WO2014198104A1 - 双层结构液晶透镜及三维显示装置 - Google Patents

双层结构液晶透镜及三维显示装置 Download PDF

Info

Publication number
WO2014198104A1
WO2014198104A1 PCT/CN2013/087586 CN2013087586W WO2014198104A1 WO 2014198104 A1 WO2014198104 A1 WO 2014198104A1 CN 2013087586 W CN2013087586 W CN 2013087586W WO 2014198104 A1 WO2014198104 A1 WO 2014198104A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
transparent electrode
substrate
layer
lens
Prior art date
Application number
PCT/CN2013/087586
Other languages
English (en)
French (fr)
Inventor
武乃福
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US14/346,847 priority Critical patent/US9772500B2/en
Publication of WO2014198104A1 publication Critical patent/WO2014198104A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/27Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving lenticular arrays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/27Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving lenticular arrays
    • G02B30/28Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving lenticular arrays involving active lenticular arrays
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/13306Circuit arrangements or driving methods for the control of single liquid crystal cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/13439Electrodes characterised by their electrical, optical, physical properties; materials therefor; method of making
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1347Arrangement of liquid crystal layers or cells in which the final condition of one light beam is achieved by the addition of the effects of two or more layers or cells
    • G02F1/13471Arrangement of liquid crystal layers or cells in which the final condition of one light beam is achieved by the addition of the effects of two or more layers or cells in which all the liquid crystal cells or layers remain transparent, e.g. FLC, ECB, DAP, HAN, TN, STN, SBE-LC cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/294Variable focal length devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/20Image signal generators
    • H04N13/204Image signal generators using stereoscopic image cameras
    • H04N13/207Image signal generators using stereoscopic image cameras using a single 2D image sensor
    • H04N13/229Image signal generators using stereoscopic image cameras using a single 2D image sensor using lenticular lenses, e.g. arrangements of cylindrical lenses

Definitions

  • Double-layer structure liquid crystal lens and three-dimensional display device Double-layer structure liquid crystal lens and three-dimensional display device
  • Embodiments of the present invention relate to a two-layer structure liquid crystal lens and a three-dimensional display device. Background technique
  • the three-dimensional (3D) display technology uses the principle of binocular stereo vision to obtain a three-dimensional sense of space.
  • the main principle is to make the viewer's left.
  • the eye and the right eye respectively receive different images, and the images received by the left eye and the right eye are fused by the brain analysis to give the viewer a three-dimensional effect.
  • three-dimensional display technology has two types: eye-eye type and eyeglass type.
  • the so-called eye-eye type is to perform special processing on the display panel, and the encoded three-dimensional video image is independently sent into the left and right eyes of the person, so that the user can experience the stereoscopic feeling without the use of the stereo glasses.
  • a display device for realizing three-dimensional display of a human eye is generally provided with a barrier such as a grating barrier or a liquid crystal lens in front of the display panel, and a plurality of fields of view are formed on the front surface of the display panel by using a grating barrier or a liquid crystal lens to make different sub-pixel units on the display panel.
  • the emitted light falls in different fields of view, and the viewer's eyes fall in different fields of view to create a three-dimensional sensation.
  • the principle of the liquid crystal lens is to utilize the birefringence characteristics of the liquid crystal molecules, and to align or diverge the light beam according to the arrangement characteristics of the electric field distribution, and to control the arrangement direction of the liquid crystal molecules by changing the voltage, thereby achieving effective optical zoom in a small space. effect.
  • positive liquid crystal molecules are used in the liquid crystal lens.
  • the liquid crystal molecules are distributed by the electric field, as shown in FIG.
  • the positive liquid crystal molecules can be formed into a gradient index lens driven by different electric fields, that is, a cylindrical lens structure is formed, thereby realizing a three-dimensional display effect of the eye.
  • the electric field applied to the liquid crystal molecules is generally removed, so that the liquid crystal molecules slowly relax to the initial state by their own elasticity, due to the capacitance between the liquid crystal molecules and the liquid crystal molecules.
  • the limitation of the rotational viscosity makes the response time of this process too long, generally more than 1 second. The slow response speed seriously affects the display effect and sensory experience when switching from 3D display mode to 2D display mode, and is not conducive to achieving full resolution eye display. Summary of the invention
  • the embodiment of the invention provides a two-layer liquid crystal lens and a three-dimensional display device for solving the problem that the response speed of the existing liquid crystal lens is slow when switching from the 3D display mode to the 2D display mode.
  • a liquid crystal lens of a two-layer structure includes: a first substrate, a second substrate opposite to the first substrate, and a third substrate between the first substrate and the second substrate a first liquid crystal layer between the first substrate and the third substrate, and a second liquid crystal layer between the second substrate and the third substrate;
  • a side of the first substrate facing the first liquid crystal layer has a first transparent electrode
  • a side of the third substrate facing the first liquid crystal layer has a second transparent electrode
  • a third transparent electrode is disposed on a side of the second substrate facing the second liquid crystal layer, and has a fourth transparent electrode on a side of the third substrate facing the second liquid crystal layer; switching to a 3D display mode to In the 2D display mode, applying a voltage to the third transparent electrode and the fourth transparent electrode generates an electric field, and deflecting liquid crystal molecules in the second liquid crystal layer to form a plurality of corresponding to the first lenticular lens structure.
  • a second lenticular lens structure the second lenticular lens structure being mirror-symmetrical to the corresponding first lenticular lens structure along the third substrate.
  • the embodiment of the present invention further provides a three-dimensional display device, including a display panel, and a two-layer structure liquid crystal lens disposed on the light-emitting side of the display panel, wherein the two-layer structure liquid crystal lens is the above-mentioned double layer provided by the embodiment of the present invention Structure liquid crystal lens.
  • Figure la is a schematic diagram of the distribution of positive liquid crystal molecules under the action of an electric field
  • Figure lb is a schematic diagram showing the distribution of negative liquid crystal molecules under the action of an electric field
  • FIG. 2a is a schematic structural view of a two-layer liquid crystal lens according to an embodiment of the present invention in an initial state
  • 2b is a schematic structural view of a two-layer liquid crystal lens according to an embodiment of the present invention in a 3D display mode;
  • 2c is a schematic structural diagram of a two-layer liquid crystal lens according to an embodiment of the present invention when a 3D display mode is switched to a 2D display mode;
  • 3a-3d are schematic diagrams showing specific structures of transparent electrodes in a two-layer liquid crystal lens according to an embodiment of the present invention.
  • a two-layer liquid crystal lens according to the embodiment of the present invention specifically includes: a first substrate 01, a second substrate 02 opposite to the first substrate 01, and a first substrate 01 a third substrate 03 between the second substrate 02, a first liquid crystal layer 04 between the first substrate 01 and the third substrate 03, and a second liquid crystal layer between the second substrate 02 and the third substrate 03 05.
  • a side of the first substrate 01 facing the first liquid crystal layer 04 has a first transparent electrode 06
  • a side of the third substrate 03 facing the first liquid crystal layer 04 has a second transparent electrode 07.
  • applying a voltage to the first transparent electrode 06 and the second transparent electrode 07 generates an electric field, and deflecting liquid crystal molecules in the first liquid crystal layer 04 to form a plurality of first lenticular lens structures ( A first lenticular lens structure is shown in Figure 2b).
  • a third transparent electrode 08 is provided on a side of the second substrate 02 facing the second liquid crystal layer 05, and a fourth transparent electrode 09 is provided on a side of the third substrate surface 03 toward the second liquid crystal layer 05.
  • a voltage is applied to the third transparent electrode 08 and the fourth transparent electrode 09 to generate an electric field, and the liquid crystal molecules in the second liquid crystal layer 05 are deflected to form a plurality of a first lenticular lens structure corresponding to the first lenticular lens structure (a second lenticular lens structure is shown in FIG. 2c), and the second lenticular lens structure and the corresponding first lenticular lens structure are mirror-symmetrical along the third substrate 03 .
  • the third substrate in the above liquid crystal lens according to the embodiment of the present invention may be, for example, a two-piece or a plurality of laminated substrate substrates, or a substrate substrate, which is not limited herein.
  • the liquid crystal lens provided by the embodiment of the present invention adds a layer of liquid crystal molecules to the existing liquid crystal lens, and the working principle thereof is as follows:
  • the liquid crystal molecules in the first liquid crystal layer 04 are deflected to form a plurality of a first lenticular lens structure
  • the first lenticular lens structure may be specifically a cylindrical convex lens structure, the first lenticular lens structure may modulate the passing polarized light, and function as a liquid crystal lens; and at the third lens electrode 08 and No voltage is applied between the four transparent electrodes 09, and liquid crystal molecules in the second liquid crystal layer 05 are not deflected, and the polarized light does not change after passing through the second liquid crystal layer 05, and does not affect the modulation effect of the first liquid crystal layer 04. .
  • the electric field generated between the first transparent electrode 06 and the second transparent electrode 07 does not change, and the third transparent electrode 08 and the fourth transparent electrode 09 are Under the control of the electric field generated, the liquid crystal molecules in the second liquid crystal layer 05 are deflected to form a plurality of second lenticular lens structures corresponding to the first lenticular lens structure; the second lenticular lens structure and the corresponding first lenticular lens
  • the structure is mirror-symmetrical. Specifically, if the first lenticular lens structure is specifically a cylindrical lenticular structure, the formed second lenticular lens structure is a cylindrical concave lens structure. As shown in FIG.
  • the phase delay curve of the second lenticular lens structure (shown by a broken line at 05 in the figure) is symmetrical with the phase retardation curve of the first lenticular lens structure (shown by a broken line at 04 in the figure), and the second columnar shape
  • the lens structure compensates for the phase delay of the first cylindrical lens structure for light modulation, so that the light passes through the two-layer liquid crystal lens without phase modulation, and no deflection occurs, realizing a normal 2D state display.
  • the embodiment of the present invention uses an electric field to control the liquid crystal molecules in the second liquid crystal layer to be deflected to form a second lenticular lens structure that cancels the phase delay of the first lenticular lens structure, and is loaded with liquid crystal molecules in comparison with the prior art.
  • the electric field on the liquid crystal molecules can slowly relax to the initial state by their own elasticity, and the response speed of the liquid crystal lens when switching from the 3D display mode to the 2D display mode can be improved, thereby improving the display effect.
  • liquid crystal molecules having opposite polarities to the liquid crystal molecules in the second liquid crystal layer 05 may be employed in the first liquid crystal layer 04.
  • the liquid crystal molecules in the first liquid crystal layer 04 are positive.
  • the liquid crystal molecules, the liquid crystal molecules in the second liquid crystal layer 05 are negative liquid crystal molecules as an example.
  • negative liquid crystal molecules may be used in the first liquid crystal layer
  • positive liquid crystals may be used in the second liquid crystal layer. Molecules are not limited here.
  • the electric field generated between the third transparent electrode 08 and the fourth transparent electrode 09 can be set to be symmetrical between the first transparent electrode 06 and the second transparent electrode 07.
  • the long-axis directions of the liquid crystal molecules having opposite polarities may be set to be perpendicular to each other, that is, the long-axis direction of the liquid crystal molecules in the first liquid crystal layer 04 is set to be the same with the second liquid crystal layer 05 in the initial state.
  • the long-axis directions of the liquid crystal molecules are perpendicular to each other, as shown in Fig. 2a, to ensure that the liquid crystal molecules in the first liquid crystal layer 04 and the second liquid crystal layer 05 do not modulate the passing polarized light in the initial state.
  • the first transparent electrode 06 disposed on the first substrate 01 may be a strip electrode
  • the second transparent electrode 07 disposed on the third substrate 03 may be a plate electrode, as shown in FIG. 2a to FIG. 2c
  • the first transparent electrode 06 disposed on the first substrate 01 may be a plate electrode
  • the second transparent electrode 07 disposed on the third substrate 03 may be a strip electrode, which is not limited herein.
  • the third transparent electrode 08 disposed on the second substrate 02 may be a strip electrode, and the fourth transparent electrode 09 disposed on the third substrate 03 may be a plate electrode, as shown in FIG. 2a to FIG. 2c;
  • the third transparent electrode 08 disposed on the second substrate 02 may be a plate electrode, and the fourth transparent electrode 09 disposed on the third substrate 03 may be a strip electrode, which is not limited herein.
  • the first embodiment is as shown in FIG. 3a: the first transparent electrode 06 disposed on the first substrate 01.
  • the third transparent electrode 08 disposed on the second substrate 02 is a strip electrode
  • the second transparent electrode 07 and the fourth transparent electrode 09 disposed on both sides of the third substrate 03 are plate electrodes, wherein The first transparent electrode 06 and the third transparent electrode 08 of the electrode extend in the same direction.
  • the second embodiment is as shown in FIG. 3b: the first transparent electrode 06 disposed on the first substrate 01 and the third transparent electrode 08 disposed on the second substrate 02 are both plate electrodes, and the third substrate 03
  • the second transparent electrode 07 and the fourth transparent electrode 09 disposed on the side are strip electrodes, wherein the second transparent electrode 07 and the fourth transparent electrode 09 as the strip electrodes extend in the same direction.
  • a third embodiment is shown in FIG. 3c: a first transparent electrode 06 disposed on the first substrate 01
  • the fourth transparent electrode 09 disposed on the third substrate 03 is a strip electrode
  • the second transparent electrode 07 disposed on the third substrate 03 and the third transparent electrode 08 disposed on the second substrate 02 are plate electrodes.
  • the direction in which the first transparent electrode 06 and the fourth transparent electrode 09 as the strip electrodes extend in the same direction.
  • the fourth embodiment is as shown in FIG. 3d: the first transparent electrode 06 disposed on the first substrate 01 and the fourth transparent electrode 09 disposed on the third substrate 03 are both plate electrodes on the third substrate 03.
  • the second transparent electrode 07 and the third transparent electrode 08 disposed on the second substrate 02 are strip electrodes, wherein the second transparent electrode 07 and the third transparent electrode 08 as strip electrodes extend in the same direction.
  • the first transparent electrode, the second transparent electrode, the third transparent electrode, and the fourth transparent electrode may be prepared using an ITO or IZO material, which is not limited herein.
  • the embodiment of the present invention further provides a three-dimensional display device, including a display panel, and a two-layer structure liquid crystal lens disposed on the light-emitting side of the display panel, and the two-layer structure liquid crystal lens is the above-mentioned two-layer structure liquid crystal lens provided by the embodiment of the present invention.
  • the display device can be any product or component having a display function such as a mobile phone, a tablet computer, a television, a display, a notebook computer, a digital photo frame, a navigator, and the like.
  • a display function such as a mobile phone, a tablet computer, a television, a display, a notebook computer, a digital photo frame, a navigator, and the like.
  • one pixel unit in the display panel is composed of three sub-pixels, for example, three sub-pixel units of red, green, and blue.
  • the image seen by the left eye can be displayed on the odd sub-pixel unit column.
  • the even-numbered sub-pixel unit column displays the picture seen by the right eye; of course, the n sub-pixel units are listed as one cycle, and the pictures seen by the left eye and the right eye are displayed at intervals, and are not specifically limited herein.
  • each of the first lenticular lens structures formed in the two-layer liquid crystal lens can be respectively disposed corresponding to at least two columns of sub-pixel units adjacent to each other in the display panel, and similarly, each second column formed in the two-layer liquid crystal lens
  • the lens structures are respectively disposed corresponding to at least two columns of sub-pixel units adjacent to each other in the display panel.
  • the first lenticular lens structure can simultaneously correspond to the sub-pixel unit displaying the left-eye image and the right-eye image, and the liquid crystal lens separates the images seen by the left eye and the right eye to realize three-dimensional display.
  • each of the first lenticular lens structures generally corresponds to two adjacent columns of sub-pixel units, and the image seen by the left eye is displayed on the odd-numbered sub-pixel unit columns, and the even number of sub-images The picture displayed by the right eye is displayed on the prime unit column.
  • the present invention provides a two-layer liquid crystal lens and a three-dimensional display device.
  • Two liquid crystal layers are respectively disposed in the liquid crystal lens, and the liquid crystal molecules in the first liquid crystal layer are deflected under the electric field control in the 3D display mode.
  • the second lenticular lens structure is mirror-symmetric with the corresponding first lenticular lens structure for compensating for a phase delay of the first lenticular lens structure for modulating the light, such that the light passes through the liquid crystal lens without phase modulation, and does not occur Deflection, a normal 2D status display is achieved.
  • the liquid crystal molecules in the second liquid crystal layer are controlled by the electric field when the 3D display mode is switched to the 2D display mode. Deflection, forming a second lenticular lens structure that eliminates the phase retardation effect of the first lenticular lens structure, and the liquid crystal molecules are slowly relaxed to the initial state by their own elasticity by using an electric field loaded on the liquid crystal molecules in the prior art.
  • the state of the image can improve the response speed when the liquid crystal lens is switched from the 3D display mode to the 2D display mode, thereby improving the display effect.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Geometry (AREA)
  • Liquid Crystal (AREA)

Abstract

一种双层结构液晶透镜及三维显示装置,在液晶透镜中设置两层液晶层,在3D显示模式时,在电场控制下使第一液晶层(04)中的液晶分子发生偏转形成多个第一柱状透镜结构;在3D显示模式切换至2D显示模式时,在电场控制下使第二液晶层(05)中的液晶分子发生偏转形成多个第二柱状透镜结构;第二柱状透镜结构与对应的第一柱状透镜结构镜面对称,用于补偿第一柱状透镜结构对光线调制的相位延迟,这样光线穿过液晶透镜后不会发生偏转,实现了正常的2D状态显示。

Description

双层结构液晶透镜及三维显示装置 技术领域
本发明实施例涉及一种双层结构液晶透镜及三维显示装置。 背景技术
在日常生活中人们是利用两只眼睛来观察周围具有空间立体感的外界景 物的,三维( 3D )显示技术就是利用双眼立体视觉原理使人获得三维空间感, 其主要原理是使观看者的左眼与右眼分别接收到不同的影像, 而左眼与右眼 接收到的影像会经由大脑分析融合而使观看者产生立体感。
目前, 三维显示技术有棵眼式和眼镜式两大类。 所谓棵眼式就是通过在 显示面板上进行特殊的处理, 把经过编码处理的三维视频影像独立送入人的 左右眼, 从而令用户无需借助立体眼镜即可棵眼体验立体感觉。
目前, 实现棵眼三维显示的显示装置一般是在显示面板前方设置光栅屏 障或液晶透镜等遮蔽物, 利用光栅屏障或液晶透镜在显示面板的前面形成若 干视场, 使显示面板上不同亚像素单元发出的光射落在不同的视场内, 观看 者的双眼落在不同视场内产生三维感觉。 其中, 液晶透镜的原理是利用液晶 分子双折射特性, 以及随电场分布变化排列特性使光束聚焦或发散, 通过改 变电压来控制液晶分子的排列方向, 进而可以实现在小空间内达到有效的光 学变焦效果。
一般地, 会在液晶透镜中使用正性液晶分子, 从 2D显示模式开启至 3D 显示模式时, 这种液晶分子在电场作用下, 如图 la所示, 分子长轴会沿着电 场线方向分布, 利用此特性可以使正性液晶分子在不同电场的驱动下形成梯 度折射率透镜, 即形成柱状透镜结构, 进而实现棵眼三维的显示效果。 而从 3D显示模式切换至 2D显示模式时, 一般会撤掉加载在液晶分子上的电场, 使液晶分子凭借自身的弹性慢慢弛豫到初始状态, 由于液晶分子之间的电容 以及液晶分子的旋转粘度的制约, 使得这个过程的响应时间过长, 一般都在 1秒以上。过慢的响应速度严重影响了从 3D显示模式切换至 2D显示模式时 的显示效果和感官体验, 也不利于实现全分辨率的棵眼显示。 发明内容
本发明实施例提供了一种双层结构液晶透镜及三维显示装置, 用以解决 现有液晶透镜从 3D显示模式切换至 2D显示模式时响应速度慢的问题。
本发明实施例提供的一种双层结构液晶透镜, 包括: 第一基板、 与所述 第一基板相对而置的第二基板、 位于所述第一基板和第二基板之间的第三基 板, 位于所述第一基板和第三基板之间的第一液晶层, 以及位于所述第二基 板和第三基板之间的第二液晶层; 其中,
所述第一基板面向所述第一液晶层的一侧具有第一透明电极, 所述第三 基板面向所述第一液晶层的一侧具有第二透明电极; 在 3D显示模式时, 对 所述第一透明电极和第二透明电极施加电压产生电场, 使所述第一液晶层中 的液晶分子发生偏转形成多个第一柱状透镜结构;
在所述第二基板面向所述第二液晶层的一侧具有第三透明电极, 在所述 第三基板面向所述第二液晶层的一侧具有第四透明电极; 在 3D显示模式切 换至 2D显示模式时, 对所述第三透明电极和第四透明电极施加电压产生电 场, 使所述第二液晶层中的液晶分子发生偏转形成多个与所述第一柱状透镜 结构——对应的第二柱状透镜结构, 所述第二柱状透镜结构与对应的第一柱 状透镜结构沿着第三基板镜面对称。
本发明实施例还提供了一种三维显示装置, 包括显示面板, 以及设置在 所述显示面板出光侧的双层结构液晶透镜, 所述双层结构液晶透镜为本发明 实施例提供的上述双层结构液晶透镜。 附图说明
图 la为正性液晶分子在电场作用下的分布示意图;
图 lb为负性液晶分子在电场作用下的分布示意图;
图 2a为本发明实施例提供的双层结构液晶透镜在初始状态时的结构示 意图;
图 2b为本发明实施例提供的双层结构液晶透镜在 3D显示模式时的结构 示意图;
图 2c为本发明实施例提供的双层结构液晶透镜在 3D显示模式切换至 2D显示模式时的结构示意图; 图 3a-图 3d为本发明实施例提供的双层结构液晶透镜中各透明电极的具 体结构示意图。 具体实施方式
下面结合附图, 对本发明实施例提供的双层结构液晶透镜及三维显示装 置的具体实施方式进行详细地说明。
附图中各层膜层的厚度和大小不反映液晶透镜的真实比例, 目的只是示 意说明本发明内容。
本发明实施例提供的一种双层结构液晶透镜, 如图 2a至图 2c所示, 具 体包括: 第一基板 01、 与第一基板 01相对而置的第二基板 02、 位于第一基 板 01和第二基板 02之间的第三基板 03、位于第一基板 01和第三基板 03之 间的第一液晶层 04, 以及位于第二基板 02和第三基板 03之间的第二液晶层 05。
第一基板 01面向第一液晶层 04的一侧具有第一透明电极 06,第三基板 03面向第一液晶层 04的一侧具有第二透明电极 07。 如图 2b所示, 在 3D显 示模式时, 对第一透明电极 06和第二透明电极 07施加电压产生电场, 使第 一液晶层 04中的液晶分子发生偏转形成多个第一柱状透镜结构 (图 2b中示 出了一个第一柱状透镜结构) 。
在第二基板 02面向第二液晶层 05的一侧具有第三透明电极 08,在第三 基板面 03向第二液晶层 05的一侧具有第四透明电极 09。 如图 2c所示, 在 3D显示模式切换至 2D显示模式时, 对第三透明电极 08和第四透明电极 09 施加电压产生电场,使第二液晶层 05中的液晶分子发生偏转形成多个与第一 柱状透镜结构一一对应的第二柱状透镜结构(图 2c中示出了一个第二柱状透 镜结构) , 第二柱状透镜结构与对应的第一柱状透镜结构沿着第三基板 03 镜面对称。
本发明实施例提供的上述液晶透镜中的第三基板, 例如, 可以是指两块 或多块贴合的村底基板, 也可以是指一块村底基板, 在此不做限定。
本发明实施例提供的上述液晶透镜, 在现有的液晶透镜中增加一层液晶 分子, 其工作原理为:
在初始状态时即 2D显示模式时, 如图 2a所示, 两液晶层中的液晶分子 都没有发生偏转, 不会对透过的偏振光产生影响。
从初始状态切换至 3D显示模式时, 如图 2b所示, 在第一透明电极 06 和第二透明电极 07之间产生的电场控制下, 第一液晶层 04中的液晶分子发 生偏转形成多个第一柱状透镜结构, 该第一柱状透镜结构可以具体为柱状凸 透镜结构, 第一柱状透镜结构可以对通过的偏振光产生调制作用, 起到了液 晶透镜的效果; 而在第三透镜电极 08和第四透明电极 09之间没有加电压, 第二液晶层 05中的液晶分子不会发生偏转, 偏振光在通过第二液晶层 05后 不会发生变化, 不会影响第一液晶层 04的调制作用。
在 3D显示模式切换至 2D显示模式时, 如图 2c所示, 在第一透明电极 06和第二透明电极 07之间产生的电场不变,在第三透明电极 08和第四透明 电极 09之间产生的电场控制下, 第二液晶层 05中的液晶分子发生偏转形成 多个与第一柱状透镜结构——对应的第二柱状透镜结构; 该第二柱状透镜结 构与对应的第一柱状透镜结构镜面对称, 具体地, 若第一柱状透镜结构具体 为柱状凸透镜结构, 那么形成的第二柱状透镜结构为柱状凹透镜结构。 如图 2c所示, 第二柱状透镜结构的相位延迟曲线(图中 05处的虚线所示)与第 一柱状透镜结构的相位延迟曲线(图中 04处的虚线所示)对称, 第二柱状透 镜结构补偿第一柱状透镜结构对光线调制的相位延迟, 这样光线穿过双层结 构液晶透镜后无相位调制, 不会发生偏转, 实现了正常的 2D状态显示。
由于液晶分子之间的电容以及液晶分子的旋转粘度的制约, 液晶分子在 电场后恢复到初始状态的响应时间远远长于在电场控制下的响应时间, 因此,在 3D显示模式切换至 2D显示模式时,本发明实施例采用电场控制第 二液晶层中的液晶分子发生偏转, 形成抵消第一柱状透镜结构相位延迟作用 的第二柱状透镜结构,相对于现有技术中采用 ^掉加载在液晶分子上的电场, 使液晶分子凭借自身的弹性慢慢弛豫到初始状态的方式, 可以提高液晶透镜 从 3D显示模式切换至 2D显示模式时的响应速度, 从而提高显示效果。
例如, 在第一液晶层 04中可以采用和第二液晶层 05中的液晶分子极性 相反的液晶分子,例如图 2a至图 2c中都是以第一液晶层 04中的液晶分子为 正性液晶分子, 第二液晶层 05 中的液晶分子为负性液晶分子为例进行说明 的, 当然也可反之, 在第一液晶层中采用负性液晶分子, 在第二液晶层中采 用正性液晶分子, 在此不做限定。 由于正性液晶分子在电场作用下如图 la所示,分子长轴会沿着电场线方 向分布,而负性液晶分子在电场作用下如图 lb所示,分子短轴会沿着电场线 方向分布。 因此, 在 3D显示模式切换至 2D显示模式时, 可以将在第三透明 电极 08和第四透明电极 09之间产生的电场设置为对称于在第一透明电极 06 和第二透明电极 07之间的电场,这样,极性相反的两层液晶分子在对称电场 作用下对偏正光的相位延迟会互补, 最终的调制效果使通过双层结构液晶透 镜的偏振光不会发生偏转, 实现正常的 2D显示。
而在初始状态时, 可以将极性相反的液晶分子的长轴方向设置为相互垂 直,即在初始状态时将第一液晶层 04中的液晶分子的长轴方向设置为与第二 液晶层 05中的液晶分子的长轴方向互相垂直, 如图 2a所示, 以保证在初始 状态时, 第一液晶层 04和第二液晶层 05中的液晶分子不会对通过的偏振光 产生调制作用。
例如, 设置在第一基板 01的第一透明电极 06可以为条状电极, 设置在 第三基板 03的第二透明电极 07可以为板状电极, 如图 2a至图 2c所示; 当 然也可反之, 即设置在第一基板 01的第一透明电极 06可以为板状电极, 设 置在第三基板 03的第二透明电极 07可以为条状电极, 在此不做限定。
同理, 例如, 设置在第二基板 02的第三透明电极 08可以为条状电极, 设置在第三基板 03的第四透明电极 09可以为板状电极, 如图 2a至图 2c所 示; 当然也可反之, 即设置在第二基板 02的第三透明电极 08可以为板状电 极,设置在第三基板 03的第四透明电极 09可以为条状电极,在此不做限定。
具体地, 如图 3a-图 3d所示, 为本发明实施例的四种实例, 可以看出, 第一种实施方式如图 3a所示:在第一基板 01上设置的第一透明电极 06和在 第二基板 02上设置的第三透明电极 08都为条状电极,在第三基板 03两侧设 置的第二透明电极 07和第四透明电极 09为板状电极, 其中, 作为条状电极 的第一透明电极 06和第三透明电极 08的延伸方向一致。
第二种实施方式如图 3b所示:在第一基板 01上设置的第一透明电极 06 和在第二基板 02上设置的第三透明电极 08都为板状电极, 在第三基板 03 两侧设置的第二透明电极 07和第四透明电极 09为条状电极, 其中, 作为条 状电极的第二透明电极 07和第四透明电极 09的延伸方向一致。
第三种实施方式如图 3c所示: 在第一基板 01上设置的第一透明电极 06 和在第三基板 03上设置的第四透明电极 09都为条状电极, 在第三基板 03 上设置的第二透明电极 07和第二基板 02上设置的第三透明电极 08为板状电 极, 其中, 作为条状电极的第一透明电极 06和第四透明电极 09的延伸方向 一致。
第四种实施方式如图 3d所示:在第一基板 01上设置的第一透明电极 06 和在第三基板 03上设置的第四透明电极 09都为板状电极, 在第三基板 03 上设置的第二透明电极 07和第二基板 02上设置的第三透明电极 08为条状电 极, 其中, 作为条状电极的第二透明电极 07和第三透明电极 08的延伸方向 一致。
例如, 第一透明电极、 第二透明电极、 第三透明电极和第四透明电极可 以使用 ITO或 IZO材料制备, 在此不做限定。
本发明实施例还提供了一种三维显示装置, 包括显示面板, 以及设置在 显示面板出光侧的双层结构液晶透镜, 该双层结构液晶透镜为本发明实施例 提供的上述双层结构液晶透镜。 该显示装置可以为: 手机、 平板电脑、 电视 机、 显示器、 笔记本电脑、 数码相框、 导航仪等任何具有显示功能的产品或 部件。 该三维显示装置的实施可以参见上述双层结构液晶透镜的实施例, 重 复之处不再赘述。
一般地, 显示面板中的一个像素单元由三个亚像素组成, 例如红、 绿、 蓝三个亚像素单元, 在 3D显示模式下, 可以在奇数的亚像素单元列上显示 左眼看到的画面, 偶数的亚像素单元列上显示右目艮看到的画面; 当然也可以 以 n个亚像素单元列为一个周期, 间隔显示左眼和右眼看到的画面, 在此不 做具体限定。
这样, 可以将双层结构液晶透镜中形成的各第一柱状透镜结构分别与显 示面板中相邻的至少两列亚像素单元对应设置, 同样, 将双层结构液晶透镜 中形成的各第二柱状透镜结构分别与显示面板中相邻的至少两列亚像素单元 对应设置。 这样, 在 3D显示模式下, 第一柱状透镜结构就可以同时对应到 显示左眼图像和右眼图像的亚像素单元, 利用液晶透镜将左眼和右眼看到的 画面分开, 实现三维显示。
例如, 在 3D显示模式下, 一般将各第一柱状透镜结构与相邻的两列亚 像素单元对应, 在奇数的亚像素单元列上显示左眼看到的画面, 偶数的亚像 素单元列上显示右眼看到的画面。
本发明实施例提供的一种双层结构液晶透镜及三维显示装置, 在液晶透 镜中分别设置两层液晶层, 在 3D显示模式时, 在电场控制下使第一液晶层 中的液晶分子发生偏转形成多个第一柱状透镜结构; 在 3D显示模式切换至 2D显示模式时,在电场控制下使第二液晶层中的液晶分子发生偏转形成多个 与第一柱状透镜结构——对应的第二柱状透镜结构; 该第二柱状透镜结构与 对应的第一柱状透镜结构镜面对称, 用于补偿第一柱状透镜结构对光线调制 的相位延迟, 这样光线穿过液晶透镜后无相位调制, 不会发生偏转, 实现了 正常的 2D状态显示。 由于液晶分子在电场控制下的响应时间远远小于 ^掉 电场后恢复到初始状态的响应时间, 因此,在 3D显示模式切换至 2D显示模 式时, 采用电场控制第二液晶层中的液晶分子发生偏转, 形成氏消第一柱状 透镜结构相位延迟作用的第二柱状透镜结构, 相对于现有技术中采用^掉加 载在液晶分子上的电场, 使液晶分子凭借自身的弹性慢慢弛豫到初始状态的 方式, 可以提高液晶透镜从 3D显示模式切换至 2D显示模式时的响应速度, 从而提高显示效果。 发明的精神和范围。 这样, 倘若本发明的这些修改和变型属于本发明权利要 求及其等同技术的范围之内, 则本发明也意图包含这些改动和变型在内。

Claims

权利要求书
1、 一种双层结构液晶透镜, 包括: 第一基板、 与所述第一基板相对而置 的第二基板、 位于所述第一基板和第二基板之间的第三基板, 位于所述第一 基板和第三基板之间的第一液晶层, 以及位于所述第二基板和第三基板之间 的第二液晶层;
其中, 所述第一基板面向所述第一液晶层的一侧具有第一透明电极, 所 述第三基板面向所述第一液晶层的一侧具有第二透明电极; 在 3D显示模式 时, 对所述第一透明电极和第二透明电极施加电压产生电场, 使所述第一液 晶层中的液晶分子发生偏转形成多个第一柱状透镜结构;
在所述第二基板面向所述第二液晶层的一侧具有第三透明电极, 在所述 第三基板面向所述第二液晶层的一侧具有第四透明电极; 在 3D显示模式切 换至 2D显示模式时, 对所述第三透明电极和第四透明电极施加电压产生电 场, 使所述第二液晶层中的液晶分子发生偏转形成多个与所述第一柱状透镜 结构——对应的第二柱状透镜结构, 所述第二柱状透镜结构与对应的第一柱 状透镜结构沿着第三基板镜面对称。
2、如权利要求 1所述的双层结构液晶透镜, 其中, 所述第一液晶层中的 液晶分子和第二液晶层中的液晶分子极性相反。
3、如权利要求 2所述的双层结构液晶透镜, 其中, 所述第一液晶层中的 液晶分子为正性液晶分子, 所述第二液晶层中的液晶分子为负性液晶分子。
4、如权利要求 3所述的双层结构液晶透镜, 其中, 在初始状态时所述第 一液晶层中的液晶分子的长轴方向与所述第二液晶层中的液晶分子的长轴方 向互相垂直。
5、 如权利要求 1-4任一项所述的双层结构液晶透镜, 其中, 所述第一柱 状透镜结构为柱状凸透镜结构, 所述第二柱状透镜结构为柱状 透镜结构。
6、 如权利要求 1-4任一项所述的双层结构液晶透镜, 其中, 所述第一透 明电极为条状电极, 所述第二透明电极为板状电极; 或, 所述第二透明电极 为条状电极, 所述第一透明电极为板状电极。
7、 如权利要求 1-4任一项所述的双层结构液晶透镜, 其中, 所述第三透 明电极为条状电极, 所述第四透明电极为板状电极; 或, 所述第三透明电极 为条状电极, 所述第四透明电极为板状电极。
8、 一种三维显示装置, 包括: 显示面板, 以及设置在所述显示面板出光 侧的双层结构液晶透镜, 所述双层结构液晶透镜为如权利要求 1-7任一项所 述的双层结构液晶透镜。
9、如权利要求 8所述的三维显示装置, 其中, 所述双层结构液晶透镜中 形成的各第一柱状透镜结构分别与所述显示面板中相邻的至少两列亚像素单 元对应。
PCT/CN2013/087586 2013-06-09 2013-11-21 双层结构液晶透镜及三维显示装置 WO2014198104A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/346,847 US9772500B2 (en) 2013-06-09 2013-11-21 Double-layered liquid crystal lens and 3D display apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2013102316748A CN103309096A (zh) 2013-06-09 2013-06-09 一种双层结构液晶透镜及三维显示装置
CN201310231674.8 2013-06-09

Publications (1)

Publication Number Publication Date
WO2014198104A1 true WO2014198104A1 (zh) 2014-12-18

Family

ID=49134478

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/087586 WO2014198104A1 (zh) 2013-06-09 2013-11-21 双层结构液晶透镜及三维显示装置

Country Status (3)

Country Link
US (1) US9772500B2 (zh)
CN (1) CN103309096A (zh)
WO (1) WO2014198104A1 (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102998729B (zh) * 2012-12-07 2015-11-25 深圳超多维光电子有限公司 一种透镜光栅及立体显示装置
CN103309096A (zh) 2013-06-09 2013-09-18 京东方科技集团股份有限公司 一种双层结构液晶透镜及三维显示装置
CN104656321B (zh) * 2013-11-25 2023-07-07 深圳市维超智能科技有限公司 一种动态光栅装置
WO2015093223A1 (ja) * 2013-12-19 2015-06-25 シチズンホールディングス株式会社 光変調素子
CN104111538B (zh) * 2014-07-08 2016-08-17 京东方科技集团股份有限公司 显示装置
CN105159007A (zh) * 2015-09-21 2015-12-16 信利半导体有限公司 一种双层结构液晶透镜的制造方法
CN105116643A (zh) * 2015-09-28 2015-12-02 京东方科技集团股份有限公司 液晶透镜、3d显示装置及液晶透镜的制造方法
CN105866998A (zh) * 2016-06-02 2016-08-17 京东方科技集团股份有限公司 显示装置
CN108020977A (zh) * 2016-10-28 2018-05-11 京东方科技集团股份有限公司 显示装置及其显示方法
CN107315300A (zh) * 2017-07-07 2017-11-03 惠科股份有限公司 显示面板及应用的显示装置
JP2019074545A (ja) * 2017-10-12 2019-05-16 キヤノン株式会社 光学素子および光学機器
CN113467135A (zh) * 2021-06-17 2021-10-01 福州大学 一种用于光场成像的双层液晶透镜及其制作方法
CN116540458B (zh) * 2023-07-07 2023-10-03 深圳市华星光电半导体显示技术有限公司 液晶透镜模组与2d/3d可切换显示装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101126840A (zh) * 2007-09-29 2008-02-20 北京超多维科技有限公司 2d-3d可切换立体显示装置
CN101285938A (zh) * 2007-04-12 2008-10-15 三星电子株式会社 高效二维-三维可切换显示器
TWM398632U (en) * 2010-07-20 2011-02-21 Chunghwa Picture Tubes Ltd Autostereoscopic display
CN102736353A (zh) * 2012-07-09 2012-10-17 深圳超多维光电子有限公司 液晶透镜及裸眼立体显示装置
CN103309096A (zh) * 2013-06-09 2013-09-18 京东方科技集团股份有限公司 一种双层结构液晶透镜及三维显示装置
CN203299500U (zh) * 2013-06-09 2013-11-20 京东方科技集团股份有限公司 一种双层结构液晶透镜及三维显示装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030210377A1 (en) * 2001-10-05 2003-11-13 Blum Ronald D. Hybrid electro-active lens
KR101122199B1 (ko) * 2005-07-07 2012-03-19 삼성전자주식회사 2차원/3차원 영상 호환용 입체영상 디스플레이 장치
DE602006021623D1 (de) * 2005-12-14 2011-06-09 Koninkl Philips Electronics Nv Steuerung der wahrgenommenen tiefe einer autostereoskopischen anzeigeeinrichtung und verfahren dafür
US20100085860A1 (en) * 2007-03-28 2010-04-08 Ryuichi Katayama Optical head device, and optical information recording/reproducing device and optical information recording/reproducing method using the same
KR101394924B1 (ko) * 2007-05-22 2014-05-26 엘지디스플레이 주식회사 3차원 및 2차원 영상용 광학필름과 이를 이용한 영상표시장치
US8582043B2 (en) * 2010-10-13 2013-11-12 Shenzhen China Star Optoelectronics Technology Co., Ltd. 2D/3D switchable LC lens unit for use in a display device
CN103392198B (zh) * 2011-02-28 2015-11-25 夏普株式会社 电极基板以及具备该电极基板的显示装置和触摸面板
CN102749717B (zh) * 2012-07-27 2017-12-08 深圳超多维光电子有限公司 一种裸眼式立体显示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101285938A (zh) * 2007-04-12 2008-10-15 三星电子株式会社 高效二维-三维可切换显示器
CN101126840A (zh) * 2007-09-29 2008-02-20 北京超多维科技有限公司 2d-3d可切换立体显示装置
TWM398632U (en) * 2010-07-20 2011-02-21 Chunghwa Picture Tubes Ltd Autostereoscopic display
CN102736353A (zh) * 2012-07-09 2012-10-17 深圳超多维光电子有限公司 液晶透镜及裸眼立体显示装置
CN103309096A (zh) * 2013-06-09 2013-09-18 京东方科技集团股份有限公司 一种双层结构液晶透镜及三维显示装置
CN203299500U (zh) * 2013-06-09 2013-11-20 京东方科技集团股份有限公司 一种双层结构液晶透镜及三维显示装置

Also Published As

Publication number Publication date
CN103309096A (zh) 2013-09-18
US20150185488A1 (en) 2015-07-02
US9772500B2 (en) 2017-09-26

Similar Documents

Publication Publication Date Title
WO2014198104A1 (zh) 双层结构液晶透镜及三维显示装置
US8786683B2 (en) Stereoscopic display unit
US8059063B2 (en) Barrier device, autostereoscopic display using the same and driving method thereof
JP5944616B2 (ja) 光学ユニット及びこれを含む表示装置
KR101115700B1 (ko) 2차원 및 3차원 영상의 선택적 디스플레이가 가능한디스플레이 장치
CN101840073A (zh) 二维和三维可切换的多个全尺寸图像的图像显示系统
WO2015007171A1 (zh) 立体成像的装置、方法和显示器
WO2013061734A1 (ja) 立体表示装置
US20150362741A1 (en) Stereoscopic image display apparatus
WO2011088615A1 (zh) 立体显示装置及显示方法
CN103048842A (zh) 一种液晶透镜及3d显示装置
WO2016026338A1 (zh) 立体成像装置、方法、显示器和终端
CN102193204A (zh) 立体显示器及立体显示系统
KR102420041B1 (ko) 디스플레이 장치 및 그 제어방법
US20080169997A1 (en) Multi-dimensional image selectable display device
CN203299500U (zh) 一种双层结构液晶透镜及三维显示装置
CN103226247A (zh) 一种立体显示装置及立体显示方法
KR101207861B1 (ko) 입체 엘씨디 패널 및 그 제조 방법
TWI467536B (zh) 裸眼式立體顯示裝置
US9325977B2 (en) Three dimensional LCD monitor display
KR102233116B1 (ko) 입체 영상 디스플레이 장치와 이의 구동 방법
WO2014012327A1 (zh) 3d显示装置以及3d显示系统
KR100811818B1 (ko) 2차원/3차원 영상 표시용 렌티큘러 액정셔터 및 이를 갖는디스플레이 장치
KR20150004028A (ko) 입체 영상 표시장치
WO2013143196A1 (zh) 一种3d液晶面板、3d液晶显示装置和一种驱动方式

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14346847

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13886644

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 18.04.2016)

122 Ep: pct application non-entry in european phase

Ref document number: 13886644

Country of ref document: EP

Kind code of ref document: A1