WO2014199451A1 - アンテナ装置、及び、信号伝送システム - Google Patents

アンテナ装置、及び、信号伝送システム Download PDF

Info

Publication number
WO2014199451A1
WO2014199451A1 PCT/JP2013/066115 JP2013066115W WO2014199451A1 WO 2014199451 A1 WO2014199451 A1 WO 2014199451A1 JP 2013066115 W JP2013066115 W JP 2013066115W WO 2014199451 A1 WO2014199451 A1 WO 2014199451A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
signal
transmission
antennas
mode
Prior art date
Application number
PCT/JP2013/066115
Other languages
English (en)
French (fr)
Inventor
正夷 李
洋二 大橋
和美 河西
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to JP2015522318A priority Critical patent/JP6037008B2/ja
Priority to PCT/JP2013/066115 priority patent/WO2014199451A1/ja
Publication of WO2014199451A1 publication Critical patent/WO2014199451A1/ja
Priority to US14/872,444 priority patent/US9755323B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/14Reflecting surfaces; Equivalent structures
    • H01Q15/16Reflecting surfaces; Equivalent structures curved in two dimensions, e.g. paraboloidal
    • H01Q15/165Reflecting surfaces; Equivalent structures curved in two dimensions, e.g. paraboloidal composed of a plurality of rigid panels
    • H01Q15/166Reflecting surfaces; Equivalent structures curved in two dimensions, e.g. paraboloidal composed of a plurality of rigid panels sector shaped
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/14Reflecting surfaces; Equivalent structures
    • H01Q15/16Reflecting surfaces; Equivalent structures curved in two dimensions, e.g. paraboloidal
    • H01Q15/165Reflecting surfaces; Equivalent structures curved in two dimensions, e.g. paraboloidal composed of a plurality of rigid panels
    • H01Q15/167Reflecting surfaces; Equivalent structures curved in two dimensions, e.g. paraboloidal composed of a plurality of rigid panels comprising a gap between adjacent panels or group of panels, e.g. stepped reflectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • H01Q19/12Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces wherein the surfaces are concave
    • H01Q19/17Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces wherein the surfaces are concave the primary radiating source comprising two or more radiating elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/28Combinations of substantially independent non-interacting antenna units or systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/29Combinations of different interacting antenna units for giving a desired directional characteristic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q25/00Antennas or antenna systems providing at least two radiating patterns
    • H01Q25/007Antennas or antenna systems providing at least two radiating patterns using two or more primary active elements in the focal region of a focusing device
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/70Admission control; Resource allocation
    • H04L47/82Miscellaneous aspects

Definitions

  • the present invention relates to an antenna device and a signal transmission system.
  • Non-Patent Document 1 a microwave backhaul is used to connect a base station to a corresponding base station controller (for example, see Non-Patent Document 1).
  • the distance d for separating the transmission antennas Tx1 and Tx2 depends on the communication distance L as shown in the following equation (1).
  • is a wavelength.
  • L 400 m
  • d is about 5 m when the communication frequency is 2.4 GHz
  • d is about 1 m when the communication frequency is 60 GHz.
  • OAM orbital angular momentum
  • SAM spin angular momentum
  • the electromagnetic wave having OAM has a spiral wavefront and exhibits a linear phase delay depending on the azimuth angle.
  • the phase delay is expressed in electrical angle.
  • an OAM signal can be superimposed on the same (one) optical axis by using an optical coupler (see, for example, Non-Patent Document 3).
  • Electromagnetic waves having different OAM modes are orthogonal to each other, and a high capacity is achieved by a plurality of orthogonal channels.
  • radio frequency (RF) signal communication it is difficult to superimpose an OAM on one optical axis, and it is difficult to multiplex radio frequency (RF) signals.
  • an object of the present invention is to provide an antenna device and a signal transmission system that can easily multiplex radio frequency (RF) signals.
  • RF radio frequency
  • An antenna apparatus includes N (N ⁇ 2) transmission antennas that transmit an RF signal having an orbital angular momentum in a predetermined mode, and N transmission antennas that are paired with the N transmission antennas, respectively. And N receiving antennas that receive RF signals having the same orbital angular momentum as the RF signals transmitted by the corresponding transmitting antennas.
  • RF radio frequency
  • ⁇ Embodiment> 4 and 5 are diagrams illustrating the arrangement of the transmission antenna and the reception antenna of the antenna device 100 according to the embodiment.
  • the antenna device 100 includes transmission antennas Tx1, Tx2, Tx3,... TxN, and reception antennas Rx1, Rx2, Rx3,.
  • N is an integer equal to or greater than 2
  • FIGS. 4 and 5 describe the case where N is an integer equal to or greater than 5.
  • the transmission antennas Tx1, Tx2, Tx3,... TxN and the reception antennas Rx1, Rx2, Rx3,... RxN may be arranged in a straight line.
  • the transmitting antennas Tx1, Tx2, Tx3,... TxN and the receiving antennas Rx1, Rx2, Rx3,... RxN are arranged so that their optical axes coincide with each other.
  • the transmitting antennas Tx1, Tx2, Tx3,... TxN communicate with the receiving antennas Rx1, Rx2, Rx3,. That is, the transmission antenna Tx1 communicates with the reception antenna Rx1. Similarly, the transmission antenna Tx2 communicates with the reception antenna Rx2. The transmission antenna Tx3 communicates with the reception antenna Rx3. Further, the transmission antenna TxN communicates with the reception antenna RxN.
  • N-channel communication can be performed between the transmission antennas Tx1, Tx2, Tx3,... TxN and the reception antennas Rx1, Rx2, Rx3,.
  • the transmitting antennas Tx1, Tx2, Tx3,... TxN transmit (plane wave) RF signals (electromagnetic waves) having no orbital angular momentum (OAM) to orbital angular momentum (in a predetermined mode).
  • the signal is converted into an RF signal (electromagnetic wave) having OAM) and transmitted.
  • each of the receiving antennas Rx1, Rx2, Rx3,... RxN reversely converts the RF signals transmitted from the transmitting antennas Tx1, Tx2, Tx3,... TxN into RF signals having no OAM (plane wave). To do.
  • the RF signal having OAM travels spirally while changing the phase around the optical axis extending in the traveling direction (propagation direction). That is, the RF signal having OAM has a spiral wavefront with the optical axis as the central axis.
  • the positive / negative of the value of mode 1 is positive when the RF signal having OAM propagates around the optical axis in a counterclockwise spiral, and negative when it propagates in a clockwise spiral.
  • antenna apparatus 100 of the embodiment uses RF signals having OAM
  • receiving antennas Rx1 to RxN are arranged at positions where RF signals having OAM transmitted from transmitting antennas Tx1 to TxN can be received, respectively. is necessary.
  • the RF signal having the OAM travels in a spiral manner while changing the phase in a spiral manner around the optical axis extending in the propagation direction. That is, an RF signal having OAM travels in a spiral manner while spreading to radiation around the optical axis.
  • the phase of the RF signal having OAM is determined by the azimuth angle of the helical wavefront.
  • the transmitting antennas Tx1 to TxN that transmit RF signals having such OAM and the receiving antennas Rx1 to RxN that receive RF signals having OAM have predetermined configurations for realizing mode conversion and inverse conversion, respectively. Have.
  • the transmitting antennas Tx1, Tx2, Tx3,... TxN and the receiving antennas Rx1, Rx2, Rx3,... RxN have the same optical axis, as shown in FIG. , May be arranged at random.
  • the transmitting antenna Tx1 and the receiving antenna Rx1 perform RF signal communication having a mode 1 OAM
  • the transmitting antenna Tx2 and the receiving antenna Rx2 perform RF signal communication having a mode 2 OAM. Indicates when to do.
  • the transmitting antenna Tx3 and the receiving antenna Rx3 perform RF signal communication having a mode 3 OAM
  • the transmitting antenna TxN and the receiving antenna RxN perform RF signal communication having a mode N OAM. Indicates when to do.
  • the transmitting antennas Tx1 to TxN and the receiving antennas Rx1 to RxN may be configured to communicate RF signals having the same mode 1 OAM in each pair.
  • the transmission antennas Tx1 to TxN and the reception antennas Rx1 to RxN cannot communicate RF signals having OAMs in different modes.
  • the transmitting antennas Tx1 to TxN and the receiving antennas Rx1 to RxN may all be configured to communicate RF signals having the same mode 1 OAM.
  • FIG. 6 is a diagram illustrating a wavefront of an RF signal having an OAM in a single mode
  • FIG. 7 is a diagram illustrating a wavefront of an RF signal having an OAM in a multimode. 6 and 7 show a case where two-channel communication is performed between the transmission antennas Tx1 and Tx2 and the reception antennas Rx1 and Rx2.
  • Single mode means that there is only one mode l used for multiple channels.
  • the multi-mode means that there are two or more modes l used in a plurality of channels.
  • 6 and 7 show a case where two-channel communication is performed.
  • FIG. 6 shows a case where two channels perform communication using an RF signal having the same mode 1 OAM.
  • the RF signal having the OAM shown in FIG. 6 propagates spirally around the optical axes A1 and A2.
  • FIG. 7 shows a case in which communication is performed using RF signals having two OAMs having different modes l in two-channel communication.
  • the RF signals having the OAM shown in FIG. 7 propagate in a spiral around the optical axes A1 and A2.
  • 6 and 7 schematically show the waveform of an RF signal having OAM.
  • the low interference in the case of two channels will be described using the receiving antennas Rx1 and Rx2 as an example of adjacent receiving antennas.
  • FIG. 8 is a diagram illustrating a positional relationship in a plan view of adjacent antennas in the antenna device 100 according to the embodiment.
  • FIG. 8 shows the center points O1 and O2 and the contours C1 and C2 of the receiving antennas Rx1 and Rx2 as seen from the arrival direction (propagation direction) of the RF signal having OAM.
  • the receiving antennas Rx1 and Rx2 are arranged adjacent to each other, and perform communication in two-channel single mode or multimode.
  • the outlines C1 and C2 of the receiving antennas Rx1 and Rx2 are circles with a radius R having center points O1 and O2, respectively.
  • the distance between the center points O1 and O2 is d. Since the receiving antennas Rx1 and Rx2 are spaced apart from each other, 2R ⁇ d.
  • optical axes of the receiving antennas Rx1 and Rx2 extend in directions perpendicular to the circles represented by the contours C1 and C2 at the center points O1 and O2, respectively.
  • the transmission antennas Tx1 and Tx2 corresponding to the reception antennas Rx1 and Rx2 are arranged to face the reception antennas Rx1 and Rx2, respectively, and are the same as the reception antennas Rx1 and Rx2, respectively. It shall have the composition of.
  • the optical axes of the transmission antennas Tx1 and Tx2 coincide with the optical axes of the reception antennas Rx1 and Rx2, respectively.
  • the transmission antenna Tx1 and the reception antenna Rx1 have the same configuration, and a pair of antennas having the same configuration are arranged to face each other with their optical axes aligned.
  • the transmission antenna Tx2 and the reception antenna Rx2 have the same configuration, and a pair of antennas having the same configuration are arranged to face each other with their optical axes aligned.
  • the distance between the center point of the transmission antenna Tx1 and the center point of the transmission antenna Tx2 is also d.
  • the transmitting antenna Tx1 and the receiving antenna Rx1 communicate using an RF signal having a mode m OAM
  • the transmitting antenna Tx2 and the receiving antenna Rx2 communicate using an RF signal having a mode n OAM.
  • m and n are arbitrary values in the mode l described above, and may be the same value or different values.
  • the reception status of the RF signal having the OAM transmitted from the transmission antennas Tx1 and Tx2 at the point P on the surface of the reception antenna Rx2 will be examined.
  • the point P is a point where the line segment O1O2 and the line segment O2P form an angle ⁇ at a distance r (r ⁇ R) from the center point O2 of the receiving antenna Rx2.
  • the line segment O1P forms an angle ⁇ with the line segment O1O2.
  • Receiving antennas Rx1 and Rx2 shown in FIG. 8 perform communication in two channels, and since their optical axes are different, the electric field E at the point P can be expressed by the following equation (2).
  • E 0 is the amplitude of the electric field E.
  • the power Pim, n of the RF signal having the OAM received by the receiving antenna Rx2 from the transmitting antenna Tx1 can be expressed by the following equation (3).
  • the power Pim, n obtained by the expression (3) represents the power due to interference (or interference) received by the receiving antenna Rx2 from the transmitting antenna Tx1.
  • Z is the impedance of an RF signal having OAM in free space.
  • the angle ⁇ formed by the line segment O1P and the line segment O1O2 can be expressed by the following equation (4).
  • the power Psn of the RF signal having the OAM received by the reception antenna Rx2 from the transmission antenna Tx2 can be expressed by the following equation (5).
  • m and n satisfy the expressions (8) and (9)
  • the two channels are orthogonal.
  • the OAM mode shows a spiral wavefront that rotates for one cycle in one cycle.
  • l is an integer.
  • equations (8) and (9) hold, the spiral wavefronts of the two transmitting antennas rotate in the same direction. Then, the helical wavefronts of the two transmission antennas rotate by one cycle with l period.
  • l is an even number.
  • the OAM modes (m, N) ⁇ 2 ⁇ , ⁇ -2 ⁇ , ⁇ 4, 6 ⁇ , ⁇ -4, -6 ⁇ are examples of orthogonal channel groups.
  • ⁇ 2 ⁇ 2 is the first even number and 2 is clearly less than twice the value of 2.
  • ⁇ 2 ⁇ means that OAM mode 2 is applied for all N channels.
  • 6 ⁇ , 4 and 6 are both even numbers, and 6 is less than twice the value of 4.
  • 6 ⁇ means that OAM mode 4 is applied to all N channels, or OAM mode 6 is applied to all N channels, or OAM mode 4 is some of N channels And OAM mode 6 is applied to the remaining channels.
  • ⁇ 1,2 ⁇ 2 is clearly less than twice the value of 1.
  • ⁇ 1,2 ⁇ means that OAM mode 1 applies to all N channels, OAM mode 2 applies to all N channels, or OAM mode 1 applies to some of the N channels This means that OAM mode 2 is applied to the remaining channels.
  • OAM mode 2 applies to all N channels
  • OAM mode 3 applies to all N channels
  • OAM mode 4 applies to all N channels
  • OAM mode 2 is applied to some of the N channels and OAM mode 3 is applied to the remaining channels
  • OAM mode 2 is applied to some of the N channels and OAM mode 4 is applied Applied to the remaining channels
  • OAM mode 3 applied to some of the N channels and OAM mode 4 applied to the remaining channels
  • OAM mode 2 is applied to some of the N channels
  • OAM mode 4 is applied Applied to the remaining channels
  • OAM mode 3 applied to some of the N channels and OAM mode 4 applied to the remaining channels
  • OAM mode 3 is applied to some other of the N channels and OAM mode 4 is It means that applies to Yaneru.
  • Equation (6) if m> 0 and n ⁇ 0, or m ⁇ 0 and n> 0, the interference is relatively large. Therefore, as shown in FIGS. 4 and 5, in an N-channel system, at least all helical wavefronts of all transmit antennas should rotate in the same direction.
  • FIG. 9 is a diagram illustrating a simulation result for explaining the channel capacity height in the antenna device 100 according to the embodiment.
  • L is the length between the transmission antenna Tx1 and the reception antenna Rx1, which is the same as the length between the transmission antenna Tx2 and the reception antenna Rx2.
  • the horizontal axis represents the signal-to-noise ratio (SNR), and the vertical axis represents the channel capacity (bps / Hz).
  • the channel capacity of the LosMIMO rapidly decreases when the distance d is shortened and the separability is lowered.
  • the channel capacity (2 * 2 OAM) according to the embodiment is the same between the transmission antennas Tx1 and Tx2 and the reception antennas Rx1 and Rx2. It can be seen that a very high channel capacity can be obtained even if the center distance d is small.
  • the distance d in the antenna device 100 is much shorter than (1/4 * ⁇ L / 2) 1/2 and is close to 2R (see FIG. 8).
  • SISO has the lowest channel capacity. In the case of SISO, if the signal-to-noise ratio (SNR) increases, the channel capacity increases, but the channel capacity (2 * 2OAM) of the transmission antennas Tx1, Tx2 and the reception antennas Rx1, Rx2 of the antenna device 100 of the embodiment. And a value lower than LossMIMO.
  • SNR signal-to-noise ratio
  • FIG. 10 shows the channel capacity (2 * 2 OAM) of the transmission antennas Tx1 and Tx2 and the reception antennas Rx1 and Rx2 of the antenna apparatus 100 of the embodiment, and two channels (two sets of transmission and reception antennas based on Los MIMO for comparison). ) Channel capacity (2 * 2LosMIMO) when arranged.
  • the center distance d becomes shorter. That is, the closer the horizontal axis is to the right, the closer the antennas of the two channels are.
  • the channel capacities (2 * 2 OAM) of the transmission antennas Tx1, Tx2 and the reception antennas Rx1, Rx2 of the antenna device 100 of the embodiment showed a constant value regardless of the value on the horizontal axis. This can be considered as a result derived from the fact that a high channel capacity is obtained regardless of the center-to-center distance d.
  • the channel capacity (2 * 2LosMIMO) when the transmission antenna and the reception antenna by LosMIMO are arranged in 2 channels (2 sets) showed a lower value toward the right side on the horizontal axis.
  • the channel capacity (2 * 2 OAM) according to the embodiment can provide a very high channel capacity regardless of the center distance d between the transmission antennas Tx1, Tx2 and the reception antennas Rx1, Rx2.
  • the channel capacity (2 * 2OAM) of the two channels by the antenna device 100 of the embodiment is superior to the channel capacity (2 * 2LosMIMO) of the two channels by LosMIMO for comparison. You can see that it stands out.
  • the antenna device 100 of the embodiment is more advantageous as the separation between adjacent antennas is lower, and is suitable for downsizing.
  • the transmission antennas Tx1 and Tx2 are referred to as transmission antennas Tx unless they are particularly distinguished. Further, when the receiving antennas Rx1 and Rx2 are not particularly distinguished, they are referred to as receiving antennas Rx.
  • the transmission antenna Tx can be used as the reception antenna Rx
  • the reception antenna Rx can be used as the transmission antenna Tx
  • the transmitting antenna Tx and the receiving antenna Rx are not distinguished, they are referred to as the antenna 10 or the antenna 20.
  • FIG. 11 is a diagram illustrating an antenna of the antenna device 100 according to the embodiment.
  • 11A and 11A show an antenna 10 that transmits and receives an RF signal having a mode 1 OAM.
  • FIGS. 11B and 11B show an RF signal having a mode 2 OAM.
  • the antenna 20 which transmits / receives is shown.
  • (A1), (A2), (B1), and (B2) define an XYZ coordinate system, which is an orthogonal coordinate system, as illustrated.
  • the Z axis is an axis parallel to the optical axes of the antennas 10 and 20.
  • the antenna 10 for mode 1 includes a radiator 11 (see A2) and a reflector 12.
  • the antenna 10 is an antenna obtained by modifying a parabolic antenna.
  • the radiator 11 is abbreviate
  • the radiator 11 is a part that transmits and receives RF signals.
  • the radiator 11 is fixed to the reflector 12 by a stay or the like (not shown).
  • the radiator 11 radiates the RF signal toward the reflector 12 in the negative Z-axis direction.
  • the radiator 11 receives the RF signal that is reflected by the reflector 12 and propagates in the positive Z-axis direction.
  • the reflector 12 has a concave shape in which a cross section cut by a plane including the Z axis draws a parabola, and has a circular shape (see A1) in plan view.
  • the optical axis of the reflector 12 is an axis that passes through the center O and is parallel to the Z axis.
  • the reflector 12 has a notch 12A.
  • the notch 12A is a part where the reflector 12 is notched on the X axis positive direction side from the center O.
  • a gap of 1 ⁇ 2 wavelength ( ⁇ / 2) at the communication frequency of the antenna device 100 is formed in the center O in the Z-axis direction between the one side 12B and the other side 12C across the notch 12A. .
  • This gap is formed in the Z-axis direction. The gap is used to generate a path length difference for one wavelength.
  • the displacement in the Z-axis direction due to the 1 ⁇ 2 wavelength ( ⁇ / 2) gap between the one side 12B and the other side 12C is positive from the one side 12B to the other side 12C. Evenly and linearly distributed over 360 degrees counterclockwise around the center O as viewed from the direction. This is because the reflection surface of the reflector 12 is continuously counterclockwise around the center O as viewed from the positive direction of the Z axis over 360 degrees counterclockwise around the center O from one side 12B to the other side 12C. Represents that the phase is set to advance by ⁇ / 2 ( ⁇ ).
  • the RF signal having the mode 1 OAM reflected by the reflector 12 and mode-converted propagates spirally with the optical axis passing through the center O being parallel to the Z axis.
  • the RF signal mode-converted by the reflector 12 has the same mode 1 OAM as that of the antenna 10.
  • the mode 1 OAM is obtained.
  • the RF signal is inversely converted by the reflector 12 to be a plane wave, reflected in the positive direction of the Z axis, and received by the radiator 11.
  • the antenna 10 is a parabolic antenna having a reflection surface formed in a spiral shape corresponding to one period of a spiral of an RF signal having a mode 1 OAM.
  • the antenna 2 for mode 2 shown in (B1) and (B2) of FIG. 11 includes a radiator 21 (see B2) and a reflector 22 obtained by deforming a parabolic antenna.
  • the radiator 21 is abbreviate
  • Radiator 21 is a part that transmits and receives RF signals.
  • the radiator 21 is fixed to the reflector 22 by a stay or the like (not shown).
  • the radiator 21 radiates the RF signal toward the reflector 22 in the negative Z-axis direction.
  • the radiator 21 receives the RF signal that is reflected by the reflector 22 and propagates in the positive direction of the Z-axis.
  • the radiator 21 is the same as the radiator 11.
  • the reflector 22 has a concave shape in which a cross section obtained along a plane including the Z axis draws a parabola, and has a circular shape (see B1) in plan view.
  • the optical axis of the reflector 22 is an axis that passes through the center O and is parallel to the Z axis.
  • the reflector 22 has a boundary portion 22A.
  • the boundary portion 22A is a boundary that separates the reflector 22 into a reflection portion 221 on the Y axis positive direction side and a reflection portion 222 on the Y axis negative direction side in the XZ plane passing through the center O.
  • the reflector 22 is separated into two reflecting portions 221 and 222 by a boundary portion 22A.
  • the reflection parts 221 and 222 are parts obtained by bisecting a single parabolic antenna along a line passing through the center point.
  • the reflecting portions 221 and 222 are in a positional relationship in which the reflecting portions 221 and 222 are rotationally moved in directions opposite to each other along an axis parallel to the Y axis passing through the origin.
  • a gap of 1 ⁇ 2 wavelength ( ⁇ / 2) at the communication frequency of the antenna device 100 is formed at the center O in the Z-axis direction. This gap is formed in the Z-axis direction. The gap is used to generate a path length difference for one wavelength.
  • a gap of 1 ⁇ 2 wavelength ( ⁇ / 2) at the communication frequency of the antenna device 100 is formed at the center O in the Z-axis direction between the one side 22B2 and the other side 22C2 across the boundary 22A. ing. This gap is formed in the Z-axis direction. The gap is used to generate a path length difference for one wavelength.
  • the displacement in the Z-axis direction due to a gap of one wavelength ( ⁇ ) extends from the one side 22B1 to the one side 22B2 on the opposite side. It is evenly distributed over the surrounding counterclockwise 180 degrees. This represents that the phase is set so as to continuously advance ⁇ (2 ⁇ ) over 180 degrees counterclockwise around the center O.
  • the displacement in the Z-axis direction due to the gap is evenly spread over 180 degrees counterclockwise around the center O from the other side 22C2 to the other side 22C1 on the opposite side. Allocated. This indicates that the phase is set so as to advance continuously by ⁇ / 2 ( ⁇ ) over 180 degrees counterclockwise around the center O.
  • the RF signal (electromagnetic wave) having no OAM is radiated from the radiator 21 to the reflector 22 (in the negative Z-axis direction)
  • the RF signal (electromagnetic wave) having no OAM radiated from the radiator 21 is reflected.
  • the unit 22 converts the mode into an RF signal having a mode 2 OAM and propagates spirally in the positive Z-axis direction.
  • the RF signal having the OAM of mode 2 that is reflected by the reflector 22 and subjected to mode conversion propagates spirally with the optical axis passing through the center O being parallel to the Z axis.
  • an RF signal having the same mode 2 OAM as the antenna 20 propagates spirally toward the reflector 22 with the optical axis parallel to the Z axis and passing through the center O as the central axis, it has the mode 2 OAM.
  • the RF signal is inversely converted by the reflector 22 to become a plane wave, reflected in the positive Z-axis direction, and received by the radiator 21.
  • the antenna 20 is a parabolic antenna having a surface formed in a spiral shape corresponding to one period of a spiral of an RF signal having a mode 2 OAM.
  • FIG. 12 is a diagram illustrating a modification of the antenna of the antenna device 100 according to the embodiment.
  • FIG. 12A shows an antenna 30 according to a modification.
  • the antenna 30 includes a radiator 31 and a transmission filter 32.
  • 12B shows the transmission filter 32 for mode 1
  • FIG. 12C shows the transmission filter 32 for mode 2.
  • the XYZ coordinate system is defined as in FIG.
  • Radiator 31 is the same as radiators 11 and 21 shown in (A2) and (B2) of FIG.
  • the transmission filter 32 is a dielectric disk-shaped member that can transmit an RF signal, and is disposed in front of the radiation surface of the radiator 31.
  • the transmission filter 32 shown in FIG. 12B is divided into eight transmission parts 32A1 to 32A8 radially from the center O1.
  • the transmissive portions 32A1 to 32A8 are fan-shaped portions having a central angle of 45 degrees when viewed from the Z-axis positive direction side.
  • the transmission parts 32A1 to 32A8 are arranged counterclockwise in this order when viewed from the positive direction of the Z axis, and the transmission part 32A8 is located next to the transmission part 32A1.
  • the transmission parts 32A1 to 32A8 have different thicknesses, the transmission part 32A1 is the thinnest, and the transmission part 32A8 is the thickest.
  • the thicknesses of the transmission parts 32A1 to 32A8 are different in this way in order to set the required time for the RF signal to pass through each of the transmission parts 32A1 to 32A8.
  • the delay time (phase) given to the RF signal in each of the transmission parts 32A1 to 32A8 is changed by changing the thickness of each of the transmission parts 32A1 to 32A8. Can be set.
  • the delay time that the transmission parts 32A1 to 32A8 give to the RF signal is the shortest in the thinnest transmission part 32A1 and the longest in the thickest transmission part 32A8.
  • the difference between the delay time given to the RF signal by the transmission part 32A1 and the delay time given to the RF signal by the transmission part 32A8 is set to a time corresponding to one cycle of the RF signal radiated from the radiator 31.
  • the RF signal incident on the transmission filter 32 from the radiator 31 can be mode-converted into an RF signal having mode 1 OAM. .
  • a transmission filter having a phase opposite to that of the transmission filter 32 may be used.
  • the same eight transmissions as the transmission parts 32A1 to 32A8 are used.
  • a transmission filter in which the sections are arranged clockwise may be used.
  • an antenna including a transmission filter having a phase opposite to that of the transmission filter 32 may be used as the corresponding reception antenna Rx.
  • FIG. 12C shows a transmission filter 32 for mode 2.
  • the transmission filter 32 for mode 2 is divided into eight transmission parts 32B1 to 32B8 radially from the center O2.
  • the transmissive portions 32B1 to 32B8 are fan-shaped portions having a central angle of 45 degrees when viewed from the Z-axis positive direction side.
  • the transmissive portions 32B1 to 32B8 are arranged counterclockwise in this order when viewed from the positive Z-axis direction, and the transmissive portion 32B8 is located next to the transmissive portion 32B1.
  • the transmission parts 32B1 to 32B8 have different thicknesses, the transmission parts 32B1 and 32B5 have the smallest thickness, and the transmission parts 32B4 and 32B8 have the largest thickness.
  • the thicknesses of the transmission parts 32B1 to 32B8 are different in this way in order to set the required time for the RF signal to pass through the transmission parts 32B1 to 32B4 and 32B5 to 32B8.
  • the delay time (phase) given to the RF signal in each of the transmission parts 32B1 to 32B8 is changed by changing the thickness of each of the transmission parts 32B1 to 32B8. Can be set.
  • the delay time that the transmission parts 32B1 to 32B8 give to the RF signal is the shortest in the thinnest transmission parts 32B1 and 32B5 and the longest in the thickest transmission parts 32B4 and 32B8.
  • the difference between the delay time given to the RF signal by the transmission parts 32B1 and 32B5 and the delay time given to the RF signal by the transmission parts 32B4 and 32B8 is set to a time corresponding to one cycle of the RF signal radiated from the radiator 31. Has been.
  • the thicknesses of the transmission parts 32B1 and 32B5 are equal, the thicknesses of the transmission parts 32B2 and 32B6 are equal, the thicknesses of the transmission parts 32B3 and 32B7 are equal, and the thicknesses of the transmission parts 32B4 and 32B8 are equal.
  • the RF signal incident on the transmission filter 32 from the radiator 31 is changed to an RF signal having a mode 2 OAM. Mode conversion is possible.
  • a transmission filter having a phase opposite to that of the mode 2 transmission filter 32 may be used.
  • the transmission filter divided into eight transmission parts 32A1 to 32A8 and 32B1 to 32B8 has been described, but the number of divisions may be any number. If the number of divisions increases, the resolution of the transmission filter 32 increases, and thus an RF signal having an OAM closer to the antennas 10 and 20 shown in FIG. 11 can be obtained.
  • antenna devices 100A and 100B according to modified examples of the embodiment will be described with reference to FIGS.
  • the antenna devices 100A and 100B have a configuration in which the antennas 10 and 20 shown in FIG. 11 and the antenna 30 shown in FIG. 12 are combined.
  • FIG. 13 is a diagram illustrating an antenna device 100A according to a modification of the embodiment
  • FIG. 14 is a diagram illustrating an antenna device 100B according to another modification of the embodiment.
  • the antenna device 100A shown in FIG. 13 includes antennas 130A, 130B, 140A, 140B, and reflectors 150A, 150B.
  • Antennas 130A, 130B, 140A, and 140B correspond to the antenna 30 shown in FIG.
  • the antennas 130A and 130B are used as transmission antennas, and the antennas 140A and 140B are used as reception antennas.
  • the antennas 130A and 130B include a radiator 131A and a transmission filter 132A, a radiator 131B and a transmission filter 132B, respectively.
  • the antennas 140A and 140B include a radiator 141A and a transmission filter 142A, a radiator 141B and a transmission filter 142B, respectively.
  • the reflectors 150A and 150B have a concave shape in which the cross section draws a parabola and has a circular shape in plan view, similarly to the reflector 12 shown in FIG.
  • the reflector 150A has two optical axes indicated by solid lines, and the two optical axes coincide with the optical axes of the transmission filters 132A and 142A as indicated by solid lines.
  • the reflector 150B has two optical axes indicated by solid lines, and the two optical axes coincide with the optical axes of the transmission filters 132B and 142B as indicated by solid lines.
  • the antenna 130A is paired with the antenna 130B via the reflectors 150A and 150B.
  • the antennas 130A and 130B are arranged so that the optical axes shown by the solid lines in FIG. 13 coincide with each other via the reflectors 150A and 150B.
  • the total phase of the delay time (phase) that the transmission filter 132A of the antenna 130A gives to the RF signal and the phase that the reflector 150A gives to the RF signal is on the optical axis between the antenna 130A and the antenna 130B.
  • the plane wave RF signal radiated from the radiator 130A is set to a value for mode conversion into an RF signal having a mode 1 OAM. That is, this total phase corresponds to ⁇ (2 ⁇ ).
  • the total phase of the delay time (phase) that the transmission filter 132B of the antenna 130B gives to the RF signal and the phase that the reflector 150B gives to the RF signal is on the optical axis between the antenna 130A and the antenna 130B.
  • the RF signal having the OAM in mode 1 is inversely converted into a plane wave RF signal, and is set to a value that is incident on the radiator 131B. This total phase corresponds to ⁇ (2 ⁇ ).
  • the antenna 140A is paired with the antenna 140B via the reflectors 150A and 150B.
  • the antennas 140A and 140B are arranged so that their optical axes coincide with each other via the reflectors 150A and 150B.
  • the total phase of the delay time (phase) that the transmission filter 142A of the antenna 140A gives to the RF signal and the phase that the reflector 150A gives to the RF signal is on the optical axis between the antenna 140A and the antenna 140B.
  • the plane wave RF signal radiated from radiator 140A is set to a value for mode conversion into an RF signal having mode 2 OAM.
  • the total phase of the delay time (phase) that the transmission filter 142B of the antenna 140B gives to the RF signal and the phase that the reflector 150B gives to the RF signal is on the optical axis between the antenna 130A and the antenna 130B.
  • the RF signal having the OAM in mode 4 is inversely converted into an RF signal of plane wave and set to a value that is incident on the radiator 141B.
  • antenna apparatus 100A having such a configuration, communication can be performed between antennas 130A and 130B using an RF signal having mode 1 OAM, and mode 2 OAM can be performed between antennas 140A and 140B. Communication can be performed using an RF signal having mode 1 OAM, and mode 2 OAM can be performed between antennas 140A and 140B. Communication can be performed using an RF signal having mode 1 OAM, and mode 2 OAM can be performed between antennas 140A and 140B. Communication can be performed using an RF signal having
  • the antenna device 100A capable of performing two-channel communication.
  • the mode 1 of the two channels of the antenna device 100 may be the same.
  • the antenna device 100A may have a configuration having two or more channels.
  • the reflectors 150A and 150B may be divided into the reflectors 151A and 151B and the reflectors 152A and 152B for each channel as in the antenna device 100B shown in FIG. In this case, the transmission filters 132A, 132B, 142A, 142B shown in FIG. 13 may not be included.
  • the reflector 151A and the radiator 131A construct an antenna for mode 1 like the antenna 10 shown in FIG. 11, and similarly, the reflector 151B and the radiator 131B like the antenna 10 shown in FIG.
  • An antenna for mode 1 may be constructed.
  • a reflector for mode 2 such as the antenna 20 shown in FIG. 11 is constructed by the reflector 152A and the radiator 141A, and similarly, the antenna 152 shown in FIG. 11 is constituted by the reflector 152B and the radiator 141B.
  • An antenna for mode 2 may be constructed.
  • the optical axes of the reflectors 151A, 151B, 152A, and 152B are offset from the center axis of the parabolic section of the parabolic antenna. That is, as the reflectors 151A, 151B, 152A, and 152B, so-called offset parabolic reflectors may be used.
  • antenna devices 100, 100A, and 100B having a very high channel capacity regardless of the center-to-center distance d between the transmission antennas Tx1 and Tx2 and the reception antennas Rx1 and Rx2. it can.
  • the antenna devices 100, 100A, 100B that can easily multiplex radio frequency (RF) signals.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Aerials With Secondary Devices (AREA)

Abstract

 高周波(RF)信号の多重化を容易に行うことのできるアンテナ装置を提供する。 アンテナ装置は、所定モードの軌道角運動量を有するRF信号を送信するN(N≧2)個の送信アンテナと、前記N個の送信アンテナとそれぞれ対をなすN個の受信アンテナであって、対応する送信アンテナが送信するRF信号と同一モードの軌道角運動量を有するRF信号を受信するN個の受信アンテナとを含む。

Description

アンテナ装置、及び、信号伝送システム
 本発明は、アンテナ装置、及び、信号伝送システムに関する。
 従来より、基地局を対応する基地局コントローラに接続するためにマイクロ波バックホールが用いられている(例えば、非特許文献1参照)。
 しかしながら、現在、ワイヤレスネットワークは、音声のみのサポートから音声及び高速データ通信をサポートするまで発展している。従って、基地局とマイクロ波バックホールの帯域幅容量に対する要求は増大すると考えられる。
 また、帯域幅容量の大きいマイクロ波バックホールの候補として、LoS(Line-of-Sight) MIMO(Multiple-Input and Multiple-Output)を用いたシステムがある(例えば、非特許文献2参照)。このようなシステムでは、マルチパス散乱が生じないため、空間分割多重伝送を実現するアンテナの分離は、通信距離に依存することになる。
 例えば、図1に示すLoSMIMOを用いたシステムにおいて、送信アンテナTx1、Tx2と受信アンテナRx1、Rx2とで2×2形式の通信を行う場合について考える。送信アンテナTx1、Tx2を分離するための距離dは、次式(1)に示すように、通信距離Lに依存する。
Figure JPOXMLDOC01-appb-M000001
 ここで、λは波長である。Lが400mである場合に、通信周波数が2.4GHzの場合はdが約5mであり、60GHzの場合はdが約1mとなる。このように、アンテナの分離に必要な距離dは比較的大きく、小型装置への適用可能性は低い。さらに、アンテナの分離が低下すると、チャンネル容量は急激に低下する。

 近年、光学分野において、容量の大きい光通信のための軌道角運動量(OAM:orbital angular momentum)の研究が非常に盛んである(例えば、非特許文献3参照)。OAMは、分極(スピン角運動量(SAM:spin angular momentum))と同様に、電磁波の基本的な特性である。
 図2に示すように、OAMを有する電磁波は、螺旋状の波面を有し、方位角による線形的な位相遅延を示す。ここで、OAMモードl(l=±1、±2、・・・)は、物理的な1周期に2lπの位相遅延があることを意味する。位相遅延は電気角で表される。
 図3に示す光学的な構成では、光学結合器を用いることにより、OAM信号は同一の(一つの)光軸に対して重畳することができる(例えば、非特許文献3参照)。
 異なるOAMモードを有する電磁波は、互いに直交しており、複数の直交チャンネルによって高い容量が達成される。
 しかしながら、高周波(RF:Radio Frequency)信号の通信では、一つの光軸に対してOAMを重畳することは困難であり、高周波(RF)信号の多重化を行うこと自体が困難である。
Mobile Backhaul:Fiber vs. Microwave, Case Study Analyzing Various Backhaul Technology Strategies, Tzvika Naveh.[2013年1月29日検索]インターネット(http://www.ceragon.com/files/ceragon_mobile_backhau_fiber_microwave_white_paper.pdf) C. Sheldon, E. Torkildson, M. Seo, C. P. Yue, U. Madhow, and M. Rodwell, "A 60 GHz line-of-sight 2×2 MIMO link operating at 1.2 Gbps," in Proc. IEEE Antennas Propag. Soc. Int. Symp. (AP-S 2008), Jul. 2008. J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, "Terabit free-space data transmission employing orbital angular momentum multiplexing," Nature Photonics, vol. 6, pp. 488-496, Jun. 2012.
 上述のように、高周波(RF)信号の多重化を行うことは困難である。
 そこで、高周波(RF)信号の多重化を容易に行うことのできるアンテナ装置、及び、信号伝送システムを提供することを目的とする。
 本発明の実施の形態のアンテナ装置は、所定モードの軌道角運動量を有するRF信号を送信するN(N≧2)個の送信アンテナと、前記N個の送信アンテナとそれぞれ対をなすN個の受信アンテナであって、対応する送信アンテナが送信するRF信号と同一モードの軌道角運動量を有するRF信号を受信するN個の受信アンテナとを含む。
 高周波(RF)信号の多重化を容易に行うことのできるアンテナ装置、及び、信号伝送システムを提供することができる。
LoSMIMOを用いたシステムを示す図である。 OAMを有する電磁波の螺旋状の波面と、方位角による線形的な位相遅延を示す図である。 光学結合器でOAM信号を一つの光軸に重畳するシステムの構成を示す図である。 実施の形態のアンテナ装置100の送信アンテナ及び受信アンテナの配置を示す図である。 実施の形態のアンテナ装置100の送信アンテナ及び受信アンテナの配置を示す図である。 シングルモードにおけるOAMを有するRF信号の波面を示す図である。 マルチモードにおけるOAMを有するRF信号の波面を示す図である。 実施の形態のアンテナ装置100における隣り合うアンテナの平面視での位置関係を示す図である。 実施の形態のアンテナ装置100におけるチャンネル容量の高さを説明するためのシミュレーション結果を示す図である。 シグナルノイズ比(SNR)を20dBに固定し、d=β(λL/2)1/2を満たす値βと、チャンネル容量との関係を示す図である。 実施の形態のアンテナ装置100のアンテナを示す図である。 実施の形態のアンテナ装置100のアンテナの変形例を示す図である。 実施の形態の変形例のアンテナ装置100Aを示す図である。 実施の形態の他の変形例のアンテナ装置100Bを示す図である。
 以下、本発明のアンテナ装置、及び、信号伝送システムを適用した実施の形態について説明する。
 <実施の形態>
 図4及び図5は、実施の形態のアンテナ装置100の送信アンテナ及び受信アンテナの配置を示す図である。
 実施の形態のアンテナ装置100は、送信アンテナTx1、Tx2、Tx3、・・・TxNと、受信アンテナRx1、Rx2、Rx3、・・・RxNとを含む。なお、Nは2以上の整数であり、図4及び図5では、Nが5以上の整数である場合について説明する。
 図4に示すように、送信アンテナTx1、Tx2、Tx3、・・・TxNと、受信アンテナRx1、Rx2、Rx3、・・・RxNとは、それぞれ、直線状に配置されていてもよい。送信アンテナTx1、Tx2、Tx3、・・・TxNと、受信アンテナRx1、Rx2、Rx3、・・・RxNとは、それぞれ、光軸が一致するように配置されている。
 送信アンテナTx1、Tx2、Tx3、・・・TxNは、それぞれ、受信アンテナRx1、Rx2、Rx3、・・・RxNと通信を行う。すなわち、送信アンテナTx1は、受信アンテナRx1と通信を行う。同様に、送信アンテナTx2は、受信アンテナRx2と通信を行う。送信アンテナTx3は、受信アンテナRx3と通信を行う。また、送信アンテナTxNは、受信アンテナRxNと通信を行う。
 これにより、送信アンテナTx1、Tx2、Tx3、・・・TxNと、受信アンテナRx1、Rx2、Rx3、・・・RxNとの間では、Nチャンネルの通信を行うことができる。
 実施の形態のアンテナ装置100では、送信アンテナTx1、Tx2、Tx3、・・・TxNは、軌道角運動量(OAM)を有しない(平面波の)RF信号(電磁波)を所定のモードの軌道角運動量(OAM)を有するRF信号(電磁波)にモード変換して送信する。また、受信アンテナRx1、Rx2、Rx3、・・・RxNは、それぞれ、送信アンテナTx1、Tx2、Tx3、・・・TxNから送信されるRF信号をOAMを有しない(平面波の)RF信号に逆変換する。
 OAMを有するRF信号は、進行方向(伝搬方向)に伸延する光軸の周りに、位相を変化させながら螺旋状に進行する。すなわち、OAMを有するRF信号は、光軸を中心軸とした螺旋状の波面を有する。
 ここで、OAMを有するRF信号のモードl(l=±1、±2、・・・)は、物理的な1周期(360度)に2lπの位相遅延が含まれることを意味する。モード1(l=1)は、物理的な1周期(360度)に2πの位相遅延が含まれることを意味する。
 すなわち、モード1(l=1)のOAMを有するRF信号は、螺旋状に1周期(360度)進むうちに、位相が2π変化する波面を有する。また、モード2(l=2)のOAMを有するRF信号は、螺旋状に1周期(360度)進むうちに、位相が4π(2π×2)変化する波面を有する。従って、モードlのOAMを有するRF信号は、螺旋状に1周期(360度)進むうちに、位相が2lπ変化する波面を有する。
 また、モードlの値の正負は、OAMを有するRF信号が光軸の周りに、反時計回りの螺旋状で伝搬する場合を正とし、時計回りの螺旋状で伝搬する場合を負とする。
 実施の形態のアンテナ装置100はOAMを有するRF信号を用いるため、受信アンテナRx1~RxNは、それぞれ、送信アンテナTx1~TxNから送信されるOAMを有するRF信号を受信できる位置に配置されることが必要である。
 ここで、OAMを有するRF信号は、伝搬方向に伸延する光軸の周りで螺旋状に位相を変化させながら、螺旋状に進行する。すなわち、OAMを有するRF信号は、光軸の周りで放射に拡がりながら螺旋状に進行する。OAMを有するRF信号の位相は、螺旋状の波面の方位角によって決まる。
 このため、OAMを有するRF信号の1周期分をすべて受信するには、受信アンテナRx1~RxNの光軸と、送信アンテナTx1~TxNの光軸とが一致していることが必要である。
 このようなOAMを有するRF信号を送信する送信アンテナTx1~TxNと、OAMを有するRF信号を受信する受信アンテナRx1~RxNとは、それぞれ、モード変換と逆変換を実現するための所定の構成を有する。
 しかしながら、送信アンテナTx1~TxNと受信アンテナRx1~RxNとの具体的な構成については後述することとし、図4及び図5では、送信アンテナTx1~TxNと、受信アンテナRx1~RxNとの位置関係について説明する。
 従って、送信アンテナTx1、Tx2、Tx3、・・・TxNと、受信アンテナRx1、Rx2、Rx3、・・・RxNとは、図4に示すように、それぞれ、互いの光軸が一致するように、直線状に配置されていてもよい。
 また、送信アンテナTx1、Tx2、Tx3、・・・TxNと、受信アンテナRx1、Rx2、Rx3、・・・RxNとは、それぞれ、互いの光軸が一致していれば、図5に示すように、ランダムに配列されていてもよい。
 なお、図4及び図5には、送信アンテナTx1と受信アンテナRx1がモード1のOAMを有するRF信号の通信を行い、送信アンテナTx2と受信アンテナRx2がモード2のOAMを有するRF信号の通信を行う場合を示す。
 また、図4及び図5には、送信アンテナTx3と受信アンテナRx3がモード3のOAMを有するRF信号の通信を行い、送信アンテナTxNと受信アンテナRxNがモードNのOAMを有するRF信号の通信を行う場合を示す。
 しかしながら、これらのモードlの割り当ては一例である。送信アンテナTx1~TxNと、受信アンテナRx1~RxNとは、それぞれの対で、同一のモードlのOAMを有するRF信号を通信する構成であればよい。送信アンテナTx1~TxNと、受信アンテナRx1~RxNとは、それぞれ、異なるモードのOAMを有するRF信号を通信することはできない。
 従って、送信アンテナTx1~TxNと、受信アンテナRx1~RxNとは、すべて同一のモードlのOAMを有するRF信号を通信する構成であってもよい。
 次に、図6及び図7を用いて、シングルモードとマルチモードについて説明する。
 図6は、シングルモードにおけるOAMを有するRF信号の波面を示す図であり、図7は、マルチモードにおけるOAMを有するRF信号の波面を示す図である。なお、図6及び図7には、送信アンテナTx1、Tx2と受信アンテナRx1、Rx2とで2チャンネルの通信を行う場合を示す。
 シングルモードとは、複数のチャンネルで用いるモードlが1種類であることをいう。また、マルチモードとは、複数のチャンネルで用いるモードlが2種類以上であることをいう。図6及び図7には、2チャンネルの通信を行う場合を示すので、図6には2つのチャンネルが同一のモードlのOAMを有するRF信号を用いて通信を行う場合を示す。
 図6に示すOAMを有するRF信号は、それぞれ、光軸A1、A2の周りを螺旋状に伝搬する。
 また、図7には、2チャンネルの通信において、互いにモードlが異なる2つのOAMを有するRF信号を用いて通信を行う場合を示す。図7に示すOAMを有するRF信号は、それぞれ、光軸A1、A2の周りを螺旋状に伝搬する。
 なお、図6及び図7には、OAMを有するRF信号の波形を概略的に示す。
 次に、図8を用いて、隣り合う受信アンテナの一例として受信アンテナRx1、Rx2を用いて、2チャンネルの場合の干渉の低さについて説明する。
 図8は、実施の形態のアンテナ装置100における隣り合うアンテナの平面視での位置関係を示す図である。
 図8には、OAMを有するRF信号の到来方向(伝搬方向)から見た、受信アンテナRx1、Rx2の中心点O1、O2及び輪郭C1、C2を示す。受信アンテナRx1、Rx2は、図7に示すように、互いに隣接して配置されており、2チャンネルでのシングルモード又はマルチモードでの通信を行うこととする。
 受信アンテナRx1、Rx2の輪郭C1、C2は、それぞれ、中心点O1、O2を有する半径Rの円であるとする。中心点O1とO2との間の距離はdである。受信アンテナRx1、Rx2は、互いに離間して配設されているため、2R<dである。
 なお、受信アンテナRx1、Rx2の光軸は、それぞれ、中心点O1、O2において、輪郭C1、C2で表される円を垂直に貫く方向に伸延している。
 ここで、受信アンテナRx1、Rx2に対応する送信アンテナTx1、Tx2は、図7に示すように、それぞれ、受信アンテナRx1、Rx2に対向して配置されており、それぞれ、受信アンテナRx1、Rx2と同一の構成を有するものとする。送信アンテナTx1、Tx2の光軸は、それぞれ、受信アンテナRx1、Rx2の光軸と一致している。
 すなわち、送信アンテナTx1と受信アンテナRx1は、同一の構成を有し、同一の構成の一対のアンテナが、光軸を一致させた状態で、互いに対向するように配置されている。同様に、送信アンテナTx2と受信アンテナRx2は、同一の構成を有し、同一の構成の一対のアンテナが、光軸を一致させた状態で、互いに対向するように配置されている。
 このため、送信アンテナTx1の中心点と送信アンテナTx2の中心点との間の距離もdである。
 また、送信アンテナTx1と受信アンテナRx1は、モードmのOAMを有するRF信号を用いて通信し、送信アンテナTx2と受信アンテナRx2とは、モードnのOAMを有するRF信号を用いて通信することとする。m、nは、上述したモードlのうちの任意の値であり、同一の値であってもよいし、互いに異なる値であってもよい。
 ここで、受信アンテナRx1、Rx2の干渉の低さを説明するために、受信アンテナRx2の表面の点Pにおける、送信アンテナTx1、Tx2から送信されたOAMを有するRF信号の受信状況について検討する。
 また、点Pは、受信アンテナRx2の中心点O2から距離r(r<R)で、線分O1O2と線分O2Pが角度θをなす点であることとする。また、線分O1Pは線分O1O2と角度αをなすこととする。
 図8に示す受信アンテナRx1、Rx2は、2チャンネルでの通信を行うものであり、それぞれの光軸が異なるため、点Pにおける電界Eは、次式(2)で表すことができる。
Figure JPOXMLDOC01-appb-M000002
 ここで、Eは、電界Eの振幅である。
 また、受信アンテナRx2が送信アンテナTx1から受信するOAMを有するRF信号の電力Pim,nは次式(3)で表すことができる。式(3)で求まる電力Pim,nは、受信アンテナRx2が送信アンテナTx1から受ける干渉(あるいは混信(interference))による電力を表す。
Figure JPOXMLDOC01-appb-M000003
 ここで、Zは、自由空間においてOAMを有するRF信号が有するインピーダンスである。
 また、線分O1Pが線分O1O2となす角度αは、次式(4)で表すことができる。
Figure JPOXMLDOC01-appb-M000004
 また、(3)式と同様に、受信アンテナRx2が送信アンテナTx2から受信するOAMを有するRF信号の電力Psnは次式(5)で表すことができる。
Figure JPOXMLDOC01-appb-M000005
 従って、式(3)と式(5)に基づいて、電力Pim,nと電力Psnの比を求めれば、次式(6)が与えられる。
Figure JPOXMLDOC01-appb-M000006
 式(6)に含まれる積分成分I|rは、次式(7)の通りである。
Figure JPOXMLDOC01-appb-M000007
 式(7)は、m、nが次式(8)を満たせば零になる。
m>0 n>0で m が偶数の場合は n>=m/2+1、m<0 n<0でm が偶数の場合は-n>=-m/2+1   ・・・(8)
 従って、(6)式の計算結果は零になる。このため、電力Pim,nと電力Psnの比は零になり、送信アンテナTx1及び受信アンテナRx1から、送信アンテナTx2及び受信アンテナRx2への干渉は抑制される。また、送信アンテナTx2及び受信アンテナRx2から、送信アンテナTx1及び受信アンテナRx1への干渉は抑制される。このとき、m、nは、次式(9)の条件を満たす必要がある。
m>0 n>0であり、 nが偶数であればm>=n/2+1、m<0 n<0であり -n が偶数であれば -m>=-n/2+1   ・・・(9)
 ここで、mとnが(8)式と(9)式を満たせば、2つのチャンネルは直交している。
 OAMモードは、l周期で1サイクル分回転する螺旋状の波面を示す。ここでlは整数である。(8)式と(9)式がともに成立するとき、2つ送信アンテナの螺旋状の波面は同一方向に回転する。そして、2つの送信アンテナの各々の螺旋状の波面は、l周期で1サイクル回転する。ここで、lは偶数である。
 実際、図4及び5において、Nチャネルシステムでは、任意の2つのチャネルが直交することが最善の条件である。これは、すべての送信アンテナのすべての螺旋状の波面が同一方向に回転し、各送信アンテナの各螺旋状の波面が他のアンテナの2倍未満の速さで回転し、かつ、各送信アンテナの螺旋状の波面がl周期で1サイクル回転する(lは整数)ことを意味する。
 OAMモード(m、N)が{2},{-2},{4,6},{-4,-6}は、直交するチャンネルのグループの例である。
 {2}については、2は最初の偶数であり、2は明らかに2の2倍の値未満である。{2}は、OAMモード2がNチャンネルのすべてについて適用されることを意味する。
 {4,6}において、4と6はともに偶数であり、6は4の2倍の値未満である。{4,6}は、OAMモード4がNチャネルのすべてに適用されること、あるいは、OAMモード6がNチャネルのすべてに適用されること、又は、OAMモード4がNチャネルのうちの幾つかに適用されるとともにOAMモード6が残りのチャネルに適用されることを意味する。
 {-2}と{-4,-6}についての設定は、{2},{4,6}と同様であり、唯一の相違点は、回転方向である。
 これらの直交チャンネル以外であっても、干渉が低いチャンネルを実現することができる。2つのチャンネル(モードm,モードn)について、干渉が低いチャンネルは式で与えられる。
 m>0, n>0であれば、m>=n/2かつn>=m/2
 m<0, n<0であれば、-m>=-n/2かつ-n>=m/2    ・・・
 これは、2つの送信アンテナの螺旋状の波面が同一方向に回転し、各送信アンテナの螺旋状の波面が他のアンテナの螺旋状の波面の2倍未満の速さで回転することを意味する。直交チャンネルがこの条件を満足することは明らかである。

 従って、図4及び5において、Nチャンネルのシステムでは、任意の2つのチャンネルは干渉が低いことが期待される。これは、すべての送信アンテナのすべての螺旋状の波面が同一方向に回転し、かつ、各送信アンテナの螺旋状の波面が他のアンテナの螺旋状の波面の2倍未満の速さで回転することを意味する。{1,2},{-1,-2},{2,3,4},{-2,-3,-4}は、上述のように干渉が低いチャンネルのグループの例である。
 {1,2}については、2は明らかに1の2倍の値未満である。{1,2}は、OAMモード1がNチャンネルのすべてについて適用されること、OAMモード2がNチャンネルのすべてについて適用されること、又は、OAMモード1がNチャネルのうちの幾つかに適用されるとともにOAMモード2が残りのチャネルに適用されることを意味する。
 {2,3,4}については、4は明らかに2の2倍の値未満である。{2,3,4}は、OAMモード2がNチャンネルのすべてについて適用されること、OAMモード3がNチャンネルのすべてについて適用されること、OAMモード4がNチャンネルのすべてについて適用されること、OAMモード2がNチャネルのうちの幾つかに適用されるとともにOAMモード3が残りのチャネルに適用されること、OAMモード2がNチャネルのうちの幾つかに適用されるとともにOAMモード4が残りのチャネルに適用されること、OAMモード3がNチャネルのうちの幾つかに適用されるとともにOAMモード4が残りのチャネルに適用されること、又は、OAMモード2がNチャネルのうちの幾つかに適用され、OAMモード3がNチャネルのうちの他の幾つかに適用されるとともにOAMモード4が残りのチャネルに適用されることを意味する。
 {-1,-2}と{-2,-3,-4}についての設定は、{2},{4,6}と同様であり、唯一の相違点は、回転方向である。
 式(6)に関して、m>0でn<0ある場合、又は、m<0でn>0ある場合は、干渉は比較的大きくなる。従って、図4及び5に示すように、Nチャンネルのシステムでは、少なくとも、すべての送信アンテナのすべての螺旋状の波面は、同一方向に回転するべきである。
 次に、図9を用いて、実施の形態のアンテナ装置100におけるチャンネル容量の高さについて説明する。
 図9は、実施の形態のアンテナ装置100におけるチャンネル容量の高さを説明するためのシミュレーション結果を示す図である。
 図9には、実施の形態のアンテナ装置100の送信アンテナTx1、Tx2と受信アンテナRx1、Rx2のチャンネル容量(2*2OAM)に加えて、比較用に、SISO(Single Input Single Output)による送信アンテナと受信アンテナを用いた場合のチャンネル容量(SISO)を示す。さらに、比較用に、LosMIMOによる送信アンテナと受信アンテナを2チャンネル(2組)並べて、送信アンテナと受信アンテナとの中心間距離dを変えた場合の3種類のチャンネル容量(2*2LosMIMO(d=(λL/2)1/2,2*2LosMIMO(d=(1/2*λL/2)1/2,2*2LosMIMO(d=(1/4*λL/2)1/2)を示す。
 3種類の2チャンネルのLOSMIMOのチャンネル容量(2*2LosMIMO(d=(λL/2)1/2,2*2LosMIMO(d=(1/2*λL/2)1/2,2*2LosMIMO(d=(1/4*λL/2)1/2)は、それぞれ、送信アンテナと受信アンテナの間の距離d(図8参照)が、λL/2)1/2、1/2*λL/2)1/2、1/4*λL/2)1/2である場合のLosMIMOによるチャンネル容量を示す。
 ここで、Lは、送信アンテナTx1と受信アンテナRx1との間の長さであり、これは、送信アンテナTx2と受信アンテナRx2との間の長さと同一である。
 なお、図9において、横軸はシグナルノイズ比(SNR(Signal to Noise Ratio))を示し、縦軸はチャンネル容量(bps/Hz)を示す。
 図9に示すように、2*2LosMIMO(d=(λL/2)1/2は、実施の形態のアンテナ装置100の送信アンテナTx1、Tx2と受信アンテナRx1、Rx2のチャンネル容量(2*2OAM)よりも僅かに高く、最も高い値を示した。
 しかしながら、これは、3つのLosMIMOのチャンネル容量のうち、距離dが最も長い場合に得られる値である。
 また、3つのLosMIMOのチャンネル容量を比べると分かるように、LosMIMOのチャンネル容量は、距離dが短縮されて分離性が低下すると、急激に低下することが分かる。
 このようにLosMIMOのチャンネル容量が距離dの短縮に伴って大幅に低下することに比べると、実施の形態によるチャンネル容量(2*2OAM)は、送信アンテナTx1、Tx2と受信アンテナRx1、Rx2との中心間距離dが小さくても、非常に高いチャンネル容量が得られることが分かる。アンテナ装置100における距離dは、(1/4*λL/2)1/2よりも非常に短く、2R(図8参照)に近い長さである。
 なお、SISOは、チャンネル容量が最も低い。SISOの場合は、シグナルノイズ比(SNR)が高くなれば、チャンネル容量は上昇するが、実施の形態のアンテナ装置100の送信アンテナTx1、Tx2と受信アンテナRx1、Rx2のチャンネル容量(2*2OAM)とLosMIMOよりも低い値になる。
 次に、図10を用いて、シグナルノイズ比(SNR)を20dBに固定し、d=β(λL/2)1/2を満たす値βと、チャンネル容量との関係について説明する。
 図10は、シグナルノイズ比(SNR)を20dBに固定し、d=β(λL/2)1/2を満たす値βと、チャンネル容量との関係を示す図である。
 図10には、実施の形態のアンテナ装置100の送信アンテナTx1、Tx2と受信アンテナRx1、Rx2のチャンネル容量(2*2OAM)と、比較用にLosMIMOによる送信アンテナと受信アンテナを2チャンネル(2組)並べた場合のチャンネル容量(2*2LosMIMO)とを示す。
 図10の横軸は、d=β(λL/2)1/2を満たす値βを表すため、図10中において、横軸が左側に行くほど、中心間距離dが長いことになる。すなわち、横軸が左側に行くほど、2つのチャンネルのアンテナ同士が遠いことになる。
 また、横軸が右側に行くほど、中心間距離dが短いことになる。すなわち、横軸が右側に行くほど、2つのチャンネルのアンテナ同士が近くなることになる。
 図10に示すように、実施の形態のアンテナ装置100の送信アンテナTx1、Tx2と受信アンテナRx1、Rx2のチャンネル容量(2*2OAM)は、横軸の値によらず一定値を示した。これは、中心間距離dによらずに、高いチャンネル容量が得られていることから導き出された結果であると考えることができる。
 また、比較用にLosMIMOによる送信アンテナと受信アンテナを2チャンネル(2組)並べた場合のチャンネル容量(2*2LosMIMO)は、横軸において右側に行くほど低い値を示した。
 これは、中心間距離dが短くなるほど、チャンネル容量が急激に低下することを示している。
 以上より、実施の形態によるチャンネル容量(2*2OAM)は、送信アンテナTx1、Tx2と受信アンテナRx1、Rx2との中心間距離dによらずに、非常に高いチャンネル容量が得られることが分かる。
 また、中心間距離dが短くなるほど、比較用のLosMIMOによる2チャンネルのチャンネル容量(2*2LosMIMO)に比べて、実施の形態のアンテナ装置100による2チャンネルのチャンネル容量(2*2OAM)の優位性が際だつことが分かる。
 このため、実施の形態のアンテナ装置100は、隣接するアンテナ同士の分離性が低い場合ほど有利であり、小型化に適していることが分かる。
 次に、図11乃至図14を用いて、実施の形態のアンテナ装置100の送信アンテナTx1、Tx2と受信アンテナRx1、Rx2の構成について説明する。
 また、以下では、送信アンテナTx1、Tx2を特に区別しない場合には、送信アンテナTxと称す。また、受信アンテナRx1、Rx2を特に区別しない場合には、受信アンテナRxと称す。
 また、送信アンテナTxと受信アンテナRxは、同一の構成を有するため、送信アンテナTxを受信アンテナRxとして用いることができ、受信アンテナRxを送信アンテナTxとして用いることができる。
 このため、送信アンテナTxと受信アンテナRxを区別しない場合には、アンテナ10又はアンテナ20と称す。
 図11は、実施の形態のアンテナ装置100のアンテナを示す図である。図11の(A1)、(A2)には、モード1のOAMを有するRF信号を送受信するアンテナ10を示し、図11の(B1)、(B2)には、モード2のOAMを有するRF信号を送受信するアンテナ20を示す。
 なお、図11の(A1)、(A2)、(B1)、(B2)では図示するように、直交座標系であるXYZ座標系を定義する。なお、Z軸は、アンテナ10、20の光軸と平行な軸である。
 図11の(A1)、(A2)に示すように、モード1用のアンテナ10は、輻射器11(A2参照)と、反射器12とを含む。アンテナ10は、パラボラアンテナを変形したアンテナである。なお、図11の(A1)では輻射器11を省略する。
 輻射器11は、RF信号の送受信を行う部分である。輻射器11は、図示しないステー等により、反射器12に対して固定されている。輻射器11は、RF信号を送信する際は、反射器12に向けて、Z軸負方向にRF信号を放射する。輻射器11は、RF信号を受信する際は、反射器12で反射されてZ軸正方向に伝搬するRF信号を受信する。
 反射器12は、Z軸を含む平面で切った断面が放物線を描く凹状で、平面視で円形(A1参照)の形状を有する。反射器12の光軸は、中心Oを通り、Z軸に平行な軸である。
 反射器12は、切り欠き部12Aを有する。切り欠き部12Aは、中心OからX軸正方向側において反射器12が切り欠かれた部分である。切り欠き部12Aを挟んだ一方側12Bと他方側12Cとの間は、Z軸方向において、アンテナ装置100の通信周波数における1/2波長(λ/2)のギャップが中心Oに形成されている。このギャップは、Z軸方向に形成される。ギャップは1波長分の経路長の差を生み出すために用いられる。
 このような反射器12において、一方側12Bと他方側12Cとの間の1/2波長(λ/2)のギャップによるZ軸方向の変位は、一方側12Bから他方側12Cにかけて、Z軸正方向から見て中心Oの周りの反時計方向の360度にわたって均等かつ線形的に配分されている。これは、一方側12Bから他方側12Cにかけて、中心Oの周りの反時計方向の360度にわたって、Z軸正方向から見て中心Oの周りの反時計方向に連続的に反射器12の反射面の位相がλ/2(π)進むように設定されていることを表す。
 このため、輻射器11から反射器12にOAMを有しないRF信号を(Z軸負方向に)放射すると、輻射器11から放射されたRF信号(電磁波)は、反射器12でモード1のOAMを有するRF信号にモード変換され、Z軸正方向に向かって螺旋状に伝搬する。
 反射器12で反射されるとともにモード変換されたモード1のOAMを有するRF信号は、Z軸に平行で中心Oを通る光軸を中心軸として螺旋状に伝搬する。反射器12でモード変換されたRF信号は、アンテナ10と同一のモード1のOAMを有する。
 また、アンテナ10と同一のモード1のOAMを有するRF信号が、Z軸に平行で中心Oを通る光軸を中心軸として反射器12に向かって螺旋状に伝搬すると、モード1のOAMを有するRF信号は、反射器12で逆変換されて平面波になり、Z軸正方向に反射されて輻射器11で受信される。
 このように、アンテナ10は、モード1のOAMを有するRF信号の螺旋の1周期に対応する螺旋形状に形成される反射面を有するパラボラアンテナである。
 また、図11の(B1)、(B2)に示すモード2用のアンテナ20は、輻射器21(B2参照)と、パラボラアンテナを変形した反射器22とを含む。なお、図11の(B1)では輻射器21を省略する。
 輻射器21は、RF信号の送受信を行う部分である。輻射器21は、図示しないステー等により、反射器22に対して固定されている。輻射器21は、RF信号を送信する際は、反射器22に向けて、Z軸負方向にRF信号を放射する。輻射器21は、RF信号を受信する際は、反射器22で反射されてZ軸正方向に伝搬するRF信号を受信する。輻射器21は、輻射器11と同様である。
 反射器22は、Z軸を含む平面に沿って得られる断面が放物線を描く凹状で、平面視で円形(B1参照)の形状を有する。反射器22の光軸は、中心Oを通り、Z軸に平行な軸である。
 反射器22は、境界部22Aを有する。境界部22Aは、中心Oを通るXZ平面で反射器22をY軸正方向側の反射部221と、Y軸負方向側の反射部222とに分離する境界である。反射器22は、境界部22Aによって2つの反射部221、222に分離されている。
 反射部221、222は、1つのパラボラアンテナを中心点を通る線に沿って二等分することによって得られる部分である。
 反射部221、222は、中心Oに対して、それぞれ、原点を通るY軸に平行な軸に沿って、互いに逆方向に回転移動させた位置関係にある。
 境界部22Aを挟んだ一方側22B1と他方側22C1との間は、Z軸方向において、アンテナ装置100の通信周波数における1/2波長(λ/2)のギャップが中心Oに形成されている。このギャップは、Z軸方向に形成される。ギャップは1波長分の経路長の差を生み出すために用いられる。
 同様に、境界部22Aを挟んだ一方側22B2と他方側22C2との間は、Z軸方向において、アンテナ装置100の通信周波数における1/2波長(λ/2)のギャップが中心Oに形成されている。このギャップは、Z軸方向に形成される。ギャップは1波長分の経路長の差を生み出すために用いられる。
 このような反射器22において、一方側22B1と一方側22B2との間では、1波長(λ)のギャップによるZ軸方向の変位が、一方側22B1から反対側の一方側22B2にかけて、中心Oの周りの反時計方向の180度にわたって均等に配分されている。これは、中心Oの周りの反時計方向の180度にわたって連続的に位相がλ(2π)進むように設定されていることを表す。
 同様に、他方側22C1と他方側22C2との間では、ギャップによるZ軸方向の変位が、他方側22C2から反対側の他方側22C1にかけて、中心Oの周りの反時計方向の180度にわたって均等に配分されている。これは、中心Oの周りの反時計方向の180度にわたって連続的に位相がλ/2(π)進むように設定されていることを表す。
 このため、輻射器21から反射器22にOAMを有しないRF信号(電磁波)を(Z軸負方向に)放射すると、輻射器21から放射されたOAMを有しないRF信号(電磁波)は、反射器22でモード2のOAMを有するRF信号にモード変換され、Z軸正方向に向かって螺旋状に伝搬する。
 反射器22で反射されるとともにモード変換されたモード2のOAMを有するRF信号は、Z軸に平行で中心Oを通る光軸を中心軸として螺旋状に伝搬する。
 また、アンテナ20と同一のモード2のOAMを有するRF信号が、Z軸に平行で中心Oを通る光軸を中心軸として反射器22に向かって螺旋状に伝搬すると、モード2のOAMを有するRF信号は、反射器22で逆変換されて平面波になり、Z軸正方向に反射されて輻射器21で受信される。
 このように、アンテナ20は、モード2のOAMを有するRF信号の螺旋の1周期に対応する螺旋形状に形成される表面を有するパラボラアンテナである。
 次に、図12を用いて、実施の形態のアンテナ装置100のアンテナの変形例について説明する。
 図12は、実施の形態のアンテナ装置100のアンテナの変形例を示す図である。
 図12の(A)には、変形例によるアンテナ30を示す。アンテナ30は、輻射器31と透過フィルタ32を含む。図12の(B)には、モード1用の透過フィルタ32を示し、図12の(C)には、モード2用の透過フィルタ32を示す。なお、図12では、図11と同様にXYZ座標系を定義する。
 輻射器31は、図11の(A2),(B2)にそれぞれ示す輻射器11、21と同様である。
 透過フィルタ32は、RF信号が透過可能な誘電体製の円盤状の部材であり、輻射器31の輻射面の前に配設される。
 図12の(B)に示す透過フィルタ32は、中心O1から放射状に8つの透過部32A1~32A8に分けられている。透過部32A1~32A8は、Z軸正方向側から見ると、45度の中心角を有する扇形の部分である。透過部32A1~32A8は、Z軸正方向側から見ると、この順番に反時計回りに配列されており、透過部32A1の隣に透過部32A8が位置する。
 透過部32A1~32A8は、互いに厚さが異なり、透過部32A1の厚さが最も薄く、透過部32A8の厚さが最も厚い。このように透過部32A1~32A8の厚さが異なるのは、各透過部32A1~32A8をRF信号が透過する所要時間を設定するためである。
 誘電体の内部では、大気中よりもRF信号の伝搬速度は低下するため、各透過部32A1~32A8の厚さを変えることにより、各透過部32A1~32A8においてRF信号に与える遅延時間(位相)を設定することができる。
 透過部32A1~32A8がRF信号に与える遅延時間は、最も薄い透過部32A1が最も短く、最も厚い透過部32A8が最も長くなる。透過部32A1がRF信号に与える遅延時間と、透過部32A8がRF信号に与える遅延時間との差は、輻射器31から輻射されるRF信号の1周期分の時間に設定されている。
 従って、透過部32A1~32A8の厚さの差を均等に設定することにより、輻射器31から透過フィルタ32に入射されるRF信号を、モード1のOAMを有するRF信号にモード変換することができる。
 また、透過フィルタ32によってモード変換されたモード1のOAMを有するRF信号を逆変換するには、透過フィルタ32とは逆位相の透過フィルタを用いればよい。
 すなわち、透過フィルタ32のように反時計回りに厚さが厚くなる透過部32A1~32A8によってモード変換されたOAMを有するRF信号を逆変換するには、透過部32A1~32A8と同様の8つの透過部を時計回りに配列した透過フィルタを用いればよい。
 すなわち、図12の(B)に示す透過フィルタ32含むアンテナ30を送信アンテナTxとして用いる場合は、対応する受信アンテナRxとしては、透過フィルタ32とは逆位相の透過フィルタを含むアンテナを用いればよい。
 図12の(C)は、モード2用の透過フィルタ32を示す。モード2用の透過フィルタ32は、中心O2から放射状に8つの透過部32B1~32B8に分けられている。透過部32B1~32B8は、Z軸正方向側から見ると、45度の中心角を有する扇形の部分である。透過部32B1~32B8は、Z軸正方向側から見ると、この順番に反時計回りに配列されており、透過部32B1の隣に透過部32B8が位置する。
 透過部32B1~32B8は、互いに厚さが異なり、透過部32B1と32B5の厚さが最も薄く、透過部32B4と32B8の厚さが最も厚い。このように透過部32B1~32B8の厚さが異なるのは、各透過部32B1~32B4、32B5~32B8をRF信号が透過する所要時間を設定するためである。
 誘電体の内部では、大気中よりもRF信号の伝搬速度は低下するため、各透過部32B1~32B8の厚さを変えることにより、各透過部32B1~32B8においてRF信号に与える遅延時間(位相)を設定することができる。
 透過部32B1~32B8がRF信号に与える遅延時間は、最も薄い透過部32B1と32B5が最も短く、最も厚い透過部32B4と32B8が最も長くなる。
 透過部32B1と32B5がRF信号に与える遅延時間と、透過部32B4と32B8がRF信号に与える遅延時間との差は、それぞれ、輻射器31から輻射されるRF信号の1周期分の時間に設定されている。
 なお、透過部32B1と32B5の厚さは等しく、透過部32B2と32B6の厚さは等しく、透過部32B3と32B7の厚さは等しく、透過部32B4と32B8の厚さは等しい。
 従って、透過部32B1~32B4と透過部32B5~32B8の厚さの差を均等に設定することにより、輻射器31から透過フィルタ32に入射されるRF信号を、モード2のOAMを有するRF信号にモード変換することができる。
 また、透過フィルタ32によってモード変換されたモード2のOAMを有するRF信号を逆変換するには、モード2の透過フィルタ32とは逆位相の透過フィルタを用いればよい。
 なお、図12では、8つの透過部32A1~32A8、32B1~32B8に分割した透過フィルタについて説明したが、分割数は幾つであってもよい。分割数が多くなれば、透過フィルタ32の分解能が高くなるため、図11に示すアンテナ10、20により近いOAMを有するRF信号を得ることができる。
 次に、図13及び図14を用いて、実施の形態の変形例のアンテナ装置100A、100Bについて説明する。アンテナ装置100A、100Bは、図11に示すアンテナ10、20と、図12に示すアンテナ30とを組み合わせた構成を有する。
 図13は、実施の形態の変形例のアンテナ装置100Aを示す図であり、図14は、実施の形態の他の変形例のアンテナ装置100Bを示す図である。
 図13に示すアンテナ装置100Aは、アンテナ130A、130B、140A、140B、及び反射器150A、150Bを含む。
 アンテナ130A、130B、140A、140Bは、図12に示すアンテナ30に対応するものである。アンテナ130A、130Bは、送信アンテナとして用いられ、アンテナ140A、140Bは、受信アンテナとして用いられる。
 アンテナ130A、130Bは、それぞれ、輻射器131A及び透過フィルタ132A、輻射器131B及び透過フィルタ132Bを含む。同様に、アンテナ140A、140Bは、それぞれ、輻射器141A及び透過フィルタ142A、輻射器141B及び透過フィルタ142Bを含む。
 また、反射器150A、150Bは、図11に示す反射器12と同様に、断面が放物線を描く凹状で、平面視で円形の形状を有する。反射器150Aは実線で示す2つの光軸を有し、2つの光軸は実線で示すように、透過フィルタ132A、142Aの光軸と一致している。同様に、反射器150Bは実線で示す2つの光軸を有し、2つの光軸は実線で示すように、透過フィルタ132B、142Bの光軸と一致している。
 アンテナ130Aは、反射器150A、150Bを介して、アンテナ130Bと対をなしている。また、アンテナ130Aと130Bは、反射器150A、150Bを介して、図13に実線で示す光軸が一致するように配置されている。
 ここで、アンテナ130Aの透過フィルタ132AがRF信号に与える遅延時間(位相)と、反射器150AがRF信号に与える位相との合計の位相は、アンテナ130Aとアンテナ130Bとの間の光軸上において、輻射器130Aから輻射される平面波のRF信号を、モード1のOAMを有するRF信号にモード変換する値に設定されている。すなわち、この合計の位相は、λ(2π)に対応する。
 一方、アンテナ130Bの透過フィルタ132BがRF信号に与える遅延時間(位相)と、反射器150BがRF信号に与える位相との合計の位相は、アンテナ130Aとアンテナ130Bとの間の光軸上において、モード1のOAMを有するRF信号を平面波のRF信号に逆変換して、輻射器131Bに入射させる値に設定されている。この合計の位相は、λ(2π)に対応する。
 同様に、アンテナ140Aは、反射器150A、150Bを介して、アンテナ140Bと対をなしている。また、アンテナ140Aと140Bは、反射器150A、150Bを介して、光軸が一致するように配置されている。
 ここで、アンテナ140Aの透過フィルタ142AがRF信号に与える遅延時間(位相)と、反射器150AがRF信号に与える位相との合計の位相は、アンテナ140Aとアンテナ140Bとの間の光軸上において、輻射器140Aから輻射される平面波のRF信号を、モード2のOAMを有するRF信号にモード変換する値に設定されている。
 一方、アンテナ140Bの透過フィルタ142BがRF信号に与える遅延時間(位相)と、反射器150BがRF信号に与える位相との合計の位相は、アンテナ130Aとアンテナ130Bとの間の光軸上において、モード4のOAMを有するRF信号を平面波のRF信号に逆変換して、輻射器141Bに入射させる値に設定されている。
 このような構成のアンテナ装置100Aでは、アンテナ130Aと130Bとの間で、モード1のOAMを有するRF信号を用いて通信を行うことができ、アンテナ140Aと140Bとの間で、モード2のOAMを有するRF信号を用いて通信を行うことができる。
 従って、2チャンネルの通信を行うことが可能なアンテナ装置100Aを提供することができる。なお、アンテナ装置100の2つのチャンネルのモードlは同一であっても良い。また、アンテナ装置100Aは、2つ以上のチャンネルを有する構成であってもよい。
 また、反射器150A,150Bは、図14に示すアンテナ装置100Bのように、反射器151A、151Bと、反射器152A、152Bとにチャンネル毎に分けてもよい。この場合に、図13に示す透過フィルタ132A、132B、142A、142Bを含まない構成にしてもよい。
 すなわち、反射器151Aと輻射器131Aとで図11に示すアンテナ10のようなモード1用のアンテナを構築し、同様に、反射器151Bと輻射器131Bとで図11に示すアンテナ10のようなモード1用のアンテナを構築すればよい。
 また、反射器152Aと輻射器141Aとで図11に示すアンテナ20のようなモード2用のアンテナを構築し、同様に、反射器152Bと輻射器141Bとで図11に示すアンテナ20のようなモード2用のアンテナを構築すればよい。
 この場合に、反射器151A、151B、152A、152Bにおける光軸は、パラボラアンテナの放物線状の断面形状の中心軸からオフセットしている。すなわち、反射器151A、151B、152A、152Bとしては、所謂オフセットパラボラ型の反射器を用いればよい。
 以上、実施の形態によれば、送信アンテナTx1、Tx2と受信アンテナRx1、Rx2との中心間距離dによらずに、非常に高いチャンネル容量を有するアンテナ装置100、100A、100Bを提供することができる。
 このため、高周波(RF)信号の多重化を容易に行うことのできるアンテナ装置100、100A、100Bを提供することができる。
 以上、本発明の例示的な実施の形態のアンテナ装置、及び、信号伝送システムについて説明したが、本発明は、具体的に開示された実施の形態に限定されるものではなく、特許請求の範囲から逸脱することなく、種々の変形や変更が可能である。
 100、100A、100B アンテナ装置
 Tx1、Tx2、Tx3、TxN 送信アンテナ
 Rx1、Rx2、Rx3、RxN 受信アンテナ
 10 アンテナ
 11 輻射器
 12 反射器
 20 アンテナ
 21 輻射器
 22 反射器
 30 アンテナ
 31 輻射器
 32 透過フィルタ
 130A、130B、140A、140B アンテナ
 150A、150B、151A、151B、152A、152B 反射器

Claims (14)

  1.  所定モードの軌道角運動量を有するRF信号を送信するN(N≧2)個の送信アンテナと、
     前記N個の送信アンテナとそれぞれ対をなすN個の受信アンテナであって、対応する送信アンテナが送信するRF信号と同一モードの軌道角運動量を有するRF信号を受信するN個の受信アンテナと
     を含む、アンテナ装置。
  2.  前記N個の対をなす前記N個の送信アンテナと前記N個の受信アンテナは、互いの間に干渉を有する2組の前記対を含む、請求項1記載のアンテナ装置。
  3.  前記N個の対をなす前記N個の送信アンテナと前記N個の受信アンテナは、一方の対は他方の対に対して干渉を有さず、前記他方の対は前記一方の対に対して干渉を有する2組の前記対を含む、請求項1記載のアンテナ装置。
  4.  前記N個の対をなす前記N個の送信アンテナと前記N個の受信アンテナは、互いに干渉を有しない2組の前記対を含む、請求項1記載のアンテナ装置。
  5.  前記N個の受信アンテナは、対応する送信アンテナの光軸と一致する光軸を有する、請求項1乃至4のいずれか一項記載のアンテナ装置。
  6.  前記送信アンテナ及び前記受信アンテナは、それぞれ、前記RF信号の螺旋の1周期に対応する螺旋形状に形成される表面を有する、パラボラアンテナである、請求項1乃至5のいずれか一項記載のアンテナ装置。
  7.  前記送信アンテナは、RF信号を出力する出力部と、前記出力部から出力されるRF信号に遅延を与えることによって前記RF信号の螺旋の1周期に対応する螺旋形状を実現する第1透過フィルタとを有し、
     前記受信アンテナは、前記RF信号の螺旋の1周期の位相を反転させた螺旋形状を実現する第2透過フィルタと、前記第2透過フィルタを透過したRF信号を受信する受信部とを有する、請求項1乃至6のいずれか一項記載のアンテナ装置。
  8.  前記送信アンテナは、RF信号を出力する出力部と、前記出力部から出力されるRF信号を透過する第1透過フィルタと、前記第1透過フィルタを透過したRF信号を反射するパラボラ状の第1反射器とを有し、前記第1透過フィルタが前記RF信号に与える遅延と、前記第1反射器が前記RF信号に与える遅延との合計の遅延は、平面波を前記所定モードの軌道角運動量を有するRF信号に変換するモード変換を実現する遅延であり、
     前記受信アンテナは、前記送信アンテナから送信される前記所定モードの軌道角運動量を有するRF信号を反射するパラボラ状の第2反射器と、前記第2反射器から出力されるRF信号に遅延を与える第2透過フィルタと、前記第2透過フィルタを透過したRF信号を受信する受信部とを有し、前記第2反射器が前記RF信号に与える遅延と、前記第2透過フィルタがRF信号に与える遅延との合計の遅延は、前記所定モードの軌道角運動量を有するRF信号を平面波に逆変換する逆変換を実現する遅延である、請求項1乃至7のいずれか一項記載のアンテナ装置。
  9.  前記所定モードは、1周期において生じる位相遅延をl倍にするモードであり、lは偶数である、請求項1乃至8のいずれか一項記載のアンテナ装置。
  10.  ある軸を軌道角運動量の軸として有し、その軸を1周する角度を比例係数で整数倍して得る位相遅延の分布をもつ軌道角運動量を持った信号を送信する送信アンテナと、
     ある軸を軌道角運動量の軸として有し、前記信号を受信する受信アンテナと
     を含む、信号伝送システムであって、
     前記送信アンテナの軌道角運動量の軸と、前記受信アンテナの軌道角運動量の軸とがそれぞれ同一の直線上にあり、
     前記送信アンテナと前記受信アンテナの組が複数あって、それぞれの軌道角運動量の軸を複数の異なる直線によって構成し、それぞれの軌道角運動量を持った信号が同じ周波数帯域・同じ時間帯に伝送する、信号伝送システム。
  11.  前記複数組の前記送信アンテナ及び前記受信アンテナにおいて、それぞれの組の前記送信アンテナと前記受信アンテナとが同じ符号の組み合わせの比例係数を有することにより、前記複数の軌道角運動量の伝送システムが構成される、請求項10記載の信号伝送システム。
  12.  前記複数組の前記送信アンテナ及び前記受信アンテナにおいて、ある組の前記比例係数の絶対値は、他の組の比例係数の絶対値の2倍以下である、請求項11記載の信号伝送システム。
  13.  前記比例係数は偶数の値を持つ、請求項12記載の信号伝送システム。
  14.  前記組をなす前記送信アンテナと前記受信アンテナとは、それぞれ同じ軌道角運動量を持つ、請求項10記載の信号伝送システム。
PCT/JP2013/066115 2013-06-11 2013-06-11 アンテナ装置、及び、信号伝送システム WO2014199451A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015522318A JP6037008B2 (ja) 2013-06-11 2013-06-11 アンテナ装置、及び、信号伝送システム
PCT/JP2013/066115 WO2014199451A1 (ja) 2013-06-11 2013-06-11 アンテナ装置、及び、信号伝送システム
US14/872,444 US9755323B2 (en) 2013-06-11 2015-10-01 Antenna apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/066115 WO2014199451A1 (ja) 2013-06-11 2013-06-11 アンテナ装置、及び、信号伝送システム

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/872,444 Continuation US9755323B2 (en) 2013-06-11 2015-10-01 Antenna apparatus

Publications (1)

Publication Number Publication Date
WO2014199451A1 true WO2014199451A1 (ja) 2014-12-18

Family

ID=52021787

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/066115 WO2014199451A1 (ja) 2013-06-11 2013-06-11 アンテナ装置、及び、信号伝送システム

Country Status (3)

Country Link
US (1) US9755323B2 (ja)
JP (1) JP6037008B2 (ja)
WO (1) WO2014199451A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106025566A (zh) * 2016-05-30 2016-10-12 哈尔滨工业大学 基于反射型超表面产生涡旋波束的透镜及方法
KR20160126853A (ko) * 2015-04-24 2016-11-02 한국전자통신연구원 반사형 안테나 장치 및 그 설계방법
WO2017125969A1 (ja) * 2016-01-20 2017-07-27 パナソニックIpマネジメント株式会社 送信装置、受信装置、送信方法、および受信方法
WO2017125968A1 (ja) * 2016-01-20 2017-07-27 パナソニックIpマネジメント株式会社 送信装置、受信装置、および通信方法
US10665955B2 (en) 2015-10-01 2020-05-26 Nec Corporation Radio signal transmitting antenna, radio signal receiving antenna, radio signal transmission/reception system, radio signal transmitting method, and radio signal receiving method
US10868370B2 (en) 2017-05-24 2020-12-15 The University Of Electro-Communications Wireless communication apparatus and antenna device
US10938119B2 (en) 2016-04-25 2021-03-02 The University Of Electro-Communications Wireless communication device and antenna device
JP7429802B2 (ja) 2020-03-17 2024-02-08 ソニーグループ株式会社 螺旋パターンのアンテナ素子を有するアンテナアセンブリ

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9634399B1 (en) * 2013-11-12 2017-04-25 L-3 Communications Corp. Antenna for transmitting partial orbital angular momentum beams
US9608335B2 (en) * 2014-01-09 2017-03-28 Raytheon Company Continuous phase delay antenna
US10069535B2 (en) 2016-12-08 2018-09-04 At&T Intellectual Property I, L.P. Apparatus and methods for launching electromagnetic waves having a certain electric field structure
KR102245947B1 (ko) * 2017-04-26 2021-04-29 한국전자통신연구원 무선 통신 시스템에서 송수신 장치
US11237103B2 (en) * 2018-05-31 2022-02-01 Socovar Sec Electronic device testing system, electronic device production system including same and method of testing an electronic device
US20230408635A1 (en) * 2018-07-16 2023-12-21 Or-Ment Llc Electromagnetic wave medical imaging system, device and methods
JP7067622B2 (ja) * 2018-08-02 2022-05-16 日本電気株式会社 制御装置、oam送信装置、制御方法、及び制御プログラム
US10581522B1 (en) 2018-12-06 2020-03-03 At&T Intellectual Property I, L.P. Free-space, twisted light optical communication system
JP7306205B2 (ja) * 2019-10-03 2023-07-11 日本電気株式会社 Oam受信装置、oam受信方法、及びoam伝送システム
CN114122679B (zh) * 2020-08-31 2023-01-24 西安电子科技大学 一种曲流加载的机载刀型天线

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005069443A1 (en) * 2004-01-19 2005-07-28 Roke Manor Research Limited Parabolic reflector
WO2008059985A1 (fr) * 2006-11-17 2008-05-22 Nec Corporation Système de communication mimo à trajets de communication déterministes, et procédé
WO2009017230A1 (ja) * 2007-08-02 2009-02-05 Nec Corporation 決定論的通信路を有するmimo通信システム及びそのアンテナ配置方法
JP2009033747A (ja) * 2007-07-25 2009-02-12 Fujitsu Ltd セキュア通信に関する方法及び装置
WO2010026233A1 (en) * 2008-09-05 2010-03-11 Astrium Limited Antenna reflector

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6870515B2 (en) 2000-12-28 2005-03-22 Nortel Networks Limited MIMO wireless communication system
JP2004517549A (ja) 2000-12-28 2004-06-10 ノーテル・ネットワークス・リミテッド Mimo無線通信システム
US9190716B2 (en) 2008-09-05 2015-11-17 Astrium Limited Reflector
EP2656442A1 (en) * 2010-12-22 2013-10-30 Telefonaktiebolaget LM Ericsson (PUBL) An antenna arrangement
US8432884B1 (en) * 2011-11-16 2013-04-30 Metropcs Wireless, Inc. System and method for increased bandwidth efficiency within microwave backhaul of a telecommunication system
US8917745B2 (en) * 2012-03-11 2014-12-23 Broadcom Corporation Channel bonding with orbital angular momentum

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005069443A1 (en) * 2004-01-19 2005-07-28 Roke Manor Research Limited Parabolic reflector
WO2008059985A1 (fr) * 2006-11-17 2008-05-22 Nec Corporation Système de communication mimo à trajets de communication déterministes, et procédé
JP2009033747A (ja) * 2007-07-25 2009-02-12 Fujitsu Ltd セキュア通信に関する方法及び装置
WO2009017230A1 (ja) * 2007-08-02 2009-02-05 Nec Corporation 決定論的通信路を有するmimo通信システム及びそのアンテナ配置方法
WO2010026233A1 (en) * 2008-09-05 2010-03-11 Astrium Limited Antenna reflector

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160126853A (ko) * 2015-04-24 2016-11-02 한국전자통신연구원 반사형 안테나 장치 및 그 설계방법
KR102418087B1 (ko) 2015-04-24 2022-07-07 한국전자통신연구원 반사형 안테나 장치 및 그 설계방법
US10665955B2 (en) 2015-10-01 2020-05-26 Nec Corporation Radio signal transmitting antenna, radio signal receiving antenna, radio signal transmission/reception system, radio signal transmitting method, and radio signal receiving method
US11322853B2 (en) 2015-10-01 2022-05-03 Nec Corporation Radio signal transmitting antenna, radio signal receiving antenna, radio signal transmission/reception system, radio signal transmitting meithod, and radio signal receiving method
US10574376B2 (en) 2016-01-20 2020-02-25 Panasonic Intellectual Property Management Co., Ltd. Transmission device, reception device, and communication method
US10305560B2 (en) 2016-01-20 2019-05-28 Panasonic Intellectual Property Management Co., Ltd. Transmission device, reception device, transmission method, and reception method
WO2017125968A1 (ja) * 2016-01-20 2017-07-27 パナソニックIpマネジメント株式会社 送信装置、受信装置、および通信方法
WO2017125969A1 (ja) * 2016-01-20 2017-07-27 パナソニックIpマネジメント株式会社 送信装置、受信装置、送信方法、および受信方法
US10938119B2 (en) 2016-04-25 2021-03-02 The University Of Electro-Communications Wireless communication device and antenna device
CN106025566A (zh) * 2016-05-30 2016-10-12 哈尔滨工业大学 基于反射型超表面产生涡旋波束的透镜及方法
CN106025566B (zh) * 2016-05-30 2018-10-02 哈尔滨工业大学 基于反射型超表面产生涡旋波束的透镜及方法
US10868370B2 (en) 2017-05-24 2020-12-15 The University Of Electro-Communications Wireless communication apparatus and antenna device
JP7429802B2 (ja) 2020-03-17 2024-02-08 ソニーグループ株式会社 螺旋パターンのアンテナ素子を有するアンテナアセンブリ

Also Published As

Publication number Publication date
US9755323B2 (en) 2017-09-05
JPWO2014199451A1 (ja) 2017-02-23
JP6037008B2 (ja) 2016-11-30
US20160028163A1 (en) 2016-01-28

Similar Documents

Publication Publication Date Title
JP6037008B2 (ja) アンテナ装置、及び、信号伝送システム
US11670863B2 (en) Multibeam antenna designs and operation
US10938119B2 (en) Wireless communication device and antenna device
EP2940907B1 (en) Antenna system
US20150357710A1 (en) Antenna apparatus and antenna direction control method
US20150372398A1 (en) Method and Apparatus for Generating Electromagnetic Beams
US9570811B2 (en) Device to reflect and transmit electromagnetic wave and antenna device
US9608335B2 (en) Continuous phase delay antenna
JP7006961B2 (ja) 無線通信装置及びアンテナ装置
Wu et al. Millimeter-wave and terahertz OAM discrete-lens antennas for 5G and beyond
Tekkouk et al. Multiplexing antenna system in the non-far region exploiting two-dimensional beam mode orthogonality in the rectangular coordinate system
Sasaki et al. Pragmatic OAM with polarization multiplexing transmission for future 5G ultra-high capacity radio
Tamburini et al. N-tupling the capacity of each polarization state in radio links by using electromagnetic vorticity
KR101926986B1 (ko) 렌즈를 포함하는 안테나 장치 및 렌즈 안테나를 이용한 통신 방법
JP7161750B2 (ja) ループアンテナの給電装置
US10432271B2 (en) Radio apparatus, radio communication system, and antenna position adjustment method
TWI609529B (zh) 使用於碟盤天線的多元接收器設備與系統
Li et al. Quasi-LoS MIMO wireless communication with twisted radio wave
KR102247745B1 (ko) 궤도각운동량을 이용한 전이중 통신 안테나 시스템 및 전이중 통신 안테나 시스템의 설계 방법
JP5135446B2 (ja) Mimo端末測定方法および測定システム
EP3644527B1 (en) Radio communication system and radio communication method
CN107210538B (zh) 反射面天线及其馈源
KR20180125691A (ko) 안테나 장치
Le et al. Static Reflective Surfaces for Improved Terahertz Coverage
Klemes et al. Self-Healing Effects in OAM Beams Observed on a 28 GHz Experimental Link

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13886731

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015522318

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13886731

Country of ref document: EP

Kind code of ref document: A1