EP2480911B1 - Method and device for measuring a contour of the ground - Google Patents

Method and device for measuring a contour of the ground Download PDF

Info

Publication number
EP2480911B1
EP2480911B1 EP10743155.3A EP10743155A EP2480911B1 EP 2480911 B1 EP2480911 B1 EP 2480911B1 EP 10743155 A EP10743155 A EP 10743155A EP 2480911 B1 EP2480911 B1 EP 2480911B1
Authority
EP
European Patent Office
Prior art keywords
incidence
area
soundings
arrangement
converters
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP10743155.3A
Other languages
German (de)
French (fr)
Other versions
EP2480911A1 (en
Inventor
Benno Freking
Tobias Fassbender
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Atlas Elektronik GmbH
Original Assignee
Atlas Elektronik GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Atlas Elektronik GmbH filed Critical Atlas Elektronik GmbH
Publication of EP2480911A1 publication Critical patent/EP2480911A1/en
Application granted granted Critical
Publication of EP2480911B1 publication Critical patent/EP2480911B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8902Side-looking sonar
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/02Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems using reflection of acoustic waves
    • G01S15/06Systems determining the position data of a target
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/534Details of non-pulse systems
    • G01S7/536Extracting wanted echo signals

Definitions

  • the invention relates to a method for measuring a soil profile by means of a mounted on a vessel transmitting and receiving arrangement referred to in the preamble of claim 1 and a device for carrying out the method according to claim 6.
  • the invention finds application, inter alia, in the measurement of a soil profile within a predetermined underwater area or in the search for sunken objects. If the underwater area is illuminated in front of the vessel, this serves among other things for collision avoidance and / or navigation.
  • a high angular resolution of the receiving arrangement is necessary. This is conventionally achieved by means of a receiving arrangement with a plurality of transducers and a downstream direction generator.
  • the direction generator processes the respective received signals of the transducers in such a way that the receiving arrangement spans a fan of a multiplicity of directional characteristics or beams pivoted relative to one another in a fixed underwater area.
  • the receiving arrangements can be formed, for example, as a linear array or conformal arrays or horseshoe or cylindrical bases.
  • DE 199 59 014 A1 shows, for example, a method for determining depth values of a water body with a fan slot.
  • DE 10 2005 041 390 A1 shows a method for generating a sonar image.
  • a sonar carried by a watercraft which has a transmitting antenna for emitting sound pulses and a receiving antenna with a plurality of hydrophones.
  • the generation of a three-dimensional sonar image using an interferometric measurement technique is disclosed.
  • a second, preferably identical to the first trained receiving antenna is needed.
  • a depth value to be determined is determined by correlation of the received signals of both receiving antennas.
  • DE 1 548 452 A shows a method for determining contour lines of the seabed.
  • the searched contour lines can be recorded directly by a special arrangement of the transceiver.
  • the transmitting and receiving devices are arranged at such a distance from each other that, after reflection at the seabed, waves received by the same transmitter and received by two mutually remote receivers are received in phase.
  • the disadvantage here is the need to maintain a Certain arrangement ratio, which always has to be adjusted.
  • using multiple transducers also disadvantageously increases costs.
  • the invention is therefore based on the problem to provide a cost-effective method for measuring a soil profile, which provides clear measurement results by means of phase evaluation.
  • the invention solves this problem by the features of a method according to claim 1 and by a corresponding device with the features of claim 6.
  • pulse-shaped sound signals are emitted in a directionally directed manner by means of a transmission arrangement.
  • the transmitting arrangement has a very narrow directional characteristic, so that only the echoes of a narrow ground strip are received.
  • a sound signal is radiated into the underwater area and its reflected portions are received by the receiving arrangement, wherein the receiving arrangement advantageously manages with two individual transducers.
  • the survey of the soil profile takes place on the basis of the received signals of the two transducers using a pure phase evaluation and a subsequent density analysis of the measured values.
  • a pure phase evaluation provides ambiguous results.
  • the method according to the invention initially does not consider this ambiguity in the determination of the angle.
  • the multiple measurement of the soil profile resulting from the ambiguous results of the phase evaluation from different positions of the transmission arrangement is used to unambiguously determine the soil profile using a density analysis.
  • a phase difference between two received signals at a plurality of predetermined sampling times and the N Lotept from different positions depending on the distance of the transducer of the receiving device provides several ambiguous path differences. From these ambiguous gait differences, it is possible to determine for these sampling times and for the N placements associated incident angles and incidence coordinates.
  • For the sampling times and the N placements in each case a data density in a predetermined area containing the incidence coordinate is determined for the ambiguous incidence coordinates. In the area where the true ground point is located, the density of the measured values increases.
  • the locations of the further ambiguous landing coordinates that result from the phase evaluation have a lower data density and are marked as invalid.
  • the method of the invention thus provides a method for determining which is the true landing coordinate on the soil profile.
  • the inventive method has the advantage that despite an aforementioned ambiguity of the angle determination when using a receiving arrangement with at least two transducers unique measurement results can be achieved by the measurement of the soil profile from different positions with different aspect angles and distances from the soil profile takes place and then a density analysis of the measured data is performed.
  • the device according to the invention has the advantage that it can be produced using a receiving arrangement with only two individual transducers.
  • the inventive method also provides clear measurement results of the soil profile, when the distance of the transducer is greater than half the wavelength of the received signal or the received sound waves.
  • a receiving arrangement can also be carried, for example, by small, autonomously operating or remotely controlled underwater vehicles.
  • a transducer array is used as receiving device. If the transmission arrangement is not designed in such a way that directed emission of sound signals into an underwater area is possible or if the transmission arrangement has a directional characteristic which is broad in the forward direction of the vessel, then a reception arrangement with a multiplicity of transducers and a downstream directional generator or beamformer is provided creates a variety of fan-spanned beams the underwater area, the advantage of increasing the resolution of the sonar system according to the beam width.
  • the regions in which the density of the measured values is determined correspond to surface elements having a predetermined size. These surface elements are the same size for all impact coordinates.
  • the size is determined according to the computational effort and the required resolution.
  • the N mutually different positions of the N Lotungen be predetermined by a forward movement of the transmitting and receiving device. Preferably, this corresponds to a forward movement of the watercraft.
  • the transmitting and receiving arrangements can be rigidly mounted instead of in a pivotable embodiment.
  • Fig. 1 shows a schematic representation of a moving in a sea area watercraft 2 with a forward-looking sonar system 4.
  • This sonar system 4 has a transmitting and receiving arrangement and an associated signal processing for data acquisition of a soil profile 6.
  • the invention is not limited to the embodiment by means of a Forward-looking sonar systems 4 limited.
  • a sound radiation over the stern of a watercraft 2 is possible.
  • Fig. 1 the measurement geometry with the distance r of a ground point to the sonar system 4 is shown.
  • the distance r can be determined over the duration of the reflected sound signal.
  • the sound impulse needs one certain time until it reaches the ground, is reflected and arrives after a further period of time at the receiving arrangement. Because of this measurable total running time, the distance r of an object or of the ground point can be determined by means of the known speed of sound.
  • the sonar system 4 To measure the soil profile 6, sound signals directed by the sonar system are directed into an underwater area 8 and the reflected sound waves 10 are received at a multiplicity of ground points (x, y, z).
  • the sonar system 4 has a very strong bundled sound radiation transversely to the direction of travel and a wide directional characteristic in the vehicle longitudinal direction. As a result, only the echoes of a narrow strip of ground are received.
  • the extent of the illuminated underwater area 8 is dependent on the formation of the sonar system 4, which in Fig. 2 is shown in detail.
  • Fig. 2 AB show a schematic representation of the sonar system 4.
  • Fig. 2 A is a side view of the sonar system 4 and shown in FIG Fig. 2 B a plan view of the same arrangement.
  • the transmitting arrangement 20 has a multiplicity of transducers arranged on an antenna carrier, which transmit directed sound signals in the form of a transmitting team 22 into a predetermined underwater area 8.
  • the resulting transmission beam 22 in the form of an ellipse has a length 24 and a width 26 dependent on the opening angle of the directional characteristic associated with the transmission arrangement.
  • Fig. 3 shows a schematic representation of the receiving assembly 28.
  • a receiving device 28 is required with at least two different converters.
  • the receiving arrangement 28 consists of two individual transducers A and B, as shown in FIG Fig. 3 are shown. They have a distance 30 from one another, which is greater than half the wavelength ⁇ of the output from the transmitting device 20 sound signal. This small positional shift of the transducers A and B results in significant differences in transit time of the received signal, which can be precisely determined on the basis of phase measurements.
  • the inventive method with two transducer arrays which according to one another Fig. 2 are arranged feasible. If it requires the design of the watercraft 2, the transducers can also be arranged slightly offset. However, the geometry of the receiving arrangement 28 must be taken into account accordingly in a signal processing of the received signals.
  • the converter A supplies a received signal, which is delayed in time by the different distances r A and r B to the ground point x 0 with respect to the transducer B.
  • the reflected from the point x 0 portions of the transmitted sound signal first reach the transducer B and to ⁇ t delays the converter A.
  • Fig. 4 shows a flowchart for describing an embodiment of the method sequence according to the invention, which is based on a multiple measurement of soil elements from different distances r N and aspect angles ⁇ N. For this purpose, after an initialization in block 36, first a count variable i in block 38 is assigned the value 1.
  • a sound signal is emitted in accordance with block 40 from a predefined position P 1 by means of the transmission arrangement 20 into an angular range, preferably narrow in the pre-horizontal direction and wide in the vertical direction.
  • the sound waves reflected from the ground or object are received by two transducers A and B, which respectively generate therefrom a received signal which is sampled, digitized and stored in block 42 at predetermined sampling instants.
  • the respective phase difference between the received signals of the two transducers is determined in block 44 for the sampling times.
  • an ambiguity occurs. This is in Fig. 5 shown in detail.
  • Fig. 5 shows a schematic representation of an incident on the transducers A and B sound wave front 64. If the distance 30 of the two transducers is greater than half the wavelength ⁇ of the received sound wave front 64, it comes to ambiguities. This means the determined phase difference of the received signals between transducers A and B is ambiguous and thus provides, depending on the distance 30 of the transducers, a number of ambiguous path differences ⁇ x 1 , ⁇ 2 , ⁇ x 3 .
  • ⁇ x 3 corresponds to the true retardation of the received signals between the transducers A and B.
  • This retardation ⁇ x 3 provides an associated receiving angle in connection with the distance 30 of the transducers.
  • the counting variable i is increased by one value and in the further block 54 it is checked whether the counting variable has reached the value N for the number of plumbs to be carried out. If this is not the case, the system jumps back in a loop to the instruction in block 40 in order to determine the impact coordinates for a next plumbing from a further position. However, if the count variable i has reached the value N, a data density about the incidence coordinates is determined in block 56. The data density is a measure of the number of previously collected data within a predetermined range including the respective impact coordinate.
  • the data density is determined for a plurality of N plumbs and for all sampling times of these plots considered and for each of the ambiguous incident coordinates.
  • a maximum data density is determined from this. At a maximum, the impact coordinate at which the data density is greatest is output as valid and for the determination of the soil profile 60. All other ambiguous landing coordinates at this sampling instant are marked invalid in block 62 and discarded.
  • Fig. 6 shows a block diagram for explaining the apparatus for carrying out the method according to the invention according to Fig. 4 ,
  • the transducers A and B deliver to the N plummings in each case an electrical received signal 70 1 , 70 2 ,..., 70 N or 72 1 , 72 2 ,..., 72 N whose further signal processing for the N plumbing according to the blocks 74 1 , 74 2 , ..., 74 N takes place.
  • the received electrical signals 70 1 and 72 1 of the transducers A and B are sampled and digitized in block 76 1 at predetermined sampling times.
  • both the phase difference between the signals 70 1 and 72 1 and the propagation time of these signals are determined for a plurality of sampling times.
  • a further calculation unit 80 1 the previously determined phase differences for the sampling times, as previously described with reference to FIG Fig. 5 explained, the associated ambiguous gait differences determined.
  • the associated ambiguous angles of incidence and incidence coordinates on the soil profile are calculated in a further calculation unit 82 1 for the sampling times by means of the signal propagation times and the receiving angle.
  • the ambiguous impact coordinates on the soil profile are determined for a plurality of sampling times and for N plumbing.
  • These ambiguous incident coordinates of the N plumbs are passed to a further calculation unit 84 together with the information of the associated sampling times.
  • There is for each sampling time, for each of the N Lotept and for each of the ambiguous landing coordinates determines a data density in a predetermined area including the landing coordinate.
  • the data density is a measure of the number of data collected within this area.
  • the impact coordinates of the same plumb line are not taken into account when determining the density.
  • This predetermined area is preferably a surface element whose size is small enough and determined depending on the computational effort. However, it is the same for all impact coordinates.
  • a maximum detector 86 determines the maximum data density for the sampling instants. At each sampling instant, the incident coordinate whose associated area element has a maximum data density is marked as valid and thus corresponds to the true ground point (x, y, z). The other ambiguous landing coordinates are marked as invalid.
  • the incident coordinate (x, y, z) is composed as follows: the x-coordinate can be determined at each sampling time by means of the laws of trigonometry, the y-coordinate is dependent on the width 26 of the transmitting team 22 and the z-coordinate corresponds the height h calculated from the transit time difference between transducers A and B.
  • the coordinate system is related to the vessel 2 or to the transmission and reception arrangement 4. It is also possible to use an absolute coordinate system for carrying out the method, if this is taken into account accordingly in the signal processing.
  • the method described above may be modified such that a transducer array is used instead of two individual transducers as the receiving arrangement.
  • the receiving arrangement is followed by a direction former or beamformer, which delays the received signals of the converters and adds them to group signals, so that a fan of directional characteristics or beams is clamped in the underwater area.
  • the horizontal one Width of a beam is determined by its horizontal opening angle. This allows a higher resolution in the y direction, in the event that a sufficiently large bundling of the transmission team is not possible.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Description

Die Erfindung betrifft ein Verfahren zum Vermessen eines Bodenprofils mittels einer an einem Wasserfahrzeug angebrachten Sende- und Empfangsanordnung der im Oberbegriff des Anspruchs 1 genannten Art sowie eine Vorrichtung zum Ausführen des Verfahrens gemäß Anspruch 6.The invention relates to a method for measuring a soil profile by means of a mounted on a vessel transmitting and receiving arrangement referred to in the preamble of claim 1 and a device for carrying out the method according to claim 6.

Die Erfindung findet unter anderem Anwendung bei der Vermessung eines Bodenprofils innerhalb eines vorbestimmten Unterwasserareals oder bei der Suche nach versunkenen Objekten. Wird das Unterwasserareal vor dem Wasserfahrzeug beleuchtet, dient dies unter anderem der Kollisionsvermeidung und/oder der Navigation.The invention finds application, inter alia, in the measurement of a soil profile within a predetermined underwater area or in the search for sunken objects. If the underwater area is illuminated in front of the vessel, this serves among other things for collision avoidance and / or navigation.

Um eine detaillierte Objektdetektion zu erhalten, ist eine hohe Winkelauflösung der Empfangsanordnung notwendig. Dies wird herkömmlicher Weise mittels einer Empfangsanordnung mit einer Vielzahl von Wandlern und einem nachgeschalteten Richtungsbildner erreicht. Der Richtungsbildner verarbeitet die jeweiligen Empfangssignale der Wandler derart, dass die Empfangsanordnung in einem festgelegten Unterwasserareal einen Fächer von einer Vielzahl gegeneinander verschwenkten Richtcharakteristiken bzw. Beams aufspannt. Dabei können die Empfangsanordnungen bspw. als Linear-Array oder Conformal-Arrays bzw. Hufeisen oder Zylinderbasen ausgebildet sein. DE 199 59 014 A1 zeigt bspw. ein Verfahren zum Bestimmen von Tiefenwerten eines Gewässers mit einem Fächerlot. Dabei werden je Lotfächer für eine Folge von Fächerstrahlen Schalllaufzeiten gemessen und daraus die Tiefen- und Ablagewerte berechnet. Da die Auflösung dieser Wandler-Arrays der Beambreite entspricht, entsteht jedoch ein sehr hoher Kostenaufwand für eine hinreichend genaue Winkelauflösung.In order to obtain a detailed object detection, a high angular resolution of the receiving arrangement is necessary. This is conventionally achieved by means of a receiving arrangement with a plurality of transducers and a downstream direction generator. The direction generator processes the respective received signals of the transducers in such a way that the receiving arrangement spans a fan of a multiplicity of directional characteristics or beams pivoted relative to one another in a fixed underwater area. In this case, the receiving arrangements can be formed, for example, as a linear array or conformal arrays or horseshoe or cylindrical bases. DE 199 59 014 A1 shows, for example, a method for determining depth values of a water body with a fan slot. Here, sound velocities are measured for each lot fan for a sequence of fan beams and the depth and storage values are calculated therefrom. Since the resolution of these transducer arrays corresponds to the beam width, however, a very high cost arises for a sufficiently accurate angular resolution.

Neben diesen Verfahren mittels eines Wandler-Arrays als Empfangsanordnung, dessen Auflösung durch die Bauart der Empfangsanordnung beschränkt ist, sind auch sog. hochauflösende Verfahren zur Winkelbestimmung bekannt. Zu diesen Verfahren zählt unter anderem das MUSIC (Multiple Signal Classification) - Verfahren. Die Genauigkeit der Ergebnisse ist jedoch auch bei diesen Verfahren abhängig von der Wandleranzahl der Empfangsanordnung. Je mehr Wandler die Empfangsanordnung besitzt und je länger der verarbeitende Signalblock ist, desto genauer sind die Ergebnisse. Der Nachteil dieser Verfahren liegt zudem in ihrem hohen Rechenaufwand, der einen Einsatz in Echtzeitsystemen erschwert.In addition to these methods by means of a converter array as a receiving arrangement whose resolution is limited by the type of receiving arrangement, so-called. High-resolution methods for angle determination are also known. These methods include, among others, the MUSIC (Multiple Signal Classification) method. However, the accuracy of the results is also dependent on the number of transducers of the receiving arrangement in these methods. The more transducers the receiving arrangement has and the longer the processing signal block is, the more accurate the results. The disadvantage of these methods is also their high computational complexity, which makes it difficult to use in real-time systems.

Alternativ ist es bekannt, die Vermessung des Bodenprofils mittels Phasenauswertung der von den Wandlern empfangenen Schallwellen durchzuführen. DE 10 2005 041 390 A1 zeigt ein Verfahren zum Erzeugen eines Sonarbildes. Dazu wird ein von einem Wasserfahrzeug getragenes Sonar verwendet, das eine Sendeantenne zum Abstrahlen von Schallimpulsen und eine Empfangsantenne mit einer Vielzahl von Hydrofonen aufweist. In einem Ausführungsbeispiel wird die Erzeugung eines dreidimensionalen Sonarbildes unter Verwendung einer interferometrischen Messmethode offenbart. Hierfür wird eine zweite, vorzugsweise identisch der ersten ausgebildeten Empfangsantenne benötigt. Ein zu ermittelnder Tiefenwert wird durch Korrelation der Empfangssignale beider Empfangsantennen bestimmt.Alternatively, it is known to carry out the measurement of the soil profile by means of phase evaluation of the sound waves received by the transducers. DE 10 2005 041 390 A1 shows a method for generating a sonar image. For this purpose, a sonar carried by a watercraft is used, which has a transmitting antenna for emitting sound pulses and a receiving antenna with a plurality of hydrophones. In one embodiment, the generation of a three-dimensional sonar image using an interferometric measurement technique is disclosed. For this purpose, a second, preferably identical to the first trained receiving antenna is needed. A depth value to be determined is determined by correlation of the received signals of both receiving antennas.

In dem Artikel " Signal Processing Strategies for a Bathymetric Sidescan Sonar" von Philip N. Denbigh aus IEEE Journal of Oceanic Engineering, 19(3): 382-390, July 1994 sind Prinzipien der direkten Phasenmessung in interferometrischen Systemen näher beschrieben. Bei einer derartigen interferometrischen Technik wird ein zweiter, unabhängig von dem ersten arbeitender Wandler benötigt. Dieser liefert ein weiteres Empfangssignal, welches durch die unterschiedlichen Entfernungen zum Objekt ein zum ersten Wandler zeitverzögertes Signal liefert. Beträgt jedoch der Abstand der Wandler ein Mehrfaches der Wellenlänge der empfangenen Schallwellen, gibt die gemessene Phasenverschiebung, die zwischen 0 und 2π liegt, eine Schar von möglichen Empfangswinkeln an. Eine derartige Vieldeutigkeit bei der Winkelbestimmung wird herkömmlicherweise durch Verwendung von mehreren Wandlern, die sich in geeignetem Abstand befinden, vermieden.In the article " Signal Processing Strategies for a Bathymetric Side Scan Sonar "by Philip N. Denbigh of IEEE Journal of Oceanic Engineering, 19 (3): 382-390, July 1994 Principles of direct phase measurement in interferometric systems are described in more detail. Such an interferometric technique requires a second transducer independent of the first one. This provides a further received signal, which provides a time-delayed signal to the first transducer by the different distances to the object. However, if the distance of the transducers is a multiple of the wavelength of the received sound waves, the measured phase shift, which is between 0 and 2π, indicates a set of possible reception angles. Such Ambiguity in angle determination is conventionally avoided by the use of multiple transducers located at a suitable distance.

DE 1 548 452 A zeigt ein Verfahren zur Bestimmung von Höhenlinien des Meeresgrundes. Die gesuchten Höhenlinien können direkt durch eine besondere Anordnung der Sende-Empfangs-Einrichtung aufgezeichnet werden. Gemäß dieser Anordnung sind die Sende- und Empfangseinrichtungen in einem solchen Abstand voneinander angeordnet, dass nach der Reflexion an dem Meeresgrund Wellen, die von dem gleichen Sender ausgesendet und von zwei voneinander entfernten Empfängern empfangen werden, gleichphasig empfangen werden. Nachteilig dabei ist die Notwendigkeit, ein Bestimmtes Anordnungsverhältnis einzuhalten, welches stets angepasst werden muss. Bei Verwendung von mehreren Wandlern entstehen jedoch ebenfalls nachteilig höhere Kosten. DE 1 548 452 A shows a method for determining contour lines of the seabed. The searched contour lines can be recorded directly by a special arrangement of the transceiver. According to this arrangement, the transmitting and receiving devices are arranged at such a distance from each other that, after reflection at the seabed, waves received by the same transmitter and received by two mutually remote receivers are received in phase. The disadvantage here is the need to maintain a Certain arrangement ratio, which always has to be adjusted. However, using multiple transducers also disadvantageously increases costs.

Der Erfindung liegt daher das Problem zugrunde, ein kostengünstiges Verfahren zum Vermessen eines Bodenprofils anzugeben, welches mittels Phasenauswertung eindeutige Messergebnisse liefert.The invention is therefore based on the problem to provide a cost-effective method for measuring a soil profile, which provides clear measurement results by means of phase evaluation.

Die Erfindung löst dieses Problem durch die Merkmale eines Verfahrens gemäß Anspruch 1 sowie durch eine entsprechende Vorrichtung mit den Merkmalen des Anspruchs 6.The invention solves this problem by the features of a method according to claim 1 and by a corresponding device with the features of claim 6.

Dabei werden zunächst mittels einer Sendeanordnung impulsförmige Schallsignale gerichtet abgestrahlt. Die Sendeanordnung besitzt dabei eine in Vorrausrichtung sehr schmale Richtcharakteristik, so dass nur die Echos eines schmalen Bodenstreifens empfangen werden.Initially, pulse-shaped sound signals are emitted in a directionally directed manner by means of a transmission arrangement. In this case, the transmitting arrangement has a very narrow directional characteristic, so that only the echoes of a narrow ground strip are received.

In einer Mehrzahl von N Lotungen aus vorbestimmten Positionen mit voneinander verschiedenen Aspektwinkeln und Entfernungen zum Bodenprofil wird ein Schallsignal in das Unterwasserareal abgestrahlt und dessen reflektierte Anteile mittels der Empfangsanordnung empfangen, wobei die Empfangsanordnung vorteilhaft mit zwei einzelnen Wandlern auskommt. Die Vermessung des Bodenprofils erfolgt anhand der Empfangssignale der zwei Wandler unter Verwendung einer reinen Phasenauswertung und einer anschließenden Dichteanalyse der Messwerte.In a plurality of N soundings from predetermined positions with different aspect angles and distances from the bottom profile, a sound signal is radiated into the underwater area and its reflected portions are received by the receiving arrangement, wherein the receiving arrangement advantageously manages with two individual transducers. The survey of the soil profile takes place on the basis of the received signals of the two transducers using a pure phase evaluation and a subsequent density analysis of the measured values.

Abhängig von dem Abstand der Wandler der Empfangsanordnung und der Frequenz bzw. der Wellenlänge des ausgesendeten Schallsignals liefert eine reine Phasenauswertung vieldeutige Ergebnisse. Das erfindungsgemäße Verfahren berücksichtigt zunächst diese Vieldeutigkeit bei der Winkelbestimmung nicht.Depending on the distance of the transducers of the receiving arrangement and the frequency or the wavelength of the emitted sound signal, a pure phase evaluation provides ambiguous results. The method according to the invention initially does not consider this ambiguity in the determination of the angle.

Die durch die vieldeutigen Ergebnisse der Phasenauswertung entstehende Mehrfachmessung des Bodenprofils aus unterschiedlichen Positionen der Sendeanordnung wird zur eindeutigen Bestimmung des Bodenprofils unter Verwendung einer Dichteanalyse genutzt. Dabei liefert eine Phasendifferenz zwischen zwei Empfangssignalen zu einer Vielzahl vorbestimmter Abtastzeitpunkte und zu den N Lotungen aus unterschiedlichen Positionen abhängig von dem Abstand der Wandler der Empfangsanordnung mehrere vieldeutige Gangunterschiede. Aus diesen vieldeutigen Gangunterschieden lassen sich für diese Abtastzeitpunkte und für die N Lotungen zugehörige Auftreffwinkel und Auftreffkoordinaten ermitteln. Für die Abtastzeitpunkte und die N Lotungen werden für die vieldeutigen Auftreffkoordinaten jeweils eine Datendichte in einem vorbestimmten die Auftreffkoordinate beinhaltenden Bereich ermittelt. In dem Bereich, an der sich der wahre Bodenpunkt befindet, erhöht sich die Dichte der Messwerte. Die Orte der weiteren vieldeutigen Auftreffkoordinaten, die sich aufgrund der Phasenauswertung ergeben, weisen eine geringere Datendichte auf und werden als ungültig gekennzeichnet. Das erfindungsgemäße Verfahren liefert somit eine Methode um festzustellen, welches die wahre Auftreffkoordinate auf dem Bodenprofil ist.The multiple measurement of the soil profile resulting from the ambiguous results of the phase evaluation from different positions of the transmission arrangement is used to unambiguously determine the soil profile using a density analysis. In this case, a phase difference between two received signals at a plurality of predetermined sampling times and the N Lotungen from different positions depending on the distance of the transducer of the receiving device provides several ambiguous path differences. From these ambiguous gait differences, it is possible to determine for these sampling times and for the N placements associated incident angles and incidence coordinates. For the sampling times and the N placements, in each case a data density in a predetermined area containing the incidence coordinate is determined for the ambiguous incidence coordinates. In the area where the true ground point is located, the density of the measured values increases. The locations of the further ambiguous landing coordinates that result from the phase evaluation have a lower data density and are marked as invalid. The method of the invention thus provides a method for determining which is the true landing coordinate on the soil profile.

Das erfindungsgemäße Verfahren hat den Vorteil, dass trotz einer zuvor erwähnten Vieldeutigkeit der Winkelbestimmung bei Verwendung einer Empfangsanordnung mit wenigstens zwei Wandlern eindeutige Messergebnisse erzielt werden können, indem die Vermessung des Bodenprofils aus unterschiedlichen Positionen mit voneinander verschiedenen Aspektwinkeln und Entfernungen zum Bodenprofil erfolgt und anschließend eine Dichteanalyse der Messdaten durchgeführt wird.The inventive method has the advantage that despite an aforementioned ambiguity of the angle determination when using a receiving arrangement with at least two transducers unique measurement results can be achieved by the measurement of the soil profile from different positions with different aspect angles and distances from the soil profile takes place and then a density analysis of the measured data is performed.

In einer weiteren Ausführungsform der Erfindung besitzt die erfindungsgemäße Vorrichtung den Vorteil, dass sie sich unter Verwendung einer Empfangsanordnung mit nur zwei einzelnen Wandlern herstellen lässt. Das erfindungsgemäße Verfahren liefert auch eindeutige Messergebnisse des Bodenprofils, wenn der Abstand der Wandler größer als die halbe Wellenlänge des Empfangssignals bzw. der empfangenen Schallwellen ist. Durch die vorzugsweise kleine Abmessung kann eine derartige Empfangsanordnung beispielsweise auch von kleinen, autonomen agierenden oder ferngesteuerten Unterwasserfahrzeugen getragen werden.In a further embodiment of the invention, the device according to the invention has the advantage that it can be produced using a receiving arrangement with only two individual transducers. The inventive method also provides clear measurement results of the soil profile, when the distance of the transducer is greater than half the wavelength of the received signal or the received sound waves. By virtue of the preferably small dimension, such a receiving arrangement can also be carried, for example, by small, autonomously operating or remotely controlled underwater vehicles.

In einer weiteren Ausführungsform der Erfindung wird als Empfangsvorrichtung ein Wandler-Array verwendet. Ist die Sendeanordnung nicht derart ausgelegt, dass ein gerichtetes Abstrahlen von Schallsignalen in ein Unterwasserareal möglich ist bzw. besitzt die Sendeanordnung eine in Vorrausrichtung des Wasserfahrzeugs breite Richtcharakteristik, so hat eine Empfangsanordnung mit einer Vielzahl von Wandlern und einem nachgeschalteten Richtungsbildner bzw. Beamformer, der in dem Unterwasserareal eine Vielzahl von fächerartig aufgespannten Beams erzeugt, den Vorteil, die Auflösung des Sonarsystems entsprechend der Beambreite zu erhöhen.In a further embodiment of the invention, a transducer array is used as receiving device. If the transmission arrangement is not designed in such a way that directed emission of sound signals into an underwater area is possible or if the transmission arrangement has a directional characteristic which is broad in the forward direction of the vessel, then a reception arrangement with a multiplicity of transducers and a downstream directional generator or beamformer is provided creates a variety of fan-spanned beams the underwater area, the advantage of increasing the resolution of the sonar system according to the beam width.

In einer weiteren Ausführungsform der Erfindung entsprechen die Bereiche, in denen die Dichte der Messwerte ermittelt wird, Flächenelementen mit einer vorbestimmten Größe. Diese Flächenelemente sind dabei für alle Auftreffkoordinaten gleich groß. Vorteilhafterweise wird die Größe entsprechend des Rechenaufwandes sowie der geforderten Auflösung festgelegt.In a further embodiment of the invention, the regions in which the density of the measured values is determined correspond to surface elements having a predetermined size. These surface elements are the same size for all impact coordinates. Advantageously, the size is determined according to the computational effort and the required resolution.

In einer weiteren Ausführungsform der Erfindung werden die N voneinander verschiedenen Positionen der N Lotungen durch eine Vorwärtsbewegung der Sende- und Empfangsanordnung vorgegeben. Vorzugsweise entspricht dies einer Vorwärtsbewegung des Wasserfahrzeugs. Der Vorteil einer derartigen Ausführungsform liegt darin, dass die Sende- und Empfangsanordnungen statt in einer schwenkbaren Ausführung starr befestigt sein können.In a further embodiment of the invention, the N mutually different positions of the N Lotungen be predetermined by a forward movement of the transmitting and receiving device. Preferably, this corresponds to a forward movement of the watercraft. The advantage of such an embodiment is that the transmitting and receiving arrangements can be rigidly mounted instead of in a pivotable embodiment.

Weitere vorteilhafte Ausführungsformen ergeben sich aus den Unteransprüchen sowie aus den anhand der anliegenden Zeichnung näher erläuterten Ausführungsbeispielen. In der Zeichnung zeigen:

Fig. 1
eine schematische Darstellung eines Wasserfahrzeugs mit dem zu erfassenden Unterwasserareal,
Fig. 2 A-B
eine schematische Darstellung des Sonarsystems,
Fig. 3
eine schematische Darstellung der Empfangsanordnung,
Fig. 4
ein Flussdiagramm des erfindungsgemäßen Verfahrens,
Fig. 5
eine schematische Darstellung einer auf die Wandler treffenden Schallwellenfront und
Fig. 6
ein Blockschaltbild der erfindungsgemäßen Vorrichtung zum Ausführen des Verfahrens.
Further advantageous embodiments will become apparent from the dependent claims and from the closer explained with reference to the accompanying drawings embodiments. In the drawing show:
Fig. 1
a schematic representation of a watercraft with the underwater area to be recorded,
Fig. 2 AB
a schematic representation of the sonar system,
Fig. 3
a schematic representation of the receiving arrangement,
Fig. 4
a flow chart of the method according to the invention,
Fig. 5
a schematic representation of an incident on the transducer sound wave front and
Fig. 6
a block diagram of the inventive device for carrying out the method.

Fig. 1 zeigt eine schematische Darstellung eines in einem Seegebiet fahrenden Wasserfahrzeugs 2 mit einem Forward-Looking-Sonarsystem 4. Dieses Sonarsystem 4 weist eine Sende- und Empfangsanordnung auf sowie eine dazugehörende Signalverarbeitung zur Datenerfassung eines Bodenprofils 6. Die Erfindung ist jedoch nicht auf das Ausführungsbeispiel mittels eines Forward-Looking-Sonarsystems 4 beschränkt. Ferner ist bspw. eine Schallabstrahlung über das Heck eines Wasserfahrzeugs 2 möglich. Fig. 1 shows a schematic representation of a moving in a sea area watercraft 2 with a forward-looking sonar system 4. This sonar system 4 has a transmitting and receiving arrangement and an associated signal processing for data acquisition of a soil profile 6. However, the invention is not limited to the embodiment by means of a Forward-looking sonar systems 4 limited. Furthermore, for example, a sound radiation over the stern of a watercraft 2 is possible.

In Fig. 1 ist darüber hinaus die Messgeometrie mit der Entfernung r eines Bodenpunktes zum Sonarsystem 4 dargestellt. Die Entfernung r lässt sich über die Laufzeit des reflektierten Schallsignals ermitteln. Der Schallimpuls benötigt eine gewisse Zeit, bis er den Boden erreicht, reflektiert wird und nach einer weiteren Laufzeit an der Empfangsanordnung eintrifft. Aufgrund dieser messbaren Gesamtlaufzeit kann mittels der bekannten Schallgeschwindigkeit die Entfernung r eines Objekts bzw. des Bodenpunktes ermittelt werden.In Fig. 1 In addition, the measurement geometry with the distance r of a ground point to the sonar system 4 is shown. The distance r can be determined over the duration of the reflected sound signal. The sound impulse needs one certain time until it reaches the ground, is reflected and arrives after a further period of time at the receiving arrangement. Because of this measurable total running time, the distance r of an object or of the ground point can be determined by means of the known speed of sound.

Des Weiteren sind eine Bezugshöhe H und der Aspektwinkel φ in Lotrichtung zu dem Sonarsystem 4 dargestellt.Furthermore, a reference height H and the aspect angle φ in the perpendicular direction to the sonar system 4 are shown.

Zur Vermessung des Bodenprofils 6 werden von dem Sonarsystem 4 Schallsignale gerichtet in ein Unterwasserareal 8 abgestrahlt und die reflektierten Schallwellen 10 einer Vielzahl von Bodenpunkten (x, y, z) empfangen. Dabei weist das Sonarsystem 4 quer zur Fahrtrichtung eine sehr stark gebündelte Schallabstrahlung und in Fahrzeuglängsrichtung eine weite Richtcharakteristik auf. Dadurch werden nur die Echos eines schmalen Bodenstreifens empfangen.To measure the soil profile 6, sound signals directed by the sonar system are directed into an underwater area 8 and the reflected sound waves 10 are received at a multiplicity of ground points (x, y, z). In this case, the sonar system 4 has a very strong bundled sound radiation transversely to the direction of travel and a wide directional characteristic in the vehicle longitudinal direction. As a result, only the echoes of a narrow strip of ground are received.

Die Ausdehnung des beleuchteten Unterwasserareals 8 ist abhängig von der Formation des Sonarsystems 4, welches in Fig. 2 detailliert dargestellt ist.The extent of the illuminated underwater area 8 is dependent on the formation of the sonar system 4, which in Fig. 2 is shown in detail.

Fig. 2 A-B zeigen eine schematische Darstellung des Sonarsystems 4. In Fig. 2 A ist eine Seitenansicht des Sonarsystems 4 dargestellt und in Fig. 2 B eine Draufsicht der gleichen Anordnung. Fig. 2 AB show a schematic representation of the sonar system 4. In Fig. 2 A is a side view of the sonar system 4 and shown in FIG Fig. 2 B a plan view of the same arrangement.

Die Sendeanordnung 20 weist eine Vielzahl auf einem Antennenträger angeordneter Wandler auf, welche gerichtete Schallsignale in Form eines Sendebeams 22 in ein vorbestimmtes Unterwasserareal 8 aussenden. Der so entstehende Sendebeam 22 in Form einer Ellipse hat eine Länge 24 und eine vom Öffnungswinkel der zu der Sendeanordnung zugehörigen Richtcharakteristik abhängigen Breite 26.The transmitting arrangement 20 has a multiplicity of transducers arranged on an antenna carrier, which transmit directed sound signals in the form of a transmitting team 22 into a predetermined underwater area 8. The resulting transmission beam 22 in the form of an ellipse has a length 24 and a width 26 dependent on the opening angle of the directional characteristic associated with the transmission arrangement.

Von dieser Sendeanordnung 20 wird nacheinander mit einer Mehrzahl von N Lotungen aus vorbestimmten Positionen P 1, P 2, P 3, P 4, ..., PN mit voneinander verschiedenen Aspektwinkeln φ N und Entfernungen rN zum Bodenprofil 6 ein Schallsignal in das Unterwasserareal 8 gesendet, wobei sich die unterschiedlichen Positionen P 1, P 2, P 3, P 4, ...,P N der N Lotungen vorzugsweise aus der Vorwärtsbewegung des Wasserfahrzeugs 4 ergeben. Alternativ ist es denkbar, das Sonarsystem 4 schwenkbar an dem Wasserfahrzeug 2 zu befestigen, um die unterschiedlichen Positionen P 1, P 2, P 3, P 4, ...,PN der N Lotungen direkt mittels einer entsprechenden Bewegung des Sonarsystems 4 zu erzeugen. Die von dem Bodenprofil 6 innerhalb des Unterwasserareals 8 reflektierten Anteile des Schallsignals werden über die Empfangsanordnung 28 empfangen, welche in Fig. 3 detailliert dargestellt ist.From this transmission arrangement 20 is successively with a plurality of N Lotungen from predetermined positions P 1 , P 2 , P 3 , P 4 , ..., P N with different aspect angles φ N and distances r N to the bottom profile 6 a Sound signal sent into the underwater area 8, wherein the different positions P 1 , P 2 , P 3 , P 4 , ..., P N of the N Lotungen preferably result from the forward movement of the watercraft 4. Alternatively, it is conceivable to mount the sonar system 4 pivotably on the watercraft 2 in order to obtain the different positions P 1 , P 2 , P 3 , P 4 , ..., P N of the N plumbs directly by means of a corresponding movement of the sonar system 4 produce. The portions of the sound signal reflected by the bottom profile 6 within the underwater area 8 are received via the receiving arrangement 28, which in Fig. 3 is shown in detail.

Fig. 3 zeigt eine schematische Darstellung der Empfangsanordnung 28. Um zusätzlich zu der Entfernung r auch eine Höhe h des Bodenprofils 6 zu ermitteln, wird eine Empfangsanordnung 28 mit wenigstens zwei voneinander verschiedenen Wandlern benötigt. In dieser Ausführungsform der Erfindung besteht die Empfangsanordnung 28 aus zwei einzelnen Wandlern A und B, wie sie in Fig. 3 dargestellt sind. Sie weisen einen Abstand 30 voneinander auf, der größer ist als die halbe Wellenlänge λ des von der Sendeanordnung 20 abgegebenen Schallsignals. Aus dieser geringen Positionsverschiebung der Wandler A und B ergeben sich signifikante Laufzeitunterschiede des Empfangssignals, die auf der Grundlage von Phasenmessungen präzise ermittelt werden können. Fig. 3 shows a schematic representation of the receiving assembly 28. In order to determine in addition to the distance r and a height h of the soil profile 6, a receiving device 28 is required with at least two different converters. In this embodiment of the invention, the receiving arrangement 28 consists of two individual transducers A and B, as shown in FIG Fig. 3 are shown. They have a distance 30 from one another, which is greater than half the wavelength λ of the output from the transmitting device 20 sound signal. This small positional shift of the transducers A and B results in significant differences in transit time of the received signal, which can be precisely determined on the basis of phase measurements.

Es ist jedoch gleichwohl möglich eine vorhandene Wandlerbasis zu nutzen, aus der zwei Wandler herausgegriffen werden. Ebenso ist das erfindungsgemäße Verfahren mit zwei Wandler-Arrays, welche übereinander gemäß Fig. 2 angeordnet sind durchführbar. Erfordert es die Bauart des Wasserfahrzeugs 2, so können die Wandler auch leicht versetzt angeordnet sein. Die Geometrie der Empfangsanordnung 28 muss jedoch bei einer Signalverarbeitung der Empfangssignale entsprechend berücksichtigt werden.However, it is nevertheless possible to use an existing transducer base from which two transducers are picked out. Likewise, the inventive method with two transducer arrays, which according to one another Fig. 2 are arranged feasible. If it requires the design of the watercraft 2, the transducers can also be arranged slightly offset. However, the geometry of the receiving arrangement 28 must be taken into account accordingly in a signal processing of the received signals.

Der Wandler A liefert ein Empfangssignal, welches durch die unterschiedlichen Entfernungen rA und rB zum Bodenpunkt x0 gegenüber dem Wandler B zeitverzögert ist. Die vom Punkt x 0 reflektierten Anteile des gesendeten Schallsignals erreichen zuerst den Wandler B und um Δt verzögert den Wandler A. Aus der Phasendifferenz der zugehörigen Empfangssignale lässt sich eine Höhe h ermitteln, die bezogen ist auf die Bezugshöhe H in Lotrichtung unterhalb der Empfangsanordnung 28. Die Berechnung erfolgt aus der Geometrie der Messanordnung: h = H - r B cos θ 1

Figure imgb0001
The converter A supplies a received signal, which is delayed in time by the different distances r A and r B to the ground point x 0 with respect to the transducer B. The reflected from the point x 0 portions of the transmitted sound signal first reach the transducer B and to Δ t delays the converter A. From the phase difference between the associated reception signals can be a height h determined, which is based on the reference height H in the perpendicular direction below the receiver assembly 28. The calculation is performed from the geometry of the measuring arrangement: H = H - r B cos θ 1
Figure imgb0001

Fig. 4 zeigt ein Flussdiagramm zur Beschreibung eines Ausführungsbeispiels des erfindungsgemäßen Verfahrensablaufes, welches auf einer Mehrfachvermessung von Bodenelementen aus unterschiedlichen Entfernungen rN und Aspektwinkeln φ N beruht. Dazu wird nach einer Initialisierung in Block 36 zunächst einer Zählvariable i in Block 38 der Wert 1 zugewiesen. Fig. 4 shows a flowchart for describing an embodiment of the method sequence according to the invention, which is based on a multiple measurement of soil elements from different distances r N and aspect angles φ N. For this purpose, after an initialization in block 36, first a count variable i in block 38 is assigned the value 1.

Zum Vermessen des Bodenprofils wird gemäß Block 40 aus einer vordefinierten Position P1 mittels der Sendeanordnung 20 ein Schallsignal in einen, vorzugsweise in Vorrausrichtung schmalen und in vertikaler Richtung breiten, Winkelbereich ausgesendet.In order to measure the soil profile, a sound signal is emitted in accordance with block 40 from a predefined position P 1 by means of the transmission arrangement 20 into an angular range, preferably narrow in the pre-horizontal direction and wide in the vertical direction.

Die vom Boden bzw. Objekt reflektierten Schallwellen werden von zwei Wandlern A und B empfangen, die daraus jeweils ein Empfangssignal erzeugen, welches in Block 42 zu vorbestimmten Abtastzeitpunkten abgetastet, digitalisiert und gespeichert wird.The sound waves reflected from the ground or object are received by two transducers A and B, which respectively generate therefrom a received signal which is sampled, digitized and stored in block 42 at predetermined sampling instants.

Anschließend wird in Block 44 für die Abtastzeitpunkte die jeweilige Phasendifferenz zwischen den Empfangssignalen der beiden Wandler bestimmt. Abhängig von dem Abstand 30 der beiden Wandler A und B kommt es jedoch zu einer Vieldeutigkeit. Dies ist in Fig. 5 detailliert dargestellt.Subsequently, the respective phase difference between the received signals of the two transducers is determined in block 44 for the sampling times. Depending on the distance 30 of the two transducers A and B, however, an ambiguity occurs. This is in Fig. 5 shown in detail.

Fig. 5 zeigt eine schematische Darstellung einer auf die Wandler A und B auftreffenden Schallwellenfront 64. Ist der Abstand 30 der beiden Wandler größer als die halbe Wellenlänge λ der empfangenen Schallwellenfront 64, so kommt es zu Vieldeutigkeiten. Dies heißt, die ermittelte Phasendifferenz der Empfangssignale zwischen den Wandlern A und B ist mehrdeutig und liefert somit, abhängig vom Abstand 30 der Wandler, eine Anzahl vieldeutiger Gangunterschiede Δx1, Δ2, Δx3. Fig. 5 shows a schematic representation of an incident on the transducers A and B sound wave front 64. If the distance 30 of the two transducers is greater than half the wavelength λ of the received sound wave front 64, it comes to ambiguities. This means the determined phase difference of the received signals between transducers A and B is ambiguous and thus provides, depending on the distance 30 of the transducers, a number of ambiguous path differences Δx 1 , Δ 2 , Δx 3 .

In dieser beispielhaften Ausführungsform gemäß Fig. 5 entspricht Δx3 dem wahren Gangunterschied der Empfangssignale zwischen den Wandlern A und B. Dieser Gangunterschied Δx3 liefert im Zusammenhang mit dem Abstand 30 der Wandler einen zugehörigen Empfangswinkel.In this exemplary embodiment according to Fig. 5 Δx 3 corresponds to the true retardation of the received signals between the transducers A and B. This retardation Δx 3 provides an associated receiving angle in connection with the distance 30 of the transducers.

In Block 46 gemäß Fig. 4 werden für die zuvor ermittelten Phasendifferenzen alle vieldeutige Gangunterschiede berechnet. Danach werden für die jeweiligen Gangunterschiede in einem weiteren Block 48 alle aus diesen Gangunterschieden resultierende Auftreffwinkel berechnet, aus denen im Block 50 die zugehörigen Auftreffkoordinaten ermittelt werden. Zu jeder Auftreffkoordinate wird der Abtastzeitpunkt sowie die Position bzw. Lotung gespeichert.In block 46 according to Fig. 4 For the previously determined phase differences, all ambiguous gait differences are calculated. Thereafter, for the respective path differences in a further block 48, all the angles of incidence resulting from these path differences are calculated, from which the associated incidence coordinates are determined in block 50. For each incidence coordinate the sampling time as well as the position or plumbing is stored.

Anschließend wird in Block 52 die Zählvariable i um einen Wert erhöht und im weiteren Block 54 überprüft, ob die Zählvariable den Wert N für die Anzahl der durchzuführenden Lotungen erreicht hat. Ist dies nicht der Fall, wird in einer Schleife zu der Anweisung in Block 40 zurückgesprungen, um die Auftreffkoordinaten zu einer nächsten Lotung aus einer weiteren Position zu ermitteln. Hat die Zählvariable i jedoch den Wert N erreicht, wird in Block 56 eine Datendichte um die Auftreffkoordinaten ermittelt. Die Datendichte ist ein Maß für die Anzahl der zuvor erhobenen Daten innerhalb eines vorbestimmten, die jeweilige Auftreffkoordinate beinhaltenden Bereiches.Subsequently, in block 52, the counting variable i is increased by one value and in the further block 54 it is checked whether the counting variable has reached the value N for the number of plumbs to be carried out. If this is not the case, the system jumps back in a loop to the instruction in block 40 in order to determine the impact coordinates for a next plumbing from a further position. However, if the count variable i has reached the value N, a data density about the incidence coordinates is determined in block 56. The data density is a measure of the number of previously collected data within a predetermined range including the respective impact coordinate.

Die Ermittlung der Datendichte erfolgt für eine Mehrzahl von N Lotungen und für alle Abtastzeitpunkte dieser betrachteten Lotungen und für jede der Vieldeutigen Auftreffkoordinaten. In Block 58 wird daraus eine maximale Datendichte ermittelt. Bei einem Maximum, wird diejenige Auftreffkoordinate, bei der die Datendichte am größten ist, als gültig ausgegeben und für die Ermittlung des Bodenprofils herangezogen 60. Alle anderen vieldeutigen Auftreffkoordinaten zu diesem Abtastzeitpunkt werden in Block 62 als ungültig gekennzeichnet und verworfen.The data density is determined for a plurality of N plumbs and for all sampling times of these plots considered and for each of the ambiguous incident coordinates. In block 58, a maximum data density is determined from this. At a maximum, the impact coordinate at which the data density is greatest is output as valid and for the determination of the soil profile 60. All other ambiguous landing coordinates at this sampling instant are marked invalid in block 62 and discarded.

Fig. 6 zeigt ein Blockschaltbild zur Erläuterung der Vorrichtung zum Ausführen des erfindungsgemäßen Verfahrens gemäß Fig. 4. Fig. 6 shows a block diagram for explaining the apparatus for carrying out the method according to the invention according to Fig. 4 ,

Die Wandler A und B liefern zu den N Lotungen jeweils ein elektrisches Empfangssignal 701, 702, ..., 70N bzw. 721, 722, ..., 72N deren weitere Signalverarbeitung für die N Lotungen gemäß der Blöcke 741, 742, ..., 74N erfolgt.The transducers A and B deliver to the N plummings in each case an electrical received signal 70 1 , 70 2 ,..., 70 N or 72 1 , 72 2 ,..., 72 N whose further signal processing for the N plumbing according to the blocks 74 1 , 74 2 , ..., 74 N takes place.

Die weitere Beschreibung des Blocks 74 erfolgt anhand der ersten Lotung. Die Ausführungen gelten ebenso für die weiteren zwei bis N Lotungen.The further description of the block 74 is based on the first Lotung. The explanations also apply to the other two to N lotions.

Die elektrischen Empfangssignale 701 und 721 der Wandler A und B werden im Block 761 zu vorbestimmten Abtastzeitpunkten abgetastet und digitalisiert.The received electrical signals 70 1 and 72 1 of the transducers A and B are sampled and digitized in block 76 1 at predetermined sampling times.

In der Berechnungseinheit 781 wird für eine Vielzahl der Abtastzeitpunkte sowohl die Phasendifferenz zwischen den Signalen 701 und 721 als auch die Laufzeit dieser Signale ermittelt.In the calculation unit 78 1 , both the phase difference between the signals 70 1 and 72 1 and the propagation time of these signals are determined for a plurality of sampling times.

In einer weiteren Berechnungseinheit 801 werden zu den zuvor ermittelten Phasendifferenzen für die Abtastzeitpunkte, wie zuvor anhand von Fig. 5 erläutert, die zugehörigen vieldeutigen Gangunterschiede ermittelt. Zu diesen vieldeutigen Gangunterschieden werden in einer weiteren Berechnungseinheit 821 für die Abtastzeitpunkte mittels der Signallaufzeiten und der Empfangswinkel die zugehörigen vieldeutigen Auftreffwinkel und Auftreffkoordinaten auf dem Bodenprofil berechnet.In a further calculation unit 80 1 , the previously determined phase differences for the sampling times, as previously described with reference to FIG Fig. 5 explained, the associated ambiguous gait differences determined. For these ambiguous gait differences, the associated ambiguous angles of incidence and incidence coordinates on the soil profile are calculated in a further calculation unit 82 1 for the sampling times by means of the signal propagation times and the receiving angle.

Auf diese Weise werden für eine Vielzahl der Abtastzeitpunkte und für N Lotungen die vieldeutigen Auftreffkoordinaten auf dem Bodenprofil ermittelt. Diese vieldeutigen Auftreffkoordinaten der N Lotungen werden zusammen mit den Angaben der zugehörigen Abtastzeitpunkte einer weiteren Berechnungseinheit 84 übergeben. Dort wird für jeden Abtastzeitpunkt, für jede der N Lotungen und für jede der vieldeutigen Auftreffkoordinaten eine Datendichte in einen, die Auftreffkoordinate beinhaltenden, vorbestimmten Bereich ermittelt. Dabei ist die Datendichte ein Maß für die Anzahl der erhobenen Daten innerhalb dieses Bereiches. Die Auftreffkoordinaten der gleichen Lotungen werden jedoch nicht mitberücksichtigt bei der Ermittlung der Dichte.In this way, the ambiguous impact coordinates on the soil profile are determined for a plurality of sampling times and for N plumbing. These ambiguous incident coordinates of the N plumbs are passed to a further calculation unit 84 together with the information of the associated sampling times. There is for each sampling time, for each of the N Lotungen and for each of the ambiguous landing coordinates determines a data density in a predetermined area including the landing coordinate. The data density is a measure of the number of data collected within this area. However, the impact coordinates of the same plumb line are not taken into account when determining the density.

Dieser vorbestimmte Bereich ist vorzugsweise ein Flächenelement, dessen Größe klein genug ist und in Abhängigkeit von dem Rechenaufwand festgelegt wird. Es ist jedoch für alle Auftreffkoordinaten gleich groß.This predetermined area is preferably a surface element whose size is small enough and determined depending on the computational effort. However, it is the same for all impact coordinates.

Ein Maximumdetektor 86 ermittelt für die Abtastzeitpunkte die maximale Datendichte. Zu jedem Abtastzeitpunkt wird diejenige Auftreffkoordinate, dessen zugehöriges Flächenelement eine maximale Datendichte besitzt, als gültig gekennzeichnet und entspricht somit dem wahren Bodenpunkt (x, y, z). Die anderen vieldeutigen Auftreffkoordinaten werden als ungültig gekennzeichnet.A maximum detector 86 determines the maximum data density for the sampling instants. At each sampling instant, the incident coordinate whose associated area element has a maximum data density is marked as valid and thus corresponds to the true ground point (x, y, z). The other ambiguous landing coordinates are marked as invalid.

Die Auftreffkoordinate (x, y, z) setzt sich wie folgt zusammen: die x-Koordinate lässt sich zu jedem Abtastzeitpunkt mittels der Gesetze der Trigonometrie ermitteln, die y-Koordinate ist abhängig von der Breite 26 des Sendebeams 22 und die z-Koordinate entspricht der aus dem Laufzeitunterschied zwischen den Wandlern A und B ermittelten Höhe h.The incident coordinate (x, y, z) is composed as follows: the x-coordinate can be determined at each sampling time by means of the laws of trigonometry, the y-coordinate is dependent on the width 26 of the transmitting team 22 and the z-coordinate corresponds the height h calculated from the transit time difference between transducers A and B.

Das Koordinatensystem ist in diesem Fall auf das Wasserfahrzeug 2 bzw. auf die Sende- und Empfangsanordnung 4 bezogen. Es ist ferner möglich ein absolutes Koordinatensystem für die Durchführung des Verfahrens heranzuziehen, wenn dies entsprechend in der Signalverarbeitung berücksichtigt wird.In this case, the coordinate system is related to the vessel 2 or to the transmission and reception arrangement 4. It is also possible to use an absolute coordinate system for carrying out the method, if this is taken into account accordingly in the signal processing.

Das vorstehend beschriebene Verfahren kann dahingehend abgewandelt werden, dass anstelle von zwei einzelnen Wandlern als Empfangsanordnung ein Wandler-Array verwendet wird. Der Empfangsanordnung wird ein Richtungsbildner bzw. Beamformer nachgeschaltet, der die Empfangssignale der Wandler verzögert und zu Gruppensignalen addiert, so dass ein Fächer von Richtcharakteristiken bzw. Beams in dem Unterwasserareal aufgespannt wird. Die horizontale Breite eines Beams ist durch dessen horizontalen Öffnungswinkel bestimmt. Dies ermöglicht eine höhere Auflösung in y-Richtung, für den Fall, dass keine hinreichend große Bündelung des Sendebeams möglich ist.The method described above may be modified such that a transducer array is used instead of two individual transducers as the receiving arrangement. The receiving arrangement is followed by a direction former or beamformer, which delays the received signals of the converters and adds them to group signals, so that a fan of directional characteristics or beams is clamped in the underwater area. The horizontal one Width of a beam is determined by its horizontal opening angle. This allows a higher resolution in the y direction, in the event that a sufficiently large bundling of the transmission team is not possible.

Alle in der vorgenannten Figurenbeschreibung, den Ansprüchen und in der Beschreibungseinleitung genannten Merkmale sind sowohl einzeln als auch in beliebiger Kombination miteinander einsetzbar. Die Erfindung ist somit nicht auf die beschriebenen bzw. beanspruchten Merkmalskombinationen beschränkt. Vielmehr sind alle Merkmalskombinationen als offenbart zu betrachten.All mentioned in the above description of the figures, the claims and the introduction of the description features are used individually as well as in any combination with each other. The invention is thus not limited to the described or claimed feature combinations. Rather, all feature combinations are to be regarded as disclosed.

Claims (10)

  1. A method for measuring a bottom profile (6) with a transmitting arrangement (20) attached to a water vehicle (2) for the directed emitting of sound signals into an underwater area (8) and with a receiving arrangement (28) attached to this water vehicle (2) with at least two converters for receiving the sound waves reflected from the bottom profile (6) inside the underwater area (8) from which sound waves the converters generate a received signal (70; 72) that is scanned at certain scanning times, digitized and stored (42),
    characterized in that
    a sound signal is successively emitted (40) into the underwater area (8) by the transmitting arrangement (20) with a plurality of N soundings from predetermined positions (P1, P2, P3, P4, ..., PN) with aspect angles (ϕN) and distances (rN) to the bottom profile (6) that are different from each other, and whose components of the N soundings which components are reflected from the bottom profile (6) are received (42) by the receiving arrangement (28),
    a phase difference (44) and also the resulting phase differences (46) of the received sound waves between two converters of the receiving arrangement (28) are determined for a plurality of the scanning times and for the N soundings from the received signals (70; 72),
    associated angles of incidence (48) and their coordinates of incidence are determined (50) for these scanning times and for the N soundings to the phase differences,
    a data density in a predetermined area containing the particular coordinates of incidence is determined (56) for these scanning times and for the N soundings to the coordinates of incidence, whereby the data density represents a measure for the number of the previously taken data inside this area,
    the area is selected by a maximum detector (86) in which area the data becomes maximum and the coordinate of incidence belonging to this area is used for determining the bottom profile (6).
  2. The method according to claim 1,
    characterized in that
    the receiving arrangement (28) consists of two individual electroacoustic and/or optoacoustic converters that are arranged at a distance (30) greater than one half the wavelength (λ) of the received signal (70; 72).
  3. The method according to claim 1,
    characterized in that
    the receiving arrangement (28) consists of a plurality of electroacoustic and/or optoacoustic converters and that the sound waves are received in a directionally selective manner.
  4. The method according to one of the previous claims,
    characterized in that
    the areas that contain the coordinates of incidence and are used for determining the data density correspond to area elements with a predetermined size.
  5. The method according to one of the previous claims,
    characterized in that the
    predetermined positions (P1, P2, P3, P4, ..., PN) of the N soundings are achieved by a forward movement of the transmitting and receiving arrangement (4).
  6. A device for measuring a bottom profile (6) with a transmitting arrangement (20) attached to a water vehicle (2) for the directed emitting of sound signals into an underwater area (8) and with a receiving arrangement (28) attached to this water vehicle (2) with at least two converters for receiving the sound waves reflected from the bottom profile (6) inside the underwater area (8) from which sound waves the converters generate a received signal (70; 72) that can be scanned at certain scanning times, digitized and stored (42),
    characterized by
    a transmitting arrangement (20) for the sequential emitting (40) of the sound signal with a plurality of N soundings from predetermined positions (P1, P2, P3, P4, ..., PN) with aspect angles (ϕN) and distances (rN) to the bottom profile (6) that are different from each other into the underwater areal (8),
    a receiving arrangement (28) for the particular receiving (42) of the components of the N soundings of the sound signal which components are reflected from the bottom profile (6),
    two calculating units (78; 80) for determining, for a plurality of the scanning times and for the N soundings, a phase difference (44) as well as the resulting phase differences (46) of the received sound waves between two converters of the receiving arrangement (28),
    another calculating unit (82) for determining angles of incidence (48) associated with the phase differences and for determining the particular coordinates of incidence (50) from the angles of incidence for these scanning times and for the N soundings,
    another calculating unit (84) for determining a data density (56) of the coordinates of incidence for these scanning times and for the N sounding in a predetermined area containing the particular coordinates of incidence, whereby the data density represents a measure for the number of previously determined data inside this area,
    a maximum detector (86) for selecting the area in which the data density becomes maximum and for determining a coordinate of incidence (60) of the bottom profile (6) which coordinate belongs to this area.
  7. The device according to claim 6
    characterized in that
    the receiving arrangement (28) consists of two individual electroacoustic and/or optoacoustic converters that are arranged at a distance greater than one half the wavelength (λ) of the received signal (70; 72).
  8. The device according to claim 6
    characterized in that
    the receiving arrangement (28) consists of a plurality of electroacoustic and/or optoacoustic converters with which the sound waves can be received in a directionally selective manner.
  9. The device according to one of claims 6 to 8
    characterized in that
    the areas that contain the coordinates of incidence and are used for determining the data density are area elements with a predetermined size.
  10. The device according to one of claims 6 to 9
    characterized in that
    the predetermined positions (P1, P2, P3, P4, ..., PN) of the N soundings can be achieved by a forward movement of the transmitting and receiving arrangement (4).
EP10743155.3A 2009-09-24 2010-08-18 Method and device for measuring a contour of the ground Not-in-force EP2480911B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009042968A DE102009042968B4 (en) 2009-09-24 2009-09-24 Method and device for measuring a soil profile
PCT/EP2010/062050 WO2011035996A1 (en) 2009-09-24 2010-08-18 Method and device for measuring a contour of the ground

Publications (2)

Publication Number Publication Date
EP2480911A1 EP2480911A1 (en) 2012-08-01
EP2480911B1 true EP2480911B1 (en) 2013-07-17

Family

ID=42937673

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10743155.3A Not-in-force EP2480911B1 (en) 2009-09-24 2010-08-18 Method and device for measuring a contour of the ground

Country Status (9)

Country Link
US (1) US8767509B2 (en)
EP (1) EP2480911B1 (en)
JP (1) JP5389267B2 (en)
KR (1) KR101294493B1 (en)
AU (1) AU2010297524B2 (en)
CA (1) CA2775115C (en)
DE (1) DE102009042968B4 (en)
IL (1) IL218601A0 (en)
WO (1) WO2011035996A1 (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009042968B4 (en) * 2009-09-24 2011-07-07 ATLAS ELEKTRONIK GmbH, 28309 Method and device for measuring a soil profile
DE102009042970A1 (en) * 2009-09-24 2011-04-07 Atlas Elektronik Gmbh Method and device for measuring a soil profile
US10247822B2 (en) 2013-03-14 2019-04-02 Navico Holding As Sonar transducer assembly
FR3013850B1 (en) * 2013-11-22 2017-07-21 Commissariat Energie Atomique METHOD FOR RECONSTRUCTING A SURFACE OF A PIECE
CN104535046A (en) * 2014-12-29 2015-04-22 孙文星 Underwater terrain measuring equipment
US10597130B2 (en) 2015-01-15 2020-03-24 Navico Holding As Trolling motor with a transducer array
US11209543B2 (en) 2015-01-15 2021-12-28 Navico Holding As Sonar transducer having electromagnetic shielding
US10324173B2 (en) 2015-02-13 2019-06-18 Airmar Technology Corporation Acoustic transducer element
US9739884B2 (en) 2015-03-05 2017-08-22 Navico Holding As Systems and associated methods for producing a 3D sonar image
KR101680589B1 (en) 2016-05-09 2016-11-30 한국건설기술연구원 Automatic deduction method of geological structures in seabed using echo sounder data
US10719077B2 (en) 2016-10-13 2020-07-21 Navico Holding As Castable sonar devices and operations in a marine environment
US11143758B2 (en) 2017-10-13 2021-10-12 Navico Holding As Sonar transducer performance optimization
KR101978186B1 (en) * 2017-11-06 2019-05-14 소나테크 주식회사 Method for Arranging Array Sensors of Towed Synthetic Aperture Sonar to Gain Interferometric Data
KR102218588B1 (en) * 2019-12-19 2021-02-22 한국항공우주연구원 Terrain Recognition and Positioning Method on the Ground Using Satellite SAR Signals
CN112235459B (en) * 2020-09-30 2022-03-04 咪咕音乐有限公司 Volume adjustment method, electronic device, and computer-readable storage medium
CN112731409B (en) * 2021-01-19 2022-12-09 湖南国天电子科技有限公司 Multi-beam sounding data optimization method
KR20230091352A (en) 2021-12-16 2023-06-23 강원대학교산학협력단 System for measuring depth of water using dron
CN116559290B (en) * 2023-07-10 2023-10-27 自然资源部第二海洋研究所 Small-scale submarine sediment in-situ acoustic measurement experimental device

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1528578A (en) 1965-11-19 1968-06-14 Inst Francais Du Petrole Method for determining the contour lines of the seabed and device for its implementation
GB2197952A (en) 1986-11-22 1988-06-02 Marconi Co Ltd Acoustic echo-sounding system
US5200931A (en) 1991-06-18 1993-04-06 Alliant Techsystems Inc. Volumetric and terrain imaging sonar
US5546357A (en) * 1993-06-30 1996-08-13 The United States Of America As Represented By The Secretary Of The Navy Monostatic projector synthetic aperture sonar
DE19959014A1 (en) * 1999-12-08 2001-07-26 Stn Atlas Marine Electronics G Method for determining depth values of a body of water
JP2002082155A (en) * 2000-05-31 2002-03-22 Furuno Electric Co Ltd Measuring apparatus for reflection intensity using split beam, and azimuth measuring apparatus
JP3515751B2 (en) 2000-11-29 2004-04-05 東京商船大学長 Reconstruction method of three-dimensional submarine structure
JP4079251B2 (en) * 2002-06-27 2008-04-23 株式会社光電製作所 Ultrasonic probe
JP4829487B2 (en) * 2004-08-10 2011-12-07 古野電気株式会社 Forward detection sonar and underwater image display device
US7046582B1 (en) * 2004-11-24 2006-05-16 Raytheon Company Method and system for synthetic aperture sonar
JP2006208110A (en) 2005-01-26 2006-08-10 Furuno Electric Co Ltd Underwater detector and its display control method
DE102005041390A1 (en) * 2005-09-01 2007-03-08 Atlas Elektronik Gmbh Method for generating a sonar image
EP1925949A1 (en) * 2006-11-24 2008-05-28 BP Shipping Limited Ship mounted underwater sonar system
DE102007059908A1 (en) * 2007-12-12 2009-06-18 Robert Bosch Gmbh Sensor function for controlling with variable transmission frequency for the purpose of detecting soiling
DE102009042968B4 (en) * 2009-09-24 2011-07-07 ATLAS ELEKTRONIK GmbH, 28309 Method and device for measuring a soil profile

Also Published As

Publication number Publication date
IL218601A0 (en) 2012-05-31
KR101294493B1 (en) 2013-08-07
WO2011035996A1 (en) 2011-03-31
JP5389267B2 (en) 2014-01-15
EP2480911A1 (en) 2012-08-01
DE102009042968A1 (en) 2011-04-07
CA2775115A1 (en) 2011-03-31
US20120230152A1 (en) 2012-09-13
US8767509B2 (en) 2014-07-01
JP2013506116A (en) 2013-02-21
CA2775115C (en) 2014-10-07
DE102009042968B4 (en) 2011-07-07
AU2010297524A1 (en) 2012-05-24
AU2010297524B2 (en) 2013-08-22
KR20120056887A (en) 2012-06-04

Similar Documents

Publication Publication Date Title
EP2480911B1 (en) Method and device for measuring a contour of the ground
EP3803454B1 (en) Synthetic-aperture radar method and synthetic-aperture radar device
DE60020784T2 (en) Calibration at the site of a sonar group antenna
DE2854783A1 (en) SONAR DEVICE
DE19633813C2 (en) Process for the non-destructive three-dimensional detection of structures in buildings
EP1920269B1 (en) Method for producing a sonar image
DE4344509B4 (en) Method for measuring the acoustic backscattering property of water bodies
EP1393025B1 (en) Method for determining the mean speed of sound in a body of water
EP0814348A2 (en) Method for measuring the distance between a vehicle and an object
EP2480910B1 (en) Method and device for measuring a profile of the ground
EP2017641A1 (en) Method of passively determining at least the distance to and the position of a target emitting sound and sonar system.
DE102018001731A1 (en) Method for determining at least one physical parameter of a system using the reflection from a reference object
DE102012004320A1 (en) Method for detecting environment of vehicle e.g. motor car, involves determining angle information for recognized object based on vehicle velocity and frequency information determined over oscillations of reflected wave train
EP1271175B1 (en) Method for determining the position of a sound emitting target
DE19934212B4 (en) Method and device for measuring the flow rate of a fluid stream
DE2429072C3 (en) Pulse Doppler radar device
EP2577348B1 (en) Method and device for measuring a ground profile
DE102005061149B4 (en) Method for generating a sonar image
DE102012219225A1 (en) Synthetic aperture radar method
DE19929708B4 (en) Method for obtaining soil-relevant parameters in sediment location with parametric acoustic sound sources
EP2881706B1 (en) Method for measuring bodies of water
DE102021213495A1 (en) radar measurement method
DE102013213509B4 (en) Method and apparatus for measuring an angular direction of an object using secondary echoes
DE102018119206A1 (en) Method for detecting the geometry of an area of an object using ultrasound
DD240825A3 (en) LOCATION PROCESS WITH DIRECTIONS, ESPECIALLY FOR THE PANORAMIC PRESENTATION OF ROOMED AND / OR LIGHTED ROOMS, PREFERABLY OF UNDERWATER ROOMS

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120305

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 622538

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130815

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502010004076

Country of ref document: DE

Effective date: 20130912

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20130717

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20130717

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130904

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131117

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131118

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130717

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130717

BERE Be: lapsed

Owner name: ATLAS ELEKTRONIK G.M.B.H.

Effective date: 20130831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131018

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130717

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130717

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130717

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131028

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130717

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130717

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130717

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130717

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130717

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130717

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130717

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130717

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130717

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130717

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130831

26N No opposition filed

Effective date: 20140422

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130818

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502010004076

Country of ref document: DE

Effective date: 20140422

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140831

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130717

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130717

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130717

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20100818

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130818

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130717

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 622538

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150818

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150818

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130717

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NO

Payment date: 20200821

Year of fee payment: 11

Ref country code: FR

Payment date: 20200821

Year of fee payment: 11

Ref country code: GB

Payment date: 20200826

Year of fee payment: 11

Ref country code: DE

Payment date: 20200819

Year of fee payment: 11

Ref country code: TR

Payment date: 20200813

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20200826

Year of fee payment: 11

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502010004076

Country of ref document: DE

REG Reference to a national code

Ref country code: NO

Ref legal event code: MMEP

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210818

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210819

Ref country code: NO

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210818

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210818

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210831

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220301