WO2014199831A1 - Optical path conversion element, connection structure for optical path conversion element, light source device, and optical mounting device - Google Patents

Optical path conversion element, connection structure for optical path conversion element, light source device, and optical mounting device Download PDF

Info

Publication number
WO2014199831A1
WO2014199831A1 PCT/JP2014/064180 JP2014064180W WO2014199831A1 WO 2014199831 A1 WO2014199831 A1 WO 2014199831A1 JP 2014064180 W JP2014064180 W JP 2014064180W WO 2014199831 A1 WO2014199831 A1 WO 2014199831A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical waveguide
optical path
optical
light
path changing
Prior art date
Application number
PCT/JP2014/064180
Other languages
French (fr)
Japanese (ja)
Inventor
近藤 順悟
山口 省一郎
隆史 吉野
武内 幸久
Original Assignee
日本碍子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本碍子株式会社 filed Critical 日本碍子株式会社
Priority to JP2015522707A priority Critical patent/JP6379090B2/en
Publication of WO2014199831A1 publication Critical patent/WO2014199831A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4214Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical element having redirecting reflective means, e.g. mirrors, prisms for deflecting the radiation from horizontal to down- or upward direction toward a device
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/124Geodesic lenses or integrated gratings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4215Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical elements being wavelength selective optical elements, e.g. variable wavelength optical modules or wavelength lockers

Definitions

  • the present invention relates to an optical path changing element, an optical path changing element connection structure, a light source device, and an optical mounting device.
  • AOC Active Optical Optical Cable
  • Patent Documents 1 to 6 In order to realize three-dimensional optical mounting, a technique for bending light at 90 degrees and optically connecting optical components is required. Regarding this, there are conventional techniques shown in Patent Documents 1 to 6.
  • Patent Documents 1 to 3 disclose a technique (reflection element) using a polymer waveguide and having a function of converting an optical path by 90 degrees.
  • Patent Document 1 a polymer optical waveguide module having a light emitting element, a lower clad, a core, and an upper clad, having an optical path conversion mirror surface at one end thereof, and a light receiving element for monitoring light from the light emitting element Is disclosed.
  • Patent Document 2 discloses an optical waveguide film that does not require a microlens by processing it into a 45 ° mirror surface on the end face of the optical waveguide film and directly adhering it to a flat light emitting element such as VECSEL.
  • the core size is about 10 ⁇ m square in the case of a single mode optical waveguide, and 50 to 100 ⁇ m square in the case of a multi mode.
  • the cladding is at least 20 ⁇ m or more in order to maintain mechanical strength.
  • Patent Document 3 discloses an optical waveguide film in which a mirror is formed by forming a metal film on a 45 ° groove processed surface.
  • the cladding thickness is 5 ⁇ m or more, the cladding thickness necessary for light confinement can be secured, and when it is 500 ⁇ m ⁇ or less, the film thickness can be easily controlled uniformly.
  • the thickness of the lower cladding layer is more preferably in the range of 10 to 100 ⁇ m.
  • the core size is about 10 ⁇ m square. For this reason, a coupling loss becomes large in a butt joint.
  • the polymer waveguide has a cladding thickness of at least 5 ⁇ m, so that the beam expands and coupling loss due to mode mismatch increases. Even when the optical path is changed by bending the optical fiber, it is difficult to fix the optical component because the outer peripheral portion is curved.
  • the conditions for total reflection at the interface with air are satisfied, but the refractive index is as low as about 1.5.
  • the rate difference is reversed and the total reflection condition may not be satisfied, and the reflectivity varies greatly.
  • a material with a lower refractive index is required for coating, but it is difficult to select an appropriate material because the SiO2 film cannot be used.
  • An object of the present invention is an optical path changing element for changing an optical path of light oscillated from a light source and making it incident on an optical waveguide element, which can increase and stabilize the coupling efficiency of light from the light source to the optical waveguide element
  • An optical path changing element is provided.
  • the present invention is an optical path changing element that changes the propagation direction of light, Support substrate, A thin layer made of an optical crystal and formed on the support substrate, the first layer having a first main surface on the support substrate side and a second main surface on the opposite side of the support substrate; And a ridge-type optical waveguide defined by at least a pair of ridge grooves formed in a thin layer, the ridge-type optical waveguide having a light incident surface and a reflective surface that reflects light propagating through the ridge-type optical waveguide With The light reflected by the reflecting surface is emitted from the second main surface side through the thin layer.
  • the present invention is a connection structure between the optical path changing element and an optical waveguide element having a channel type optical waveguide, The exit surface of the optical path changing element and the channel type optical waveguide are butt-jointed.
  • the present invention relates to a light source device comprising a light source that oscillates light and the optical path changing element.
  • the optical mounting device is A mounting substrate having a top surface, a bottom surface and a side surface between the top surface and the bottom surface;
  • the optical path changing element fixed to the upper surface of the mounting substrate, It is fixed to the upper surface of the mounting board, and includes a light source that oscillates light, and an optical waveguide element that is fixed to the side surface of the mounting board and has another channel-type optical waveguide
  • the exit surface of the optical path changing element and the channel type optical waveguide are butt-jointed.
  • the coupling efficiency of light from the light source to the optical waveguide element can be increased and stabilized.
  • FIG. 1 is a perspective view schematically showing an optical mounting device 1.
  • FIG. It is a schematic diagram which shows the coupling
  • FIG. 2 is a schematic diagram showing a coupling state of a light source 3, an optical path changing element 4 and an optical waveguide element 10.
  • FIG. 3 is a perspective view of an optical path changing element 4.
  • FIG. 3 is a cross-sectional view schematically showing an optical path changing element 4.
  • FIG. It is a cross-sectional view schematically showing the optical path changing element 4A. It is a perspective view which shows typically other optical mounting devices 1A.
  • FIG. 3 is a schematic diagram showing a coupling state of a light source 3, an optical path changing element 4B, and an optical waveguide element 10.
  • FIG. It is a perspective view of the optical path changing element 4B.
  • the optical path changing element of an Example it is a graph which shows the relationship between the angle of a reflective surface, and the reflectance of s polarization
  • the mounting substrate 2 has an upper surface 2a, a bottom surface 2d, and side surfaces 2b and 2c.
  • the upper surface 2a and one side surface 2b are used for mounting.
  • the light source 3 is fixed to the upper surface 2 a of the mounting substrate 2. For example, as shown in FIGS. 2 and 3, light is emitted as indicated by an arrow A from the active layer 3 a of the light source 3.
  • the optical path changing element 4 is fixed to the upper surface 2 a of the mounting substrate 2.
  • the support substrate 5 and the thin layer 6 are joined and integrated with each other.
  • a pair of ridge grooves 7 are formed on the first main surface 6 a on the support substrate side of the thin layer 6, and a ridge-type optical waveguide 8 is formed between the ridge grooves 7.
  • the lower buffer layer 21 is formed on the main surface 6 a of the thin layer 6, and is bonded to the support substrate 5 via the adhesive layer 22.
  • the second main surface 6b opposite to the support substrate 5 of the thin layer 6 is flat, and the buffer layer 20 is formed on the main surface 6b side.
  • the buffer layer 20 itself may function as an antireflection film for the emitted light, or an antireflection film may be provided on the buffer layer 20.
  • the incident surface 4 a of the optical path changing element 4 is flat, and is substantially perpendicular to the top and bottom surfaces of the optical path changing element 4.
  • the exit surface 4b of the optical path changing element 4 is inclined at an angle ⁇ with respect to the bottom surface.
  • the light oscillated from the light source enters the incident surface 8a of the channel-type optical waveguide 8, propagates in the optical waveguide 8 as indicated by arrow B, and is then reflected by the reflecting surface 8b facing the exit surface of the optical path changing element. . Then, the light propagates through the thin layer 6 as indicated by an arrow C, and is emitted as indicated by an arrow C from the emission surface 4c on the bottom side.
  • a Bragg grating 9 is formed in the optical waveguide 8. It is preferable to provide a propagation part without a diffraction grating between the incident surface 8 a of the optical waveguide 8 and the Bragg grating 9. Further, it is preferable to provide a non-reflective layer on the incident surface side 8a and the output surface side 4c of the optical waveguide.
  • the Bragg grating and the light source constitute an external resonator and stabilize the wavelength of the oscillating laser beam. This makes it possible to provide a stable laser light source with a changed optical path.
  • the optical waveguide element 10 is fixed on the side surface 2 b of the mounting substrate 2, and the channel type optical waveguide 11 is formed in the optical waveguide element 10.
  • the incident surface 10a of the optical waveguide element 10 faces the bottom surface of the optical path changing element 4, and the output surface 10b of the optical waveguide element 10 is provided on the opposite side.
  • the exit surface 4 c of the optical path changing element 4 is butt-jointed with the channel type optical waveguide 11 of the optical waveguide element 10, and a gap with a dimension G is provided therebetween.
  • a butt joint refers to a joint structure in which end faces of optical waveguides having different refractive index distributions are brought into contact with each other in the optical axis direction.
  • there is no optical waveguide opening on the emission surface 4c but the light reflected by the reflection surface 8b propagates and emits a thin layer for a short distance while maintaining the beam shape, so the shape of the light beam is For this reason, a butt joint is established.
  • the light propagating in the channel type optical waveguide (ridge optical waveguide) defined by the ridge groove in the thin layer provided on the support substrate is converted into the thin layer end face. And is emitted from the bottom side of the thin layer.
  • the ridge-type channel optical waveguide formed in the thin layer can strengthen the confinement and there is no scattering on the surface of the optical waveguide. It is possible to prevent a decrease in the coupling efficiency due to scattering of.
  • the light emitted from the bottom surface of the optical path changing element can be coupled to a separate optical waveguide element by the butt joint method, high coupling efficiency can be realized with a small number of parts without requiring a lens. .
  • the polarization of the light source can be maintained, and it can be coupled to the optical waveguide element while maintaining high polarization crosstalk.
  • the Bragg grating 9 may be formed on the first main surface 6a side where the ridge groove of the thin layer 6 is provided, or may be formed on the flat second main surface 6b.
  • the Bragg grating is preferably formed on the flat second main surface side (in this example, the side opposite to the support substrate 5). That is, by forming the ridge groove 7 and the Bragg grating 9 on the main surface on the opposite side of the thin layer, variation in the shapes of the Bragg grating and the ridge groove can be further reduced.
  • the thin layer 6 is provided on the support substrate 5.
  • a pair of ridge grooves 7 are formed on the second main surface 6 b side of the thin layer 6, and a ridge type optical waveguide 8 is formed between the ridge grooves 7.
  • the lower buffer layer 21 is formed on the first main surface 6 a of the thin layer 6 on the support substrate side, and is bonded to the support substrate 5 via the adhesive layer 22.
  • an upper buffer layer 20 is formed on the second main surface 6b of the thin layer 6 having the ridge groove.
  • the upper buffer layer may function as an antireflection film for the emitted light, or an antireflection film may be formed on the upper buffer layer.
  • the Bragg grating 9 may be formed on the second main surface 6b side where the ridge groove of the thin layer 6 is provided, or may be formed on the flat first main surface 6a.
  • the Bragg grating is preferably formed on the flat first main surface side (the support substrate 5 side in this example). That is, by forming the ridge groove 7 and the Bragg grating 9 on the opposite surface of the thin layer, the shape variation of the Bragg grating and the ridge groove can be further reduced.
  • the air layer can directly contact the grating.
  • the difference in refractive index can be increased without the presence of a grating groove, and the reflectance can be increased with a short grating length.
  • the non-reflective film is formed only on the optical path portion of the emitted light.
  • an antireflection film (AR coating) on the incident surface 8a of the optical waveguide. Further, it is preferable that an antireflective film (AR coating) is also formed on the exit surface 6b side.
  • the buffer layer substantially functions as a clad for the optical waveguide, and may function as a non-reflective film for the emitted light.
  • the non-reflective film for the emitted light may be formed by being formed on the buffer layer on the emission surface 6b side.
  • the buffer layer is preferably 5 ⁇ m or less from the viewpoint that the spot size of the reflected light does not expand. From this viewpoint, the optical path may not have a buffer layer.
  • the mounting device 1A shown in FIGS. 7 to 10 is similar to the device shown in FIGS. 1 to 6, except that no Bragg grating is formed in the ridge type optical waveguide of the optical path changing element.
  • the mounting substrate 2 has an upper surface 2a, a bottom surface 2d, and side surfaces 2b and 2c.
  • a light source 3 is fixed to the upper surface 2 a of the mounting substrate 2. For example, as shown in FIGS. 8 and 9, light is emitted as indicated by an arrow A from the active layer 3 a of the light source 3.
  • the optical path changing element 4B is fixed to the upper surface 2a of the mounting substrate 2.
  • the support substrate 5 and the thin layer 6 are joined and integrated with each other.
  • a pair of ridge grooves 7 are formed in the thin layer, and a ridge-type optical waveguide 8 is formed between the ridge grooves 7.
  • the structure of the cross section of the optical path changing element may be as shown in FIG. 5 or as shown in FIG.
  • the incident surface 4a of the optical path changing element 4B is flat, and is substantially perpendicular to the top and bottom surfaces of the optical path changing element 4B.
  • the exit surface 4b of the optical path changing element 4B is inclined at an angle ⁇ with respect to the bottom surface.
  • the light oscillated from the light source enters the incident surface 8a of the channel-type optical waveguide 8, propagates in the optical waveguide 8 as indicated by arrow B, and is then reflected by the reflecting surface 8b facing the exit surface of the optical path changing element. . Then, the light propagates through the thin layer 6 as indicated by an arrow C, and is emitted as indicated by an arrow C from the emission surface 4c on the bottom side.
  • the optical waveguide device 10 is fixed on the side surface 2 b of the mounting substrate 2, and the channel type optical waveguide 1 is formed in the optical waveguide device 10.
  • the incident surface 10a of the optical waveguide element 10 is opposed to the bottom surface of the optical path changing element 4B, and the output surface 10b of the optical waveguide element 10 is provided on the opposite side.
  • the exit surface 4c of the optical path changing element 4B is butt-jointed with the channel-type optical waveguide 11 of the optical waveguide element 10, and a gap with a dimension G is provided therebetween. .
  • the thickness of the thin layer is preferably 8 ⁇ m or less, more preferably 5 ⁇ m or less, from the viewpoint of the coupling efficiency of the optical waveguide element to the channel type optical waveguide.
  • the thickness of the thin layer is preferably 0.5 ⁇ m or more because it reduces the propagation loss of the optical waveguide.
  • the optical crystal forming the thin layer preferably has a refractive index of 1.9 or more, and more preferably has a refractive index of 1.95 or more, from the viewpoint of tolerance of reflectance.
  • the optical crystal forming the thin layer are gallium arsenide, lithium niobate single crystal, tantalum oxide, zinc oxide, and alumina oxide. Further, by making the optical crystal birefringent, the polarization plane of the laser light can be maintained. Further, the thin layer can be formed by bonding by bonding, but can also be formed by sputtering, vapor deposition, or film formation by CVD on a support substrate.
  • one or more metal elements selected from the group consisting of magnesium (Mg), zinc (Zn), scandium (Sc), and indium (In) are used to further improve the optical damage resistance of the optical waveguide.
  • magnesium is particularly preferable.
  • the crystal can contain a rare earth element as a doping component.
  • the rare earth element Nd, Er, Tm, Ho, Dy, and Pr are particularly preferable.
  • the buffer layer may have a multilayer structure of metal films such as Ti, Pt, Ni, and Cr.
  • a ridge-type optical waveguide is obtained by physically processing and molding an optical crystal by, for example, machining or laser processing.
  • a laser with a highly reliable GaAs-based or InP-based material is suitable.
  • a GaAs laser that oscillates near a wavelength of 1064 nm is used. Since GaAs-based and InP-based lasers have high reliability, a light source such as a one-dimensionally arranged laser array can be realized. It may be a super luminescence diode or a semiconductor optical amplifier (SOA).
  • SOA semiconductor optical amplifier
  • the material and wavelength of the active layer can be selected as appropriate.
  • the Bragg grating can be formed by physical or chemical etching as follows.
  • a metal film such as Ni or Ti is formed on a high refractive index substrate, and windows are periodically formed by photolithography to form an etching mask. Thereafter, periodic grating grooves are formed by a dry etching apparatus such as reactive ion etching. Finally, it can be formed by removing the metal mask.
  • the material of the adhesive layer may be an inorganic adhesive, an organic adhesive, or a combination of an inorganic adhesive and an organic adhesive.
  • the specific material of the support substrate is not particularly limited, and examples thereof include glass such as lithium niobate, lithium tantalate, and quartz glass, quartz, and Si.
  • the reflectance of the non-reflective layer must be less than or equal to the grating reflectivity.
  • a film laminated with an oxide such as silicon dioxide or tantalum pentoxide, or metal is also used. Is possible.
  • each end face of the light source, the optical path changing element, and the optical waveguide element may be cut obliquely in order to suppress end face reflection.
  • the thin layer and the support substrate are bonded and fixed in the above example, but may be directly bonded.
  • the angle ⁇ with respect to the bottom surface of the reflecting surface is usually 45 °, so that the light is bent at a right angle.
  • can be selected from 42 to 48 °, for example.
  • the processing method for providing an angle to the reflection surface of the ridge-type optical waveguide may be polishing or processing by dicing or a micro grinder.
  • the configuration of the optical waveguide element is not particularly limited as long as the channel type optical waveguide is formed.
  • the optical waveguide element may be a monolithic substrate, for example, but preferably includes a support substrate and a thin layer made of an optical crystal bonded on the support substrate, and a channel-type optical waveguide is included in the thin layer. Is formed.
  • the channel type optical waveguide is preferably a ridge type optical waveguide, but may be a diffusion type optical waveguide.
  • the size G of the gap between the exit surface of the optical path changing element and the entrance surface of the channel type optical waveguide of the optical waveguide element is preferably 1 ⁇ m or more, and preferably 9 ⁇ m or less, depending on the design.
  • Example A The devices shown in FIGS. 1 to 4 and FIG. 5 were produced. Specifically, in order to form a y-axis propagating optical waveguide in a z-plate MgO-doped lithium niobate crystal, an excimer laser was used to form a groove with a width Wm of 3 ⁇ m and a Tr of 1 ⁇ m to form an optical waveguide. Further, an SiO2 film was formed to a thickness of 0.5 [mu] m by a sputtering apparatus, and the optical waveguide forming surface was bonded using a black LN substrate as a support substrate.
  • the black LN substrate side was attached to a polishing surface plate, and the back surface of the LN substrate on which the optical waveguide was formed was precisely polished to a thickness Ts of 2 ⁇ m. Then, it was removed from the surface plate, and an AR coating was formed on the entire polished surface.
  • the chip was cut so that the element size was 1 mm wide and 3 mm long.
  • the reflectance was 100% for both p-polarized light (TM wave) and s-polarized light (TE wave) when measured with a semiconductor laser having a wavelength of 800 nm. Moreover, the polarization crosstalk was 20 dB or more, and no deterioration due to reflection was observed.
  • a module shown in FIGS. 1 to 4 was manufactured by optically aligning an 800 nm wavelength semiconductor laser and a spot size 3 ⁇ 2 ⁇ m optical waveguide element.
  • An optical waveguide element was disposed directly under the mirror, and the gap G with the reflection waveguide was 3 ⁇ m. As a result of measuring the coupling efficiency after mounting, it was about 80%.
  • the coupling efficiency is about 80%. Therefore, it was confirmed that the present invention can be combined with an excess loss of 5% or less.
  • the coupling efficiency was measured by changing the gap G with the optical waveguide directly under the mirror.
  • Table 1 shows the loss fluctuation when the temperature is changed from -20 ° C to 70 ° C after mounting.
  • a butt joint can be achieved with high coupling efficiency over a wide gap range.
  • Example B In Example A, as shown in FIG. 6, the flat main surface 6a side without a thin ridge groove was used as the bonding surface. Other than this, an optical path changing element and an optical mounting device were produced in the same manner as in Example A, and evaluated in the same manner as in Example A. The results are shown in Table 2.
  • Example A a ridge waveguide was not formed. Instead, a channel type optical waveguide was formed by a titanium diffusion method. The channel type optical waveguide side was used as the bonding surface. Other than this, an optical path changing element and an optical mounting device were produced in the same manner as in Example A, and evaluated in the same manner as in Example A.
  • the gap G of the butt joint was 3 ⁇ m. As a result, the coupling efficiency was 50%, and the temperature fluctuation was 1 dB. Since the diffusion waveguide has a small difference in refractive index, the light confinement effect is weak, and it is difficult to reduce the spot size.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Integrated Circuits (AREA)
  • Semiconductor Lasers (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

This optical path conversion element (4) is provided with: a support substrate (5); a thin layer (6) comprising an optical crystal formed on the support substrate, the thin layer having a first principal surface side (6a) situated on the support substrate side, and a second principal surface side (6b) situated on the opposite side from the support substrate; and a ridge optical waveguide (8) partitioned by at least a pair of ridge grooves (7) formed in the thin layer (6), the ridge optical waveguide having a light entrance face (8a) and a reflecting face (8b) for reflecting light propagated through the optical waveguide (8). Light reflected by the reflecting face exits the surface through the thin layer.

Description

光路変更素子、光路変更素子の接続構造、光源デバイスおよび光実装デバイスOptical path changing element, optical path changing element connection structure, light source device and optical mounting device
 本発明は、光路変更素子、光路変更素子の接続構造、光源デバイスおよび光実装デバイスに関するものである。 The present invention relates to an optical path changing element, an optical path changing element connection structure, a light source device, and an optical mounting device.
 情報通信の進展により、データ処理速度が飛躍的に高速化している。データセンターでは、ネットワーク機器やサーバーなどの機器間を光伝送する光インターコネクションが導入されつつあり、そのキーパーツであるアクティブ光ケーブル(AOC: Active Optical Cable)の開発が活発化している。AOC技術を応用した3次元光実装技術は、家庭内のマルチメディア伝送機器や屋内配線への応用や、さらに将来的にはパソコンや携帯電話などの情報通信端末への導入も検討されている。 Data processing speed has been dramatically increased with the progress of information communication. In data centers, optical interconnection for optical transmission between devices such as network devices and servers is being introduced, and the development of active optical cables (AOC: "Active Optical Optical Cable"), which are key parts, has been activated. Three-dimensional optical mounting technology using AOC technology is being considered for use in multimedia transmission equipment in homes and indoor wiring, and in the future for use in information communication terminals such as personal computers and mobile phones.
 3次元光実装を実現するためには、光を90度に曲げ、光部品を光学的に接続する技術が要求される。これについては、特許文献1~6に示す従来技術がある。 In order to realize three-dimensional optical mounting, a technique for bending light at 90 degrees and optically connecting optical components is required. Regarding this, there are conventional techniques shown in Patent Documents 1 to 6.
 特許文献1~3は、ポリマー導波路を利用し、光路90度変換機能を有した技術(反射素子)が開示されている。 Patent Documents 1 to 3 disclose a technique (reflection element) using a polymer waveguide and having a function of converting an optical path by 90 degrees.
 特許文献1では、発光素子、下部クラッド、コア、及び上部クラッドを有し、その一端部に光路変換ミラー面を有し、発光素子からの光をモニターする受光素子を備えた高分子光導波路モジュールが開示されている。 In Patent Document 1, a polymer optical waveguide module having a light emitting element, a lower clad, a core, and an upper clad, having an optical path conversion mirror surface at one end thereof, and a light receiving element for monitoring light from the light emitting element Is disclosed.
 特許文献2には、光導波路フィルムの端面に45°ミラー面に加工して、VECSELなどの平面型発光素子に直接接着することにより、マイクロレンズが不要の光導波路フィルムが開示されている。コアのサイズについては、シングルモード用の光導波路の場合には10μm角程度、マルチモード用の場合には50~100μm角としている。クラッドについては、機械強度を保持するために、少なくとも20μm以上としている。 Patent Document 2 discloses an optical waveguide film that does not require a microlens by processing it into a 45 ° mirror surface on the end face of the optical waveguide film and directly adhering it to a flat light emitting element such as VECSEL. The core size is about 10 μm square in the case of a single mode optical waveguide, and 50 to 100 μm square in the case of a multi mode. The cladding is at least 20 μm or more in order to maintain mechanical strength.
 特許文献3には、45°溝加工面に金属膜を形成することによるミラーを形成した光導波路フィルムが開示されている。クラッド厚みについては5μm以上であると、光の閉じ込めに必要なクラッド厚さが確保でき、500μm 以下であると、膜厚を均一に制御することが容易である。以上の観点から、下部クラッド層 の厚さは、さらに10 ~100μm の範囲であることがより好ましい。 Patent Document 3 discloses an optical waveguide film in which a mirror is formed by forming a metal film on a 45 ° groove processed surface. When the cladding thickness is 5 μm or more, the cladding thickness necessary for light confinement can be secured, and when it is 500 μmμ or less, the film thickness can be easily controlled uniformly. From the above viewpoint, the thickness of the lower cladding layer is more preferably in the range of 10 to 100 μm.
特開2006-011210JP2006-011210 特開2006-017885JP2006-017885 特開2012-150242JP2012-150242 特開平04-24610JP 04-24610 特開平05-34526JP 05-34526 特願2008-276657Japanese Patent Application 2008-276657
 光源から出射した光の方向を変化させ、光導波路素子に光学的に結合する場合、光導波路素子の導波路がシングルモード導波路の場合、そのコアサイズが10μm角程度である。このため、バットジョイントでは結合損失が大きくなる。 When the direction of the light emitted from the light source is changed and optically coupled to the optical waveguide device, when the waveguide of the optical waveguide device is a single mode waveguide, the core size is about 10 μm square. For this reason, a coupling loss becomes large in a butt joint.
 また、ミラー直下にバットジョイントする場合、ポリマー導波路では、クラッドの厚みが少なくとも5μm以上あるために、ビームが拡がってしまいモードミスマッチによる結合損失が大きくなる。光ファイバを屈曲させて光路変更した場合にも、外周部が曲面となるので光部品の固定が難しい。 In addition, when a butt joint is formed directly under the mirror, the polymer waveguide has a cladding thickness of at least 5 μm, so that the beam expands and coupling loss due to mode mismatch increases. Even when the optical path is changed by bending the optical fiber, it is difficult to fix the optical component because the outer peripheral portion is curved.
 また、45°ミラーについて、ポリマー光導波路や光ファイバの場合、空気との界面での全反射条件は成立するが、屈折率が1.5程度と小さいので、結露やごみの付着があると屈折率差が逆転し、全反射条件を満足しなくなることもあり、反射率が大きく変動する。これを防止するためコーティングする場合には、より屈折率が小さい材料が必要だが、SiO2膜が使用不可なので適当な材料を選択するのが難しい。 For 45 ° mirrors, in the case of polymer optical waveguides and optical fibers, the conditions for total reflection at the interface with air are satisfied, but the refractive index is as low as about 1.5. The rate difference is reversed and the total reflection condition may not be satisfied, and the reflectivity varies greatly. In order to prevent this, a material with a lower refractive index is required for coating, but it is difficult to select an appropriate material because the SiO2 film cannot be used.
 本発明の課題は、光源から発振した光の光路を変化させて光導波路素子に入射させるための光路変更素子であって、光源から光導波路素子への光の結合効率を高くし、安定させ得るような光路変更素子を提供することである。 An object of the present invention is an optical path changing element for changing an optical path of light oscillated from a light source and making it incident on an optical waveguide element, which can increase and stabilize the coupling efficiency of light from the light source to the optical waveguide element An optical path changing element is provided.
 本発明は、光の伝搬方向を変更する光路変更素子であって、
 支持基板、
 光学結晶からなり、前記支持基板上に形成された薄層であって、前記支持基板側の第一の主面と、前記支持基板とは反対側の第二の主面とを有する薄層、および
 薄層に形成されている少なくとも一対のリッジ溝によって区画されるリッジ型光導波路であって、光の入射面およびリッジ型光導波路を伝搬してきた光を反射する反射面を有するリッジ型光導波路を備えており、
 反射面で反射された光を薄層を通して前記第二の主面側から出射させることを特徴とする。
The present invention is an optical path changing element that changes the propagation direction of light,
Support substrate,
A thin layer made of an optical crystal and formed on the support substrate, the first layer having a first main surface on the support substrate side and a second main surface on the opposite side of the support substrate; And a ridge-type optical waveguide defined by at least a pair of ridge grooves formed in a thin layer, the ridge-type optical waveguide having a light incident surface and a reflective surface that reflects light propagating through the ridge-type optical waveguide With
The light reflected by the reflecting surface is emitted from the second main surface side through the thin layer.
 また、本発明は、前記光路変更素子と、チャンネル型光導波路を有する光導波路素子との接続構造であって、
 光路変更素子の出射面とチャンネル型光導波路とがバットジョイントされていることを特徴とする。
Further, the present invention is a connection structure between the optical path changing element and an optical waveguide element having a channel type optical waveguide,
The exit surface of the optical path changing element and the channel type optical waveguide are butt-jointed.
 また、本発明は、光を発振する光源、および前記光路変更素子を備えていることを特徴とする、光源デバイスに係るものである。 Further, the present invention relates to a light source device comprising a light source that oscillates light and the optical path changing element.
 また、本発明に係る光実装デバイスは、
 上面、底面および上面と底面との間の側面を有する実装基板、
 実装基板の上面に固定されている、前記光路変更素子、
 実装基板の上面に固定されており、光を発振する光源、および
 実装基板の側面に固定されており、他のチャンネル型光導波路を有する光導波路素子を備えており、
 光路変更素子の出射面とチャンネル型光導波路とがバットジョイントされていることを特徴とする。
The optical mounting device according to the present invention is
A mounting substrate having a top surface, a bottom surface and a side surface between the top surface and the bottom surface;
The optical path changing element fixed to the upper surface of the mounting substrate,
It is fixed to the upper surface of the mounting board, and includes a light source that oscillates light, and an optical waveguide element that is fixed to the side surface of the mounting board and has another channel-type optical waveguide
The exit surface of the optical path changing element and the channel type optical waveguide are butt-jointed.
 本発明によれば、光源から発振した光の光路を変化させて光導波路素子に入射させるための光路変更素子において、光源から光導波路素子への光の結合効率を高くし、安定させ得る。 According to the present invention, in the optical path changing element for changing the optical path of the light oscillated from the light source and making it incident on the optical waveguide element, the coupling efficiency of light from the light source to the optical waveguide element can be increased and stabilized.
光実装デバイス1を模式的に示す斜視図である。1 is a perspective view schematically showing an optical mounting device 1. FIG. 光源3および光路変更素子4の結合状態を示す模式図である。It is a schematic diagram which shows the coupling | bonding state of the light source 3 and the optical path changing element 4. FIG. 光源3、光路変更素子4および光導波路素子10の結合状態を示す模式図である。2 is a schematic diagram showing a coupling state of a light source 3, an optical path changing element 4 and an optical waveguide element 10. FIG. 光路変更素子4の斜視図である。3 is a perspective view of an optical path changing element 4. FIG. 光路変更素子4を模式的に示す横断面図である。3 is a cross-sectional view schematically showing an optical path changing element 4. FIG. 光路変更素子4Aを模式的に示す横断面図である。It is a cross-sectional view schematically showing the optical path changing element 4A. 他の光実装デバイス1Aを模式的に示す斜視図である。It is a perspective view which shows typically other optical mounting devices 1A. 光源3および光路変更素子4Bの結合状態を示す模式図である。It is a schematic diagram which shows the coupling | bonding state of the light source 3 and the optical path changing element 4B. 光源3、光路変更素子4Bおよび光導波路素子10の結合状態を示す模式図である。3 is a schematic diagram showing a coupling state of a light source 3, an optical path changing element 4B, and an optical waveguide element 10. FIG. 光路変更素子4Bの斜視図である。It is a perspective view of the optical path changing element 4B. 実施例の光路変更素子において、反射面の角度とs偏光およびp偏向の反射率との関係を示すグラフである。In the optical path changing element of an Example, it is a graph which shows the relationship between the angle of a reflective surface, and the reflectance of s polarization | polarized-light and p deflection | deviation.
 最初に図面を参照しつつ、本発明の光実装デバイスの具体的構造を例示し、次いで種々の実施形態について述べる。 First, referring to the drawings, a specific structure of the optical mounting device of the present invention will be exemplified, and then various embodiments will be described.
 図1に示すように、実装基板2は、上面2a、底面2d、および側面2b、2cを有する。本実施形態では、上面2aおよび一つの側面2bを実装に使用する。 As shown in FIG. 1, the mounting substrate 2 has an upper surface 2a, a bottom surface 2d, and side surfaces 2b and 2c. In this embodiment, the upper surface 2a and one side surface 2b are used for mounting.
 実装基板2の上面2aには光源3が固定されている。例えば、図2、図3に示すように、光源3の活性層3aから、矢印Aのように光が出射する。 The light source 3 is fixed to the upper surface 2 a of the mounting substrate 2. For example, as shown in FIGS. 2 and 3, light is emitted as indicated by an arrow A from the active layer 3 a of the light source 3.
 また、実装基板2の上面2aには、光路変更素子4が固定されている。光路変更素子では、図4、図5に示すように、支持基板5と薄層6とが互いに接合、一体化している。薄層6の支持基板側の第一の主面6aに例えば一対のリッジ溝7が形成されており、リッジ溝7の間にリッジ型の光導波路8が形成されている。本例では、薄層6の主面6a上に下側バッファ層21が形成されており、かつ支持基板5に対して接着層22を介して接合されている。一方、薄層6の支持基板5と反対側の第二の主面6bは平坦であり、主面6b側にバッファ層20が形成されている。この場合、バッファ層20それ自体が出射光に対する無反射防止膜として機能してもよく、また、バッファ層20の上に無反射防止膜を設けても良い。 Further, the optical path changing element 4 is fixed to the upper surface 2 a of the mounting substrate 2. In the optical path changing element, as shown in FIGS. 4 and 5, the support substrate 5 and the thin layer 6 are joined and integrated with each other. For example, a pair of ridge grooves 7 are formed on the first main surface 6 a on the support substrate side of the thin layer 6, and a ridge-type optical waveguide 8 is formed between the ridge grooves 7. In this example, the lower buffer layer 21 is formed on the main surface 6 a of the thin layer 6, and is bonded to the support substrate 5 via the adhesive layer 22. On the other hand, the second main surface 6b opposite to the support substrate 5 of the thin layer 6 is flat, and the buffer layer 20 is formed on the main surface 6b side. In this case, the buffer layer 20 itself may function as an antireflection film for the emitted light, or an antireflection film may be provided on the buffer layer 20.
 光路変更素子4の入射面4aは平坦であり、また光路変更素子4の上面や底面に対して略垂直をなしている。一方、光路変更素子4の出射面4bは、底面に対して角度θ傾斜している。光源から発振した光は、チャンネル型光導波路8の入射面8aに入射し、光導波路8内を矢印Bのように伝搬した後、光路変更素子の出射面に面する反射面8bによって反射される。そして、矢印Cのように薄層6内を伝搬し、底面側の出射面4cから矢印Cのように出射する。 The incident surface 4 a of the optical path changing element 4 is flat, and is substantially perpendicular to the top and bottom surfaces of the optical path changing element 4. On the other hand, the exit surface 4b of the optical path changing element 4 is inclined at an angle θ with respect to the bottom surface. The light oscillated from the light source enters the incident surface 8a of the channel-type optical waveguide 8, propagates in the optical waveguide 8 as indicated by arrow B, and is then reflected by the reflecting surface 8b facing the exit surface of the optical path changing element. . Then, the light propagates through the thin layer 6 as indicated by an arrow C, and is emitted as indicated by an arrow C from the emission surface 4c on the bottom side.
 本例では、光導波路8内に、ブラッググレーティング9が形成されている。光導波路8の入射面8aとブラッググレーティング9との間には、回折格子のない伝搬部を設けることが好ましい。また、光導波路の入射面側8a、出射面側4cにはそれぞれ無反射層を設けることが好ましい。このブラッググレーティングと光源とによって、外部共振器を構成し、発振するレーザ光の波長を安定化させる。これによって、光路の変更された安定なレーザ光源を提供することが可能になる。 In this example, a Bragg grating 9 is formed in the optical waveguide 8. It is preferable to provide a propagation part without a diffraction grating between the incident surface 8 a of the optical waveguide 8 and the Bragg grating 9. Further, it is preferable to provide a non-reflective layer on the incident surface side 8a and the output surface side 4c of the optical waveguide. The Bragg grating and the light source constitute an external resonator and stabilize the wavelength of the oscillating laser beam. This makes it possible to provide a stable laser light source with a changed optical path.
 また、本例では、図1に示すように、実装基板2の側面2b上に光導波路素子10が固定されており、光導波路素子10内にチャンネル型光導波路11が形成されている。そして、光導波路素子10の入射面10aが光路変更素子4の底面と対向しており、光導波路素子10の出射面10bが反対側に設けられている。 In this example, as shown in FIG. 1, the optical waveguide element 10 is fixed on the side surface 2 b of the mounting substrate 2, and the channel type optical waveguide 11 is formed in the optical waveguide element 10. The incident surface 10a of the optical waveguide element 10 faces the bottom surface of the optical path changing element 4, and the output surface 10b of the optical waveguide element 10 is provided on the opposite side.
 図3、図4に示すように、光路変更素子4の出射面4cは、光導波路素子10のチャンネル型光導波路11とバットジョイントされており、両者の間に寸法Gの空隙が設けられている。バットジョイントとは、屈折率分布の異なる光導波路の端面同士を光軸方向に突き合わせて接合するジョイント構造をいう。本例では、出射面4cに開口する光導波路はないが、反射面8bで反射された光はそのままビーム形を保持しつつ薄層を短い距離だけ伝搬して出射するので、光ビームの形は保持されており、このためバットジョイントが成り立つ。 As shown in FIGS. 3 and 4, the exit surface 4 c of the optical path changing element 4 is butt-jointed with the channel type optical waveguide 11 of the optical waveguide element 10, and a gap with a dimension G is provided therebetween. . A butt joint refers to a joint structure in which end faces of optical waveguides having different refractive index distributions are brought into contact with each other in the optical axis direction. In this example, there is no optical waveguide opening on the emission surface 4c, but the light reflected by the reflection surface 8b propagates and emits a thin layer for a short distance while maintaining the beam shape, so the shape of the light beam is For this reason, a butt joint is established.
 本発明では、上述の実施形態のように、支持基板上に設けられた薄層内でリッジ溝によって輪郭づけられたチャンネル型光導波路(リッジ光導波路)内を伝搬してきた光を、薄層端面で反射させ、薄層の底面側から出射させる。このとき、薄層内に形成されたリッジ型のチャンネル型光導波路は、拡散光導波路と異なり、閉じ込めを強くすることができ光導波路表面での散乱がなく、このため光路変更素子の反射面での散乱による結合効率低下を防止できる。更に、光路変更素子の底面から出射させた光を、バットジョイント方式で別体の光導波路素子に結合することができるので、レンズを必要とせず少ない部品点数で、高い結合効率を実現可能である。また薄層を複屈折率材料にすることで光源の偏光を維持することができ、高い偏光クロストークを保持した状態で光導波路素子に結合できる。 In the present invention, as in the above-described embodiment, the light propagating in the channel type optical waveguide (ridge optical waveguide) defined by the ridge groove in the thin layer provided on the support substrate is converted into the thin layer end face. And is emitted from the bottom side of the thin layer. At this time, unlike the diffusion optical waveguide, the ridge-type channel optical waveguide formed in the thin layer can strengthen the confinement and there is no scattering on the surface of the optical waveguide. It is possible to prevent a decrease in the coupling efficiency due to scattering of. Furthermore, since the light emitted from the bottom surface of the optical path changing element can be coupled to a separate optical waveguide element by the butt joint method, high coupling efficiency can be realized with a small number of parts without requiring a lens. . Further, by using a birefringent material for the thin layer, the polarization of the light source can be maintained, and it can be coupled to the optical waveguide element while maintaining high polarization crosstalk.
 図5の例において、ブラッググレーティング9は、薄層6のリッジ溝のある第一の主面6a側に形成してよく、あるいは、平坦な第二の主面6bに形成してもよい。ブラッググレーティングは、平坦な第二の主面側(本例では支持基板5とは反対側)に形成することが好ましい。すなわち、リッジ溝7とブラッググレーティング9とを、薄層の反対側の主面に形成することによって、ブラッググレーティングおよびリッジ溝の形状ばらつきを更に低減できる。 In the example of FIG. 5, the Bragg grating 9 may be formed on the first main surface 6a side where the ridge groove of the thin layer 6 is provided, or may be formed on the flat second main surface 6b. The Bragg grating is preferably formed on the flat second main surface side (in this example, the side opposite to the support substrate 5). That is, by forming the ridge groove 7 and the Bragg grating 9 on the main surface on the opposite side of the thin layer, variation in the shapes of the Bragg grating and the ridge groove can be further reduced.
 また、図6に示す素子4Aにおいても、支持基板5上に薄層6が設けられている。薄層6の第二の主面6b側に例えば一対のリッジ溝7が形成されており、リッジ溝7の間にリッジ型の光導波路8が形成されている。本例では、薄層6の支持基板側の第一の主面6a上に下側バッファ層21が形成されており、かつ支持基板5に対して接着層22を介して接合されている。一方、薄層6のリッジ溝のある第二の主面6bには上側バッファ層20が形成されている。この場合、上側バッファ層は、出射光に対して無反射防止膜としても機能してもよく、あるいは、上側バッファ層の上に無反射防止膜を形成してもよい。 Also in the element 4A shown in FIG. 6, the thin layer 6 is provided on the support substrate 5. For example, a pair of ridge grooves 7 are formed on the second main surface 6 b side of the thin layer 6, and a ridge type optical waveguide 8 is formed between the ridge grooves 7. In this example, the lower buffer layer 21 is formed on the first main surface 6 a of the thin layer 6 on the support substrate side, and is bonded to the support substrate 5 via the adhesive layer 22. On the other hand, an upper buffer layer 20 is formed on the second main surface 6b of the thin layer 6 having the ridge groove. In this case, the upper buffer layer may function as an antireflection film for the emitted light, or an antireflection film may be formed on the upper buffer layer.
 図6の例において、ブラッググレーティング9は、薄層6のリッジ溝のある第二の主面6b側に形成してよく、あるいは、平坦な第一の主面6aに形成してもよい。ブラッググレーティングは、平坦な第一の主面側(本例では支持基板5側)に形成することが好ましい。すなわち、リッジ溝7とブラッググレーティング9とを、薄層の反対側の面に形成することによって、ブラッググレーティングおよびリッジ溝の形状ばらつきを更に低減できる。 In the example of FIG. 6, the Bragg grating 9 may be formed on the second main surface 6b side where the ridge groove of the thin layer 6 is provided, or may be formed on the flat first main surface 6a. The Bragg grating is preferably formed on the flat first main surface side (the support substrate 5 side in this example). That is, by forming the ridge groove 7 and the Bragg grating 9 on the opposite surface of the thin layer, the shape variation of the Bragg grating and the ridge groove can be further reduced.
 また、上側バッファ層20がない場合には、空気層が直接グレーティングに接することができる。これによりグレーティング溝が有る無しで屈折率差を大きくすることができ、短いグレーティング長で反射率を大きくすることができる。この場合、出射光が光路部分のみに無反射膜を形成することが好ましい。 In the absence of the upper buffer layer 20, the air layer can directly contact the grating. As a result, the difference in refractive index can be increased without the presence of a grating groove, and the reflectance can be increased with a short grating length. In this case, it is preferable that the non-reflective film is formed only on the optical path portion of the emitted light.
 また、光路変更素子において、光導波路の入射面8aには無反射膜(ARコート)を形成することが好ましい。また、出射面6b側にも無反射膜(ARコート)が形成されることが好ましい。バッファ層は、実質的に光導波路に対してクラッドとして機能しており、出射光に対しては無反射膜として機能していてもよい。出射光に対する無反射膜については、出射面6b側にバッファ層の上に成膜して形成してもよい。バッファ層は、反射光のスポットサイズが拡がらないという観点で5μm以下が好ましい。この観点で光路にはバッファ層はなくてもよい。 Further, in the optical path changing element, it is preferable to form an antireflection film (AR coating) on the incident surface 8a of the optical waveguide. Further, it is preferable that an antireflective film (AR coating) is also formed on the exit surface 6b side. The buffer layer substantially functions as a clad for the optical waveguide, and may function as a non-reflective film for the emitted light. The non-reflective film for the emitted light may be formed by being formed on the buffer layer on the emission surface 6b side. The buffer layer is preferably 5 μm or less from the viewpoint that the spot size of the reflected light does not expand. From this viewpoint, the optical path may not have a buffer layer.
 図7~図10に示す実装デバイス1Aは、図1~図6のデバイスと類似のものであるが、ただし、光路変更素子のリッジ型光導波路内にブラッググレーティングを形成していないものである。 The mounting device 1A shown in FIGS. 7 to 10 is similar to the device shown in FIGS. 1 to 6, except that no Bragg grating is formed in the ridge type optical waveguide of the optical path changing element.
 図7に示すように、実装基板2は、上面2a、底面2d、および側面2b、2cを有する。実装基板2の上面2aには光源3が固定されている。例えば、図8、図9に示すように、光源3の活性層3aから、矢印Aのように光が出射する。 As shown in FIG. 7, the mounting substrate 2 has an upper surface 2a, a bottom surface 2d, and side surfaces 2b and 2c. A light source 3 is fixed to the upper surface 2 a of the mounting substrate 2. For example, as shown in FIGS. 8 and 9, light is emitted as indicated by an arrow A from the active layer 3 a of the light source 3.
 また、実装基板2の上面2aには、光路変更素子4Bが固定されている。光路変更素子では、図9、図10に示すように、支持基板5と薄層6とが互いに接合、一体化している。薄層に例えば一対のリッジ溝7が形成されており、リッジ溝7の間にリッジ型の光導波路8が形成されている。 Further, the optical path changing element 4B is fixed to the upper surface 2a of the mounting substrate 2. In the optical path changing element, as shown in FIGS. 9 and 10, the support substrate 5 and the thin layer 6 are joined and integrated with each other. For example, a pair of ridge grooves 7 are formed in the thin layer, and a ridge-type optical waveguide 8 is formed between the ridge grooves 7.
 なお、光路変更素子の横断面の構造は、図5に示すものであってよく、図6に示すものであってよい。 In addition, the structure of the cross section of the optical path changing element may be as shown in FIG. 5 or as shown in FIG.
 光路変更素子4Bの入射面4aは平坦であり、また光路変更素子4Bの上面や底面に対して略垂直をなしている。一方、光路変更素子4Bの出射面4bは、底面に対して角度θ傾斜している。光源から発振した光は、チャンネル型光導波路8の入射面8aに入射し、光導波路8内を矢印Bのように伝搬した後、光路変更素子の出射面に面する反射面8bによって反射される。そして、矢印Cのように薄層6内を伝搬し、底面側の出射面4cから矢印Cのように出射する。 The incident surface 4a of the optical path changing element 4B is flat, and is substantially perpendicular to the top and bottom surfaces of the optical path changing element 4B. On the other hand, the exit surface 4b of the optical path changing element 4B is inclined at an angle θ with respect to the bottom surface. The light oscillated from the light source enters the incident surface 8a of the channel-type optical waveguide 8, propagates in the optical waveguide 8 as indicated by arrow B, and is then reflected by the reflecting surface 8b facing the exit surface of the optical path changing element. . Then, the light propagates through the thin layer 6 as indicated by an arrow C, and is emitted as indicated by an arrow C from the emission surface 4c on the bottom side.
 本例においても、前述した理由から、光路の変更された安定なレーザ光源を提供することが可能になる。 Also in this example, for the reasons described above, it is possible to provide a stable laser light source with a changed optical path.
 また、本例では、図7に示すように、実装基板2の側面2b上に光導波路素子10が固定されており、光導波路素子10内にチャンネル型光導波路1が形成されている。そして、光導波路素子10の入射面10aが光路変更素子4Bの底面と対向しており、光導波路素子10の出射面10bが反対側に設けられている。 Further, in this example, as shown in FIG. 7, the optical waveguide device 10 is fixed on the side surface 2 b of the mounting substrate 2, and the channel type optical waveguide 1 is formed in the optical waveguide device 10. The incident surface 10a of the optical waveguide element 10 is opposed to the bottom surface of the optical path changing element 4B, and the output surface 10b of the optical waveguide element 10 is provided on the opposite side.
 図9、図10に示すように、光路変更素子4Bの出射面4cは、光導波路素子10のチャンネル型光導波路11とバットジョイントされており、両者の間に寸法Gの空隙が設けられている。 As shown in FIGS. 9 and 10, the exit surface 4c of the optical path changing element 4B is butt-jointed with the channel-type optical waveguide 11 of the optical waveguide element 10, and a gap with a dimension G is provided therebetween. .
 薄層の厚さは、光導波路素子のチャンネル型光導波路に対する結合効率の観点から、8μm以下が好ましく、5μm以下が更に好ましい。また、光導波路の伝搬損失を低減するという理由から、薄層の厚さは0.5μm以上が好ましい。 The thickness of the thin layer is preferably 8 μm or less, more preferably 5 μm or less, from the viewpoint of the coupling efficiency of the optical waveguide element to the channel type optical waveguide. In addition, the thickness of the thin layer is preferably 0.5 μm or more because it reduces the propagation loss of the optical waveguide.
 薄層を形成する光学結晶は、反射率の裕度の観点からは、屈折率1.9以上のものが好ましく、屈折率1.95以上のものが更に好ましい。 The optical crystal forming the thin layer preferably has a refractive index of 1.9 or more, and more preferably has a refractive index of 1.95 or more, from the viewpoint of tolerance of reflectance.
 薄層を形成する光学結晶の好適例は、ガリウム砒素、ニオブ酸リチウム単結晶、酸化タンタル、酸化亜鉛、酸化アルミナである。また、この光学結晶を複屈折性とすることによって、レーザ光の偏波面を保持できる。
 また、薄層は、接合による貼り合わせによって形成することもできるが、支持基板上にスパッタ、蒸着、CVDによる成膜にて形成することも可能である。
Preferable examples of the optical crystal forming the thin layer are gallium arsenide, lithium niobate single crystal, tantalum oxide, zinc oxide, and alumina oxide. Further, by making the optical crystal birefringent, the polarization plane of the laser light can be maintained.
Further, the thin layer can be formed by bonding by bonding, but can also be formed by sputtering, vapor deposition, or film formation by CVD on a support substrate.
 薄層中には、光導波路の耐光損傷性を更に向上させるために、マグネシウム(Mg)、亜鉛(Zn)、スカンジウム(Sc)及びインジウム(In)からなる群より選ばれる1種以上の金属元素を含有させてもよく、この場合、マグネシウムが特に好ましい。また結晶中には、ドープ成分として、希土類元素を含有させることができる。希土類元素としては、特にNd、Er、Tm、Ho、Dy、Prが好ましい。 In the thin layer, one or more metal elements selected from the group consisting of magnesium (Mg), zinc (Zn), scandium (Sc), and indium (In) are used to further improve the optical damage resistance of the optical waveguide. In this case, magnesium is particularly preferable. The crystal can contain a rare earth element as a doping component. As the rare earth element, Nd, Er, Tm, Ho, Dy, and Pr are particularly preferable.
 光路変更素子の反射面には、反射膜を設ける必要はないが、反射膜を設けても良い。 It is not necessary to provide a reflective film on the reflective surface of the optical path changing element, but a reflective film may be provided.
 こうした反射膜としては、以下を例示できる。すなわち、金、アルミなどの金属膜がよい。またこれらの金属の密着性を上げるためバッファ層として、Ti、Pt、Ni、Crなどの金属膜の多層構造としてもよい。 Examples of such a reflective film include the following. That is, a metal film such as gold or aluminum is preferable. In order to improve the adhesion of these metals, the buffer layer may have a multilayer structure of metal films such as Ti, Pt, Ni, and Cr.
 リッジ型の光導波路は、光学結晶を加工、例えば機械加工やレーザ加工することによって物理的に加工し、成形することによって得られる。 A ridge-type optical waveguide is obtained by physically processing and molding an optical crystal by, for example, machining or laser processing.
 光源としては、高い信頼性を有するGaAs系やInP系材料によるレーザが好適である。本願構造の応用として、例えば、非線形光学素子を利用して第2高調波である緑色レーザを発振させる場合は、波長1064nm付近で発振するGaAs系のレーザを用いることになる。GaAs系やInP系のレーザは信頼性が高いため、一次元状に配列したレーザアレイ等の光源も実現可能である。スーパールミネッセンスダイオードや半導体光アンプ(SOA)であってもよい。また、活性層の材質や波長も適宜選択できる。 As the light source, a laser with a highly reliable GaAs-based or InP-based material is suitable. As an application of the structure of the present application, for example, when a green laser that is the second harmonic is oscillated using a nonlinear optical element, a GaAs laser that oscillates near a wavelength of 1064 nm is used. Since GaAs-based and InP-based lasers have high reliability, a light source such as a one-dimensionally arranged laser array can be realized. It may be a super luminescence diode or a semiconductor optical amplifier (SOA). In addition, the material and wavelength of the active layer can be selected as appropriate.
 ブラッググレーティングは以下のようにして物理的、あるいは化学的なエッチングにより形成することができる。
 具体例として、Ni、Tiなどの金属膜を高屈折率基板に成膜し、フォトリソグラフィーにより周期的に窓を形成しエッチング用マスクを形成する。その後、反応性イオンエッチングなどのドライエッチング装置で周期的なグレーティング溝を形成する。最後に金属マスクを除去することにより形成できる。
The Bragg grating can be formed by physical or chemical etching as follows.
As a specific example, a metal film such as Ni or Ti is formed on a high refractive index substrate, and windows are periodically formed by photolithography to form an etching mask. Thereafter, periodic grating grooves are formed by a dry etching apparatus such as reactive ion etching. Finally, it can be formed by removing the metal mask.
 接着層の材質は、無機接着剤であってよく、有機接着剤であってよく、無機接着剤と有機接着剤との組み合わせであってよい。 The material of the adhesive layer may be an inorganic adhesive, an organic adhesive, or a combination of an inorganic adhesive and an organic adhesive.
 支持基体の具体的材質は特に限定されず,ニオブ酸リチウム、タンタル酸リチウム、石英ガラスなどのガラスや水晶、Siなどを例示することができる。 The specific material of the support substrate is not particularly limited, and examples thereof include glass such as lithium niobate, lithium tantalate, and quartz glass, quartz, and Si.
 無反射層の反射率は、グレーティング反射率以下である必要があり、無反射層に成膜する膜材としては、二酸化珪素、五酸化タンタルなどの酸化物で積層した膜や、金属類も使用可能である。 The reflectance of the non-reflective layer must be less than or equal to the grating reflectivity. As the film material to be formed on the non-reflective layer, a film laminated with an oxide such as silicon dioxide or tantalum pentoxide, or metal is also used. Is possible.
 また、光源、光路変更素子、光導波路素子の各端面は、それぞれ、端面反射を抑制するために斜めカットしていてもよい。また、薄層と支持基板の接合は、上述の例では接着固定だが、直接接合でもよい。 Further, each end face of the light source, the optical path changing element, and the optical waveguide element may be cut obliquely in order to suppress end face reflection. Further, the thin layer and the support substrate are bonded and fixed in the above example, but may be directly bonded.
 光路変更素子中のリッジ型光導波路において、反射面の底面に対する角度θは、通常45°とすることによって、光を直角に曲げる。しかし、これに限定されるものではない。θは、例えば42~48°で選択可能である。 In the ridge-type optical waveguide in the optical path changing element, the angle θ with respect to the bottom surface of the reflecting surface is usually 45 °, so that the light is bent at a right angle. However, it is not limited to this. θ can be selected from 42 to 48 °, for example.
 また、リッジ型光導波路の反射面に角度を付けるための加工法は、研磨でもダイシングやマイクログラインダーによる加工でもよい。 Also, the processing method for providing an angle to the reflection surface of the ridge-type optical waveguide may be polishing or processing by dicing or a micro grinder.
 光導波路素子の構成は、チャンネル型光導波路が形成されている限り、特に限定されない。光導波路素子は例えば一体物の基板であってよいが、好ましくは、支持基板と、この支持基板上に接合された光学結晶からなる薄層を備えており、薄層内にチャンネル型光導波路が形成されている。このチャンネル型光導波路は、リッジ型光導波路が好ましいが、拡散型光導波路でもよい。 The configuration of the optical waveguide element is not particularly limited as long as the channel type optical waveguide is formed. The optical waveguide element may be a monolithic substrate, for example, but preferably includes a support substrate and a thin layer made of an optical crystal bonded on the support substrate, and a channel-type optical waveguide is included in the thin layer. Is formed. The channel type optical waveguide is preferably a ridge type optical waveguide, but may be a diffusion type optical waveguide.
 光路変更素子の出射面と光導波路素子のチャンネル型光導波路の入射面との間の間隙の大きさGは、設計によるが、1μm以上が好ましく、9μm以下が好ましい。 The size G of the gap between the exit surface of the optical path changing element and the entrance surface of the channel type optical waveguide of the optical waveguide element is preferably 1 μm or more, and preferably 9 μm or less, depending on the design.
(実施例A)
 図1~図4、および図5に示すデバイスを作製した。
 具体的には、z板MgOドープのニオブ酸リチウム結晶にy軸伝搬の光導波路を形成するために、エキシマレーザにてグレーティング部に幅Wm3μm、Tr1μmの溝加工し光導波路を形成した。さらにスパッタ装置にてSiO2膜を0.5μm成膜し、支持基板としてブラックLN基板を使用して光導波路形成面を接着した。
(Example A)
The devices shown in FIGS. 1 to 4 and FIG. 5 were produced.
Specifically, in order to form a y-axis propagating optical waveguide in a z-plate MgO-doped lithium niobate crystal, an excimer laser was used to form a groove with a width Wm of 3 μm and a Tr of 1 μm to form an optical waveguide. Further, an SiO2 film was formed to a thickness of 0.5 [mu] m by a sputtering apparatus, and the optical waveguide forming surface was bonded using a black LN substrate as a support substrate.
 次に、ブラックLN基板側を研磨定盤に貼り付け、光導波路を形成したLN基板の裏面を精密研磨して2μmの厚みTsとした。その後、定盤からはずし、研磨した面を全面にARコートを成膜した。 Next, the black LN substrate side was attached to a polishing surface plate, and the back surface of the LN substrate on which the optical waveguide was formed was precisely polished to a thickness Ts of 2 μm. Then, it was removed from the surface plate, and an AR coating was formed on the entire polished surface.
 その後、ダイシング装置にてバー状に切断し、片端面を垂直に光学研磨し、反対端面は45°に光学研磨し、垂直研磨端面に0.1%以下のARコートを形成した。最後にチップ切断して素子サイズは幅1mm、長さ3mmとした。 Then, it was cut into a bar shape with a dicing machine, one end face was optically polished vertically, the opposite end face was optically polished at 45 °, and an AR coating of 0.1% or less was formed on the vertical polished end face. Finally, the chip was cut so that the element size was 1 mm wide and 3 mm long.
 光路反射素子の特性を評価するために、波長800nmの半導体レーザで測定したところp偏光(TM波)、s偏光(TE波)とも100%の反射率を確認した。また、偏光クロストークは20dB以上あり反射による劣化は見られなかった。 In order to evaluate the characteristics of the optical path reflection element, the reflectance was 100% for both p-polarized light (TM wave) and s-polarized light (TE wave) when measured with a semiconductor laser having a wavelength of 800 nm. Moreover, the polarization crosstalk was 20 dB or more, and no deterioration due to reflection was observed.
 なお、図11に、反射面と出射面との角度θと反射率とのシミュレーション結果を示す。 In addition, in FIG. 11, the simulation result of angle (theta) of a reflective surface and an output surface and a reflectance is shown.
 次に、この光導波路反射素子を使用して、波長800nm半導体レーザとスポットサイズ3×2μm光導波路素子を光学調芯して図1~4に示すモジュールを作製した。ミラー直下には、光導波路素子を配置し、反射導波路とのギャップGは3μmであった。実装後に結合効率を測定した結果、80%程度となった。 Next, using this optical waveguide reflecting element, a module shown in FIGS. 1 to 4 was manufactured by optically aligning an 800 nm wavelength semiconductor laser and a spot size 3 × 2 μm optical waveguide element. An optical waveguide element was disposed directly under the mirror, and the gap G with the reflection waveguide was 3 μm. As a result of measuring the coupling efficiency after mounting, it was about 80%.
 前述と同様の光源と光導波路素子とを直接に、光路変換素子を介することなしにバットジョイントした場合には、結合効率は  80  %程度である。従って、本発明により、5%以下の過剰損失で結合できることを確認した。 When a light source and an optical waveguide element similar to those described above are directly butt-joined without going through an optical path conversion element, the coupling efficiency is about 80%. Therefore, it was confirmed that the present invention can be combined with an excess loss of 5% or less.
 上の実施例において、ミラー直下の光導波路とのギャップGを変えて、結合効率を測定した。また、実装後に高温漕の中に入れ、温度を-20℃から70℃まで変化させたときの損失変動を表1に示す。 In the above example, the coupling efficiency was measured by changing the gap G with the optical waveguide directly under the mirror. Table 1 shows the loss fluctuation when the temperature is changed from -20 ° C to 70 ° C after mounting.
Figure JPOXMLDOC01-appb-T000001
 
 
Figure JPOXMLDOC01-appb-T000001
 
 
 表からわかるように、本発明によれば、広いギャップ範囲にわたって、高い結合効率でバットジョイントが可能になった。 As can be seen from the table, according to the present invention, a butt joint can be achieved with high coupling efficiency over a wide gap range.
(実施例B)
 実施例Aにおいて、図6に示すように、薄層のリッジ溝のない平坦な主面6a側を接合面とした。これ以外は実施例Aと同様にして光路変更素子および光実装デバイスを作製し、実施例Aと同様に評価した。この結果を表2に示す。
(Example B)
In Example A, as shown in FIG. 6, the flat main surface 6a side without a thin ridge groove was used as the bonding surface. Other than this, an optical path changing element and an optical mounting device were produced in the same manner as in Example A, and evaluated in the same manner as in Example A. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
 
 
Figure JPOXMLDOC01-appb-T000002
 
 
(比較例)
 実施例Aにおいて、リッジ導波路を形成せず、その変わりに、チタン拡散法によってチャンネル型光導波路を形成した。チャンネル型光導波路側を接合面とした。これ以外は実施例Aと同様にして光路変更素子および光実装デバイスを作製し、実施例Aと同様に評価した。バットジョイントの間隙Gは3μmとした。この結果、結合効率は50%であり、温度変動は1dBであった。拡散導波路は、屈折率差が小さいために光の閉じ込め効果が弱く、スポットサイズを小さくすることが困難であった。
(Comparative example)
In Example A, a ridge waveguide was not formed. Instead, a channel type optical waveguide was formed by a titanium diffusion method. The channel type optical waveguide side was used as the bonding surface. Other than this, an optical path changing element and an optical mounting device were produced in the same manner as in Example A, and evaluated in the same manner as in Example A. The gap G of the butt joint was 3 μm. As a result, the coupling efficiency was 50%, and the temperature fluctuation was 1 dB. Since the diffusion waveguide has a small difference in refractive index, the light confinement effect is weak, and it is difficult to reduce the spot size.

Claims (8)

  1.  光の伝搬方向を変更する光路変更素子であって、
     支持基板、
     光学結晶からなり、前記支持基板上に形成された薄層であって、前記支持基板側の第一の主面と、前記支持基板とは反対側の第二の主面とを有する薄層、および
     前記薄層に形成されている少なくとも一対のリッジ溝によって区画されるリッジ型光導波路であって、前記光の入射面および前記リッジ型光導波路を伝搬してきた光を反射する反射面を有するリッジ型光導波路を備えており、
     前記反射面で反射された前記光を前記薄層を通して前記第二の主面側から出射させることを特徴とする、光路変更素子。
    An optical path changing element that changes the propagation direction of light,
    Support substrate,
    A thin layer made of an optical crystal and formed on the support substrate, the first layer having a first main surface on the support substrate side and a second main surface on the opposite side of the support substrate; And a ridge type optical waveguide defined by at least a pair of ridge grooves formed in the thin layer, wherein the ridge has an incident surface for the light and a reflective surface for reflecting the light propagating through the ridge type optical waveguide. Type optical waveguide,
    The light path changing element, wherein the light reflected by the reflecting surface is emitted from the second main surface side through the thin layer.
  2.  前記光学結晶の屈折率が1.9以上であることを特徴とする、請求項1記載の素子。 The element according to claim 1, wherein the refractive index of the optical crystal is 1.9 or more.
  3.  前記光学結晶が複屈折性であることを特徴とする、請求項1または2記載の素子。 3. The element according to claim 1, wherein the optical crystal is birefringent.
  4.  前記リッジ型光導波路にブラッググレーティングが形成されており、前記ブラッググレーティングと光源とが外部共振器を構成することを特徴とする、請求項1~3のいずれか一つの請求項に記載の素子。 The element according to any one of claims 1 to 3, wherein a Bragg grating is formed in the ridge-type optical waveguide, and the Bragg grating and the light source constitute an external resonator.
  5.  前記リッジ溝が前記薄層の前記第一の主面側に設けられていることを特徴とする、請求項1~4のいずれか一つの請求項に記載の素子。 The element according to any one of claims 1 to 4, wherein the ridge groove is provided on the first main surface side of the thin layer.
  6.  請求項1~5のいずれか一つの請求項に記載の光路変更素子と、チャンネル型光導波路を有する光導波路素子との接続構造であって、
     前記光路変更素子の出射面と前記チャンネル型光導波路とがバットジョイントされていることを特徴とする、接続構造。
    A connection structure between the optical path changing element according to any one of claims 1 to 5 and an optical waveguide element having a channel-type optical waveguide,
    The connection structure according to claim 1, wherein the output surface of the optical path changing element and the channel type optical waveguide are butt-jointed.
  7.  前記光を発振する光源、および請求項1~5のいずれか一つの請求項に記載の光路変更素子を備えていることを特徴とする、光源デバイス。 A light source device comprising: a light source that oscillates the light; and the optical path changing element according to any one of claims 1 to 5.
  8.  上面、底面および上面と底面との間の側面を有する実装基板、
     前記実装基板の前記上面に固定されている、請求項1~5のいずれか一つの請求項に記載の光路変更素子、
     前記実装基板の前記上面に固定されており、前記光を発振する光源、および
     前記実装基板の前記側面に固定されており、チャンネル型光導波路を有する光導波路素子を備えており、
     前記光路変更素子の出射面と前記チャンネル型光導波路とがバットジョイントされていることを特徴とする、光実装デバイス。
    A mounting substrate having a top surface, a bottom surface and a side surface between the top surface and the bottom surface;
    The optical path changing element according to any one of claims 1 to 5, which is fixed to the upper surface of the mounting substrate.
    It is fixed to the upper surface of the mounting substrate, a light source that oscillates the light, and is fixed to the side surface of the mounting substrate, and includes an optical waveguide element having a channel type optical waveguide,
    An optical mounting device, wherein an exit surface of the optical path changing element and the channel type optical waveguide are butt-jointed.
PCT/JP2014/064180 2013-06-11 2014-05-28 Optical path conversion element, connection structure for optical path conversion element, light source device, and optical mounting device WO2014199831A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015522707A JP6379090B2 (en) 2013-06-11 2014-05-28 Optical mounting device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-122904 2013-06-11
JP2013122904 2013-06-11

Publications (1)

Publication Number Publication Date
WO2014199831A1 true WO2014199831A1 (en) 2014-12-18

Family

ID=52022130

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/064180 WO2014199831A1 (en) 2013-06-11 2014-05-28 Optical path conversion element, connection structure for optical path conversion element, light source device, and optical mounting device

Country Status (2)

Country Link
JP (1) JP6379090B2 (en)
WO (1) WO2014199831A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016152771A1 (en) * 2015-03-20 2016-09-29 日本碍子株式会社 Grating element
CN111458794A (en) * 2020-04-28 2020-07-28 吉林大学 Vertical coupling optical waveguide device and preparation method thereof
WO2023119475A1 (en) * 2021-12-22 2023-06-29 日本電信電話株式会社 Optical device
JP7443017B2 (en) 2019-10-17 2024-03-05 株式会社日本マイクロニクス Inspection probe, inspection probe manufacturing method, and inspection device

Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0272679A (en) * 1988-09-07 1990-03-12 Fujitsu Ltd Semiconductor photodetector having optical waveguide
JPH02248096A (en) * 1989-03-22 1990-10-03 Canon Inc Vertical input-output type optical node
JPH10506724A (en) * 1994-10-03 1998-06-30 エスディーエル インク. Tunable blue laser diode
JPH11326966A (en) * 1998-05-12 1999-11-26 Ngk Insulators Ltd Second harmonic generator
JP2000114581A (en) * 1998-10-09 2000-04-21 Fujitsu Ltd Multilayered photoelectron substrate with electrical intercoupling and optical intercoupling, and manufacture thereof
JP2001183540A (en) * 1999-10-15 2001-07-06 Matsushita Electric Ind Co Ltd Optical waveguide device, coherent light source, integrated unit, and optical pickup device
JP2001183713A (en) * 1999-12-22 2001-07-06 Ngk Insulators Ltd Second higher harmonic generator
JP2002043611A (en) * 2000-07-28 2002-02-08 Fuji Xerox Co Ltd Optical transmitting/receiving system
US20030091291A1 (en) * 2001-11-15 2003-05-15 Sam Keo Smoothing facets on an optical component
JP2003262896A (en) * 2002-03-08 2003-09-19 Matsushita Electric Ind Co Ltd Optical waveguide type wavelength transformation device module
JP2003302544A (en) * 2002-04-10 2003-10-24 Mitsui Chemicals Inc Polymer optical waveguide element with function of converting optical path and method for manufacturing the same
JP2003315578A (en) * 2002-04-23 2003-11-06 Mitsubishi Electric Corp Optical path converting device and manufacturing method thereof
JP2004219845A (en) * 2003-01-16 2004-08-05 Matsushita Electric Ind Co Ltd Optical waveguide device, coherent light source using the same, and optical apparatus provided with the same
JP2005195651A (en) * 2003-12-26 2005-07-21 Internatl Business Mach Corp <Ibm> Optical connection substrate, optical transmission system, and manufacturing method
JP2006065046A (en) * 2004-08-27 2006-03-09 Shimadzu Corp Manufacturing method for optical waveguide device and optical waveguide device
JP2007241078A (en) * 2006-03-10 2007-09-20 Ngk Insulators Ltd Wavelength converting element
JP2007248544A (en) * 2006-03-14 2007-09-27 Japan Aviation Electronics Industry Ltd Substrate-end optical connector and intermediate optical connector
JP2009222872A (en) * 2008-03-14 2009-10-01 Ngk Insulators Ltd Method of manufacturing harmonics generating device
JP2010517066A (en) * 2007-01-18 2010-05-20 エピクリスタルズ オイ Pulsed laser light source based on frequency conversion
JP2012141338A (en) * 2010-12-28 2012-07-26 Panasonic Corp Optical waveguide element

Patent Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0272679A (en) * 1988-09-07 1990-03-12 Fujitsu Ltd Semiconductor photodetector having optical waveguide
JPH02248096A (en) * 1989-03-22 1990-10-03 Canon Inc Vertical input-output type optical node
JPH10506724A (en) * 1994-10-03 1998-06-30 エスディーエル インク. Tunable blue laser diode
JPH11326966A (en) * 1998-05-12 1999-11-26 Ngk Insulators Ltd Second harmonic generator
JP2000114581A (en) * 1998-10-09 2000-04-21 Fujitsu Ltd Multilayered photoelectron substrate with electrical intercoupling and optical intercoupling, and manufacture thereof
JP2001183540A (en) * 1999-10-15 2001-07-06 Matsushita Electric Ind Co Ltd Optical waveguide device, coherent light source, integrated unit, and optical pickup device
JP2001183713A (en) * 1999-12-22 2001-07-06 Ngk Insulators Ltd Second higher harmonic generator
JP2002043611A (en) * 2000-07-28 2002-02-08 Fuji Xerox Co Ltd Optical transmitting/receiving system
US20030091291A1 (en) * 2001-11-15 2003-05-15 Sam Keo Smoothing facets on an optical component
JP2003262896A (en) * 2002-03-08 2003-09-19 Matsushita Electric Ind Co Ltd Optical waveguide type wavelength transformation device module
JP2003302544A (en) * 2002-04-10 2003-10-24 Mitsui Chemicals Inc Polymer optical waveguide element with function of converting optical path and method for manufacturing the same
JP2003315578A (en) * 2002-04-23 2003-11-06 Mitsubishi Electric Corp Optical path converting device and manufacturing method thereof
JP2004219845A (en) * 2003-01-16 2004-08-05 Matsushita Electric Ind Co Ltd Optical waveguide device, coherent light source using the same, and optical apparatus provided with the same
JP2005195651A (en) * 2003-12-26 2005-07-21 Internatl Business Mach Corp <Ibm> Optical connection substrate, optical transmission system, and manufacturing method
JP2006065046A (en) * 2004-08-27 2006-03-09 Shimadzu Corp Manufacturing method for optical waveguide device and optical waveguide device
JP2007241078A (en) * 2006-03-10 2007-09-20 Ngk Insulators Ltd Wavelength converting element
JP2007248544A (en) * 2006-03-14 2007-09-27 Japan Aviation Electronics Industry Ltd Substrate-end optical connector and intermediate optical connector
JP2010517066A (en) * 2007-01-18 2010-05-20 エピクリスタルズ オイ Pulsed laser light source based on frequency conversion
JP2009222872A (en) * 2008-03-14 2009-10-01 Ngk Insulators Ltd Method of manufacturing harmonics generating device
JP2012141338A (en) * 2010-12-28 2012-07-26 Panasonic Corp Optical waveguide element

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016152771A1 (en) * 2015-03-20 2016-09-29 日本碍子株式会社 Grating element
JP7443017B2 (en) 2019-10-17 2024-03-05 株式会社日本マイクロニクス Inspection probe, inspection probe manufacturing method, and inspection device
CN111458794A (en) * 2020-04-28 2020-07-28 吉林大学 Vertical coupling optical waveguide device and preparation method thereof
CN111458794B (en) * 2020-04-28 2021-08-20 吉林大学 Vertical coupling optical waveguide device and preparation method thereof
WO2023119475A1 (en) * 2021-12-22 2023-06-29 日本電信電話株式会社 Optical device

Also Published As

Publication number Publication date
JP6379090B2 (en) 2018-08-22
JPWO2014199831A1 (en) 2017-02-23

Similar Documents

Publication Publication Date Title
US20210351562A1 (en) Optical device having a substrate and a laser unit that emits light into the substrate
US7162124B1 (en) Fiber to chip coupler
US5995692A (en) Light emitting device module
JP2005085942A (en) Optical module and optical transmitter
US8837869B2 (en) SOA-PLC hybrid integrated polarization diversity circuit and method for manufacturing the same
WO2018040555A1 (en) Narrow linewidth semiconductor laser based on single-wavelength narrowband optical filtering assembly frequency selection
JP6379090B2 (en) Optical mounting device
CA3023857C (en) Optical module
US20220214509A1 (en) Beam Steering Structure with Integrated Polarization Splitter
US20120114293A1 (en) Optical waveguide structure having angled mirror and lens
JPH02195309A (en) Optical coupling element
US9964702B1 (en) Surface-normal optical coupling interface with thermal-optic coefficient compensation
JP2002277657A (en) Integrated optical module
JP3223930B2 (en) Optical device
WO2019244554A1 (en) Planar lightwave circuit and optical device
JP3613200B2 (en) Optical module
Romero-García et al. Misalignment tolerant couplers for hybrid integration of semiconductor lasers with silicon photonics parallel transmitters
JP2856525B2 (en) Optical waveguide polarizer
JP6842377B2 (en) Planar optical circuit laminated device
JP2009037054A (en) Optical module and its manufacturing method
JP2000081546A (en) Optical module
JP2665024B2 (en) Semiconductor laser
JP2002162658A (en) Optical waveguide element and optical wavelength converter
JP2004286779A (en) Optical amplifier
WO2016125746A1 (en) Optical waveguide element and optical device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14811529

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015522707

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14811529

Country of ref document: EP

Kind code of ref document: A1