WO2014196733A1 - Method of manufacturing carbon nanotube polarizing film and carbon nanotube polarizing film thereby - Google Patents

Method of manufacturing carbon nanotube polarizing film and carbon nanotube polarizing film thereby Download PDF

Info

Publication number
WO2014196733A1
WO2014196733A1 PCT/KR2014/003353 KR2014003353W WO2014196733A1 WO 2014196733 A1 WO2014196733 A1 WO 2014196733A1 KR 2014003353 W KR2014003353 W KR 2014003353W WO 2014196733 A1 WO2014196733 A1 WO 2014196733A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon nanotube
polarizing film
substrate
electric field
liquid crystal
Prior art date
Application number
PCT/KR2014/003353
Other languages
French (fr)
Korean (ko)
Inventor
이승희
임영진
박혜령
Original Assignee
전북대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 전북대학교 산학협력단 filed Critical 전북대학교 산학협력단
Publication of WO2014196733A1 publication Critical patent/WO2014196733A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3058Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state comprising electrically conductive elements, e.g. wire grids, conductive particles
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers

Definitions

  • the present invention relates to a method for producing a carbon nanotube polarizing film, applying an electric or magnetic field to a composition in which a carbon nanotube cluster and a polymerizable material are mixed, and carbon nanotube polarization film-forming a stretched and aligned carbon nanotube cluster It relates to a method for producing a film.
  • the polarizing film is a mechanism having a function of transmitting and shielding light, and in the LCD, the polarizing film is a basic component because it functions to switch light.
  • the polarizing film is applied to small devices such as electronic calculators and wristwatches in the early stages of development, and recently, laptop personal computers, word processes, liquid crystal color projectors, car navigation systems, liquid crystal televisions, personal phones, and indoors. It is extensive in other measuring instruments.
  • Conventional polarizing film is made of a polyvinyl alcohol (PVA) film polarizer is dyed with iodine or dichroic dye and is prepared in a structure including a protective film on one or both sides.
  • PVA polyvinyl alcohol
  • the polarizer uses a method of attaching a product in the form of a film to the outside of the liquid crystal device, it is difficult to control the process and causes a defect, thereby lowering the production yield and inevitably increasing the cost.
  • the conventional attachment type polarizing plate has a disadvantage in that the intensity of the polarized light is fixed by stretching the film.
  • Korean Patent Laid-Open Publication No. 2006-0092737 relates to a film composed of carbon nanotubes and a method of manufacturing the same, and provides a carbon nanotube film having optical transparency in the visible light region.
  • a carbon nanotube bundle is deposited on a substrate using a Tangmuir-Blodgett method to disclose a uniform or patterned carbon nanotube film and a method of manufacturing the same.
  • the patent document describes that carbon nanotubes prepared by the above method are extremely thin and uniform enough to have conductivity and transparent, and can be used in electronic devices, sensors, displays, etc. because the carbon nanotubes are oriented in one direction at a high density. It is done.
  • the above technology has no choice but to manufacture on a small scale in very limited places.
  • the durability of the film is weak, and it is difficult to secure reliability as a material.
  • the present invention is the first in the world to announce the property that the cluster of carbon nanotubes is stretched (expanded) more than four times when the electric field is applied to the carbon nanotubes dispersed in the liquid crystal in the form of a cluster, and restored for the first time when the electric field is turned off. Nano Letters August issue).
  • the present invention intends to utilize the electrical properties of the newly identified carbon nanotubes in the production of polarizing film.
  • It relates to a method for producing a carbon nano-leuze polarizing film comprising the step of providing heat or light to cure the polymerizable material.
  • the present invention is a carbon nanotube polarizing film prepared by the above method, wherein the polarizing film is carbon nanotubes including a carbon nanotube crust fixed to the binder is stretched in one direction with a binder cured polymerizable material Relates to tube polarizing film.
  • the present invention relates to a liquid crystal display device in which the carbon nanotube polarizing film is coated on or inside the liquid crystal display device.
  • the present invention can solve problems such as occurrence of defects due to dust or the like caused by mounting a polarizing plate of a film type using a conventional adhesive because it is mounted on the inside or outside of the liquid crystal display.
  • the present invention unlike the conventional stretch type polarizing plate can control the polarization of light by using an electric or magnetic field can realize a very fast process speed, it is possible to build a more simplified process line and thus the cost is reduced have.
  • the polarizing material of the present invention is an inorganic material, compared with the conventional polarizing plate, the temperature limitability is improved to 150 ° C. or more, thereby providing a polarizing plate capable of expanding the operating temperature range of the display.
  • the polarizing film manufacturing method of the present invention may change the transmittance or intensity of the polarized light by adjusting the length (width) of the carbon nano-lube cluster with the intensity of the electric field.
  • FIG. 1 is a schematic diagram of a device for forming a polarizing film using a polymerizable liquid crystal composition in which carbon nanotube clusters aligned and elongated by an electric field are mixed according to a first embodiment of the present invention.
  • FIG. 2 shows a schematic view of an electric field generating device according to a first embodiment of the present invention when the substrate is in the form of a sheet.
  • FIG. 3 illustrates an electric field distribution diagram generated when voltage is alternately applied in the electric field generator of FIG. 2.
  • Figure 4 shows a schematic diagram of a polarizing film manufacturing process when the substrate is in the form of a sheet (sheet).
  • FIG. 5 shows a schematic view of the completed polarizing film.
  • a method of manufacturing a carbon nanotube polarizing film of the present invention includes the steps of: mixing and applying a carbon nanotube cluster and a polymerizable material on a substrate; Stretching the carbon nanotube clusters in a predetermined direction by providing an electric or magnetic field to the substrate coated with the mixture; And providing heat or light to cure the polymerizable material.
  • a carbon nanotube cluster and a polymerizable material are mixed and applied onto a substrate.
  • the polymerizable material may be a polymer that is cured by heat or ultraviolet rays or a monomer thereof. More specifically, the polymerizable substance is tri acetyl cellulose (Tri acetyl). cellulose; TAC), Polyacryl Group, Polyolefin (Po), Polycarbonate (PC), Polyethylene Telephthalate (PET), Polypropylene (PP), Polyethylene (PE) ) And monomers thereof.
  • Tri acetyl cellulose Tri acetyl cellulose
  • TAC Tri acetyl cellulose
  • Polyacryl Group Polyolefin
  • PC Polycarbonate
  • PET Polyethylene Telephthalate
  • PP Polypropylene
  • PE Polyethylene
  • the polymerizable material may be a polymerizable liquid crystal material.
  • the polymerizable liquid crystal material is a liquid crystalline monomer having a polymerizable group by irradiation with light such as heat or ultraviolet rays. Unlike the liquid crystal whose phase changes with temperature, the polymerizable liquid crystal material is solid phase. When the phase change no longer occurs, it refers to a material mainly used for optical films.
  • the liquid crystalline monomer having a polymerizable group exhibits a liquid crystal phase including a mesogen group capable of exhibiting liquid crystallinity and a terminal group capable of photopolymerization, and a monomer molecule capable of photopolymerization by a photoinitiator reacting to ultraviolet rays.
  • a mesogen a calamitic mesogen expressing a nematic liquid crystal phase or a discotic mesogen in a dish form capable of expressing a discotic liquid crystal phase may be used.
  • the polymerizable end group an acryl group, a methacryl group, a vinyl ether group or an epoxide group, which are generally easy to be radically polymerized, may be used.
  • the liquid crystalline monomer may be used in combination with a polymerizable mesogen compound having two or more polymerizable functional groups, for example, a general male to semi-male compound and / or a non-polar to polar compound to increase crosslinking of the polymer.
  • a polymerizable mesogen compound having two or more polymerizable functional groups for example, a general male to semi-male compound and / or a non-polar to polar compound to increase crosslinking of the polymer.
  • the alignment profile can be changed by changing their composition ratio.
  • liquid crystalline monomers examples include RM257, EHA, and RMS-013C.
  • Trimethylopropane triacrylate may be used as the photoinitiator.
  • the mixture represents a composition in which carbon nanotubes are mixed with the polymerizable material or the polymerizable liquid crystal material as the polymerizable composition.
  • the polymerizable composition may include carbon nanotubes and a solvent in the polymerizable material.
  • the polymerizable composition may include carbon nanotubes and a solvent in the polymerizable liquid crystal material. The solvent is removed during the curing process.
  • Carbon nanotubes that can be used in the present invention is a single-walled carbon nanotubes
  • SWCNTC Single-Walled Carbon Nano Tube DWCNT
  • Double-Walled Carbon Nano Tube DWCNT
  • Thin Multi-walled Carbon Nano Tube tD
  • Thin Multi Walled Carbon Nano Tube CNT
  • Multi-walled Carbon Nanotube ⁇ CNT Multi-walled Carbon Nanotube ⁇ CNT
  • Carbon nanotubes have good elasticity and have good bending characteristics, but the carbon nanotubes have a small extension of about 10% depending on voltage. However, carbon nanotubes are clogged in the polymerizable liquid crystal composition. When present in a ster form, the carbon nanotube cluster may be stretched more than four times with an electroactive constant of 70 (V / um) or more.
  • the carbon nanotube cluster may be formed by dispersing the carbon nanotube in the polymerizable (liquid crystal) composition.
  • a polymerizable (liquid crystal) composition for example, a liquid crystal molecule
  • electrostatic Attraction the interaction between the carbon nanotubes
  • carbon nanotube cluster refers to an aggregate in which carbon nanotubes are aggregated and bundled together by attractive forces.
  • the term 'stretching' used in the present invention refers to a phenomenon in which carbon nanotube clusters, which are aggregated and bundled together when the electric field is applied to the carbon nanotube cluster, are loosened in the direction of the electric field and are stretched thin and long. Indicates.
  • the carbon nanotube cluster may be prepared by dispersing the carbon nanotube in a polymerizable (liquid crystal) composition in an amount of 1 to 50 wt%, preferably 1 to 10 wt%, and more preferably 1 to 5 3 ⁇ 4. When the carbon nanotubes are less than 1 wt%, clusters may be formed in the polymerizable (liquid crystal) composition, but may not be used for the polarizing film of the present invention.
  • the content of the carbon nano-lube cluster should be lwt% or more in order to completely block the incident light.
  • the carbon nanotube cluster is more than 50wt%, some areas may be aligned and stretched when the carbon nanotube cluster is applied, but there is a problem that the alignment and stretching are not performed.
  • the polymerizable composition may include 0.001-5 parts by weight of a photoinitiator based on 100 parts by weight of the polymerizable material or the polymerizable liquid crystal material.
  • a photoinitiator is a substance that absorbs energy from ultraviolet rays and initiates polymerization reaction. Although it depends on the kind, the photoinitiator plays a role of initiating photopolymerization in which the monomers, oligomers, and free radicals are added to the polymer material after curing by adding the amount of the monomers, oligomers, and free groups necessary for photopolymerization. do.
  • the mixing ratio of photoinitiator shows a lot of difference depending on the application and equipment. Generally, the mixing ratio is about 0.1-5%.
  • the present invention includes stretching the carbon nanotube clusters in a predetermined direction by providing an electric field or a magnetic field to the engine to which the complex is applied.
  • an electric or magnetic field is used to align and stretch carbon or notube clusters mixed in the polymerizable material.
  • FIG. 1 is a schematic diagram of an apparatus for forming a polarizing film using a polymerizable composition in which carbon nanotube clusters aligned and elongated by an electric field are mixed according to a first embodiment of the present invention.
  • an electric field generating apparatus 100 is installed on an upper portion of a substrate 300 on which a polymerizable composition 200 on which carbon nanotube clusters are mixed is applied, and a polymerizable carbon nanotube cluster is mixed.
  • a horizontal electric field can be applied to the composition.
  • the carbon nanotube clusters may be stretched by aligning the carbon nanotube clusters controlled to a certain size by a horizontal electric field above a threshold voltage in one direction and applying a horizontal electric field higher than the applied voltage.
  • the transmittance of light may be controlled by the intensity of the electric or magnetic field applied to the polymerizable composition.
  • the strength of the applied electric field or magnetic field may be greater than or equal to the threshold electrode field of the carbon nanotube cluster and less than the breaking electric field, and preferably greater than the threshold electric field or less than the maximum electric field.
  • Threshold electric field which is a term used in the present invention, refers to an electric field in which a cluster of clusters starts to increase when a voltage is applied to the carbon or notube cluster in a fluid.
  • the rupture electric field represents an electric field in which carbon nanotube bulsters increase in proportion as the voltage is continuously increased, but the carbon nanotube cluster breaks at any moment.
  • the maximum electric field is an electric field in which the length of the carbon nanotube cluster is maximum.
  • the maximum electric field exhibits a lower value than the breaking electric field, that is, the cluster is no longer stretched even after the maximum electric field is applied, and the carbon nanotube cluster is destroyed when the maximum electric field is raised.
  • the threshold electric field, the breaking electric field and the maximum electric field may have different values depending on the type, content, and type of polymerizable material of the carbon nanotubes.
  • the threshold electric field may be about 1.5 V / im, and the maximum electric field may be 6 V // im.
  • the transmittance of light becomes maximum when the intensity of the applied electric field is in the vicinity of the maximum electric field or the breaking electric field, and almost transmits the light in the threshold electric field. Can not be exceeded. That is, by adjusting the length (width) of the carbon nanotube cluster by the intensity of the electric field can be changed the transmittance or intensity of the polarized light.
  • the applied horizontal electric field is a force field formed by the distribution and movement of + charges and-charges, there is a difference in the properties of fluxes that determine the direction and the strength of the field, which are almost similar.
  • the embodiments and drawings of the present invention have been described based on the electric field, since the electric field and the magnetic field are generated in mutually orthogonal directions, and have similar properties, the application of the embodiment and description of the electric field to the magnetic field is polymerization. It will be apparent to those skilled in the art in view of the fact that the orientation of the composition is in the orthogonal direction relative to the electric field in the case of a magnetic field.
  • the method of manufacturing a polarizing film according to the present invention may be applied to a roll-to-roll process, and in this case, the substrate may be characterized as having a long film form.
  • the long film form means a continuous film having a constant width, and means a continuous film that can be supplied in the form wound with. Film is continuous in roll-to-roll process
  • FIG. 2 shows a schematic diagram of an electric field generating device according to a first embodiment of the present invention when the substrate is in the form of a sheet.
  • the electrodes of the electric field generating device are alternately connected as shown in FIG. 2, the carbon nanotube clusters corresponding to the portions in which the electric field is not generated directly on the electrode 102 are aligned and elongated to polymerize the polymerizable liquid crystal composition to form a film. can do.
  • FIG. 3 is an electric field distribution diagram generated when voltage is alternately applied in the electric field generator of FIG. 2.
  • a horizontal electric field 400 generated by alternately applying a voltage to the electric field generator of FIG. 2 is a substrate coated with a polymerizable liquid crystal composition in which carbon or notube clusters located under the electric field generator are mixed. It is evenly distributed over the entire area, so that carbon nanotube clusters can be aligned and stretched over the whole area.
  • An apparatus for generating an electric or magnetic field may be located above or below the substrate.
  • the present invention includes a curing step.
  • the curing step is to provide heat or light to the mixture to cure the polymerizable material.
  • the polymer material is cured while polymer polymerization occurs.
  • the polymerizable material is cured to form a binder of the film, and carbon nanotube clusters are fixed by the binder to maintain an elongated state.
  • Figure 4 shows a schematic diagram of the manufacturing process of the polarizing film when the substrate is in the form of a sheet (sheet).
  • the electric field generating device is manufactured by forming a pattern electrode on a substrate.
  • the polymerizable liquid crystal composition in which carbon nanotubes are mixed is coated on a substrate for a polarizing film.
  • the electric field generating device is positioned on the upper or lower portion of the substrate coated with the polymerizable liquid crystal composition in which carbon nanotubes are mixed, and then horizontal electric fields are alternately applied to align and extend the carbon nanotube clusters mixed in the polymerizable liquid crystal composition. .
  • the polarizing film is prepared by curing ultraviolet ray irradiation or heat to the polymerizable liquid crystal composition layer in which the entire carbon nanotube clusters are evenly aligned and elongated, and curing the polymerizable liquid crystal composition layer in which the carbon nanotube clusters are mixed.
  • FIG. 5 shows a schematic view of the completed polarizing film. As shown in FIG. 5, the carbon nanotube clusters are evenly aligned and stretched in all regions in one direction by an applied horizontal electric field, and the polymerizable liquid crystal composition is integrated and aligned and stretched in one direction. It is fixed and filmed.
  • the substrate usable in the present invention is preferably a substrate having optical transparency of 8 or more, and includes polyether sulfone (PES), polylide (Pl), cyclo olefin polymer (C0P), polyethylene terephthalate (PEK), and tri acetyl cellulose (TAC).
  • PES polyether sulfone
  • Pl polylide
  • C0P cyclo olefin polymer
  • PEK polyethylene terephthalate
  • TAC tri acetyl cellulose
  • PC poly carbonate
  • glass may be selected from the group consisting of.
  • the defined materials are materials generally available in the art, and are not fixed conditions for materials that can be easily changed and used by those skilled in the art.
  • the coating of the polymerizable liquid crystal composition in which the carbon nanotube clusters are mixed may include spin, comma, gravure, dip, slot die, and silk. It can be carried out by applying a known coating process such as a screen (silk screen), inkjet printing (inkjet printing). Curing conditions vary depending on the properties of the polymerizable liquid crystal material.
  • the carbon nanotube polarizing film prepared according to the present invention includes a carbon nanotube cluster fixed by curing the polymerizable material to form a binder of the film and extending in one direction.
  • the polarizing film is burnt at an intensity of an electric or magnetic field.
  • the length (width) of the sonanotube clusters can be adjusted to change the transmittance or intensity of the polarized light.
  • the polarizing film of the present invention can control the polarization of light by using an electric field or a magnetic field, unlike the conventionally stretched polarizing plate, it is possible to realize a very high process speed and a more simplified process line construction. Therefore, the cost is reduced.
  • the polarizing film of the present invention since the polarizing material is an inorganic material, the temperature limitability is improved to 150 ° C or more compared with the conventional polarizing plate, thereby extending the operating temperature range of the display.
  • the present invention relates to a liquid crystal display device in which the polarizing film is coated inside or outside. Therefore, the liquid crystal display device of the present invention can prevent the generation of a defective rate due to dust or the like, compared to a film type polarizing plate using a conventional adhesive.
  • the present invention can be used in the liquid crystal display device manufacturing industry.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Polarising Elements (AREA)

Abstract

The present invention relates to manufacturing a polarizing film. More particularly, the present invention relates to a method of manufacturing a polarizing film by making a carbon nanotube cluster as a film through a simple process, the method comprising the steps of: mixing and applying a carbon nanotube cluster and a polymeric material on a substrate; providing an electric field or a magnetic field to the substrate, on which the mixture is applied, to elongate the carbon nanotube cluster in a certain direction; and providing heat or light to cure the polymeric material.

Description

【명세서】  【Specification】
【발명의 명칭】  [Name of invention]
탄소나노튜브 편광필름의 제조방법 및 이에 의한 탄소나노튜브 편광필름 【기술분야】  Manufacturing method of carbon nanotube polarizing film and carbon nanotube polarizing film thereby
본 발명은 탄소나노튜브 편광필름의 제조 방법에 관한 것으로, 탄소나노튜브 클러스터와 중합성 물질이 흔합된 조성물에 전기장 또는 자기장을 가하고, 연신 및 정렬된 탄소나노튜브 클러스터를 필름화한 탄소나노튜브 편광필름을 제조하는 방법 에 관한 것이다.  The present invention relates to a method for producing a carbon nanotube polarizing film, applying an electric or magnetic field to a composition in which a carbon nanotube cluster and a polymerizable material are mixed, and carbon nanotube polarization film-forming a stretched and aligned carbon nanotube cluster It relates to a method for producing a film.
【배경기술】  Background Art
최근, 평판디스플레이에서 우위를 차지하고 있는 액정디스폴레이는 유기발광 디스플레이의 급성장으로 인해 디스플레이시장에서 큰 위협을 받고 있다. 그에 따 라 요구되는 화질 특성 또한 높아지고 있으며, 이러한 요구의 층족을 위해 종래의 액정 모드, 백라이트 및 편광판의 특성을 향상시키는 연구가 계속 진행되고 있다. 편광필름은 광의 투과 및 차폐기능을 갖는 기구로서 LCD에 있어서는 광의 스위칭 기능을 하기 때문에 기본적인 구성요소라 할 수 있다. 편광필름의 적용분야로는 상 기 LCD 외에도, 개발 초기의 전자계산기 및 손목시계 등의 소형 기기에서부터 최근 에는 랩톱 퍼스널컴퓨터, 워드프로세스, 액정칼라 프로젝터, 차량용 내비게이션시 스템, 액정 텔레비전, 퍼스널폰 및 옥내외의 계측기기 등으로 광범위하다.  Recently, LCD displays, which have the upper hand in flat panel displays, are being threatened in the display market due to the rapid growth of organic light emitting displays. Accordingly, the required image quality characteristics are also increasing, and researches for improving the characteristics of conventional liquid crystal modes, backlights, and polarizers have been conducted for the sake of this need. The polarizing film is a mechanism having a function of transmitting and shielding light, and in the LCD, the polarizing film is a basic component because it functions to switch light. In addition to the LCD, the polarizing film is applied to small devices such as electronic calculators and wristwatches in the early stages of development, and recently, laptop personal computers, word processes, liquid crystal color projectors, car navigation systems, liquid crystal televisions, personal phones, and indoors. It is extensive in other measuring instruments.
종래 편광필름은 폴리비닐알코을 (PVA) 필름 편광자를 요오드또는 이색성 염 료로 염색하고 단면 또는 양면에 보호필름을 포함하는 구조로 제조된다.  Conventional polarizing film is made of a polyvinyl alcohol (PVA) film polarizer is dyed with iodine or dichroic dye and is prepared in a structure including a protective film on one or both sides.
하지만, 편광판은 필름형태의 제품을 액정소자 외부에 부착하는 방식을 사용 하고 있기 때문에 공정 관리가 어렵고 불량 발생 요인이 되어 생산 수율을 저하시 키고 있으며, 고 비용화를 피할 수 없다. 또한 종래의 부착형 편광판은 필름을 연 신시켜 제작하는 방식으로 편광된 빛의 세기가 고정되어 있는 단점이 있다.  However, since the polarizer uses a method of attaching a product in the form of a film to the outside of the liquid crystal device, it is difficult to control the process and causes a defect, thereby lowering the production yield and inevitably increasing the cost. In addition, the conventional attachment type polarizing plate has a disadvantage in that the intensity of the polarized light is fixed by stretching the film.
대한민국 공개특허 제 2006-0092737호는 탄소나노튜브로 구성된 필름 및 그 제조 방법에 관한 특허로서, 광학적으로 가시광선 영역에서 투과성을 가지는 탄소 나노류브 필름을 제공하는 것으로 화학적으로 표면 처리된 탄소나노튜브 또는 탄소 나노튜브 번들 (bundle)을 탱뮤어-블로제트 (Langmuir-Blodgett) 방법을 이용하여 기 판상에 퇴적시켜 균일한 또는 패턴닝된 탄소나노튜브 필름 및 그 제조방법을 개시 하고 있다. 동 특허문헌에는 상기 방법으로 제조된 탄소나노튜브는 전도성을 가짐 과 동시에 투명할 정도로 매우 얇고 균일하며, 탄소나노튜브가 고밀도로 한 방향으 로 배향되어 있으므로 전자소자, 센서, 디스플레이 등에 이용할 수 있다고 기재되 어 있다. 그러나, 상기 기술로는 매우 제한된 장소에서 소규모로 제조할 수밖에 없 어 상업적인 생산이 블가능할 뿐만 아니라 막의 내구성도 약하여 소재로서의 신뢰 성을 확보하기 어려운 단점이 있다. Korean Patent Laid-Open Publication No. 2006-0092737 relates to a film composed of carbon nanotubes and a method of manufacturing the same, and provides a carbon nanotube film having optical transparency in the visible light region. A carbon nanotube bundle is deposited on a substrate using a Tangmuir-Blodgett method to disclose a uniform or patterned carbon nanotube film and a method of manufacturing the same. The patent document describes that carbon nanotubes prepared by the above method are extremely thin and uniform enough to have conductivity and transparent, and can be used in electronic devices, sensors, displays, etc. because the carbon nanotubes are oriented in one direction at a high density. It is done. However, the above technology has no choice but to manufacture on a small scale in very limited places. However, not only commercial production is possible, but also the durability of the film is weak, and it is difficult to secure reliability as a material.
한편, 본 발명의 연구진은 클러스트 형태로 액정 속에 분산된 탄소나노튜브 에 전기장을 가하면 탄소나노튜브의 클러스터가 4배 이상 신장 (연신)되고, 전기장 이 오프되면 처음으로 복원되는 성질에 대해 세계최초로 발표하였다 나노레터스 (Nano Letters)지 8월호).  On the other hand, the present invention is the first in the world to announce the property that the cluster of carbon nanotubes is stretched (expanded) more than four times when the electric field is applied to the carbon nanotubes dispersed in the liquid crystal in the form of a cluster, and restored for the first time when the electric field is turned off. Nano Letters August issue).
본 발명은 새롭게 규명된 탄소나노튜브의 전기적 성질을 편광필름올 제작하 는데에 옹용하고자 한다.  The present invention intends to utilize the electrical properties of the newly identified carbon nanotubes in the production of polarizing film.
【발명의 상세한 설명】  [Detailed Description of the Invention]
【기술적 과제】  [Technical problem]
본 발명의 목적은 전기장또는 자기장을 이용한 간소화된 공정만으로 탄소나 노튜브 클러스터가 정렬 및 연신되어 흔합된 중합성 조성물층을 가지는 편광필름의 제조방법을 제공하는 데 있다.  It is an object of the present invention to provide a method for producing a polarizing film having a polymerizable composition layer in which carbon or notube clusters are aligned and elongated only by a simplified process using an electric or magnetic field.
【기술적 해결방법】  Technical Solution
상기 목적을 달성하기 위하여, 본 발명은  In order to achieve the above object, the present invention
기판상에 탄소나노튜브 클러스터 및 중합성 물질을 흔합하여 도포하는 단계; 상기 흔합물이 도포된 기판에 전기장 또는 자기장을 제공하여 탄소나노튜브 클러스터를 일정 방향으로 연신하는 단계 ; 및  Mixing and applying carbon nanotube clusters and polymerizable materials onto a substrate; Stretching the carbon nanotube clusters in a predetermined direction by providing an electric or magnetic field to the substrate coated with the mixture; and
열 또는 광을 제공하여 중합성 물질을 경화시키는 단계를 포함하는 탄소나노 류브 편광필름의 제조방법에 관계한다.  It relates to a method for producing a carbon nano-leuze polarizing film comprising the step of providing heat or light to cure the polymerizable material.
다른 양상에서 본 발명은 상기 방법으로 제조된 탄소나노튜브 편광필름으로 서, 상기 편광필름은 중합성 물질이 경화된 바인더와 한쪽 방향으로 연신되어 상기 바인더에 고정된 탄소나노튜브 클러스트를 포함하는 탄소나노튜브 편광필름에 관계 한다.  In another aspect, the present invention is a carbon nanotube polarizing film prepared by the above method, wherein the polarizing film is carbon nanotubes including a carbon nanotube crust fixed to the binder is stretched in one direction with a binder cured polymerizable material Relates to tube polarizing film.
다른 양상에서, 본 발명은 상기 탄소나노튜브 편광필름이 액정표시소자 내부 또는 외부에 코팅되어 형성되는 액정표시소자에 관계한다.  In another aspect, the present invention relates to a liquid crystal display device in which the carbon nanotube polarizing film is coated on or inside the liquid crystal display device.
【유리한 효과】  Advantageous Effects
본 발명은 액정디스폴레이 내부 또는 외부에 코팅방식으로 장착하기 때문에 종래에 접착제를 사용하는 필름형식의 편광판을 장착해서 생기는 먼지 등에 의한 불량를 발생 등과 같은 문제점을 해결할 수 있다.  The present invention can solve problems such as occurrence of defects due to dust or the like caused by mounting a polarizing plate of a film type using a conventional adhesive because it is mounted on the inside or outside of the liquid crystal display.
또한, 본 발명은 종래 연신형 편광판과 달리 전기장또는자기장을 이용하여 빛의 편광을 제어할 수 있기 때문에 매우 빠른 공정 속도를 구현할 수 있으며 더욱 간소화된 공정 라인 구축이 가능하고 따라서 비용이 절감되는 장점이 있다. <17> 또한, 본 발명의 편광물질이 무기재료이기 때문에 종래의 편광판에 비해 온 도 제한성이 150°C이상으로 향상되어 디스폴레이의 동작 온도 범위를 확대시킬 수 있는 편광판올 제공할 수 있다. In addition, the present invention, unlike the conventional stretch type polarizing plate can control the polarization of light by using an electric or magnetic field can realize a very fast process speed, it is possible to build a more simplified process line and thus the cost is reduced have. In addition, since the polarizing material of the present invention is an inorganic material, compared with the conventional polarizing plate, the temperature limitability is improved to 150 ° C. or more, thereby providing a polarizing plate capable of expanding the operating temperature range of the display.
<18> 본 발명의 편광필름 제조방법은 전기장의 세기로 탄소나노류브 클러스터 길 이 (폭)를 조절하여 편광된 빛의 투과율이나 세기를 변화시킬 수 있다.  The polarizing film manufacturing method of the present invention may change the transmittance or intensity of the polarized light by adjusting the length (width) of the carbon nano-lube cluster with the intensity of the electric field.
<19> 따라서, 향후 광범위한 상용화가 기대된다.' Therefore, widespread commercialization is expected in the future. '
【도면의 간단한 설명】  [Brief Description of Drawings]
<20> 도 1은 본 발명의 제 1실시예에 따라 전기장에 의하여 정렬 및 연신되는 탄 소나노튜브 클러스터가 흔합된 중합성 액정 조성물을 이용하여 편광필름을 형성하 는 장치의 개략도이다.  FIG. 1 is a schematic diagram of a device for forming a polarizing film using a polymerizable liquid crystal composition in which carbon nanotube clusters aligned and elongated by an electric field are mixed according to a first embodiment of the present invention.
<2i> 도 2는 기판이 시트 (sheet) 형태인 경우 본 발명의 제 1실시예에 따른 전기 장 발생장치의 개략도를 나타낸 것이다.  2 shows a schematic view of an electric field generating device according to a first embodiment of the present invention when the substrate is in the form of a sheet.
<22> 도 3은 도 2와 같은 전기장 발생장치에서 교대로 전압인가시 발생하는 전기 장 분포도를 나타낸 것이다. FIG. 3 illustrates an electric field distribution diagram generated when voltage is alternately applied in the electric field generator of FIG. 2.
<23> 도 4는 기판이 시트 (sheet) 형태인 경우의 편광필름 제조공정의 개략도를 나 타낸 것이다. Figure 4 shows a schematic diagram of a polarizing film manufacturing process when the substrate is in the form of a sheet (sheet).
<24> 도 5는 완성된 편광필름의 개략도를 나타낸 것이다.  5 shows a schematic view of the completed polarizing film.
<25>  <25>
【발명의 실시를 위한 형태】  [Form for implementation of invention]
<26> 달리 정의되지 않는 한, 본 명세서에서 사용된 모든 기술적 및 과학적 용어 들은 본 발명이 속하는 기술 분야에서 숙련된 전문가에 의해서 통상적으로 이해되 는 것과 동일한 의미를 갖는다. 일반적으로, 본 명세서에서 사용된 명명법 및 이하 에 기술하는 실험 방법은 본 기술 분야에서 잘 알려져 있고 통상적으로 사용되는 것이다.  Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. In general, the nomenclature used herein and the experimental methods described below are well known and commonly used in the art.
<27> 본 발명은 일 관점에서, 본 발명의 탄소나노튜브 편광필름의 제조방법 은 기판상에 탄소나노튜브 클러스터 및 중합성 물질을 흔합하여 도포하는 단계; 상 기 흔합물이 도포된 기판에 전기장 또는 자기장을 제공하여 탄소나노튜브 클러스터 를 일정 방향으로 연신하는 단계 ; 및 열 또는 광을 제공하여 중합성 물질올 경화 시키는 단계를 포함한다.  In accordance with one aspect of the present invention, a method of manufacturing a carbon nanotube polarizing film of the present invention includes the steps of: mixing and applying a carbon nanotube cluster and a polymerizable material on a substrate; Stretching the carbon nanotube clusters in a predetermined direction by providing an electric or magnetic field to the substrate coated with the mixture; And providing heat or light to cure the polymerizable material.
<28> 본 발명은 먼저, 기판상에 탄소나노튜브 클러스터 및 중합성 물질을 흔합하 여 도포한다.  In the present invention, first, a carbon nanotube cluster and a polymerizable material are mixed and applied onto a substrate.
<29> 상기 중합성 물질은 열 또는 자외선에 의해 경화되는 고분자이거나 그 단량 체일 수 있다. 좀 더 구체적으로, 증합성 물질은 트리아세틸셀를로스 (Tri acetyl cellulose; TAC), 폴리아크릴계 (Polyacryl group) , 폴리올레핀 (Polyolef ine; PO), 폴리카보네이트 (Poly Carbonate; PC), 폴리에틸렌 텔레프탈레이트 (Polyethylene Telephthalate; PET), 폴리프로필렌 (Polypropylene; PP), 폴리에틸렌 (Polyethylene, PE) 및 이들의 단량체 중에서 선택된 것일 수 있다. The polymerizable material may be a polymer that is cured by heat or ultraviolet rays or a monomer thereof. More specifically, the polymerizable substance is tri acetyl cellulose (Tri acetyl). cellulose; TAC), Polyacryl Group, Polyolefin (Po), Polycarbonate (PC), Polyethylene Telephthalate (PET), Polypropylene (PP), Polyethylene (PE) ) And monomers thereof.
<30> 본 발명에서 중합성 물질은 중합성 액정 물질일 수 있다. 상기 중합성 액정 물질은 열 또는 자외선 등의 광조사에 의하여 중합 가능한 기를 가지는 액정성 단 량체로서, 온도에 따라 상 (phase)이 변화하는 액정과는 달리 한번 중합이 되어 고 체 상 (solid phase)이 되면 더 이상 상 변화가 일어나지 않으며 광학 필름에 주로 사용되는 물질을 말한다. 일예로서, 중합 가능한 기를 가지는 액정성 단량체는 액 정성을 나타낼 수 있는 메조겐그룹과 광중합이 가능한 말단기를 포함하여 액정상을 띄고 있으며, 자외선에 반웅하는 광 개시제에 의해 광중합될 수 있는 단량체 분자 일 수 있다. 메조겐으로는 네마틱 액정상을 발현하는 막대형 (calamitic) 메조겐이 나 디스코틱 액정상을 발현할 수 있는 접시형태의 디스코틱 (discitic) 메조겐이 사 용될 수 있다. 중합가능한 말단기로는 일반적으로 라디칼 중합이 쉬운 아크릴기나 메타크릴기, 비닐에테르기 또는 에폭사이드기가 사용될 수 있다. 상기 액정성 단량 체는 증합체의 가교결합을 증가시키기 위해 2개 이상의 중합성 작용기, 예를 들면 일반웅성 대 이반웅성 화합물 및 /또는 비극성 대 극성 화합물을 갖는 중합성 메소 겐 화합물을 흔합하여 사용할 수 있고, 그들의 조성비를 변화시킴으로써 정렬 프로 필을 변경시킬 수도 있다.  In the present invention, the polymerizable material may be a polymerizable liquid crystal material. The polymerizable liquid crystal material is a liquid crystalline monomer having a polymerizable group by irradiation with light such as heat or ultraviolet rays. Unlike the liquid crystal whose phase changes with temperature, the polymerizable liquid crystal material is solid phase. When the phase change no longer occurs, it refers to a material mainly used for optical films. For example, the liquid crystalline monomer having a polymerizable group exhibits a liquid crystal phase including a mesogen group capable of exhibiting liquid crystallinity and a terminal group capable of photopolymerization, and a monomer molecule capable of photopolymerization by a photoinitiator reacting to ultraviolet rays. Can be. As mesogen, a calamitic mesogen expressing a nematic liquid crystal phase or a discotic mesogen in a dish form capable of expressing a discotic liquid crystal phase may be used. As the polymerizable end group, an acryl group, a methacryl group, a vinyl ether group or an epoxide group, which are generally easy to be radically polymerized, may be used. The liquid crystalline monomer may be used in combination with a polymerizable mesogen compound having two or more polymerizable functional groups, for example, a general male to semi-male compound and / or a non-polar to polar compound to increase crosslinking of the polymer. The alignment profile can be changed by changing their composition ratio.
<3i> 상기 액정성 단량체로는 RM257, EHA, RMS-013C등이 있다.  <3i> Examples of the liquid crystalline monomers include RM257, EHA, and RMS-013C.
<32> 상기 광 개시제로는 Trimethylopropane triacrylate등이 사용될 수 있다. Trimethylopropane triacrylate may be used as the photoinitiator.
<33> 상기 흔합물은 중합성 조성물로서 상기 중합성 물질 또는 중합성 액정 물질 에 탄소나노튜브를 흔합한 조성물을 나타낸다. 예를 들면, 중합성 조성물은 상기 중합성 물질에 탄소나노튜브 및 용매를 포함할 수 있다. 또한, 상기 중합성 조성물 은 상기 중합성 액정 물질에 탄소나노튜브 및 용매를 포함할 수 있다. 상기 용매는 경화과정 중에 제거된다. The mixture represents a composition in which carbon nanotubes are mixed with the polymerizable material or the polymerizable liquid crystal material as the polymerizable composition. For example, the polymerizable composition may include carbon nanotubes and a solvent in the polymerizable material. In addition, the polymerizable composition may include carbon nanotubes and a solvent in the polymerizable liquid crystal material. The solvent is removed during the curing process.
<34> 본 발명에서 사용할 수 있는 탄소나노튜브는 단일벽 탄소나노튜브  <34> Carbon nanotubes that can be used in the present invention is a single-walled carbon nanotubes
SWCNTC Single-Walled Carbon Nano Tube), 이중벽 탄소나노튜브 DWCNT(Double- Walled Carbon Nano Tube), 박막 다증벽 탄소나노튜브 t丽 CNT(thin Multi Walled Carbon Nano Tube) 및 다중벽 탄소나노튜브 丽 CNT(Multi Walled Carbon Nano Tube) 를 사용할 수 있다.  SWCNTC Single-Walled Carbon Nano Tube (DWCNT), Double-Walled Carbon Nano Tube (DWCNT), Thin Multi-walled Carbon Nano Tube (tD) Thin Multi Walled Carbon Nano Tube (CNT) and Multi-walled Carbon Nanotube 丽 CNT (Multi) Walled Carbon Nano Tube) can be used.
<35> 탄소나노튜브는 탄성이 높아 구부림 특성이 좋은 반면 전압에 따라 늘어나는 정도가 10% 내외로 작다. 하지만 탄소나노튜브가 상기 중합성 액정 조성물에 클러 스터 형태로 존재하는 경우 전기활성 상수 (electroactive constant)가 70(V/um) 이 상으로 탄소나노튜브 클러스터가 4배 이상 연신될 수 있다. <35> Carbon nanotubes have good elasticity and have good bending characteristics, but the carbon nanotubes have a small extension of about 10% depending on voltage. However, carbon nanotubes are clogged in the polymerizable liquid crystal composition. When present in a ster form, the carbon nanotube cluster may be stretched more than four times with an electroactive constant of 70 (V / um) or more.
<36> 본 발명에서는 이러한 탄소나노튜브 클러스터의 전기적 특성을 이용하여 편 광필름에 적용하고자 한다. In the present invention, it is intended to apply to the polarizing film by using the electrical properties of the carbon nanotube cluster.
<37> 상기 탄소나노튜브 클러스터는 상기 증합성 (액정) 조성물에 상기 탄소나노 튜브를 분산시켜 형성할 수 있다. 상기 중합성 조성물에 소량의 탄소나노튜브를 분 산시키면, 중합성 (액정) 조성물, 예를 들면, 액정분자가 탄소나노튜브 표면에 정 전기적 인력으로 고정되어 탄소나노튜브 사이의 상호작용 (정전기적 인력)을 방해하 지만, 탄소나노튜브의 함량이 증가할수록 이들 간의 상호작용이 증가하여 분산이 어려워지고 더 나아가 탄소나노튜브들 사이에 웅집현상이 일어난다.  The carbon nanotube cluster may be formed by dispersing the carbon nanotube in the polymerizable (liquid crystal) composition. When a small amount of carbon nanotubes are dispersed in the polymerizable composition, a polymerizable (liquid crystal) composition, for example, a liquid crystal molecule, is fixed on the surface of the carbon nanotubes by electrostatic attraction and thus the interaction between the carbon nanotubes (electrostatic Attraction), but as the content of carbon nanotubes increases, the interaction between them increases, making dispersion difficult, and further, coarsening occurs between the carbon nanotubes.
<38> 본 발명에서 사용하는 용어인 탄소나노튜브 클러스터는 탄소나노튜브가 상호 간의 인력에 의해 웅집 (aggregate)되어 뭉쳐 (bundle)있는 집합체를 나타낸다.  As used herein, the term “carbon nanotube cluster” refers to an aggregate in which carbon nanotubes are aggregated and bundled together by attractive forces.
<39> 본 발명에서 사용하는 용어인 연신은 탄소나노튜브 클러스터에 전기장을 가 하면 응집 (aggregate)되어 뭉쳐 (bundle)있던 탄소나노튜브 클러스터가 전기장 방향 으로풀어져 얇고 길게 늘어나 연신 (streching)되는 현상을 나타낸다.  The term 'stretching' used in the present invention refers to a phenomenon in which carbon nanotube clusters, which are aggregated and bundled together when the electric field is applied to the carbon nanotube cluster, are loosened in the direction of the electric field and are stretched thin and long. Indicates.
<40> 상기 탄소나노튜브 클러스터는 중합성 (액정) 조성물에 상기 탄소나노튜브를 l~50wt%, 바람직하게는 l~10wt%, 더 바람직하게는 1~5 ¾를 분산시킨 것을 사용할 수 있다. 상기 탄소나노튜브가 lwt% 미만인 경우에 중합성 (액정) 조성물 내에서 클러스터를 형성할 수 있으나본 발명의 편광필름용으로는사용할 수 없다.  The carbon nanotube cluster may be prepared by dispersing the carbon nanotube in a polymerizable (liquid crystal) composition in an amount of 1 to 50 wt%, preferably 1 to 10 wt%, and more preferably 1 to 5 ¾. When the carbon nanotubes are less than 1 wt%, clusters may be formed in the polymerizable (liquid crystal) composition, but may not be used for the polarizing film of the present invention.
<41> 상기 탄소나노류브 클러스터가 입사된 빛을 전부 흡수 차단하기 위해 그 함 량이 lwt% 이상이어야 하기 때문이다.  This is because the content of the carbon nano-lube cluster should be lwt% or more in order to completely block the incident light.
<42> 또한, 50wt% 초과일 경우에는 탄소나노튜브 클러스터가 전압을 인가하면 일 부 영역은 정렬 및 연신될 수 있으나 전체적으로 정렬 및 연신 되지않는 문제점이 있다.  In addition, when the carbon nanotube cluster is more than 50wt%, some areas may be aligned and stretched when the carbon nanotube cluster is applied, but there is a problem that the alignment and stretching are not performed.
<43> 상기 중합성 조성물은 상기 중합성 물질 또는 중합성 액정 물질 100중량부에 대해 광개시제 0.001-5 중량부를 포함할 수 있다. 광 개시제는 자외선으로부터 에 너지를 흡수하여 중합 반옹을 시작하게 하는 물질올 말한다. 종류에 따라서 다르지 만 광 개시제는 상기 제시한 중량부 정도의 양이 들어있으면서 모노머, 을리고머, 자유기가 광중합 하는데 필요한 에너지를 가해서 이 물질들이 경화된 후의 고분자 물질로 바뀌게 광 중합을 개시시키는 역할을 한다. 광 개시제의 배합 비율은 적용 용도와 설비에 따라 많은 차이를 보이고 있는데, 일반적으로 0.1~5 % 정도로 배합 한다. <44> The polymerizable composition may include 0.001-5 parts by weight of a photoinitiator based on 100 parts by weight of the polymerizable material or the polymerizable liquid crystal material. A photoinitiator is a substance that absorbs energy from ultraviolet rays and initiates polymerization reaction. Although it depends on the kind, the photoinitiator plays a role of initiating photopolymerization in which the monomers, oligomers, and free radicals are added to the polymer material after curing by adding the amount of the monomers, oligomers, and free groups necessary for photopolymerization. do. The mixing ratio of photoinitiator shows a lot of difference depending on the application and equipment. Generally, the mixing ratio is about 0.1-5%. <44>
<45> 다음으로, 본 발명은 상기 흔합물이 도포된 기관에 전기장또는 자기장을 제 공하여 탄소나노튜브 클러스터를 일정 방향으로 연신하는 단계를 포함한다.Next, the present invention includes stretching the carbon nanotube clusters in a predetermined direction by providing an electric field or a magnetic field to the engine to which the complex is applied.
<46> 본 발명에서는 전기장또는 자기장을 이용하여 중합성 물질에 흔합된 탄소나 노튜브 클러스터를 정렬 및 연신한다. In the present invention, an electric or magnetic field is used to align and stretch carbon or notube clusters mixed in the polymerizable material.
<47> 도 1은 본 발명의 제 1 실시예에 따라 전기장에 의하여 정렬 및 연신 되는 탄소나노튜브 클러스터가 흔합된 증합성 조성물을 이용하여 편광필름을 형성 하는 장치의 개략도이다.  1 is a schematic diagram of an apparatus for forming a polarizing film using a polymerizable composition in which carbon nanotube clusters aligned and elongated by an electric field are mixed according to a first embodiment of the present invention.
<48> 도 1과 같이, 탄소나노튜브 클러스터가 흔합된 중합성 조성물 (200)이 도포된 기판 (300)의 상부에 전기장 발생장치 (100)를 설치하여, 탄소나노튜브 클러스터가 혼합된 중합성 조성물에 수평 전기장을 인가할 수 있다. 이때, 문턱전압 이상의 수 평전기장에 의해 일정한 크기로 제어된 탄소나노튜브 클러스터를 한쪽 방향으로 정 렬시키고 인가된 전압보다 더 높은 수평전기장을 인가하여 탄소나노류브를 연신할 수 있다.  As shown in FIG. 1, an electric field generating apparatus 100 is installed on an upper portion of a substrate 300 on which a polymerizable composition 200 on which carbon nanotube clusters are mixed is applied, and a polymerizable carbon nanotube cluster is mixed. A horizontal electric field can be applied to the composition. In this case, the carbon nanotube clusters may be stretched by aligning the carbon nanotube clusters controlled to a certain size by a horizontal electric field above a threshold voltage in one direction and applying a horizontal electric field higher than the applied voltage.
<49> 상기 증합성 조성물에 가해지는 전기장 또는 자기장의 세기로 빛의 투과율을 조절할 수 있다. 상기 인가되는 전기장 또는 자기장의 세기는 상기 탄소나노튜브 클러스터의 문턱전기장 (threshold electrode field) 이상 파단전기장 미만일 수 있 고, 바람직하게는 문턱전기장 초과 최대전기장 이하일 수 있다.  The transmittance of light may be controlled by the intensity of the electric or magnetic field applied to the polymerizable composition. The strength of the applied electric field or magnetic field may be greater than or equal to the threshold electrode field of the carbon nanotube cluster and less than the breaking electric field, and preferably greater than the threshold electric field or less than the maximum electric field.
<50> 본 발명에서는 사용하고 있는 용어인 문턱전기장은 유체내에서 상기 탄소나 노튜브 클러스터에 전압을 가해주었을 때 덩어리 형태의 클러스터가 늘어나기 시작 하는 전기장을 나타낸다. 상기 파단전기장은 전압을 계속 높여주면 탄소나노튜브 불러스터가 일정비율 늘어나지만 어느 순간 탄소나노튜브 클러스터가 파괴 (breakdown)되는 전기장을 나타낸다.  Threshold electric field, which is a term used in the present invention, refers to an electric field in which a cluster of clusters starts to increase when a voltage is applied to the carbon or notube cluster in a fluid. The rupture electric field represents an electric field in which carbon nanotube bulsters increase in proportion as the voltage is continuously increased, but the carbon nanotube cluster breaks at any moment.
<51> 상기 최대전기장은 탄소나노튜브 클러스트의 길이가 최대가 되는 전기장이 다. 상기 최대전기장은 파단전기장보다 낮은 값올 나타내는데, 즉, 최대전기장을 인가한 후 보다 높은 전기장을 인가해도 더 이상 클러스터가 연신되지 않고, 결국 파단전기장까지 상승하게 되면 탄소나노튜브 클러스터가 파괴된다.  The maximum electric field is an electric field in which the length of the carbon nanotube cluster is maximum. The maximum electric field exhibits a lower value than the breaking electric field, that is, the cluster is no longer stretched even after the maximum electric field is applied, and the carbon nanotube cluster is destroyed when the maximum electric field is raised.
<52> 상기 문턱전기장, 파단전기장 및 최대전기장은 탄소나노튜브의 종류, 함량 및 중합성 물질의 종류에 따라 다른 값을 가질 수 있다. 일예로, 이중벽 탄 소나노튜브를 lwt¾ 농도로 중합성 액정물질에 분산시켜 형성된 탄소나노튜브 클러 스터의 경우 문턱전기장은 1.5V/im 정도, 최대전기장은 6V//im가 될 수 있다.  The threshold electric field, the breaking electric field and the maximum electric field may have different values depending on the type, content, and type of polymerizable material of the carbon nanotubes. For example, in the case of carbon nanotube clusters formed by dispersing double-walled carbon nanotubes in a polymerizable liquid crystal material at lwt¾ concentration, the threshold electric field may be about 1.5 V / im, and the maximum electric field may be 6 V // im.
<53> 본원발명에서 제조되는 편광필름은 인가된 전기장의 세기가 최대전기장 내지 파단전기장 부근일 때 빛의 투과율이 최대가 되고, 문턱전기장에서는 거의 빛을 투 과할 수 없다. 즉, 전기장의 세기로 탄소나노튜브 클러스터 길이 (폭)를 조절하여 편광된 빛의 투과율이나 세기를 변화시킬 수 있다. In the polarizing film manufactured according to the present invention, the transmittance of light becomes maximum when the intensity of the applied electric field is in the vicinity of the maximum electric field or the breaking electric field, and almost transmits the light in the threshold electric field. Can not be exceeded. That is, by adjusting the length (width) of the carbon nanotube cluster by the intensity of the electric field can be changed the transmittance or intensity of the polarized light.
<54> 한편, 인가되는 수평전기장은 +전하와-전하의 분포 및 이동에 의해 형성되는 역장이기 때문에 그 방향 및 장의 세기를 결정 짓는 선속 (flux)의 성질의 차이가 있을 뿐, 거의 유사하다. 본 발명의 실시예 및 도면은 전기장을 중심으로 기재되었 지만, 전기장과 자기장은 서로 직교 방향으로 발생되며, 유사한 성질을 가지고 있 기 때문에, 전기장에 대한 실시예 및 설명을 자기장에 대하여 적용하는 것은 중합 성 조성물의 배향 방향이 자기장의 경우에는 전기장에 비하여 직교 방향으로 형성 된다는 점을 감안하면 당업자에게 자명할 것이다. On the other hand, since the applied horizontal electric field is a force field formed by the distribution and movement of + charges and-charges, there is a difference in the properties of fluxes that determine the direction and the strength of the field, which are almost similar. Although the embodiments and drawings of the present invention have been described based on the electric field, since the electric field and the magnetic field are generated in mutually orthogonal directions, and have similar properties, the application of the embodiment and description of the electric field to the magnetic field is polymerization. It will be apparent to those skilled in the art in view of the fact that the orientation of the composition is in the orthogonal direction relative to the electric field in the case of a magnetic field.
<55> 본 발명에 따른 편광필름의 제조방법은 Roll-to-Roll 공정에 적용할 수 있으 며, 이러한 경우 상기 기판은 장척의 필름 형태인 것을 특징으로 할 수 있다. 장척 의 필름 형태란 일정한 너비를 가지고 연속되는 필름을 의미하며, 를로 감겨진 형 태로 공급될 수 있는 연속필름을 의미한다. Roll-to-Roll 공정의 경우 필름이 연속The method of manufacturing a polarizing film according to the present invention may be applied to a roll-to-roll process, and in this case, the substrate may be characterized as having a long film form. The long film form means a continuous film having a constant width, and means a continuous film that can be supplied in the form wound with. Film is continuous in roll-to-roll process
<56> 적으로 이동하기 때문에, 전기장 또는 자기장의 세기 분포와 관계없이 필름 전체에 대하여 일정한 전기장 또는 자기장이 인가된다고 볼 수 있다. Since they move in a constant manner, it can be seen that a constant electric or magnetic field is applied to the entire film regardless of the intensity distribution of the electric or magnetic field.
<57> 본 발명에 따른 편광필름의 제조방법이 시트 (sheet) 형태의 기판에 적 용되는 경우 전기장 또는 자기장 발생장치의 전극 또는 자석 바로 위 부분은 전기 장 또는 자기장이 발생하지 않는 문제가 있다. 따라서, 기판이 시트 (sheet) 형태인 경우 전기장 또는 자기장의 발생장치는 교대로 연결됨을 반복하는 것이 바람직하 다.  When the manufacturing method of the polarizing film according to the present invention is applied to a sheet-shaped substrate, there is a problem in that an electric field or a magnetic field does not occur in the portion directly above the electrode or the magnet of the electric field or the magnetic field generating device. Therefore, when the substrate is in the form of a sheet, it is preferable to repeat the generation of electric or magnetic fields.
<58> 도 2는 기판이 시트 (sheet) 형태인 경우 본 발명의 제 1실시예에 따른 전기 장 발생장치의 개략도를 나타낸 것이다. 도 2와 같이 전기장 발생장치의 전극이 교 대로 연결됨을 반복하면 전극 (102) 바로 위의 전기장이 발생되지 않는 부분에 해당 하는 탄소나노튜브 클러스터를 정렬 및 연신시켜 중합성 액정 조성물을 중합하여 필름화 할 수 있다.  2 shows a schematic diagram of an electric field generating device according to a first embodiment of the present invention when the substrate is in the form of a sheet. When the electrodes of the electric field generating device are alternately connected as shown in FIG. 2, the carbon nanotube clusters corresponding to the portions in which the electric field is not generated directly on the electrode 102 are aligned and elongated to polymerize the polymerizable liquid crystal composition to form a film. can do.
<59> 도 3은 도 2와 같은 전기장 발생장치에서 교대로 전압인가시 발생하는 전기 장 분포도이다. 도 3에서 도시한 바와 같이, 도 2의 전기장 발생장치에 전압을 교 대로 인가하면 발생되는 수평전기장 (400)은 전기장 발생장치 하부에 위치한 탄소나 노튜브 클러스터가 흔합된 중합성 액정 조성물이 코팅된 기판 위의 전 영역에 고르 게 분포되어 탄소나노튜브 클러스터를 전 영역에서 정렬 및 연신시킬 수 있다. FIG. 3 is an electric field distribution diagram generated when voltage is alternately applied in the electric field generator of FIG. 2. As shown in FIG. 3, a horizontal electric field 400 generated by alternately applying a voltage to the electric field generator of FIG. 2 is a substrate coated with a polymerizable liquid crystal composition in which carbon or notube clusters located under the electric field generator are mixed. It is evenly distributed over the entire area, so that carbon nanotube clusters can be aligned and stretched over the whole area.
<60> 전기장 또는 자기장을 발생하는 장치는 상기 기판의 상부 또는 하부에 위치 할 수 있다. An apparatus for generating an electric or magnetic field may be located above or below the substrate.
<61> <62> 다음으로, 본 발명은 경화단계를 포함한다. 상기 경화단계는 상기 흔합물에 열 또는 광을 제공하여 중합성 물질을 경화시키는 단계이다. 상기 경화단계에 의해 상기 중합물 물질은 고분자 중합이 일어나면서 경화된다. 상기 중합성 물질은 경화 되어 필름의 바인더를 형성하고, 탄소나노튜브 클러스터는 상기 바인더에 의해 고 정되어 연신상태를 유지한다. <61> Next, the present invention includes a curing step. The curing step is to provide heat or light to the mixture to cure the polymerizable material. By the curing step, the polymer material is cured while polymer polymerization occurs. The polymerizable material is cured to form a binder of the film, and carbon nanotube clusters are fixed by the binder to maintain an elongated state.
<63> 도 4는 기판이 시트 (sheet) 형태인 경우에 편광필름의 제조공정 개략도를 나 타낸 것이다. 기판 상에 패턴전극을 형성하여 전기장 발생장치를 제조한다. 또한, 편광필름을 위한 기판 상에 탄소나노튜브가 흔합된 증합성 액정 조성물올 도포한 다. 상기 전기장 발생장치를 탄소나노튜브가 흔합된 중합성 액정 조성물이 도포된 기판의 상부 또는 하부에 위치시킨 후 수평전기장을 교대로 인가하여 중합성 액정 조성물에 흔합된 탄소나노튜브 클러스터를 정렬 및 연신시킨다. 전 영역이 고르게 정렬 및 연신된 탄소나노튜브 클러스터가 흔합된 중합성 액정 조성물 층에 자외선 조사 또는 열을 인가하여 탄소나노튜브 클러스터가 흔합된 중합성 액정 조성물 층 을 경화시킴으로써 편광필름을 제조한다.  Figure 4 shows a schematic diagram of the manufacturing process of the polarizing film when the substrate is in the form of a sheet (sheet). The electric field generating device is manufactured by forming a pattern electrode on a substrate. In addition, the polymerizable liquid crystal composition in which carbon nanotubes are mixed is coated on a substrate for a polarizing film. The electric field generating device is positioned on the upper or lower portion of the substrate coated with the polymerizable liquid crystal composition in which carbon nanotubes are mixed, and then horizontal electric fields are alternately applied to align and extend the carbon nanotube clusters mixed in the polymerizable liquid crystal composition. . The polarizing film is prepared by curing ultraviolet ray irradiation or heat to the polymerizable liquid crystal composition layer in which the entire carbon nanotube clusters are evenly aligned and elongated, and curing the polymerizable liquid crystal composition layer in which the carbon nanotube clusters are mixed.
<64> 도 5는 완성된 편광필름의 개략도를 나타낸 것이다. 도 5에 도시한 바와 같 이 탄소나노튜브 클러스터는 인가된 수평전기장에 의해 한쪽 방향으로 전 영역에 고르게 정렬 및 연신되어 있고 이를 중합성 액정 조성물이 증합되어 한쪽 방향으로 정렬 및 연신된 탄노나노튜브 클러스터를 고정시켜 필름화 시킨다.  5 shows a schematic view of the completed polarizing film. As shown in FIG. 5, the carbon nanotube clusters are evenly aligned and stretched in all regions in one direction by an applied horizontal electric field, and the polymerizable liquid crystal composition is integrated and aligned and stretched in one direction. It is fixed and filmed.
<65> 본 발명에서 사용 가능한 기판은 8 이상의 광학적 투명성을 지닌 기재인 것이 바람직하며, PES(polyether sulfone), Pl(polyimide) , C0P(cyclo olefin polymer) , PEKpolyethylene terephthalate) , TAC(tri acetyl cellulose), PC(poly carbonate) 및 유리로 구성된 군에서 선택되는 것을 특징으로 할 수 있다. 상기 한 정된 재료들은 당해 업계에서 일반적으로 사용 가능한 재료들이며, 당업자가 용이 하게 변경하여 사용할 수 있는 재료에 대하여 고정적인 조건은 아니다.  The substrate usable in the present invention is preferably a substrate having optical transparency of 8 or more, and includes polyether sulfone (PES), polylide (Pl), cyclo olefin polymer (C0P), polyethylene terephthalate (PEK), and tri acetyl cellulose (TAC). , PC (poly carbonate) and glass may be selected from the group consisting of. The defined materials are materials generally available in the art, and are not fixed conditions for materials that can be easily changed and used by those skilled in the art.
<66> 본 발명에 있어서, 탄소나노튜브 클러스터가 흔합된 중합성 액정 조성물의 도포는 스핀 (spin), 콤마 (comma), 그라비아 (gravure), 딥 (dip), 슬롯 다이 (slot die), 실크 스크린 (si lk screen), 잉크곗 프린팅 (inkjet printing) 등의 공지의 코 팅 공정을 적용하여 수행할 수 있다. 경화조건은 중합성 액정 재료의 특성에 따라 각각 다르다. In the present invention, the coating of the polymerizable liquid crystal composition in which the carbon nanotube clusters are mixed may include spin, comma, gravure, dip, slot die, and silk. It can be carried out by applying a known coating process such as a screen (silk screen), inkjet printing (inkjet printing). Curing conditions vary depending on the properties of the polymerizable liquid crystal material.
<67> 본 발명으로 제조된 탄소나노튜브 편광필름은 중합성 물질이 경화되어 필름 의 바인더를 형성하고, 한쪽 방향으로 연신되어 상기 바인더에 고정된 탄소나노튜 브 클러스트를 포함한다.  The carbon nanotube polarizing film prepared according to the present invention includes a carbon nanotube cluster fixed by curing the polymerizable material to form a binder of the film and extending in one direction.
<68> 상기 편광필름은 앞에서 상술한 바와 같이, 전기장 또는 자기장의 세기로 탄 소나노튜브 클러스터 길이 (폭)를 조절하여 편광된 빛의 투과율이나 세기를 변화시 킬 수 있다. As described above, the polarizing film is burnt at an intensity of an electric or magnetic field. The length (width) of the sonanotube clusters can be adjusted to change the transmittance or intensity of the polarized light.
<69> 또한, 본 발명의 편광필름은 종래 연신형 편광판과 달리 전기장 또는 자기장 을 이용하여 빛의 편광을 제어할 수 있기 때문에 매우 빠른 공정 속도를 구현할 수 -있으며 더욱 간소화된 공정 라인 구축이 가능하고 따라서 비용이 절감되는 장점이 있다.  In addition, since the polarizing film of the present invention can control the polarization of light by using an electric field or a magnetic field, unlike the conventionally stretched polarizing plate, it is possible to realize a very high process speed and a more simplified process line construction. Therefore, the cost is reduced.
<70> 또한, 본 발명의 편광필름은 편광물질이 무기재료이기 때문에 종래의 편광판 에 비해 온도 제한성이 150°C이상으로 향상되어 디스플레이의 동작 온도 범위를 확 대시킬 수 있다. In addition, the polarizing film of the present invention, since the polarizing material is an inorganic material, the temperature limitability is improved to 150 ° C or more compared with the conventional polarizing plate, thereby extending the operating temperature range of the display.
<71> 본 발명은 상기 편광필름이 내부 또는 외부에 코팅된 액정표시소자에 관계한 다. 따라서, 본 발명의 액정표시소자는 종래 접착제를 사용하는 필름형식의 편광판 에 비해 먼지 등에 의한 불량률 발생을 방지할 수 있다.  The present invention relates to a liquid crystal display device in which the polarizing film is coated inside or outside. Therefore, the liquid crystal display device of the present invention can prevent the generation of a defective rate due to dust or the like, compared to a film type polarizing plate using a conventional adhesive.
<72>  <72>
<73> 본 발명의 단순한 변형 내지 변경은 모두 본 발명의 영역에 속하는 것으로, 본 발명의 구체적인 보호범위는 첨부된 특허청구범위에 의하여 명확해질 것이다. 【산업상 이용가능성】  All simple modifications and variations of the present invention fall within the scope of the present invention, and the specific scope of the present invention will be apparent from the appended claims. Industrial Applicability
<74> 본 발명은 액정표시소자 제조산업에 이용가능 하다 . The present invention can be used in the liquid crystal display device manufacturing industry.
<75>  <75>

Claims

【청구의 범위】 [Range of request]
【청구항 1】  [Claim 1]
기판상에 탄소나노튜브 클러스터 및 증합성 물질을 흔합하여 도포하는 단계; 상기 흔합물이 도포된 기판에 전기장 또는 자기장을 제공하여 탄소나노튜브 클러스터를 일정 방향으로 연신하는 단계 ; 및  Mixing and applying carbon nanotube clusters and the polymerizable material onto the substrate; Stretching the carbon nanotube clusters in a predetermined direction by providing an electric or magnetic field to the substrate coated with the mixture; and
열 또는 광을 제공하여 중합성 물질을 경화시키는 단계를 포함하는 탄소나노튜브 편광필름의 제조방법. A method of producing a carbon nanotube polarizing film comprising the step of providing heat or light to cure the polymerizable material.
【청구항 21  [Claim 21]
제 1항에 있어서, 상기 중합성 물질은 아크릴기, 비닐에테르기 또는 에폭사 이드 관능기를 가지는 액정 화합물인 것을 특징으로 하는 탄소나노튜브 편광필름의 제조방법.  The method of claim 1, wherein the polymerizable material is a liquid crystal compound having an acryl group, a vinyl ether group, or an epoxide functional group.
【청구항 3】  [Claim 3]
제 1항에 있어서, 상기 증합성 물질은 열 또는 자외선에 의해 경화되는 고분 자이거나 그 단량체인 것을 톡징으로 하는 탄소나노튜브 편광필름의 제조방법.  The method of manufacturing a carbon nanotube polarizing film of claim 1, wherein the polymerizable material is a polymer that is cured by heat or ultraviolet rays or monomers thereof.
【청구항 4】  [Claim 4]
제 3항에 있어서, 상기 고분자는 트리아세틸셀를로스 (Triacetyl cellulose; TAC), 폴리아크릴계 (Polyacryl group), 폴리을레핀 (Polyolef ine; P0), 플리카보네 이트 (Poly Carbonate; PC), 폴리에틸렌 텔레프탈레이트 (Polyethylene Telephthalate; PET), 폴리프로필렌 (Polypropylene; PP), 폴리에틸렌 (Polyethylene, PE) 및 이들의 단량체 중에서 선택된 것을 특징으로 하는 탄소나노 튜브 편광필름의 제조방법 .  The method of claim 3, wherein the polymer is a triacetyl cellulose (TAC), a polyacryl group (Polyacryl group), polyolefine (PO), polycarbonate (PC), polyethylene terephthalate (Polyethylene Telephthalate; PET), polypropylene (Polypropylene; PP), polyethylene (Polyethylene, PE) and a method for producing a carbon nanotube polarizing film, characterized in that selected from monomers thereof.
【청구항 5]  [Claim 5]
제 1항에 있어서, 전기장 또는 자기장을 발생하는 장치는 상기 기판의 상부 또는 하부에 위치하는 것을 특징으로 하는 탄소나노튜브 편광필름의 제조방법 .  The method of claim 1, wherein the device for generating an electric or magnetic field is located on the upper or lower portion of the substrate.
【청구항 6]  [Claim 6]
제 1항에 있어서, 상기 흔합물에 제공되는 전기장 또는 자기장의 세기는 상 기 탄소나노튜브 클러스터의 문턱전기장 (threshold electrode field) 이상 파단전 기장 미만인 것을 특징으로 하는 탄소나노튜브 편광필름의 제조방법 .  The method of claim 1, wherein the strength of the electric field or the magnetic field provided to the mixture is less than a threshold electrode field of the carbon nanotube cluster.
【청구항 7】  [Claim 7]
제 1항에 있어서, 상기 기판은 장척의 필름 형태인 것을 특징으로 하는 탄소 나노튜브 편광필름의 제조방법 .  The method of claim 1, wherein the substrate is in the form of a long film.
【청구항 81  [Claim 81]
제 1항에 있어서, 상기 기판은 시트 (sheet) 형태인 것을 특징으로 하는 탄소 나노튜브 편광필름의 제조방법 . The carbon of claim 1, wherein the substrate is in the form of a sheet. Method for Producing Nanotube Polarizing Film.
【청구항 9]  [Claim 9]
제 1항에 있어서 , 상기 탄소나노튜브는 상기 흔합물에 1 내지 50 %로 포함 되는 것을 특징으로 하는 탄소나노튜브 편광필름 제조방법 .  The method of claim 1, wherein the carbon nanotubes are contained in the mixture in an amount of 1 to 50%.
【청구항 10]  [Claim 10]
제 6항에 있어서, 상기 기판이 시트 형 태일 경우 전기장 또는 자기장의 발생 장치는 교대로 연결됨을 반복하는 것을 특징으로 하는 탄소나노튜브 편광필름 제조 방법 ·  The method of claim 6, wherein when the substrate is in the form of a sheet, a method for producing a carbon nanotube polarizing film, characterized in that the electric device or the magnetic field generating device is alternately connected.
【청구항 11】  [Claim 11]
제 1항 내지 제 10항 중 어느 한 항에 의해 제조된 탄소나노류브 편광필름으 로서 , 상기 편광필름은 중합성 물질이 경화된 바인더, 및 한쪽 방향으로 연신되어 상기 바인더에 고정된 탄소나노튜브 클러스트를 포함하는 것을 특징으로 하는 탄소 나노튜브 편광필름 .  11. A carbon nanoleuze polarizing film prepared according to any one of claims 1 to 10, wherein the polarizing film is a binder in which a polymerizable material is cured, and a carbon nanotube crust drawn in one direction and fixed to the binder. Carbon nanotube polarizing film comprising a.
【청구항 12】  [Claim 12]
제 1항 내지 제 10항 중 어느 한 항에 의해 형성된 탄소나노튜브 편광필름을 포함하는 액정표시소자로서, 상기 편광필름이 액정표시소자 내부 또는 외부에 코팅 되어 형성되는 것올 특징으로 하는 액정표시소자 .  A liquid crystal display device comprising the carbon nanotube polarizing film formed by any one of claims 1 to 10, wherein the polarizing film is formed by being coated inside or outside the liquid crystal display device.
PCT/KR2014/003353 2013-06-04 2014-04-17 Method of manufacturing carbon nanotube polarizing film and carbon nanotube polarizing film thereby WO2014196733A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020130063819A KR102028209B1 (en) 2013-06-04 2013-06-04 Carbon nanotube Polarizer and Fabricating Method of the same
KR10-2013-0063819 2013-06-04

Publications (1)

Publication Number Publication Date
WO2014196733A1 true WO2014196733A1 (en) 2014-12-11

Family

ID=52008333

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/003353 WO2014196733A1 (en) 2013-06-04 2014-04-17 Method of manufacturing carbon nanotube polarizing film and carbon nanotube polarizing film thereby

Country Status (2)

Country Link
KR (1) KR102028209B1 (en)
WO (1) WO2014196733A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11360253B2 (en) * 2018-02-05 2022-06-14 Tsinghua University Generator and method for generating far infrared polarized light

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102343503B1 (en) 2020-04-22 2021-12-24 중앙대학교 산학협력단 Carbon nanotube alignment method and the aligned carbon nanotube sensor and manufacturing method of the carbon nanotube sensor
KR102316798B1 (en) 2020-09-02 2021-10-22 중앙대학교 산학협력단 Sensor and sensor array unit using radially aligned carbon nanotubes
KR102479975B1 (en) 2021-01-11 2022-12-20 중앙대학교 산학협력단 Wearable device for assisting body movement

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090023998A (en) * 2007-09-03 2009-03-06 웅진케미칼 주식회사 Polarizer including carbon nano tube and preparing thereof
JP2010229288A (en) * 2009-03-27 2010-10-14 Toray Ind Inc Electroconductive film and method for manufacturing the same
KR20110079139A (en) * 2009-12-31 2011-07-07 웅진케미칼 주식회사 Manufacturing method of polarizing film and polarizing film thereby
JP4907008B2 (en) * 2001-03-02 2012-03-28 財団法人ファインセラミックスセンター Carbon nanotube, whisker with carbon nanotube, and method for producing whisker with carbon nanotube
KR20130003467A (en) * 2011-06-30 2013-01-09 제일모직주식회사 Transparent conductive film containing a carbon nanotube and method for preparing the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070003263A (en) * 2005-07-01 2007-01-05 삼성전자주식회사 Polarizing film, liquid crystal display including polarizing film, and manufacturing method thereof
KR101066821B1 (en) * 2009-05-11 2011-09-23 전북대학교산학협력단 High Performance Thin Film Polarizer
KR101101871B1 (en) * 2009-10-28 2012-01-05 전북대학교산학협력단 High Performance Dynamic Polarizer Mixture, Polarizer Device and Carbon Nanotube Display Device comprising the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4907008B2 (en) * 2001-03-02 2012-03-28 財団法人ファインセラミックスセンター Carbon nanotube, whisker with carbon nanotube, and method for producing whisker with carbon nanotube
KR20090023998A (en) * 2007-09-03 2009-03-06 웅진케미칼 주식회사 Polarizer including carbon nano tube and preparing thereof
JP2010229288A (en) * 2009-03-27 2010-10-14 Toray Ind Inc Electroconductive film and method for manufacturing the same
KR20110079139A (en) * 2009-12-31 2011-07-07 웅진케미칼 주식회사 Manufacturing method of polarizing film and polarizing film thereby
KR20130003467A (en) * 2011-06-30 2013-01-09 제일모직주식회사 Transparent conductive film containing a carbon nanotube and method for preparing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11360253B2 (en) * 2018-02-05 2022-06-14 Tsinghua University Generator and method for generating far infrared polarized light

Also Published As

Publication number Publication date
KR102028209B1 (en) 2019-11-04
KR20140142453A (en) 2014-12-12

Similar Documents

Publication Publication Date Title
EP2933677B1 (en) Liquid crystal element
JP5905272B2 (en) Method for producing optically anisotropic layer
KR20070058335A (en) Elliptically polarizing plate and method of producing the same
JP2020144373A (en) Optically anisotropic sheet
US9454030B2 (en) Polymer dispersed liquid crystal film and method for manufacturing the same
WO2018101196A1 (en) Polymerizable liquid crystal composition, optically anisotropic membrane, optical film, polarizing plate, image display device, and organic electroluminescent display device
CN106716192B (en) Polarizer and image display device including it
JP2016126130A (en) Laminate for organic el display device and organic el display device
WO2014196733A1 (en) Method of manufacturing carbon nanotube polarizing film and carbon nanotube polarizing film thereby
WO2017170360A1 (en) Optically anisotropic laminate, circularly polarizing plate, and image display device
KR101066821B1 (en) High Performance Thin Film Polarizer
US20120164317A1 (en) Method for fabricating polarizer
KR20210049798A (en) Circular polarizing plate and image display device using the same
US10899966B2 (en) Self-oriented material, self-oriented liquid crystal material and manufacturing method of liquid crystal panel
JP6224828B2 (en) Radical curable adhesive composition and polarizing plate containing the same
JPWO2019156027A1 (en) Laminated body, manufacturing method of laminated body and image display device
CN106715623A (en) Polarizing plate and display apparatus comprising same
JP2016184031A (en) Alignment film for liquid crystal and reverse mode polymer dispersion type liquid crystal element
KR102009821B1 (en) polarizer, manufacturing method thereof, and liquid crystal display including the same
CN104685019B (en) Radical curable adhesive composition and polarizing plate comprising same
KR102078021B1 (en) polarizer, manufacturing method thereof, and liquid crystal display including the same
KR101627928B1 (en) Radical curable adhesive composition, polarizing plate and optical member comprising the same
CN112074408B (en) Method for manufacturing polarizing plate
JP2015169875A (en) Optical film, transfer body for optical film, and image display device
WO2017082387A1 (en) Liquid crystal alignment film production method, three-dimensional liquid crystal cell production method, and three-dimensional liquid crystal cell

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14807032

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14807032

Country of ref document: EP

Kind code of ref document: A1