WO2014199600A1 - Wireless receiving device and wireless receiving method - Google Patents
Wireless receiving device and wireless receiving method Download PDFInfo
- Publication number
- WO2014199600A1 WO2014199600A1 PCT/JP2014/002990 JP2014002990W WO2014199600A1 WO 2014199600 A1 WO2014199600 A1 WO 2014199600A1 JP 2014002990 W JP2014002990 W JP 2014002990W WO 2014199600 A1 WO2014199600 A1 WO 2014199600A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- signal
- unit
- reception
- frequency
- signal quality
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/02—Power saving arrangements
- H04W52/0209—Power saving arrangements in terminal devices
- H04W52/0225—Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02D—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
- Y02D30/00—Reducing energy consumption in communication networks
- Y02D30/70—Reducing energy consumption in communication networks in wireless communication networks
Definitions
- the present invention relates to a wireless reception apparatus and a wireless reception method capable of switching reception methods according to received signal quality.
- the superheterodyne method is widely used as a wireless reception method.
- a received radio frequency signal hereinafter referred to as an RF signal
- RF Radio Frequency
- IF signal intermediate frequency signal
- IF Intermediate Frequency
- BB Baseband
- the zero IF method is also called a zero IF method because an IF signal is unnecessary.
- the zero IF method eliminates the need for image suppression because there is no IF signal, and an external filter can be deleted. Therefore, the zero IF method has an advantage that the receiver device configuration is simpler than the superheterodyne method.
- the zero-IF method is highly versatile, can be applied to any wireless method, and is suitable for a multimode wireless device.
- the low IF method is a method in which an RF signal is converted into an IF signal having a frequency slightly higher than that of the BB signal, and the frequency is converted again into baseband by digital processing.
- the low IF method requires image suppression processing unlike the zero IF method.
- image suppression processing is performed in a digital stage, an external filter can be deleted.
- the low-IF scheme simplifies the apparatus configuration of the receiver, similarly to the zero-IF scheme.
- the low IF method is highly versatile like the zero IF method, and can be applied to any wireless method.
- Patent Document 1 proposes a receiver configuration that can switch a reception method to both a zero IF method and a low IF method, and a method of using the receiver.
- Patent Document 1 is characterized in that it is configured to be switched to one of two systems, a zero IF system and a low IF system, in accordance with a wireless standard to be received.
- Patent Document 2 proposes a technique for reducing the power consumption of the receiver.
- the receiver of Patent Document 2 is not configured to switch between the zero IF method and the low IF method, it detects the received signal power and the contents (packets) of the received signal and controls the circuit operation. This is characterized by low power consumption.
- Patent Document 3 discloses a wireless receiver that can be operated in a zero IF mode and a low IF mode. According to the wireless receiver disclosed in Patent Document 3, it is possible to select an appropriate reception method according to the wireless standard.
- Patent Document 4 discloses a receiving apparatus that can realize good reception characteristics and power saving in a plurality of modulation schemes. According to the receiving device of Patent Document 4, it is possible to change the gain of the amplifier when the modulation method is switched.
- JP 2006-121160 A Japanese Patent No. 4506343 Special table 2004-515104 gazette JP 2003-204364 A
- the receiver of Patent Document 1 is configured to switch to either the zero IF method or the low IF method according to the wireless standard.
- the receiver of Patent Document 1 does not recognize the reception environment (received signal quality), there is a problem that power consumption cannot be automatically suppressed.
- the receiver of Patent Document 2 has a zero IF system configuration, so that power consumption can be reduced, but there is a problem that reception performance may not be secured when reception power is weak.
- the wireless receiver of Patent Document 3 has a problem that it can not switch the reception method according to the change of the reception environment, while it can switch the reception method when switching the wireless standard to be received. there were.
- the receiving device of Patent Document 4 has a problem that it can change the gain of the amplifier when the modulation method is switched, but cannot change the receiving method according to the change in the reception environment.
- An object of the present invention is applicable to a plurality of radio systems, and switches between reception systems according to the reception environment, and a radio reception apparatus and radio reception method capable of operating with low power consumption while ensuring reception performance Is to provide.
- the wireless receiver of the present invention includes a receiving means for generating a digital signal based on a received signal, a signal quality of the digital signal generated based on the received signal to generate a measurement signal quality, and a generated measurement signal Based on the comparison result between the quality and the preset reference signal quality, a reception signal reception method is selected to generate a method selection signal, and when the signal quality changes, a control signal is generated according to the method selection signal.
- a digital signal is generated based on the received signal, a signal quality of the digital signal generated based on the received signal is measured to generate a measurement signal quality, and the generated measurement signal quality and Based on the comparison result with the preset reference signal quality, the reception signal reception method is selected to generate a method selection signal, and when the signal quality changes, a control signal is generated according to the method selection signal, and control is performed.
- the reception method is switched to a method with different power consumption according to the signal.
- a radio receiving apparatus and a radio receiving method that can be applied to a plurality of radio systems, and that can switch the reception system according to the reception environment and operate with low power consumption while ensuring reception performance. Can be provided.
- FIG. 7 is a flowchart illustrating an operation of a wireless reception device according to a third embodiment of the present invention. It is a figure which shows the structure of the radio
- the wireless reception device 1 includes a reception method setting unit 2 and a reception unit 3.
- the receiving means 3 receives an RF signal (received signal) and converts the received signal into a digital signal (RF: Radio Frequency).
- the reception method setting means 2 measures the signal quality of the digital signal converted by the reception means 3 to generate a measurement signal quality, and receives the received signal based on a comparison result between the generated measurement signal and a preset reference signal quality.
- a reception method is selected to generate a method selection signal.
- the reception method setting unit 2 generates a control signal according to the method selection signal when the signal quality changes, and outputs the generated control signal to the reception unit 3.
- the reception unit 3 switches the reception method to a method with different power consumption according to the input control signal.
- the radio reception apparatus 1 is characterized in that, when the signal reception environment (signal quality) changes, the radio reception apparatus 1 switches to a reception method with different power consumption. Therefore, it is possible to secure reception characteristics and reduce power consumption.
- switching between the zero IF method and the low IF method will be described.
- the scope of the present invention is not limited to switching between the zero-IF method and the low-IF method, but wireless that can switch to a receiving method with different power consumption when the signal reception environment (signal quality) changes. Includes communication methods.
- a signal-to-noise power ratio can be used as an index (SNR: Signal to Noise Ratio).
- SNR Signal to Noise Ratio
- the signal quality of a signal may be used as an index. Therefore, an index that is not a signal-to-noise power ratio may be used as the signal quality.
- the reception means 3 includes a high-frequency unit 11, an orthogonal demodulation unit 12, a low-pass filter unit 13, an AD conversion unit 14, a frequency conversion unit 15, a reception system switching unit 16, a rate conversion unit 17, a demodulation / decoding unit And a processing unit 18.
- the high frequency unit 11 which is a high frequency means receives an RF signal, attenuates a signal other than the reception frequency band, amplifies the desired band signal, and outputs a desired RF signal.
- the desired band signal is an RF signal to be received in the reception frequency band.
- the quadrature demodulating unit 12 serving as a quadrature demodulating unit receives the output of the high frequency unit 11 and mixes the output of the high frequency unit 11 and a pair of orthogonal local oscillation signals based on the frequency / gain setting of the local oscillator.
- the quadrature demodulator 12 then outputs IF and baseband I and Q signals (first analog baseband signals).
- the low-pass filter unit 13 which is a low-pass filter means band-limits the I and Q signals output from the quadrature demodulator 12 based on the pass band setting, and the intermediate frequency (IF) or baseband I and Q signals (second Analog baseband signal).
- the AD conversion unit 14 serving as an analog-digital conversion unit converts the I and Q signals output from the low-pass filter unit 13 from analog signals to digital signals, and outputs IF frequency or baseband I and Q signals (first digital base). Band signal).
- the frequency conversion unit 15 which is a frequency conversion means, receives the I and Q signals output from the AD conversion unit 14 and inputs the I and Q signals output from the AD conversion unit 14, the numerical control oscillator, and the shift based on the numerical control oscillator setting. Frequency conversion is performed by complex multiplication of the complex signal output from the phase shifter.
- the numerically controlled oscillator is abbreviated as NCO (NCO: Numerically Controlled Oscillator).
- NCO Numerically Controlled Oscillator
- the reception method switching unit 16 serving as a reception method switching unit switches whether to output the second digital baseband signal output from the frequency conversion unit 15 to the rate conversion unit 17. That is, the reception method switching unit 16 switches the reception method to either the zero IF method or the low IF method.
- the low IF method is selected.
- the zero IF method is selected.
- the case where the second digital baseband signal is not output to the rate conversion unit 17 means that the first digital baseband signal output from the AD conversion unit 14 is converted into the second digital baseband signal by the frequency conversion unit 15. It means outputting to the rate conversion unit 17 without conversion.
- the reception method switching unit 16 is inserted either between the frequency conversion unit 15 and the rate conversion unit 17 or between the AD conversion unit 14 and the frequency conversion unit 15.
- the reception method switching unit 16 When the reception method switching unit 16 is inserted between the frequency conversion unit 15 and the rate conversion unit 17, the first digital baseband signal is output to both the frequency conversion unit 15 and the reception method switching unit 16. .
- a signal propagates through two routes, a sequential route (solid line and one-dot chain line).
- the reception method switching unit 16 outputs either the first digital baseband signal or the second digital baseband signal to the rate conversion unit 17 based on the input selection setting (setting I: one-dot chain line) of the functional block setting unit 21.
- a signal switching unit including a multiplexer or the like can be used as the reception method switching unit 16.
- the reception method switching unit 16 When the reception method switching unit 16 is inserted between the AD conversion unit 14 and the frequency conversion unit 15, the first digital baseband signal is output to the reception method switching unit 16.
- the signal propagates through an order route (solid line and two-dot chain line) of the AD conversion unit 14, the reception method switching unit 16, the frequency conversion unit 15, and the rate conversion unit 17.
- the reception method switching unit 16 converts the first digital baseband signal and outputs it to the frequency conversion unit 15.
- the reception method switching unit 16 also includes outputting the first digital baseband signal without change in the above-described conversion.
- a signal correction unit such as a signal correction unit can be used as the reception method switching unit 16.
- the rate conversion unit 17 serving as a rate conversion unit, via the reception method switching unit 16, outputs the AD conversion unit 14 (first digital baseband signal) or the output of the frequency conversion unit 15 (second digital baseband signal). ) As an input, and based on the rate conversion rate setting, the sampling rate of the input signal is reduced and output as a third digital baseband signal. Note that a method for selecting an input signal to the rate conversion unit 17 will be specifically described in the description of the multiplexer unit and the signal correction unit described in the first to fourth embodiments.
- the demodulation / decoding processing unit 18 which is a demodulation / decoding processing means receives the output of the rate conversion unit 17 and performs demodulation / decoding processing corresponding to the wireless standard.
- the demodulation / decoding processing unit 18 outputs the bit error rate (BER) measured from the processing result to the reception method selection unit 20 as the measurement BER. (BER: Bit Error Rate).
- the reception method setting means 2 includes a signal quality measurement unit 19, a reception method selection unit 20, and a functional block setting unit 21.
- the signal quality measuring unit 19 serving as a signal quality measuring unit receives the I and Q signals output from the AD converting unit 14 as input, measures the signal quality from the input signal, and outputs the measured signal quality.
- the reception method selection unit 20 serving as a reception method selection unit receives the measurement signal quality output from the signal quality measurement unit 19 and compares the measurement signal quality with a preset reference signal quality to select a reception method. And output as a method selection signal. That is, the reception method selection unit 20 selects either the zero IF method or the low IF method as the reception method. For example, when the measurement signal quality is higher than the reference signal quality, the zero IF method is selected, and when the measurement signal quality is lower than the reference signal quality, the low IF method is selected. However, when the measurement signal quality is the same quality as the reference signal quality, any method may be selected, but it is preferable to select the zero IF method that achieves low power consumption.
- a functional block setting unit 21 serving as a functional block setting unit receives a method selection signal output from the reception method selection unit 20 as an input, and receives an orthogonal demodulation unit 12, a low-pass filter unit 13, an AD conversion unit 14, a frequency conversion unit 15, and a reception method switching. Control signals for controlling the operation states of the unit 16 and the rate conversion unit 17 are output.
- the functional block setting unit 21 sets the local oscillator frequency / gain setting (setting LG) in the quadrature demodulation unit 12, sets the passband (setting B) in the low-pass filter unit 13, and sets the sampling frequency (settings) in the AD conversion unit 14.
- the control signal regarding S) is output.
- the function block setting unit 21 sets the NCO frequency setting (setting N) in the frequency conversion unit 15, the input selection setting (setting I) in the reception method switching unit 16, and the rate conversion rate setting (setting in the rate conversion unit 17).
- a control signal for R) is output.
- the functional block setting unit 21 controls the frequency conversion unit 15 to control signals related to clock gating control setting (setting C). May be output.
- the reception method switching unit 16 calculates the correction parameter and corrects the signal
- the functional block setting unit 21 does not need to output a control signal to the reception method switching unit 16.
- each functional block refers to each of the quadrature demodulation unit 12, the low-pass filter unit 13, the AD conversion unit 14, the frequency conversion unit 15, the reception method switching unit 16, and the rate conversion unit 17.
- a group of functional blocks including the orthogonal demodulation unit 12, the low-pass filter unit 13, the AD conversion unit 14, the frequency conversion unit 15, the reception method switching unit 16, and the rate conversion unit 17 is referred to as a functional block group.
- the wireless reception device 1 switches the reception method to either the zero IF method or the low IF method.
- FIG. 3 is a diagram showing a configuration of the zero IF receiver 5 according to the embodiment of the present invention.
- the zero IF receiver 5 corresponds to the case where the frequency conversion unit 15 is not used in the wireless reception device 1.
- the zero IF receiver 5 includes a high-frequency unit 11, an orthogonal demodulation unit 12, a low-pass filter unit 13, an AD conversion unit 14, a rate conversion unit 17, and a demodulation / decoding processing unit 18.
- the internal configuration of each component will be described in detail in the first to fourth embodiments.
- the high frequency unit 11 includes a band pass filter 111, a low noise amplifier 112, and a low pass filter 113.
- the quadrature demodulator 12 includes a local oscillator 121, a phase shifter 122, a pair of mixers 123 and 124, and a pair of amplifiers 125 and 126.
- the low pass filter unit 13 includes a pair of low pass filters 131 and 132.
- the AD converter 14 includes a pair of ADCs (Analog / Digital Converters) 141 and 142 (Analog to Digital Converter).
- the rate conversion unit 17 includes a pair of rate converters 171 and 172.
- the high frequency unit 11 When an RF signal is input to the zero IF receiver 5, the high frequency unit 11 attenuates a signal outside the reception frequency band and amplifies the signal.
- the quadrature demodulator 12 mixes the output signal of the local oscillator that outputs a local oscillation signal having a frequency substantially the same as the reception frequency, the signal obtained by shifting the local oscillation signal by 90 degrees, and the amplified signal. .
- baseband I signals (in-phase components) and Q signals (quadrature components) that are in a quadrature relationship are generated.
- the analog signal is converted into a digital signal in the AD conversion unit 14.
- the demodulation / decoding processing unit 18 down-samples the I and Q signals converted into digital signals by the rate conversion unit 17 to a desired sampling rate, and performs carrier demodulation and error correction processing.
- the low-IF receiver 100 shown in FIG. 3 is an example of a low-IF receiver, and is not necessarily the same as the configuration shown in FIG. 3 as long as it can receive an RF signal using the low-IF method. It does not have to be.
- FIG. 4 is a configuration diagram showing an example of the low IF method.
- the low IF receiver 6 will be described with reference to FIG.
- the low IF receiver 6 corresponds to the case where the frequency conversion unit 15 is used in the wireless reception device 1.
- the low IF receiver 6 includes a frequency converter 15 between the AD converter 14 and the rate converter 17 in addition to the configuration of the zero IF receiver 5 shown in FIG.
- the frequency converter 15 includes an NCO 151, a phase shifter 152, four multipliers 153 to 156, and a pair of adders 157 and 158.
- the high frequency unit 11 When an RF signal is input to the low IF receiver 6, the high frequency unit 11 attenuates a signal other than the reception frequency band and amplifies the signal in the reception frequency band.
- the quadrature demodulator 12 mixes an output signal of a local oscillator that outputs a local oscillation signal having a frequency slightly lower than the reception frequency, a signal obtained by shifting the local oscillation signal by 90 degrees, and an amplified signal. .
- an I signal (in-phase component) and a Q signal (quadrature component) of an intermediate frequency (IF) having a quadrature relationship are generated.
- the analog signal is converted into a digital signal with the AD conversion unit 14.
- the frequency conversion unit 15 performs frequency conversion again, and converts the signals into baseband I and Q signals that are orthogonal to each other.
- the rate conversion unit 17 downconverts the I and Q signals to a desired sampling rate, and the demodulation / decoding processing unit 18 performs carrier demodulation and error correction processing.
- the above is the description of the operation of the low IF receiver 6.
- the low IF receiver 6 shown in FIG. 4 is an example of a low IF receiver, and is not necessarily the same as the configuration shown in FIG. 4 as long as it can receive an RF signal by the low IF method. It does not have to be.
- the wireless reception device 1 when the signal reception environment (signal quality) is changed, the zero IF method and the low IF method are switched, so that reception characteristics are ensured. In addition, power consumption can be reduced. Further, the radio reception method according to the outline of the embodiment of the present invention can be applied not only to switching between the zero IF method and the low IF method, but also to a radio reception method capable of switching to a reception method with different power consumption. .
- FIG. 5 shows an example of a block configuration diagram of the wireless reception device 10 according to the first embodiment of the present invention.
- the radio receiving apparatus 10 includes a high frequency unit 11, an orthogonal demodulation unit 12, a low pass filter unit 13, an AD conversion unit 14, a frequency conversion unit 15, a multiplexer unit 160, a rate A conversion unit 17 and a demodulation / decoding processing unit 18 are provided.
- the wireless reception device 10 includes a signal quality measurement unit 19, a reception method selection unit 20, and a functional block setting unit 21.
- the multiplexer unit 160 has a function of switching between the zero IF method and the low IF method.
- the multiplexer unit 160 includes a pair of multiplexers 161 and 162.
- the multiplexer unit 160 receives the output of the AD conversion unit 14 and the output signal of the frequency conversion unit 15 as inputs, and selects and outputs one of the input signals based on the input selection setting from the functional block setting unit 21.
- the functional block setting unit 21 receives a method selection signal output from the reception method selection unit 20 as an input. Based on the input method selection signal, the functional block setting unit 21 determines the operation states of the orthogonal demodulation unit 12, the low-pass filter unit 13, the AD conversion unit 14, the frequency conversion unit 15, the multiplexer unit 160, and the rate conversion unit 17, respectively. A control signal to be controlled is output.
- the functional block setting unit 21 sets the local oscillator frequency / gain setting (setting LG) in the quadrature demodulation unit 12, sets the passband (setting B) in the low-pass filter unit 13, and sets the sampling frequency (settings) in the AD conversion unit 14.
- the control signal regarding S) is output.
- the function block setting unit 21 has an NCO frequency setting (setting N) in the frequency converting unit 15, an input selection setting (setting I) in the multiplexer 160, and a rate conversion rate setting (setting R) in the rate converting unit 17.
- the control signal for is output.
- the wireless reception device 10 selects one of the reception methods of the zero IF method and the low IF method according to the received signal quality, and each function of the wireless reception device 10 Change the reception method by changing the block setting.
- each functional block refers to the quadrature demodulation unit 12, the low-pass filter unit 13, the AD conversion unit 14, the frequency conversion unit 15, the multiplexer unit 160, and the rate conversion unit 17.
- the output of the quadrature demodulator 12 is set by setting the frequency of the local oscillator 121 to substantially the same frequency as the frequency of the input RF signal.
- the I and Q signals are baseband signals.
- the frequency conversion is not performed by the frequency conversion unit 15. Further, the multiplexer unit 160 selects the input on the output side of the AD conversion unit 14.
- the frequency of the local oscillator 121 is set to a frequency slightly lower than the frequency of the input RF signal, so that the orthogonal demodulation unit 12
- the output I and Q signals are low IF signals.
- the frequency conversion unit 15 performs frequency conversion to convert it into a baseband signal. Further, the multiplexer unit 160 selects the input on the output side of the frequency conversion unit 15.
- an appropriate pass band is set for each reception method.
- the AD conversion unit 14 sets a lower sampling rate suitable for the baseband signal.
- the AD conversion unit 14 sets a higher sampling rate suitable for the low IF signal.
- the level of the sampling rate means a relative level when comparing the sampling rates suitable for the zero IF method and the low IF method.
- the rate conversion unit 17 when the zero IF method is selected, the conversion rate is set small, and when the low IF method is selected, the conversion rate is set large. Note that setting the conversion rate to a small value means that the rate is not reduced so much. Setting a large conversion rate means that the rate is greatly reduced. However, the rate decrease / decrease is determined relatively between the respective methods when the reception method is switched between the zero IF method and the low IF method.
- FIG. 6 is a flowchart showing an example of processing of the wireless reception device 10 according to the first embodiment of the present invention.
- the operation of the wireless reception device 10 according to the present embodiment will be described with reference to FIG.
- the operation of each functional block is omitted.
- the wireless receiver 10 is initially set by a host controller or the like (step S1). Here, it is assumed that reception is started by the zero IF method in order to reduce power consumption.
- the radio frequency unit 11, the quadrature demodulation unit 12, the low-pass filter unit 13, the AD conversion unit 14, and the rate conversion unit 17 correspond to radio standards received and are suitable for operating in the zero IF system. Settings are made.
- the multiplexer unit 160 the output of the AD conversion unit 14 is selected.
- the high frequency unit 11 attenuates the signal outside the reception frequency band set in step S1 and amplifies the signal with respect to the input RF signal, and outputs a desired RF signal.
- the local oscillator 121 outputs a local oscillation signal having the frequency set in step S1.
- the mixers 123 and 124 mix the output of the local oscillator 121, the phase-shifted local oscillation signal shifted by 90 degrees by the phase shifter 122, and the input desired RF signal, and a pair of baseband I and Q signals. Is output. Also, the amplifiers 125 and 126 amplify the pair of baseband I and Q signals and output them as the first analog baseband signals to the outside.
- the pair of low-pass filters 131 and 132 allows the input first analog baseband signal to pass through the passband set in step S ⁇ b> 1, and the second analog baseband. Output to the outside as a signal.
- the pair of AD converters 141 and 142 digitally convert the input second analog baseband signal at the sampling rate set in step S1.
- the AD converter 14 then outputs the digitally converted signal to the outside as a first digital baseband signal.
- the pair of multiplexers 161 and 162 selects the input (first digital baseband signal) on the AD conversion unit 14 side set in step S1, and outputs the selected signal to the outside. .
- the pair of rate converters 171 and 172 convert the rate of the first digital baseband signal input at the rate conversion rate set in step S1, and convert the converted signal to the first 3 as a digital baseband signal.
- the demodulation / decoding processing unit 18 performs demodulation processing and decoding processing corresponding to the wireless standard on the input third digital baseband signal.
- the signal quality measurement unit 19 measures a signal-to-noise power ratio (SNR: Signal to Noise Ratio) as the signal quality of the received signal from the first digital baseband signal output from the AD conversion unit 14. Then, the signal quality measuring unit 19 outputs the measured signal-to-noise power ratio as measured signal quality (measured SNR value) (step S2).
- SNR Signal to Noise Ratio
- the reception method selection unit 20 compares the measurement signal quality (measurement SNR value) output from the signal quality measurement unit 19 with the reference signal quality (reference SNR value) set in step S1 (step S3).
- the reception method selection unit 20 outputs a method selection signal for selecting the low IF method (step S4).
- the functional block setting unit 21 When a method selection signal for selecting the low IF method output from the reception method selection unit 20 is input, the functional block setting unit 21 is currently in the zero IF method, and therefore sets the low IF method for each functional block. It is decided to perform (step S5).
- the current loop is terminated without changing the method.
- step S6 a setting signal for setting each functional block to the low IF method is generated, and the setting signal is output to each functional block.
- the wireless reception device 10 starts the operation in the low IF method and ends the current loop.
- step S3 the case where the measurement signal quality is higher than the reference signal quality (No in step S3) will be described.
- it continues to receive an RF signal input from the outside and performs wireless reception processing. As described above, reception is performed at this stage using the low IF method.
- the local oscillator 121 outputs a local oscillation signal having the frequency set in step S6.
- the mixers 123 and 124 mix the output of the local oscillator 121, the phase-shifted local oscillation signal phase-shifted 90 degrees by the phase shifter 122, and the input desired RF signal, and a pair of intermediate frequency (IF) I's. , Q signal is output.
- the amplifiers 125 and 126 amplify the above-described pair of intermediate frequency (IF) I and Q signals and output the amplified signals to the outside as a first analog baseband signal.
- a signal obtained by amplifying the I and Q signals is also an intermediate frequency (IF) signal, but is referred to as a baseband signal in order to have the same name as the above signal.
- the pair of low-pass filters 131 and 132 pass the pass band set in step S 6 with respect to the input first analog baseband signal, and externally pass as the second analog baseband signal. Output to.
- the pair of AD converters 141 and 142 performs analog / digital conversion on the input second analog baseband signal at the sampling rate set in step S ⁇ b> 6, and performs the first digital conversion. Output to the outside as a baseband signal.
- the NCO 151 outputs a numerically controlled oscillation signal having the frequency set in step S6.
- Multipliers 153 and 156 multiply the output of NCO 151 and the first digital baseband signal.
- Multipliers 154 and 155 multiply the NCO 151 output by the phase shift numerically controlled oscillation signal whose phase is shifted by 90 degrees by the phase shifter 152 and the first digital baseband signal.
- the adders 157 and 158 add and subtract the two pairs of signals output from the multipliers 153 to 156, and output the resulting signal as a second digital baseband signal.
- the pair of multiplexers 161 and 162 selects the input on the frequency conversion unit 15 side set in step S6, that is, the second digital baseband signal, and outputs it to the outside.
- the pair of rate converters 171 and 172 converts the rate of the second digital baseband signal input at the rate conversion rate set in step S6, and forms a third digital baseband signal. Output to the outside.
- the demodulation / decoding processing unit 18 performs demodulation processing and decoding processing corresponding to the wireless standard on the input third digital baseband signal.
- the signal quality measurement unit 19 measures the SNR of the received signal from the first digital baseband signal that is the output of the AD conversion unit 14, and outputs the measured SNR as a measured SNR value (step S2). .
- the reception method selection unit 20 compares the measured SNR value that is the output of the signal quality measurement unit 19 with the reference signal quality (reference SNR value) set in step S1 (step S3).
- the reception method selection unit 20 outputs a method selection signal for selecting the zero IF method (step S7).
- the functional block setting unit 21 When a method selection signal for selecting the zero IF method output from the reception method selection unit 20 is input, the functional block setting unit 21 is currently in the low IF method, and therefore sets the zero IF method for each functional block. It is decided to perform (step S8).
- the functional block setting unit 21 generates a setting signal for setting each functional block to the low IF method, and outputs the setting signal to each functional block (step S9).
- the wireless reception device 10 starts operation in the zero IF method.
- the zero IF method in which the reception performance may be deteriorated
- the low IF method in which the reception performance can be improved with respect to the zero IF method.
- the signal quality is good (SNR is high)
- the low IF method with high power consumption is changed to the zero IF method that can reduce power consumption with respect to the low IF method.
- the power consumption is maintained while maintaining the reception performance to some extent by changing the reception method based on the measured signal quality. Can be reduced.
- a radio reception apparatus 200 Next, a radio reception apparatus 200 according to the second embodiment of the present invention will be described.
- a clock gating control input is added to the frequency conversion unit 31 of the first embodiment.
- FIG. 7 shows an example of a block configuration diagram of the receiving apparatus according to the present embodiment.
- the radio reception device 200 has been changed so that clock gating control is input to the frequency conversion unit 15 of the first embodiment in addition to the NCO setting. Is. Further, the function block setting unit 21 is changed so that clock gating control is output in addition to the NCO setting.
- the wireless reception device 200 according to the second embodiment will be described in more detail.
- FIG. 7 the configuration of the parts not shown above is the same as that of the receiving apparatus 10 according to the first embodiment. Therefore, the same elements are denoted by the same names and reference numerals, and detailed description thereof will be omitted. Omitted.
- the frequency conversion unit 31 includes an NCO (Numerically Controlled Oscillator) 151, a phase shifter 152, four multipliers 153 to 156, and a pair of adders 157 and 158.
- the frequency conversion unit 31 receives the I and Q signals output from the AD conversion unit 14 as inputs and performs complex multiplication of the output of the AD conversion unit 14 and the complex signals output from the NCO 151 and the phase shifter 152 based on the NCO setting. Perform frequency conversion with.
- the frequency converter 31 then outputs baseband I and Q signals (second digital baseband signals). Further, the frequency conversion unit 31 stops the operation based on the clock gating setting by the functional block setting unit 26.
- the functional block setting unit 26 receives the method selection signal output from the reception method selection unit 20 as an input, and receives the orthogonal demodulation unit 12, the low-pass filter unit 13, the AD conversion unit 14, the frequency conversion unit 31, the multiplexer unit 160, and the rate conversion unit 17. A control signal for controlling each operation state is output.
- the functional block setting unit 26 sets the local oscillator frequency / gain setting (setting LG) in the quadrature demodulation unit 12, sets the passband (setting B) in the low-pass filter unit 13, and sets the sampling frequency (settings) in the AD conversion unit 14.
- the control signal regarding S) is output.
- the function block setting unit 21 includes an NCO frequency setting (setting N) and a clock gating control setting (setting C) in the frequency conversion unit 15, an input selection setting (setting I) in the multiplexer unit 160, and a rate conversion unit 17. Outputs a control signal related to rate conversion rate setting (setting R).
- the second embodiment is the same as the first embodiment shown in FIG.
- the wireless receiver 200 is initially set by a host controller or the like (step S1). Here, it is assumed that reception is started by the zero IF method in order to reduce power consumption. The operations of the following functional blocks are not shown in the flowchart of FIG.
- the radio frequency unit 11, the quadrature demodulation unit 12, the low-pass filter unit 13, the AD conversion unit 14, and the rate conversion unit 17 correspond to radio standards received and are suitable for operating in the zero IF system. Settings are made.
- the multiplexer unit 160 selects an input on the output side of the AD conversion unit 14. Further, the frequency converter 31 stops its operation because the clock supply is stopped by the clock gating control.
- the high frequency unit 11 attenuates the signal outside the reception frequency band set in step S1 and amplifies the signal with respect to the input RF signal, and outputs a desired RF signal.
- the local oscillator 121 outputs a local oscillation signal having the frequency set in step S1.
- the mixers 123 and 124 mix the output of the local oscillator 121, the phase-shifted local oscillation signal shifted by 90 degrees by the phase shifter 122, and the input desired RF signal, and generate a pair of baseband I and Q signals. Output.
- the amplifiers 125 and 126 amplify the pair of baseband I and Q signals described above and output the amplified signals to the outside as the first analog baseband signal.
- the pair of low-pass filters 131 and 132 pass the pass band set in step S1 with respect to the input first analog baseband signal, and externally pass as the second analog baseband signal. Output to.
- the pair of AD converters 141 and 142 digitally convert the input second analog baseband signal at the sampling rate set in step S1. Then, the AD conversion unit 14 outputs a signal obtained by digitally converting the second analog baseband signal to the outside as the first digital baseband signal.
- the pair of multiplexers 161 and 162 selects the input (first digital baseband signal) on the AD conversion unit 14 side set in step S1, and outputs the selected signal to the outside.
- the pair of rate converters 171 and 172 convert the rate of the first digital baseband signal input at the rate conversion rate set in step S1, and convert the converted signal to the third digital signal. Output to the outside as a baseband signal.
- the demodulation / decoding processing unit 18 performs demodulation processing and decoding processing corresponding to the wireless standard on the input third digital baseband signal.
- the signal quality measurement unit 19 measures the signal-to-noise power ratio (SNR) as the signal quality of the received signal from the first digital baseband signal output from the AD conversion unit 14. Then, the signal quality measuring unit 19 outputs the measured signal-to-noise power ratio as measured signal quality (measured SNR value) (step S2).
- SNR signal-to-noise power ratio
- the reception method selection unit 20 compares the measurement signal quality (measurement SNR value) output from the signal quality measurement unit 19 with the reference signal quality (reference SNR value) set in step S1 (step S3).
- the reception method selection unit 20 outputs a method selection signal for selecting the low IF method (step S4).
- the function block setting unit 26 When the function block setting unit 26 receives a method selection signal for selecting the low IF method output from the reception method selecting unit 20, the function block setting unit 26 sets the low IF method for each functional block because it is currently the zero IF method. Is determined (step S5).
- the current loop is terminated without changing the method.
- a setting signal for setting each functional block to the low IF method is generated, and the setting signal is output to each functional block (step S6).
- the functional block setting unit 26 outputs a clock gating control signal to supply a clock to the frequency conversion unit 31.
- step S6 By the processing in step S6, appropriate settings for operating in the low IF system corresponding to the radio standards received by the high frequency unit 11, the quadrature demodulation unit 12, the low pass filter unit 13, the AD conversion unit 14, and the rate conversion unit 17 are set. Done.
- the wireless reception device 200 starts the operation in the low IF method and ends the current loop.
- the frequency converter 31 restarts the clock supply by the clock gating control and starts the operation.
- the local oscillator 121 outputs a local oscillation signal having the frequency set in step S6.
- the mixers 123 and 124 mix the output of the local oscillator 121, the phase-shifted local oscillation signal phase-shifted 90 degrees by the phase shifter 122, and the input desired RF signal, and a pair of intermediate frequency (IF) I's. , Q signal is output.
- the amplifiers 125 and 126 amplify the above-described pair of intermediate frequency (IF) I and Q signals and output the amplified signals to the outside as a first analog baseband signal.
- a signal obtained by amplifying the I and Q signals is also an intermediate frequency (IF) signal, but is referred to as a baseband signal in order to have the same name as the above signal.
- the pair of low-pass filters 131 and 132 pass the pass band set in step S 6 with respect to the input first analog baseband signal, and externally pass as the second analog baseband signal. Output to.
- the pair of AD converters 141 and 142 performs analog / digital conversion on the input second analog baseband signal at the sampling rate set in step S ⁇ b> 6. Output to the outside as a band signal.
- the NCO 151 outputs a numerically controlled oscillation signal having the frequency set in step S6.
- Multipliers 153 and 156 multiply the output of NCO 151 and the first digital baseband signal.
- the multipliers 154 and 155 multiply the phase shift numerical control oscillation signal obtained by shifting the output of the NCO 151 by 90 degrees by the phase shifter 152 and the first digital baseband signal.
- Adders 157 and 158 respectively add and subtract two pairs of signals output from multipliers 153 to 156, and output the added and subtracted signals to the outside as second digital baseband signals.
- the pair of multiplexers 161 and 162 selects the output of the frequency conversion unit 15 set in step S6, that is, the second digital baseband signal, and outputs the selected signal to the outside.
- the pair of rate converters 171 and 172 converts the rate of the second digital baseband signal input at the rate conversion rate set in step S6, and converts the converted signal to the third digital signal. Output to the outside as a baseband signal.
- the demodulation / decoding processing unit 18 performs demodulation processing and decoding processing corresponding to the wireless standard on the input third digital baseband signal.
- the signal quality measurement unit 19 measures the SNR of the received signal from the first digital baseband signal that is the output of the AD conversion unit 14, and outputs the measured SNR as a measured SNR value (step S2). .
- the reception method selection unit 20 compares the measured SNR value output from the signal quality measurement unit 19 with the reference signal quality (reference SNR value) set in step S1 (step S3).
- the reception method selection unit 20 outputs a method selection signal for selecting the zero IF method (step S7).
- the functional block setting unit 26 When a method selection signal for selecting the zero IF method output from the reception method selection unit 20 is input, the functional block setting unit 26 is currently in the low IF method, and therefore sets the zero IF method for each functional block. It is decided to perform (step S8).
- a setting signal for setting each functional block to the low IF method is generated, and the setting signal is output to each functional block (step S9).
- the frequency converter 31 stops operating due to clock gating control and does not operate.
- the wireless reception device 200 starts the operation in the zero IF method by the process of step S9.
- the zero IF method in which the reception performance may be deteriorated
- the low IF method in which the reception performance can be improved with respect to the zero IF method.
- the signal quality is good (SNR is high)
- the low-IF method with high power consumption is changed to the zero-IF method that can be expected to reduce power consumption with respect to the low-IF method.
- the power consumption is maintained while maintaining the reception performance to some extent by changing the reception method based on the measured signal quality. Can be reduced. Further, in the present embodiment, in addition to the effects of the first embodiment, the clock supply can be stopped when the frequency converter 31 is not used, that is, when the zero IF method is selected. The power consumption can be reduced.
- FIG. 8 shows an example of a block configuration diagram of the receiving apparatus according to the present embodiment.
- the demodulation / decoding processing unit 18 of the first embodiment outputs a measurement BER
- the reception method selection unit 20 inputs a measurement BER signal. It was changed to accept.
- ISDB-T Integrated Services Digital Broadcasting-Terrestrial
- DVB-T Digital Video Broadcasting Restoration-T
- Common receivers that receive these standards often have a function of measuring the bit error rate (BER) from the difference between the first-stage output and second-stage output bits of error correction.
- BER bit error rate
- bit error rate (BER)
- the accuracy of the method selection is improved, and it is not affected by the instantaneous signal quality fluctuation.
- the wireless reception device 30 according to the third embodiment will be described in more detail.
- FIG. 8 the configuration of the parts not shown above is the same as that of the radio receiving apparatus 10 according to the first embodiment, and therefore, the same elements are denoted by the same names and reference numerals, and detailed description is given. Omitted.
- the demodulation / decoding processing unit 31 receives the output of the rate conversion unit 17 and performs demodulation / decoding processing corresponding to the wireless standard. Further, the bit error rate (BER) is measured from the processing result, and the measurement BER is output.
- BER bit error rate
- the reception method selection unit 32 receives the measurement signal quality value output from the signal quality measurement unit 19 and the measurement BER output from the demodulation / decoding processing unit 31 as inputs, and compares the measurement signal quality with a preset reference signal quality. The method is selected based on the comparison between the measurement BER and a preset reference BER, and is output as a method selection signal.
- the wireless receiver 30 is initialized by a host controller or the like (step S11). Here, it is assumed that reception is started by the zero IF method in order to reduce power consumption.
- the multiplexer unit 160 selects an input on the output side of the AD conversion unit 14.
- the high frequency unit 11 attenuates the signal outside the reception frequency band set in step S11 and amplifies the signal with respect to the input RF signal, and outputs a desired RF signal.
- the local oscillator 121 outputs a local oscillation signal having the frequency set in step S11.
- the mixers 123 and 124 mix the output of the local oscillator 121, the phase-shifted local oscillation signal shifted by 90 degrees by the phase shifter 122, and the input desired RF signal, and a pair of baseband I and Q signals. Is output.
- the amplifiers 125 and 126 amplify the pair of baseband I and Q signals described above, and output the amplified signals to the outside as a first analog baseband signal.
- the pair of low-pass filters 131 and 132 pass the pass band set in step S11 with respect to the input first analog baseband signal, and externally pass as the second analog baseband signal. Output to.
- the pair of AD converters 141 and 142 perform digital conversion on the input second analog baseband signal at the sampling rate set in step S11.
- the AD converter 14 outputs the digitally converted signal to the outside as a first digital baseband signal.
- the pair of multiplexers 161 and 162 selects the input (first digital baseband signal) on the AD conversion unit 14 side set in step S11, and outputs the selected signal to the outside.
- the pair of rate converters 171 and 172 convert the rate of the first digital baseband signal input at the rate conversion rate set in step S11, and convert the converted signal to the third rate. Output as a digital baseband signal.
- the demodulation / decoding processing unit 31 performs demodulation processing and decoding processing corresponding to the wireless standard on the input third digital baseband signal, and outputs a measurement BER (step S12).
- the signal quality measurement unit 19 measures the signal-to-noise power ratio (SNR) as the signal quality of the received signal from the first digital baseband signal output from the AD conversion unit 14, and the measurement signal quality (measured SNR value). ) (Step S13).
- SNR signal-to-noise power ratio
- the reception method selection unit 32 compares the measured SNR value output from the signal quality measurement unit 19 with the reference signal quality (reference SNR value) set in step S11 (step S14).
- the reception method selection unit 32 compares the measurement BER output from the demodulation / decoding processing unit 31 with the reference BER set in step S11 (step S15), and outputs a method selection signal for selecting the low IF method. (Step S16).
- the function block setting unit 21 When the method selection signal for selecting the low IF method output from the reception method selection unit 32 is input, the function block setting unit 21 is currently in the zero IF method, and therefore the function block setting unit 21 sets the low IF method for each functional block. Is determined to be performed (step S17).
- the current loop is terminated without changing the method.
- the functional block setting unit 21 generates a setting signal for setting each functional block to the low IF method, and outputs the setting signal to each functional block (step S18).
- step S18 an appropriate setting for operating in the low IF system corresponding to the radio standard received by the high-frequency unit 11, the quadrature demodulation unit 12, the low-pass filter unit 13, the AD conversion unit 14, and the rate conversion unit 17 is performed. Done. Then, the wireless reception device 30 starts the operation in the low IF method and ends the current loop.
- the local oscillator 121 outputs a local oscillation signal having the frequency set in step S18.
- the mixers 123 and 124 mix the output of the local oscillator 121, the phase-shifted local oscillation signal phase-shifted by 90 degrees by the phase shifter 122, and the input desired RF signal, and a pair of intermediate frequencies. (IF) I and Q signals are output.
- the amplifiers 125 and 126 amplify the above-described pair of intermediate frequency (IF) I and Q signals, and output the amplified signals to the outside as first analog baseband signals.
- a signal obtained by amplifying the I and Q signals is also an intermediate frequency (IF) signal, but is referred to as a baseband signal in order to have the same name as the above signal.
- the pair of low-pass filters 131 and 132 pass the pass band set in step S18 with respect to the input first analog baseband signal, and externally pass as the second analog baseband signal. Output to.
- the pair of AD converters 141 and 142 performs analog conversion on the input second analog baseband signal at the sampling rate set in step S18.
- the AD converter 14 outputs the digitally converted signal to the outside as a first digital baseband signal.
- the NCO 151 outputs a numerically controlled oscillation signal having the frequency set in step S18.
- Multipliers 153 to 156 multiply the output of the NCO 151 and the phase-shifted numerically controlled oscillation signal shifted by 90 degrees by the phase shifter 152 and the first digital baseband signal.
- Adders 157 and 158 add / subtract the two pairs of signals output from multipliers 153 to 156, and output the added / subtracted signals to the outside as second digital baseband signals.
- the pair of multiplexers 161 and 162 selects the input (second digital baseband signal) on the frequency conversion unit 15 side set in step S18, and outputs the selected signal to the outside.
- the pair of rate converters 171 and 172 converts the rate of the second digital baseband signal input at the rate conversion rate set in step S18, and converts the converted signal to the third digital signal. Output to the outside as a baseband signal.
- the demodulation / decoding processing unit 31 performs demodulation processing and decoding processing corresponding to the wireless standard on the input third digital baseband signal, and outputs a measurement BER (step S12).
- the signal quality measurement unit 19 measures the SNR of the received signal from the first digital baseband signal output from the AD conversion unit 14, and outputs the measured SNR as a measured SNR value (step S13).
- the reception method selection unit 32 compares the measured SNR value output from the signal quality measurement unit 19 with the reference signal quality (reference SNR value) set in step S11 (step S14).
- the reception method selection unit 32 outputs a method selection signal for selecting the zero IF method (step S19).
- the function block setting unit 21 sets the zero IF method for each functional block because it is currently a low IF method. It is decided to perform (step S20).
- the functional block setting unit 21 generates a setting signal for setting each functional block to the low IF method, and outputs the setting signal to each functional block (step S21).
- the wireless reception device 30 starts the operation in the zero IF method by the processing in step S21.
- reception is performed by the zero IF method.
- the local oscillator 121 outputs a local oscillation signal having the frequency set in step S21.
- the mixers 123 and 124 mix the local oscillator 121 output, the phase-shifted local oscillation signal phase shifted by 90 degrees by the phase shifter 122, and the input desired RF signal, and generate a pair of baseband I and Q signals. Output.
- the amplifiers 125 and 126 amplify the pair of baseband I and Q signals described above, and output the amplified signals to the outside as a first analog baseband signal.
- the pair of low-pass filters 131 and 132 pass the passband set in step S21 with respect to the input first analog baseband signal, and externally pass as the second analog baseband signal. Output to.
- the pair of AD converters 141 and 142 digitally convert the input second analog baseband signal at the sampling rate set in step S21.
- the AD converter 14 outputs the digitally converted signal to the outside as a first digital baseband signal.
- the pair of multiplexers 161 and 162 selects the input (first digital baseband signal) on the AD conversion unit 14 side set in step S21, and outputs the selected signal to the outside.
- the pair of rate converters 171 and 172 convert the rate of the first digital baseband signal input at the rate conversion rate set in step S21, and convert the converted signal to the third digital signal. Output to the outside as a baseband signal.
- the demodulation / decoding processing unit 31 performs demodulation processing and decoding processing corresponding to the wireless standard on the input third digital baseband signal, and outputs a measurement BER (step S12).
- the signal quality measurement unit 19 measures the SNR of the received signal from the first digital baseband signal that is the output of the AD conversion unit 14, and outputs the measured SNR as a measured SNR value (step S13). .
- the reception method selection unit 32 compares the measured SNR value output from the signal quality measurement unit 19 with the reference signal quality (reference SNR value) set in step S11 (step S14).
- the reception method selection unit 32 compares the measurement BER of the output of the demodulation / decoding processing unit 31 with the reference BER set in step S11 (step S15).
- the reception method selection unit 32 outputs a method selection signal for selecting the zero IF method (step S19).
- the functional block setting unit 21 does not change the setting for each functional block because it is currently the zero IF method (step S20).
- the wireless reception device 30 continues to operate in the zero IF method by the processing in step S20.
- the low IF method is expected to improve the reception performance with respect to the zero IF method from the zero IF method in which the reception performance may be deteriorated.
- the signal quality is good (SNR is high) (No in step S14)
- the low-IF method with high power consumption is changed to the zero-IF method that can be expected to reduce power consumption with respect to the low-IF method.
- the radio reception device 30 reduces the power consumption while maintaining the reception performance to some extent by changing the reception method based on the measured signal quality. It is possible to make it.
- a bit error rate (BER) can be used when selecting a reception method. For this reason, there are moments when the SNR deteriorates in bursts, but it is expected that the accuracy of method selection will be improved, such as no extra switching occurring when the bit error rate (BER) is not so bad that the reception method is switched.
- BER bit error rate
- FIG. 10 shows an example of a block configuration diagram of the receiving apparatus according to the present embodiment.
- the wireless reception device 40 adds a signal correction unit 165 between the AD conversion unit 14 and the frequency conversion unit 15 to the first embodiment, and the frequency The conversion unit 15 is changed to input the NCO parameter output from the signal correction unit 165.
- the multiplexer unit 160 is deleted, and the output (input selection setting) to the multiplexer unit 160 is deleted from the functional block setting unit 21.
- the fourth embodiment it is possible to improve the reception performance of the zero IF method by performing correction by digital signal processing in the case of the zero IF method.
- the reference SNR for changing the method to the low IF method can be set lower, so that the time required for the low IF method is shortened and the power consumption is reduced.
- the wireless reception device 40 according to the fourth embodiment will be described in more detail.
- the configuration of parts other than the signal correction unit 165 is the same as that of the wireless reception device 10 according to the first embodiment, and therefore, the same elements are denoted by the same names and reference numerals, and detailed description thereof is omitted. The explanation was omitted.
- the signal correction unit 165 includes a correction parameter calculation unit 166, a pair of adders 167 and 168, and a multiplier 169.
- the signal correction unit 165 receives the I and Q signals output from the AD conversion unit 14 as inputs, subtracts the DC offset of the correction parameter calculation unit 166 output from the I and Q signals, and sets the weight coefficient of the correction parameter calculation unit 166 output as I. Multiply the signal and output as a corrected baseband signal. Further, the NCO parameter output from the correction parameter calculation unit 166 is output to the outside as it is.
- the frequency conversion unit 41 includes an NCO (Numerically Controlled Oscillator) 411, a phase shifter 152, four multipliers 153 to 156, and a pair of adders 157 and 158.
- NCO Numerically Controlled Oscillator
- the frequency conversion unit 41 receives the I and Q signals output from the signal correction unit 165 as input, and outputs the I and Q signals output from the signal correction unit 165, the NCO 151, and the phase shifter 152 output based on the NCO setting or NCO parameter. Frequency conversion is performed by complex multiplication of the complex signal.
- the frequency converting unit 41 outputs baseband I and Q signals (second digital baseband signals) subjected to frequency conversion.
- the functional block setting unit 42 receives the method selection signal output from the reception method selection unit 20 as an input, and each operation of the quadrature demodulation unit 12, the low-pass filter unit 13, the AD conversion unit 14, the frequency conversion unit 41, and the rate conversion unit 17. A control signal for controlling the state is output.
- the functional block setting unit 42 sets the frequency / gain setting (setting LG) of the local oscillator in the quadrature demodulation unit 12, sets the passband (setting B) in the low-pass filter unit 13, and sets the sampling frequency (settings) in the AD conversion unit 14.
- the control signal regarding S) is output. Further, the functional block setting unit 42 outputs a control signal related to NCO frequency setting (setting N) to the frequency conversion unit 41 and to a rate conversion rate setting (setting R) to the rate conversion unit 17.
- the wireless receiver 40 is initially set by a host controller or the like (step S1). Here, it is assumed that reception is started by the zero IF method in order to reduce power consumption. The operations of the following functional blocks are not shown in the flowchart of FIG.
- the high frequency unit 11 attenuates a signal other than the reception frequency band set in step S1 with respect to the input RF signal, amplifies the signal in the reception frequency band, and outputs a desired RF signal.
- the local oscillator 121 outputs a local oscillation signal having the frequency set in step S1.
- the mixers 123 and 124 mix the output of the local oscillator 121, the phase-shifted local oscillation signal shifted by 90 degrees by the phase shifter 122, and the input desired RF signal, and generate a pair of baseband I and Q signals. Output.
- the amplifiers 125 and 126 amplify the pair of baseband I and Q signals described above, and output the amplified signals to the outside as a first analog baseband signal.
- the pair of low-pass filters 131 and 132 pass the pass band set in step S1 with respect to the input first analog baseband signal, and externally pass as the second analog baseband signal. Output to.
- the pair of AD converters 141 and 142 performs digital conversion on the input second analog baseband signal at the sampling rate set in step S1.
- the AD converter 14 outputs the digitally converted signal to the outside as a first digital baseband signal.
- the correction parameter calculation unit 166 calculates a correction parameter from the input I and Q signals, and outputs a DC offset, a weighting factor, and an NCO parameter (numerically controlled oscillation parameter). .
- a pair of adders 167 and 168 subtract the DC offset from the input I and Q signals.
- Multiplier 169 multiplies the input I signal and the weighting coefficient, and outputs the result together with the Q signal as a corrected baseband signal.
- the NCO 411 outputs a numerically controlled oscillation signal having a frequency based on the NCO parameter output from the correction parameter calculation unit 166 in the zero IF method.
- Multipliers 153 to 156 multiply the output of NCO 411 and the phase shift numerical control oscillation signal shifted by 90 degrees by phase shifter 152 and the corrected baseband signal.
- Adders 157 and 158 add and subtract two pairs of signals output from multipliers 153 to 156, respectively, and output the added and subtracted signals to the outside as second digital baseband signals.
- the frequency conversion unit 41 performs phase rotation processing of the received signal based on the parameters estimated by the signal correction unit 165. Do. As will be described later, in the low IF method, the frequency conversion unit 41 is used for frequency conversion as in the first and second embodiments.
- the pair of rate converters 171 and 172 convert the rate of the first digital baseband signal input at the rate conversion rate set in step S1, and convert the converted signal to the third digital signal. Output to the outside as a baseband signal.
- the demodulation / decoding processing unit 18 performs demodulation processing / decoding processing corresponding to the wireless standard on the input third digital baseband signal.
- the signal quality measurement unit 19 measures the signal-to-noise power ratio (SNR) as the signal quality of the received signal from the first digital baseband signal output from the AD conversion unit 14, and the measured SNR is measured signal quality. It outputs as (measured SNR value) (step S2).
- SNR signal-to-noise power ratio
- the reception method selection unit 20 compares the measurement signal quality (measurement SNR value) output from the signal quality measurement unit 19 with the reference signal quality (reference SNR value) set in step S1 (step S3).
- the reception method selection unit 20 outputs a method selection signal for selecting the low IF method (step S4).
- the functional block setting unit 42 When the method selection signal for selecting the low IF method output from the reception method selection unit 20 is input, the functional block setting unit 42 is currently in the zero IF method, and therefore sets the low IF method for each functional block. It is decided to perform (step S5).
- the current loop is terminated without changing the method.
- the functional block setting unit 42 generates a setting signal for setting each functional block to the low IF method, and outputs the setting signal to each functional block (step S6).
- step S6 By the processing in step S6, appropriate settings for operating in the low IF system corresponding to the radio standards received by the high frequency unit 11, the quadrature demodulation unit 12, the low pass filter unit 13, the AD conversion unit 14, and the rate conversion unit 17 are set. Done. Then, the wireless reception device 40 starts the operation in the low IF method and ends the current loop.
- the local oscillator 121 outputs a local oscillation signal having the frequency set in step S6.
- the mixers 123 and 124 mix the output of the local oscillator 121, the phase-shifted local oscillation signal phase-shifted 90 degrees by the phase shifter 122, and the input desired RF signal, and a pair of intermediate frequency (IF) I's. , Q signal is output.
- the amplifiers 125 and 126 amplify the above-described pair of intermediate frequency (IF) I and Q signals and output the amplified signals to the outside as first analog baseband signals.
- a signal obtained by amplifying the I and Q signals is also an intermediate frequency (IF) signal, but is referred to as a baseband signal in order to have the same name as the above signal.
- the pair of low-pass filters 131 and 132 pass the pass band set in step S 6 with respect to the input first analog baseband signal, and externally pass as the second analog baseband signal. Output to.
- the pair of AD converters 141 and 142 performs digital conversion on the input second analog baseband signal at the sampling rate set in step S6.
- the AD converter 14 outputs the digitally converted signal to the outside as a first digital baseband signal.
- the correction parameter calculation unit 166 does not calculate the correction parameter from the input I and Q signals, outputs 0 as the DC offset, 1 as the weighting factor, and does not output the NCO parameter.
- a pair of adders 167 and 168 subtract the DC offset from the input I and Q signals. Since 0 is subtracted here, there is no change in the value at the input / output of the adders 167 and 168.
- the multiplier 169 multiplies the input I signal by the weighting factor, and outputs it as a corrected baseband signal together with the Q signal. Here, since 1 is multiplied, there is no change in the value at the input / output of the multiplier 169.
- the NCO 411 outputs a numerically controlled oscillation signal having a frequency based on the NCO setting (step S6) output from the functional block setting unit 42 in the low IF method.
- Multipliers 153 to 156 multiply the NCO 411 output and the phase shift numerical control oscillation signal shifted by 90 degrees by the phase shifter 152 and the corrected baseband signal.
- Adders 157 and 158 add and subtract two pairs of signals output from multipliers 153 to 156, and output the resulting signal as a second digital baseband signal.
- the frequency conversion unit 41 performs phase rotation processing of the received signal based on the parameters estimated by the signal correction unit 165. As will be described later, in the low IF method, the frequency conversion unit 41 is used for frequency conversion as in the first and second embodiments.
- the pair of rate converters 171 and 172 converts the rate of the second digital baseband signal input at the rate conversion rate set in step S6, and converts the converted signal to the third digital signal. Output to the outside as a baseband signal.
- the demodulation / decoding processing unit 18 performs demodulation processing and decoding processing corresponding to the wireless standard on the input third digital baseband signal.
- the signal quality measurement unit 19 measures the SNR of the received signal from the first digital baseband signal that is the output of the AD conversion unit 14, and outputs the measured SNR as a measured SNR value (step S2). .
- the reception method selection unit 20 compares the measured SNR value of the output of the signal quality measurement unit 19 with the reference signal quality (reference SNR value) set in step S1 (step S3).
- the reception method selection unit 20 outputs a method selection signal for selecting the zero IF method (step S7).
- the functional block setting unit 42 sets the zero IF method for each functional block because it is currently the low IF method. Is determined (step S8).
- the functional block setting unit 42 generates a setting signal for setting each functional block to the low IF method, and outputs the setting signal to each functional block (step S9).
- the wireless receiver 40 starts the operation in the zero IF method by the process of step S9.
- step S3 when the signal quality is poor (SNR is low) (Yes in step S3), the reception performance can be deteriorated from the zero IF method in which the reception performance may be deteriorated. Change to method.
- the signal quality is good (SNR is high) when the signal quality is good (SNR is high) (No in step S3), the low IF method with high power consumption is changed to the zero IF method that can reduce power consumption with respect to the low IF method.
- the power consumption is maintained while maintaining the reception performance to some extent by changing the reception method based on the measured signal quality. Can be reduced.
- this embodiment improves the reception performance of the zero IF method with a small circuit scale addition by performing compensation by signal processing in the case of the zero IF method. It becomes possible to make it. As a result, it is possible to set the reference SNR for changing the method to the low IF method to a lower value, so that the power consumption can be further reduced.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Circuits Of Receivers In General (AREA)
- Superheterodyne Receivers (AREA)
Abstract
This wireless receiving device is provided with a receiving means which generates a digital signal on the basis of a received signal, and a receiving method setting means which measures the signal quality of the digital signal generated on the basis of the received signal and generates a measured signal quality, selects a receiving method of the received signal by comparing a preset reference signal quality and the measured signal quality and generates a method selection signal, and, when the signal quality changes, generates and outputs a control signal depending on the method selection signal, wherein the receiving method is switched to a method in which power consumption changes depending on the control signal. This wireless receiving device can be adapted to multiple wireless methods, switches the receiving method depending on the reception environment, and can operate with low power consumption while securing reception performance.
Description
本発明は、受信信号品質に応じて受信方式を切り替えることが可能な無線受信装置及び無線受信方法に関する。
The present invention relates to a wireless reception apparatus and a wireless reception method capable of switching reception methods according to received signal quality.
無線受信方式として、スーパーヘテロダイン方式が広く使われている。スーパーヘテロダイン方式では、受信した無線高周波周波数信号(以下、RF信号)を一旦中間周波数信号に変換した後、ベースバンド信号に変換する(RF:Radio Frequency)。
The superheterodyne method is widely used as a wireless reception method. In the superheterodyne method, a received radio frequency signal (hereinafter referred to as an RF signal) is once converted into an intermediate frequency signal and then converted into a baseband signal (RF: Radio Frequency).
スーパーヘテロダイン受信機では、RF信号を中間周波数信号(以下、IF信号)に変換する部分において、イメージ抑圧やチャネル選択のための外付けのフィルタが必要である(IF:Intermediate Frequency)。そのため、スーパーヘテロダイン受信機においては、部品点数の削減や受信機の小型化に限界がある。また、イメージ抑圧やチャネル選択のために必要となるフィルタが対応する周波数や帯域幅を変更することは容易ではない。そのため、スーパーヘテロダイン受信機は、複数の周波数帯へ対応するマルチモード無線機には向いていない。
In the superheterodyne receiver, an external filter for image suppression and channel selection is required in the part that converts the RF signal into an intermediate frequency signal (hereinafter referred to as IF signal) (IF: Intermediate Frequency). Therefore, in the superheterodyne receiver, there are limits to the reduction in the number of parts and the downsizing of the receiver. In addition, it is not easy to change the frequency and bandwidth corresponding to the filters required for image suppression and channel selection. Therefore, the superheterodyne receiver is not suitable for a multi-mode wireless device that supports a plurality of frequency bands.
これに対して、RF信号をIF信号に変換することなく、ベースバンド信号(以下、BB信号)に直接変換を行う方式としてゼロIF方式がある(BB:Baseband)。なお、ゼロIF方式は、IF信号が不要であるためにゼロIF方式とも呼ばれる。
On the other hand, there is a zero IF method (BB: Baseband) as a method for directly converting a baseband signal (hereinafter referred to as a BB signal) without converting an RF signal into an IF signal. The zero IF method is also called a zero IF method because an IF signal is unnecessary.
ゼロIF方式は、IF信号がないためにイメージ抑圧処理が不要となり、外付けのフィルタが削除できる。そのため、ゼロIF方式は、スーパーヘテロダイン方式よりも受信機の装置構成が単純になるという利点がある。また、ゼロIF方式は、汎用性が高く、どのような無線方式にも適用可能であり、マルチモード無線機に向いている。
The zero IF method eliminates the need for image suppression because there is no IF signal, and an external filter can be deleted. Therefore, the zero IF method has an advantage that the receiver device configuration is simpler than the superheterodyne method. The zero-IF method is highly versatile, can be applied to any wireless method, and is suitable for a multimode wireless device.
しかしながら、ゼロIF方式では、DCオフセット、フリッカー雑音などの影響により、受信性能が劣化することが知られている(DC:Direct Current)。
However, it is known that with the zero IF method, reception performance is degraded due to the influence of DC offset, flicker noise, and the like (DC: Direct Current).
また、上述のゼロIF方式の欠点を補う方式として、低IF方式と呼ばれる方式がある。低IF方式は、RF信号からBB信号よりも少し高い周波数のIF信号に変換し、デジタル処理で再び周波数をベースバンドに変換する方式である。
In addition, there is a system called a low IF system as a system that compensates for the drawbacks of the zero IF system described above. The low IF method is a method in which an RF signal is converted into an IF signal having a frequency slightly higher than that of the BB signal, and the frequency is converted again into baseband by digital processing.
低IF方式は、ゼロIF方式とは異なりイメージ抑圧処理が必要となる。しかしながら、低IF方式では、イメージ抑圧処理をデジタル段で行うため、外付けのフィルタを削除することができる。そのため、低IF方式は、ゼロIF方式と同様に、受信機の装置構成が単純になる。また、低IF方式は、ゼロIF方式と同様に汎用性が高く、どのような無線方式にも適用可能である。
The low IF method requires image suppression processing unlike the zero IF method. However, in the low IF method, since image suppression processing is performed in a digital stage, an external filter can be deleted. For this reason, the low-IF scheme simplifies the apparatus configuration of the receiver, similarly to the zero-IF scheme. In addition, the low IF method is highly versatile like the zero IF method, and can be applied to any wireless method.
低IF方式では、ゼロIF方式において受信性能の劣化の原因となるDCオフセットやフリッカー雑音などの影響を受けにくくなるため、ゼロIF方式と比較して受信性能がよい。しかしながら、直交復調部の出力がベースバンドではなく広帯域の信号を取得する必要があり、AD変換部のサンプリング周波数を高く設定するため、消費電力が高くなってしまうという欠点がある(AD:Analog-Digital)。 特許文献1には、受信方式をゼロIF方式及び低IF方式の両方に切り替えることが可能な受信機構成とその使用方法に関する提案がなされている。特許文献1は、受信する無線規格に合わせてゼロIF方式及び低IF方式の2方式のうちいずれかひとつに切り替えられるように構成していることを特徴としている。
The low IF method is less susceptible to the effects of DC offset and flicker noise that cause the reception performance of the zero IF method to deteriorate, so the reception performance is better than the zero IF method. However, the output of the quadrature demodulation unit needs to acquire a wideband signal instead of the baseband, and the sampling frequency of the AD conversion unit is set high, so that there is a disadvantage that the power consumption becomes high (AD: Analog- Digital). Patent Document 1 proposes a receiver configuration that can switch a reception method to both a zero IF method and a low IF method, and a method of using the receiver. Patent Document 1 is characterized in that it is configured to be switched to one of two systems, a zero IF system and a low IF system, in accordance with a wireless standard to be received.
一方、特許文献2では、受信機の消費電力を削減するための手法が提案されている。特許文献2の受信機では、ゼロIF方式と低IF方式とを切り替えることが可能な構成とはなっていないものの、受信信号電力や受信信号の中身(パケット)を検出し、回路動作を制御することによって低消費電力化を図ることを特徴としている。
On the other hand, Patent Document 2 proposes a technique for reducing the power consumption of the receiver. Although the receiver of Patent Document 2 is not configured to switch between the zero IF method and the low IF method, it detects the received signal power and the contents (packets) of the received signal and controls the circuit operation. This is characterized by low power consumption.
また、特許文献3には、ゼロIFおよび低IFモードで操作可能な無線受信機について開示されている。特許文献3の無線受信機によれば、無線規格に応じて適切な受信方式を選択することが可能となる。
Patent Document 3 discloses a wireless receiver that can be operated in a zero IF mode and a low IF mode. According to the wireless receiver disclosed in Patent Document 3, it is possible to select an appropriate reception method according to the wireless standard.
また、特許文献4には、複数の変調方式において良好な受信特性と省電力を実現できる受信装置について開示されている。特許文献4の受信装置によれば、変調方式が切り替わった際に、アンプの利得を変えることが可能となる。
Also, Patent Document 4 discloses a receiving apparatus that can realize good reception characteristics and power saving in a plurality of modulation schemes. According to the receiving device of Patent Document 4, it is possible to change the gain of the amplifier when the modulation method is switched.
特許文献1の受信機では、無線規格に応じて、ゼロIF方式又は低IF方式のいずれかに切り替えるように構成されている。しかしながら、特許文献1の受信機は、受信環境(受信信号の品質)を認識しないため、自動的に消費電力を抑えることができないという課題がある。
The receiver of Patent Document 1 is configured to switch to either the zero IF method or the low IF method according to the wireless standard. However, since the receiver of Patent Document 1 does not recognize the reception environment (received signal quality), there is a problem that power consumption cannot be automatically suppressed.
また、特許文献2の受信機は、ゼロIF方式の構成であるため消費電力を低減できるものの、受信電力が弱い場合に受信性能が確保できない場合があるという課題がある。
Further, the receiver of Patent Document 2 has a zero IF system configuration, so that power consumption can be reduced, but there is a problem that reception performance may not be secured when reception power is weak.
また、特許文献3の無線受信機は、受信する無線規格を切り替える際には受信方式を切り替えることができるのに対し、受信環境の変化に応じて受信方式を切り替えることまではできないという問題点があった。
In addition, the wireless receiver of Patent Document 3 has a problem that it can not switch the reception method according to the change of the reception environment, while it can switch the reception method when switching the wireless standard to be received. there were.
また、特許文献4の受信装置は、変調方式が切り替わった際にアンプの利得を変えることはできるが、受信環境の変化に応じて受信方式を切り替えることまではできないという問題点があった。
Further, the receiving device of Patent Document 4 has a problem that it can change the gain of the amplifier when the modulation method is switched, but cannot change the receiving method according to the change in the reception environment.
本発明の目的は、複数の無線方式に適用可能であるとともに、受信環境に応じて受信方式を切り替え、受信性能を担保しつつも低消費電力での動作が可能な無線受信装置及び無線受信方法を提供することである。
An object of the present invention is applicable to a plurality of radio systems, and switches between reception systems according to the reception environment, and a radio reception apparatus and radio reception method capable of operating with low power consumption while ensuring reception performance Is to provide.
本発明の無線受信装置は、受信信号を基にデジタル信号を生成する受信手段と、受信信号を基に生成されたデジタル信号の信号品質を測定して測定信号品質を生成し、生成した測定信号品質と予め設定した参照信号品質との比較結果に基づいて受信信号の受信方式を選択して方式選択信号を生成し、信号品質が変化した時点において、方式選択信号に応じて制御信号を生成し、生成した制御信号を受信手段に出力する受信方式設定手段とを備え、制御信号に応じて消費電力が異なる方式に受信方式を切り替える。
The wireless receiver of the present invention includes a receiving means for generating a digital signal based on a received signal, a signal quality of the digital signal generated based on the received signal to generate a measurement signal quality, and a generated measurement signal Based on the comparison result between the quality and the preset reference signal quality, a reception signal reception method is selected to generate a method selection signal, and when the signal quality changes, a control signal is generated according to the method selection signal. Receiving means setting means for outputting the generated control signal to the receiving means, and switching the receiving method to a method with different power consumption according to the control signal.
本発明の無線受信方法においては、受信信号を基にデジタル信号を生成し、受信信号を基に生成されたデジタル信号の信号品質を測定して測定信号品質を生成し、生成した測定信号品質と予め設定した参照信号品質との比較結果に基づいて受信信号の受信方式を選択して方式選択信号を生成し、信号品質が変化した時点において、方式選択信号に応じて制御信号を生成し、制御信号に応じて消費電力が異なる方式に受信方式を切り替える。
In the wireless reception method of the present invention, a digital signal is generated based on the received signal, a signal quality of the digital signal generated based on the received signal is measured to generate a measurement signal quality, and the generated measurement signal quality and Based on the comparison result with the preset reference signal quality, the reception signal reception method is selected to generate a method selection signal, and when the signal quality changes, a control signal is generated according to the method selection signal, and control is performed. The reception method is switched to a method with different power consumption according to the signal.
本発明によれば、複数の無線方式に適用可能であるとともに、受信環境に応じて受信方式を切り替え、受信性能を担保しつつも低消費電力での動作が可能な無線受信装置及び無線受信方法を提供することができる。
According to the present invention, a radio receiving apparatus and a radio receiving method that can be applied to a plurality of radio systems, and that can switch the reception system according to the reception environment and operate with low power consumption while ensuring reception performance. Can be provided.
以下に、本発明を実施するための形態について図面を用いて説明する。ただし、以下に述べる実施形態には、本発明を実施するために技術的に好ましい限定がされているが、発明の範囲を以下に限定するものではない。
Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings. However, the preferred embodiments described below are technically preferable for carrying out the present invention, but the scope of the invention is not limited to the following.
(概要)
まず、図1を用いて、本発明の実施形態の概要に係る無線受信装置1について説明する。本発明の実施形態の概要に係る無線受信装置1は、受信方式設定手段2と、受信手段3とを備える。 (Overview)
First, theradio reception apparatus 1 according to the outline of the embodiment of the present invention will be described with reference to FIG. The wireless reception device 1 according to the outline of the embodiment of the present invention includes a reception method setting unit 2 and a reception unit 3.
まず、図1を用いて、本発明の実施形態の概要に係る無線受信装置1について説明する。本発明の実施形態の概要に係る無線受信装置1は、受信方式設定手段2と、受信手段3とを備える。 (Overview)
First, the
受信手段3は、RF信号(受信信号)を入力とし、受信信号をデジタル信号に変換する(RF:Radio Frequency)。受信方式設定手段2は、受信手段3によって変換されたデジタル信号の信号品質を測定して測定信号品質を生成し、生成した測定信号と予め設定した参照信号品質との比較結果に基づいて受信信号の受信方式を選択して方式選択信号を生成する。そして、受信方式設定手段2は、信号品質が変化した時点において、方式選択信号に応じて制御信号を生成し、生成した制御信号を受信手段3に出力する。受信手段3は、入力された制御信号に応じて消費電力が異なる方式に受信方式を切り替える。
The receiving means 3 receives an RF signal (received signal) and converts the received signal into a digital signal (RF: Radio Frequency). The reception method setting means 2 measures the signal quality of the digital signal converted by the reception means 3 to generate a measurement signal quality, and receives the received signal based on a comparison result between the generated measurement signal and a preset reference signal quality. A reception method is selected to generate a method selection signal. Then, the reception method setting unit 2 generates a control signal according to the method selection signal when the signal quality changes, and outputs the generated control signal to the reception unit 3. The reception unit 3 switches the reception method to a method with different power consumption according to the input control signal.
本発明の実施形態の概要に係る無線受信装置1は、信号の受信環境(信号品質)が変わった時点で、消費電力が異なる受信方式に切り替えることを特徴とする。そのため、受信特性を担保するとともに消費電力の削減が可能となる。なお、本発明の実施形態においては、ゼロIF方式と低IF方式の切り替えについて説明する。ただし、本発明の範囲には、ゼロIF方式と低IF方式の切り替えに限らず、信号の受信環境(信号品質)が変わった時点で、消費電力が異なる受信方式に切り替えることができるような無線通信方式を含む。
The radio reception apparatus 1 according to the outline of the embodiment of the present invention is characterized in that, when the signal reception environment (signal quality) changes, the radio reception apparatus 1 switches to a reception method with different power consumption. Therefore, it is possible to secure reception characteristics and reduce power consumption. In the embodiment of the present invention, switching between the zero IF method and the low IF method will be described. However, the scope of the present invention is not limited to switching between the zero-IF method and the low-IF method, but wireless that can switch to a receiving method with different power consumption when the signal reception environment (signal quality) changes. Includes communication methods.
信号品質としては、例えば、信号対雑音電力比(SNR)を指標とすることができる(SNR:Signal to Noise Ratio)。なお、本発明の実施形態の概要に係る無線受信装置1においては、信号の信号品質を指標とすればよい。そのため、信号品質として、信号対雑音電力比ではない指標を用いてもよい。
As signal quality, for example, a signal-to-noise power ratio (SNR) can be used as an index (SNR: Signal to Noise Ratio). Note that in the wireless reception device 1 according to the outline of the embodiment of the present invention, the signal quality of a signal may be used as an index. Therefore, an index that is not a signal-to-noise power ratio may be used as the signal quality.
次に、本発明の実施形態の概要に係る無線受信装置1の受信方式設定手段2及び受信手段3の詳細な構成について、図2を用いて説明する。
Next, detailed configurations of the reception method setting unit 2 and the reception unit 3 of the wireless reception device 1 according to the outline of the embodiment of the present invention will be described with reference to FIG.
受信手段3は、高周波部11と、直交復調部12と、ローパスフィルタ部13と、AD変換部14と、周波数変換部15と、受信方式切替部16と、レート変換部17と、復調・復号処理部18と、を備える。
The reception means 3 includes a high-frequency unit 11, an orthogonal demodulation unit 12, a low-pass filter unit 13, an AD conversion unit 14, a frequency conversion unit 15, a reception system switching unit 16, a rate conversion unit 17, a demodulation / decoding unit And a processing unit 18.
高周波手段である高周波部11は、RF信号を入力とし、受信周波数帯域以外の信号の減衰と所望の帯域信号の増幅を行い、所望RF信号を出力する。なお、所望の帯域信号とは、受信周波数帯域にある受信対象とするRF信号のことである。
The high frequency unit 11 which is a high frequency means receives an RF signal, attenuates a signal other than the reception frequency band, amplifies the desired band signal, and outputs a desired RF signal. The desired band signal is an RF signal to be received in the reception frequency band.
直交復調手段である直交復調部12は、高周波部11の出力を入力とし、局部発振器の周波数・利得設定に基づき、高周波部11の出力と、一対の直交する局部発振信号と、をミキシングする。そして、直交復調部12は、IF周波数又はベースバンドのI、Q信号(第1のアナログベースバンド信号)を出力する。
The quadrature demodulating unit 12 serving as a quadrature demodulating unit receives the output of the high frequency unit 11 and mixes the output of the high frequency unit 11 and a pair of orthogonal local oscillation signals based on the frequency / gain setting of the local oscillator. The quadrature demodulator 12 then outputs IF and baseband I and Q signals (first analog baseband signals).
ローパスフィルタ手段であるローパスフィルタ部13は、通過帯域設定に基づき、直交復調部12の出力のI、Q信号を帯域制限し、中間周波数(IF)又はベースバンドのI、Q信号(第2のアナログベースバンド信号)を出力する。
The low-pass filter unit 13 which is a low-pass filter means band-limits the I and Q signals output from the quadrature demodulator 12 based on the pass band setting, and the intermediate frequency (IF) or baseband I and Q signals (second Analog baseband signal).
アナログ-デジタル変換手段であるAD変換部14は、ローパスフィルタ部13の出力のI、Q信号をアナログ信号からデジタル信号に変換し、IF周波数又はベースバンドのI、Q信号(第1のデジタルベースバンド信号)を出力する。
The AD conversion unit 14 serving as an analog-digital conversion unit converts the I and Q signals output from the low-pass filter unit 13 from analog signals to digital signals, and outputs IF frequency or baseband I and Q signals (first digital base). Band signal).
周波数変換手段である周波数変換部15は、AD変換部14の出力のI、Q信号を入力とし、数値制御発振器設定に基づき、AD変換部14の出力のI、Q信号と数値制御発振器及び移相器の出力の複素信号とを複素乗算することで周波数変換を行う。なお、これ以降、数値制御発振器をNCOと略す(NCO:Numerically Controlled Oscillator)。そして、周波数変換部15は、ベースバンドのI、Q信号(第2のデジタルベースバンド信号)を出力する。
The frequency conversion unit 15, which is a frequency conversion means, receives the I and Q signals output from the AD conversion unit 14 and inputs the I and Q signals output from the AD conversion unit 14, the numerical control oscillator, and the shift based on the numerical control oscillator setting. Frequency conversion is performed by complex multiplication of the complex signal output from the phase shifter. Hereinafter, the numerically controlled oscillator is abbreviated as NCO (NCO: Numerically Controlled Oscillator). The frequency converter 15 then outputs baseband I and Q signals (second digital baseband signals).
受信方式切替手段である受信方式切替部16は、周波数変換部15が出力する第2のデジタルベースバンド信号をレート変換部17に出力するか否かを切り替える。すなわち、受信方式切替部16は、受信方式をゼロIF方式又は低IF方式のいずれかに切り替える。
The reception method switching unit 16 serving as a reception method switching unit switches whether to output the second digital baseband signal output from the frequency conversion unit 15 to the rate conversion unit 17. That is, the reception method switching unit 16 switches the reception method to either the zero IF method or the low IF method.
受信方式切替部16の切り替えによって、周波数変換部15からレート変換部17に第2のデジタルベースバンド信号を出力する場合は、低IF方式が選択されることになる。
When the second digital baseband signal is output from the frequency conversion unit 15 to the rate conversion unit 17 by switching the reception method switching unit 16, the low IF method is selected.
また、受信方式切替部16の切り替えによって、第2のデジタルベースバンド信号をレート変換部17に出力しない場合は、ゼロIF方式が選択されることになる。なお、第2のデジタルベースバンド信号をレート変換部17に出力しない場合とは、AD変換部14の出力した第1のデジタルベースバンド信号を、周波数変換部15で第2のデジタルベースバンド信号に変換せずに、レート変換部17に出力することを意味する。
In addition, when the second digital baseband signal is not output to the rate conversion unit 17 by switching the reception method switching unit 16, the zero IF method is selected. Note that the case where the second digital baseband signal is not output to the rate conversion unit 17 means that the first digital baseband signal output from the AD conversion unit 14 is converted into the second digital baseband signal by the frequency conversion unit 15. It means outputting to the rate conversion unit 17 without conversion.
受信方式切替部16は、周波数変換部15とレート変換部17との間、又はAD変換部14と周波数変換部15との間のいずれかに挿入される。
The reception method switching unit 16 is inserted either between the frequency conversion unit 15 and the rate conversion unit 17 or between the AD conversion unit 14 and the frequency conversion unit 15.
受信方式切替部16が周波数変換部15とレート変換部17との間に挿入される場合、第1のデジタルベースバンド信号は、周波数変換部15と受信方式切替部16との両方に出力される。図2では、AD変換部14、周波数変換部15、受信方式切替部16、レート変換部17という順番のルート(一点鎖線)と、AD変換部14、受信方式切替部16、レート変換部17という順番のルート(実線と一点鎖線)との2つのルートで信号が伝播する。受信方式切替部16は、機能ブロック設定部21の入力選択設定(設定I:一点鎖線)に基づいて、第1又は第2のデジタルベースバンド信号のいずれかをレート変換部17に出力する。この場合、例えば、受信方式切替部16として、マルチプレクサなどを含む信号切替手段を用いることができる。
When the reception method switching unit 16 is inserted between the frequency conversion unit 15 and the rate conversion unit 17, the first digital baseband signal is output to both the frequency conversion unit 15 and the reception method switching unit 16. . In FIG. 2, the AD converter 14, the frequency converter 15, the reception method switching unit 16, and the rate conversion unit 17 in the order of the route (the one-dot chain line), the AD conversion unit 14, the reception method switching unit 16, and the rate conversion unit 17. A signal propagates through two routes, a sequential route (solid line and one-dot chain line). The reception method switching unit 16 outputs either the first digital baseband signal or the second digital baseband signal to the rate conversion unit 17 based on the input selection setting (setting I: one-dot chain line) of the functional block setting unit 21. In this case, for example, a signal switching unit including a multiplexer or the like can be used as the reception method switching unit 16.
受信方式切替部16がAD変換部14と周波数変換部15との間に挿入される場合、第1のデジタルベースバンド信号は、受信方式切替部16に出力される。図2では、AD変換部14、受信方式切替部16、周波数変換部15、レート変換部17という順番のルート(実線と2点鎖線)で信号が伝播する。受信方式切替部16は、第1のデジタルベースバンド信号を変換し、周波数変換部15に出力する。なお、受信方式切替部16は、第1のデジタルベースバンド信号を変化させないで出力することも、上述の変換に含むものとする。この場合、例えば、受信方式切替部16として、信号補正部などの信号補正手段を用いることができる。
When the reception method switching unit 16 is inserted between the AD conversion unit 14 and the frequency conversion unit 15, the first digital baseband signal is output to the reception method switching unit 16. In FIG. 2, the signal propagates through an order route (solid line and two-dot chain line) of the AD conversion unit 14, the reception method switching unit 16, the frequency conversion unit 15, and the rate conversion unit 17. The reception method switching unit 16 converts the first digital baseband signal and outputs it to the frequency conversion unit 15. Note that the reception method switching unit 16 also includes outputting the first digital baseband signal without change in the above-described conversion. In this case, for example, a signal correction unit such as a signal correction unit can be used as the reception method switching unit 16.
レート変換手段であるレート変換部17は、受信方式切替部16を介して、AD変換部14の出力(第1のデジタルベースバンド信号)又は周波数変換部15の出力(第2のデジタルベースバンド信号)を入力とし、レート変換率設定に基づき、入力信号のサンプリングレートを低下させ、第3のデジタルベースバンド信号として出力する。なお、レート変換部17への入力信号の選択方法は、第1~4の実施形態に示したマルチプレクサ部や信号補正部の説明において具体的に示す。
The rate conversion unit 17 serving as a rate conversion unit, via the reception method switching unit 16, outputs the AD conversion unit 14 (first digital baseband signal) or the output of the frequency conversion unit 15 (second digital baseband signal). ) As an input, and based on the rate conversion rate setting, the sampling rate of the input signal is reduced and output as a third digital baseband signal. Note that a method for selecting an input signal to the rate conversion unit 17 will be specifically described in the description of the multiplexer unit and the signal correction unit described in the first to fourth embodiments.
復調・復号処理手段である復調・復号処理部18は、レート変換部17の出力を入力とし、無線規格に対応した復調・復号処理を行う。なお、受信品質評価にビット誤り率(BER)特性を使用する場合、復調・復号処理部18は、処理結果から測定したビット誤り率(BER)を、測定BERとして受信方式選択部20に出力してもよい(BER:Bit Error Rate)。
The demodulation / decoding processing unit 18 which is a demodulation / decoding processing means receives the output of the rate conversion unit 17 and performs demodulation / decoding processing corresponding to the wireless standard. When the bit error rate (BER) characteristic is used for reception quality evaluation, the demodulation / decoding processing unit 18 outputs the bit error rate (BER) measured from the processing result to the reception method selection unit 20 as the measurement BER. (BER: Bit Error Rate).
受信方式設定手段2は、信号品質測定部19と、受信方式選択部20と、機能ブロック設定部21と、を有する。
The reception method setting means 2 includes a signal quality measurement unit 19, a reception method selection unit 20, and a functional block setting unit 21.
信号品質測定手段である信号品質測定部19は、AD変換部14の出力のI、Q信号を入力とし、入力信号から信号品質を測定し、測定信号品質として出力する。
The signal quality measuring unit 19 serving as a signal quality measuring unit receives the I and Q signals output from the AD converting unit 14 as input, measures the signal quality from the input signal, and outputs the measured signal quality.
受信方式選択手段である受信方式選択部20は、信号品質測定部19の出力の測定信号品質を入力とし、測定信号品質と予め設定された参照信号品質とを比較し、受信方式の選択を行い、方式選択信号として出力する。すなわち、受信方式選択部20は、受信方式としてゼロIF方式又は低IF方式のいずれかを選択する。例えば、測定信号品質が参照信号品質よりも高い場合にはゼロIF方式を選択し、測定信号品質が参照信号品質よりも低い場合には低IF方式を選択する。ただし、測定信号品質が参照信号品質と同等の品質である場合は、いずれの方式を選択してもよいが、低消費電力となるゼロIF方式を選択する方が好ましい。
The reception method selection unit 20 serving as a reception method selection unit receives the measurement signal quality output from the signal quality measurement unit 19 and compares the measurement signal quality with a preset reference signal quality to select a reception method. And output as a method selection signal. That is, the reception method selection unit 20 selects either the zero IF method or the low IF method as the reception method. For example, when the measurement signal quality is higher than the reference signal quality, the zero IF method is selected, and when the measurement signal quality is lower than the reference signal quality, the low IF method is selected. However, when the measurement signal quality is the same quality as the reference signal quality, any method may be selected, but it is preferable to select the zero IF method that achieves low power consumption.
機能ブロック設定手段である機能ブロック設定部21は、受信方式選択部20出力の方式選択信号を入力とし、直交復調部12、ローパスフィルタ部13、AD変換部14、周波数変換部15、受信方式切替部16、レート変換部17のそれぞれの動作状態を制御する制御信号を出力する。
A functional block setting unit 21 serving as a functional block setting unit receives a method selection signal output from the reception method selection unit 20 as an input, and receives an orthogonal demodulation unit 12, a low-pass filter unit 13, an AD conversion unit 14, a frequency conversion unit 15, and a reception method switching. Control signals for controlling the operation states of the unit 16 and the rate conversion unit 17 are output.
機能ブロック設定部21は、直交復調部12には局部発振器の周波数・利得設定(設定LG)、ローパスフィルタ部13には通過帯域設定(設定B)、AD変換部14にはサンプリング周波数設定(設定S)に関する制御信号を出力する。また、機能ブロック設定部21は、周波数変換部15にはNCO周波数設定(設定N)、受信方式切替部16には入力選択設定(設定I)、レート変換部17にはレート変換率設定(設定R)に関する制御信号を出力する。
The functional block setting unit 21 sets the local oscillator frequency / gain setting (setting LG) in the quadrature demodulation unit 12, sets the passband (setting B) in the low-pass filter unit 13, and sets the sampling frequency (settings) in the AD conversion unit 14. The control signal regarding S) is output. Further, the function block setting unit 21 sets the NCO frequency setting (setting N) in the frequency conversion unit 15, the input selection setting (setting I) in the reception method switching unit 16, and the rate conversion rate setting (setting in the rate conversion unit 17). A control signal for R) is output.
なお、ゼロIF方式の際に使用しない周波数変換部15の動作をクロックゲーティング制御により停止する場合、機能ブロック設定部21は、周波数変換部15にクロックゲーティング制御設定(設定C)に関する制御信号を出力してもよい。また、受信方式切替部16が補正パラメータを計算して信号補正する場合、機能ブロック設定部21は、受信方式切替部16への制御信号を出力しなくてもよい。
When the operation of the frequency conversion unit 15 that is not used in the zero IF method is stopped by clock gating control, the functional block setting unit 21 controls the frequency conversion unit 15 to control signals related to clock gating control setting (setting C). May be output. When the reception method switching unit 16 calculates the correction parameter and corrects the signal, the functional block setting unit 21 does not need to output a control signal to the reception method switching unit 16.
以上のような構成によって、本実施形態に係る無線受信装置10は、受信信号品質に応じてゼロIF方式及び低IF方式の受信方式の中からいずれかを選択し、無線受信装置10の各機能ブロックの設定を変更することで受信方式を変更する。なお、本実施形態において、各機能ブロックとは、直交復調部12、ローパスフィルタ部13、AD変換部14、周波数変換部15、受信方式切替部16及びレート変換部17のそれぞれを指す。また、直交復調部12、ローパスフィルタ部13、AD変換部14、周波数変換部15、受信方式切替部16及びレート変換部17とを含む機能ブロックのまとまりを機能ブロック群と呼ぶ。
With the configuration as described above, the wireless reception device 10 according to the present embodiment selects one of the reception methods of the zero IF method and the low IF method according to the received signal quality, and each function of the wireless reception device 10 Change the reception method by changing the block setting. In the present embodiment, each functional block refers to each of the quadrature demodulation unit 12, the low-pass filter unit 13, the AD conversion unit 14, the frequency conversion unit 15, the reception method switching unit 16, and the rate conversion unit 17. A group of functional blocks including the orthogonal demodulation unit 12, the low-pass filter unit 13, the AD conversion unit 14, the frequency conversion unit 15, the reception method switching unit 16, and the rate conversion unit 17 is referred to as a functional block group.
次に、無線受信装置1が切り替える受信方式について説明する。本発明の実施形態の概要に係る無線受信装置1は、ゼロIF方式又は低IF方式のいずれかに受信方式を切り替える。
Next, a reception method switched by the wireless reception device 1 will be described. The wireless reception device 1 according to the outline of the embodiment of the present invention switches the reception method to either the zero IF method or the low IF method.
(ゼロIF方式)
図3は、本発明の実施形態に係るゼロIF受信機5の構成を示す図である。なお、ゼロIF受信機5は、無線受信装置1において周波数変換部15を使用しない場合に相当する。 (Zero IF method)
FIG. 3 is a diagram showing a configuration of the zero IF receiver 5 according to the embodiment of the present invention. The zero IF receiver 5 corresponds to the case where thefrequency conversion unit 15 is not used in the wireless reception device 1.
図3は、本発明の実施形態に係るゼロIF受信機5の構成を示す図である。なお、ゼロIF受信機5は、無線受信装置1において周波数変換部15を使用しない場合に相当する。 (Zero IF method)
FIG. 3 is a diagram showing a configuration of the zero IF receiver 5 according to the embodiment of the present invention. The zero IF receiver 5 corresponds to the case where the
ゼロIF受信機5は、高周波部11と、直交復調部12と、ローパスフィルタ部13と、AD変換部14と、レート変換部17と、復調・復号処理部18と、を備えている。なお、各構成要素の内部構成については、第1~4の実施形態において詳細に説明する。
The zero IF receiver 5 includes a high-frequency unit 11, an orthogonal demodulation unit 12, a low-pass filter unit 13, an AD conversion unit 14, a rate conversion unit 17, and a demodulation / decoding processing unit 18. The internal configuration of each component will be described in detail in the first to fourth embodiments.
高周波部11は、バンドパスフィルタ111と、ローノイズアンプ112と、ローパスフィルタ113と、を備える。
The high frequency unit 11 includes a band pass filter 111, a low noise amplifier 112, and a low pass filter 113.
直交復調部12は、局部発振器121と、移相器122と、一対のミキサ123及び124と、一対の増幅器125及び126と、を備える。
The quadrature demodulator 12 includes a local oscillator 121, a phase shifter 122, a pair of mixers 123 and 124, and a pair of amplifiers 125 and 126.
ローパスフィルタ部13は、一対のローパスフィルタ131及び132を備える。
The low pass filter unit 13 includes a pair of low pass filters 131 and 132.
AD変換部14は、一対のADC(アナログ・デジタル変換器)141及び142を備える(Analog to Digital Converter)。
The AD converter 14 includes a pair of ADCs (Analog / Digital Converters) 141 and 142 (Analog to Digital Converter).
レート変換部17は、1対のレート変換器171及び172を備える。
The rate conversion unit 17 includes a pair of rate converters 171 and 172.
ここで、ゼロIF受信機5の動作を簡単に説明する。
Here, the operation of the zero IF receiver 5 will be briefly described.
ゼロIF受信機5にRF信号が入力されると、高周波部11は、受信周波数帯域以外の信号の減衰と、信号の増幅とを行う。
When an RF signal is input to the zero IF receiver 5, the high frequency unit 11 attenuates a signal outside the reception frequency band and amplifies the signal.
次に、直交復調部12は、受信周波数とほぼ同じ周波数の局部発振信号を出力する局部発振器の出力信号と、局部発振信号を90度移相した信号と、増幅された信号と、をミキシングする。そのようにして、直交関係にあるベースバンドのI信号(同相成分)及びQ信号(直交成分)が生成される。
Next, the quadrature demodulator 12 mixes the output signal of the local oscillator that outputs a local oscillation signal having a frequency substantially the same as the reception frequency, the signal obtained by shifting the local oscillation signal by 90 degrees, and the amplified signal. . In this way, baseband I signals (in-phase components) and Q signals (quadrature components) that are in a quadrature relationship are generated.
次に、ローパスフィルタ部13においてI、Q信号を帯域制限することによって不要波を除去した後、AD変換部14においてアナログ信号をデジタル信号に変換する。
Next, after the unnecessary wave is removed by band-limiting the I and Q signals in the low-pass filter unit 13, the analog signal is converted into a digital signal in the AD conversion unit 14.
そして、復調・復号処理部18は、レート変換部17でデジタル信号化されたI、Q信号を所望のサンプリングレートにまでダウンサンプリングを行い、キャリア復調や誤り訂正処理などを行う。
Then, the demodulation / decoding processing unit 18 down-samples the I and Q signals converted into digital signals by the rate conversion unit 17 to a desired sampling rate, and performs carrier demodulation and error correction processing.
以上が、ゼロIF受信機5の動作の説明である。なお、図3に示した低IF受信機100は、低IF方式の受信装置の一例であって、RF信号を低IF方式で受信できる装置であれば、必ずしも図3に示した構成と同じではなくてもよい。
The above is the description of the operation of the zero IF receiver 5. Note that the low-IF receiver 100 shown in FIG. 3 is an example of a low-IF receiver, and is not necessarily the same as the configuration shown in FIG. 3 as long as it can receive an RF signal using the low-IF method. It does not have to be.
(低IF方式)
図4は、低IF方式の一例を示す構成図である。図4を参照しながら低IF受信機6について説明する。なお、低IF受信機6は、無線受信装置1において周波数変換部15を使用する場合に相当する。 (Low IF method)
FIG. 4 is a configuration diagram showing an example of the low IF method. The low IF receiver 6 will be described with reference to FIG. The low IF receiver 6 corresponds to the case where thefrequency conversion unit 15 is used in the wireless reception device 1.
図4は、低IF方式の一例を示す構成図である。図4を参照しながら低IF受信機6について説明する。なお、低IF受信機6は、無線受信装置1において周波数変換部15を使用する場合に相当する。 (Low IF method)
FIG. 4 is a configuration diagram showing an example of the low IF method. The low IF receiver 6 will be described with reference to FIG. The low IF receiver 6 corresponds to the case where the
ただし、図3と同じ働きをする構成要素に関しては、同一の名称及び番号を付し、詳細な説明は省略する。また、各構成要素の内部構成については、第1~4の実施形態において詳細に説明する。
However, components having the same functions as those in FIG. 3 are given the same names and numbers, and detailed descriptions thereof are omitted. The internal configuration of each component will be described in detail in the first to fourth embodiments.
低IF受信機6は、図3に示したゼロIF受信機5の構成に加えて、AD変換部14とレート変換部17との間に周波数変換部15を備えている。
The low IF receiver 6 includes a frequency converter 15 between the AD converter 14 and the rate converter 17 in addition to the configuration of the zero IF receiver 5 shown in FIG.
周波数変換部15は、NCO151と、移相器152と、4個の乗算器153~156と、一対の加算器157及び158を備える。
The frequency converter 15 includes an NCO 151, a phase shifter 152, four multipliers 153 to 156, and a pair of adders 157 and 158.
ここで、低IF受信機6の動作を簡単に説明する。
Here, the operation of the low IF receiver 6 will be briefly described.
低IF受信機6にRF信号が入力されると、高周波部11は、受信周波数帯域以外の信号を減衰するとともに、受信周波数帯域の信号を増幅する。
When an RF signal is input to the low IF receiver 6, the high frequency unit 11 attenuates a signal other than the reception frequency band and amplifies the signal in the reception frequency band.
次に、直交復調部12は、受信周波数より少し低めの周波数の局部発振信号を出力する局部発振器の出力信号と、前記局部発振信号を90度移相した信号と増幅された信号とをミキシングする。そのようにして、直交関係にある中間周波数(IF)のI信号(同相成分)及びQ信号(直交成分)が生成される。
Next, the quadrature demodulator 12 mixes an output signal of a local oscillator that outputs a local oscillation signal having a frequency slightly lower than the reception frequency, a signal obtained by shifting the local oscillation signal by 90 degrees, and an amplified signal. . In this way, an I signal (in-phase component) and a Q signal (quadrature component) of an intermediate frequency (IF) having a quadrature relationship are generated.
次に、I、Q信号をローパスフィルタ部13で帯域制限することによって不要波を除去した後、AD変換部14でアナログ信号をデジタル信号に変換する。
Next, after removing unnecessary waves by band-limiting the I and Q signals with the low-pass filter unit 13, the analog signal is converted into a digital signal with the AD conversion unit 14.
次に、周波数変換部15において再度周波数変換が行われ、直交関係にあるベースバンドのI信号、Q信号に変換される。
Next, the frequency conversion unit 15 performs frequency conversion again, and converts the signals into baseband I and Q signals that are orthogonal to each other.
さらに、レート変換部17でI、Q信号を所望のサンプリングレートにまでダウンコンバートを行い、復調・復号処理部18でキャリア復調や誤り訂正処理などを行う。
Further, the rate conversion unit 17 downconverts the I and Q signals to a desired sampling rate, and the demodulation / decoding processing unit 18 performs carrier demodulation and error correction processing.
以上が、低IF受信機6の動作の説明である。なお、図4に示した低IF受信機6は、低IF方式の受信装置の一例であって、RF信号を低IF方式で受信できる装置であれば、必ずしも図4に示した構成と同じではなくてもよい。
The above is the description of the operation of the low IF receiver 6. The low IF receiver 6 shown in FIG. 4 is an example of a low IF receiver, and is not necessarily the same as the configuration shown in FIG. 4 as long as it can receive an RF signal by the low IF method. It does not have to be.
本発明の実施形態の概要に係る無線受信装置1によれば、上述の通り、信号の受信環境(信号品質)が変わった時点でゼロIF方式と低IF方式とを切り替えるため、受信特性を担保するとともに消費電力の削減が可能となる。また、本発明の実施形態の概要に係る無線受信方式は、ゼロIF方式と低IF方式の切り替えのみならず、消費電力が異なる受信方式に切り替えることができる無線受信方式にも適用することができる。
According to the wireless reception device 1 according to the outline of the embodiment of the present invention, as described above, when the signal reception environment (signal quality) is changed, the zero IF method and the low IF method are switched, so that reception characteristics are ensured. In addition, power consumption can be reduced. Further, the radio reception method according to the outline of the embodiment of the present invention can be applied not only to switching between the zero IF method and the low IF method, but also to a radio reception method capable of switching to a reception method with different power consumption. .
続いて、本実施形態に係る無線受信装置1の動作の詳細について、以下の第1~4の実施形態に係る無線受信装置10~40を用いて説明する。
Subsequently, details of the operation of the wireless reception device 1 according to the present embodiment will be described using the wireless reception devices 10 to 40 according to the following first to fourth embodiments.
(第1の実施形態)
本発明の第1の実施形態に係る無線受信装置10のブロック構成図の一例を図5に示す。 (First embodiment)
FIG. 5 shows an example of a block configuration diagram of the wireless reception device 10 according to the first embodiment of the present invention.
本発明の第1の実施形態に係る無線受信装置10のブロック構成図の一例を図5に示す。 (First embodiment)
FIG. 5 shows an example of a block configuration diagram of the wireless reception device 10 according to the first embodiment of the present invention.
図5において、本実施形態に係る無線受信装置10は、高周波部11と、直交復調部12と、ローパスフィルタ部13と、AD変換部14と、周波数変換部15と、マルチプレクサ部160と、レート変換部17と、復調・復号処理部18と、を備える。
In FIG. 5, the radio receiving apparatus 10 according to the present embodiment includes a high frequency unit 11, an orthogonal demodulation unit 12, a low pass filter unit 13, an AD conversion unit 14, a frequency conversion unit 15, a multiplexer unit 160, a rate A conversion unit 17 and a demodulation / decoding processing unit 18 are provided.
さらに、本実施形態に係る無線受信装置10は、信号品質測定部19と、受信方式選択部20と、機能ブロック設定部21と、を備える。
Furthermore, the wireless reception device 10 according to the present embodiment includes a signal quality measurement unit 19, a reception method selection unit 20, and a functional block setting unit 21.
マルチプレクサ部160以外の構成は、上述の実施形態の概要の説明で述べた通りであるので、説明は省略する。
Since the configuration other than the multiplexer unit 160 is as described in the description of the outline of the above-described embodiment, the description thereof is omitted.
マルチプレクサ部160は、ゼロIF方式と低IF方式とを切り替える機能を有する。
The multiplexer unit 160 has a function of switching between the zero IF method and the low IF method.
マルチプレクサ部160は、1対のマルチプレクサ161及び162を備える。マルチプレクサ部160は、AD変換部14の出力及び周波数変換部15の出力信号を入力とし、機能ブロック設定部21からの入力選択設定に基づき、入力した信号のいずれかを選択し出力する。
The multiplexer unit 160 includes a pair of multiplexers 161 and 162. The multiplexer unit 160 receives the output of the AD conversion unit 14 and the output signal of the frequency conversion unit 15 as inputs, and selects and outputs one of the input signals based on the input selection setting from the functional block setting unit 21.
機能ブロック設定部21は、受信方式選択部20出力の方式選択信号を入力とする。機能ブロック設定部21は、入力した方式選択信号に基づいて、直交復調部12、ローパスフィルタ部13、AD変換部14、周波数変換部15、マルチプレクサ部160、レート変換部17のそれぞれの動作状態を制御する制御信号を出力する。
The functional block setting unit 21 receives a method selection signal output from the reception method selection unit 20 as an input. Based on the input method selection signal, the functional block setting unit 21 determines the operation states of the orthogonal demodulation unit 12, the low-pass filter unit 13, the AD conversion unit 14, the frequency conversion unit 15, the multiplexer unit 160, and the rate conversion unit 17, respectively. A control signal to be controlled is output.
機能ブロック設定部21は、直交復調部12には局部発振器の周波数・利得設定(設定LG)、ローパスフィルタ部13には通過帯域設定(設定B)、AD変換部14にはサンプリング周波数設定(設定S)に関する制御信号を出力する。また、機能ブロック設定部21は、周波数変換部15にはNCO周波数設定(設定N)、マルチプレクサ部160には入力選択設定(設定I)、レート変換部17にはレート変換率設定(設定R)に関する制御信号を出力する。
The functional block setting unit 21 sets the local oscillator frequency / gain setting (setting LG) in the quadrature demodulation unit 12, sets the passband (setting B) in the low-pass filter unit 13, and sets the sampling frequency (settings) in the AD conversion unit 14. The control signal regarding S) is output. Further, the function block setting unit 21 has an NCO frequency setting (setting N) in the frequency converting unit 15, an input selection setting (setting I) in the multiplexer 160, and a rate conversion rate setting (setting R) in the rate converting unit 17. The control signal for is output.
以上のような構成によって、本実施形態に係る無線受信装置10は、受信信号品質に応じてゼロIF方式及び低IF方式の受信方式の中からいずれかを選択し、無線受信装置10の各機能ブロックの設定を変更することで受信方式を変更する。なお、本実施形態において、各機能ブロックとは、直交復調部12、ローパスフィルタ部13、AD変換部14、周波数変換部15、マルチプレクサ部160、レート変換部17を指す。
With the configuration as described above, the wireless reception device 10 according to the present embodiment selects one of the reception methods of the zero IF method and the low IF method according to the received signal quality, and each function of the wireless reception device 10 Change the reception method by changing the block setting. In the present embodiment, each functional block refers to the quadrature demodulation unit 12, the low-pass filter unit 13, the AD conversion unit 14, the frequency conversion unit 15, the multiplexer unit 160, and the rate conversion unit 17.
ここで、受信方式選択部20における無線受信装置10の受信方式の選択に伴う各機能ブロックの設定について説明する。
Here, the setting of each functional block accompanying the selection of the reception method of the wireless reception device 10 in the reception method selection unit 20 will be described.
無線受信装置10の受信方式としてゼロIF方式が選択された場合は、局所発振器121の周波数を、入力されるRF信号の周波数とほぼ同一の周波数に設定することで、直交復調部12の出力のI、Q信号はベースバンド信号となる。この時、AD変換部14の出力はすでにベースバンドであるため、周波数変換部15によって周波数変換は行わない。また、マルチプレクサ部160ではAD変換部14の出力側の入力が選択される。
When the zero IF method is selected as the reception method of the wireless receiver 10, the output of the quadrature demodulator 12 is set by setting the frequency of the local oscillator 121 to substantially the same frequency as the frequency of the input RF signal. The I and Q signals are baseband signals. At this time, since the output of the AD conversion unit 14 is already baseband, the frequency conversion is not performed by the frequency conversion unit 15. Further, the multiplexer unit 160 selects the input on the output side of the AD conversion unit 14.
一方、無線受信装置10の受信方式として低IF方式が選択された場合は、局所発振器121の周波数を、入力されるRF信号の周波数から少し低めの周波数に設定することで、直交復調部12の出力のI、Q信号は低IF信号となる。この時、AD変換部14の出力は低IFであるため、周波数変換部15によって周波数変換を行いベースバンド信号に変換する。また、マルチプレクサ部160では周波数変換部15の出力側の入力が選択される。
On the other hand, when the low IF method is selected as the reception method of the wireless reception device 10, the frequency of the local oscillator 121 is set to a frequency slightly lower than the frequency of the input RF signal, so that the orthogonal demodulation unit 12 The output I and Q signals are low IF signals. At this time, since the output of the AD conversion unit 14 is a low IF, the frequency conversion unit 15 performs frequency conversion to convert it into a baseband signal. Further, the multiplexer unit 160 selects the input on the output side of the frequency conversion unit 15.
なお、ローパスフィルタ部13では各受信方式に対して適切な通過帯域設定が行われる。
In the low-pass filter unit 13, an appropriate pass band is set for each reception method.
ゼロIF方式が選択された場合、AD変換部14では、ベースバンド信号に適した低めのサンプリングレートが設定される。また、低IF方式が選択された場合、AD変換部14では、低IF信号に適した高めのサンプリングレートが設定される。ただし、サンプリングレートの高低は、ゼロIF方式と低IF方式とのそれぞれに適したサンプリングレートを比較した際の相対的な高低を意味する。
When the zero IF method is selected, the AD conversion unit 14 sets a lower sampling rate suitable for the baseband signal. When the low IF method is selected, the AD conversion unit 14 sets a higher sampling rate suitable for the low IF signal. However, the level of the sampling rate means a relative level when comparing the sampling rates suitable for the zero IF method and the low IF method.
そして、レート変換部17では、ゼロIF方式が選択された場合、変換率は小さく設定され、低IF方式が選択された場合、変換率は大きく設定される。なお、変換率を小さく設定するとは、レートをあまり落とさないということを意味する。また、変換率を大きく設定するとは、レートを大きく落とすということを意味する。ただし、レートの落とし加減に関しては、受信方式をゼロIF方式と低IF方式とに切り替える際に、それぞれの方式間で相対的に決定されるものである。
Then, in the rate conversion unit 17, when the zero IF method is selected, the conversion rate is set small, and when the low IF method is selected, the conversion rate is set large. Note that setting the conversion rate to a small value means that the rate is not reduced so much. Setting a large conversion rate means that the rate is greatly reduced. However, the rate decrease / decrease is determined relatively between the respective methods when the reception method is switched between the zero IF method and the low IF method.
(動作)
図6は、本発明の第1の実施形態に係る無線受信装置10の処理の一例を示したフローチャートである。以下、図6を用いて、本実施形態に係る無線受信装置10の動作について説明する。なお、図6のフローチャートにおいては、各機能ブロックの動作を省略している。 (Operation)
FIG. 6 is a flowchart showing an example of processing of the wireless reception device 10 according to the first embodiment of the present invention. Hereinafter, the operation of the wireless reception device 10 according to the present embodiment will be described with reference to FIG. In the flowchart of FIG. 6, the operation of each functional block is omitted.
図6は、本発明の第1の実施形態に係る無線受信装置10の処理の一例を示したフローチャートである。以下、図6を用いて、本実施形態に係る無線受信装置10の動作について説明する。なお、図6のフローチャートにおいては、各機能ブロックの動作を省略している。 (Operation)
FIG. 6 is a flowchart showing an example of processing of the wireless reception device 10 according to the first embodiment of the present invention. Hereinafter, the operation of the wireless reception device 10 according to the present embodiment will be described with reference to FIG. In the flowchart of FIG. 6, the operation of each functional block is omitted.
最初に、上位のコントローラ等により、無線受信装置10の初期設定が行われる(ステップS1)。なお、ここでは、消費電力を抑えるためにゼロIF方式で受信を開始するものとする。
First, the wireless receiver 10 is initially set by a host controller or the like (step S1). Here, it is assumed that reception is started by the zero IF method in order to reduce power consumption.
ステップS1の初期設定においては、高周波部11、直交復調部12、ローパスフィルタ部13、AD変換部14、レート変換部17が受信する無線規格に対応し、ゼロIF方式で動作するための適切な設定が行われる。また、マルチプレクサ部160においては、AD変換部14の出力が選択される。
In the initial setting in step S1, the radio frequency unit 11, the quadrature demodulation unit 12, the low-pass filter unit 13, the AD conversion unit 14, and the rate conversion unit 17 correspond to radio standards received and are suitable for operating in the zero IF system. Settings are made. In the multiplexer unit 160, the output of the AD conversion unit 14 is selected.
無線受信装置10に対する初期設定が終了したら、外部からRF信号の入力を受け始め、無線受信処理を開始する。上述の通り、本説明においては、ゼロIF方式での受信を開始する。
When the initial setting for the wireless receiving device 10 is completed, an RF signal input is started from the outside, and the wireless reception process is started. As described above, in this description, reception by the zero IF method is started.
高周波部11は、入力されたRF信号に対して、ステップS1で設定された受信周波数帯域以外の信号の減衰と、信号の増幅とを行い、所望RF信号を出力する。
The high frequency unit 11 attenuates the signal outside the reception frequency band set in step S1 and amplifies the signal with respect to the input RF signal, and outputs a desired RF signal.
次に、直交復調部12において、局部発振器121は、ステップS1で設定された周波数の局部発振信号を出力する。ミキサ123及び124は、局部発振器121の出力と、移相器122により90度移相された移相局部発振信号と、入力所望RF信号と、をミキシングし、一対のベースバンドのI、Q信号を出力する。また、アンプ125及び126が前記一対のベースバンドI、Q信号を増幅し、第1のアナログベースバンド信号として外部へ出力する。
Next, in the orthogonal demodulator 12, the local oscillator 121 outputs a local oscillation signal having the frequency set in step S1. The mixers 123 and 124 mix the output of the local oscillator 121, the phase-shifted local oscillation signal shifted by 90 degrees by the phase shifter 122, and the input desired RF signal, and a pair of baseband I and Q signals. Is output. Also, the amplifiers 125 and 126 amplify the pair of baseband I and Q signals and output them as the first analog baseband signals to the outside.
次に、ローパスフィルタ部13において、一対のローパスフィルタ131及び132は、入力された第1のアナログベースバンド信号に対して、ステップS1で設定された通過帯域を通過させ、第2のアナログベースバンド信号として外部へ出力する。
Next, in the low-pass filter unit 13, the pair of low- pass filters 131 and 132 allows the input first analog baseband signal to pass through the passband set in step S <b> 1, and the second analog baseband. Output to the outside as a signal.
次に、AD変換部14において、一対のAD変換器141及び142は、入力された第2のアナログベースバンド信号に対して、ステップS1で設定されたサンプリングレートでデジタル変換する。そして、AD変換部14は、デジタル変換された信号を第1のデジタルベースバンド信号として外部へ出力する。
Next, in the AD converter 14, the pair of AD converters 141 and 142 digitally convert the input second analog baseband signal at the sampling rate set in step S1. The AD converter 14 then outputs the digitally converted signal to the outside as a first digital baseband signal.
次に、マルチプレクサ部160において、一対のマルチプレクサ161及び162は、ステップS1で設定されたAD変換部14側の入力(第1のデジタルベースバンド信号)を選択し、選択した信号を外部へ出力する。
Next, in the multiplexer unit 160, the pair of multiplexers 161 and 162 selects the input (first digital baseband signal) on the AD conversion unit 14 side set in step S1, and outputs the selected signal to the outside. .
次に、レート変換部17において、一対のレート変換器171及び172は、ステップS1で設定されたレート変換率で入力された第1のデジタルベースバンド信号のレートを変換し、変換した信号を第3のデジタルベースバンド信号として外部へ出力する。
Next, in the rate conversion unit 17, the pair of rate converters 171 and 172 convert the rate of the first digital baseband signal input at the rate conversion rate set in step S1, and convert the converted signal to the first 3 as a digital baseband signal.
次に、復調・復号処理部18は、入力された第3のデジタルベースバンド信号に対して、無線規格に対応した復調処理、復号処理を行う。
Next, the demodulation / decoding processing unit 18 performs demodulation processing and decoding processing corresponding to the wireless standard on the input third digital baseband signal.
ここで、信号品質測定部19は、AD変換部14の出力の第1のデジタルベースバンド信号から、受信信号の信号品質として信号対雑音電力比(SNR:Signal to Noise Ratio))を測定する。そして、信号品質測定部19は、測定した信号対雑音電力比を測定信号品質(測定SNR値)として出力する(ステップS2)。
Here, the signal quality measurement unit 19 measures a signal-to-noise power ratio (SNR: Signal to Noise Ratio) as the signal quality of the received signal from the first digital baseband signal output from the AD conversion unit 14. Then, the signal quality measuring unit 19 outputs the measured signal-to-noise power ratio as measured signal quality (measured SNR value) (step S2).
以下では、まず、測定信号品質が参照信号品質より低い場合(ステップS3でYesの場合)について説明を行う。なお、この段階では、上述の通りゼロIF方式で受信を行っている。
In the following, first, a case where the measurement signal quality is lower than the reference signal quality (in the case of Yes in step S3) will be described. At this stage, reception is performed by the zero IF method as described above.
受信方式選択部20は、信号品質測定部19の出力の測定信号品質(測定SNR値)と、ステップS1で設定された参照信号品質(参照SNR値)とを比較する(ステップS3)。
The reception method selection unit 20 compares the measurement signal quality (measurement SNR value) output from the signal quality measurement unit 19 with the reference signal quality (reference SNR value) set in step S1 (step S3).
ここでは、測定信号品質が参照信号品質より低いため、受信方式選択部20は、低IF方式を選択する方式選択信号を出力する(ステップS4)。
Here, since the measurement signal quality is lower than the reference signal quality, the reception method selection unit 20 outputs a method selection signal for selecting the low IF method (step S4).
機能ブロック設定部21は、受信方式選択部20の出力の低IF方式を選択する方式選択信号が入力されると、現在ゼロIF方式であるため、各機能ブロックに対して低IF方式の設定を行うことを決定する(ステップS5)。
When a method selection signal for selecting the low IF method output from the reception method selection unit 20 is input, the functional block setting unit 21 is currently in the zero IF method, and therefore sets the low IF method for each functional block. It is decided to perform (step S5).
ここで、低IF方式であった場合は、方式変更は行わず現在のループを終了する。
Here, if it is the low IF method, the current loop is terminated without changing the method.
次に、各機能ブロックを低IF方式に設定する設定信号を生成し、各機能ブロックへ設定信号を出力する(ステップS6)。
Next, a setting signal for setting each functional block to the low IF method is generated, and the setting signal is output to each functional block (step S6).
これにより、高周波部11、直交復調部12、ローパスフィルタ部13、AD変換部14、レート変換部17が受信する無線規格に対応し、低IF方式で動作するための適切な設定が行われる。
Thus, appropriate settings for operating in the low IF method are performed in accordance with the wireless standards received by the high frequency unit 11, the quadrature demodulation unit 12, the low pass filter unit 13, the AD conversion unit 14, and the rate conversion unit 17.
ここで、無線受信装置10は、低IF方式での動作を開始し、現在のループを終える。
Here, the wireless reception device 10 starts the operation in the low IF method and ends the current loop.
次に、測定信号品質が参照信号品質より高い状況になった場合(ステップS3でNoの場合)について説明を行う。ここでは、引き続き外部からRF信号の入力を受け続け、無線受信処理を行う。上述の通り、この段階では低IF方式で受信を行っている。
Next, the case where the measurement signal quality is higher than the reference signal quality (No in step S3) will be described. Here, it continues to receive an RF signal input from the outside and performs wireless reception processing. As described above, reception is performed at this stage using the low IF method.
直交復調部12において、局部発振器121は、ステップS6で設定された周波数の局部発振信号を出力する。ミキサ123及び124は、局部発振器121の出力と、移相器122により90度移相された移相局部発振信号と、入力所望RF信号と、をミキシングし、一対の中間周波数(IF)のI、Q信号を出力する。また、アンプ125及び126が上述した一対の中間周波数(IF)のI、Q信号を増幅し、第1のアナログベースバンド信号として外部へ出力する。なお、I、Q信号を増幅した信号も中間周波数(IF)の信号であるが、上述の信号と名称をそろえるために、ベースバンド信号と呼称する。
In the quadrature demodulator 12, the local oscillator 121 outputs a local oscillation signal having the frequency set in step S6. The mixers 123 and 124 mix the output of the local oscillator 121, the phase-shifted local oscillation signal phase-shifted 90 degrees by the phase shifter 122, and the input desired RF signal, and a pair of intermediate frequency (IF) I's. , Q signal is output. In addition, the amplifiers 125 and 126 amplify the above-described pair of intermediate frequency (IF) I and Q signals and output the amplified signals to the outside as a first analog baseband signal. A signal obtained by amplifying the I and Q signals is also an intermediate frequency (IF) signal, but is referred to as a baseband signal in order to have the same name as the above signal.
ローパスフィルタ部13において、一対のローパスフィルタ131及び132は、入力された第1のアナログベースバンド信号に対して、ステップS6で設定された通過帯域を通過させ、第2のアナログベースバンド信号として外部へ出力する。
In the low-pass filter unit 13, the pair of low- pass filters 131 and 132 pass the pass band set in step S 6 with respect to the input first analog baseband signal, and externally pass as the second analog baseband signal. Output to.
AD変換部14において、一対のAD変換器141及び142は、入力された第2のアナログベースバンド信号に対して、ステップS6で設定されたサンプリングレートでアナログ・デジタル変換を行い、第1のデジタルベースバンド信号として外部へ出力する。
In the AD conversion unit 14, the pair of AD converters 141 and 142 performs analog / digital conversion on the input second analog baseband signal at the sampling rate set in step S <b> 6, and performs the first digital conversion. Output to the outside as a baseband signal.
周波数変換部15において、NCO151は、ステップS6で設定された周波数の数値制御発振信号を出力する。乗算器153及び156は、NCO151の出力と、第1のデジタルベースバンド信号と、を乗算する。また、乗算器154及び155は、NCO151出力を移相器152により90度移相された移相数値制御発振信号と、第1のデジタルベースバンド信号と、を乗算する。加算器157及び158は、乗算器153~156の出力である二対の信号を加算及び減算し、第2のデジタルベースバンド信号として外部へ出力する。
In the frequency converter 15, the NCO 151 outputs a numerically controlled oscillation signal having the frequency set in step S6. Multipliers 153 and 156 multiply the output of NCO 151 and the first digital baseband signal. Multipliers 154 and 155 multiply the NCO 151 output by the phase shift numerically controlled oscillation signal whose phase is shifted by 90 degrees by the phase shifter 152 and the first digital baseband signal. The adders 157 and 158 add and subtract the two pairs of signals output from the multipliers 153 to 156, and output the resulting signal as a second digital baseband signal.
マルチプレクサ部160において、一対のマルチプレクサ161及び162は、ステップS6で設定された周波数変換部15側の入力、すなわち第2のデジタルベースバンド信号を選択し、外部へ出力する。
In the multiplexer unit 160, the pair of multiplexers 161 and 162 selects the input on the frequency conversion unit 15 side set in step S6, that is, the second digital baseband signal, and outputs it to the outside.
レート変換部17において、一対のレート変換器171及び172は、ステップS6で設定されたレート変換率で入力された第2のデジタルベースバンド信号のレートを変換し、第3のデジタルベースバンド信号として外部へ出力する。
In the rate conversion unit 17, the pair of rate converters 171 and 172 converts the rate of the second digital baseband signal input at the rate conversion rate set in step S6, and forms a third digital baseband signal. Output to the outside.
復調・復号処理部18は、入力された第3のデジタルベースバンド信号に対して、無線規格に対応した復調処理、復号処理を行う。
The demodulation / decoding processing unit 18 performs demodulation processing and decoding processing corresponding to the wireless standard on the input third digital baseband signal.
信号品質測定部19は、上述の通り、AD変換部14の出力である第1のデジタルベースバンド信号から、受信信号のSNRを測定し、測定したSNRを測定SNR値として出力する(ステップS2)。
As described above, the signal quality measurement unit 19 measures the SNR of the received signal from the first digital baseband signal that is the output of the AD conversion unit 14, and outputs the measured SNR as a measured SNR value (step S2). .
受信方式選択部20は、信号品質測定部19の出力である測定SNR値と、ステップS1で設定された参照信号品質(参照SNR値)とを比較する(ステップS3)。
The reception method selection unit 20 compares the measured SNR value that is the output of the signal quality measurement unit 19 with the reference signal quality (reference SNR value) set in step S1 (step S3).
ここでは、測定信号品質が参照信号品質よりも高いため、受信方式選択部20は、ゼロIF方式を選択する方式選択信号を出力する(ステップS7)。
Here, since the measurement signal quality is higher than the reference signal quality, the reception method selection unit 20 outputs a method selection signal for selecting the zero IF method (step S7).
機能ブロック設定部21は、受信方式選択部20の出力のゼロIF方式を選択する方式選択信号が入力されると、現在低IF方式であるため、各機能ブロックに対してゼロIF方式の設定を行うことを決定する(ステップS8)。
When a method selection signal for selecting the zero IF method output from the reception method selection unit 20 is input, the functional block setting unit 21 is currently in the low IF method, and therefore sets the zero IF method for each functional block. It is decided to perform (step S8).
次に、機能ブロック設定部21は、各機能ブロックを低IF方式に設定する設定信号を生成し、各機能ブロックへ設定信号を出力する(ステップS9)。
Next, the functional block setting unit 21 generates a setting signal for setting each functional block to the low IF method, and outputs the setting signal to each functional block (step S9).
これにより、無線受信装置10は、ゼロIF方式での動作を開始する。
Thereby, the wireless reception device 10 starts operation in the zero IF method.
そして引き続き同様の動作を続け、無線受信が終了したらループを抜ける。
Then, the same operation is continued, and the loop is exited when wireless reception is completed.
このように、信号品質が悪い(SNRが低い)場合は、受信性能が劣化する可能性があるゼロIF方式から、ゼロIF方式に対して受信性能の改善が見込める低IF方式へ変更する。その一方で、信号品質が良い(SNRが高い)場合は、消費電力の高い低IF方式から、低IF方式に対して消費電力の低減が見込めるゼロIF方式へ変更することになる。
As described above, when the signal quality is poor (SNR is low), the zero IF method, in which the reception performance may be deteriorated, is changed to the low IF method in which the reception performance can be improved with respect to the zero IF method. On the other hand, when the signal quality is good (SNR is high), the low IF method with high power consumption is changed to the zero IF method that can reduce power consumption with respect to the low IF method.
以上で説明したように、本発明の第1の実施形態に係る無線受信装置10によれば、測定した信号品質に基づいて受信方式の変更を行うことで、受信性能をある程度維持しつつ消費電力を低減させることが可能である。
As described above, according to the wireless reception device 10 according to the first embodiment of the present invention, the power consumption is maintained while maintaining the reception performance to some extent by changing the reception method based on the measured signal quality. Can be reduced.
(第2の実施形態)
次に、本発明の第2の実施形態に係る無線受信装置200について説明する。なお、第2の実施形態では、第1の実施形態の周波数変換部31に対してクロックゲーティング制御入力が追加されている。 (Second Embodiment)
Next, a radio reception apparatus 200 according to the second embodiment of the present invention will be described. In the second embodiment, a clock gating control input is added to thefrequency conversion unit 31 of the first embodiment.
次に、本発明の第2の実施形態に係る無線受信装置200について説明する。なお、第2の実施形態では、第1の実施形態の周波数変換部31に対してクロックゲーティング制御入力が追加されている。 (Second Embodiment)
Next, a radio reception apparatus 200 according to the second embodiment of the present invention will be described. In the second embodiment, a clock gating control input is added to the
本実施形態に係る受信装置のブロック構成図の一例を図7に示す。
FIG. 7 shows an example of a block configuration diagram of the receiving apparatus according to the present embodiment.
図7において、本発明の第2の実施形態に係る無線受信装置200は、第1の実施形態の周波数変換部15に対して、NCO設定に加えてクロックゲーティング制御も入力されるよう変更したものである。また、機能ブロック設定部21に対してNCO設定に加えてクロックゲーティング制御も出力されるように変更したものである。
In FIG. 7, the radio reception device 200 according to the second embodiment of the present invention has been changed so that clock gating control is input to the frequency conversion unit 15 of the first embodiment in addition to the NCO setting. Is. Further, the function block setting unit 21 is changed so that clock gating control is output in addition to the NCO setting.
第2の実施形態においては、ゼロIF方式の際に使用しない周波数変換部31を、クロックゲーティング制御により動作を停止するため、ゼロIF方式の消費電力を低減させる。
In the second embodiment, since the operation of the frequency converter 31 that is not used in the zero IF method is stopped by clock gating control, the power consumption of the zero IF method is reduced.
以下、第2の実施形態に係る無線受信装置200について、より詳細に説明する。なお、図7において、上記に示していない部位の構成に関しては第1の実施形態に係る受信装置10と同一であるので、同一の要素については同一の呼称と参照番号で示し、詳細な説明は省略した。
Hereinafter, the wireless reception device 200 according to the second embodiment will be described in more detail. In FIG. 7, the configuration of the parts not shown above is the same as that of the receiving apparatus 10 according to the first embodiment. Therefore, the same elements are denoted by the same names and reference numerals, and detailed description thereof will be omitted. Omitted.
周波数変換部31は、NCO(数値制御発振器)151と、移相器152と、4個の乗算器153乃至156と、一対の加算器157及び158を備える。周波数変換部31は、AD変換部14の出力のI、Q信号を入力とし、NCO設定に基づき、AD変換部14の出力とNCO151及び移相器152の出力の複素信号とを複素乗算することで周波数変換を行う。そして、周波数変換部31は、ベースバンドのI、Q信号(第2のデジタルベースバンド信号)を出力する。また、周波数変換部31は、機能ブロック設定部26によるクロックゲーティング設定に基づき、動作を停止する。
The frequency conversion unit 31 includes an NCO (Numerically Controlled Oscillator) 151, a phase shifter 152, four multipliers 153 to 156, and a pair of adders 157 and 158. The frequency conversion unit 31 receives the I and Q signals output from the AD conversion unit 14 as inputs and performs complex multiplication of the output of the AD conversion unit 14 and the complex signals output from the NCO 151 and the phase shifter 152 based on the NCO setting. Perform frequency conversion with. The frequency converter 31 then outputs baseband I and Q signals (second digital baseband signals). Further, the frequency conversion unit 31 stops the operation based on the clock gating setting by the functional block setting unit 26.
機能ブロック設定部26は、受信方式選択部20の出力の方式選択信号を入力とし、直交復調部12、ローパスフィルタ部13、AD変換部14、周波数変換部31、マルチプレクサ部160、レート変換部17のそれぞれの動作状態を制御する制御信号を出力する。
The functional block setting unit 26 receives the method selection signal output from the reception method selection unit 20 as an input, and receives the orthogonal demodulation unit 12, the low-pass filter unit 13, the AD conversion unit 14, the frequency conversion unit 31, the multiplexer unit 160, and the rate conversion unit 17. A control signal for controlling each operation state is output.
機能ブロック設定部26は、直交復調部12には局部発振器の周波数・利得設定(設定LG)、ローパスフィルタ部13には通過帯域設定(設定B)、AD変換部14にはサンプリング周波数設定(設定S)に関する制御信号を出力する。また、機能ブロック設定部21は、周波数変換部15にはNCO周波数設定(設定N)及びクロックゲーティング制御設定(設定C)、マルチプレクサ部160には入力選択設定(設定I)、レート変換部17にはレート変換率設定(設定R)に関する制御信号を出力する。
The functional block setting unit 26 sets the local oscillator frequency / gain setting (setting LG) in the quadrature demodulation unit 12, sets the passband (setting B) in the low-pass filter unit 13, and sets the sampling frequency (settings) in the AD conversion unit 14. The control signal regarding S) is output. The function block setting unit 21 includes an NCO frequency setting (setting N) and a clock gating control setting (setting C) in the frequency conversion unit 15, an input selection setting (setting I) in the multiplexer unit 160, and a rate conversion unit 17. Outputs a control signal related to rate conversion rate setting (setting R).
以上で説明した周波数変換部31及び機能ブロック設定部26以外については、図5に示した第1の実施形態と同一である。
Except for the frequency conversion unit 31 and the functional block setting unit 26 described above, the second embodiment is the same as the first embodiment shown in FIG.
(動作)
本発明の第2の実施形態に係る無線受信装置200の動作について、図6及び図7を参照しながら説明する。ここでは、第1の実施形態の動作説明と同様に、低IF方式が選択される場合とゼロIF方式が選択される場合とに分けて順に説明を行う。 (Operation)
The operation of the wireless reception device 200 according to the second embodiment of the present invention will be described with reference to FIGS. Here, similarly to the description of the operation of the first embodiment, the description will be given in order for the case where the low IF method is selected and the case where the zero IF method is selected.
本発明の第2の実施形態に係る無線受信装置200の動作について、図6及び図7を参照しながら説明する。ここでは、第1の実施形態の動作説明と同様に、低IF方式が選択される場合とゼロIF方式が選択される場合とに分けて順に説明を行う。 (Operation)
The operation of the wireless reception device 200 according to the second embodiment of the present invention will be described with reference to FIGS. Here, similarly to the description of the operation of the first embodiment, the description will be given in order for the case where the low IF method is selected and the case where the zero IF method is selected.
最初に、上位のコントローラ等により、無線受信装置200の初期設定が行われる(ステップS1)。なお、ここでは、消費電力を抑えるためにゼロIF方式で受信を開始するものとする。以下の各機能ブロックの動作は、図6のフローチャートには示していない。
First, the wireless receiver 200 is initially set by a host controller or the like (step S1). Here, it is assumed that reception is started by the zero IF method in order to reduce power consumption. The operations of the following functional blocks are not shown in the flowchart of FIG.
ステップS1の初期設定においては、高周波部11、直交復調部12、ローパスフィルタ部13、AD変換部14、レート変換部17が受信する無線規格に対応し、ゼロIF方式で動作するための適切な設定が行われる。また、マルチプレクサ部160はAD変換部14出力側の入力が選択される。さらに、周波数変換部31は、クロックゲーティング制御によりクロック供給が停止されるため、動作を停止する。
In the initial setting in step S1, the radio frequency unit 11, the quadrature demodulation unit 12, the low-pass filter unit 13, the AD conversion unit 14, and the rate conversion unit 17 correspond to radio standards received and are suitable for operating in the zero IF system. Settings are made. The multiplexer unit 160 selects an input on the output side of the AD conversion unit 14. Further, the frequency converter 31 stops its operation because the clock supply is stopped by the clock gating control.
無線受信装置10に対する初期設定が終了したら、外部からRF信号の入力を受け始め、無線受信処理を開始する。上述の通り、ここでは、ゼロIF方式での受信を開始する。
When the initial setting for the wireless receiving device 10 is completed, an RF signal input is started from the outside, and the wireless reception process is started. As described above, reception by the zero IF method is started here.
高周波部11は、入力のRF信号に対して、ステップS1で設定された受信周波数帯域以外の信号の減衰と、信号の増幅とを行い、所望RF信号を出力する。
The high frequency unit 11 attenuates the signal outside the reception frequency band set in step S1 and amplifies the signal with respect to the input RF signal, and outputs a desired RF signal.
直交復調部12において、局部発振器121は、ステップS1で設定された周波数の局部発振信号を出力する。ミキサ123及び124は、局部発振器121の出力と、移相器122により90度移相された移相局部発振信号と、入力所望RF信号とをミキシングし、一対のベースバンドのI、Q信号を出力する。また、アンプ125及び126が前述の一対のベースバンドI、Q信号を増幅し、第1のアナログベースバンド信号として外部へ出力する。
In the quadrature demodulator 12, the local oscillator 121 outputs a local oscillation signal having the frequency set in step S1. The mixers 123 and 124 mix the output of the local oscillator 121, the phase-shifted local oscillation signal shifted by 90 degrees by the phase shifter 122, and the input desired RF signal, and generate a pair of baseband I and Q signals. Output. In addition, the amplifiers 125 and 126 amplify the pair of baseband I and Q signals described above and output the amplified signals to the outside as the first analog baseband signal.
ローパスフィルタ部13において、一対のローパスフィルタ131及び132は、入力された第1のアナログベースバンド信号に対して、ステップS1で設定された通過帯域を通過させ、第2のアナログベースバンド信号として外部へ出力する。
In the low-pass filter unit 13, the pair of low- pass filters 131 and 132 pass the pass band set in step S1 with respect to the input first analog baseband signal, and externally pass as the second analog baseband signal. Output to.
AD変換部14において、一対のAD変換器141及び142は、入力された第2のアナログベースバンド信号に対して、ステップS1で設定されたサンプリングレートでデジタル変換する。そして、AD変換部14は、第2のアナログベースバンド信号をデジタル変換した信号を第1のデジタルベースバンド信号として外部へ出力する。
In the AD conversion unit 14, the pair of AD converters 141 and 142 digitally convert the input second analog baseband signal at the sampling rate set in step S1. Then, the AD conversion unit 14 outputs a signal obtained by digitally converting the second analog baseband signal to the outside as the first digital baseband signal.
マルチプレクサ部160において、一対のマルチプレクサ161及び162は、ステップS1で設定されたAD変換部14側の入力(第1のデジタルベースバンド信号)を選択し、選択した信号を外部へ出力する。
In the multiplexer unit 160, the pair of multiplexers 161 and 162 selects the input (first digital baseband signal) on the AD conversion unit 14 side set in step S1, and outputs the selected signal to the outside.
レート変換部17において、一対のレート変換器171及び172は、ステップS1で設定されたレート変換率で入力された第1のデジタルベースバンド信号のレートを変換し、変換した信号を第3のデジタルベースバンド信号として外部へ出力する。
In the rate conversion unit 17, the pair of rate converters 171 and 172 convert the rate of the first digital baseband signal input at the rate conversion rate set in step S1, and convert the converted signal to the third digital signal. Output to the outside as a baseband signal.
復調・復号処理部18は、入力された第3のデジタルベースバンド信号に対して、無線規格に対応した復調処理、復号処理を行う。
The demodulation / decoding processing unit 18 performs demodulation processing and decoding processing corresponding to the wireless standard on the input third digital baseband signal.
ここで、信号品質測定部19において、AD変換部14の出力の第1のデジタルベースバンド信号から、受信信号の信号品質として信号対雑音電力比(SNR)を測定する。そして、信号品質測定部19は、測定した信号対雑音電力比を測定信号品質(測定SNR値)として出力する(ステップS2)。
Here, the signal quality measurement unit 19 measures the signal-to-noise power ratio (SNR) as the signal quality of the received signal from the first digital baseband signal output from the AD conversion unit 14. Then, the signal quality measuring unit 19 outputs the measured signal-to-noise power ratio as measured signal quality (measured SNR value) (step S2).
以下では、まず、測定信号品質が参照信号品質より低い場合(ステップS3でYesの場合)について説明を行う。なお、この段階では、上述の通りゼロIF方式で受信を行っている。
In the following, first, a case where the measurement signal quality is lower than the reference signal quality (in the case of Yes in step S3) will be described. At this stage, reception is performed by the zero IF method as described above.
受信方式選択部20において、信号品質測定部19の出力の測定信号品質(測定SNR値)とステップS1で設定された参照信号品質(参照SNR値)とを比較する(ステップS3)。
The reception method selection unit 20 compares the measurement signal quality (measurement SNR value) output from the signal quality measurement unit 19 with the reference signal quality (reference SNR value) set in step S1 (step S3).
ここでは、測定信号品質が参照信号品質より低いため、受信方式選択部20は、低IF方式を選択する方式選択信号を出力する(ステップS4)。
Here, since the measurement signal quality is lower than the reference signal quality, the reception method selection unit 20 outputs a method selection signal for selecting the low IF method (step S4).
機能ブロック設定部26は、受信方式選択部20の出力の低IF方式を選択する方式選択信号を入力すると、現在ゼロIF方式であるために、各機能ブロックに対して低IF方式の設定を行うことを決定する(ステップS5)。
When the function block setting unit 26 receives a method selection signal for selecting the low IF method output from the reception method selecting unit 20, the function block setting unit 26 sets the low IF method for each functional block because it is currently the zero IF method. Is determined (step S5).
ここで、低IF方式であった場合は、方式変更は行わず現在のループを終了する。
Here, if it is the low IF method, the current loop is terminated without changing the method.
次に、各機能ブロックを低IF方式に設定する設定信号を生成し、各機能ブロックへ設定信号を出力する(ステップS6)。このとき、機能ブロック設定部26は、周波数変換部31に対してクロック供給を行うようクロックゲーティング制御信号を出力する。
Next, a setting signal for setting each functional block to the low IF method is generated, and the setting signal is output to each functional block (step S6). At this time, the functional block setting unit 26 outputs a clock gating control signal to supply a clock to the frequency conversion unit 31.
ステップS6の処理により、高周波部11、直交復調部12、ローパスフィルタ部13、AD変換部14、レート変換部17が受信する無線規格に対応し、低IF方式で動作するための適切な設定が行われる。各機能ブロックに対して設定がなされると、無線受信装置200は、低IF方式での動作を開始し、現在のループを終える。なお、この時、周波数変換部31は、クロックゲーティング制御によりクロック供給が再開されて動作を開始する。
By the processing in step S6, appropriate settings for operating in the low IF system corresponding to the radio standards received by the high frequency unit 11, the quadrature demodulation unit 12, the low pass filter unit 13, the AD conversion unit 14, and the rate conversion unit 17 are set. Done. When the setting is made for each functional block, the wireless reception device 200 starts the operation in the low IF method and ends the current loop. At this time, the frequency converter 31 restarts the clock supply by the clock gating control and starts the operation.
次に、測定信号品質が参照信号品質より高い状況になった場合について説明を行う(ステップS3でNoの場合)。引き続き外部からRF信号の入力を受け続け、無線受信処理を行う。上述の通り、この段階では低IF方式で受信を行っている。
Next, a case where the measurement signal quality is higher than the reference signal quality will be described (No in step S3). Continue to receive an RF signal from the outside and perform wireless reception processing. As described above, reception is performed at this stage using the low IF method.
直交復調部12において、局部発振器121は、ステップS6で設定された周波数の局部発振信号を出力する。ミキサ123及び124は、局部発振器121の出力と、移相器122により90度移相された移相局部発振信号と、入力所望RF信号と、をミキシングし、一対の中間周波数(IF)のI、Q信号を出力する。また、アンプ125及び126が上述した一対の中間周波数(IF)のI、Q信号を増幅し、第1のアナログベースバンド信号として外部へ出力する。なお、I、Q信号を増幅した信号も中間周波数(IF)の信号であるが、上述の信号と名称をそろえるために、ベースバンド信号と呼称する。
In the quadrature demodulator 12, the local oscillator 121 outputs a local oscillation signal having the frequency set in step S6. The mixers 123 and 124 mix the output of the local oscillator 121, the phase-shifted local oscillation signal phase-shifted 90 degrees by the phase shifter 122, and the input desired RF signal, and a pair of intermediate frequency (IF) I's. , Q signal is output. In addition, the amplifiers 125 and 126 amplify the above-described pair of intermediate frequency (IF) I and Q signals and output the amplified signals to the outside as a first analog baseband signal. A signal obtained by amplifying the I and Q signals is also an intermediate frequency (IF) signal, but is referred to as a baseband signal in order to have the same name as the above signal.
ローパスフィルタ部13において、一対のローパスフィルタ131及び132は、入力された第1のアナログベースバンド信号に対して、ステップS6で設定された通過帯域を通過させ、第2のアナログベースバンド信号として外部へ出力する。
In the low-pass filter unit 13, the pair of low- pass filters 131 and 132 pass the pass band set in step S 6 with respect to the input first analog baseband signal, and externally pass as the second analog baseband signal. Output to.
AD変換部14において、一対のAD変換器141及び142は、入力された第2のアナログベースバンド信号に対して、ステップS6で設定されたサンプリングレートでアナログ・デジタル変換を行い第1のデジタルベースバンド信号として外部へ出力する。
In the AD conversion unit 14, the pair of AD converters 141 and 142 performs analog / digital conversion on the input second analog baseband signal at the sampling rate set in step S <b> 6. Output to the outside as a band signal.
周波数変換部31において、NCO151は、ステップS6で設定された周波数の数値制御発振信号を出力する。乗算器153及び156は、NCO151の出力と、第1のデジタルベースバンド信号とを乗算する。また、乗算器154及び155は、NCO151出力を移相器152により90度移相された移相数値制御発振信号と、第1のデジタルベースバンド信号とを乗算する。加算器157及び158は、乗算器153~156出力の二対の信号をそれぞれ加算・減算し、加算・減算された信号を第2のデジタルベースバンド信号として外部へ出力する。
In the frequency conversion unit 31, the NCO 151 outputs a numerically controlled oscillation signal having the frequency set in step S6. Multipliers 153 and 156 multiply the output of NCO 151 and the first digital baseband signal. Further, the multipliers 154 and 155 multiply the phase shift numerical control oscillation signal obtained by shifting the output of the NCO 151 by 90 degrees by the phase shifter 152 and the first digital baseband signal. Adders 157 and 158 respectively add and subtract two pairs of signals output from multipliers 153 to 156, and output the added and subtracted signals to the outside as second digital baseband signals.
マルチプレクサ部160において、一対のマルチプレクサ161及び162は、ステップS6で設定された周波数変換部15の出力、すなわち第2のデジタルベースバンド信号を選択し、選択した信号を外部へ出力する。
In the multiplexer unit 160, the pair of multiplexers 161 and 162 selects the output of the frequency conversion unit 15 set in step S6, that is, the second digital baseband signal, and outputs the selected signal to the outside.
レート変換部17において、一対のレート変換器171及び172は、ステップS6で設定されたレート変換率で入力された第2のデジタルベースバンド信号のレートを変換し、変換した信号を第3のデジタルベースバンド信号として外部へ出力する。
In the rate conversion unit 17, the pair of rate converters 171 and 172 converts the rate of the second digital baseband signal input at the rate conversion rate set in step S6, and converts the converted signal to the third digital signal. Output to the outside as a baseband signal.
復調・復号処理部18は、入力された第3のデジタルベースバンド信号に対して、無線規格に対応した復調処理、復号処理を行う。
The demodulation / decoding processing unit 18 performs demodulation processing and decoding processing corresponding to the wireless standard on the input third digital baseband signal.
信号品質測定部19は、上述の通り、AD変換部14の出力である第1のデジタルベースバンド信号から、受信信号のSNRを測定し、測定したSNRを測定SNR値として出力する(ステップS2)。
As described above, the signal quality measurement unit 19 measures the SNR of the received signal from the first digital baseband signal that is the output of the AD conversion unit 14, and outputs the measured SNR as a measured SNR value (step S2). .
受信方式選択部20は、信号品質測定部19の出力の測定SNR値と、ステップS1で設定された参照信号品質(参照SNR値)とを比較する(ステップS3)。
The reception method selection unit 20 compares the measured SNR value output from the signal quality measurement unit 19 with the reference signal quality (reference SNR value) set in step S1 (step S3).
ここでは、測定信号品質が参照信号品質よりも高いため、受信方式選択部20は、ゼロIF方式を選択する方式選択信号を出力する(ステップS7)。
Here, since the measurement signal quality is higher than the reference signal quality, the reception method selection unit 20 outputs a method selection signal for selecting the zero IF method (step S7).
機能ブロック設定部26は、受信方式選択部20の出力のゼロIF方式を選択する方式選択信号が入力されると、現在低IF方式であるため、各機能ブロックに対してゼロIF方式の設定を行うことを決定する(ステップS8)。
When a method selection signal for selecting the zero IF method output from the reception method selection unit 20 is input, the functional block setting unit 26 is currently in the low IF method, and therefore sets the zero IF method for each functional block. It is decided to perform (step S8).
次に、各機能ブロックを低IF方式に設定する設定信号を生成し、各機能ブロックへ設定信号を出力する(ステップS9)。この時、周波数変換部31は、クロックゲーティング制御によりクロック入力が停止され、動作しない。
Next, a setting signal for setting each functional block to the low IF method is generated, and the setting signal is output to each functional block (step S9). At this time, the frequency converter 31 stops operating due to clock gating control and does not operate.
ステップS9の処理により、無線受信装置200は、ゼロIF方式での動作を開始する。
The wireless reception device 200 starts the operation in the zero IF method by the process of step S9.
そして、引き続き同様の動作を続け、無線受信が終了したらループを抜ける。
Then, the same operation is continued, and the loop is exited when wireless reception is completed.
このように、信号品質が悪い(SNRが低い)場合は、受信性能が劣化する可能性があるゼロIF方式から、ゼロIF方式に対して受信性能の改善が見込める低IF方式へ変更する。その一方で、信号品質が良い(SNRが高い)場合は、消費電力の高い低IF方式から、低IF方式に対して消費電力の低減が見込めるゼロIF方式へ変更する。
As described above, when the signal quality is poor (SNR is low), the zero IF method, in which the reception performance may be deteriorated, is changed to the low IF method in which the reception performance can be improved with respect to the zero IF method. On the other hand, when the signal quality is good (SNR is high), the low-IF method with high power consumption is changed to the zero-IF method that can be expected to reduce power consumption with respect to the low-IF method.
以上で説明したように、本発明の第2の実施形態に係る無線受信装置200によれば、測定した信号品質に基づいて受信方式の変更を行うことで、受信性能をある程度維持しつつ消費電力を低減させることが可能である。また、本実施形態では、第1の実施形態の効果に加えて、周波数変換部31を使用しないとき、すなわちゼロIF方式が選択されたときにクロック供給を止めることが可能になるので、更なる消費電力の低減が可能になる。
As described above, according to the wireless reception device 200 according to the second embodiment of the present invention, the power consumption is maintained while maintaining the reception performance to some extent by changing the reception method based on the measured signal quality. Can be reduced. Further, in the present embodiment, in addition to the effects of the first embodiment, the clock supply can be stopped when the frequency converter 31 is not used, that is, when the zero IF method is selected. The power consumption can be reduced.
(第3の実施形態)
次に、本発明の第3の実施形態に係る無線受信装置30について説明する。第3の実施形態では、受信品質評価にビット誤り率(BER)特性を使用する場合について説明する(BER:Bit Error Rate)。 (Third embodiment)
Next, a radio reception device 30 according to the third embodiment of the present invention will be described. In the third embodiment, a case where a bit error rate (BER) characteristic is used for reception quality evaluation will be described (BER: Bit Error Rate).
次に、本発明の第3の実施形態に係る無線受信装置30について説明する。第3の実施形態では、受信品質評価にビット誤り率(BER)特性を使用する場合について説明する(BER:Bit Error Rate)。 (Third embodiment)
Next, a radio reception device 30 according to the third embodiment of the present invention will be described. In the third embodiment, a case where a bit error rate (BER) characteristic is used for reception quality evaluation will be described (BER: Bit Error Rate).
本実施形態に係る受信装置のブロック構成図の一例を図8に示す。
FIG. 8 shows an example of a block configuration diagram of the receiving apparatus according to the present embodiment.
図8において、本発明の第3の実施形態に係る無線受信装置30は、第1の実施形態の復調・復号処理部18が測定BERを出力し、受信方式選択部20が測定BER信号の入力も受け付けるように変更したものである。
In FIG. 8, in the radio reception device 30 according to the third embodiment of the present invention, the demodulation / decoding processing unit 18 of the first embodiment outputs a measurement BER, and the reception method selection unit 20 inputs a measurement BER signal. It was changed to accept.
なお、ISDB-TやDVB-T等のデジタル放送規格では、2段階の誤り訂正を行うことが規定されている(ISDB-T:Integrated Services Digital Broadcasting-Terrestrial、DVB-T:Digital Video Broadcasting - Terrestrial)。それらの規格を受信する一般的な受信機は、誤り訂正の1段目出力と2段目出力のビットの違いからビット誤り率(BER)を測定する機能を持つことが多い。本実施形態では、上述のように復調・復号処理結果からBERを得ることが可能な無線規格を受信することを想定している。
Note that digital broadcasting standards such as ISDB-T and DVB-T stipulate that error correction is performed in two stages (ISDB-T: Integrated Services Digital Broadcasting-Terrestrial, DVB-T: Digital Video Broadcasting Restoration-T ). Common receivers that receive these standards often have a function of measuring the bit error rate (BER) from the difference between the first-stage output and second-stage output bits of error correction. In the present embodiment, it is assumed that a wireless standard capable of obtaining a BER from the demodulation / decoding processing result is received as described above.
第3の実施形態では、受信方式の選択にビット誤り率(BER)を利用可能になり、方式選択の正確性が向上し、瞬時的な信号品質のぶれには左右されないことが期待される。
In the third embodiment, it is expected that the bit error rate (BER) can be used for selection of the reception method, the accuracy of the method selection is improved, and it is not affected by the instantaneous signal quality fluctuation.
以下、第3の実施形態に係る無線受信装置30についてより詳細に説明する。なお、図8において、上記に示していない部位の構成に関しては第1の実施形態に係る無線受信装置10と同一であるので、同一の要素については同一の呼称と参照番号で示し、詳細な説明は省略した。
Hereinafter, the wireless reception device 30 according to the third embodiment will be described in more detail. In FIG. 8, the configuration of the parts not shown above is the same as that of the radio receiving apparatus 10 according to the first embodiment, and therefore, the same elements are denoted by the same names and reference numerals, and detailed description is given. Omitted.
復調・復号処理部31は、レート変換部17の出力を入力とし、無線規格に対応した復調・復号処理を行う。また、処理結果からビット誤り率(BER)を測定し、測定BERを出力する。
The demodulation / decoding processing unit 31 receives the output of the rate conversion unit 17 and performs demodulation / decoding processing corresponding to the wireless standard. Further, the bit error rate (BER) is measured from the processing result, and the measurement BER is output.
受信方式選択部32は、信号品質測定部19の出力の測定信号品質値及び復調・復号処理部31の出力の測定BERを入力とし、測定信号品質と予め設定された参照信号品質との比較と、測定BERと予め設定された参照BERとの比較とを基に方式選択を行い、方式選択信号として出力する。
The reception method selection unit 32 receives the measurement signal quality value output from the signal quality measurement unit 19 and the measurement BER output from the demodulation / decoding processing unit 31 as inputs, and compares the measurement signal quality with a preset reference signal quality. The method is selected based on the comparison between the measurement BER and a preset reference BER, and is output as a method selection signal.
以上で説明した復調・復号処理部31及び受信方式選択部32以外については、図5に示した第1の実施形態と同一である。
Other than the demodulation / decoding processing unit 31 and the reception method selection unit 32 described above are the same as those in the first embodiment shown in FIG.
(動作)
本発明の第3の実施形態に係る無線受信装置30の動作について、図8及び図9を参照しながら説明する。ここでは、第1の実施形態の動作説明と同様に、低IF方式が選択される場合とゼロIF方式が選択される場合とで分けて順に説明を行う。 (Operation)
The operation of the wireless reception device 30 according to the third embodiment of the present invention will be described with reference to FIGS. Here, similarly to the description of the operation of the first embodiment, the case where the low IF method is selected and the case where the zero IF method is selected will be described in order.
本発明の第3の実施形態に係る無線受信装置30の動作について、図8及び図9を参照しながら説明する。ここでは、第1の実施形態の動作説明と同様に、低IF方式が選択される場合とゼロIF方式が選択される場合とで分けて順に説明を行う。 (Operation)
The operation of the wireless reception device 30 according to the third embodiment of the present invention will be described with reference to FIGS. Here, similarly to the description of the operation of the first embodiment, the case where the low IF method is selected and the case where the zero IF method is selected will be described in order.
最初に、上位のコントローラ等により、無線受信装置30の初期設定が行われる(ステップS11)。なお、ここでは、消費電力を抑えるためにゼロIF方式で受信を開始するものとする。
First, the wireless receiver 30 is initialized by a host controller or the like (step S11). Here, it is assumed that reception is started by the zero IF method in order to reduce power consumption.
ステップS1の初期設定により、高周波部11、直交復調部12、ローパスフィルタ部13、AD変換部14、レート変換部17が受信する無線規格に対応し、ゼロIF方式で動作するための適切な設定が行われる。また、マルチプレクサ部160は、AD変換部14出力側の入力が選択される。
Appropriate settings for operating in the zero IF system corresponding to the radio standards received by the high frequency unit 11, the quadrature demodulation unit 12, the low pass filter unit 13, the AD conversion unit 14, and the rate conversion unit 17 by the initial setting in step S1 Is done. The multiplexer unit 160 selects an input on the output side of the AD conversion unit 14.
無線受信装置10に対する初期設定が終了したら、外部からRF信号の入力を受け始め、無線受信処理を開始する。上述の通り、ここでは、ゼロIF方式での受信を開始する。
When the initial setting for the wireless receiving device 10 is completed, an RF signal input is started from the outside, and the wireless reception process is started. As described above, reception by the zero IF method is started here.
高周波部11は、入力のRF信号に対して、ステップS11で設定された受信周波数帯域以外の信号の減衰と、信号の増幅とを行い、所望RF信号を出力する。
The high frequency unit 11 attenuates the signal outside the reception frequency band set in step S11 and amplifies the signal with respect to the input RF signal, and outputs a desired RF signal.
直交復調部12において、局部発振器121は、ステップS11で設定された周波数の局部発振信号を出力する。ミキサ123及び124は、局部発振器121の出力と、移相器122により90度移相された移相局部発振信号と、入力所望RF信号と、をミキシングし、一対のベースバンドのI、Q信号を出力する。また、アンプ125及び126が上述の一対のベースバンドI、Q信号を増幅し、第1のアナログベースバンド信号として外部へ出力する。
In the quadrature demodulator 12, the local oscillator 121 outputs a local oscillation signal having the frequency set in step S11. The mixers 123 and 124 mix the output of the local oscillator 121, the phase-shifted local oscillation signal shifted by 90 degrees by the phase shifter 122, and the input desired RF signal, and a pair of baseband I and Q signals. Is output. In addition, the amplifiers 125 and 126 amplify the pair of baseband I and Q signals described above, and output the amplified signals to the outside as a first analog baseband signal.
ローパスフィルタ部13において、一対のローパスフィルタ131及び132は、入力された第1のアナログベースバンド信号に対して、ステップS11で設定された通過帯域を通過させ、第2のアナログベースバンド信号として外部へ出力する。
In the low-pass filter unit 13, the pair of low- pass filters 131 and 132 pass the pass band set in step S11 with respect to the input first analog baseband signal, and externally pass as the second analog baseband signal. Output to.
AD変換部14において、一対のAD変換器141及び142は、入力された第2のアナログベースバンド信号に対して、ステップS11で設定されたサンプリングレートでデジタル変換を行う。AD変換部14は、デジタル変換した信号を第1のデジタルベースバンド信号として外部へ出力する。
In the AD conversion unit 14, the pair of AD converters 141 and 142 perform digital conversion on the input second analog baseband signal at the sampling rate set in step S11. The AD converter 14 outputs the digitally converted signal to the outside as a first digital baseband signal.
マルチプレクサ部160において、一対のマルチプレクサ161及び162は、ステップS11で設定されたAD変換部14側の入力(第1のデジタルベースバンド信号)を選択し、選択した信号を外部へ出力する。
In the multiplexer unit 160, the pair of multiplexers 161 and 162 selects the input (first digital baseband signal) on the AD conversion unit 14 side set in step S11, and outputs the selected signal to the outside.
レート変換部17において、一対のレート変換器171及び172は、ステップS11で設定されたレート変換率で入力された第1のデジタルベースバンド信号のレートを変換し、変換された信号を第3のデジタルベースバンド信号として外部へ出力する。
In the rate conversion unit 17, the pair of rate converters 171 and 172 convert the rate of the first digital baseband signal input at the rate conversion rate set in step S11, and convert the converted signal to the third rate. Output as a digital baseband signal.
復調・復号処理部31は、入力された第3のデジタルベースバンド信号に対して、無線規格に対応した復調処理、復号処理を行い、測定BERを出力する(ステップS12)。
The demodulation / decoding processing unit 31 performs demodulation processing and decoding processing corresponding to the wireless standard on the input third digital baseband signal, and outputs a measurement BER (step S12).
ここで、信号品質測定部19は、AD変換部14出力の第1のデジタルベースバンド信号から、受信信号の信号品質として信号対雑音電力比(SNR)を測定し、測定信号品質(測定SNR値)として出力する(ステップS13)。
Here, the signal quality measurement unit 19 measures the signal-to-noise power ratio (SNR) as the signal quality of the received signal from the first digital baseband signal output from the AD conversion unit 14, and the measurement signal quality (measured SNR value). ) (Step S13).
以下では、まず、測定信号品質が参照信号品質より低く(ステップS14でYesの場合)、かつ、測定BERが参照BERより低い場合(ステップS15でYesの場合)について説明を行う。なお、この段階では、上述の通りゼロIF方式で受信を行っている。
Hereinafter, first, a case where the measurement signal quality is lower than the reference signal quality (in the case of Yes in step S14) and the measurement BER is lower than the reference BER (in the case of Yes in step S15) will be described. At this stage, reception is performed by the zero IF method as described above.
受信方式選択部32は、信号品質測定部19出力の測定SNR値と、ステップS11で設定された参照信号品質(参照SNR値)との比較を行う(ステップS14)。そして、受信方式選択部32は、復調・復号処理部31出力の測定BERとステップS11で設定された参照BERとの比較を行い(ステップS15)、低IF方式を選択する方式選択信号を出力する(ステップS16)。
The reception method selection unit 32 compares the measured SNR value output from the signal quality measurement unit 19 with the reference signal quality (reference SNR value) set in step S11 (step S14). The reception method selection unit 32 compares the measurement BER output from the demodulation / decoding processing unit 31 with the reference BER set in step S11 (step S15), and outputs a method selection signal for selecting the low IF method. (Step S16).
機能ブロック設定部21は、受信方式選択部32の出力の低IF方式を選択する方式選択信号が入力されると、現在ゼロIF方式であるため、各機能ブロックに対して、低IF方式の設定を行うことを決定する(ステップS17)。
When the method selection signal for selecting the low IF method output from the reception method selection unit 32 is input, the function block setting unit 21 is currently in the zero IF method, and therefore the function block setting unit 21 sets the low IF method for each functional block. Is determined to be performed (step S17).
ここで、低IF方式であった場合は、方式変更は行わず現在のループを終了する。
Here, if it is the low IF method, the current loop is terminated without changing the method.
次に、機能ブロック設定部21は、各機能ブロックを低IF方式に設定する設定信号を生成し、各機能ブロックへ設定信号を出力する(ステップS18)。
Next, the functional block setting unit 21 generates a setting signal for setting each functional block to the low IF method, and outputs the setting signal to each functional block (step S18).
ステップS18の処理により、高周波部11、直交復調部12、ローパスフィルタ部13、AD変換部14、レート変換部17が受信する無線規格に対応し、低IF方式で動作するための適切な設定が行われる。そして、無線受信装置30は、低IF方式での動作を開始し、現在のループを終える。
By the processing in step S18, an appropriate setting for operating in the low IF system corresponding to the radio standard received by the high-frequency unit 11, the quadrature demodulation unit 12, the low-pass filter unit 13, the AD conversion unit 14, and the rate conversion unit 17 is performed. Done. Then, the wireless reception device 30 starts the operation in the low IF method and ends the current loop.
次に、測定信号品質が参照信号品質より高い状況になった場合について説明を行う(ステップS14でNoの場合)。引き続き外部からRF信号の入力を受け続け、無線受信処理を行う。上述の通り低IF方式で受信を行っている。
Next, a case where the measurement signal quality is higher than the reference signal quality will be described (No in step S14). Continue to receive an RF signal from the outside and perform wireless reception processing. As described above, reception is performed by the low IF method.
直交復調部12において、局部発振器121は、ステップS18で設定された周波数の局部発振信号を出力する。直交復調部12において、ミキサ123及び124は、局部発振器121出力と、移相器122により90度移相された移相局部発振信号と、入力所望RF信号と、をミキシングし、一対の中間周波数(IF)のI、Q信号を出力する。また、アンプ125及び126は、上述した一対の中間周波数(IF)のI、Q信号を増幅し、増幅した信号を第1のアナログベースバンド信号として外部へ出力する。なお、I、Q信号を増幅した信号も中間周波数(IF)の信号であるが、上述の信号と名称をそろえるために、ベースバンド信号と呼称する。
In the quadrature demodulator 12, the local oscillator 121 outputs a local oscillation signal having the frequency set in step S18. In the quadrature demodulating unit 12, the mixers 123 and 124 mix the output of the local oscillator 121, the phase-shifted local oscillation signal phase-shifted by 90 degrees by the phase shifter 122, and the input desired RF signal, and a pair of intermediate frequencies. (IF) I and Q signals are output. The amplifiers 125 and 126 amplify the above-described pair of intermediate frequency (IF) I and Q signals, and output the amplified signals to the outside as first analog baseband signals. A signal obtained by amplifying the I and Q signals is also an intermediate frequency (IF) signal, but is referred to as a baseband signal in order to have the same name as the above signal.
ローパスフィルタ部13において、一対のローパスフィルタ131及び132は、入力された第1のアナログベースバンド信号に対して、ステップS18で設定された通過帯域を通過させ、第2のアナログベースバンド信号として外部へ出力する。
In the low-pass filter unit 13, the pair of low- pass filters 131 and 132 pass the pass band set in step S18 with respect to the input first analog baseband signal, and externally pass as the second analog baseband signal. Output to.
AD変換部14において、一対のAD変換器141及び142は、入力された第2のアナログベースバンド信号に対して、ステップS18で設定されたサンプリングレートでアナログ変換を行う。AD変換部14は、デジタル変換した信号を第1のデジタルベースバンド信号として外部へ出力する。
In the AD conversion unit 14, the pair of AD converters 141 and 142 performs analog conversion on the input second analog baseband signal at the sampling rate set in step S18. The AD converter 14 outputs the digitally converted signal to the outside as a first digital baseband signal.
周波数変換部15において、NCO151は、ステップS18で設定された周波数の数値制御発振信号を出力する。乗算器153~156は、NCO151出力及び移相器152により90度移相された移相数値制御発振信号と第1のデジタルベースバンド信号を乗算する。加算器157及び158は、乗算器153~156出力の二対の信号を加算・減算し、加算・減算した信号を第2のデジタルベースバンド信号として外部へ出力する。
In the frequency converter 15, the NCO 151 outputs a numerically controlled oscillation signal having the frequency set in step S18. Multipliers 153 to 156 multiply the output of the NCO 151 and the phase-shifted numerically controlled oscillation signal shifted by 90 degrees by the phase shifter 152 and the first digital baseband signal. Adders 157 and 158 add / subtract the two pairs of signals output from multipliers 153 to 156, and output the added / subtracted signals to the outside as second digital baseband signals.
マルチプレクサ部160において、一対のマルチプレクサ161及び162は、ステップS18で設定された周波数変換部15側の入力(第2のデジタルベースバンド信号)を選択し、選択した信号を外部へ出力する。
In the multiplexer unit 160, the pair of multiplexers 161 and 162 selects the input (second digital baseband signal) on the frequency conversion unit 15 side set in step S18, and outputs the selected signal to the outside.
レート変換部17において、一対のレート変換器171及び172は、ステップS18で設定されたレート変換率で入力された第2のデジタルベースバンド信号のレートを変換し、変換した信号を第3のデジタルベースバンド信号として外部へ出力する。
In the rate conversion unit 17, the pair of rate converters 171 and 172 converts the rate of the second digital baseband signal input at the rate conversion rate set in step S18, and converts the converted signal to the third digital signal. Output to the outside as a baseband signal.
復調・復号処理部31は、入力された第3のデジタルベースバンド信号に対して、無線規格に対応した復調処理、復号処理を行い、測定BERを出力する(ステップS12)。
The demodulation / decoding processing unit 31 performs demodulation processing and decoding processing corresponding to the wireless standard on the input third digital baseband signal, and outputs a measurement BER (step S12).
信号品質測定部19は、上述の通り、AD変換部14出力である第1のデジタルベースバンド信号から、受信信号のSNRを測定し、測定したSNRを測定SNR値として出力する(ステップS13)。
As described above, the signal quality measurement unit 19 measures the SNR of the received signal from the first digital baseband signal output from the AD conversion unit 14, and outputs the measured SNR as a measured SNR value (step S13).
受信方式選択部32は、信号品質測定部19の出力の測定SNR値とステップS11で設定された参照信号品質(参照SNR値)とを比較する(ステップS14)。
The reception method selection unit 32 compares the measured SNR value output from the signal quality measurement unit 19 with the reference signal quality (reference SNR value) set in step S11 (step S14).
ここでは、測定信号品質が参照信号品質よりも高いため、受信方式選択部32は、ゼロIF方式を選択する方式選択信号を出力する(ステップS19)。
Here, since the measurement signal quality is higher than the reference signal quality, the reception method selection unit 32 outputs a method selection signal for selecting the zero IF method (step S19).
機能ブロック設定部21は、受信方式選択部32の出力のゼロIF方式を選択する方式選択信号が入力されると、現在低IF方式であるため、各機能ブロックに対してゼロIF方式の設定を行うことを決定する(ステップS20)。
When the method selection signal for selecting the zero IF method output from the reception method selection unit 32 is input, the function block setting unit 21 sets the zero IF method for each functional block because it is currently a low IF method. It is decided to perform (step S20).
次に、機能ブロック設定部21は、各機能ブロックを低IF方式に設定する設定信号を生成し、各機能ブロックへ設定信号を出力する(ステップS21)。
Next, the functional block setting unit 21 generates a setting signal for setting each functional block to the low IF method, and outputs the setting signal to each functional block (step S21).
ステップS21の処理により、無線受信装置30は、ゼロIF方式での動作を開始する。
The wireless reception device 30 starts the operation in the zero IF method by the processing in step S21.
さらに、測定信号品質が参照信号品質より低く(ステップS14でYes)、測定BERが参照BERよりは良い場合(ステップS15でNo)について説明を行う。
Furthermore, the case where the measurement signal quality is lower than the reference signal quality (Yes in step S14) and the measurement BER is better than the reference BER (No in step S15) will be described.
引き続き外部からRF信号の入力を受け続け、無線受信処理を行う。なお、ここでは、上述の通りゼロIF方式で受信を行っている。
Continue to receive RF signals from outside and perform wireless reception processing. Here, as described above, reception is performed by the zero IF method.
直交復調部12において、局部発振器121は、ステップS21で設定された周波数の局部発振信号を出力する。ミキサ123及び124は、局部発振器121出力と、移相器122により90度移相された移相局部発振信号と、入力所望RF信号と、をミキシングし、一対のベースバンドのI、Q信号を出力する。また、アンプ125及び126が上述の一対のベースバンドI、Q信号を増幅し、増幅した信号を第1のアナログベースバンド信号として外部へ出力する。
In the orthogonal demodulator 12, the local oscillator 121 outputs a local oscillation signal having the frequency set in step S21. The mixers 123 and 124 mix the local oscillator 121 output, the phase-shifted local oscillation signal phase shifted by 90 degrees by the phase shifter 122, and the input desired RF signal, and generate a pair of baseband I and Q signals. Output. The amplifiers 125 and 126 amplify the pair of baseband I and Q signals described above, and output the amplified signals to the outside as a first analog baseband signal.
ローパスフィルタ部13において、一対のローパスフィルタ131及び132は、入力された第1のアナログベースバンド信号に対して、ステップS21で設定された通過帯域を通過させ、第2のアナログベースバンド信号として外部へ出力する。
In the low-pass filter unit 13, the pair of low- pass filters 131 and 132 pass the passband set in step S21 with respect to the input first analog baseband signal, and externally pass as the second analog baseband signal. Output to.
AD変換部14において、一対のAD変換器141及び142は、入力された第2のアナログベースバンド信号に対して、ステップS21で設定されたサンプリングレートでデジタル変換する。AD変換部14は、デジタル変換した信号を第1のデジタルベースバンド信号として外部へ出力する。
In the AD conversion unit 14, the pair of AD converters 141 and 142 digitally convert the input second analog baseband signal at the sampling rate set in step S21. The AD converter 14 outputs the digitally converted signal to the outside as a first digital baseband signal.
マルチプレクサ部160において、一対のマルチプレクサ161及び162は、ステップS21で設定されたAD変換部14側の入力(第1のデジタルベースバンド信号)を選択し、選択した信号を外部へ出力する。
In the multiplexer unit 160, the pair of multiplexers 161 and 162 selects the input (first digital baseband signal) on the AD conversion unit 14 side set in step S21, and outputs the selected signal to the outside.
レート変換部17において、一対のレート変換器171及び172は、ステップS21で設定されたレート変換率で入力された第1のデジタルベースバンド信号のレートを変換し、変換した信号を第3のデジタルベースバンド信号として外部へ出力する。
In the rate conversion unit 17, the pair of rate converters 171 and 172 convert the rate of the first digital baseband signal input at the rate conversion rate set in step S21, and convert the converted signal to the third digital signal. Output to the outside as a baseband signal.
復調・復号処理部31は、入力された第3のデジタルベースバンド信号に対して、無線規格に対応した復調処理、復号処理を行い、測定BERを出力する(ステップS12)。
The demodulation / decoding processing unit 31 performs demodulation processing and decoding processing corresponding to the wireless standard on the input third digital baseband signal, and outputs a measurement BER (step S12).
信号品質測定部19は、上述の通り、AD変換部14の出力である第1のデジタルベースバンド信号から、受信信号のSNRを測定し、測定したSNRを測定SNR値として出力する(ステップS13)。
As described above, the signal quality measurement unit 19 measures the SNR of the received signal from the first digital baseband signal that is the output of the AD conversion unit 14, and outputs the measured SNR as a measured SNR value (step S13). .
受信方式選択部32は、信号品質測定部19出力の測定SNR値と、ステップS11で設定された参照信号品質(参照SNR値)と、の比較を行う(ステップS14)。
The reception method selection unit 32 compares the measured SNR value output from the signal quality measurement unit 19 with the reference signal quality (reference SNR value) set in step S11 (step S14).
受信方式選択部32は、復調・復号処理部31の出力の測定BERと、ステップS11で設定された参照BERとの比較を行う(ステップS15)。
The reception method selection unit 32 compares the measurement BER of the output of the demodulation / decoding processing unit 31 with the reference BER set in step S11 (step S15).
そして、受信方式選択部32は、ゼロIF方式を選択する方式選択信号を出力する(ステップS19)。
Then, the reception method selection unit 32 outputs a method selection signal for selecting the zero IF method (step S19).
機能ブロック設定部21は、受信方式選択部32出力のゼロIF方式を選択する方式選択信号が入力されると、現在ゼロIF方式であるため、各機能ブロックに対して設定変更を行わない(ステップS20)。
When the method selection signal for selecting the zero IF method output from the reception method selection unit 32 is input, the functional block setting unit 21 does not change the setting for each functional block because it is currently the zero IF method (step S20).
ステップS20の処理により、無線受信装置30は、引き続きゼロIF方式での動作を行う。
The wireless reception device 30 continues to operate in the zero IF method by the processing in step S20.
そして、引き続き同様の動作を続け、無線受信が終了したらループを抜ける。
Then, the same operation is continued, and the loop is exited when wireless reception is completed.
このように信号品質が悪い(SNRが低い)場合(ステップS14でYes)は、受信性能が劣化する可能性があるゼロIF方式から、ゼロIF方式に対して受信性能の改善が見込める低IF方式へ変更する。その一方で信号品質が良い(SNRが高い)場合(ステップS14でNo)は、消費電力の高い低IF方式から、低IF方式に対して消費電力の低減が見込めるゼロIF方式へ変更する。
When the signal quality is poor (SNR is low) (Yes in step S14), the low IF method is expected to improve the reception performance with respect to the zero IF method from the zero IF method in which the reception performance may be deteriorated. Change to On the other hand, if the signal quality is good (SNR is high) (No in step S14), the low-IF method with high power consumption is changed to the zero-IF method that can be expected to reduce power consumption with respect to the low-IF method.
以上で説明したように、本発明の第3の実施形態に係る無線受信装置30は、測定した信号品質に基づいて受信方式の変更を行うことで、受信性能をある程度維持しつつ消費電力を低減させることが可能である。
As described above, the radio reception device 30 according to the third embodiment of the present invention reduces the power consumption while maintaining the reception performance to some extent by changing the reception method based on the measured signal quality. It is possible to make it.
また、本実施形態では、第1の実施形態の効果に加えて、受信方式を選択する際にビット誤り率(BER)を利用可能になる。そのため、バースト的にSNRが悪くなる瞬間があるが、受信方式を切り替えるほどビット誤り率(BER)が悪くない場合に余分な切り替えが発生しないなど、方式選択の正確性が向上することが期待される。
(第4の実施形態)
次に、本発明の第4の実施形態に係る無線受信装置40について説明する。なお、第4の実施形態では、ゼロIF方式において受信信号に対して補正(補償)を行う場合について説明する。 In this embodiment, in addition to the effects of the first embodiment, a bit error rate (BER) can be used when selecting a reception method. For this reason, there are moments when the SNR deteriorates in bursts, but it is expected that the accuracy of method selection will be improved, such as no extra switching occurring when the bit error rate (BER) is not so bad that the reception method is switched. The
(Fourth embodiment)
Next, a radio reception device 40 according to the fourth embodiment of the present invention will be described. In the fourth embodiment, a case where correction (compensation) is performed on a received signal in the zero IF method will be described.
(第4の実施形態)
次に、本発明の第4の実施形態に係る無線受信装置40について説明する。なお、第4の実施形態では、ゼロIF方式において受信信号に対して補正(補償)を行う場合について説明する。 In this embodiment, in addition to the effects of the first embodiment, a bit error rate (BER) can be used when selecting a reception method. For this reason, there are moments when the SNR deteriorates in bursts, but it is expected that the accuracy of method selection will be improved, such as no extra switching occurring when the bit error rate (BER) is not so bad that the reception method is switched. The
(Fourth embodiment)
Next, a radio reception device 40 according to the fourth embodiment of the present invention will be described. In the fourth embodiment, a case where correction (compensation) is performed on a received signal in the zero IF method will be described.
本実施形態に係る受信装置のブロック構成図の一例を図10に示す。
FIG. 10 shows an example of a block configuration diagram of the receiving apparatus according to the present embodiment.
図10において、本発明の第4の実施形態に係る無線受信装置40は、第1の実施形態に対して、AD変換部14と周波数変換部15の間に信号補正部165を追加し、周波数変換部15を信号補正部165出力のNCOパラメータを入力するよう変更している。また、本実施形態に係る無線受信装置40では、マルチプレクサ部160を削除し、機能ブロック設定部21からマルチプレクサ部160に対する出力(入力選択設定)を削除している。
In FIG. 10, the wireless reception device 40 according to the fourth embodiment of the present invention adds a signal correction unit 165 between the AD conversion unit 14 and the frequency conversion unit 15 to the first embodiment, and the frequency The conversion unit 15 is changed to input the NCO parameter output from the signal correction unit 165. In the wireless reception device 40 according to the present embodiment, the multiplexer unit 160 is deleted, and the output (input selection setting) to the multiplexer unit 160 is deleted from the functional block setting unit 21.
第4の実施形態では、ゼロIF方式の際にデジタル信号処理により補正を行うことで、ゼロIF方式の受信性能を向上させることが可能になる。これにより、低IF方式に方式変更する参照SNRを低めに設定することができるため、低IF方式である時間が短縮し消費電力が低減する。
In the fourth embodiment, it is possible to improve the reception performance of the zero IF method by performing correction by digital signal processing in the case of the zero IF method. As a result, the reference SNR for changing the method to the low IF method can be set lower, so that the time required for the low IF method is shortened and the power consumption is reduced.
以下、第4の実施形態に係る無線受信装置40についてより詳細に説明する。なお、図10において、信号補正部165以外の部位の構成に関しては第1の実施形態に係る無線受信装置10と同一であるので、同一の要素については同一の呼称と参照番号で示し、詳細な説明は省略した。
Hereinafter, the wireless reception device 40 according to the fourth embodiment will be described in more detail. In FIG. 10, the configuration of parts other than the signal correction unit 165 is the same as that of the wireless reception device 10 according to the first embodiment, and therefore, the same elements are denoted by the same names and reference numerals, and detailed description thereof is omitted. The explanation was omitted.
信号補正部165は、補正パラメータ計算部166と、一対の加算器167及び168と、乗算器169と、を備える。
The signal correction unit 165 includes a correction parameter calculation unit 166, a pair of adders 167 and 168, and a multiplier 169.
信号補正部165は、AD変換部14の出力のI、Q信号を入力とし、補正パラメータ計算部166出力のDCオフセットをI、Q信号から減算し、補正パラメータ計算部166出力の重み係数をI信号に乗算し、補正ベースバンド信号として出力する。また、補正パラメータ計算部166の出力するNCOパラメータは、そのまま外部へ出力する。
The signal correction unit 165 receives the I and Q signals output from the AD conversion unit 14 as inputs, subtracts the DC offset of the correction parameter calculation unit 166 output from the I and Q signals, and sets the weight coefficient of the correction parameter calculation unit 166 output as I. Multiply the signal and output as a corrected baseband signal. Further, the NCO parameter output from the correction parameter calculation unit 166 is output to the outside as it is.
周波数変換部41は、NCO(数値制御発振器)411と、移相器152と、4個の乗算器153~156と、一対の加算器157及び158と、を備える。
The frequency conversion unit 41 includes an NCO (Numerically Controlled Oscillator) 411, a phase shifter 152, four multipliers 153 to 156, and a pair of adders 157 and 158.
周波数変換部41は、信号補正部165の出力のI、Q信号を入力とし、NCO設定又はNCOパラメータに基づき、信号補正部165の出力のI、Q信号と、NCO151及び移相器152出力の複素信号と、を複素乗算することで周波数変換を行う。そして、周波数変換部41は、周波数変換したベースバンドのI、Q信号(第2のデジタルベースバンド信号)を出力する。
The frequency conversion unit 41 receives the I and Q signals output from the signal correction unit 165 as input, and outputs the I and Q signals output from the signal correction unit 165, the NCO 151, and the phase shifter 152 output based on the NCO setting or NCO parameter. Frequency conversion is performed by complex multiplication of the complex signal. The frequency converting unit 41 outputs baseband I and Q signals (second digital baseband signals) subjected to frequency conversion.
機能ブロック設定部42は、受信方式選択部20の出力の方式選択信号を入力とし、直交復調部12、ローパスフィルタ部13、AD変換部14、周波数変換部41、レート変換部17のそれぞれの動作状態を制御する制御信号を出力する。
The functional block setting unit 42 receives the method selection signal output from the reception method selection unit 20 as an input, and each operation of the quadrature demodulation unit 12, the low-pass filter unit 13, the AD conversion unit 14, the frequency conversion unit 41, and the rate conversion unit 17. A control signal for controlling the state is output.
機能ブロック設定部42は、直交復調部12には局部発振器の周波数・利得設定(設定LG)、ローパスフィルタ部13には通過帯域設定(設定B)、AD変換部14にはサンプリング周波数設定(設定S)に関する制御信号を出力する。また、機能ブロック設定部42は、周波数変換部41にはNCO周波数設定(設定N)、レート変換部17にはレート変換率設定(設定R)に関する制御信号を出力する。
The functional block setting unit 42 sets the frequency / gain setting (setting LG) of the local oscillator in the quadrature demodulation unit 12, sets the passband (setting B) in the low-pass filter unit 13, and sets the sampling frequency (settings) in the AD conversion unit 14. The control signal regarding S) is output. Further, the functional block setting unit 42 outputs a control signal related to NCO frequency setting (setting N) to the frequency conversion unit 41 and to a rate conversion rate setting (setting R) to the rate conversion unit 17.
以上で説明した信号補正部165、周波数変換部41、機能ブロック設定部42以外については、図5に示した第1の実施形態と同一である。
Other than the signal correction unit 165, the frequency conversion unit 41, and the functional block setting unit 42 described above are the same as those in the first embodiment shown in FIG.
(動作)
本発明の第4の実施形態に係る無線受信装置40の動作について、図6及び図10を参照しながら説明する。ここでは、第1の実施形態の動作説明と同様に、低IF方式が選択される場合とゼロIF方式が選択される場合とで分けて順に説明を行う。 (Operation)
The operation of the wireless reception device 40 according to the fourth embodiment of the present invention will be described with reference to FIGS. Here, similarly to the description of the operation of the first embodiment, the case where the low IF method is selected and the case where the zero IF method is selected will be described in order.
本発明の第4の実施形態に係る無線受信装置40の動作について、図6及び図10を参照しながら説明する。ここでは、第1の実施形態の動作説明と同様に、低IF方式が選択される場合とゼロIF方式が選択される場合とで分けて順に説明を行う。 (Operation)
The operation of the wireless reception device 40 according to the fourth embodiment of the present invention will be described with reference to FIGS. Here, similarly to the description of the operation of the first embodiment, the case where the low IF method is selected and the case where the zero IF method is selected will be described in order.
最初に、上位のコントローラ等により、無線受信装置40の初期設定が行われる(ステップS1)。なお、ここでは、消費電力を抑えるためにゼロIF方式で受信を開始するものとする。以下の各機能ブロックの動作は、図6のフローチャートには示していない。
First, the wireless receiver 40 is initially set by a host controller or the like (step S1). Here, it is assumed that reception is started by the zero IF method in order to reduce power consumption. The operations of the following functional blocks are not shown in the flowchart of FIG.
ステップS1の初期設定により、高周波部11、直交復調部12、ローパスフィルタ部13、AD変換部14、レート変換部17が受信する無線規格に対応し、ゼロIF方式で動作するための適切な設定が行われる。
Appropriate settings for operating in the zero IF system corresponding to the radio standards received by the high-frequency unit 11, the quadrature demodulation unit 12, the low-pass filter unit 13, the AD conversion unit 14, and the rate conversion unit 17 by the initial setting in step S1. Is done.
無線受信装置10に対する初期設定が終了したら、外部からRF信号の入力を受け始め、無線受信処理を開始する。上述の通り、ここでは、ゼロIF方式での受信を開始する。
When the initial setting for the wireless receiving device 10 is completed, an RF signal input is started from the outside, and the wireless reception process is started. As described above, reception by the zero IF method is started here.
高周波部11は、入力のRF信号に対して、ステップS1で設定された受信周波数帯域以外の信号を減衰するとともに、受信周波数帯域の信号を増幅し、所望RF信号を出力する。
The high frequency unit 11 attenuates a signal other than the reception frequency band set in step S1 with respect to the input RF signal, amplifies the signal in the reception frequency band, and outputs a desired RF signal.
直交復調部12において、局部発振器121は、ステップS1で設定された周波数の局部発振信号を出力する。ミキサ123及び124は、局部発振器121の出力と、移相器122により90度移相された移相局部発振信号と、入力所望RF信号とをミキシングし、一対のベースバンドのI、Q信号を出力する。また、アンプ125及び126が上述の一対のベースバンドI、Q信号を増幅し、増幅した信号を第1のアナログベースバンド信号として外部へ出力する。
In the quadrature demodulator 12, the local oscillator 121 outputs a local oscillation signal having the frequency set in step S1. The mixers 123 and 124 mix the output of the local oscillator 121, the phase-shifted local oscillation signal shifted by 90 degrees by the phase shifter 122, and the input desired RF signal, and generate a pair of baseband I and Q signals. Output. The amplifiers 125 and 126 amplify the pair of baseband I and Q signals described above, and output the amplified signals to the outside as a first analog baseband signal.
ローパスフィルタ部13において、一対のローパスフィルタ131及び132は、入力された第1のアナログベースバンド信号に対して、ステップS1で設定された通過帯域を通過させ、第2のアナログベースバンド信号として外部へ出力する。
In the low-pass filter unit 13, the pair of low- pass filters 131 and 132 pass the pass band set in step S1 with respect to the input first analog baseband signal, and externally pass as the second analog baseband signal. Output to.
AD変換部14において、一対のAD変換器141及び142は、入力された第2のアナログベースバンド信号に対して、ステップS1で設定されたサンプリングレートでデジタル変換を行う。AD変換部14は、デジタル変換した信号を第1のデジタルベースバンド信号として外部へ出力する。
In the AD conversion unit 14, the pair of AD converters 141 and 142 performs digital conversion on the input second analog baseband signal at the sampling rate set in step S1. The AD converter 14 outputs the digitally converted signal to the outside as a first digital baseband signal.
信号補正部165において、補正パラメータ計算部166は、ゼロIF方式では、入力I、Q信号から補正パラメータを計算し、DCオフセットと、重み係数と、NCOパラメータ(数値制御発振パラメータ)とを出力する。一対の加算器167及び168は、入力I、Q信号からDCオフセットを減算する。乗算器169は、入力I信号と重み係数とを乗算し、Q信号と合わせて補正ベースバンド信号として出力する。
In the signal correction unit 165, in the zero IF method, the correction parameter calculation unit 166 calculates a correction parameter from the input I and Q signals, and outputs a DC offset, a weighting factor, and an NCO parameter (numerically controlled oscillation parameter). . A pair of adders 167 and 168 subtract the DC offset from the input I and Q signals. Multiplier 169 multiplies the input I signal and the weighting coefficient, and outputs the result together with the Q signal as a corrected baseband signal.
周波数変換部41において、NCO411は、ゼロIF方式では、補正パラメータ計算部166の出力するNCOパラメータに基づいた周波数の数値制御発振信号を出力する。乗算器153~156は、NCO411の出力及び移相器152により90度移相された移相数値制御発振信号と補正ベースバンド信号とを乗算する。加算器157及び158は、乗算器153~156出力の二対の信号をそれぞれ加算・減算し、加算・減算した信号を第2のデジタルベースバンド信号として外部へ出力する。
In the frequency conversion unit 41, the NCO 411 outputs a numerically controlled oscillation signal having a frequency based on the NCO parameter output from the correction parameter calculation unit 166 in the zero IF method. Multipliers 153 to 156 multiply the output of NCO 411 and the phase shift numerical control oscillation signal shifted by 90 degrees by phase shifter 152 and the corrected baseband signal. Adders 157 and 158 add and subtract two pairs of signals output from multipliers 153 to 156, respectively, and output the added and subtracted signals to the outside as second digital baseband signals.
なお、ゼロIF方式においては、周波数変換と位相回転とは同じ演算器を用いて計算できるため、周波数変換部41は、信号補正部165の推定したパラメータに基づいて、受信信号の位相回転処理を行う。後述するように、低IF方式では、周波数変換部41は、第1及び第2の実施形態と同様に、周波数変換のために利用される。
In the zero IF method, since frequency conversion and phase rotation can be calculated using the same arithmetic unit, the frequency conversion unit 41 performs phase rotation processing of the received signal based on the parameters estimated by the signal correction unit 165. Do. As will be described later, in the low IF method, the frequency conversion unit 41 is used for frequency conversion as in the first and second embodiments.
レート変換部17において、一対のレート変換器171及び172は、ステップS1で設定されたレート変換率で入力された第1のデジタルベースバンド信号のレートを変換し、変換した信号を第3のデジタルベースバンド信号として外部へ出力する。
In the rate conversion unit 17, the pair of rate converters 171 and 172 convert the rate of the first digital baseband signal input at the rate conversion rate set in step S1, and convert the converted signal to the third digital signal. Output to the outside as a baseband signal.
復調・復号処理部18は、入力された第3のデジタルベースバンド信号に対して、無線規格に対応した復調処理・復号処理を行う。
The demodulation / decoding processing unit 18 performs demodulation processing / decoding processing corresponding to the wireless standard on the input third digital baseband signal.
ここで、信号品質測定部19は、AD変換部14出力の第1のデジタルベースバンド信号から、受信信号の信号品質として信号対雑音電力比(SNR)を測定し、測定したSNRを測定信号品質(測定SNR値)として出力する(ステップS2)。
Here, the signal quality measurement unit 19 measures the signal-to-noise power ratio (SNR) as the signal quality of the received signal from the first digital baseband signal output from the AD conversion unit 14, and the measured SNR is measured signal quality. It outputs as (measured SNR value) (step S2).
以下では、まず、測定信号品質が参照信号品質より低い場合(図6のステップS3でYesの場合)について説明を行う。なお、この段階では、上述の通りゼロIF方式で受信を行っている。
Hereinafter, first, a case where the measurement signal quality is lower than the reference signal quality (in the case of Yes in step S3 in FIG. 6) will be described. At this stage, reception is performed by the zero IF method as described above.
受信方式選択部20は、信号品質測定部19の出力の測定信号品質(測定SNR値)とステップS1で設定された参照信号品質(参照SNR値)とを比較する(ステップS3)。
The reception method selection unit 20 compares the measurement signal quality (measurement SNR value) output from the signal quality measurement unit 19 with the reference signal quality (reference SNR value) set in step S1 (step S3).
ここでは、測定信号品質が参照信号品質より低いため、受信方式選択部20は、低IF方式を選択する方式選択信号を出力する(ステップS4)。
Here, since the measurement signal quality is lower than the reference signal quality, the reception method selection unit 20 outputs a method selection signal for selecting the low IF method (step S4).
機能ブロック設定部42は、受信方式選択部20の出力の低IF方式を選択する方式選択信号が入力されると、現在ゼロIF方式であるため、各機能ブロックに対して低IF方式の設定を行うことを決定する(ステップS5)。
When the method selection signal for selecting the low IF method output from the reception method selection unit 20 is input, the functional block setting unit 42 is currently in the zero IF method, and therefore sets the low IF method for each functional block. It is decided to perform (step S5).
ここで、低IF方式であった場合は、方式変更は行わず現在のループを終了する。
Here, if it is the low IF method, the current loop is terminated without changing the method.
次に、機能ブロック設定部42は、各機能ブロックを低IF方式に設定する設定信号を生成し、各機能ブロックへ設定信号を出力する(ステップS6)。
Next, the functional block setting unit 42 generates a setting signal for setting each functional block to the low IF method, and outputs the setting signal to each functional block (step S6).
ステップS6の処理により、高周波部11、直交復調部12、ローパスフィルタ部13、AD変換部14、レート変換部17が受信する無線規格に対応し、低IF方式で動作するための適切な設定が行われる。そして、無線受信装置40は、低IF方式での動作を開始し、現在のループを終える。
By the processing in step S6, appropriate settings for operating in the low IF system corresponding to the radio standards received by the high frequency unit 11, the quadrature demodulation unit 12, the low pass filter unit 13, the AD conversion unit 14, and the rate conversion unit 17 are set. Done. Then, the wireless reception device 40 starts the operation in the low IF method and ends the current loop.
次に、測定信号品質が参照信号品質より高い状況になった場合について説明を行う(ステップS3でNoの場合)。引き続き外部からRF信号の入力を受け続け、無線受信処理を行う。なお、ここでは、上述の通り低IF方式で受信を行っている。
Next, a case where the measurement signal quality is higher than the reference signal quality will be described (No in step S3). Continue to receive an RF signal from the outside and perform wireless reception processing. Here, as described above, reception is performed by the low IF method.
直交復調部12において、局部発振器121は、ステップS6で設定された周波数の局部発振信号を出力する。ミキサ123及び124は、局部発振器121の出力と、移相器122により90度移相された移相局部発振信号と、入力所望RF信号と、をミキシングし、一対の中間周波数(IF)のI、Q信号を出力する。また、アンプ125及び126が上述した一対の中間周波数(IF)のI、Q信号を増幅し、増幅した信号を第1のアナログベースバンド信号として外部へ出力する。なお、I、Q信号を増幅した信号も中間周波数(IF)の信号であるが、上述の信号と名称をそろえるために、ベースバンド信号と呼称する。
In the quadrature demodulator 12, the local oscillator 121 outputs a local oscillation signal having the frequency set in step S6. The mixers 123 and 124 mix the output of the local oscillator 121, the phase-shifted local oscillation signal phase-shifted 90 degrees by the phase shifter 122, and the input desired RF signal, and a pair of intermediate frequency (IF) I's. , Q signal is output. In addition, the amplifiers 125 and 126 amplify the above-described pair of intermediate frequency (IF) I and Q signals and output the amplified signals to the outside as first analog baseband signals. A signal obtained by amplifying the I and Q signals is also an intermediate frequency (IF) signal, but is referred to as a baseband signal in order to have the same name as the above signal.
ローパスフィルタ部13において、一対のローパスフィルタ131及び132は、入力された第1のアナログベースバンド信号に対して、ステップS6で設定された通過帯域を通過させ、第2のアナログベースバンド信号として外部へ出力する。
In the low-pass filter unit 13, the pair of low- pass filters 131 and 132 pass the pass band set in step S 6 with respect to the input first analog baseband signal, and externally pass as the second analog baseband signal. Output to.
AD変換部14において、一対のAD変換器141及び142は、入力された第2のアナログベースバンド信号に対して、ステップS6で設定されたサンプリングレートでデジタル変換を行う。AD変換部14は、デジタル変換した信号を第1のデジタルベースバンド信号として外部へ出力する。
In the AD conversion unit 14, the pair of AD converters 141 and 142 performs digital conversion on the input second analog baseband signal at the sampling rate set in step S6. The AD converter 14 outputs the digitally converted signal to the outside as a first digital baseband signal.
信号補正部165において、補正パラメータ計算部166は、低IF方式では、入力I、Q信号から補正パラメータを計算せず、DCオフセットを0、重み係数を1と出力し、NCOパラメータは出力しない。一対の加算器167及び168は、入力I、Q信号からDCオフセットを減算する。なお、ここでは0が減算されるので、加算器167及び168の入出力で値に変化はない。乗算器169は、入力I信号と前記重み係数とを乗算し、Q信号と合わせて補正ベースバンド信号として出力する。なお、ここでは1が乗算されるので乗算器169の入出力で値に変化はない。
In the signal correction unit 165, in the low IF method, the correction parameter calculation unit 166 does not calculate the correction parameter from the input I and Q signals, outputs 0 as the DC offset, 1 as the weighting factor, and does not output the NCO parameter. A pair of adders 167 and 168 subtract the DC offset from the input I and Q signals. Since 0 is subtracted here, there is no change in the value at the input / output of the adders 167 and 168. The multiplier 169 multiplies the input I signal by the weighting factor, and outputs it as a corrected baseband signal together with the Q signal. Here, since 1 is multiplied, there is no change in the value at the input / output of the multiplier 169.
周波数変換部41において、NCO411は、低IF方式では、機能ブロック設定部42出力のNCO設定(ステップS6)に基づいた周波数の数値制御発振信号を出力する。乗算器153~156は、NCO411出力及び移相器152により90度移相された移相数値制御発振信号と補正ベースバンド信号とを乗算する。加算器157及び158は、乗算器153~156出力の二対の信号を加算及び減算し、第2のデジタルベースバンド信号として外部へ出力する。
In the frequency converter 41, the NCO 411 outputs a numerically controlled oscillation signal having a frequency based on the NCO setting (step S6) output from the functional block setting unit 42 in the low IF method. Multipliers 153 to 156 multiply the NCO 411 output and the phase shift numerical control oscillation signal shifted by 90 degrees by the phase shifter 152 and the corrected baseband signal. Adders 157 and 158 add and subtract two pairs of signals output from multipliers 153 to 156, and output the resulting signal as a second digital baseband signal.
ゼロIF方式においては、周波数変換と位相回転とは同じ演算器を用いて計算できるため、周波数変換部41は、信号補正部165の推定したパラメータに基づいて受信信号の位相回転処理を行う。後述するように、低IF方式では、周波数変換部41は、第1及び第2の実施形態と同様に、周波数変換のために利用される。
In the zero IF method, since frequency conversion and phase rotation can be calculated using the same computing unit, the frequency conversion unit 41 performs phase rotation processing of the received signal based on the parameters estimated by the signal correction unit 165. As will be described later, in the low IF method, the frequency conversion unit 41 is used for frequency conversion as in the first and second embodiments.
レート変換部17において、一対のレート変換器171及び172は、ステップS6で設定されたレート変換率で入力された第2のデジタルベースバンド信号のレートを変換し、変換した信号を第3のデジタルベースバンド信号として外部へ出力する。
In the rate conversion unit 17, the pair of rate converters 171 and 172 converts the rate of the second digital baseband signal input at the rate conversion rate set in step S6, and converts the converted signal to the third digital signal. Output to the outside as a baseband signal.
復調・復号処理部18は、入力された第3のデジタルベースバンド信号に対して、無線規格に対応した復調処理、復号処理を行う。
The demodulation / decoding processing unit 18 performs demodulation processing and decoding processing corresponding to the wireless standard on the input third digital baseband signal.
信号品質測定部19は、上述の通り、AD変換部14の出力である第1のデジタルベースバンド信号から、受信信号のSNRを測定し、測定したSNRを測定SNR値として出力する(ステップS2)。
As described above, the signal quality measurement unit 19 measures the SNR of the received signal from the first digital baseband signal that is the output of the AD conversion unit 14, and outputs the measured SNR as a measured SNR value (step S2). .
受信方式選択部20は、信号品質測定部19の出力の測定SNR値とステップS1で設定された参照信号品質(参照SNR値)とを比較する(ステップS3)。
The reception method selection unit 20 compares the measured SNR value of the output of the signal quality measurement unit 19 with the reference signal quality (reference SNR value) set in step S1 (step S3).
ここでは、測定信号品質が参照信号品質よりも高いため、受信方式選択部20は、ゼロIF方式を選択する方式選択信号を出力する(ステップS7)。
Here, since the measurement signal quality is higher than the reference signal quality, the reception method selection unit 20 outputs a method selection signal for selecting the zero IF method (step S7).
機能ブロック設定部42は、受信方式選択部20出力のゼロIF方式を選択する方式選択信号が入力されると、現在低IF方式であるため、各機能ブロックに対してゼロIF方式の設定を行うことを決定する(ステップS8)。
When the method selection signal for selecting the zero IF method output from the reception method selection unit 20 is input, the functional block setting unit 42 sets the zero IF method for each functional block because it is currently the low IF method. Is determined (step S8).
次に、機能ブロック設定部42は、各機能ブロックを低IF方式に設定する設定信号を生成し、各機能ブロックへ設定信号を出力する(ステップS9)。
Next, the functional block setting unit 42 generates a setting signal for setting each functional block to the low IF method, and outputs the setting signal to each functional block (step S9).
ステップS9の処理により、無線受信装置40は、ゼロIF方式での動作を開始する。
The wireless receiver 40 starts the operation in the zero IF method by the process of step S9.
同様の動作を続け、無線受信が終了したらループを抜ける。
続 け Continue the same operation and exit the loop when wireless reception ends.
このように、信号品質が悪い(SNRが低い)場合(ステップS3でYes)は、受信性能が劣化する可能性があるゼロIF方式から、ゼロIF方式に対して受信性能の改善が見込める低IF方式へ変更する。その一方で、信号品質が良い(SNRが高い)場合(ステップS3でNo)は、消費電力の高い低IF方式から、低IF方式に対して消費電力の低減が見込めるゼロIF方式へ変更する。
As described above, when the signal quality is poor (SNR is low) (Yes in step S3), the reception performance can be deteriorated from the zero IF method in which the reception performance may be deteriorated. Change to method. On the other hand, when the signal quality is good (SNR is high) (No in step S3), the low IF method with high power consumption is changed to the zero IF method that can reduce power consumption with respect to the low IF method.
以上で説明したように、本発明の第4の実施形態に係る無線受信装置40によれば、測定した信号品質に基づいて受信方式の変更を行うことで、受信性能をある程度維持しつつ消費電力を低減させることが可能である。また、本実施形態では、以上に示した第1の実施形態の効果に加えて、ゼロIF方式の際に信号処理により補償を行うことで、少ない回路規模追加でゼロIF方式の受信性能を向上させることが可能になる。これにより、低IF方式に方式変更する参照SNRを低めに設定することが可能になるので、更なる消費電力の低減が可能になる。
As described above, according to the wireless reception device 40 according to the fourth embodiment of the present invention, the power consumption is maintained while maintaining the reception performance to some extent by changing the reception method based on the measured signal quality. Can be reduced. In addition to the effects of the first embodiment described above, this embodiment improves the reception performance of the zero IF method with a small circuit scale addition by performing compensation by signal processing in the case of the zero IF method. It becomes possible to make it. As a result, it is possible to set the reference SNR for changing the method to the low IF method to a lower value, so that the power consumption can be further reduced.
以上、実施形態を参照して本発明を説明してきたが、本発明は上記実施形態に限定されるものではない。本発明の構成や詳細には、本発明のスコープ内で当業者が理解し得る様々な変更をすることができる。
Although the present invention has been described above with reference to the embodiments, the present invention is not limited to the above embodiments. Various changes that can be understood by those skilled in the art can be made to the configuration and details of the present invention within the scope of the present invention.
この出願は、2013年6月11日に出願された日本出願特願2013-122437を基礎とする優先権を主張し、その開示の全てをここに取り込む。
This application claims priority based on Japanese Patent Application No. 2013-122437 filed on June 11, 2013, the entire disclosure of which is incorporated herein.
1、10、200、30、40 無線受信装置
2 受信方式設定手段
5 ゼロIF受信機
6 低IF受信機
11 高周波部
12 直交復調部
13 ローパスフィルタ部
14 AD変換部
15、41 周波数変換部
16 受信方式切替部
17 レート変換部
18、31 復調・復号処理部
19 信号品質測定部
20、32 受信方式選択部
21、26、42 機能ブロック設定部
111 バンドパスフィルタ
112 ローノイズアンプ
113、131 ローパスフィルタ
121 局所発振器
122、152 移相器
123 ミキサ
125 アンプ
141 AD変換器
151、411 NCO
153、154、169 乗算器
157、167 加算器
160 マルチプレクサ部
161 マルチプレクサ
165 信号補正部
166 補正パラメータ計算部
171 レート変換器 DESCRIPTION OFSYMBOLS 1, 10, 200, 30, 40 Wireless receiver 2 Reception system setting means 5 Zero IF receiver 6 Low IF receiver 11 High frequency part 12 Orthogonal demodulation part 13 Low pass filter part 14 AD conversion part 15, 41 Frequency conversion part 16 Reception Method switching unit 17 Rate conversion unit 18, 31 Demodulation / decoding processing unit 19 Signal quality measurement unit 20, 32 Reception method selection unit 21, 26, 42 Function block setting unit 111 Band pass filter 112 Low noise amplifier 113, 131 Low pass filter 121 Local Oscillator 122, 152 Phase shifter 123 Mixer 125 Amplifier 141 AD converter 151, 411 NCO
153, 154, 169 Multiplier 157, 167 Adder 160 Multiplexer 161 Multiplexer 165 Signal corrector 166 Correction parameter calculator 171 Rate converter
2 受信方式設定手段
5 ゼロIF受信機
6 低IF受信機
11 高周波部
12 直交復調部
13 ローパスフィルタ部
14 AD変換部
15、41 周波数変換部
16 受信方式切替部
17 レート変換部
18、31 復調・復号処理部
19 信号品質測定部
20、32 受信方式選択部
21、26、42 機能ブロック設定部
111 バンドパスフィルタ
112 ローノイズアンプ
113、131 ローパスフィルタ
121 局所発振器
122、152 移相器
123 ミキサ
125 アンプ
141 AD変換器
151、411 NCO
153、154、169 乗算器
157、167 加算器
160 マルチプレクサ部
161 マルチプレクサ
165 信号補正部
166 補正パラメータ計算部
171 レート変換器 DESCRIPTION OF
153, 154, 169
Claims (10)
- 受信信号を基にデジタル信号を生成する受信手段と、
前記受信信号を基に生成されたデジタル信号の信号品質を測定して測定信号品質を生成し、生成した前記測定信号品質と予め設定した参照信号品質との比較結果に基づいて前記受信信号の受信方式を選択して方式選択信号を生成し、前記信号品質が変化した時点において、前記方式選択信号に応じて制御信号を生成し、生成した前記制御信号を前記受信手段に出力する受信方式設定手段とを備え、
前記受信手段は、
前記制御信号に応じて消費電力が異なる方式に前記受信方式を切り替える無線受信装置。 Receiving means for generating a digital signal based on the received signal;
Measuring the signal quality of the digital signal generated based on the received signal to generate a measurement signal quality, and receiving the received signal based on a comparison result between the generated measurement signal quality and a preset reference signal quality A reception method setting unit that generates a method selection signal by selecting a method, generates a control signal in accordance with the method selection signal at the time when the signal quality changes, and outputs the generated control signal to the reception unit And
The receiving means includes
A wireless reception device that switches the reception method to a method with different power consumption according to the control signal. - 前記デジタル信号の信号品質を測定して前記測定信号品質を生成し、生成した前記測定信号品質を出力する信号品質測定手段と、
前記参照信号品質と前記測定信号品質との比較結果に基づいて前記受信方式を選択して前記方式選択信号を生成し、生成した前記方式選択信号を出力する受信方式選択手段と、
前記方式選択信号に応じて信号処理を実行する機能ブロック群の設定を制御する前記制御信号を出力する機能ブロック設定手段とを備える請求項1に記載の無線受信装置。 Signal quality measuring means for measuring the signal quality of the digital signal to generate the measurement signal quality and outputting the generated measurement signal quality;
Receiving method selection means for generating the method selection signal by selecting the reception method based on a comparison result between the reference signal quality and the measurement signal quality, and outputting the generated method selection signal;
The radio reception apparatus according to claim 1, further comprising: a function block setting unit that outputs the control signal that controls setting of a function block group that executes signal processing according to the method selection signal. - 前記受信信号に含まれる高周波信号を入力とし、入力した前記高周波信号のうち前記受信周波数帯以外の高周波信号を減衰するとともに前記受信周波数帯に含まれる前記高周波信号を増幅する高周波手段と、
局部発振器を有し、前記高周波手段によって出力された前記高周波信号を入力して中間周波数信号又はベースバンドのI信号及びQ信号からなる第1のアナログベースバンド信号に変換する直交復調手段と、
前記第1のアナログベースバンド信号を入力とし、入力した前記第1のアナログベースバンド信号を帯域制限して第2のアナログベースバンド信号に変換するローパスフィルタ手段と、
前記第2のアナログベースバンド信号を入力して第1のデジタルベースバンド信号にデジタル変換するアナログ-デジタル変換手段と、
数値制御発振器を有し、前記第1のデジタルベースバンド信号を入力して第2のデジタルベースバンド信号に周波数変換する周波数変換手段と、
前記周波数変換手段よりも後段で使用する信号として前記第1及び第2のデジタルベースバンド信号のいずれかが選択されるように前記受信方式を切り替える受信方式切替手段と、
前記第1又は第2のデジタルベースバンド信号を入力とし、入力した前記第1又は第2のデジタルベースバンド信号を所望のレートのサンプリングレートに低下させて第3のデジタルベースバンド信号に変換するレート変換手段と、
前記第3のデジタルベースバンド信号を入力して復調・復号処理を行う復調・復号処理部手段とを備え、
前記信号品質測定手段は、
前記第1のデジタルベースバンド信号の信号品質を測定して生成した前記測定信号品質を出力し、
前記受信方式選択手段は、
前記参照信号品質と前記測定信号品質との比較結果に基づいて前記受信方式を選択して前記方式選択信号を出力し、
前記機能ブロック設定手段は、
前記信号品質が変化した時点において、前記方式選択信号に応じて、少なくとも前記直交復調手段と、前記ローパスフィルタ手段と、前記アナログ-デジタル変換手段と、前記周波数変換手段と、前記レート変換手段とを含む前記機能ブロック群の動作状態を制御する前記制御信号を生成し、前記制御信号を用いて前記機能ブロック群に含まれる各機能ブロックをブロック単位で制御する請求項1又は2に記載の無線受信装置。 High-frequency means for receiving a high-frequency signal included in the received signal, attenuating a high-frequency signal other than the reception frequency band in the input high-frequency signal and amplifying the high-frequency signal included in the reception frequency band;
A quadrature demodulating means that has a local oscillator and inputs the high-frequency signal output by the high-frequency means and converts it into a first analog baseband signal consisting of an intermediate frequency signal or a baseband I signal and a Q signal;
Low-pass filter means for taking the first analog baseband signal as an input, band-limiting the input first analog baseband signal and converting it to a second analog baseband signal;
Analog-to-digital conversion means for inputting the second analog baseband signal and converting it into a first digital baseband signal;
A frequency converting means having a numerically controlled oscillator, which receives the first digital baseband signal and converts the frequency into a second digital baseband signal;
A reception method switching means for switching the reception method so that one of the first and second digital baseband signals is selected as a signal to be used at a later stage than the frequency conversion means;
A rate at which the first or second digital baseband signal is input, and the input first or second digital baseband signal is reduced to a desired sampling rate and converted to a third digital baseband signal. Conversion means;
Demodulation and decoding processing means for inputting the third digital baseband signal and performing demodulation and decoding processing;
The signal quality measuring means includes
Outputting the measurement signal quality generated by measuring the signal quality of the first digital baseband signal;
The reception method selection means includes
Selecting the reception method based on a comparison result between the reference signal quality and the measurement signal quality and outputting the method selection signal;
The functional block setting means includes
At the time when the signal quality has changed, at least the quadrature demodulation means, the low-pass filter means, the analog-digital conversion means, the frequency conversion means, and the rate conversion means according to the method selection signal The radio reception according to claim 1 or 2, wherein the control signal for controlling an operation state of the functional block group including the control block is generated, and each functional block included in the functional block group is controlled in block units using the control signal. apparatus. - 前記受信方式選択手段は、
前記測定信号品質が前記参照信号品質よりも高い場合、前記第1のデジタルベースバンド信号を前記レート変換手段に入力することを選択し、
前記測定信号品質が前記参照信号品質よりも低い場合、前記第1のデジタルベースバンド信号を前記周波数変換手段に入力することを選択する請求項3に記載の無線受信装置。 The reception method selection means includes
If the measurement signal quality is higher than the reference signal quality, select to input the first digital baseband signal to the rate conversion means;
The radio reception apparatus according to claim 3, wherein when the measurement signal quality is lower than the reference signal quality, the first digital baseband signal is selected to be input to the frequency conversion unit. - 前記機能ブロック設定手段は、
前記直交復調手段に対して、前記直交復調手段が有する前記局部発振器の発信周波数と、入力信号に対する利得とに関する設定をし、
前記ローパスフィルタ手段に対して、前記入力信号の通過帯域設定に関する設定をし、
前記アナログ-デジタル変換手段に対して、前記第2のアナログベースバンド信号を前記第1のデジタルベースバンド信号に変換するためのサンプリング周波数に関する設定をし、
前記周波数変換手段に対して、前記周波数変換手段が有する前記数値制御発振器の発信周波数に関する設定をし、
前記レート変換手段に対して、前記入力信号のサンプリングレートのレート変換率に関する設定をする請求項3又は4に記載の無線受信装置。 The functional block setting means includes
For the quadrature demodulating means, setting regarding the oscillation frequency of the local oscillator that the quadrature demodulating means has and the gain for the input signal,
For the low-pass filter means, setting related to the passband setting of the input signal,
Setting the sampling frequency for converting the second analog baseband signal into the first digital baseband signal for the analog-digital conversion means;
For the frequency conversion means, setting for the transmission frequency of the numerically controlled oscillator that the frequency conversion means has,
The radio reception apparatus according to claim 3 or 4, wherein a setting relating to a rate conversion rate of a sampling rate of the input signal is made to the rate conversion means. - 前記受信方式切替手段は、
前記第1及び第2のデジタルベースバンド信号を入力し、前記機能ブロック設定手段が生成した入力設定に関する前記制御信号に応じて、前記第1及び第2のデジタルベースバンド信号のいずれかを選択するマルチプレクサを含む請求項3乃至5のいずれか一項に記載の無線受信装置。 The reception method switching means is
The first and second digital baseband signals are input, and one of the first and second digital baseband signals is selected according to the control signal relating to the input setting generated by the functional block setting means. The radio reception apparatus according to any one of claims 3 to 5, including a multiplexer. - 前記機能ブロック設定手段は、前記周波数変換手段に対して、前記数値制御発振器の発信周波数及びクロックゲーティング制御に関する設定をし、
前記測定信号品質が前記参照信号品質よりも高くなった場合、前記クロックゲーティング制御に関する設定に応じて前記周波数変換手段へのクロックの供給が停止される請求項3乃至6のいずれか一項に記載の無線受信装置。 The functional block setting means sets the frequency conversion means with respect to the oscillation frequency and clock gating control of the numerically controlled oscillator,
The clock supply to the frequency conversion unit is stopped according to the setting related to the clock gating control when the measurement signal quality is higher than the reference signal quality. The wireless receiving device described. - 前記復調・復号処理手段は、
前記第3のデジタルベースバンド信号を入力とし、入力した前記第3のデジタルベースバンド信号に対して前記高周波信号の無線規格に対応した復調・複号処理を行うことによってビット誤り率を測定し、測定したビット誤り率である測定ビット誤り率を出力し、
前記受信方式選択手段は、
前記参照信号品質と前記測定信号品質との比較と、予め設定された参照ビット誤り率と前記測定ビット誤り率との比較とによって前記受信方式の選択を行い、前記方式選択信号を出力する請求項3乃至7のいずれか一項に記載の無線受信装置。 The demodulation / decoding processing means includes
The bit error rate is measured by performing demodulation / decoding processing corresponding to the radio standard of the high-frequency signal on the input third digital baseband signal with the third digital baseband signal as input, Output the measured bit error rate, which is the measured bit error rate,
The reception method selection means includes
The reception method is selected by comparing the reference signal quality and the measurement signal quality, and comparing a preset reference bit error rate and the measurement bit error rate, and outputting the method selection signal. The wireless reception device according to any one of 3 to 7. - 前記受信方式切替手段は、
前記第1のデジタルベースバンド信号を入力し、入力した前記第1のデジタルベースバンド信号を基にDCオフセット、重み係数及び数値制御発振パラメータを計算し、
前記第1のデジタルベースバンド信号に変換された前記I信号及び前記Q信号から前記DCオフセットを減算し、
前記DCオフセットを減算した前記I信号と前記重み係数とを乗算し、
前記DCオフセットを減算した前記Q信号と、前記DCオフセットを減算後に前記重み係数を乗算された前記I信号とを合わせた補正ベースバンド信号を生成し、
前記周波数変換手段の有する前記数値制御発振器に対して前記数値制御発振パラメータを出力し、
前記周波数変換手段に対して前記補正ベースバンド信号を出力する請求項3乃至5のいずれか一項に記載の無線受信装置。 The reception method switching means is
Inputting the first digital baseband signal, calculating a DC offset, a weighting factor and a numerically controlled oscillation parameter based on the input first digital baseband signal;
Subtracting the DC offset from the I and Q signals converted to the first digital baseband signal;
Multiplying the I signal minus the DC offset by the weighting factor;
Generating a corrected baseband signal obtained by combining the Q signal obtained by subtracting the DC offset and the I signal multiplied by the weighting coefficient after subtracting the DC offset;
Output the numerically controlled oscillation parameter to the numerically controlled oscillator that the frequency conversion means has,
The radio reception apparatus according to claim 3, wherein the correction baseband signal is output to the frequency conversion unit. - 受信信号を基にデジタル信号を生成し、
受信信号を基に生成されたデジタル信号の信号品質を測定して測定信号品質を生成し、
生成した前記測定信号品質と予め設定した参照信号品質との比較結果に基づいて前記受信信号の受信方式を選択して方式選択信号を生成し、
前記信号品質が変化した時点において、前記方式選択信号に応じて制御信号を生成し、
前記制御信号に応じて消費電力が異なる方式に前記受信方式を切り替える無線受信方法。 Generate a digital signal based on the received signal,
Measure the signal quality of the digital signal generated based on the received signal to generate the measurement signal quality,
A method selection signal is generated by selecting a reception method of the reception signal based on a comparison result between the generated measurement signal quality and a preset reference signal quality,
When the signal quality changes, a control signal is generated according to the method selection signal,
A wireless reception method for switching the reception method to a method with different power consumption according to the control signal.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015522525A JPWO2014199600A1 (en) | 2013-06-11 | 2014-06-05 | Radio receiving apparatus and radio receiving method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013-122437 | 2013-06-11 | ||
JP2013122437 | 2013-06-11 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014199600A1 true WO2014199600A1 (en) | 2014-12-18 |
Family
ID=52021917
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/002990 WO2014199600A1 (en) | 2013-06-11 | 2014-06-05 | Wireless receiving device and wireless receiving method |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2014199600A1 (en) |
WO (1) | WO2014199600A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018182411A (en) * | 2017-04-05 | 2018-11-15 | ルネサスエレクトロニクス株式会社 | Radio receiver and intermediate frequency selection method |
CN115378550A (en) * | 2022-08-18 | 2022-11-22 | Oppo广东移动通信有限公司 | Signal transmission control method, system and related device |
JP7570197B2 (en) | 2019-08-30 | 2024-10-21 | ユー-ブロックス、アクチエンゲゼルシャフト | Discrete-time superheterodyne mixer |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112312490B (en) * | 2019-08-01 | 2022-09-16 | 中国移动通信集团浙江有限公司 | Signal switching device and system |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008098785A (en) * | 2006-10-06 | 2008-04-24 | Matsushita Electric Ind Co Ltd | Receiver |
JP2009526497A (en) * | 2006-02-09 | 2009-07-16 | クゥアルコム・インコーポレイテッド | Adaptive receiver for wireless communication equipment |
JP2011254426A (en) * | 2010-06-04 | 2011-12-15 | Asahi Kasei Electronics Co Ltd | Frequency conversion method of broadcast signal, frequency converter |
-
2014
- 2014-06-05 WO PCT/JP2014/002990 patent/WO2014199600A1/en active Application Filing
- 2014-06-05 JP JP2015522525A patent/JPWO2014199600A1/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009526497A (en) * | 2006-02-09 | 2009-07-16 | クゥアルコム・インコーポレイテッド | Adaptive receiver for wireless communication equipment |
JP2008098785A (en) * | 2006-10-06 | 2008-04-24 | Matsushita Electric Ind Co Ltd | Receiver |
JP2011254426A (en) * | 2010-06-04 | 2011-12-15 | Asahi Kasei Electronics Co Ltd | Frequency conversion method of broadcast signal, frequency converter |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018182411A (en) * | 2017-04-05 | 2018-11-15 | ルネサスエレクトロニクス株式会社 | Radio receiver and intermediate frequency selection method |
JP7570197B2 (en) | 2019-08-30 | 2024-10-21 | ユー-ブロックス、アクチエンゲゼルシャフト | Discrete-time superheterodyne mixer |
CN115378550A (en) * | 2022-08-18 | 2022-11-22 | Oppo广东移动通信有限公司 | Signal transmission control method, system and related device |
CN115378550B (en) * | 2022-08-18 | 2024-04-30 | Oppo广东移动通信有限公司 | Signal transmission control method, system and related device |
Also Published As
Publication number | Publication date |
---|---|
JPWO2014199600A1 (en) | 2017-02-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7783273B2 (en) | Method and system for calibrating frequencies-amplitude and phase mismatch in a receiver | |
JP4381945B2 (en) | Receiver, receiving method, and portable wireless terminal | |
JP3310114B2 (en) | A / D converter having frequency conversion function and wireless device using the same | |
US7587010B2 (en) | Complex filter circuit and receiver circuit | |
RU2308815C1 (en) | Demodulator and phase compensation method for it | |
KR20110102740A (en) | Apparatus for receiving signal and compensating phase mismatch method thereof | |
JP2008545339A (en) | Analog-to-digital converter with ping-pong architecture | |
CN104158552A (en) | Zero intermediate frequency transmitter, receiver and related method and system | |
JP5151785B2 (en) | Transmitter and transmitter / receiver | |
US8416899B2 (en) | Multimode filter architecture | |
JP2009089269A (en) | Wireless transmitter/receiver and radio transmitting method | |
JP4731569B2 (en) | Image suppression receiver | |
JP5402037B2 (en) | FM / AM demodulator, radio receiver, electronic device, and image correction adjustment method | |
WO2014199600A1 (en) | Wireless receiving device and wireless receiving method | |
JP4587893B2 (en) | Transceiver | |
KR100977938B1 (en) | In phase and quadrature path imbalance compensation | |
JP2010021889A (en) | Receiving apparatus | |
JPH09307380A (en) | Radio communication equipment with agc function | |
TWI543547B (en) | Multimode rf receiver and method for making symmetrical frequency response thereof | |
JP2008172568A (en) | Receiver | |
JP4214635B2 (en) | Digital radio equipment | |
JP6148728B2 (en) | Transmitter | |
JP5696668B2 (en) | Receiver and image rejection ratio measuring method | |
WO2011148442A1 (en) | Filter adjusting circuit and wireless communication system | |
JP2009177392A (en) | Receiver and calibration method of receiver |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14811143 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2015522525 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14811143 Country of ref document: EP Kind code of ref document: A1 |