Qとが一致するように装置本体303を前後に移動させる。 In the auto alignment mode, the control device 104 controls the driver D3 based on the focus signal to drive the Z motor 203, and the device main body 303 so that the peak V coincides with the center address Q of the line sensor 61. Move back and forth.
 ピークVとラインセンサ61の中心番地Qとが一致したら、すなわち、合焦(Z方向アライメント)が完了したら制御装置104はZモータ203を停止させる。 When the peak V coincides with the center address Q of the line sensor 61, that is, when focusing (Z-direction alignment) is completed, the control device 104 stops the Z motor 203.
 一方、ハーフミラー32を透過した反射光束R1、R2、R3は、ミラー34およびリレーレンズ35を介してマスク板130に導かれる。 On the other hand, the reflected light beams R1, R2, and R3 transmitted through the half mirror 32 are guided to the mask plate 130 via the mirror 34 and the relay lens 35.
 このとき、マスク板130は、反射光束R2のみが透過するように配置されている。 At this time, the mask plate 130 is arranged so that only the reflected light beam R2 is transmitted.
 マスク板130を透過した反射光束R2は、リレーレンズ132を通りミラー36で反射してCCD17に達し、CCD17上に反射光束R2による光像が形成される。すなわち、角膜内皮像が形成され、図12に示すように、表示部310の画面18に角膜内皮細胞像Jが表示され、撮影用光源25が発光されて撮影が実行されることになる。すなわち、角膜Cの中心部位の角膜内皮細胞が撮影される。 The reflected light beam R2 that has passed through the mask plate 130 passes through the relay lens 132, is reflected by the mirror 36, reaches the CCD 17, and an optical image is formed on the CCD 17 by the reflected light beam R2. That is, a corneal endothelium image is formed, and as shown in FIG. 12, the corneal endothelial cell image J is displayed on the screen 18 of the display unit 310, and the imaging light source 25 is emitted to perform imaging. That is, corneal endothelial cells in the central part of the cornea C are photographed.
 内側周辺部位を撮影する場合には、所定部位に対応した発光ダイオード74a~74hのうちの1つを発光させて、上記と同様にして、XYアライメントやZアライメントを行ってその部位の撮影を行う。 When photographing the inner peripheral part, one of the light emitting diodes 74a to 74h corresponding to the predetermined part is caused to emit light, and XY alignment or Z alignment is performed in the same manner as described above to photograph the part. .
 角膜Cの周辺部位を撮影する外側周辺撮影モードが設定されている場合、上記撮影が実行された後、観察用光源21の発光が停止されるとともに、遮光板16は光路から退避され、遮光板131は光路に挿入される。 When the outer peripheral photographing mode for photographing the peripheral part of the cornea C is set, after the photographing is performed, the light emission of the observation light source 21 is stopped, and the light shielding plate 16 is retracted from the optical path. 131 is inserted into the optical path.
 そして、外部周辺撮影モードに入って外部固視標光源321~326のいずれか1つが発光されるが、この際に、装置本体303がベース部302に対して所定距離だけ後退される。すなわち、被検眼Eに対して装置本体303が後方に所定距離移動していく。 Then, the external peripheral photographing mode is entered and any one of the external fixation target light sources 321 to 326 emits light. At this time, the apparatus main body 303 is retracted by a predetermined distance with respect to the base portion 302. That is, the apparatus main body 303 moves backward by a predetermined distance with respect to the eye E.
 この後、外部固視標光源321~326のうちの1つが発光される。被検眼Eに対して装置本体303が後方に後退されていることにより、被検者は、発光されている外部固視標光源321~326を視認し易くなり、視線を外部固視標光源321~326に向け易くなる。このため、被検者の視線を内部固視標から外部固視標へ速やかに誘導させることができる。 Thereafter, one of the external fixation target light sources 321 to 326 emits light. Since the apparatus main body 303 is moved backward with respect to the eye E, the subject can easily see the external fixation target light sources 321 to 326 that are emitting light, and the line of sight is externally fixed target light source 321. To 326. For this reason, it is possible to promptly guide the subject's line of sight from the internal fixation target to the external fixation target.
 この場合、外部固視標光源321~326の発光は、点滅でもよく、また、初期の所定時間だけ点滅させ、この後連続発光させるようにしてもよい。 In this case, the light emitted from the external fixation target light sources 321 to 326 may be blinking, or may be blinked for an initial predetermined time and then continuously emitted.
 この後、アライメント指標光源41を発光させ、上記と同様にしてXYアライメントが行なわれ、XYアライメントが完了すると、アライメント指標光源41の発光は停止され、観察用光源21から赤外光が発光されるとともに、遮光板16が光路に挿入され、遮光板131が光路から離脱される。 Thereafter, the alignment index light source 41 is caused to emit light, and XY alignment is performed in the same manner as described above. When the XY alignment is completed, light emission of the alignment index light source 41 is stopped and infrared light is emitted from the observation light source 21. At the same time, the light shielding plate 16 is inserted into the optical path, and the light shielding plate 131 is detached from the optical path.
 そして、上記と同様にしてZ方向のアライメントが行なわれて、外部周辺部位の角膜内皮細胞の撮影が実行される。 Then, alignment in the Z direction is performed in the same manner as described above, and imaging of corneal endothelial cells in the external peripheral portion is executed.
 さらに、他の外部固視標光源321~326が発光されて、他の外部周辺部位の角膜内皮細胞の撮影が引き続き行われる場合、発光される外部固視標光源321~326が切り換わる毎に、上記と同様にして、装置本体303を後退させて被検者の視線を外部固視標に誘導させるようにしてもよいが、被検者は外部固視標光源321~326が装置本体303の前面にあるのかが認識されているので、装置本体303を後退させずに、外部固視標光源321~326を発光させて被検者の視線を誘導させてもよい。 Further, when the other external fixation target light sources 321 to 326 emit light and the corneal endothelial cells in other external peripheral sites are continuously photographed, every time the emitted external fixation target light sources 321 to 326 are switched. In the same manner as described above, the apparatus main body 303 may be retracted to guide the subject's line of sight to the external fixation target. However, the external fixation target light sources 321 to 326 may be used by the subject. Since the external fixation target light sources 321 to 326 may emit light without guiding the apparatus main body 303 backward, the line of sight of the subject may be guided.
 上記実施例では、外部固視標光源321~326に視線を誘導する場合に、装置本体303を後退させているが、発光ダイオード71~73のいずれかに固視させた状態から、内部周辺固視用の発光ダイオード74a~74hに視線を誘導する場合にも、装置本体303を後退させるようにしてもよい。 In the above embodiment, when guiding the line of sight to the external fixation target light sources 321 to 326, the apparatus main body 303 is retracted, but from the state where the light is fixed to any one of the light emitting diodes 71 to 73, the internal peripheral fixation light source is shifted. The apparatus main body 303 may be moved backward when guiding the line of sight to the light emitting diodes 74a to 74h for viewing.
 この発明は、上記実施例に限られるものではなく、請求の範囲の各請求項に係る発明の要旨を逸脱しない限り、設計の変更や追加等は許容される。 The present invention is not limited to the above-described embodiments, and design changes and additions are permitted without departing from the spirit of the invention according to each claim of the claims.
関連出願の相互参照Cross-reference of related applications
 本出願は、2013年6月12日に日本国特許庁に出願された特願2013-123707に基づいて優先権を主張し、その全ての開示は完全に本明細書で参照により組み込まれる。 This application claims priority based on Japanese Patent Application No. 2013-123707 filed with the Japan Patent Office on June 12, 2013, the entire disclosure of which is fully incorporated herein by reference.

Claims (6)

  1.  被検眼の角膜に向けて斜めからスリット光を照射するスリット光照射光学系と、前記角膜の角膜内皮細胞からの反射光を受光して角膜内皮細胞を撮影する角膜内皮細胞撮影光学系と、前記被検眼を所定の方向に向ける内部固視標及び外部固視標と、前記被検眼に対する装置本体のアライメントを検出するアライメント検出手段と、前記スリット光照射光学系と角膜内皮細胞撮影光学系と内部固視標及び外部固視標と前記アライメント検出手段が前記装置本体に設けられ、この装置本体が前記被検眼に対して前後,左右,上下に移動可能な角膜内皮細胞撮影装置であって、
     点灯する固視標を順次変更させて角膜の複数の部位を順次撮影していく際、撮影が完了する毎に、前記装置本体を一旦後退させることを特徴とする角膜内皮細胞撮影装置。
    A slit light irradiation optical system that irradiates slit light obliquely toward the cornea of the eye to be examined, a corneal endothelial cell imaging optical system that receives reflected light from the corneal endothelial cells of the cornea and images the corneal endothelial cells, and An internal fixation target and an external fixation target for directing the eye to be examined in a predetermined direction, alignment detection means for detecting alignment of the apparatus main body with respect to the eye to be examined, the slit light irradiation optical system, the corneal endothelial cell imaging optical system, and the internal A fixation target and an external fixation target and the alignment detection means are provided in the apparatus main body, and the apparatus main body is a corneal endothelial cell imaging apparatus that can move back and forth, left and right, and up and down with respect to the eye to be examined.
    A corneal endothelial cell imaging apparatus characterized in that, when a plurality of portions of the cornea are sequentially imaged by sequentially changing a fixation target to be lit, the apparatus main body is temporarily retracted every time imaging is completed.
  2.  請求項1に記載の角膜内皮細胞撮影装置であって、
     次に、撮影する際の固視標が外部固視標であるとき、前記装置本体を一旦後退させることを特徴とする角膜内皮細胞撮影装置。
    The corneal endothelial cell imaging device according to claim 1,
    Next, when the fixation target at the time of imaging is an external fixation target, the apparatus main body is temporarily retracted, and the corneal endothelial cell imaging apparatus is characterized in that
  3.  請求項1に記載の角膜内皮細胞撮影装置であって、
     内部固視標から外部固視標に切り換わったとき、前記装置本体を一旦後退させることを特徴とする角膜内皮細胞撮影装置。
    The corneal endothelial cell imaging device according to claim 1,
    A corneal endothelial cell imaging apparatus, wherein the apparatus main body is temporarily retracted when switching from an internal fixation target to an external fixation target.
  4.  前記装置本体が後退された後、前記外部固視標が点灯または点滅されることを特徴とする請求項2または請求項3に記載の角膜内皮細胞撮影装置。 The corneal endothelial cell imaging apparatus according to claim 2 or 3, wherein the external fixation target is turned on or blinked after the apparatus main body is retracted.
  5.  前記外部固視標が点灯または点滅された状態で、前記装置本体が移動されて再度アライメントが行われることを特徴とする請求項3または請求項4に記載の角膜内皮細胞撮影装置。 The corneal endothelial cell imaging apparatus according to claim 3 or 4, wherein the apparatus main body is moved and alignment is performed again in a state where the external fixation target is lit or blinked.
  6.  前記再度のアライメントが完了された際に、角膜内皮細胞の撮影が実行されることを特徴とする請求項5に記載の角膜内皮細胞撮影装置。 6. The corneal endothelial cell imaging apparatus according to claim 5, wherein imaging of corneal endothelial cells is executed when the second alignment is completed.
PCT/JP2014/064423 2013-06-12 2014-05-30 Corneal endothelial cell image pickup device WO2014199847A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013123707A JP6224923B2 (en) 2013-06-12 2013-06-12 Corneal endothelial cell imaging device
JP2013-123707 2013-06-12

Publications (1)

Publication Number Publication Date
WO2014199847A1 true WO2014199847A1 (en) 2014-12-18

Family

ID=52022145

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/064423 WO2014199847A1 (en) 2013-06-12 2014-05-30 Corneal endothelial cell image pickup device

Country Status (2)

Country Link
JP (1) JP6224923B2 (en)
WO (1) WO2014199847A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106821304B (en) * 2017-03-07 2018-09-25 林广杰 A kind of multi-functional ophthalmic eye disease check device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0994230A (en) * 1995-09-29 1997-04-08 Topcon Corp Ophtalmological apparatus
JP2004033377A (en) * 2002-07-02 2004-02-05 Kowa Co Opthalmologic examination apparatus
JP2013059565A (en) * 2011-09-14 2013-04-04 Nidek Co Ltd Corneal endothelial cell imaging apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0994230A (en) * 1995-09-29 1997-04-08 Topcon Corp Ophtalmological apparatus
JP2004033377A (en) * 2002-07-02 2004-02-05 Kowa Co Opthalmologic examination apparatus
JP2013059565A (en) * 2011-09-14 2013-04-04 Nidek Co Ltd Corneal endothelial cell imaging apparatus

Also Published As

Publication number Publication date
JP2014239822A (en) 2014-12-25
JP6224923B2 (en) 2017-11-01

Similar Documents

Publication Publication Date Title
JP6239287B2 (en) Corneal endothelial cell imaging device
JP4937792B2 (en) Fundus camera
JP6003292B2 (en) Fundus photographing device
JP5772117B2 (en) Fundus photographing device
CN102438504A (en) Ophthalmologic photographing apparatus
JP5776609B2 (en) Corneal endothelial cell imaging device
JP2011229757A (en) Fundus oculi camera
JP6224923B2 (en) Corneal endothelial cell imaging device
JP4359527B2 (en) Fundus camera
JP6134518B2 (en) Ophthalmic equipment
JP2012143270A (en) Fundus photography device
JP2013039148A (en) Microscope for ophthalmic operation
JP4394103B2 (en) Fundus camera
JPH06160727A (en) Eyeball microscope
JP6474978B2 (en) Corneal endothelial cell imaging device
JP6711638B2 (en) Ophthalmic equipment
JP3617708B2 (en) Corneal endothelial cell observation imaging device
JP5807701B2 (en) Fundus photographing device
JP6219610B2 (en) Corneal endothelial cell imaging device
JP5199008B2 (en) Fundus camera
JP2012217512A (en) Corneal endothelial cell photographing device
JP2011212241A (en) Fundus photographing device
JP6254311B2 (en) Ophthalmic equipment
JP6292331B2 (en) Fundus photographing device
JP6219611B2 (en) Corneal endothelial cell imaging device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14811145

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14811145

Country of ref document: EP

Kind code of ref document: A1