WO2014198566A1 - Determining the intrinsic speed of a speed sensor device in a body of water in order to correct the measurement signal - Google Patents

Determining the intrinsic speed of a speed sensor device in a body of water in order to correct the measurement signal Download PDF

Info

Publication number
WO2014198566A1
WO2014198566A1 PCT/EP2014/061297 EP2014061297W WO2014198566A1 WO 2014198566 A1 WO2014198566 A1 WO 2014198566A1 EP 2014061297 W EP2014061297 W EP 2014061297W WO 2014198566 A1 WO2014198566 A1 WO 2014198566A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor device
relative
reference point
speed
water flow
Prior art date
Application number
PCT/EP2014/061297
Other languages
German (de)
French (fr)
Inventor
Antoine Chabaud
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Publication of WO2014198566A1 publication Critical patent/WO2014198566A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P5/00Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • F03B13/12Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy
    • F03B13/14Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy
    • F03B13/16Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy using the relative movement between a wave-operated member, i.e. a "wom" and another member, i.e. a reaction member or "rem"
    • F03B13/18Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy using the relative movement between a wave-operated member, i.e. a "wom" and another member, i.e. a reaction member or "rem" where the other member, i.e. rem is fixed, at least at one point, with respect to the sea bed or shore
    • F03B13/1805Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy using the relative movement between a wave-operated member, i.e. a "wom" and another member, i.e. a reaction member or "rem" where the other member, i.e. rem is fixed, at least at one point, with respect to the sea bed or shore and the wom is hinged to the rem
    • F03B13/1825Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy using the relative movement between a wave-operated member, i.e. a "wom" and another member, i.e. a reaction member or "rem" where the other member, i.e. rem is fixed, at least at one point, with respect to the sea bed or shore and the wom is hinged to the rem for 360° rotation
    • F03B13/183Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy using the relative movement between a wave-operated member, i.e. a "wom" and another member, i.e. a reaction member or "rem" where the other member, i.e. rem is fixed, at least at one point, with respect to the sea bed or shore and the wom is hinged to the rem for 360° rotation of a turbine-like wom
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P7/00Measuring speed by integrating acceleration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/80Diagnostics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/10Purpose of the control system
    • F05B2270/107Purpose of the control system to cope with emergencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/30Energy from the sea, e.g. using wave energy or salinity gradient

Definitions

  • the present invention relates to a method for determining a relative speed between a reference point and a water flow and to a sensor device for its implementation.
  • Wave energy converters which are arranged with their moving parts under the water surface and exploit a wave orbital motion present there, are of particular interest in the context of the present invention.
  • the wave orbital motion can be converted into a rotational movement by means of rotors.
  • rotors with coupling bodies e.g. hydrodynamic lift profiles.
  • Such a system is disclosed in DE 10 201 1 105 177 A1.
  • the invention can be applied to all wave energy converters and also to other systems located in waves moving in waves, which are influenced by a wave motion.
  • high-energy scenarios are, for example, understood as meaning waves with an unusually high speed, amplitude or a specific frequency pattern stressing the systems.
  • a wave energy converter with knowledge of the expected Wellenbeetzschung adapted to be operated on this, for example, to maximize the energy yield of the wave energy converter.
  • Wave movements can be detected by means of Doppler measurements, for example by ultrasound.
  • Sensors for measuring water currents can be on moving objects, e.g. Ships or buoys. These sensors are placed below the water surface and use the Doppler effect, which measures the relative radial velocity (seen in the cylindrical coordinate system) between the sensor device and backscatter elements (eg, sediments or plankton). Obviously, however, the speed of the object to which the sensor device is attached falsifies the measurement results.
  • the invention makes it possible to correct the measured velocity of water flows, in particular by means of a Doppler effect, by the intrinsic speed of the sensor device arranged in the water body. Compensation takes place by determining the airspeed and direction and subtracting from the measured relative velocity. between sensor device and water flow. Thus, the measurement accuracy of the water flow is increased relative to a fixed reference point.
  • the sensor device can provide accurate flow measurement data without complex signal processing after acquisition of the measurement data.
  • the compensation is autonomous, without having to communicate with external sensors.
  • the invention also works in underwater applications where measuring the velocity based on the Doppler effect over the duration of an ultrasonic echo from the seabed is not meaningful, e.g. due to a very large water depth, which leads to high measurement errors due to water flows, temperature and pressure dependence of the speed of sound.
  • the sensor device also provides information about its own speed.
  • the invention makes use of essentially two steps. On the one hand, a usual measurement of the relative speed between sensor device and water flow, in particular based on the Doppler effect, beispielswese using ultrasound.
  • an acceleration and rotation of the sensor device is carried out by means of inertial sensors (acceleration and rotation sensors) attached to the sensor device.
  • Inertial measuring units usually contain three orthogonally arranged acceleration sensors (also referred to as translation sensors), which detect the linear acceleration in the x, y or z axis, from which the
  • yaw rate sensors also referred to as gyroscopic sensors
  • Suitable inertial sensors are, for example, so-called MEMS sensors (microelectromechanical systems).
  • MEMS sensors microelectromechanical systems
  • additional magnetic field sensors can be used.
  • the current speed and direction of the sensor device can be determined and used to correct the measured relative speed between sensor device and water flow. In this way can very easily the Relative speed between water flow and a reference point, which is conveniently the system, are determined.
  • Transient processes non-harmonic form
  • non-periodic accelerations of the sensor device can be taken into account with a short-term integration of the acceleration signal. Since it is a short-term integration (in the range of a few seconds), an integration error is relatively small and does not lead to significant distortions.
  • the compensation of movements of the sensor device at a constant speed can be done especially according to the extension of the method described below. Such movements are not subject to acceleration and can therefore be Acceleration measurement can not be detected.
  • the preferred compensation for movements with constant speed is based on the measured relative speed between the sensor device and water flow, more precisely the scattering centers moved by the water flow. At sea waves, the velocity of the scattering centers has harmonic components that correspond to the harmonic components of the wave. The frequency of these harmonic components is not affected by the intrinsic speed of the sensor device.
  • Wave propagation models e.g., linear wave theory
  • This relationship is known as a dispersion equation and is used as the basis for the compensation of constant velocity components. More details can be found in "Water Wave Mechanics for Engineers & scientistss", Robert G. Dean, Robert A. Dalrymple. From the distance covered by a location of a specific phase position in a certain time and the phase velocity, the intrinsic speed of the sensor device in the measuring direction can be determined.
  • the dispersion equation is significantly influenced by the wave steepness (quotient of wave height H and wavelength L). Therefore, this method can be advantageously combined with a device for measuring the wave height, such as a buoy.
  • a relationship between flow velocity and wave height can be determined from the wave models, so that a coarse (uncompensated measurement) of the flow velocity is sufficient to select the dispersion equation suitable for the prevailing flow conditions.
  • the measurement of the sensor speed in the depth direction can be done by a pressure measurement. Namely, when the sensor device sinks, the static pressure p stat at the location of the sensor device increases. If the wave height is known, for example by the above determination, a change in the wave height influencing the measured depth can also be compensated. The derivation of the pressure after the time and the consideration of the wave height enables the calculation of the velocity in the z-direction.
  • the compensation of the dynamic pressure can be achieved eg by using several pressure sensors.
  • a sensor device is, in particular programmatically, adapted to carry out a method according to the invention.
  • the implementation of the invention in the form of software is advantageous because this allows very low cost, especially if an executing processing unit is still used for other tasks and therefore already exists.
  • Suitable data carriers for the provision of the computer program are in particular floppy disks, hard disks, flash memories, EEPROMs, CD-ROMs, DVDs and the like. It is also possible to download a program via computer networks (Internet, intranet, etc.).
  • FIG. 1 shows a wave energy converter and a sensor device which can be operated according to the invention, in a partial perspective view. Detailed description of the drawing
  • FIG. 1 shows a preferred but purely exemplary wave energy converter which can make use of a wave orbital movement of a wavy body of water, in particular of a sea.
  • the wave energy converter is designated overall by 1. It has a rotor 2, 3, 4 with a rotor base 2, on which over rotor or lever arms 4 elongated lift profiles 3 are mounted.
  • the lift profiles 3 are connected at one end to the lever arms 4 and, for example, via adjusting devices 5 at an angle (so-called pitch angle) about its longitudinal axis rotatable.
  • the adjusting devices 5 can be assigned 6 position encoder.
  • the buoyancy profiles 3 are, relative to the axis of the rotor 2, 3, 4, offset from one another at an angle of 180 °.
  • the buoyancy profiles 3 are preferably connected to the lever arms 4 in the vicinity of their pressure point in order to reduce rotational torques occurring during operation to the buoyancy profiles 3 and thus the requirements for the mounting and / or the adjusting devices.
  • the radial distance between a suspension point of a buoyancy profile 3 and the rotor axis is, for example, 1 m to 50 m, preferably 2 m to 40 m and particularly preferably 6 m to 30 m.
  • the chord length of the lift profiles 3 is for example 1 m to 8 m.
  • the greatest longitudinal extent may be, for example, 6 m or more.
  • the wave energy converter 1 has an integrated generator.
  • the rotor base 2 is rotatably mounted in a generator housing 7.
  • the rotor base 2 forms the rotor of the generator, the generator housing 7 whose stator.
  • the required electrical equipment such as coils and cables are not shown.
  • a rotational movement of the rotor base 2 induced by the wave orbital motion can be directly converted into electrical energy with the lift profiles 3 attached thereto via the lever arms 4.
  • a sensor device 8 Remote from the wave energy converter 1, for example, attached to a submersible buoy, a sensor device 8 is arranged, which is shown in a highly schematic manner in FIG.
  • the sensor device 8 has an ultrasonic Doppler flow profiler (Acoustic Doppler Current Profiler (ADCP)).
  • the ultrasonic Doppler flow meter is oriented in a measuring direction x, which corresponds to a flow direction of the wave energy converter 1.
  • An ADCP is an active sonar that uses the Doppler frequency shift of the reverberation of scattered bodies in the water (mainly plankton) to determine the local flow velocity.
  • the instrument is equipped with three or four independent transducers, the opposite ones forming pairs. In each case a pair of oscillators measures the horizontal movement in one direction, the vertical movement is measured by both in parallel.
  • the devices emit sound pulses in the range of 500 kHz-10 MHz at fixed time intervals. Between the pulses, the backscattered signals are received again. These allow an allocation to the relative over their their term Distance to the transducer.
  • the devices can measure the three-dimensional water velocity in different depth horizons.
  • the flow can be monitored continuously in a defined depth layer (ie for measurement sites located on a measurement surface oriented essentially parallel to the water table of the water body).
  • the sensor device 8 is now further equipped with one or more inertial and / or compass sensors or with an inertial measuring unit.
  • the ADCP 8 is set up to determine its own motion and to use it to correct the measured flow velocity. He also has a control unit on which runs a corresponding computer program.
  • the sensor device 8 is set up to measure the relative speed between the sensor device and the water flow in the x-direction by means of the ultrasonic Doppler measurement and to obtain a measurement signal v x (t) therefrom.
  • the relative speed between wave energy converter and water flow is relevant, so that the measurement is corrected by the relative speed between sensor device 8 and wave energy converter, which is assumed to be a fixed reference point.
  • the sensor device 8 is therefore also configured to record its own acceleration over the time, preferably in all three spatial directions, a x (t), a y (t), a z (t) by means of the inertial measuring unit.
  • Periodic portions of the acceleration can be easily determined by Fourier analysis and used to correct the measured velocity.
  • Transient processes (non-harmonic form) and non-periodic accelerations of the sensor device can be taken into account with a short-term integration of the acceleration signal.
  • the preferred compensation of movements with constant speed v s is based on the measured relative speed between sensor device and water flow, v x (t).
  • a phase of the flow along a measuring direction is measured at a first time and at a later second time t 2 .
  • the sea state ie also the flow component
  • the sea state has only one harmonic component. This makes it easy to determine where Xi the maximum of the flow component is at the time. This is repeated at the second time t 2 , resulting in the location x 2 .
  • the distance of these two locations corresponds to the product of the duration (t2-ti) between the two measurement times and the sum (v P + v s ) from the phase velocity v P and the intrinsic velocity of the sensor device v s in the measurement direction. It is assumed that v P and v s do not change between and t 2 .
  • the phase velocity is through the dispersion equation
  • the sensor device 8 is equipped with at least one pressure sensor, which measures the total pressure with which the sensor device 8 is acted upon. By means of a pressure measurement, the depth in the z-direction, as explained above, can be determined.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Indicating Or Recording The Presence, Absence, Or Direction Of Movement (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

The invention relates to a method for determining a relative speed between a reference point (1) and a water flow in a measuring direction (x), wherein a relative speed between a sensor device (8) present in a body of water and the water flow in the measuring direction (x) is measured by the sensor device (8), an intrinsic speed of the sensor device (8) relative to the reference point (1) is determined by the sensor device (8), and the relative speed between the sensor device (8) and the water flow is corrected for the intrinsic speed in order to determine therefrom the relative speed between the reference point (1) and the water flow in the measuring direction (x).

Description

Bestimmung der Eigengeschwindigkeit einer Geschwindiqkeitssensoreinrichtunq in einem Gewässer zur Korrektur des Messsignals  Determining the intrinsic speed of a Geschwindigkeitiqkeitssensoreinrichtunq in a body of water to correct the measurement signal
Beschreibung description
Die vorliegende Erfindung betrifft ein Verfahren zum Bestimmen einer Relativgeschwindigkeit zwischen einem Bezugspunkt und einer Wasserströmung sowie eine Sensoreinrichtung zu dessen Durchführung. The present invention relates to a method for determining a relative speed between a reference point and a water flow and to a sensor device for its implementation.
Stand der Technik State of the art
Zur Umwandlung von Energie aus Wasserbewegungen in Gewässern in nutzbare Energie ist eine Reihe unterschiedlicher Vorrichtungen bekannt. Eine Übersicht hierzu gibt beispielswei- se G. Boyle, "Renewable Energy", 2. Aufl., Oxford University Press, Oxford 2004. Derartige Vorrichtungen werden hier als "Wellenenergiekonverter" bezeichnet. For the conversion of energy from water movements in water into usable energy a number of different devices are known. For example, G. Boyle, "Renewable Energy," 2nd Ed., Oxford University Press, Oxford, 2004. Such devices are referred to herein as "wave energy converters."
Im Rahmen der vorliegenden Erfindung sind insbesondere Wellenenergiekonverter von Interesse, die mit ihren bewegten Teilen unter der Wasseroberfläche angeordnet sind und die eine dort vorliegende Wellenorbitalbewegung ausnutzen. Die Wellenorbitalbewegung kann mittels Rotoren in eine Rotationsbewegung umgesetzt werden. Hierzu können Rotoren mit Kopplungskörpern, z.B. hydrodynamischen Auftriebsprofilen, verwendet werden. Ein derartiges System ist in der DE 10 201 1 105 177 A1 offenbart. Die Erfindung kann jedoch bei allen Wellenenergiekonvertern und auch bei anderen in einem wellen bewegten Gewässer befind- liehen Anlagen eingesetzt werden, die von einer Wellenbewegung beeinflusst werden. Wave energy converters, which are arranged with their moving parts under the water surface and exploit a wave orbital motion present there, are of particular interest in the context of the present invention. The wave orbital motion can be converted into a rotational movement by means of rotors. For this purpose, rotors with coupling bodies, e.g. hydrodynamic lift profiles. Such a system is disclosed in DE 10 201 1 105 177 A1. However, the invention can be applied to all wave energy converters and also to other systems located in waves moving in waves, which are influenced by a wave motion.
In derartigen Anlagen kann es von Vorteil sein, die zu erwartende Wellenbeaufschlagung vorab zu ermitteln, um insbesondere auftretende Belastungen vorhersagen zu können und entsprechende Anlagen bei Hochenergieszenarien notfalls in einen Schutzmodus versetzen zu können. Unter Hochenergieszenarien werden im Rahmen dieser Anmeldung beispielsweise Wellen mit ungewöhnlich hoher Geschwindigkeit, Amplitude oder einem bestimmten, die Anlagen belastenden Frequenzmuster verstanden. Darüber hinaus kann ein Wellenenergiekonverter bei Kenntnis der zu erwartenden Wellenbeaufschlagung angepasst an diese betrieben werden, um beispielsweise den Energieertrag des Wellenenergiekonverters zu maximieren. In such systems, it may be advantageous to determine the expected wave exposure in advance, in order to be able to predict in particular occurring loads and, if necessary, put corresponding systems in a protection mode in high-energy scenarios to be able to. In the context of this application, high-energy scenarios are, for example, understood as meaning waves with an unusually high speed, amplitude or a specific frequency pattern stressing the systems. In addition, a wave energy converter with knowledge of the expected Wellenbeaufschlagung adapted to be operated on this, for example, to maximize the energy yield of the wave energy converter.
Wellenbewegungen können mittels Doppler-Messungen, beispielsweise per Ultraschall, er- fasst werden. Sensoren zur Messung von Wasserströmungen, insbesondere Wasserströmungen, die auf Ultraschall basieren, können sich auf beweglichen Objekten befinden, z.B. Schiffen oder Bojen. Diese Sensoren sind unter der Wasseroberfläche platziert und benutzen den Dopplereffekt, bei dem die relative, radiale Geschwindigkeit (im zylindrischen Koordinatensystem gesehen) zwischen der Sensoreinrichtung und Rückstreuelemente (z. B. Se- dimente oder Plankton) gemessen wird. Offensichtlich verfälscht jedoch die Geschwindigkeit des Objekts, an dem die Sensoreinrichtung befestigt ist, die Messergebnisse. Wave movements can be detected by means of Doppler measurements, for example by ultrasound. Sensors for measuring water currents, especially water currents based on ultrasound, can be on moving objects, e.g. Ships or buoys. These sensors are placed below the water surface and use the Doppler effect, which measures the relative radial velocity (seen in the cylindrical coordinate system) between the sensor device and backscatter elements (eg, sediments or plankton). Obviously, however, the speed of the object to which the sensor device is attached falsifies the measurement results.
Es ist daher wünschenswert, Sensoren zur Verfügung zu haben, die diese Bewegung autonom kompensieren können und dazu nicht auf Informationen von außen angewiesen sind. It is therefore desirable to have sensors available that can compensate for this movement autonomously and are not dependent on information from outside.
Offenbarung der Erfindung Disclosure of the invention
Erfindungsgemäß werden ein Verfahren zum Bestimmen einer Relativgeschwindigkeit zwischen einem Bezugspunkt und einer Wasserströmung, insbesondere einer Meeresströmung, sowie eine Sensoreinrichtung zu dessen Durchführung mit den Merkmalen der unabhängigen Patentansprüche vorgeschlagen. Vorteilhafte Ausgestaltungen sind Gegenstand der Unteransprüche sowie der nachfolgenden Beschreibung. According to the invention, a method for determining a relative speed between a reference point and a water flow, in particular a sea current, and a sensor device for carrying it out with the features of the independent patent claims are proposed. Advantageous embodiments are the subject of the dependent claims and the following description.
Vorteile der Erfindung Advantages of the invention
Die Erfindung ermöglicht die Korrektur der gemessenen Geschwindigkeit von Wasserströmungen, insbesondere mittels Dopplereffekts, um die Eigengeschwindigkeit der in dem Gewässer angeordneten Sensoreinrichtung. Die Kompensation erfolgt durch Ermittlung der Eigengeschwindigkeit und Richtung und Abzug von der gemessenen der Relativgeschwin- digkeit zwischen Sensoreinrichtung und Wasserströmung. Damit wird die Messgenauigkeit der Wasserströmung relativ zu einem ortsfesten Bezugspunkt erhöht. The invention makes it possible to correct the measured velocity of water flows, in particular by means of a Doppler effect, by the intrinsic speed of the sensor device arranged in the water body. Compensation takes place by determining the airspeed and direction and subtracting from the measured relative velocity. between sensor device and water flow. Thus, the measurement accuracy of the water flow is increased relative to a fixed reference point.
Durch autonome Kompensation der Sensorgeschwindigkeit kann die Sensoreinrichtung ohne aufwendige Signalverarbeitung nach Erfassung der Messdaten genaue Strömungsmessdaten liefern. Die Kompensation erfolgt autonom, ohne dass eine Kommunikation mit externen Sensoren erfolgen muss. Die Erfindung funktioniert insbesondere auch in Unterwasseranwendungen, bei denen das Messen der Geschwindigkeit basierend auf dem Dopplereffekt über die Laufzeit eines Ultraschallechos vom Meeresboden nicht sinnvoll ist, z.B. aufgrund einer sehr großen Wassertiefe, die zu hohen Messfehlern aufgrund von Wasserströmungen, Temperatur- und Druckabhängigkeit der Schallgeschwindigkeit führt. Neben der Hauptaufgabe, Wasserströmungen zu messen, liefert die Sensoreinrichtung auch Informationen über ihre eigene Geschwindigkeit. Die Erfindung bedient sich dazu im Wesentlichen zweier Schritte. Zum einen erfolgt eine übliche Messung der Relativgeschwindigkeit zwischen Sensoreinrichtung und Wasserströmung, insbesondere auf dem Dopplereffekt basierend, beispielswese unter Verwendung von Ultraschall. Zum anderen wird eine Beschleunigung und Drehung der Sensoreinrichtung mittels an der Sensoreinrichtung angebrachter Inertialsensoren (Beschleunigungs- und Dreh- sensoren) durchgeführt. Inertiale Messeinheiten beinhalten in der Regel drei orthogonal angeordnete Beschleunigungssensoren (auch als Translationssensoren bezeichnet), die die lineare Beschleunigung in x- bzw. y- bzw. z-Achse detektieren, woraus der die By autonomous compensation of the sensor speed, the sensor device can provide accurate flow measurement data without complex signal processing after acquisition of the measurement data. The compensation is autonomous, without having to communicate with external sensors. In particular, the invention also works in underwater applications where measuring the velocity based on the Doppler effect over the duration of an ultrasonic echo from the seabed is not meaningful, e.g. due to a very large water depth, which leads to high measurement errors due to water flows, temperature and pressure dependence of the speed of sound. In addition to the main task of measuring water flows, the sensor device also provides information about its own speed. The invention makes use of essentially two steps. On the one hand, a usual measurement of the relative speed between sensor device and water flow, in particular based on the Doppler effect, beispielswese using ultrasound. On the other hand, an acceleration and rotation of the sensor device is carried out by means of inertial sensors (acceleration and rotation sensors) attached to the sensor device. Inertial measuring units usually contain three orthogonally arranged acceleration sensors (also referred to as translation sensors), which detect the linear acceleration in the x, y or z axis, from which the
translatorische Bewegung berechnet werden kann, und drei orthogonal angeordnete Drehratensensoren (auch als Gyroskopische Sensoren bezeichnet), die die die Winkelgeschwindig- keit um die x- bzw. y- bzw. z-Achse messen, woraus die Rotationsbewegung berechnet werden kann. Geeignete Inertialsensoren sind beispielsweise sogenannte MEMS-Sensoren (Mikroelektromechanische Systeme). Zur Verbesserung der Genauigkeit bzw. um eine Drift der oben genannten Sensoren zu korrigieren, können zusätzlich Magnetfeldsensoren (Kompasssensoren) verwendet werden. and three orthogonally arranged yaw rate sensors (also referred to as gyroscopic sensors) that measure the angular velocity about the x, y, and z axes, respectively, from which the rotational motion can be calculated. Suitable inertial sensors are, for example, so-called MEMS sensors (microelectromechanical systems). In order to improve the accuracy or to correct a drift of the above-mentioned sensors, additional magnetic field sensors (compass sensors) can be used.
Mittels der Inertialsensoren kann die aktuelle Geschwindigkeit und Richtung der Sensoreinrichtung bestimmt und zur Korrektur der gemessenen Relativgeschwindigkeit zwischen Sensoreinrichtung und Wasserströmung verwendet werden. Auf diese Weise kann sehr leicht die Relativgeschwindigkeit zwischen Wasserströmung und einem Bezugspunkt, welcher zweckmäßigerweise die Anlage ist, ermittelt werden. By means of the inertial sensors, the current speed and direction of the sensor device can be determined and used to correct the measured relative speed between sensor device and water flow. In this way can very easily the Relative speed between water flow and a reference point, which is conveniently the system, are determined.
Um die Geschwindigkeit und Richtung aus den Messdaten zu ermitteln, ist u.a. eine zeitliche Integration der Beschleunigungsdaten nötig. Je länger der betrachtete Zeitraum dauert, desto größer werden jedoch mögliche Fehler. Im Rahmen der Erfindung wird daher vorteilhafterweise ausgenutzt, dass in einem wellenbewegten Gewässer befindliche Sensoren hauptsächlich periodischen Bewegungen unterworfen sind. Bei einer periodischen Beschleunigung kann die Geschwindigkeit mittels Fourierzerlegung der gemessenen Beschleunigung a(f) einfach berechnet werden, ohne das Beschleunigungssignal integrieren zu müssen. Eine mittelwertfreie, harmonische Beschleunigung lässt sich wie folgt darstellen: In order to determine the speed and direction from the measured data, u.a. a temporal integration of the acceleration data needed. However, the longer the considered period lasts, the larger possible errors become. In the context of the invention is therefore advantageously exploited that located in a wave-like waters sensors are subjected mainly to periodic movements. With a periodic acceleration, the speed can be easily calculated by means of Fourier decomposition of the measured acceleration a (f) without having to integrate the acceleration signal. A mean-harmonic acceleration can be represented as follows:
Daraus er ibt für die Geschwindigkeit:
Figure imgf000006_0001
From this he gives for the speed:
Figure imgf000006_0001
Dies ist ein wesentlicher Vorteil gegenüber einer Integration von Sensorsignalen über einen langen Zeitraum. This is a significant advantage over integrating sensor signals over a long period of time.
Transiente Vorgänge (nicht harmonischer Form) sowie nicht periodische Beschleunigungen der Sensoreinrichtung lassen sich mit einer Kurzzeitintegration des Beschleunigungssignals berücksichtigen. Da es sich um eine Kurzzeitintegration (im Bereich von wenigen Sekunden) handelt, ist ein Integrationsfehler relativ klein und führt nicht zu signifikanten Verfälschungen. Transient processes (non-harmonic form) and non-periodic accelerations of the sensor device can be taken into account with a short-term integration of the acceleration signal. Since it is a short-term integration (in the range of a few seconds), an integration error is relatively small and does not lead to significant distortions.
Die bisher beschriebenen Abläufe ermöglichen die Kompensation von harmonischen Bewegungen (im mathematischen Sinn) sowie von Fehlorientierung der Sensoreinrichtung. The processes described so far allow the compensation of harmonic movements (in the mathematical sense) as well as misorientation of the sensor device.
Die Kompensation von Bewegungen der Sensoreinrichtung mit konstanter Geschwindigkeit kann besonders gemäß nachfolgend beschriebener Erweiterung des Verfahrens geschehen. Solche Bewegungen unterliegen keiner Beschleunigung und können daher mittels einer Be- schleunigungsmessung nicht erkannt werden. Die bevorzugte Kompensation von Bewegungen mit konstanter Geschwindigkeit basiert auf der gemessenen Relativgeschwindigkeit zwischen Sensoreinrichtung und Wasserströmung, genauer den von der Wasserströmung bewegten Streuzentren. Bei Meereswellen besitzt die Geschwindigkeit der Streuzentren har- monische Komponenten, die den harmonischen Komponenten der Welle entsprechen. Die Frequenz dieser harmonischen Komponenten wird von der Eigengeschwindigkeit der Sensoreinrichtung nicht beeinflusst. The compensation of movements of the sensor device at a constant speed can be done especially according to the extension of the method described below. Such movements are not subject to acceleration and can therefore be Acceleration measurement can not be detected. The preferred compensation for movements with constant speed is based on the measured relative speed between the sensor device and water flow, more precisely the scattering centers moved by the water flow. At sea waves, the velocity of the scattering centers has harmonic components that correspond to the harmonic components of the wave. The frequency of these harmonic components is not affected by the intrinsic speed of the sensor device.
Es sind Wellenausbreitungsmodelle (z.B. lineare Wellentheorie) bekannt, die eine Beziehung zwischen Frequenzen, Wellenzahl, Phasen- und Gruppengeschwindigkeit der Welle etablieren. Diese Beziehung ist als Dispersionsgleichung bekannt und wird als Basis für die Kompensation von konstanten Geschwindigkeitsanteilen benutzt. Nähere Details finden sich hierzu in "Water Wave Mechanics for Engineers & Scientists (Advanced Series on Ocean Engineering Vol 2)", Robert G. Dean, Robert A. Dalrymple. Aus der Entfernung, die ein Ort einer bestimmten Phasenlage in einer gewissen Zeit zurücklegt, und der Phasengeschwindigkeit kann die Eigengeschwindigkeit der Sensoreinrichtung in Messrichtung bestimmt werden. Wave propagation models (e.g., linear wave theory) are known which establish a relationship between wave frequencies, wave numbers, phase and group velocities of the wave. This relationship is known as a dispersion equation and is used as the basis for the compensation of constant velocity components. More details can be found in "Water Wave Mechanics for Engineers & Scientists", Robert G. Dean, Robert A. Dalrymple. From the distance covered by a location of a specific phase position in a certain time and the phase velocity, the intrinsic speed of the sensor device in the measuring direction can be determined.
Die Dispersionsgleichung wird durch die Wellensteilheit (Quotient aus Wellenhöhe H und Wellenlänge L) wesentlich beeinflusst. Deshalb lässt sich diese Methode vorteilhaft mit einer Einrichtung zur Messung der Wellenhöhe kombinieren, beispielsweise einer Schwimmboje. Alternativ kann aus den Wellenmodellen einen Zusammenhang zwischen Strömungsgeschwindigkeit und Wellenhöhe bestimmt werden, so dass eine grobe (nicht kompensierte Messung) der Strömungsgeschwindigkeit hinreichend ist, um die für die herrschenden Strö- mungsbedingungen geeignete Dispersionsgleichung zu wählen. The dispersion equation is significantly influenced by the wave steepness (quotient of wave height H and wavelength L). Therefore, this method can be advantageously combined with a device for measuring the wave height, such as a buoy. Alternatively, a relationship between flow velocity and wave height can be determined from the wave models, so that a coarse (uncompensated measurement) of the flow velocity is sufficient to select the dispersion equation suitable for the prevailing flow conditions.
η =— * cos ( k * x - co * t) η = - * cos (k * x - co * t)
Figure imgf000007_0001
Figure imgf000007_0001
mit: With:
η: z-Koordinate der Wasseroberfläche u: Horizontalgeschwindigkeit η: z coordinate of the water surface u: horizontal speed
w: Vertikalgeschwindigkeit w: vertical speed
k: Wellenzahl (2TT/L) k: wavenumber (2TT / L)
h: Wassertiefe h: water depth
z: z-Koordinate, Ruhewasserspiegel z =0, Sohle z=- h z: z-coordinate, water level z = 0, sole z = - h
x: x-Koordinate, Ausbreitungsrichtung x: x-coordinate, direction of propagation
Die Messung der Sensorgeschwindigkeit in Tiefenrichtung (z-Richtung, also vertikal) kann durch eine Druckmessung erfolgen. Beim Versenken der Sensoreinrichtung steigt nämlich der statische Druck pstat am Ort der Sensoreinrichtung. Ist die Wellenhöhe bekannt, beispielsweise durch die obige Bestimmung, kann eine die gemessene Tiefe beeinflussende Veränderung der Wellenhöhe ebenfalls kompensiert werden. Die Ableitung des Drucks nach der Zeit und die Berücksichtigung der Wellenhöhe ermöglicht die Berechnung der Geschwindigkeit in z-Richtung. Die Kompensation des dynamischen Drucks kann z.B. durch Anwendung mehrerer Drucksensoren erzielt werden. The measurement of the sensor speed in the depth direction (z-direction, ie vertical) can be done by a pressure measurement. Namely, when the sensor device sinks, the static pressure p stat at the location of the sensor device increases. If the wave height is known, for example by the above determination, a change in the wave height influencing the measured depth can also be compensated. The derivation of the pressure after the time and the consideration of the wave height enables the calculation of the velocity in the z-direction. The compensation of the dynamic pressure can be achieved eg by using several pressure sensors.
Es gilt nämlich: It is true that:
PstaAZ) = k0nSt- + {P * g * Z) P s taA Z ) = k0nSt - + {P * g * Z )
dPstat — n * r, *— dPstat - n * r , * -
dt dt  dt dt
dz άη dz άη
— =— + vz
Figure imgf000008_0001
- = - + v z
Figure imgf000008_0001
1 * dPstat άη 1 * d P stat άη
p * g dt dt  p * g dt dt
mit: With:
p: Dichte p: density
g: Erdbeschleunigung g: acceleration of gravity
Eine erfindungsgemäße Sensoreinrichtung, ist, insbesondere programmtechnisch, dazu eingerichtet, ein erfindungsgemäßes Verfahren durchzuführen. Auch die Implementierung der Erfindung in Form von Software ist vorteilhaft, da dies besonders geringe Kosten ermöglicht, insbesondere wenn eine ausführende Recheneinheit noch für weitere Aufgaben genutzt wird und daher ohnehin vorhanden ist. Geeignete Datenträger zur Bereitstellung des Computerprogramms sind insbesondere Disketten, Festplatten, Flash- Speicher, EEPROMs, CD-ROMs, DVDs u.a.m. Auch ein Download eines Programms über Computernetze (Internet, Intranet usw.) ist möglich. A sensor device according to the invention is, in particular programmatically, adapted to carry out a method according to the invention. Also, the implementation of the invention in the form of software is advantageous because this allows very low cost, especially if an executing processing unit is still used for other tasks and therefore already exists. Suitable data carriers for the provision of the computer program are in particular floppy disks, hard disks, flash memories, EEPROMs, CD-ROMs, DVDs and the like. It is also possible to download a program via computer networks (Internet, intranet, etc.).
Weitere Vorteile und Ausgestaltungen der Erfindung ergeben sich aus der Beschreibung und der beiliegenden Zeichnung. Further advantages and embodiments of the invention will become apparent from the description and the accompanying drawings.
Es versteht sich, dass die vorstehend genannten und die nachfolgend noch zu erläuternden Merkmale nicht nur in der jeweils angegebenen Kombination, sondern auch in anderen Kombinationen oder in Alleinstellung verwendbar sind, ohne den Rahmen der vorliegenden Erfindung zu verlassen. It is understood that the features mentioned above and those yet to be explained below can be used not only in the particular combination indicated, but also in other combinations or in isolation, without departing from the scope of the present invention.
Die Erfindung ist anhand eines Ausführungsbeispiels in der Zeichnung schematisch dargestellt und wird im Folgenden unter Bezugnahme auf die Zeichnung ausführlich beschrieben. The invention is illustrated schematically with reference to an embodiment in the drawing and will be described in detail below with reference to the drawing.
Figurenbeschreibung figure description
Figur 1 zeigt einen Wellenenergiekonverter und eine Sensoreinrichtung, die erfindungsgemäß betrieben werden kann, in teilperspektivischer Darstellung. Detaillierte Beschreibung der Zeichnung FIG. 1 shows a wave energy converter and a sensor device which can be operated according to the invention, in a partial perspective view. Detailed description of the drawing
In Figur 1 ist ein bevorzugter, aber dennoch rein beispielhafter Wellenenergiekonverter gezeigt, der sich eine Wellenorbitalbewegung eines welligen Gewässers, insbesondere eines Meeres, zu Nutze machen kann. Der Wellenenergiekonverter ist insgesamt mit 1 bezeichnet. Er weist einen Rotor 2, 3, 4 mit einer Rotorbasis 2 auf, an der über Rotor- bzw. Hebelarme 4 längliche Auftriebsprofile 3 angebracht sind. Die Auftriebsprofile 3 sind mit einem Ende mit den Hebelarmen 4 verbunden und beispielsweise über Versteileinrichtungen 5 in einem Winkel (sogenannter Pitchwinkel) um ihre Längsachse drehbar. Den Versteileinrichtungen 5 können Positionsgeber 6 zugeordnet sein. Die Auftriebsprofile 3 sind, bezogen auf die Achse des Rotors 2, 3, 4, in einem Winkel von 180° versetzt zueinander angeordnet. Vorzugsweise sind die Auftriebsprofile 3 in der Nähe ihres Druckpunktes mit den Hebelarmen 4 verbunden, um im Betrieb auftretende Rotations- momente auf die Auftriebsprofile 3 und damit die Anforderungen an die Halterung und/oder die Versteileinrichtungen zu reduzieren. Der radiale Abstand zwischen einem Aufhängungspunkt eines Auftriebsprofils 3 und der Rotorachse beträgt beispielsweise 1 m bis 50 m, vorzugsweise 2 m bis 40 m und besonders bevorzugt 6 m bis 30 m. Die Sehnenlänge der Auftriebsprofile 3 beträgt beispielsweise 1 m bis 8 m. Die größte Längserstreckung kann bei- spielsweise 6 m oder mehr betragen. FIG. 1 shows a preferred but purely exemplary wave energy converter which can make use of a wave orbital movement of a wavy body of water, in particular of a sea. The wave energy converter is designated overall by 1. It has a rotor 2, 3, 4 with a rotor base 2, on which over rotor or lever arms 4 elongated lift profiles 3 are mounted. The lift profiles 3 are connected at one end to the lever arms 4 and, for example, via adjusting devices 5 at an angle (so-called pitch angle) about its longitudinal axis rotatable. The adjusting devices 5 can be assigned 6 position encoder. The buoyancy profiles 3 are, relative to the axis of the rotor 2, 3, 4, offset from one another at an angle of 180 °. The buoyancy profiles 3 are preferably connected to the lever arms 4 in the vicinity of their pressure point in order to reduce rotational torques occurring during operation to the buoyancy profiles 3 and thus the requirements for the mounting and / or the adjusting devices. The radial distance between a suspension point of a buoyancy profile 3 and the rotor axis is, for example, 1 m to 50 m, preferably 2 m to 40 m and particularly preferably 6 m to 30 m. The chord length of the lift profiles 3 is for example 1 m to 8 m. The greatest longitudinal extent may be, for example, 6 m or more.
Der Wellenenergiekonverter 1 weist einen integrierten Generator auf. Hierbei ist die Rotorbasis 2 drehbar in einem Generatorgehäuse 7 gelagert. Die Rotorbasis 2 bildet den Läufer des Generators, das Generatorgehäuse 7 dessen Stator. Die erforderlichen elektrischen Einrichtungen wie Spulen und Leitungen sind nicht dargestellt. Auf diese Weise kann eine durch die Wellenorbitalbewegung induzierte Rotationsbewegung der Rotorbasis 2 mit den hieran über die Hebelarme 4 angebrachten Auftriebsprofilen 3 direkt in elektrische Energie umgesetzt werden. Entfernt von dem Wellenenergiekonverter 1 , beispielsweise an einer Tauchboje befestigt, ist eine Sensoreinrichtung 8 angeordnet, die in der Figur 2 stark schematisiert dargestellt ist. Die Sensoreinrichtung 8 weist einen Ultraschall-Doppler-Strömungsmesser (engl.: Acoustic Doppler Current Profiler (ADCP)) auf. Der Ultraschall-Doppler-Strömungsmesser ist in einer Messrichtung x orientiert, die einer Anströmrichtung des Wellenenergiekonverters 1 ent- spricht. The wave energy converter 1 has an integrated generator. Here, the rotor base 2 is rotatably mounted in a generator housing 7. The rotor base 2 forms the rotor of the generator, the generator housing 7 whose stator. The required electrical equipment such as coils and cables are not shown. In this way, a rotational movement of the rotor base 2 induced by the wave orbital motion can be directly converted into electrical energy with the lift profiles 3 attached thereto via the lever arms 4. Remote from the wave energy converter 1, for example, attached to a submersible buoy, a sensor device 8 is arranged, which is shown in a highly schematic manner in FIG. The sensor device 8 has an ultrasonic Doppler flow profiler (Acoustic Doppler Current Profiler (ADCP)). The ultrasonic Doppler flow meter is oriented in a measuring direction x, which corresponds to a flow direction of the wave energy converter 1.
Ein ADCP ist ein Aktivsonar, das die Doppler-Frequenzverschiebung des Nachhalls von Streukörpern im Wasser (vorwiegend Plankton) zur Bestimmung der lokalen Strömungsgeschwindigkeit nutzt. Das Gerät ist mit drei oder vier voneinander unabhängigen Schwingern ('Transducer') ausgestattet, wobei die gegenüberliegenden jeweils Paare bilden. Jeweils ein Schwingerpaar misst die Horizontalbewegung in einer Richtung, die Vertikalbewegung wird von beiden parallel gemessen. Dazu geben die Geräte in festen Zeitintervallen Schallimpulse im Bereich von 500 kHz-10 MHz ab. Zwischen den Impulsen werden die zurück gestreuten Signale wieder empfangen. Diese erlauben über ihre Laufzeit eine Zuordnung zur relativen Entfernung zum Signalgeber (Transducer). Die Geräte können je nach Bauart und Konfiguration die dreidimensionale Wassergeschwindigkeit in verschiedenen Tiefenhorizonten messen. Bei einer rein horizontalen Messausrichtung (auch als H-ADCP bezeichnet) kann die Strömung kontinuierlich in einer definierten Tiefenschicht (d.h. für auf einer im Wesentlichen parallel zum Ruhewasserspiegel des Gewässers orientierten Messfläche befindliche Messorte) überwacht werden. Im Rahmen der Erfindung wird nun die Sensoreinrichtung 8 weiterhin mit einem oder mehreren Inertial- und/oder Kompasssensoren bzw. mit einer inertialen Messeinheit ausgerüstet. Der ADCP 8 ist dazu eingerichtet, seine Eigenbewegung zu ermitteln und zur Korrektur der gemessenen Strömungsgeschwindigkeit zu verwenden. Er weist dazu auch eine Steuereinheit auf, auf der ein entsprechendes Computerprogramm abläuft. An ADCP is an active sonar that uses the Doppler frequency shift of the reverberation of scattered bodies in the water (mainly plankton) to determine the local flow velocity. The instrument is equipped with three or four independent transducers, the opposite ones forming pairs. In each case a pair of oscillators measures the horizontal movement in one direction, the vertical movement is measured by both in parallel. For this purpose, the devices emit sound pulses in the range of 500 kHz-10 MHz at fixed time intervals. Between the pulses, the backscattered signals are received again. These allow an allocation to the relative over their their term Distance to the transducer. Depending on the design and configuration, the devices can measure the three-dimensional water velocity in different depth horizons. In the case of a purely horizontal measurement orientation (also referred to as H-ADCP), the flow can be monitored continuously in a defined depth layer (ie for measurement sites located on a measurement surface oriented essentially parallel to the water table of the water body). In the context of the invention, the sensor device 8 is now further equipped with one or more inertial and / or compass sensors or with an inertial measuring unit. The ADCP 8 is set up to determine its own motion and to use it to correct the measured flow velocity. He also has a control unit on which runs a corresponding computer program.
Die Sensoreinrichtung 8 ist dazu eingerichtet, mittels der Ultraschall-Dopplermessung die Relativgeschwindigkeit zwischen Sensoreinrichtung und Wasserströmung in x-Richtung zu messen und daraus ein Messsignal vx(t) zu erhalten. Für den Betrieb des Wellenenergiekon- verters 1 ist jedoch die Relativgeschwindigkeit zwischen Wellenenergiekonverter und Was- serströmung relevant, so dass die Messung um die Relativgeschwindigkeit zwischen Sensoreinrichtung 8 und Wellenenergiekonverter, der als ortsfester Bezugspunkt angenommen wird, korrigiert wird. The sensor device 8 is set up to measure the relative speed between the sensor device and the water flow in the x-direction by means of the ultrasonic Doppler measurement and to obtain a measurement signal v x (t) therefrom. For the operation of the wave energy converter 1, however, the relative speed between wave energy converter and water flow is relevant, so that the measurement is corrected by the relative speed between sensor device 8 and wave energy converter, which is assumed to be a fixed reference point.
Der Sensoreinrichtung 8 ist daher auch dazu eingerichtet, mittels der inertialen Messeinheit seine eigene Beschleunigung, vorzugsweise in allen drei Raumrichtungen, ax(t), ay(t), az(t), über die Zeit zu erfassen. The sensor device 8 is therefore also configured to record its own acceleration over the time, preferably in all three spatial directions, a x (t), a y (t), a z (t) by means of the inertial measuring unit.
Periodische Anteile der Beschleunigung können auf einfache Weise durch Fourieranalyse bestimmt und zur Korrektur der gemessenen Geschwindigkeit verwendet werden. Eine korri- gierte Geschwindigkeit vx *(t) ergibt sich zu: (t) = vx (t) - Σ— sin + <pk ) Transiente Vorgänge (nicht harmonischer Form) sowie nicht periodische Beschleunigungen der Sensoreinrichtung lassen sich mit einer Kurzzeitintegration des Beschleunigungssignals berücksichtigen. Die bevorzugte Kompensation von Bewegungen mit konstanter Geschwindigkeit vs basiert auf der gemessenen Relativgeschwindigkeit zwischen Sensoreinrichtung und Wasserströ- mung, vx(t). Periodic portions of the acceleration can be easily determined by Fourier analysis and used to correct the measured velocity. A corrected velocity v x * (t) results in: (t) = v x (t) - Σ- sin + <p k ) Transient processes (non-harmonic form) and non-periodic accelerations of the sensor device can be taken into account with a short-term integration of the acceleration signal. The preferred compensation of movements with constant speed v s is based on the measured relative speed between sensor device and water flow, v x (t).
Im Rahmen der Kompensation wird eine Phase der Strömung entlang einer Messrichtung, welche vorzugsweise horizontal verläuft, zu einem ersten Zeitpunkt und zu einem späteren zweiten Zeitpunkt t2 gemessen. Es wird hier vereinfacht angenommen, dass der Seegang, d.h. auch die Strömungskomponente, nur einen harmonischen Anteil besitzt. Damit kann einfach ermittelt werden, an welchem Ort Xi sich das Maximum der Strömungskomponente zum Zeitpunkt befindet. Dies wird zum zweiten Zeitpunkt t2 wiederholt, woraus sich der Ort x2 ergibt. Die Entfernung
Figure imgf000012_0001
dieser beiden Orte entspricht dem Produkt aus der Dauer (t2-ti) zwischen den beiden Messzeitpunkten und der Summe (vP+ vs) aus der Phasengeschwindigkeit vP und der Eigengeschwindigkeit der Sensoreinrichtung vs in Messrichtung. Hierbei wird angenommen, dass sich vP und vs zwischen und t2 nicht verändern. Die Phasengeschwindigkeit ist durch die Dispersionsgleichung
As part of the compensation, a phase of the flow along a measuring direction, which preferably runs horizontally, is measured at a first time and at a later second time t 2 . It is simplified here assumed that the sea state, ie also the flow component, has only one harmonic component. This makes it easy to determine where Xi the maximum of the flow component is at the time. This is repeated at the second time t 2 , resulting in the location x 2 . The distance
Figure imgf000012_0001
of these two locations corresponds to the product of the duration (t2-ti) between the two measurement times and the sum (v P + v s ) from the phase velocity v P and the intrinsic velocity of the sensor device v s in the measurement direction. It is assumed that v P and v s do not change between and t 2 . The phase velocity is through the dispersion equation
1 = g * k * tanh(k * h) 1 = g * k * tanh (k * h)
Figure imgf000012_0002
Figure imgf000012_0002
gegeben, so dass der konstante Anteil vx S der Eigengeschwindigkeit der Sensoreinrichtung 8 in Messrichtung x berechnet werden kann. Die Messung der Sensorgeschwindigkeit in Querrichtung y, welche senkrecht zu der Messrichtung ist und horizontal verläuft, ist mit die- sem Messverfahren nicht möglich. Es kann nur auf die relative Geschwindigkeit zwischen Strömung und Sensoreinrichtung geschlossen werden, aber nicht auf die Eigengeschwindigkeit. given so that the constant portion v x S of the intrinsic velocity of the sensor device 8 in the measuring direction x can be calculated. The measurement of the sensor speed in the transverse direction y, which is perpendicular to the measuring direction and runs horizontally, is not possible with this measuring method. It can only be concluded on the relative speed between flow and sensor device, but not on the airspeed.
Weiterhin ist die Sensoreinrichtung 8 mit wenigstens einem Drucksensor ausgerüstet, der den Gesamtdruck misst, mit dem die Sensoreinrichtung 8 beaufschlagt wird. Mittels einer Druckmessung kann die Tiefe in z-Richtung, wie oben erläutert, ermittelt werden. Furthermore, the sensor device 8 is equipped with at least one pressure sensor, which measures the total pressure with which the sensor device 8 is acted upon. By means of a pressure measurement, the depth in the z-direction, as explained above, can be determined.

Claims

Ansprüche claims
1. Verfahren zum Bestimmen einer Relativgeschwindigkeit zwischen einem Bezugspunkt (1) und einer Wasserströmung in einer Messrichtung (x), wobei A method for determining a relative velocity between a reference point (1) and a water flow in a measuring direction (x), wherein
eine Relativgeschwindigkeit zwischen einer in einem Gewässer befindlichen Sensoreinrichtung (8) und der Wasserströmung in der Messrichtung (x) durch die Sensoreinrichtung (8) gemessen wird,  a relative speed between a sensor device (8) located in a waterway and the water flow in the measuring direction (x) is measured by the sensor device (8),
eine Eigengeschwindigkeit der Sensoreinrichtung (8) relativ zu dem Bezugspunkt (1 ) durch die Sensoreinrichtung (8) bestimmt wird,  an intrinsic speed of the sensor device (8) relative to the reference point (1) is determined by the sensor device (8),
die Relativgeschwindigkeit zwischen der Sensoreinrichtung (8) und der Wasserströmung um die Eigengeschwindigkeit korrigiert wird, um daraus die Relativgeschwindigkeit zwischen dem Bezugspunkt (1) und der Wasserströmung in der Messrichtung (x) zu bestimmen.  the relative velocity between the sensor device (8) and the water flow is corrected by the airspeed in order to determine therefrom the relative velocity between the reference point (1) and the water flow in the measuring direction (x).
2. Verfahren nach Anspruch 1 , wobei die Eigengeschwindigkeit der Sensoreinrichtung (8) relativ zu einem Bezugspunkt (1 ) aus einer Eigenbeschleunigung der Sensoreinrichtung (8) relativ zu dem Bezugspunkt (1 ) bestimmt wird. 2. The method of claim 1, wherein the intrinsic speed of the sensor device (8) relative to a reference point (1) from an intrinsic acceleration of the sensor device (8) relative to the reference point (1) is determined.
3. Verfahren nach Anspruch 2, wobei wenigstens ein periodischer Anteil der Eigenbe- schleunigung der Sensoreinrichtung (8) relativ zu dem Bezugspunkt (1) bestimmt wird und aus dem periodischen Anteil der Eigenbeschleunigung ein periodischer Anteil der Eigengeschwindigkeit der Sensoreinrichtung (8) relativ zu dem Bezugspunkt (1) bestimmt wird. 3. The method according to claim 2, wherein at least one periodic component of the self-acceleration of the sensor device relative to the reference point is determined, and from the periodic component of the self-acceleration a periodic component of the intrinsic speed of the sensor device relative to the sensor Reference point (1) is determined.
4. Verfahren nach Anspruch 2 oder 3, wobei wenigstens ein nicht periodischer Anteil der Eigenbeschleunigung der Sensoreinrichtung (8) relativ zu dem Bezugspunkt (1 ) bestimmt wird und aus dem nicht periodischen Anteil der Eigenbeschleunigung ein nicht periodischer Anteil der Eigengeschwindigkeit der Sensoreinrichtung (8) relativ zu dem Bezugspunkt (1) bestimmt wird. 4. The method of claim 2 or 3, wherein at least one non-periodic proportion of the self-acceleration of the sensor device (8) relative to the reference point (1) is determined and from the non-periodic proportion of the self-acceleration, a non-periodic proportion of the intrinsic speed of the sensor device (8). relative to the reference point (1) is determined.
5. Verfahren nach einem der vorstehenden Ansprüche, wobei ein konstanter Anteil der Eigengeschwindigkeit der Sensoreinrichtung (8) relativ zu dem Bezugspunkt (1 ) in der Messrichtung (x) mittels einer Phasenanalyse der bestimmten Relativgeschwindigkeit zwischen der Sensoreinrichtung (8) und der Wasserströmung bestimmt wird. 5. The method according to any one of the preceding claims, wherein a constant proportion of the intrinsic speed of the sensor device (8) relative to the reference point (1) in the measuring direction (x) by means of a phase analysis of the determined relative speed between the sensor device (8) and the water flow is determined ,
6. Verfahren nach einem der vorstehenden Ansprüche, wobei eine Eigengeschwindigkeit der Sensoreinrichtung (8) relativ zu dem Bezugspunkt (1) in vertikaler Richtung (z) aus einer Druckmessung eines auf die Sensoreinrichtung (8) wirkenden Wasserdrucks bestimmt wird. 6. The method according to any one of the preceding claims, wherein an intrinsic speed of the sensor device (8) relative to the reference point (1) in the vertical direction (z) from a pressure measurement of the sensor device (8) acting water pressure is determined.
7. Computerprogramm, das eine Recheneinheit veranlasst, ein Verfahren nach einem der Ansprüche 1 bis 6 durchzuführen, wenn es auf der Recheneinheit ausgeführt wird. A computer program that causes a computing unit to perform a method according to any one of claims 1 to 6 when executed on the computing unit.
8. Maschinenlesbares Speichermedium mit einem darauf gespeicherten Computerpro- gramm nach Anspruch 7. 8. A machine-readable storage medium with a computer program stored thereon according to claim 7.
9. Sensoreinrichtung (8), die dazu eingerichtet ist, eine Relativgeschwindigkeit zwischen sich und einer Wasserströmung in einer Messrichtung (x) zu bestimmen, 9. sensor device (8) which is set up to determine a relative speed between itself and a water flow in a measuring direction (x),
eine Eigengeschwindigkeit relativ zu einem Bezugspunkt (1) zu bestimmen, die Relativgeschwindigkeit zwischen sich und der Wasserströmung um die Eigengeschwindigkeit zu korrigieren, um daraus eine Relativgeschwindigkeit zwischen dem Bezugspunkt (1) und der Wasserströmung in der Messrichtung (x) zu bestimmen.  to determine an airspeed relative to a reference point (1), to correct the relative velocity between it and the water flow around the airspeed, to determine therefrom a relative velocity between the reference point (1) and the water flow in the measuring direction (x).
10. Sensoreinrichtung (8) nach Anspruch 9, die einen Ultraschall-Doppler- Strömungsmesser und wenigstens einen Inertialsensor aufweist. 10. Sensor device (8) according to claim 9, which has an ultrasonic Doppler flow meter and at least one inertial sensor.
11. Sensoreinrichtung (8) nach Anspruch 9 oder 10, die einen Drucksensor aufweist. 11. Sensor device (8) according to claim 9 or 10, which has a pressure sensor.
12. Sensoreinrichtung (8) nach Anspruch 9, 10 oder 11 , die dazu eingerichtet ist, ein Verfahren nach einem der Ansprüche 2 bis 6 durchzuführen. 12. Sensor device (8) according to claim 9, 10 or 11, which is adapted to perform a method according to one of claims 2 to 6.
PCT/EP2014/061297 2013-06-13 2014-06-02 Determining the intrinsic speed of a speed sensor device in a body of water in order to correct the measurement signal WO2014198566A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102013009876.9A DE102013009876A1 (en) 2013-06-13 2013-06-13 Determining the intrinsic speed of a speed sensor device in a body of water for correcting the measurement signal
DE102013009876.9 2013-06-13

Publications (1)

Publication Number Publication Date
WO2014198566A1 true WO2014198566A1 (en) 2014-12-18

Family

ID=50980273

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2014/061297 WO2014198566A1 (en) 2013-06-13 2014-06-02 Determining the intrinsic speed of a speed sensor device in a body of water in order to correct the measurement signal

Country Status (2)

Country Link
DE (1) DE102013009876A1 (en)
WO (1) WO2014198566A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080239869A1 (en) * 2005-06-29 2008-10-02 Nortek As System and Method for Determining Directional and Non-directional Fluid Wave and Current Measurements
US20090326824A1 (en) * 2008-06-30 2009-12-31 Michael Naumov Method and device for the autonomous determination of wind speed vector
WO2011000486A2 (en) * 2009-07-02 2011-01-06 Bayer Materialscience Ag Method for obtaining electrical energy from the kinetic energy of waves

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011105177A1 (en) 2011-06-17 2012-12-20 Robert Bosch Gmbh Method for operating a wave energy converter and wave energy converter

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080239869A1 (en) * 2005-06-29 2008-10-02 Nortek As System and Method for Determining Directional and Non-directional Fluid Wave and Current Measurements
US20090326824A1 (en) * 2008-06-30 2009-12-31 Michael Naumov Method and device for the autonomous determination of wind speed vector
WO2011000486A2 (en) * 2009-07-02 2011-01-06 Bayer Materialscience Ag Method for obtaining electrical energy from the kinetic energy of waves

Also Published As

Publication number Publication date
DE102013009876A1 (en) 2014-12-18

Similar Documents

Publication Publication Date Title
DE10156827B4 (en) System for determining the position of underwater objects
EP2480911B1 (en) Method and device for measuring a contour of the ground
DE112014002638T5 (en) TSUNAMI MONITORING SYSTEM
DE112014007193B4 (en) State estimator
CN104931040B (en) The Big Dipper II generation navigation system electric power tower deformation monitoring equipment installation based on machine learning and adjustment method
DE102008030053A1 (en) Method and apparatus for passively determining target parameters
WO2017076386A1 (en) Method for determining sonar data, and underwater vehicle
CN110221278A (en) A kind of SAS movement compensation method based on multi sensor combination
DE102004035715B4 (en) Sound propagation time measurement device
EP3384314B1 (en) Method for determining an optimal sea depth, sonar device and water vehicle
CN113297810A (en) Method and system for arranging field observation equipment for detecting sea surface height
DE102017123140A1 (en) An ultrasonic sensor device and a detection method of an ultrasonic sensor device
EP2480910B1 (en) Method and device for measuring a profile of the ground
WO2014198566A1 (en) Determining the intrinsic speed of a speed sensor device in a body of water in order to correct the measurement signal
EP3096193A1 (en) Method and device for prognosticating a position of a marine vessel
CN104122544A (en) Towed array sonar fixed azimuth large interference source cancellation method and system
EP3265839B1 (en) Method for calculating a confidence echo signal that is exempt from multipath propagation effects and for determining a distance and/or a direction to an echo source and device and vehicle
DE102011117591B4 (en) Method and device for correcting systematic bearing errors
DE102015103322A1 (en) Method for determining the direction of a water sound source, computer program product, computer or sonar and watercraft
Yang et al. Prediction for irregular ocean wave and floating body motion by regularization: Part 1. Irregular wave prediction
EP2847624B1 (en) Method and apparatus for estimating the shape of an acoustic towed antenna
EP2594958B1 (en) Device and method for acoustic measurement of the bed of a body of water
DE102009042969A1 (en) Method and device for determining the position of a watercraft
Wang et al. Research of ultrashort baseline positioning method based on depth information
CN115932884B (en) Wave direction spectrum measurement method and system based on three-dimensional laser radar

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14731923

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 14731923

Country of ref document: EP

Kind code of ref document: A1