WO2014196500A1 - Glass tape, glass tape manufacturing method and product manufacturing method - Google Patents

Glass tape, glass tape manufacturing method and product manufacturing method Download PDF

Info

Publication number
WO2014196500A1
WO2014196500A1 PCT/JP2014/064617 JP2014064617W WO2014196500A1 WO 2014196500 A1 WO2014196500 A1 WO 2014196500A1 JP 2014064617 W JP2014064617 W JP 2014064617W WO 2014196500 A1 WO2014196500 A1 WO 2014196500A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass tape
main surface
glass
temperature
curved
Prior art date
Application number
PCT/JP2014/064617
Other languages
French (fr)
Japanese (ja)
Inventor
智昭 川村
俊輔 岸本
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Priority to JP2014528722A priority Critical patent/JP6358090B2/en
Publication of WO2014196500A1 publication Critical patent/WO2014196500A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B23/00Re-forming shaped glass
    • C03B23/02Re-forming glass sheets
    • C03B23/037Re-forming glass sheets by drawing
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B23/00Re-forming shaped glass
    • C03B23/02Re-forming glass sheets
    • C03B23/023Re-forming glass sheets by bending
    • C03B23/03Re-forming glass sheets by bending by press-bending between shaping moulds
    • C03B23/0302Re-forming glass sheets by bending by press-bending between shaping moulds between opposing full-face shaping moulds
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B23/00Re-forming shaped glass
    • C03B23/02Re-forming glass sheets
    • C03B23/023Re-forming glass sheets by bending
    • C03B23/03Re-forming glass sheets by bending by press-bending between shaping moulds
    • C03B23/0307Press-bending involving applying local or additional heating, cooling or insulating means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2801/00Application field
    • B65H2801/61Display device manufacture, e.g. liquid crystal displays

Definitions

  • the present invention relates to a tough and flexible glass tape, a glass tape manufacturing method, and a product manufacturing method.
  • Patent Document 1 discloses a glass ribbon (glass tape) having a thickness of 100 ⁇ m or less. This glass ribbon does not break even when wrapped around a human finger. The surface of the glass ribbon is formed as smoothly as possible. When arrange
  • optical contact In surface contact between smooth surfaces, optical contact (optical contact) occurs. Due to the optical contact, the glass ribbon and the glass plate are strongly adhered to each other, and the positioning operation of the glass ribbon may be difficult.
  • This invention is made
  • the objective is suppressing generation
  • the glass tape has a thickness D, a width W, and a length L, and satisfies D ⁇ W.
  • the glass tape is curved with respect to the width direction.
  • the glass tape of the present invention preferably has two side edges and is curved over the two side edges.
  • the glass tape of the present invention is preferably curved in one direction across the two side edges.
  • the center plane passing through the two side edges is curved.
  • the side edge preferably has a convex curved surface.
  • the glass tape of the present invention is preferably used by being placed on a flat surface.
  • the curvature is such that a capillary phenomenon is caused by injecting liquid into the space between the flat surface. It is preferable to bend at R.
  • the curvature R is preferably 0.001% or more and 1.0% or less.
  • H is the length of a perpendicular line extending from the bottom of the curved surface facing the flat surface to the flat surface when the glass tape is disposed so that the two side edges are in contact with the flat surface.
  • the glass tape of the present invention preferably has a first main surface and a second main surface facing the first main surface.
  • the first main surface is preferably curved along the second main surface.
  • the glass tape of the present invention preferably satisfies W ⁇ L.
  • the glass tape manufacturing method includes a heating step, a stretching step, and a bending step.
  • the heating step the mother glass plate is heated.
  • the stretching step the heated mother glass plate is stretched and formed into a basic glass tape having a thickness Db, a width Wb, and a length Lb and satisfying Db ⁇ Wb.
  • the bending step the basic glass tape having two side edges at both ends in the width direction is bent in one direction across the two side edges.
  • the bending step includes a step of sandwiching the basic glass tape with a mold, an atmospheric temperature on the first main surface side, and an atmospheric temperature on the second main surface side of the basic glass tape, respectively.
  • the first main surface side and the second main surface side are set such that the atmospheric temperature on the second main surface side maintained at the atmospheric temperature and the second temperature reach the third temperature in the third period, respectively.
  • a step of gradually cooling at different annealing rates The step of raising the temperature, the step of holding, and the step of gradually cooling are performed in a state where the basic glass tape is sandwiched between the molds.
  • the bending step includes a step of sandwiching the basic glass tape with a curved mold while heating the basic glass tape.
  • the bending step includes a step of sandwiching the basic glass tape with a mold while heating the basic glass tape, and a first of the basic glass tape coming out of the mold. It is preferable to include a step of slowly cooling the main surface side and the second main surface side at different slow cooling rates.
  • the said bending process is performed in the said extending process.
  • the heating step includes a step of heating the first main surface side and the second main surface side of the mother glass plate at different temperatures.
  • the product manufacturing method is a method for manufacturing a product including a glass tape and a first glass plate as members.
  • the product manufacturing method includes a step of placing the glass tape on the first glass plate such that two side edges of the glass tape are in contact with the first glass plate, and the glass tape and the first glass plate. And injecting a liquid into the space between the two.
  • the method further includes a step of placing the second glass plate on the glass tape.
  • the glass tape functions as a thickness regulating member.
  • the glass tape is curved with respect to the width direction, when the glass tape is disposed on the flat surface of the glass plate, the contact area between the glass tape and the glass plate is small. As a result, the occurrence of optical contact can be suppressed, and the glass tape positioning operation on the glass plate can be easily performed.
  • FIG. 1 It is a perspective view which shows typically the glass tape in Embodiment 1 of this invention. It is sectional drawing of the glass tape in Embodiment 1 of this invention. It is a front view which shows typically the glass tape of FIG. It is an enlarged view of the side edge of the glass tape of FIG. 3A. It is a flowchart which shows the glass tape manufacturing method in Embodiment 2 of this invention. It is a flowchart which shows the product manufacturing method in Embodiment 3 of this invention. It is a vertical side view which shows schematic structure of the glass tape manufacturing apparatus in Embodiment 4 of this invention. It is a figure explaining the temperature control by the glass tape manufacturing apparatus of FIG.
  • FIG. 1 is a perspective view schematically showing a glass tape 1 according to Embodiment 1 of the present invention.
  • the glass tape 1 has a thickness D, a width W, and a length L, and satisfies D ⁇ W.
  • the glass tape 1 is curved with respect to the width direction of the glass tape 1.
  • a glass plate 5 having a flat surface 7 is shown, and the glass tape 1 is disposed on the flat surface 7.
  • the glass tape 1 has high toughness and high flexibility as compared with a plate glass having a large thickness such as a window glass.
  • the thickness D of the glass tape 1 having high toughness and high flexibility is, for example, 1 ⁇ m to 100 ⁇ m.
  • the thickness D indicates, for example, an average thickness.
  • the thickness D of the glass tape 1 is preferably 4 ⁇ m to 50 ⁇ m, and more preferably 10 ⁇ m to 30 ⁇ m.
  • the thickness D indicates, for example, an average thickness.
  • the glass tape 1 has two side edges 3.
  • the two side edges 3 are substantially parallel.
  • the glass tape 1 is curved over the two side edges 3. In other words, the glass tape 1 is curved with the two side edges 3 as both ends.
  • the width W of the glass tape 1 is, for example, 5 mm to 50 mm.
  • the width W indicates an average width, for example.
  • the width W of the glass tape 1 is preferably 7 mm to 40 mm, and more preferably 10 mm to 30 mm.
  • the glass tape 1 is curved with respect to the width direction, when the glass tape 1 is disposed on the flat surface 7 of the glass plate 5, the contact between the two becomes a line contact. That is, as shown in FIG. 1, the two side edges 3 are in line contact with the glass plate 5. Since it is a line contact, the contact area of the glass tape 1 and the glass plate 5 is small compared with the case of surface contact. As a result, the occurrence of optical contact can be suppressed, and the positioning operation of the glass tape 1 on the glass plate 5 can be easily performed.
  • the glass plate 5 is a concept including a glass substrate.
  • FIG. 2 is a cross-sectional view of the glass tape 1.
  • FIG. 2 shows a cross section when the glass tape 1 is cut along a plane orthogonal to the side edges 3.
  • a direction CR1 and a direction CR2 indicate directions orthogonal to the flat surface 7 and are opposite to each other.
  • the glass tape 1 has a first main surface F1 and a second main surface F2 facing the first main surface F1.
  • the second main surface F2 has a bottom BM.
  • the bottom portion BM indicates a bottom point of the concave second main surface F2 in a cross-sectional view.
  • the bottom BM is formed along the side edge 3.
  • the center plane CF passing through the two side edges 3 is curved. That is, at least the second main surface F2 is curved such that the center surface CF passing through the two side edges 3 is curved. In the first embodiment, the first main surface F1 and the second main surface F2 are curved such that the center surface CF passing through the two side edges 3 is curved.
  • the center plane CF is a virtual plane equidistant from the first main surface F1 and the second main surface F2.
  • the center plane CF is on the two side edges 3 and the plurality of midpoints PM in a cross-sectional view when the glass tape 1 is disposed on the flat surface 7.
  • one midpoint PM is shown for simplification of the drawing.
  • the midpoint PM is a midpoint of a line segment connecting the first point P1 on the first main surface F1 and the second point P2 on the second main surface F2.
  • the length from the first point P1 to the one side edge 3 along the first main surface F1 is A1
  • the length from the first point P1 to the other side edge 3 along the first main surface F1 is B1.
  • the length from the second point P2 to the one side edge 3 along the second main surface F2 is a1
  • the length from the second point P2 to the other side edge 3 along the second main surface F2 is described as b1. Then, the following relationship is established.
  • A1 / B1 a1 / b1
  • the glass tape 1 is curved in one direction (direction CR1) over the two side edges 3 with respect to the width direction.
  • the glass tape 1 is curved in one direction (direction CR1) with the two side edges 3 as both ends with respect to the width direction.
  • the second main surface F2 has one bottom BM.
  • the two side edges 3 of the glass tape 1 are in contact with the flat surface 7. That is, the glass tape 1 contacts the flat surface 7 at two contact points CP in a cross-sectional view.
  • the second main surface F2 of the glass tape 1 is formed so that the space 9 is line symmetric.
  • the space 9 is a space between the second main surface F2 and the flat surface 7.
  • first main surface F1 is curved along the second main surface F2. That is, the first main surface F1 is substantially parallel to the second main surface F2. Accordingly, the first main surface F1 and the second main surface F2 are curved surfaces that are curved in a convex shape and a concave shape along the direction CR1, respectively.
  • FIG. 3A is a front view schematically showing the glass tape 1.
  • FIG. 3B is an enlarged view of region 11 of FIG. 3A.
  • the width W is a length between a line (hereinafter, referred to as “tangent”) C between the two side edges 3 and the flat surface 7 (a length along a direction perpendicular to the two side edges 3). is there.
  • the length L is the length of the tangent C (the length along the side edge 3).
  • the width W is shorter than the length L. That is, the glass tape 1 satisfies W ⁇ L.
  • the side edge 3 is along the longitudinal direction of the glass tape 1.
  • the side edge 3 has a convex curved surface 4 protruding toward the outside of the glass tape 1.
  • the two side edges 3 are smoothly connected to the second main surface F2 and the first main surface F1, respectively.
  • the two side edges 3 are connected to the second main surface F2 and the first main surface F1, respectively, so that each angle of the corner portion 3a and the corner portion 3b becomes an obtuse angle.
  • production of a chip and a crack can be prevented.
  • the glass tape 1 can be bent with a large curvature.
  • the X-axis direction is a direction perpendicular to the tangent line C and parallel to the flat surface 7.
  • the Y-axis direction is a direction parallel to the tangent line C.
  • the Z-axis direction is a direction orthogonal to the X-axis direction and the Y-axis direction. Therefore, the width W is substantially equal to the length of the glass tape 1 along the X-axis direction.
  • the length L is the length of the glass tape 1 along the Y-axis direction.
  • the degree of curvature in one direction of the glass tape 1 is represented by a curvature rate R.
  • the curvature R (%) is defined by the following equation using the width W and the maximum height H of the glass tape 1.
  • the width W and the maximum height H are measured by placing the glass tape 1 so that the two side edges 3 are in contact with the flat surface 7 of the glass plate 5. Therefore, the width W is the length (shortest distance) between the two tangents C.
  • the maximum height H is the length of a perpendicular line extending from the bottom BM of the second main surface F2 (curved surface) facing the flat surface 7 to the flat surface 7.
  • the glass tape 1 is used by being disposed on the flat surface 7. And when the glass tape 1 is arrange
  • a preferable first example and second example of the glass tape 1 that easily causes capillary action are as follows.
  • the glass tape 1 has a mass% of SiO 2 60 to 70%, B 2 O 3 10 to 20%, Al 2 O 3 0 to 10%, CaO 0 to 10%, ZnO 0 to 10%, Sb. 2 O 3 0 ⁇ 1% composition.
  • the glass tape 1 has a composition of SiO 2 55 to 65%, Al 2 O 3 13 to 18%, B 2 O 3 8 to 13%, RO (MgO + CaO + SrO + BaO) 10 to 20% by mass. contains.
  • the capillary phenomenon is used for temporarily fixing the glass tape 1 to the glass plate 5 after the positioning operation of the glass tape 1 on the glass plate 5 is completed. That is, the liquid injected into the space 9 from one end of the space 9 quickly reaches the other end of the space 9 by capillary action. As a result, the glass tape 1 is temporarily fixed to the glass plate 5 by the surface tension of the liquid. Moreover, it can suppress that a bubble enters between the glass tape 1 and the glass plate 5.
  • FIG. Accordingly, the glass tape 1 is arranged such that the two side edges 3 are in contact with the glass plate 5 (flat surface 7), and liquid is injected into the space 9 with the glass plate 5 (flat surface 7).
  • the glass tape 1 is used as a member that defines the thickness of a product or space (hereinafter referred to as a “thickness defining member”), the positioning accuracy of the thickness defining member can be improved.
  • the thickness defining member is, for example, a gap material, a spacer material, a seal material, or the like.
  • the glass tape 1 is not limited to the presence or absence of undulation, but it is more preferable that the glass tape 1 does not have undulation.
  • a glass tape having waviness is placed on a glass plate, and a liquid is injected and temporarily fixed.
  • a portion other than the side edge may come into contact with the glass plate before liquid injection.
  • x is an integer of 1 or more
  • (x + 1) spaces where liquid can be injected are formed.
  • the liquid injection amount may be non-uniform, and the temporarily fixed strength may be non-uniform.
  • the liquid injection amount may be non-uniform. Fixing strength may be uneven. Furthermore, if the amount of liquid injected is non-uniform, bubbles may enter the space. Air bubbles reduce the strength of temporary fixing and reduce the positioning accuracy of the glass tape 1. Therefore, it is preferable that the glass tape 1 does not have such a swell that portions other than the two side edges 3 are in contact with the glass plate 5 (flat surface 7).
  • FIG. 4 is a flowchart showing a manufacturing method for manufacturing the glass tape 1 according to the first embodiment.
  • This manufacturing method includes a heating step S1, a stretching step S3, and a bending step S5.
  • a plate-shaped mother glass hereinafter referred to as “mother glass plate” (not shown) is heated.
  • the stretching step S3 the heated mother glass plate is stretched and formed into a basic glass tape (not shown) having a thickness Db, a width Wb, and a length Lb and satisfying Db ⁇ Wb.
  • the bending step S5 a basic glass tape having two side edges at both ends in the width direction is bent in one direction across the two side edges. As a result, the glass tape 1 curved in one direction is manufactured.
  • the glass tape before bending in the bending step S5 is defined as “basic glass tape” and is distinguished from the glass tape 1.
  • FIG. 5 is a flowchart showing a product manufacturing method.
  • the product manufacturing method is a method for manufacturing a product (hereinafter referred to as “final product”) including the glass tape 1 and the glass plate 5 (first glass plate) of Embodiment 1 as members.
  • the product manufacturing method includes steps S11 and S13.
  • step S ⁇ b> 11 the glass tape 1 is placed on the glass plate 5 so that the two side edges 3 of the glass tape 1 are in contact with the glass plate 5.
  • the entire two side edges 3 are preferably in contact with the flat surface 7 of the glass plate 5, but there may be a portion that is not in contact with the flat surface 7 of the glass plate 5.
  • a liquid is injected into the space 9 between the glass tape 1 and the flat surface 7.
  • the glass tape 1 is temporarily fixed to the glass plate 5 with a liquid filled in the space 9 by capillary action.
  • the liquid is, for example, a non-volatile liquid (for example, water) or a volatile liquid (for example, alcohol).
  • a volatile liquid for example, it is possible to save the trouble of drying the liquid at the time of final bonding after temporary fixing.
  • step S15 the glass plate 5 and the glass tape 1 are processed according to the final product.
  • the glass tape 1 is used, for example, as a thickness regulating member for the final product.
  • process S15 includes the process of arrange
  • the final product is, for example, a product including two or more glass substrates and a thickness regulating member disposed between the two glass substrates (for example, a solar cell, an organic EL (Electro Luminescence) display, a preparation, etc.) It is.
  • the glass tape 1 is not curved, has a shape having a flat surface, and functions as a thickness regulating member.
  • the glass tape 1 When the glass tape 1 is used as a solar cell thickness regulating member, four glass tapes 1 are arranged along the four sides of the rectangular first glass substrate (step S11). Then, the four arranged glass tapes 1 are temporarily fixed by liquid injection (step S13). Further, a solar cell substrate or the like is disposed in an area surrounded by four glass tapes 1, and a second glass substrate having substantially the same shape as the first glass substrate is placed on the four glass tapes 1. The first glass substrate and the second glass substrate are bonded to each other by applying heat or the like (step S15).
  • the two glass tapes 1 are arranged along the two long sides of the rectangular third glass substrate (step S11). Then, two glass tapes are temporarily fixed to the third glass substrate by liquid injection (step S13). Further, the specimen is left still between the two glass tapes 1, and the glass tape 1 is sandwiched between the third glass substrate and the rectangular fourth glass substrate (step S15).
  • the final product can be manufactured by effectively utilizing the characteristics of the glass tape 1 curved in one direction.
  • FIG. 6 is a longitudinal side view showing a schematic configuration of the manufacturing apparatus 23.
  • FIG. 7 is a diagram for explaining temperature control by the manufacturing apparatus 23.
  • the manufacturing apparatus 23 is a heating apparatus for manufacturing the glass tape 1 according to the first embodiment.
  • the manufacturing apparatus 23 includes a furnace 25, a heater 27, a mold 29, a heater 33, and a heater 35.
  • the mold 29 includes a template 29A and a template 29B.
  • the heater 27 and the mold 29 are disposed in the furnace 25.
  • the heater 33 is disposed outside the inlet 36.
  • the heater 35 is disposed outside the outlet 41.
  • the inlet 36 and the outlet 41 are formed on one side and the other side of the furnace 25, respectively.
  • a supply path 31 for filling the nitrogen gas is formed in the furnace 25.
  • the atmosphere in the furnace 25 will be described.
  • the furnace 25 is filled with nitrogen (N 2 ) gas.
  • N 2 nitrogen
  • the inside of the furnace 25 is evacuated.
  • the basic glass tape 37 is sandwiched with the specified load P by the template 29A and the template 29B until the temperature raising step.
  • the main surface F3 (first main surface) and the main surface F4 (second main surface) of the basic glass tape 37 are arranged to face each other.
  • the main surface F3 and the main surface F4 are orthogonal to the vertical line.
  • the surface facing the main surface F3 is a flat surface.
  • the surface facing the main surface F4 is a flat surface.
  • the temperature curve 53 shows the ambient temperature around the principal surface F3.
  • a temperature curve 54 shows the ambient temperature around the main surface F4.
  • the basic glass tape 37 is preheated from room temperature to a temperature T0 by the heater 33, and then conveyed along the conveyance direction 38 from the inlet 36 to the template 29A and the template 29B. Then, the basic glass tape 37 is sandwiched between the template 29A and the template 29B.
  • the main surface F3 side is heated from the temperature T0 to the temperature T1 by the heater 27 in the period s0 (temperature raising step). And the main surface F3 side is hold
  • the main surface F4 side is heated from the temperature T0 to the temperature T2 by the heater 27 in the period s0 (temperature raising step).
  • the main surface F4 side is held at the temperature T2 by the heater 27 in the period s1 (heat retention step). Further, the main surface F4 side is gradually cooled from the temperature T2 to the temperature T3 under the temperature control by the heater 27 in the period s2 (gradual cooling step).
  • the main surface F3 side and the main surface F4 side are cooled from the temperature T3 to the temperature T0 under the temperature control by the heater 27 in the period s3 (cooling step).
  • the template 29A and the template 29B release the load. From the above, at least the temperature raising step, the heat retaining step, and the slow cooling step are performed with the basic glass tape 37 sandwiched between the molds 29.
  • the basic glass tape 37 is conveyed from the outlet 41 to the outside of the furnace 25 along the conveying direction 38, is subjected to temperature control by the heater 35, and is gradually cooled from the temperature T0 to room temperature.
  • the basic glass tape 37 after the slow cooling is convexly curved in the vertically upward direction.
  • the basic glass tape 37 is curved in one direction. That is, the glass tape 1 is manufactured from the basic glass tape 37.
  • the temperature T0 may be room temperature. In this case, the functions of the heater 33 and the heater 35 are stopped. Alternatively, the heater 33 and the heater 35 may not be provided.
  • FIG. 5 A manufacturing method according to Embodiment 5 of the present invention will be described with reference to FIGS. 1, 3A, 4, and 6 to 8.
  • FIG. This manufacturing method is executed using the manufacturing apparatus 23.
  • the manufacturing method is the same as the manufacturing method according to the second embodiment described with reference to FIG.
  • FIG. 8 is a flowchart showing the bending step S5 according to the fifth embodiment.
  • step S51 first, the basic glass tape 37 is sandwiched between the molds 29.
  • steps S53 to S57 the heater 27 is controlled to perform temperature control. Steps S53 to S57 are performed in a state where the basic glass tape 37 is sandwiched between the molds 29.
  • step S53 temperature raising step
  • the atmospheric temperature on the main surface F3 side and the atmospheric temperature on the main surface F4 side of the basic glass tape 37 are the temperature T1 (first temperature) and the temperature T2 (in the period s0 (first period), respectively.
  • the main surface F3 side and the main surface F4 side are heated at different heating rates so as to reach the second temperature.
  • step S55 heat retention step
  • step S57 slow cooling step
  • the atmospheric temperature on the main surface F3 side held at the temperature T1 and the atmospheric temperature on the main surface F4 side held at the temperature T2 are respectively the temperature T3 (first time) in the period s2 (third period).
  • the main surface F3 side and the main surface F4 side are slowly cooled at different cooling rates so as to reach (3 temperatures).
  • the basic glass tape 37 is curved in one direction. That is, the glass tape 1 is manufactured from the basic glass tape 37.
  • the manufacturing method is executed by the manufacturing apparatus 23.
  • the temperature control shown in FIG. 7 is not performed.
  • the manufacturing method is the same as the manufacturing method according to the second embodiment described with reference to FIG. 4.
  • step S5 of the sixth and seventh embodiments in FIG. The difference is that the atmospheric temperature on the main surface F3 side and the atmospheric temperature on the main surface F4 side sandwiched between the metal mold 39 or the metal mold 29 in FIG. 6 are maintained at the same temperature (for example, 620 ° C.).
  • FIG. 9 is a front view schematically showing a mold 39 used in the manufacturing method.
  • a mold 39 is used in place of the mold 29 of the manufacturing apparatus 23.
  • the mold 39 includes a template 39A and a template 39B.
  • the contact surface (molding surface) with the main surface F3 is a concave surface curved in one direction.
  • the contact surface (molding surface) with the main surface F4 is a convex surface curved in the same direction as the contact surface of the template 39A.
  • step S5 the basic glass tape 37 is sandwiched between the curved molds 39 while the basic glass tape 37 is heated by the heater 27. As a result, the basic glass tape 37 bends in one direction according to the shape of the mold 39.
  • the glass tape 1 is manufactured from the basic glass tape 37 through the steps S1 to S5.
  • Step S5 includes a first step and a second step.
  • the basic glass tape 37 is sandwiched between the molds 29 while the basic glass tape 37 is heated by the heater 27.
  • the heater 35 is controlled to slowly cool the main surface F3 side and the main surface F4 side of the basic glass tape 37 coming out of the mold 29 at different slow cooling rates (cooling rate). Specifically, the cooling is performed so that the gradual speed on the main surface F4 side becomes larger than the gradual cooling speed on the main surface F3 side.
  • the basic glass tape 37 after the slow cooling is convexly curved in the vertically upward direction. In this way, the gradually cooled basic glass tape 37 is curved in one direction by making the slow cooling rate different between the main surface F3 side and the main surface F4 side.
  • the glass tape 1 is manufactured from the basic glass tape 37 through the steps S1 to S5.
  • FIG. 10 is a diagram for explaining temperature control by the manufacturing method.
  • the temperature curve 63 shows the ambient temperature around the main surface F3.
  • a temperature curve 64 shows the ambient temperature around the main surface F4.
  • the heater 27 is controlled to execute temperature control.
  • the period s13 time t13 to time t14
  • the period s14 time t14 to time t15
  • the period s15 time t15 to time t16
  • the period s16 time t16 to time t17
  • the basic glass tape 37 is conveyed along the conveyance direction 38 between the template 29A and the template 29B from the inlet 36.
  • the template glass 29A and the template 29B sandwich the basic glass tape 37 before the temperature raising step.
  • the main surface F3 side is heated from the temperature T0 to the temperature T11 in the period s10 (temperature increasing step on the main surface F3 side). And the main surface F3 side is hold
  • the main surface F4 side is heated from the temperature T0 to the temperature T11 in the period s10 and the period s11 (temperature increasing step on the main surface F4 side). And the main surface F4 side is hold
  • the template 29A and the template 29B release the load. Then, the basic glass tape 37 is transported from the outlet 41 to the outside of the furnace 25 along the transport direction 38.
  • the transport time in this case is negligible because it is so short that it does not affect the temperature control of the basic glass tape 37.
  • the main surface F3 side is gradually cooled from the temperature T11 to the temperature T12 in the period s13 and the period s14 (the slow cooling process on the main surface F3 side). Further, the main surface F3 side is cooled from the temperature T12 to the temperature T0 in the period s15 and the period s16 (the cooling process on the main surface F3 side). On the other hand, the main surface F4 side is gradually cooled from the temperature T11 to the temperature T12 in the period s13 (the slow cooling process on the main surface F4 side). Further, the main surface F4 side is cooled from the temperature T12 to the temperature T0 in the period s14 and the period s15 (cooling process on the main surface F4 side).
  • the basic glass tape 37 after the slow cooling is convexly curved in the vertically upward direction.
  • the main surface F3 side and the main surface F4 side are heated to the same temperature (T11) at different heating rates (period s10, period s11, period s12), and the main surface F3 side and the main surface F4 side Is gradually cooled at different slow cooling rates (period s13, period s14), the slowly cooled basic glass tape 37 bends in one direction. That is, the glass tape 1 is manufactured from the basic glass tape 37.
  • the temperature T0, the temperature T11, and the temperature T12 are room temperature, 620 ° C., and 555 ° C., respectively. Since the temperature T0 is room temperature, the function of the heater 33 is stopped or the heater 33 may not be provided.
  • the period s10, the period s11, the period s12, the period s13, the period s14, the period s15, and the period s16 are 2 minutes, 0.5 minutes, 0.5 minutes, 1.5 minutes, 1.5 minutes, 3.5 minutes and 3.5 minutes.
  • the specified load P by the mold 29 is 0.5 KN (kilonewtons).
  • the furnace 25 is filled with nitrogen (N 2 ) gas, and in the period s11 and the period s12, the furnace 25 is evacuated.
  • FIG. 11 is a longitudinal side view showing a schematic configuration of a manufacturing apparatus 43 that executes the manufacturing method.
  • the manufacturing method is the same as the manufacturing method according to the second embodiment described with reference to FIG. 4 except that step S5 is performed in step S3. Details will be described below.
  • the manufacturing apparatus 43 includes a holding unit 45, a heater 47, and a drum 49.
  • the mother glass plate 51 is set on the holding portion 45 along a vertical line.
  • the heater 47 is controlled to heat the main surface F5 (first main surface) side and the main surface F6 (second main surface) side of the mother glass plate 51 at different temperatures.
  • the atmospheric temperature on the main surface F5 side is set to a temperature T20 (for example, 720 ° C.)
  • the atmospheric temperature on the main surface F6 side is set to a temperature T21 (for example, 700 ° C.).
  • the temperature T20 is higher than the temperature T21.
  • step S3 step S5
  • the heated mother glass plate 51 is stretched and formed into the glass tape 1 by the rotational force (tensile force) of the drum 49 in the arrow direction 55.
  • the glass tape 1 bends in one direction across the two side edges 3.
  • the glass tape 1 obtained in the step S3 is made so that the main surface F5 side is convex. Curve in the direction. That is, the glass tape 1 is manufactured directly from the mother glass plate 51.
  • step S1 The manufacturing method of the basic glass tape (base glass tape 37) demonstrated with reference to FIG. 4 is demonstrated. Hereinafter, a manufacturing method by the redraw method will be described with reference to FIGS. 3A, 3 ⁇ / b> B, 4, and 11.
  • step S1 the heater 47 is controlled to heat the main surface F5 and the main surface F6 of the mother glass plate 51 set on the holding unit 45 at the same temperature (for example, 710 ° C.).
  • step S ⁇ b> 3 the base glass tape is formed by stretching the heated mother glass plate 51 and wound around the drum 49.
  • the main surface and side edges of the basic glass tape formed by the redraw method are fire-polished surfaces.
  • the 1st main surface F1 and the 2nd main surface F2 of the glass tape 1 manufactured from the basic glass tape, and the side edge 3 also become a fire-making surface.
  • molded by the redraw method has a convex curved surface which protrudes toward the outer side of a basic glass tape.
  • the side edge 3 of the glass tape 1 manufactured from the basic glass tape also has a convex curved surface 4 that protrudes outward.
  • the shape of the formed basic glass tape is preferably substantially flat and has no curvature (including waviness), but in the bending step (S5), it is curved in one direction. I do not care.
  • the glass tape 1 according to the first embodiment is curved in one direction (direction CR1) so that the second main surface F2 has one bottom BM over the two side edges 3.
  • the main surface F1 is curved along the second main surface F2.
  • the glass tape 1 according to the first to third examples of the ninth embodiment extends in two or more directions (directions) so that the second main surface F2 has the top TM and the bottom BM over the two side edges 3. CR1 and direction CR2), and the first main surface F1 is curved along the second main surface F2. That is, the glass tape 1 has a wave.
  • the undulation indicates the bending in a plurality of directions, that is, the second main surface F2 is bent in two directions so as to have the top part TM and the bottom part BM.
  • the top portion TM indicates a vertex of the convex second main surface F2 in a cross-sectional view.
  • the top TM is formed along the side edge 3.
  • FIG. 12A is a cross-sectional view showing a glass tape 1 according to a first example of Embodiment 9.
  • the glass tape 1 is curved in two directions (direction CR1 and direction CR2), and the second main surface F2 has one top TM and one bottom BM.
  • the bottom BM is a bottom that is concave toward the direction CR1
  • the top TM is a top that is convex toward the direction CR2.
  • a center plane CF passing through the two side edges 3 is curved.
  • the first main surface F1 is curved along the second main surface F2.
  • One side edge 3 and one top TM of the glass tape 1 are in contact with the flat surface 7. That is, the glass tape 1 contacts the flat surface 7 at two contact points CP in a cross-sectional view.
  • the glass tape 1 according to the first example two-point contact is made in a sectional view. That is, the glass tape 1 and the glass plate 5 are in line contact. Since it is a line contact, the contact area of the glass tape 1 and the glass plate 5 is small compared with the case of surface contact. As a result, the occurrence of optical contact can be suppressed, and the positioning operation of the glass tape 1 on the glass plate 5 can be easily performed.
  • the space 9 is shifted toward the one side edge 3, when the liquid 9 is injected into the space 9 and temporarily fixed, the strength of the temporary fixing may be uneven. Therefore, it is more preferable to form the glass tape 1 so that the space 9 is line symmetric.
  • FIG. 12B is a cross-sectional view showing the glass tape 1 according to the second example of the ninth embodiment.
  • the glass tape 1 is curved in two directions (direction CR1 and direction CR2), and the second main surface F2 has one top portion TM and two bottom portions BM.
  • the top part TM is a top part convex toward the direction CR2, and each bottom part BM is a bottom part concave toward the direction CR1.
  • the glass tape 1 is curved so as to be line symmetric with respect to a line passing through the central top TM and perpendicular to the flat surface 7. Therefore, the space 9 is line symmetric.
  • a center plane CF passing through the two side edges 3 is curved.
  • the first main surface F1 is curved along the second main surface F2.
  • the two side edges 3 of the glass tape 1 and the central top part TM are in contact with the flat surface 7, and the two bottom parts BM are separated from the flat surface 7. That is, the glass tape 1 contacts the flat surface 7 at three contact points CP in a cross-sectional view.
  • the glass tape 1 according to the second example as in the glass tape 1 according to the first example, generation of optical contact can be suppressed by line contact.
  • the glass tape 1 is formed so that the space 9 is line-symmetric, non-uniformity in the strength of temporary fixing by the liquid can be suppressed.
  • FIG. 12C is a cross-sectional view showing a glass tape 1 according to a third example of Embodiment 9.
  • the configuration of the glass tape 1 is the same as the configuration of the glass tape 1 according to the second example.
  • the top TM of the second main surface F2 is away from the flat surface 7 and is not in contact with the flat surface 7.
  • the two side edges 3 of the glass tape 1 are in contact with the flat surface 7. That is, the glass tape 1 contacts the flat surface 7 at two contact points CP in a cross-sectional view.
  • the occurrence of optical contact can be suppressed by line contact, and the space 9 is made linearly symmetrical by making the line 9 symmetrical. Unevenness of strength can be suppressed. Further, since the central top portion TM is separated from the flat surface 7, the liquid is injected over the entire space 9. Therefore, it is possible to further suppress the bubbles from entering the space 9 into which the liquid has been injected while further suppressing the non-uniformity of the temporarily fixed strength.
  • the glass tape 1 according to the first to third examples of the embodiment 9 has waviness.
  • the shape of the undulation (the number of the top TM, the presence or absence of contact of the top TM with the flat surface 7 and the number of the bottom BM) is not limited to the undulation of the glass tape 1 according to the first to third examples. .
  • the number of contact points CP is preferably 3, and more preferably 2.
  • the glass tape 1 according to the first embodiment is curved in one direction and has no swell. That is, it is preferable that the number of bottom portions BM of the second main surface F2 is 1 and the number of top portions TM is 0. This is because the uniformity of the strength of temporary fixation by liquid injection can be further improved, air bubbles can be further prevented from entering, and the positioning accuracy of the glass tape 1 can be further improved.
  • the glass tape 1 according to the first embodiment has not only waviness, but is curved so that the first main surface F1 is along the second main surface F2. However, the glass tape 1 may not be curved so that the first main surface F1 is along the second main surface F2.
  • FIG. 12D is a cross-sectional view showing a glass tape 1 according to a fourth example of the ninth embodiment.
  • the glass tape 1 has thick portions G at both ends of the glass tape 1.
  • the thickness of each thick part G is larger than the thickness of the central part of the glass tape 1.
  • the center plane CF passing through the two side edges 3 is curved.
  • the 1st main surface F1 is curving so that the 2nd main surface F2 may be followed.
  • the glass tape 1 has the one bottom part BM similarly to the glass tape 1 which concerns on Embodiment 1, and contacts the flat surface 7 at the two contact points CP in the cross sectional view.
  • production of an optical contact can be suppressed by line contact similarly to the glass tape 1 which concerns on Embodiment 1.
  • FIG. 13 is a diagram for explaining the glass tape 1 in the embodiment.
  • the horizontal axis and the vertical axis indicate the position along the X axis and the height along the Z axis of the glass tape 1, respectively.
  • the height is a height from the flat surface 7 to the second main surface F2 (curved surface).
  • the glass tape 1 manufactured from the basic glass tape 37 by the manufacturing apparatus 23 according to the fourth embodiment is shown.
  • the material of the mother glass plate of the basic glass tape 37 is non-alkali glass (Type A manufactured by Nippon Electric Glass Co., Ltd.).
  • the mother glass plate has a width of 50 mm and a thickness of 0.3 mm.
  • the basic glass tape 37 manufactured by the redraw method has a width of 5 mm and a thickness of 0.03 mm.
  • the conditions of time, temperature, and load in the manufacturing process are as follows.
  • the period s0, the period s1, the period s2, and the period s3 are 1 minute, 1 minute, 3 minutes, and 3 minutes, respectively.
  • the specified load P is 0.5 KN.
  • the temperature T0, the temperature T1, the temperature T2, and the temperature T3 are room temperature, 630 ° C., 610 ° C., and 555 ° C., respectively.
  • the glass tape 1 curved in one direction shown in FIG. 13 was produced.
  • the curvature R was 0.07%.
  • the width W of the glass tape 1 is 5 mm, and thickness is 0.03 mm.
  • Use of alkali-free glass is suitable as a sealing material for a device equipped with an element that deteriorates due to an alkali component.
  • the base glass plate is borosilicate glass (Type D manufactured by Nippon Electric Glass Co., Ltd.), and the temperature T1, the temperature T2, and the temperature T3 are each set to 150 ° C. higher than that of non-alkali glass.
  • the glass tape 1 was manufactured on the same conditions as alkali glass, the glass tape 1 which has the curvature R equivalent to alkali-free glass was able to be manufactured.
  • the present invention is not limited to the above-described embodiment, and can be implemented in various modes without departing from the gist thereof.
  • the glass tape 1 described with reference to FIGS. 1 to 13 may have the following characteristics.
  • the material of the glass tape 1 is not particularly limited.
  • the material is a glass that can be stretch-molded, such as silicate glass, alkali-free glass, soda glass, borosilicate glass, aluminum silicate glass, and silica glass, depending on the application.
  • the width W of the glass tape 1 is not particularly limited.
  • the width W is 25 mm or less, 20 mm or less, 15 mm or less, or 10 mm or less depending on the application.
  • the glass tape 1 may have an aspect ratio of the width W to the thickness of 25 to 5000. Therefore, it is suitable as a gap material, a spacer material, a seal material and the like.
  • the surface roughness of the first main surface F1 and / or the second main surface F2 of the glass tape 1 is not particularly limited.
  • the first main surface F1 and / or the second main surface F2 are smooth surfaces on which optical contact can occur.
  • the center line average roughness Ra is 0.5 nm or less, 0.3 nm or less, or 0.2 nm or less depending on the application.
  • the first main surface F1 and / or the second main surface F2 and / or the side edge 3 of the glass tape 1 may be a fire-making surface.
  • the 1st main surface F1 and / or the 2nd main surface F2 are fire-making surfaces, adhesiveness with the glass plate 5 improves more and it becomes easy to adhere
  • the side edge 3 is a fired surface, the side edge 3 is not cracked, chipped, cracked, or the like, and the glass tape 1 can be effectively prevented from breaking from the side edge 3. As a result, the glass tape 1 can be bent with a large curvature.
  • the side edge 3 has the convex curved surface 4, but the side edge 3 may be a flat surface.
  • the side edge 3 may be formed of a curved surface and a flat surface.
  • the glass tape 1 may contain 0.01% by mass to 30% by mass of transition metal ions.
  • the glass tape 1 can be effectively heated by irradiating the glass tape 1 with light having a wavelength that is absorbed by the transition metal ions. As a result, the glass tape 1 temporarily fixed to the glass plate 5 can be softened and bonded to the glass plate 5.
  • the surface of the glass tape 1 may be subjected to film formation.
  • the surface of the glass plate 5 can be effectively heated by irradiating the glass tape 1 with light having a wavelength that is absorbed by the film component formed on the surface. As a result, the temporarily fixed glass tape 1 and the glass plate 5 can be easily bonded.
  • the glass tape 1 may contain an alkali metal having a mass of 5% to 25%. This makes it possible to bond the glass tape 1 and the glass plate 5 by anodic bonding.
  • the number of contact points CP is preferably 5 points or less, more preferably 3 points or less, and even more preferably 2 points.
  • the product manufacturing method in the third embodiment is applied to the glass tape 1 that is curved in one direction across two side edges (for example, the fourth example of the first or ninth embodiment).
  • the product manufacturing method according to the third embodiment may be applied to the glass tape 1 that is curved over two side edges. Therefore, for example, the product manufacturing method in the third embodiment manufactures a product (final product) including the glass tape 1 having undulation (for example, the first to third examples of the ninth embodiment) and the glass plate 5 as members. It can also be applied to
  • the glass tape 1 is curved so as to be symmetrical with respect to a line passing through the central top TM and perpendicular to the flat surface 7, but with respect to a line perpendicular to the flat surface 7. And may be curved to be asymmetric.
  • the glass tape 1 of FIGS. 1, 12C, and 12D is curved so as to be line-symmetric with respect to a line perpendicular to the flat surface 7, but with respect to a line perpendicular to the flat surface 7. It may be curved to be asymmetric.
  • the present invention can be used in fields where glass tape is used as a gap material, a spacer material, a sealing material, etc., such as a solar cell, an organic EL display, and a preparation.

Abstract

This glass tape (1) has thickness D, width W and length L, and satisfies D < W and W < L. This glass tape (1) is curved in the width direction. The glass tape (1) has a first principal surface (F1), a second principal surface (F2) opposite of the first principal surface (F1), and two lateral edges (3). The glass tape (1) is curved across the width between the two lateral edges (3). A center surface (CF) passing through the two lateral edges (3) is curved. The glass tape (1) is optimally curved in the same direction across the width between the two lateral edges (3).

Description

ガラステープ、ガラステープ製造方法、及び製品製造方法Glass tape, glass tape manufacturing method, and product manufacturing method
 本発明は、じん性及び可撓性を有するガラステープ、ガラステープ製造方法、及び製品製造方法に関する。 The present invention relates to a tough and flexible glass tape, a glass tape manufacturing method, and a product manufacturing method.
 特許文献1には、厚みが100μm以下のガラスリボン(ガラステープ)が開示されている。このガラスリボンは、人間の指に巻きつけても破断しない。ガラスリボンの表面は、可能な限り平滑に形成される。ガラスリボンをガラス板上に配置する場合、両者の接触は面接触となる。 Patent Document 1 discloses a glass ribbon (glass tape) having a thickness of 100 μm or less. This glass ribbon does not break even when wrapped around a human finger. The surface of the glass ribbon is formed as smoothly as possible. When arrange | positioning a glass ribbon on a glass plate, both contact becomes surface contact.
特開2011-46593号公報JP 2011-46593 A
 平滑な面同士での面接触では、オプティカルコンタクト(光学接触)が発生する。オプティカルコンタクトにより、ガラスリボンとガラス板とが強く密着し、ガラスリボンの位置決め作業が困難になる場合がある。 In surface contact between smooth surfaces, optical contact (optical contact) occurs. Due to the optical contact, the glass ribbon and the glass plate are strongly adhered to each other, and the positioning operation of the glass ribbon may be difficult.
 本発明は上記課題に鑑みてなされたものであり、その目的は、オプティカルコンタクトの発生を抑制して、容易に位置決め作業を行うことができるガラステープ、ガラステープ製造方法、及びガラステープを用いてなる製品の製造方法を提供することにある。 This invention is made | formed in view of the said subject, The objective is suppressing generation | occurrence | production of an optical contact and using the glass tape which can perform positioning work easily, a glass tape manufacturing method, and a glass tape. It is providing the manufacturing method of the product which becomes.
 本発明の第1の観点によると、ガラステープは、厚みD、幅W、及び長さLを有し、D<Wを満足する。ガラステープは、幅方向に対して湾曲している。 According to the first aspect of the present invention, the glass tape has a thickness D, a width W, and a length L, and satisfies D <W. The glass tape is curved with respect to the width direction.
 本発明のガラステープは、2つの側縁を有し、前記2つの側縁にわたって湾曲していることが好ましい。 The glass tape of the present invention preferably has two side edges and is curved over the two side edges.
 本発明のガラステープは、前記2つの側縁にわたって一方向に湾曲していることが好ましい。 The glass tape of the present invention is preferably curved in one direction across the two side edges.
 本発明のガラステープにおいて、前記2つの側縁を通る中心面は湾曲していることが好ましい。 In the glass tape of the present invention, it is preferable that the center plane passing through the two side edges is curved.
 本発明のガラステープにおいて、前記側縁は凸曲面を有することが好ましい。 In the glass tape of the present invention, the side edge preferably has a convex curved surface.
 本発明のガラステープは、平坦面上に配置して使用されることが好ましい。ガラステープは、前記平坦面に前記2つの側縁が当接するように配置されたときに、前記平坦面との間の空間に液体が注入されることに伴って毛細管現象を引き起こす程度の湾曲率Rで湾曲していることが好ましい。 The glass tape of the present invention is preferably used by being placed on a flat surface. When the glass tape is arranged so that the two side edges are in contact with the flat surface, the curvature is such that a capillary phenomenon is caused by injecting liquid into the space between the flat surface. It is preferable to bend at R.
 本発明のガラステープにおいて、湾曲率Rが0.001%以上1.0%以内であることが好ましい。 In the glass tape of the present invention, the curvature R is preferably 0.001% or more and 1.0% or less.
 R=(H/W)×100 R = (H / W) × 100
 Hは、平坦面に前記2つの側縁が当接するように前記ガラステープを配置したときに、前記平坦面に対向している湾曲面の底部から前記平坦面に下した垂線の長さである。 H is the length of a perpendicular line extending from the bottom of the curved surface facing the flat surface to the flat surface when the glass tape is disposed so that the two side edges are in contact with the flat surface. .
 本発明のガラステープは、第1主面、及び前記第1主面に対向する第2主面を有することが好ましい。前記第1主面は、前記第2主面に沿うように湾曲していることが好ましい。 The glass tape of the present invention preferably has a first main surface and a second main surface facing the first main surface. The first main surface is preferably curved along the second main surface.
 本発明のガラステープは、W<Lを満足することが好ましい。 The glass tape of the present invention preferably satisfies W <L.
 本発明の第2の観点によると、ガラステープ製造方法は、加熱工程と、延伸工程と、湾曲工程とを含む。加熱工程は、母ガラス板を加熱する。延伸工程は、加熱された前記母ガラス板を延伸して、厚みDb、幅Wb、及び長さLbを有し、Db<Wbを満足する基礎ガラステープに成形する。湾曲工程は、幅方向の両端部に2つの側縁を有する前記基礎ガラステープを前記2つの側縁にわたって一方向に湾曲させる。 According to the second aspect of the present invention, the glass tape manufacturing method includes a heating step, a stretching step, and a bending step. In the heating step, the mother glass plate is heated. In the stretching step, the heated mother glass plate is stretched and formed into a basic glass tape having a thickness Db, a width Wb, and a length Lb and satisfying Db <Wb. In the bending step, the basic glass tape having two side edges at both ends in the width direction is bent in one direction across the two side edges.
 本発明のガラステープ製造方法において、前記湾曲工程は、金型で前記基礎ガラステープを挟む工程と、前記基礎ガラステープの第1主面側の雰囲気温度及び第2主面側の雰囲気温度がそれぞれ第1期間で第1温度及び第2温度に到達するように、前記第1主面側と前記第2主面側とを異なる昇温速度で昇温する工程と、第2期間の間、前記第1主面側の雰囲気温度及び前記第2主面側の雰囲気温度をそれぞれ前記第1温度及び前記第2温度に保持する工程と、前記第1温度に保持された前記第1主面側の雰囲気温度及び前記第2温度に保持された前記第2主面側の雰囲気温度がそれぞれ第3期間で第3温度に到達するように、前記第1主面側と前記第2主面側とを異なる徐冷速度で徐冷する工程とを含むことが好ましい。前記昇温する工程、前記保持する工程、及び前記徐冷する工程は、前記基礎ガラステープが前記金型に挟まれた状態で実行される。 In the glass tape manufacturing method of the present invention, the bending step includes a step of sandwiching the basic glass tape with a mold, an atmospheric temperature on the first main surface side, and an atmospheric temperature on the second main surface side of the basic glass tape, respectively. A step of increasing the temperature of the first main surface side and the second main surface side at different heating rates so as to reach the first temperature and the second temperature in the first period, and during the second period, A step of maintaining the atmospheric temperature on the first main surface side and the atmospheric temperature on the second main surface side at the first temperature and the second temperature, respectively, and on the first main surface side held at the first temperature The first main surface side and the second main surface side are set such that the atmospheric temperature on the second main surface side maintained at the atmospheric temperature and the second temperature reach the third temperature in the third period, respectively. And a step of gradually cooling at different annealing rates. The step of raising the temperature, the step of holding, and the step of gradually cooling are performed in a state where the basic glass tape is sandwiched between the molds.
 又は、本発明のガラステープ製造方法において、前記湾曲工程は、前記基礎ガラステープを加熱しながら、湾曲した金型で前記基礎ガラステープを挟む工程を含むことが好ましい。 Alternatively, in the glass tape manufacturing method of the present invention, it is preferable that the bending step includes a step of sandwiching the basic glass tape with a curved mold while heating the basic glass tape.
 又は、本発明のガラステープ製造方法において、前記湾曲工程は、前記基礎ガラステープを加熱しながら、金型で前記基礎ガラステープを挟む工程と、前記金型から出た前記基礎ガラステープの第1主面側と第2主面側とを異なる徐冷速度で徐冷する工程とを含むことが好ましい。 Alternatively, in the glass tape manufacturing method of the present invention, the bending step includes a step of sandwiching the basic glass tape with a mold while heating the basic glass tape, and a first of the basic glass tape coming out of the mold. It is preferable to include a step of slowly cooling the main surface side and the second main surface side at different slow cooling rates.
 又は、本発明のガラステープ製造方法において、前記湾曲工程は、前記延伸工程において実行されることが好ましい。前記加熱工程は、前記母ガラス板の第1主面側と第2主面側とを異なる温度で加熱する工程を含むことが好ましい。 Or in the glass tape manufacturing method of this invention, it is preferable that the said bending process is performed in the said extending process. It is preferable that the heating step includes a step of heating the first main surface side and the second main surface side of the mother glass plate at different temperatures.
 本発明の第3の観点によると、製品製造方法は、ガラステープと第1ガラス板とを部材として含む製品の製造方法である。製品製造方法は、前記ガラステープの2つの側縁が前記第1ガラス板に当接するように、前記ガラステープを前記第1ガラス板上に配置する工程と、前記ガラステープと前記第1ガラス板との間の空間に液体を注入する工程とを含む。 According to a third aspect of the present invention, the product manufacturing method is a method for manufacturing a product including a glass tape and a first glass plate as members. The product manufacturing method includes a step of placing the glass tape on the first glass plate such that two side edges of the glass tape are in contact with the first glass plate, and the glass tape and the first glass plate. And injecting a liquid into the space between the two.
 本発明の製品製造方法において、第2ガラス板を前記ガラステープ上に配置する工程をさらに含むことが好ましい。前記ガラステープは厚み規定部材として機能する。 In the product manufacturing method of the present invention, it is preferable that the method further includes a step of placing the second glass plate on the glass tape. The glass tape functions as a thickness regulating member.
 本発明によれば、ガラステープは幅方向に対して湾曲しているので、ガラステープをガラス板の平坦面上に配置すると、ガラステープとガラス板との接触面積が小さい。その結果、オプティカルコンタクトの発生を抑制でき、ガラス板上でのガラステープの位置決め作業を容易に行うことができる。 According to the present invention, since the glass tape is curved with respect to the width direction, when the glass tape is disposed on the flat surface of the glass plate, the contact area between the glass tape and the glass plate is small. As a result, the occurrence of optical contact can be suppressed, and the glass tape positioning operation on the glass plate can be easily performed.
本発明の実施形態1におけるガラステープを模式的に示す斜視図である。It is a perspective view which shows typically the glass tape in Embodiment 1 of this invention. 本発明の実施形態1におけるガラステープの断面図である。It is sectional drawing of the glass tape in Embodiment 1 of this invention. 図1のガラステープを模式的に示す正面図である。It is a front view which shows typically the glass tape of FIG. 図3Aのガラステープの側縁の拡大図である。It is an enlarged view of the side edge of the glass tape of FIG. 3A. 本発明の実施形態2におけるガラステープ製造方法を示すフローチャートである。It is a flowchart which shows the glass tape manufacturing method in Embodiment 2 of this invention. 本発明の実施形態3における製品製造方法を示すフローチャートである。It is a flowchart which shows the product manufacturing method in Embodiment 3 of this invention. 本発明の実施形態4におけるガラステープ製造装置の概略構成を示す縦断側面図である。It is a vertical side view which shows schematic structure of the glass tape manufacturing apparatus in Embodiment 4 of this invention. 図6のガラステープ製造装置による温度制御を説明する図である。It is a figure explaining the temperature control by the glass tape manufacturing apparatus of FIG. 本発明の実施形態5におけるガラステープ製造方法の湾曲処理を示すフローチャートである。It is a flowchart which shows the curvature process of the glass tape manufacturing method in Embodiment 5 of this invention. 本発明の実施形態6におけるガラステープ製造方法で使用する金型を模式的に示す正面図である。It is a front view which shows typically the metal mold | die used with the glass tape manufacturing method in Embodiment 6 of this invention. 本発明の実施形態7におけるガラステープ製造方法による温度制御を説明する図である。It is a figure explaining the temperature control by the glass tape manufacturing method in Embodiment 7 of this invention. 本発明の実施形態8におけるガラステープ製造方法を実行するガラステープ製造装置の概略構成を示す縦断側面図である。It is a vertical side view which shows schematic structure of the glass tape manufacturing apparatus which performs the glass tape manufacturing method in Embodiment 8 of this invention. 本発明の実施形態9における第1例に係るガラステープの断面図である。It is sectional drawing of the glass tape which concerns on the 1st example in Embodiment 9 of this invention. 本発明の実施形態9における第2例に係るガラステープの断面図である。It is sectional drawing of the glass tape which concerns on the 2nd example in Embodiment 9 of this invention. 本発明の実施形態9における第3例に係るガラステープの断面図である。It is sectional drawing of the glass tape which concerns on the 3rd example in Embodiment 9 of this invention. 本発明の実施形態9における第4例に係るガラステープの断面図である。It is sectional drawing of the glass tape which concerns on the 4th example in Embodiment 9 of this invention. 本発明の実施例におけるガラステープを説明する図である。It is a figure explaining the glass tape in the Example of this invention.
 以下、本発明の実施形態について、図面を参照しながら説明する。なお、図中、同一または相当部分については同一の参照符号を付して説明を繰り返さない。また、ガラステープ製造方法を「製造方法」と記載し、ガラステープ製造装置を「製造装置」と記載する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the drawings, the same or corresponding parts are denoted by the same reference numerals and description thereof is not repeated. Moreover, a glass tape manufacturing method is described as "manufacturing method", and a glass tape manufacturing apparatus is described as "manufacturing apparatus."
 (実施形態1)
 [基本原理]
 図1は、本発明の実施形態1におけるガラステープ1を模式的に示す斜視図である。ガラステープ1は、厚みD、幅W、及び長さLを有し、D<Wを満足する。ガラステープ1は、ガラステープ1の幅方向に対して湾曲している。図1には、平坦面7を有するガラス板5が示され、平坦面7上にガラステープ1が配置されている。
(Embodiment 1)
[Basic principle]
FIG. 1 is a perspective view schematically showing a glass tape 1 according to Embodiment 1 of the present invention. The glass tape 1 has a thickness D, a width W, and a length L, and satisfies D <W. The glass tape 1 is curved with respect to the width direction of the glass tape 1. In FIG. 1, a glass plate 5 having a flat surface 7 is shown, and the glass tape 1 is disposed on the flat surface 7.
 ガラステープ1は、窓ガラス等の厚みが大きい板ガラスと比較して高いじん性及び高い可撓性を有する。高いじん性及び高い可撓性を有するガラステープ1の厚みDは、例えば、1μm~100μmである。厚みDは、例えば、平均厚みを示す。また、十分高いじん性及び十分高い可撓性を有するガラステープ1を得るために、ガラステープ1の厚みDは、4μm~50μmが好ましく、10μm~30μmが更に好ましい。厚みDは、例えば、平均厚みを示す。ガラステープ1は2つの側縁3を有する。2つの側縁3は略平行である。ガラステープ1は、2つの側縁3にわたって湾曲している。換言すれば、ガラステープ1は2つの側縁3を両端部として湾曲している。ガラステープ1の幅Wは、例えば、5mm~50mmである。幅Wは、例えば、平均幅を示す。また、湾曲しやすいガラステープ1を得るために、ガラステープ1の幅Wは7mm~40mmが好ましく、10mm~30mmがさらに好ましい。 The glass tape 1 has high toughness and high flexibility as compared with a plate glass having a large thickness such as a window glass. The thickness D of the glass tape 1 having high toughness and high flexibility is, for example, 1 μm to 100 μm. The thickness D indicates, for example, an average thickness. In order to obtain a glass tape 1 having sufficiently high toughness and sufficiently high flexibility, the thickness D of the glass tape 1 is preferably 4 μm to 50 μm, and more preferably 10 μm to 30 μm. The thickness D indicates, for example, an average thickness. The glass tape 1 has two side edges 3. The two side edges 3 are substantially parallel. The glass tape 1 is curved over the two side edges 3. In other words, the glass tape 1 is curved with the two side edges 3 as both ends. The width W of the glass tape 1 is, for example, 5 mm to 50 mm. The width W indicates an average width, for example. In order to obtain a glass tape 1 that is easily bent, the width W of the glass tape 1 is preferably 7 mm to 40 mm, and more preferably 10 mm to 30 mm.
 実施形態1によれば、ガラステープ1は幅方向に対して湾曲しているので、ガラステープ1をガラス板5の平坦面7上に配置すると、両者の接触は線接触となる。つまり、図1に示すように、2つの側縁3がガラス板5と線接触している。線接触であるため、面接触の場合と比較してガラステープ1とガラス板5との接触面積が小さい。その結果、オプティカルコンタクトの発生を抑制でき、ガラス板5上でのガラステープ1の位置決め作業を容易に行うことができる。なお、ガラス板5はガラス基板を含む概念である。 According to Embodiment 1, since the glass tape 1 is curved with respect to the width direction, when the glass tape 1 is disposed on the flat surface 7 of the glass plate 5, the contact between the two becomes a line contact. That is, as shown in FIG. 1, the two side edges 3 are in line contact with the glass plate 5. Since it is a line contact, the contact area of the glass tape 1 and the glass plate 5 is small compared with the case of surface contact. As a result, the occurrence of optical contact can be suppressed, and the positioning operation of the glass tape 1 on the glass plate 5 can be easily performed. The glass plate 5 is a concept including a glass substrate.
 [ガラステープの湾曲]
 図2を参照して、ガラステープ1の湾曲について説明する。図2は、ガラステープ1の断面図である。図2は、側縁3に直交する平面でガラステープ1を切断したときの断面を示す。方向CR1及び方向CR2は、平坦面7に直交する方向を示し、互いに反対を向いている。
[Curved glass tape]
The bending of the glass tape 1 will be described with reference to FIG. FIG. 2 is a cross-sectional view of the glass tape 1. FIG. 2 shows a cross section when the glass tape 1 is cut along a plane orthogonal to the side edges 3. A direction CR1 and a direction CR2 indicate directions orthogonal to the flat surface 7 and are opposite to each other.
 ガラステープ1は、第1主面F1、及び第1主面F1に対向する第2主面F2を有する。第2主面F2は底部BMを有する。本明細書において、底部BMは、断面視において、凹状の第2主面F2の底点を示す。底部BMは側縁3に沿って形成される。 The glass tape 1 has a first main surface F1 and a second main surface F2 facing the first main surface F1. The second main surface F2 has a bottom BM. In the present specification, the bottom portion BM indicates a bottom point of the concave second main surface F2 in a cross-sectional view. The bottom BM is formed along the side edge 3.
 ガラステープ1において、2つの側縁3を通る中心面CFは湾曲している。つまり、少なくとも第2主面F2は、2つの側縁3を通る中心面CFが湾曲するように湾曲している。実施形態1では、第1主面F1及び第2主面F2は、2つの側縁3を通る中心面CFが湾曲するように湾曲している。 In the glass tape 1, the center plane CF passing through the two side edges 3 is curved. That is, at least the second main surface F2 is curved such that the center surface CF passing through the two side edges 3 is curved. In the first embodiment, the first main surface F1 and the second main surface F2 are curved such that the center surface CF passing through the two side edges 3 is curved.
 本明細書において、中心面CFとは、第1主面F1と第2主面F2とから等距離にある仮想面のことである。中心面CFは、ガラステープ1を平坦面7に配置したときに、断面視において、2つの側縁3及び複数の中点PM上にある。なお、図2では、図面の簡略化のため、1つの中点PMを示している。中点PMとは、第1主面F1上の第1点P1と第2主面F2上の第2点P2とを結ぶ線分の中点のことである。 In this specification, the center plane CF is a virtual plane equidistant from the first main surface F1 and the second main surface F2. The center plane CF is on the two side edges 3 and the plurality of midpoints PM in a cross-sectional view when the glass tape 1 is disposed on the flat surface 7. In FIG. 2, one midpoint PM is shown for simplification of the drawing. The midpoint PM is a midpoint of a line segment connecting the first point P1 on the first main surface F1 and the second point P2 on the second main surface F2.
 ここで、第1主面F1に沿った第1点P1から一方側縁3までの長さをA1、第1主面F1に沿った第1点P1から他方側縁3までの長さをB1、第2主面F2に沿った第2点P2から一方側縁3までの長さをa1、第2主面F2に沿った第2点P2から他方側縁3までの長さをb1と記載すると、次の関係が成立する。 Here, the length from the first point P1 to the one side edge 3 along the first main surface F1 is A1, and the length from the first point P1 to the other side edge 3 along the first main surface F1 is B1. The length from the second point P2 to the one side edge 3 along the second main surface F2 is a1, and the length from the second point P2 to the other side edge 3 along the second main surface F2 is described as b1. Then, the following relationship is established.
 A1/B1=a1/b1 A1 / B1 = a1 / b1
 また、ガラステープ1は、幅方向に対して2つの側縁3にわたって一方向(方向CR1)に湾曲している。換言すれば、ガラステープ1は、幅方向に対して2つの側縁3を両端部として一方向(方向CR1)に湾曲している。従って、第2主面F2は1つの底部BMを有する。ガラステープ1の2つの側縁3は平坦面7に接触している。つまり、断面視において、ガラステープ1は、2つの接触点CPで平坦面7と接触する。ガラステープ1の第2主面F2は、空間9が線対称になるように形成される。空間9は、第2主面F2と平坦面7との間の空間である。 Further, the glass tape 1 is curved in one direction (direction CR1) over the two side edges 3 with respect to the width direction. In other words, the glass tape 1 is curved in one direction (direction CR1) with the two side edges 3 as both ends with respect to the width direction. Accordingly, the second main surface F2 has one bottom BM. The two side edges 3 of the glass tape 1 are in contact with the flat surface 7. That is, the glass tape 1 contacts the flat surface 7 at two contact points CP in a cross-sectional view. The second main surface F2 of the glass tape 1 is formed so that the space 9 is line symmetric. The space 9 is a space between the second main surface F2 and the flat surface 7.
 さらに、第1主面F1は、第2主面F2に沿うように湾曲している。つまり、第1主面F1は、第2主面F2に略平行である。従って、第1主面F1及び第2主面F2は、それぞれ、方向CR1に沿って凸状及び凹状に湾曲した湾曲面である。 Furthermore, the first main surface F1 is curved along the second main surface F2. That is, the first main surface F1 is substantially parallel to the second main surface F2. Accordingly, the first main surface F1 and the second main surface F2 are curved surfaces that are curved in a convex shape and a concave shape along the direction CR1, respectively.
 [ガラステープの幅、長さ、及び側縁]
 図1、図3A、及び図3Bを参照して、ガラステープ1の幅W、長さL、及び側縁3について説明する。図3Aはガラステープ1を模式的に示す正面図である。図3Bは図3Aの領域11の拡大図である。幅Wは、2つの側縁3と平坦面7とが接する線(以下、「接線」と記載する。)C間の長さ(2つの側縁3に直交する方向に沿った長さ)である。長さLは接線Cの長さ(側縁3に沿った長さ)である。幅Wは長さLより短い。つまり、ガラステープ1は、W<Lを満足する。側縁3はガラステープ1の長手方向に沿っている。
[Width, length, and side edges of glass tape]
With reference to FIG. 1, FIG. 3A, and FIG. 3B, the width W, length L, and the side edge 3 of the glass tape 1 are demonstrated. FIG. 3A is a front view schematically showing the glass tape 1. FIG. 3B is an enlarged view of region 11 of FIG. 3A. The width W is a length between a line (hereinafter, referred to as “tangent”) C between the two side edges 3 and the flat surface 7 (a length along a direction perpendicular to the two side edges 3). is there. The length L is the length of the tangent C (the length along the side edge 3). The width W is shorter than the length L. That is, the glass tape 1 satisfies W <L. The side edge 3 is along the longitudinal direction of the glass tape 1.
 側縁3は、ガラステープ1の外側に向って突出する凸曲面4を有する。また、断面視4隅の角部3a及び角部3bでは、2つの側縁3がそれぞれ第2主面F2及び第1主面F1と滑らかにつながる。さらに、角部3a及び角部3bの各々の角度が鈍角になるように、2つの側縁3がそれぞれ第2主面F2及び第1主面F1とつながっている。その結果、断面視4隅の角部3a及び角部3bに応力が集中することを防止できる。また、欠け及びクラックの発生を防止できる。その結果、ガラステープ1を大きな曲率で曲げることができる。 The side edge 3 has a convex curved surface 4 protruding toward the outside of the glass tape 1. In addition, at the corners 3a and 3b at the four corners in the sectional view, the two side edges 3 are smoothly connected to the second main surface F2 and the first main surface F1, respectively. Further, the two side edges 3 are connected to the second main surface F2 and the first main surface F1, respectively, so that each angle of the corner portion 3a and the corner portion 3b becomes an obtuse angle. As a result, it is possible to prevent stress from concentrating on the corners 3a and 3b at the four corners in the sectional view. Moreover, generation | occurrence | production of a chip and a crack can be prevented. As a result, the glass tape 1 can be bent with a large curvature.
 XYZ座標を定義する。本明細書において、X軸方向とは接線Cに直交し、平坦面7と平行な方向である。Y軸方向とは接線Cと平行な方向である。Z軸方向とはX軸方向及びY軸方向に直交する方向である。従って、幅WはX軸方向に沿ったガラステープ1の長さと略等しい。長さLはY軸方向に沿ったガラステープ1の長さである。 Define XYZ coordinates. In this specification, the X-axis direction is a direction perpendicular to the tangent line C and parallel to the flat surface 7. The Y-axis direction is a direction parallel to the tangent line C. The Z-axis direction is a direction orthogonal to the X-axis direction and the Y-axis direction. Therefore, the width W is substantially equal to the length of the glass tape 1 along the X-axis direction. The length L is the length of the glass tape 1 along the Y-axis direction.
 [ガラステープの一方向への湾曲及び毛細管現象]
 図1、及び図3Aを参照してガラステープ1の一方向への湾曲について説明する。ガラステープ1は、幅方向に対して2つの側縁3にわたって一方向に湾曲している。本明細書において、複数方向への湾曲を「うねり」と定義し、一方向への湾曲と区別する。
[Bending of glass tape in one direction and capillary action]
The bending of the glass tape 1 in one direction will be described with reference to FIGS. 1 and 3A. The glass tape 1 is curved in one direction over the two side edges 3 with respect to the width direction. In this specification, a curve in a plurality of directions is defined as “waviness” and is distinguished from a curve in one direction.
 ガラステープ1の一方向への湾曲の程度を湾曲率Rで表す。湾曲率R(%)は、ガラステープ1の幅W及び最大高さHを用いて次式により定義される。 The degree of curvature in one direction of the glass tape 1 is represented by a curvature rate R. The curvature R (%) is defined by the following equation using the width W and the maximum height H of the glass tape 1.
 R=(H/W)×100 R = (H / W) × 100
 実施形態1では、幅W及び最大高さHは、ガラス板5の平坦面7に2つの側縁3が当接するようにガラステープ1を配置して測定される。従って、幅Wは2本の接線C間の長さ(最短距離)である。最大高さHは、平坦面7に対向している第2主面F2(湾曲面)の底部BMから平坦面7に下した垂線の長さである。 In Embodiment 1, the width W and the maximum height H are measured by placing the glass tape 1 so that the two side edges 3 are in contact with the flat surface 7 of the glass plate 5. Therefore, the width W is the length (shortest distance) between the two tangents C. The maximum height H is the length of a perpendicular line extending from the bottom BM of the second main surface F2 (curved surface) facing the flat surface 7 to the flat surface 7.
 実施形態1では、ガラステープ1は、平坦面7上に配置して使用される。そして、ガラステープ1は、平坦面7に2つの側縁3が当接するように配置されたときに、ガラステープ1と平坦面7との間の空間9に液体が注入されることに伴って毛細管現象を引き起こす程度の湾曲率Rで湾曲している。つまり、湾曲率Rは、空間9に液体を注入したときに、毛細管現象を引き起こす値に設定される。例えば、湾曲率Rは0.001%以上1.0%以内である。効果的に毛細管現象を発生させるため、湾曲率Rが0.001%に近づくほど好ましい。一方、湾曲率Rが0.001%より小さい場合、オプティカルコンタクトが発生するおそれがある。 In Embodiment 1, the glass tape 1 is used by being disposed on the flat surface 7. And when the glass tape 1 is arrange | positioned so that the two side edges 3 may contact | abut to the flat surface 7, it is accompanying that a liquid is inject | poured into the space 9 between the glass tape 1 and the flat surface 7. It is curved with a curvature R enough to cause capillary action. That is, the curvature R is set to a value that causes capillary action when liquid is injected into the space 9. For example, the curvature rate R is 0.001% or more and 1.0% or less. In order to effectively generate a capillary phenomenon, it is preferable that the curvature R approaches 0.001%. On the other hand, when the curvature rate R is smaller than 0.001%, there is a possibility that optical contact occurs.
 毛細管現象を発生させ易いガラステープ1の好ましい第1例及び第2例は次の通りである。第1例では、ガラステープ1は、質量%で、SiO260~70%、B2310~20%、Al230~10%、CaO0~10%、ZnO0~10%、Sb230<1%の組成を含有する。第2例では、ガラステープ1は、質量%で、SiO255~65%、Al2313~18%、B238~13%、RO(MgO+CaO+SrO+BaO)10~20%の組成を含有する。 A preferable first example and second example of the glass tape 1 that easily causes capillary action are as follows. In the first example, the glass tape 1 has a mass% of SiO 2 60 to 70%, B 2 O 3 10 to 20%, Al 2 O 3 0 to 10%, CaO 0 to 10%, ZnO 0 to 10%, Sb. 2 O 3 0 <1% composition. In the second example, the glass tape 1 has a composition of SiO 2 55 to 65%, Al 2 O 3 13 to 18%, B 2 O 3 8 to 13%, RO (MgO + CaO + SrO + BaO) 10 to 20% by mass. contains.
 次に、毛細管現象の利点を説明する。毛細管現象は、ガラス板5上でガラステープ1の位置決め作業の終了後、ガラステープ1をガラス板5に仮固定するために利用される。すなわち、空間9の一端から空間9に注入された液体は、毛細管現象により、空間9の他端まで速やかに到達する。その結果、ガラステープ1は、液体の表面張力により、ガラス板5に仮固定される。また、ガラステープ1とガラス板5との間に気泡が入り込むことを抑制できる。従って、ガラステープ1は、ガラス板5(平坦面7)に2つの側縁3が当接するように配置され、ガラス板5(平坦面7)との空間9に液体が注入されることに伴って毛細管現象を引き起こすように湾曲していることが好ましい。その結果、例えば、ガラステープ1を製品又は空間の厚みを規定する部材(以下、「厚み規定部材」と記載する。)として使用する場合、厚み規定部材の位置決め精度を向上できる。厚み規定部材は、例えば、ギャップ材、スペーサ材、シール材等である。 Next, the advantages of the capillary phenomenon will be described. The capillary phenomenon is used for temporarily fixing the glass tape 1 to the glass plate 5 after the positioning operation of the glass tape 1 on the glass plate 5 is completed. That is, the liquid injected into the space 9 from one end of the space 9 quickly reaches the other end of the space 9 by capillary action. As a result, the glass tape 1 is temporarily fixed to the glass plate 5 by the surface tension of the liquid. Moreover, it can suppress that a bubble enters between the glass tape 1 and the glass plate 5. FIG. Accordingly, the glass tape 1 is arranged such that the two side edges 3 are in contact with the glass plate 5 (flat surface 7), and liquid is injected into the space 9 with the glass plate 5 (flat surface 7). And are preferably curved so as to cause capillary action. As a result, for example, when the glass tape 1 is used as a member that defines the thickness of a product or space (hereinafter referred to as a “thickness defining member”), the positioning accuracy of the thickness defining member can be improved. The thickness defining member is, for example, a gap material, a spacer material, a seal material, or the like.
 なお、ガラステープ1は、うねりの有無に限定されないが、うねりを有しないほうがさらに好ましい。うねりを有するガラステープをガラス板上に配置し、液体を注入して仮固定する。ガラステープがうねりを有すると、液体注入前において、側縁以外の部分がガラス板に接する場合がある。例えば、側縁以外にx(xは1以上の整数)箇所でガラステープ1がガラス板に線接触した場合、液体を注入可能な空間が(x+1)箇所形成される。液体を注入する際、液体を注入可能な空間の容積が異なると、液体の注入量が不均一になることがあり、仮固定の強度が不均一になる可能性がある。 The glass tape 1 is not limited to the presence or absence of undulation, but it is more preferable that the glass tape 1 does not have undulation. A glass tape having waviness is placed on a glass plate, and a liquid is injected and temporarily fixed. When the glass tape has undulations, a portion other than the side edge may come into contact with the glass plate before liquid injection. For example, when the glass tape 1 is in line contact with the glass plate at x (x is an integer of 1 or more) other than the side edges, (x + 1) spaces where liquid can be injected are formed. When the liquid is injected, if the volume of the space into which the liquid can be injected is different, the liquid injection amount may be non-uniform, and the temporarily fixed strength may be non-uniform.
 また、仮に液体を注入可能な空間の容積が同一であったとしても、液体の注入位置が一方の注入可能な空間側に寄った場合、液体の注入量が不均一になることがあり、仮固定の強度が不均一になる可能性がある。さらに、液体の注入量が不均一になると、気泡が空間に入り込む可能性もある。気泡は、仮固定の強度を低下させ、また、ガラステープ1の位置決め精度を低下させる。従って、ガラステープ1は、2つの側縁3以外の部分がガラス板5(平坦面7)に接するようなうねりを有しないことが好ましい。 Further, even if the volume of the space into which the liquid can be injected is the same, if the liquid injection position is shifted to one of the injectable spaces, the liquid injection amount may be non-uniform. Fixing strength may be uneven. Furthermore, if the amount of liquid injected is non-uniform, bubbles may enter the space. Air bubbles reduce the strength of temporary fixing and reduce the positioning accuracy of the glass tape 1. Therefore, it is preferable that the glass tape 1 does not have such a swell that portions other than the two side edges 3 are in contact with the glass plate 5 (flat surface 7).
 (実施形態2)
 図1~図4を参照して、本発明の実施形態2における製造方法を説明する。図4は、実施形態1に係るガラステープ1を製造する製造方法を示すフローチャートである。この製造方法は、加熱工程S1、延伸工程S3、及び湾曲工程S5を含む。加熱工程S1において、板状の母ガラス(以下、「母ガラス板」と記載する。)(図示せず)を加熱する。延伸工程S3において、加熱された母ガラス板を延伸して、厚みDb、幅Wb、及び長さLbを有し、Db<Wbを満足する基礎ガラステープ(図示せず)に成形する。湾曲工程S5において、幅方向の両端部に2つの側縁を有する基礎ガラステープを2つの側縁にわたって一方向に湾曲させる。その結果、一方向に湾曲したガラステープ1が製造される。
(Embodiment 2)
A manufacturing method according to Embodiment 2 of the present invention will be described with reference to FIGS. FIG. 4 is a flowchart showing a manufacturing method for manufacturing the glass tape 1 according to the first embodiment. This manufacturing method includes a heating step S1, a stretching step S3, and a bending step S5. In the heating step S1, a plate-shaped mother glass (hereinafter referred to as “mother glass plate”) (not shown) is heated. In the stretching step S3, the heated mother glass plate is stretched and formed into a basic glass tape (not shown) having a thickness Db, a width Wb, and a length Lb and satisfying Db <Wb. In the bending step S5, a basic glass tape having two side edges at both ends in the width direction is bent in one direction across the two side edges. As a result, the glass tape 1 curved in one direction is manufactured.
 実施形態2~実施形態7において、湾曲工程S5による湾曲前のガラステープを「基礎ガラステープ」と定義し、ガラステープ1と区別する。 In Embodiments 2 to 7, the glass tape before bending in the bending step S5 is defined as “basic glass tape” and is distinguished from the glass tape 1.
 (実施形態3)
 図1、図3A、及び図5を参照して、本発明の実施形態3における製品製造方法を説明する。図5は、製品製造方法を示すフローチャートである。製品製造方法は、実施形態1のガラステープ1とガラス板5(第1ガラス板)とを部材として含む製品(以下、「最終製品」と記載する。)を製造するための方法である。製品製造方法は、工程S11及び工程S13を含む。工程S11において、ガラステープ1の2つの側縁3がガラス板5に当接するように、ガラステープ1をガラス板5上に配置する。この際、2つの側縁3全体がガラス板5の平坦面7に当接していることが好ましいが、ガラス板5の平坦面7に当接していない部分が存在していてもよい。
(Embodiment 3)
With reference to FIG. 1, FIG. 3A, and FIG. 5, the product manufacturing method in Embodiment 3 of this invention is demonstrated. FIG. 5 is a flowchart showing a product manufacturing method. The product manufacturing method is a method for manufacturing a product (hereinafter referred to as “final product”) including the glass tape 1 and the glass plate 5 (first glass plate) of Embodiment 1 as members. The product manufacturing method includes steps S11 and S13. In step S <b> 11, the glass tape 1 is placed on the glass plate 5 so that the two side edges 3 of the glass tape 1 are in contact with the glass plate 5. At this time, the entire two side edges 3 are preferably in contact with the flat surface 7 of the glass plate 5, but there may be a portion that is not in contact with the flat surface 7 of the glass plate 5.
 工程S13において、ガラステープ1と平坦面7との間の空間9に液体を注入する。ガラステープ1は、毛細管現象により空間9に満たされた液体により、ガラス板5に仮固定される。液体は、例えば、不揮発性の液体(例えば、水)、又は揮発性の液体(例えば、アルコール)である。揮発性の液体を用いる場合、仮固定後、最終的な接着の際に、液体を乾燥させる手間を省くことができる。 In step S13, a liquid is injected into the space 9 between the glass tape 1 and the flat surface 7. The glass tape 1 is temporarily fixed to the glass plate 5 with a liquid filled in the space 9 by capillary action. The liquid is, for example, a non-volatile liquid (for example, water) or a volatile liquid (for example, alcohol). In the case of using a volatile liquid, it is possible to save the trouble of drying the liquid at the time of final bonding after temporary fixing.
 工程S15において、ガラス板5及びガラステープ1に対して、最終製品に応じた処理が行われる。ガラステープ1は、例えば、最終製品の厚み規定部材として使用される。この場合、工程S15は、ガラス板5(第1ガラス板)とは異なるガラス板(第2ガラス板)(図示せず)をガラステープ1上に配置する工程を含む。最終製品は、例えば、2枚以上のガラス基板と、2枚のガラス基板の間に配置された厚み規定部材とを備えた製品(例えば、太陽電池、有機EL(Electro Luminescence)ディスプレイ、プレパラート等)である。最終製品において、ガラステープ1は湾曲しておらず、平坦な面を有する形状を有し、厚み規定部材として機能する。 In step S15, the glass plate 5 and the glass tape 1 are processed according to the final product. The glass tape 1 is used, for example, as a thickness regulating member for the final product. In this case, process S15 includes the process of arrange | positioning on the glass tape 1 the glass plate (2nd glass plate) (not shown) different from the glass plate 5 (1st glass plate). The final product is, for example, a product including two or more glass substrates and a thickness regulating member disposed between the two glass substrates (for example, a solar cell, an organic EL (Electro Luminescence) display, a preparation, etc.) It is. In the final product, the glass tape 1 is not curved, has a shape having a flat surface, and functions as a thickness regulating member.
 ガラステープ1が太陽電池の厚み規定部材として使用される場合、4枚のガラステープ1を矩形状の第1ガラス基板の4辺に沿って配置する(工程S11)。そして、配置した4枚のガラステープ1を液体注入により仮固定する(工程S13)。さらに、4枚のガラステープ1に囲まれた領域に太陽電池基板等を配置し、第1ガラス基板と略同一形状の第2ガラス基板を、4枚のガラステープ1上に載せ、ガラステープ1に熱を加える等により第1ガラス基板と第2ガラス基板とを接着する(工程S15)。 When the glass tape 1 is used as a solar cell thickness regulating member, four glass tapes 1 are arranged along the four sides of the rectangular first glass substrate (step S11). Then, the four arranged glass tapes 1 are temporarily fixed by liquid injection (step S13). Further, a solar cell substrate or the like is disposed in an area surrounded by four glass tapes 1, and a second glass substrate having substantially the same shape as the first glass substrate is placed on the four glass tapes 1. The first glass substrate and the second glass substrate are bonded to each other by applying heat or the like (step S15).
 ガラステープ1がプレパラートの厚み規定部材として使用される場合、2枚のガラステープ1を矩形状の第3ガラス基板の2つの長辺に沿って配置する(工程S11)。そして、2枚のガラステープを液体注入により第3ガラス基板に仮固定する(工程S13)。さらに、2枚のガラステープ1の間に検体を静置し、第3ガラス基板と矩形状の第4ガラス基板とでガラステープ1を挟む(工程S15)。 When the glass tape 1 is used as a thickness regulating member for a preparation, the two glass tapes 1 are arranged along the two long sides of the rectangular third glass substrate (step S11). Then, two glass tapes are temporarily fixed to the third glass substrate by liquid injection (step S13). Further, the specimen is left still between the two glass tapes 1, and the glass tape 1 is sandwiched between the third glass substrate and the rectangular fourth glass substrate (step S15).
 以上、実施形態3によれば、一方向に湾曲したガラステープ1の特性を効果的に活用して最終製品を製造できる。 As described above, according to the third embodiment, the final product can be manufactured by effectively utilizing the characteristics of the glass tape 1 curved in one direction.
 (実施形態4)
 図1、図3A、図6、及び図7を参照して、本発明の実施形態4における製造装置23について説明する。図6は、製造装置23の概略構成を示す縦断側面図である。図7は、製造装置23による温度制御を説明する図である。
(Embodiment 4)
With reference to FIG. 1, FIG. 3A, FIG. 6, and FIG. 7, the manufacturing apparatus 23 in Embodiment 4 of this invention is demonstrated. FIG. 6 is a longitudinal side view showing a schematic configuration of the manufacturing apparatus 23. FIG. 7 is a diagram for explaining temperature control by the manufacturing apparatus 23.
 製造装置23は、実施形態1に係るガラステープ1を製造するための加熱装置である。製造装置23は、炉25、ヒータ27、金型29、ヒータ33、及びヒータ35を備える。金型29は型板29A及び型板29Bを含む。ヒータ27及び金型29は、炉25内に配置される。ヒータ33は入口36の外側に配置される。ヒータ35は出口41の外側に配置される。入口36及び出口41は、それぞれ、炉25の一方側面及び他方側面に形成される。炉25には、窒素ガスを充填するための供給路31が形成される。 The manufacturing apparatus 23 is a heating apparatus for manufacturing the glass tape 1 according to the first embodiment. The manufacturing apparatus 23 includes a furnace 25, a heater 27, a mold 29, a heater 33, and a heater 35. The mold 29 includes a template 29A and a template 29B. The heater 27 and the mold 29 are disposed in the furnace 25. The heater 33 is disposed outside the inlet 36. The heater 35 is disposed outside the outlet 41. The inlet 36 and the outlet 41 are formed on one side and the other side of the furnace 25, respectively. A supply path 31 for filling the nitrogen gas is formed in the furnace 25.
 まず、炉25内の雰囲気について説明する。時刻t0から時刻t1までの期間s0、及び時刻t3から時刻t4までの期間s3では、炉25には窒素(N2)ガスが充填される。時刻t1から時刻t2までの期間s1、及び時刻t2から時刻t3までの期間s2では、炉25内は真空にされる。 First, the atmosphere in the furnace 25 will be described. In a period s0 from time t0 to time t1 and a period s3 from time t3 to time t4, the furnace 25 is filled with nitrogen (N 2 ) gas. In the period s1 from time t1 to time t2 and in the period s2 from time t2 to time t3, the inside of the furnace 25 is evacuated.
 次に、金型29による荷重について説明する。昇温工程までに型板29Aと型板29Bとにより、基礎ガラステープ37を規定荷重Pで挟む。なお、基礎ガラステープ37の主面F3(第1主面)と主面F4(第2主面)とは対向するように配置される。なお、主面F3及び主面F4は鉛直線に直交する。また、型板29Aにおいて、主面F3と対向する面は平坦面である。型板29Bにおいて、主面F4と対向する面は平坦面である。 Next, the load applied by the mold 29 will be described. The basic glass tape 37 is sandwiched with the specified load P by the template 29A and the template 29B until the temperature raising step. In addition, the main surface F3 (first main surface) and the main surface F4 (second main surface) of the basic glass tape 37 are arranged to face each other. The main surface F3 and the main surface F4 are orthogonal to the vertical line. Further, in the template 29A, the surface facing the main surface F3 is a flat surface. In the template 29B, the surface facing the main surface F4 is a flat surface.
 次に、温度制御について説明する。温度曲線53は、主面F3周辺の雰囲気温度を示す。温度曲線54は、主面F4周辺の雰囲気温度を示す。基礎ガラステープ37は、ヒータ33によって室温から温度T0まで予熱された後、入口36から型板29Aと型板29Bとの間に搬送方向38に沿って搬送される。そして、型板29Aと型板29Bとで基礎ガラステープ37を挟む。 Next, temperature control will be described. The temperature curve 53 shows the ambient temperature around the principal surface F3. A temperature curve 54 shows the ambient temperature around the main surface F4. The basic glass tape 37 is preheated from room temperature to a temperature T0 by the heater 33, and then conveyed along the conveyance direction 38 from the inlet 36 to the template 29A and the template 29B. Then, the basic glass tape 37 is sandwiched between the template 29A and the template 29B.
 そして、主面F3側は、期間s0(昇温工程)において、ヒータ27によって温度T0から温度T1まで昇温される。そして、主面F3側は、期間s1(保温工程)において、ヒータ27によって温度T1に保持される。さらに、主面F3側は、期間s2(徐冷工程)において、ヒータ27による温度制御を受けて、温度T1から温度T3まで徐冷される。 The main surface F3 side is heated from the temperature T0 to the temperature T1 by the heater 27 in the period s0 (temperature raising step). And the main surface F3 side is hold | maintained by the heater 27 at temperature T1 in the period s1 (heat retention process). Further, the main surface F3 side is gradually cooled from the temperature T1 to the temperature T3 under the temperature control by the heater 27 in the period s2 (gradual cooling step).
 一方、主面F4側は、期間s0(昇温工程)において、ヒータ27によって温度T0から温度T2まで昇温される。そして、主面F4側は、期間s1(保温工程)において、ヒータ27によって温度T2に保持される。さらに、主面F4側は、期間s2(徐冷工程)において、ヒータ27による温度制御を受けて、温度T2から温度T3まで徐冷される。 On the other hand, the main surface F4 side is heated from the temperature T0 to the temperature T2 by the heater 27 in the period s0 (temperature raising step). The main surface F4 side is held at the temperature T2 by the heater 27 in the period s1 (heat retention step). Further, the main surface F4 side is gradually cooled from the temperature T2 to the temperature T3 under the temperature control by the heater 27 in the period s2 (gradual cooling step).
 主面F3側及び主面F4側は、期間s3(冷却工程)において、ヒータ27による温度制御を受けて、温度T3から温度T0まで冷却される。時刻t4で、型板29Aと型板29Bとは荷重を解除する。以上のことから、少なくとも昇温工程、保温工程及び徐冷工程は、基礎ガラステープ37が金型29に挟まれた状態で実行される。 The main surface F3 side and the main surface F4 side are cooled from the temperature T3 to the temperature T0 under the temperature control by the heater 27 in the period s3 (cooling step). At time t4, the template 29A and the template 29B release the load. From the above, at least the temperature raising step, the heat retaining step, and the slow cooling step are performed with the basic glass tape 37 sandwiched between the molds 29.
 そして、基礎ガラステープ37は、出口41から炉25の外へ搬送方向38に沿って搬送され、ヒータ35による温度制御を受けて、温度T0から室温まで徐冷される。徐冷後の基礎ガラステープ37は、鉛直上方向に凸状に湾曲している。 Then, the basic glass tape 37 is conveyed from the outlet 41 to the outside of the furnace 25 along the conveying direction 38, is subjected to temperature control by the heater 35, and is gradually cooled from the temperature T0 to room temperature. The basic glass tape 37 after the slow cooling is convexly curved in the vertically upward direction.
 以上、主面F3側と主面F4側との昇温速度を異ならせ(期間s0)、異なる温度(T1、T2)から同一温度(T3)まで同一時間で徐冷することにより(期間s2)、基礎ガラステープ37は一方向に湾曲する。つまり、基礎ガラステープ37からガラステープ1が製造される。 As described above, by changing the rate of temperature increase between the main surface F3 side and the main surface F4 side (period s0) and gradually cooling from different temperatures (T1, T2) to the same temperature (T3) in the same time (period s2). The basic glass tape 37 is curved in one direction. That is, the glass tape 1 is manufactured from the basic glass tape 37.
 なお、温度T0は室温であってもよい。この場合は、ヒータ33及びヒータ35の機能を停止させる。又は、ヒータ33及びヒータ35を設けなくてもよい。 The temperature T0 may be room temperature. In this case, the functions of the heater 33 and the heater 35 are stopped. Alternatively, the heater 33 and the heater 35 may not be provided.
 (実施形態5)
 図1、図3A、図4、図6~図8を参照して、本発明の実施形態5における製造方法について説明する。この製造方法は製造装置23を用いて実行される。製造方法は、図4を参照して説明された実施形態2に係る製造方法と同様である。図8は、実施形態5に係る湾曲工程S5を示すフローチャートである。
(Embodiment 5)
A manufacturing method according to Embodiment 5 of the present invention will be described with reference to FIGS. 1, 3A, 4, and 6 to 8. FIG. This manufacturing method is executed using the manufacturing apparatus 23. The manufacturing method is the same as the manufacturing method according to the second embodiment described with reference to FIG. FIG. 8 is a flowchart showing the bending step S5 according to the fifth embodiment.
 工程S51において、まず金型29で基礎ガラステープ37を挟む。工程S53~工程S57では、ヒータ27を制御して、温度制御を実行する。また、工程S53~工程S57は、基礎ガラステープ37が金型29に挟まれた状態で実行される。 In step S51, first, the basic glass tape 37 is sandwiched between the molds 29. In steps S53 to S57, the heater 27 is controlled to perform temperature control. Steps S53 to S57 are performed in a state where the basic glass tape 37 is sandwiched between the molds 29.
 工程S53(昇温工程)において、基礎ガラステープ37の主面F3側の雰囲気温度及び主面F4側の雰囲気温度がそれぞれ期間s0(第1期間)で温度T1(第1温度)及び温度T2(第2温度)に到達するように、主面F3側と主面F4側とを異なる昇温速度で昇温する。 In step S53 (temperature raising step), the atmospheric temperature on the main surface F3 side and the atmospheric temperature on the main surface F4 side of the basic glass tape 37 are the temperature T1 (first temperature) and the temperature T2 (in the period s0 (first period), respectively. The main surface F3 side and the main surface F4 side are heated at different heating rates so as to reach the second temperature.
 工程S55(保温工程)において、期間s1(第2期間)の間、主面F3側の雰囲気温度及び主面F4側の雰囲気温度をそれぞれ温度T1及び温度T2に保持する。工程S57(徐冷工程)において、温度T1に保持された主面F3側の雰囲気温度及び温度T2に保持された主面F4側の雰囲気温度がそれぞれ期間s2(第3期間)で温度T3(第3温度)に到達するように、主面F3側と主面F4側とを異なる徐冷速度で徐冷する。 In step S55 (heat retention step), during the period s1 (second period), the atmospheric temperature on the main surface F3 side and the atmospheric temperature on the main surface F4 side are maintained at the temperature T1 and the temperature T2, respectively. In step S57 (slow cooling step), the atmospheric temperature on the main surface F3 side held at the temperature T1 and the atmospheric temperature on the main surface F4 side held at the temperature T2 are respectively the temperature T3 (first time) in the period s2 (third period). The main surface F3 side and the main surface F4 side are slowly cooled at different cooling rates so as to reach (3 temperatures).
 以上、主面F3側と主面F4側との昇温速度を異ならせ(期間s0)、異なる温度(T1、T2)から同一温度(T3)まで同一時間で徐冷することにより(期間s2)、基礎ガラステープ37は一方向に湾曲する。つまり、基礎ガラステープ37からガラステープ1が製造される。 As described above, by changing the rate of temperature increase between the main surface F3 side and the main surface F4 side (period s0) and gradually cooling from different temperatures (T1, T2) to the same temperature (T3) in the same time (period s2). The basic glass tape 37 is curved in one direction. That is, the glass tape 1 is manufactured from the basic glass tape 37.
 (実施形態6及び実施形態7の共通事項)
 本発明の実施形態6及び実施形態7では、製造方法は製造装置23によって実行される。ただし、図7に示す温度制御は行われない。製造方法は、図4を参照して説明された実施形態2に係る製造方法と同様であるが、図4における実施形態6及び実施形態7の工程S5では、ヒータ27によって、金型(図9の金型39、又は図6の金型29)に挟まれた主面F3側の雰囲気温度と主面F4側の雰囲気温度とが同一温度(例えば、620℃)に保持される点が異なる。
(Common items of Embodiment 6 and Embodiment 7)
In the sixth embodiment and the seventh embodiment of the present invention, the manufacturing method is executed by the manufacturing apparatus 23. However, the temperature control shown in FIG. 7 is not performed. The manufacturing method is the same as the manufacturing method according to the second embodiment described with reference to FIG. 4. However, in step S5 of the sixth and seventh embodiments in FIG. The difference is that the atmospheric temperature on the main surface F3 side and the atmospheric temperature on the main surface F4 side sandwiched between the metal mold 39 or the metal mold 29 in FIG. 6 are maintained at the same temperature (for example, 620 ° C.).
 (実施形態6)
 図1、図3A、図4、図6、及び図9を参照して、本発明の実施形態6における製造方法について説明する。図9は、製造方法で使用する金型39を模式的に示す正面図である。製造装置23の金型29に代えて金型39が使用される。金型39は、型板39A及び型板39Bを含む。型板39Aにおいて、主面F3との接触面(成形面)は、一方向に湾曲した凹面である。型板39Bにおいて、主面F4との接触面(成形面)は、型板39Aの接触面と同一方向に湾曲した凸面である。
(Embodiment 6)
A manufacturing method according to Embodiment 6 of the present invention will be described with reference to FIGS. 1, 3A, 4, 6, and 9. FIG. FIG. 9 is a front view schematically showing a mold 39 used in the manufacturing method. A mold 39 is used in place of the mold 29 of the manufacturing apparatus 23. The mold 39 includes a template 39A and a template 39B. In the template 39A, the contact surface (molding surface) with the main surface F3 is a concave surface curved in one direction. In the template 39B, the contact surface (molding surface) with the main surface F4 is a convex surface curved in the same direction as the contact surface of the template 39A.
 工程S5において、ヒータ27によって基礎ガラステープ37を加熱しながら、湾曲した金型39で基礎ガラステープ37を挟む。その結果、基礎ガラステープ37は金型39の形状に応じて一方向に湾曲する。 In step S5, the basic glass tape 37 is sandwiched between the curved molds 39 while the basic glass tape 37 is heated by the heater 27. As a result, the basic glass tape 37 bends in one direction according to the shape of the mold 39.
 以上、工程S1~工程S5を経て、基礎ガラステープ37からガラステープ1が製造される。 Thus, the glass tape 1 is manufactured from the basic glass tape 37 through the steps S1 to S5.
 (実施形態7)
 図1、図3A、図4、及び図6を参照して、本発明の実施形態7における製造方法について説明する。工程S5は第1工程と第2工程とを含む。第1工程において、ヒータ27によって基礎ガラステープ37を加熱しながら、金型29で基礎ガラステープ37を挟む。
(Embodiment 7)
With reference to FIG. 1, FIG. 3A, FIG. 4, and FIG. 6, the manufacturing method in Embodiment 7 of this invention is demonstrated. Step S5 includes a first step and a second step. In the first step, the basic glass tape 37 is sandwiched between the molds 29 while the basic glass tape 37 is heated by the heater 27.
 第2工程において、ヒータ35を制御して、金型29から出た基礎ガラステープ37の主面F3側と主面F4側とを異なる徐冷速度(降温速度)で徐冷する。具体的には、主面F3側の徐冷速度より、主面F4側の徐例速度が大きくなるように徐冷する。徐冷後の基礎ガラステープ37は、鉛直上方向に凸状に湾曲している。このように、主面F3側と主面F4側との徐冷速度を異ならせることにより、徐冷された基礎ガラステープ37は一方向に湾曲する。 In the second step, the heater 35 is controlled to slowly cool the main surface F3 side and the main surface F4 side of the basic glass tape 37 coming out of the mold 29 at different slow cooling rates (cooling rate). Specifically, the cooling is performed so that the gradual speed on the main surface F4 side becomes larger than the gradual cooling speed on the main surface F3 side. The basic glass tape 37 after the slow cooling is convexly curved in the vertically upward direction. In this way, the gradually cooled basic glass tape 37 is curved in one direction by making the slow cooling rate different between the main surface F3 side and the main surface F4 side.
 以上、工程S1~工程S5を経て、基礎ガラステープ37からガラステープ1が製造される。 Thus, the glass tape 1 is manufactured from the basic glass tape 37 through the steps S1 to S5.
 次に、図6及び図10を参照して、実施形態7における製造方法による詳細な制御を説明する。図10は、製造方法による温度制御を説明する図である。 Next, with reference to FIG. 6 and FIG. 10, detailed control by the manufacturing method in Embodiment 7 will be described. FIG. 10 is a diagram for explaining temperature control by the manufacturing method.
 温度曲線63は、主面F3周辺の雰囲気温度を示す。温度曲線64は、主面F4周辺の雰囲気温度を示す。期間s10(時刻t10~時刻t11)、期間s11(時刻t11~時刻t12)、及び期間s12(時刻t12~時刻t13)では、ヒータ27を制御して、温度制御を実行する。期間s13(時刻t13~時刻t14)、期間s14(時刻t14~時刻t15)、期間s15(時刻t15~時刻t16)、及び期間s16(時刻t16~時刻t17)では、ヒータ35を制御して、温度制御を実行する。 The temperature curve 63 shows the ambient temperature around the main surface F3. A temperature curve 64 shows the ambient temperature around the main surface F4. In the period s10 (time t10 to time t11), the period s11 (time t11 to time t12), and the period s12 (time t12 to time t13), the heater 27 is controlled to execute temperature control. In the period s13 (time t13 to time t14), the period s14 (time t14 to time t15), the period s15 (time t15 to time t16), and the period s16 (time t16 to time t17), the heater 35 is controlled to control the temperature. Execute control.
 基礎ガラステープ37は、入口36から型板29Aと型板29Bとの間に搬送方向38に沿って搬送される。そして、昇温工程までに型板29Aと型板29Bとは基礎ガラステープ37を挟む。 The basic glass tape 37 is conveyed along the conveyance direction 38 between the template 29A and the template 29B from the inlet 36. The template glass 29A and the template 29B sandwich the basic glass tape 37 before the temperature raising step.
 主面F3側は、期間s10(主面F3側の昇温工程)において、温度T0から温度T11まで昇温される。そして、主面F3側は、期間s11及び期間s12(主面F3側の保温工程)において、温度T11に保持される。一方、主面F4側は、期間s10及び期間s11(主面F4側の昇温工程)において、温度T0から温度T11まで昇温される。そして、主面F4側は、期間s12において、温度T11に保持される(主面F4側の保温工程)。 The main surface F3 side is heated from the temperature T0 to the temperature T11 in the period s10 (temperature increasing step on the main surface F3 side). And the main surface F3 side is hold | maintained at the temperature T11 in the period s11 and the period s12 (The heat retention process by the side of the main surface F3). On the other hand, the main surface F4 side is heated from the temperature T0 to the temperature T11 in the period s10 and the period s11 (temperature increasing step on the main surface F4 side). And the main surface F4 side is hold | maintained at temperature T11 in the period s12 (main surface F4 side heat retention process).
 時刻t13で、型板29Aと型板29Bとは荷重を解除する。そして、基礎ガラステープ37は、出口41から炉25の外へ搬送方向38に沿って搬送される。この場合の搬送時間は、基礎ガラステープ37の温度制御に影響を与えないほど短いため無視できる。 At time t13, the template 29A and the template 29B release the load. Then, the basic glass tape 37 is transported from the outlet 41 to the outside of the furnace 25 along the transport direction 38. The transport time in this case is negligible because it is so short that it does not affect the temperature control of the basic glass tape 37.
 主面F3側は、期間s13及び期間s14(主面F3側の徐冷工程)において、温度T11から温度T12まで徐冷される。さらに、主面F3側は、期間s15及び期間s16(主面F3側の冷却工程)において、温度T12から温度T0まで冷却される。一方、主面F4側は、期間s13(主面F4側の徐冷工程)において、温度T11から温度T12まで徐冷される。さらに、主面F4側は、期間s14及び期間s15(主面F4側の冷却工程)において、温度T12から温度T0まで冷却される。徐冷後の基礎ガラステープ37は、鉛直上方向に凸状に湾曲している。このように、主面F3側と主面F4側とを異なる昇温速度で同一温度(T11)に昇温し(期間s10、期間s11、期間s12)、主面F3側と主面F4側とを異なる徐冷速度で徐冷することにより(期間s13、期間s14)、徐冷された基礎ガラステープ37は一方向に湾曲する。つまり、基礎ガラステープ37からガラステープ1が製造される。 The main surface F3 side is gradually cooled from the temperature T11 to the temperature T12 in the period s13 and the period s14 (the slow cooling process on the main surface F3 side). Further, the main surface F3 side is cooled from the temperature T12 to the temperature T0 in the period s15 and the period s16 (the cooling process on the main surface F3 side). On the other hand, the main surface F4 side is gradually cooled from the temperature T11 to the temperature T12 in the period s13 (the slow cooling process on the main surface F4 side). Further, the main surface F4 side is cooled from the temperature T12 to the temperature T0 in the period s14 and the period s15 (cooling process on the main surface F4 side). The basic glass tape 37 after the slow cooling is convexly curved in the vertically upward direction. In this way, the main surface F3 side and the main surface F4 side are heated to the same temperature (T11) at different heating rates (period s10, period s11, period s12), and the main surface F3 side and the main surface F4 side Is gradually cooled at different slow cooling rates (period s13, period s14), the slowly cooled basic glass tape 37 bends in one direction. That is, the glass tape 1 is manufactured from the basic glass tape 37.
 ここで、実施形態7においては、例えば、温度T0、温度T11、及び温度T12は、それぞれ、室温、620℃、及び555℃である。温度T0が室温であるので、ヒータ33の機能を停止させるか、ヒータ33を設けなくてもよい。例えば、期間s10、期間s11、期間s12、期間s13、期間s14、期間s15、及び期間s16は、それぞれ、2分、0.5分、0.5分、1.5分、1.5分、3.5分、及び3.5分である。例えば、金型29による規定荷重Pは、0.5KN(キロニュートン)である。例えば、期間s10では、炉25には窒素(N2)ガスが充填され、期間s11及び期間s12では、炉25内は真空にされる。 Here, in the seventh embodiment, for example, the temperature T0, the temperature T11, and the temperature T12 are room temperature, 620 ° C., and 555 ° C., respectively. Since the temperature T0 is room temperature, the function of the heater 33 is stopped or the heater 33 may not be provided. For example, the period s10, the period s11, the period s12, the period s13, the period s14, the period s15, and the period s16 are 2 minutes, 0.5 minutes, 0.5 minutes, 1.5 minutes, 1.5 minutes, 3.5 minutes and 3.5 minutes. For example, the specified load P by the mold 29 is 0.5 KN (kilonewtons). For example, in the period s10, the furnace 25 is filled with nitrogen (N 2 ) gas, and in the period s11 and the period s12, the furnace 25 is evacuated.
 (実施形態8)
 図1、図3A、及び図11を参照して、本発明の実施形態8における製造方法について説明する。図11は、製造方法を実行する製造装置43の概略構成を示す縦断側面図である。製造方法は、図4を参照して説明された実施形態2に係る製造方法と同様であるが、工程S5が工程S3において実行される点が異なる。以下、詳細を説明する。
(Embodiment 8)
With reference to FIG. 1, FIG. 3A, and FIG. 11, the manufacturing method in Embodiment 8 of this invention is demonstrated. FIG. 11 is a longitudinal side view showing a schematic configuration of a manufacturing apparatus 43 that executes the manufacturing method. The manufacturing method is the same as the manufacturing method according to the second embodiment described with reference to FIG. 4 except that step S5 is performed in step S3. Details will be described below.
 図11に示すように、製造装置43は、保持部45、ヒータ47、及びドラム49を備える。母ガラス板51は鉛直線に沿って保持部45にセットされる。そして、工程S1において、ヒータ47を制御して、母ガラス板51の主面F5(第1主面)側と主面F6(第2主面)側とを異なる温度で加熱する。例えば、主面F5側の雰囲気温度を温度T20(例えば、720℃)に設定し、主面F6側の雰囲気温度を温度T21(例えば、700℃)に設定する。温度T20は温度T21より高い。工程S3(工程S5)において、ドラム49の矢印方向55への回転力(引張力)により、加熱された母ガラス板51を延伸してガラステープ1に成形する。その結果、ガラステープ1は、2つの側縁3にわたって一方向に湾曲する。 As shown in FIG. 11, the manufacturing apparatus 43 includes a holding unit 45, a heater 47, and a drum 49. The mother glass plate 51 is set on the holding portion 45 along a vertical line. In step S1, the heater 47 is controlled to heat the main surface F5 (first main surface) side and the main surface F6 (second main surface) side of the mother glass plate 51 at different temperatures. For example, the atmospheric temperature on the main surface F5 side is set to a temperature T20 (for example, 720 ° C.), and the atmospheric temperature on the main surface F6 side is set to a temperature T21 (for example, 700 ° C.). The temperature T20 is higher than the temperature T21. In step S3 (step S5), the heated mother glass plate 51 is stretched and formed into the glass tape 1 by the rotational force (tensile force) of the drum 49 in the arrow direction 55. As a result, the glass tape 1 bends in one direction across the two side edges 3.
 以上、母ガラス板51の主面F5側と主面F6側とを異なる温度で加熱しながら延伸するので、工程S3で得られたガラステープ1は、主面F5側が凸状となるように一方向に湾曲する。つまり、母ガラス板51から直接ガラステープ1が製造される。 As described above, since the main surface F5 side and the main surface F6 side of the mother glass plate 51 are stretched while being heated at different temperatures, the glass tape 1 obtained in the step S3 is made so that the main surface F5 side is convex. Curve in the direction. That is, the glass tape 1 is manufactured directly from the mother glass plate 51.
 [基礎ガラステープ]
 図4を参照して説明した基礎ガラステープ(基礎ガラステープ37)の製造方法を説明する。以下、図3A、図3B、図4、及び図11を参照して、リドロー法による製造方法を説明する。工程S1において、ヒータ47を制御して、保持部45にセットされた母ガラス板51の主面F5と主面F6とを同一温度(例えば、710℃)で加熱する。工程S3において、加熱された母ガラス板51を延伸することにより基礎ガラステープが成形され、ドラム49に巻き取られる。
[Basic glass tape]
The manufacturing method of the basic glass tape (base glass tape 37) demonstrated with reference to FIG. 4 is demonstrated. Hereinafter, a manufacturing method by the redraw method will be described with reference to FIGS. 3A, 3 </ b> B, 4, and 11. In step S1, the heater 47 is controlled to heat the main surface F5 and the main surface F6 of the mother glass plate 51 set on the holding unit 45 at the same temperature (for example, 710 ° C.). In step S <b> 3, the base glass tape is formed by stretching the heated mother glass plate 51 and wound around the drum 49.
 リドロー法により成形された基礎ガラステープの主面及び側縁は火造り面(fire polished surface)となる。その結果、基礎ガラステープから製造されたガラステープ1の第1主面F1及び第2主面F2並びに側縁3も火造り面となる。また、リドロー法により成形された基礎ガラステープの側縁は、基礎ガラステープの外側に向って突出する凸曲面を有する。その結果、基礎ガラステープから製造されたガラステープ1の側縁3も外側に向って突出する凸曲面4を有する。これらの点は、実施形態8のガラステープ1についても同じである。 The main surface and side edges of the basic glass tape formed by the redraw method are fire-polished surfaces. As a result, the 1st main surface F1 and the 2nd main surface F2 of the glass tape 1 manufactured from the basic glass tape, and the side edge 3 also become a fire-making surface. Moreover, the side edge of the basic glass tape shape | molded by the redraw method has a convex curved surface which protrudes toward the outer side of a basic glass tape. As a result, the side edge 3 of the glass tape 1 manufactured from the basic glass tape also has a convex curved surface 4 that protrudes outward. These points are the same for the glass tape 1 of the eighth embodiment.
 成形された基礎ガラステープの形状は、略平面で湾曲(うねりを含む。)が存在しないことが好ましいが、湾曲工程(S5)において、一方向に湾曲させるため、多少湾曲を有していても構わない。 The shape of the formed basic glass tape is preferably substantially flat and has no curvature (including waviness), but in the bending step (S5), it is curved in one direction. I do not care.
 (実施形態9)
 図2及び図12A~図12Dを参照して、本発明の実施形態9に係るガラステープ1について説明する。図2に示すように、実施形態1に係るガラステープ1は、2つの側縁3にわたって、第2主面F2が1つの底部BMを有するように一方向(方向CR1)に湾曲し、第1主面F1が第2主面F2に沿うように湾曲している。
(Embodiment 9)
With reference to FIG. 2 and FIGS. 12A to 12D, a glass tape 1 according to Embodiment 9 of the present invention will be described. As shown in FIG. 2, the glass tape 1 according to the first embodiment is curved in one direction (direction CR1) so that the second main surface F2 has one bottom BM over the two side edges 3. The main surface F1 is curved along the second main surface F2.
 これに対して、実施形態9の第1例~第3例に係るガラステープ1は、2つの側縁3にわたって、第2主面F2が頂部TMと底部BMとを有するように複数方向(方向CR1及び方向CR2)に湾曲し、第1主面F1が第2主面F2に沿うように湾曲している。つまり、ガラステープ1はうねりを有する。うねりは、複数方向への湾曲、つまり、第2主面F2が頂部TMと底部BMとを有するように二方向に湾曲していることを示す。本明細書において、頂部TMは、断面視において、凸状の第2主面F2の頂点を示す。頂部TMは側縁3に沿って形成される。 On the other hand, the glass tape 1 according to the first to third examples of the ninth embodiment extends in two or more directions (directions) so that the second main surface F2 has the top TM and the bottom BM over the two side edges 3. CR1 and direction CR2), and the first main surface F1 is curved along the second main surface F2. That is, the glass tape 1 has a wave. The undulation indicates the bending in a plurality of directions, that is, the second main surface F2 is bent in two directions so as to have the top part TM and the bottom part BM. In the present specification, the top portion TM indicates a vertex of the convex second main surface F2 in a cross-sectional view. The top TM is formed along the side edge 3.
 図12Aは、実施形態9の第1例に係るガラステープ1を示す断面図である。ガラステープ1は二方向(方向CR1及び方向CR2)に湾曲し、第2主面F2は1つの頂部TMと1つの底部BMとを有する。底部BMは、方向CR1に向かって凹の底部であり、頂部TMは、方向CR2に向かって凸の頂部である。2つの側縁3を通る中心面CFは湾曲している。第1主面F1は第2主面F2に沿うように湾曲している。ガラステープ1の一方の側縁3と1つの頂部TMとが平坦面7に接触している。つまり、断面視において、ガラステープ1は、2つの接触点CPで平坦面7と接触する。 FIG. 12A is a cross-sectional view showing a glass tape 1 according to a first example of Embodiment 9. FIG. The glass tape 1 is curved in two directions (direction CR1 and direction CR2), and the second main surface F2 has one top TM and one bottom BM. The bottom BM is a bottom that is concave toward the direction CR1, and the top TM is a top that is convex toward the direction CR2. A center plane CF passing through the two side edges 3 is curved. The first main surface F1 is curved along the second main surface F2. One side edge 3 and one top TM of the glass tape 1 are in contact with the flat surface 7. That is, the glass tape 1 contacts the flat surface 7 at two contact points CP in a cross-sectional view.
 第1例に係るガラステープ1では、断面視で2点接触になる。つまり、ガラステープ1とガラス板5とが線接触している。線接触であるため、面接触の場合と比較してガラステープ1とガラス板5との接触面積が小さい。その結果、オプティカルコンタクトの発生を抑制でき、ガラス板5上でのガラステープ1の位置決め作業を容易に行うことができる。 In the glass tape 1 according to the first example, two-point contact is made in a sectional view. That is, the glass tape 1 and the glass plate 5 are in line contact. Since it is a line contact, the contact area of the glass tape 1 and the glass plate 5 is small compared with the case of surface contact. As a result, the occurrence of optical contact can be suppressed, and the positioning operation of the glass tape 1 on the glass plate 5 can be easily performed.
 ただし、空間9が一方の側縁3の方に片寄っているため、空間9に液体を注入して仮固定する場合、仮固定の強度が不均一になる可能性がある。そこで、空間9が線対称になるようにガラステープ1を形成することがより好ましい。 However, since the space 9 is shifted toward the one side edge 3, when the liquid 9 is injected into the space 9 and temporarily fixed, the strength of the temporary fixing may be uneven. Therefore, it is more preferable to form the glass tape 1 so that the space 9 is line symmetric.
 図12Bは、実施形態9の第2例に係るガラステープ1を示す断面図である。ガラステープ1は二方向(方向CR1及び方向CR2)に湾曲し、第2主面F2は1つの頂部TMと2つの底部BMとを有する。頂部TMは、方向CR2に向かって凸の頂部であり、各底部BMは、方向CR1に向かって凹の底部である。 FIG. 12B is a cross-sectional view showing the glass tape 1 according to the second example of the ninth embodiment. The glass tape 1 is curved in two directions (direction CR1 and direction CR2), and the second main surface F2 has one top portion TM and two bottom portions BM. The top part TM is a top part convex toward the direction CR2, and each bottom part BM is a bottom part concave toward the direction CR1.
 ガラステープ1は、中央の頂部TMを通る、平坦面7に垂直な線に対して線対称になるように湾曲している。従って、空間9は線対称になる。2つの側縁3を通る中心面CFは湾曲している。第1主面F1は第2主面F2に沿うように湾曲している。ガラステープ1の2つの側縁3と中央の頂部TMとが平坦面7に接触し、2つの底部BMは平坦面7から離れている。つまり、断面視において、ガラステープ1は、3つの接触点CPで平坦面7と接触する。 The glass tape 1 is curved so as to be line symmetric with respect to a line passing through the central top TM and perpendicular to the flat surface 7. Therefore, the space 9 is line symmetric. A center plane CF passing through the two side edges 3 is curved. The first main surface F1 is curved along the second main surface F2. The two side edges 3 of the glass tape 1 and the central top part TM are in contact with the flat surface 7, and the two bottom parts BM are separated from the flat surface 7. That is, the glass tape 1 contacts the flat surface 7 at three contact points CP in a cross-sectional view.
 第2例に係るガラステープ1では、第1例に係るガラステープ1と同様に、線接触によってオプティカルコンタクトの発生を抑制できる。また、空間9が線対称になるようにガラステープ1が形成されるため、液体による仮固定の強度の不均一を抑制できる。 In the glass tape 1 according to the second example, as in the glass tape 1 according to the first example, generation of optical contact can be suppressed by line contact. In addition, since the glass tape 1 is formed so that the space 9 is line-symmetric, non-uniformity in the strength of temporary fixing by the liquid can be suppressed.
 図12Cは、実施形態9の第3例に係るガラステープ1を示す断面図である。ガラステープ1の構成は、第2例に係るガラステープ1の構成と同様である。ただし、第2主面F2の頂部TMは、平坦面7から離れており、平坦面7に接触していない。ガラステープ1の2つの側縁3が平坦面7に接触する。つまり、断面視において、ガラステープ1は、2つの接触点CPで平坦面7と接触する。 FIG. 12C is a cross-sectional view showing a glass tape 1 according to a third example of Embodiment 9. The configuration of the glass tape 1 is the same as the configuration of the glass tape 1 according to the second example. However, the top TM of the second main surface F2 is away from the flat surface 7 and is not in contact with the flat surface 7. The two side edges 3 of the glass tape 1 are in contact with the flat surface 7. That is, the glass tape 1 contacts the flat surface 7 at two contact points CP in a cross-sectional view.
 第3例に係るガラステープ1では、第2例に係るガラステープ1と同様に、線接触によってオプティカルコンタクトの発生を抑制できると伴に、空間9を線対称にすることによって液体による仮固定の強度の不均一を抑制できる。また、中央の頂部TMが平坦面7から離れているため、空間9の全体にわたって液体が注入される。従って、仮固定の強度の不均一がさらに抑制されると伴に、液体が注入された空間9に気泡が入り込むことをさらに抑制できる。 In the glass tape 1 according to the third example, similarly to the glass tape 1 according to the second example, the occurrence of optical contact can be suppressed by line contact, and the space 9 is made linearly symmetrical by making the line 9 symmetrical. Unevenness of strength can be suppressed. Further, since the central top portion TM is separated from the flat surface 7, the liquid is injected over the entire space 9. Therefore, it is possible to further suppress the bubbles from entering the space 9 into which the liquid has been injected while further suppressing the non-uniformity of the temporarily fixed strength.
 図12A~図12Cを参照して説明したように、実施形態9の第1例~第3例に係るガラステープ1はうねりを有する。ただし、うねりの形態(頂部TMの数、頂部TMの平坦面7への接触の有無、及び底部BMの数)は、第1例~第3例に係るガラステープ1のうねりの形態に限定されない。 As described with reference to FIGS. 12A to 12C, the glass tape 1 according to the first to third examples of the embodiment 9 has waviness. However, the shape of the undulation (the number of the top TM, the presence or absence of contact of the top TM with the flat surface 7 and the number of the bottom BM) is not limited to the undulation of the glass tape 1 according to the first to third examples. .
 第2主面F2の頂部TMの数は少ないほど好ましい。液体注入による仮固定の強度の均一性をさらに向上でき、気泡が入り込むことをさらに抑制でき、ガラステープ1の位置決めの精度をさらに向上できるからである。 The smaller the number of tops TM of the second main surface F2, the better. This is because it is possible to further improve the uniformity of the strength of temporary fixation by liquid injection, further suppress the entry of bubbles, and further improve the positioning accuracy of the glass tape 1.
 また、頂部TMが平坦面7に接触する場合でも、接触点CPの数は少ないほど好ましい。例えば、接触点CPの数が、3であることが好ましく、2であることがさらに好ましい。 In addition, even when the top portion TM is in contact with the flat surface 7, the smaller the number of contact points CP, the better. For example, the number of contact points CP is preferably 3, and more preferably 2.
 ただし、実施形態1に係るガラステープ1のように、一方向に湾曲しており、うねりを有しないことがさらに好ましい。つまり、第2主面F2の底部BMの数が1であり、頂部TMの数が0であることが好ましい。液体注入による仮固定の強度の均一性をさらに向上でき、気泡が入り込むことをさらに抑制でき、ガラステープ1の位置決めの精度をさらに向上できるからである。 However, it is more preferable that the glass tape 1 according to the first embodiment is curved in one direction and has no swell. That is, it is preferable that the number of bottom portions BM of the second main surface F2 is 1 and the number of top portions TM is 0. This is because the uniformity of the strength of temporary fixation by liquid injection can be further improved, air bubbles can be further prevented from entering, and the positioning accuracy of the glass tape 1 can be further improved.
 実施形態1に係るガラステープ1は、うねりを有しないだけでなく、第1主面F1が第2主面F2に沿うように湾曲している。ただし、ガラステープ1は、第1主面F1が第2主面F2に沿うように湾曲していなくてもよい。 The glass tape 1 according to the first embodiment has not only waviness, but is curved so that the first main surface F1 is along the second main surface F2. However, the glass tape 1 may not be curved so that the first main surface F1 is along the second main surface F2.
 図12Dは、実施形態9の第4例に係るガラステープ1を示す断面図である。ガラステープ1は、ガラステープ1の両端部に肉厚部Gを有する。肉厚部Gの各々の厚みは、ガラステープ1の中央部の厚みよりも大きい。そして、2つの側縁3を通る中心面CFは湾曲している。さらに、ガラステープ1の中央部では、第1主面F1が第2主面F2に沿うように湾曲している。また、ガラステープ1は、実施形態1に係るガラステープ1と同様に、1つの底部BMを有し、断面視において、2つの接触点CPで平坦面7と接触する。第4例に係るガラステープ1では、実施形態1に係るガラステープ1と同様に、線接触によってオプティカルコンタクトの発生を抑制できる。 FIG. 12D is a cross-sectional view showing a glass tape 1 according to a fourth example of the ninth embodiment. The glass tape 1 has thick portions G at both ends of the glass tape 1. The thickness of each thick part G is larger than the thickness of the central part of the glass tape 1. The center plane CF passing through the two side edges 3 is curved. Furthermore, in the center part of the glass tape 1, the 1st main surface F1 is curving so that the 2nd main surface F2 may be followed. Moreover, the glass tape 1 has the one bottom part BM similarly to the glass tape 1 which concerns on Embodiment 1, and contacts the flat surface 7 at the two contact points CP in the cross sectional view. In the glass tape 1 which concerns on a 4th example, generation | occurrence | production of an optical contact can be suppressed by line contact similarly to the glass tape 1 which concerns on Embodiment 1. FIG.
 次に、本発明が実施例に基づき具体的に説明されるが、本発明は以下の実施例によって限定されない。 Next, the present invention will be specifically described based on examples, but the present invention is not limited to the following examples.
 図1、図3A、図6、図7、及び図13を参照して、本発明の実施例を説明する。図13は、実施例におけるガラステープ1を説明する図である。横軸及び縦軸は、それぞれ、ガラステープ1のX軸に沿った位置及びZ軸に沿った高さを示す。高さは平坦面7から第2主面F2(湾曲面)までの高さである。 Embodiments of the present invention will be described with reference to FIG. 1, FIG. 3A, FIG. 6, FIG. 7, and FIG. FIG. 13 is a diagram for explaining the glass tape 1 in the embodiment. The horizontal axis and the vertical axis indicate the position along the X axis and the height along the Z axis of the glass tape 1, respectively. The height is a height from the flat surface 7 to the second main surface F2 (curved surface).
 実施例では、実施形態4における製造装置23により基礎ガラステープ37から製造されたガラステープ1を示す。基礎ガラステープ37の母ガラス板の材質は無アルカリガラス(日本電気硝子株式会社製TypeA)である。母ガラス板の幅は50mmであり、厚みは0.3mmである。リドロー法により製造された基礎ガラステープ37の幅は5mmであり、厚みは0.03mmである。 In the examples, the glass tape 1 manufactured from the basic glass tape 37 by the manufacturing apparatus 23 according to the fourth embodiment is shown. The material of the mother glass plate of the basic glass tape 37 is non-alkali glass (Type A manufactured by Nippon Electric Glass Co., Ltd.). The mother glass plate has a width of 50 mm and a thickness of 0.3 mm. The basic glass tape 37 manufactured by the redraw method has a width of 5 mm and a thickness of 0.03 mm.
 製造工程における時間、温度、及び荷重の条件は次の通りである。期間s0、期間s1、期間s2、及び期間s3は、それぞれ、1分、1分、3分、及び3分である。規定荷重Pは、0.5KNである。温度T0、温度T1、温度T2、及び温度T3は、それぞれ、室温、630℃、610℃、及び555℃である。 The conditions of time, temperature, and load in the manufacturing process are as follows. The period s0, the period s1, the period s2, and the period s3 are 1 minute, 1 minute, 3 minutes, and 3 minutes, respectively. The specified load P is 0.5 KN. The temperature T0, the temperature T1, the temperature T2, and the temperature T3 are room temperature, 630 ° C., 610 ° C., and 555 ° C., respectively.
 以上の条件で、図13に示す一方向に湾曲したガラステープ1が製造された。湾曲率Rは、0.07%であった。また、ガラステープ1の幅Wは5mmであり、厚みは0.03mmである。無アルカリガラスを使用すると、アルカリ成分によって劣化する素子を搭載したデバイスのシール材として好適である。 Under the above conditions, the glass tape 1 curved in one direction shown in FIG. 13 was produced. The curvature R was 0.07%. Moreover, the width W of the glass tape 1 is 5 mm, and thickness is 0.03 mm. Use of alkali-free glass is suitable as a sealing material for a device equipped with an element that deteriorates due to an alkali component.
 また、母ガラス板をホウ珪酸ガラス(日本電気硝子株式会社製TypeD)とし、温度T1、温度T2、及び温度T3を、それぞれ、無アルカリガラスの場合よりも150℃高い温度とした以外は、無アルカリガラスと同一条件でガラステープ1を製造したところ、無アルカリガラスと同等の湾曲率Rを有するガラステープ1が製造できた。 The base glass plate is borosilicate glass (Type D manufactured by Nippon Electric Glass Co., Ltd.), and the temperature T1, the temperature T2, and the temperature T3 are each set to 150 ° C. higher than that of non-alkali glass. When the glass tape 1 was manufactured on the same conditions as alkali glass, the glass tape 1 which has the curvature R equivalent to alkali-free glass was able to be manufactured.
 なお、本発明は、上記の実施形態に限られるものではなく、その要旨を逸脱しない範囲で種々の態様において実施することが可能である。例えば、図1~図13を参照して説明したガラステープ1は以下の特性を有してよい。 Note that the present invention is not limited to the above-described embodiment, and can be implemented in various modes without departing from the gist thereof. For example, the glass tape 1 described with reference to FIGS. 1 to 13 may have the following characteristics.
 (1)ガラステープ1の材質は特に限定されない。例えば、材質は、用途に応じて、ケイ酸塩ガラス、無アルカリガラス、ソーダガラス、ホウ珪酸ガラス、アルミ珪酸ガラス、シリカガラス等、延伸成形可能なガラスである。 (1) The material of the glass tape 1 is not particularly limited. For example, the material is a glass that can be stretch-molded, such as silicate glass, alkali-free glass, soda glass, borosilicate glass, aluminum silicate glass, and silica glass, depending on the application.
 (2)ガラステープ1の幅Wは特に限定されない。例えば、幅Wは、用途に応じて、25mm以下、20mm以下、15mm以下、又は10mm以下である。 (2) The width W of the glass tape 1 is not particularly limited. For example, the width W is 25 mm or less, 20 mm or less, 15 mm or less, or 10 mm or less depending on the application.
 (3)ガラステープ1は、厚みに対する幅Wのアスペクト比が25~5000であってよい。そのため、ギャップ材、スペーサ材、シール材等として好適である。 (3) The glass tape 1 may have an aspect ratio of the width W to the thickness of 25 to 5000. Therefore, it is suitable as a gap material, a spacer material, a seal material and the like.
 (4)ガラステープ1の第1主面F1及び/又は第2主面F2の表面粗さは特に限定されない。例えば、第1主面F1及び/又は第2主面F2は、オプティカルコンタクトが発生し得る平滑面である。例えば、用途に応じて、中心線平均粗さRaが、0.5nm以下、0.3nm以下、又は0.2nm以下である。 (4) The surface roughness of the first main surface F1 and / or the second main surface F2 of the glass tape 1 is not particularly limited. For example, the first main surface F1 and / or the second main surface F2 are smooth surfaces on which optical contact can occur. For example, the center line average roughness Ra is 0.5 nm or less, 0.3 nm or less, or 0.2 nm or less depending on the application.
 (5)ガラステープ1の第1主面F1及び/若しくは第2主面F2、並びに/又は側縁3は、火造り面であってよい。第1主面F1及び/若しくは第2主面F2が火造り面の場合、ガラス板5との密着性がより向上し、接着しやすくなる。側縁3が火造り面の場合、側縁3に割れ、欠け、クラック等が存在せず、側縁3からガラステープ1が破断するのを効果的に防止できる。その結果、ガラステープ1を大きな曲率で曲げることが可能になる。 (5) The first main surface F1 and / or the second main surface F2 and / or the side edge 3 of the glass tape 1 may be a fire-making surface. When the 1st main surface F1 and / or the 2nd main surface F2 are fire-making surfaces, adhesiveness with the glass plate 5 improves more and it becomes easy to adhere | attach. When the side edge 3 is a fired surface, the side edge 3 is not cracked, chipped, cracked, or the like, and the glass tape 1 can be effectively prevented from breaking from the side edge 3. As a result, the glass tape 1 can be bent with a large curvature.
 (6)図3Bに示されるように、側縁3は凸曲面4を有したが、側縁3は平坦面であってよい。また、側縁3は、曲面と平坦面とで形成されてもよい。 (6) As shown in FIG. 3B, the side edge 3 has the convex curved surface 4, but the side edge 3 may be a flat surface. The side edge 3 may be formed of a curved surface and a flat surface.
 (7)ガラステープ1には、0.01質量%~30質量%の遷移金属イオンが含有されてよい。遷移金属イオンが吸収する波長の光をガラステープ1に照射することによって、ガラステープ1を効果的に加熱できる。その結果、ガラス板5に仮固定されたガラステープ1を軟化させてガラス板5に接着させることが可能となる。 (7) The glass tape 1 may contain 0.01% by mass to 30% by mass of transition metal ions. The glass tape 1 can be effectively heated by irradiating the glass tape 1 with light having a wavelength that is absorbed by the transition metal ions. As a result, the glass tape 1 temporarily fixed to the glass plate 5 can be softened and bonded to the glass plate 5.
 (8)ガラステープ1の表面は成膜処理されてよい。表面に成膜された膜成分が吸収する波長の光をガラステープ1に照射することによって、ガラス板5の表面を効果的に加熱できる。その結果、仮固定されたガラステープ1とガラス板5とを容易に接着することが可能となる。 (8) The surface of the glass tape 1 may be subjected to film formation. The surface of the glass plate 5 can be effectively heated by irradiating the glass tape 1 with light having a wavelength that is absorbed by the film component formed on the surface. As a result, the temporarily fixed glass tape 1 and the glass plate 5 can be easily bonded.
 (9)ガラステープ1には、質量5%~質量25%のアルカリ金属が含有されてよい。このことにより、ガラステープ1とガラス板5とを、陽極接合により接着させることが可能となる。 (9) The glass tape 1 may contain an alkali metal having a mass of 5% to 25%. This makes it possible to bond the glass tape 1 and the glass plate 5 by anodic bonding.
 (10)一方向に湾曲するガラステープ1(例えば、実施形態1又は実施形態9の第4例)及びうねりを有するガラステープ1(例えば、実施形態9の第1例~第3例)において、接触点CPの数は、5点以下であることが好ましく、3点以下であることがさらに好ましく、2点であることがより好ましい。 (10) In the glass tape 1 curved in one direction (for example, the fourth example of the first embodiment or the ninth embodiment) and the glass tape 1 having undulations (for example, the first to third examples of the ninth embodiment), The number of contact points CP is preferably 5 points or less, more preferably 3 points or less, and even more preferably 2 points.
 (11)実施形態3における製品製造方法は、2つの側縁にわたって一方向に湾曲しているガラステープ1(例えば、実施形態1又は実施形態9の第4例)に適用される。ただし、実施形態3における製品製造方法は、2つの側縁にわたって湾曲しているガラステープ1に適用されてもよい。従って、例えば、実施形態3における製品製造方法は、うねりを有するガラステープ1(例えば、実施形態9の第1例~第3例)とガラス板5とを部材として含む製品(最終製品)を製造する場合にも適用できる。 (11) The product manufacturing method in the third embodiment is applied to the glass tape 1 that is curved in one direction across two side edges (for example, the fourth example of the first or ninth embodiment). However, the product manufacturing method according to the third embodiment may be applied to the glass tape 1 that is curved over two side edges. Therefore, for example, the product manufacturing method in the third embodiment manufactures a product (final product) including the glass tape 1 having undulation (for example, the first to third examples of the ninth embodiment) and the glass plate 5 as members. It can also be applied to
 (12)図12Bにおいて、ガラステープ1は、中央の頂部TMを通る、平坦面7に垂直な線に対して線対称になるように湾曲しているが、平坦面7に垂直な線に対して非対称になるように湾曲していてもよい。同様に、図1、図12C、及び図12Dのガラステープ1も、平坦面7に垂直な線に対して線対称になるように湾曲しているが、平坦面7に垂直な線に対して非対称になるように湾曲していてもよい。 (12) In FIG. 12B, the glass tape 1 is curved so as to be symmetrical with respect to a line passing through the central top TM and perpendicular to the flat surface 7, but with respect to a line perpendicular to the flat surface 7. And may be curved to be asymmetric. Similarly, the glass tape 1 of FIGS. 1, 12C, and 12D is curved so as to be line-symmetric with respect to a line perpendicular to the flat surface 7, but with respect to a line perpendicular to the flat surface 7. It may be curved to be asymmetric.
 本発明は、太陽電池、有機ELディスプレイ、プレパラート等、ガラステープをギャップ材、スペーサ材、シール材等として用いる分野に利用可能である。 The present invention can be used in fields where glass tape is used as a gap material, a spacer material, a sealing material, etc., such as a solar cell, an organic EL display, and a preparation.
 1  ガラステープ
 3  側縁
 4  凸曲面
 5  ガラス板
 7  平坦面
 9  空間
 29  金型
 37  基礎ガラステープ
 39  金型
 51  母ガラス板
 D  厚み
 W  幅
 L  長さ
 Db  厚み
 Wb  幅
 Lb  長さ
 CF  中心面
 F1  第1主面(湾曲面)
 F2  第2主面(湾曲面)
 F3  主面(第1主面)
 F4  主面(第2主面)
 F5  主面(第1主面)
 F6  主面(第2主面)
1 Glass Tape 3 Side Edge 4 Convex Curved Surface 5 Glass Plate 7 Flat Surface 9 Space 29 Mold 37 Basic Glass Tape 39 Mold 51 Mother Glass Plate D Thickness W Width L Length Db Thickness Wb Width Lb Length CF Center Plane F1 First 1 Main surface (curved surface)
F2 Second main surface (curved surface)
F3 main surface (first main surface)
F4 main surface (second main surface)
F5 main surface (first main surface)
F6 main surface (second main surface)

Claims (16)

  1.  厚みD、幅W、及び長さLを有し、D<Wを満足するガラステープであって、
     幅方向に対して湾曲しているガラステープ。
    A glass tape having a thickness D, a width W, and a length L and satisfying D <W,
    Glass tape curved in the width direction.
  2.  2つの側縁を有し、前記2つの側縁にわたって湾曲している、請求項1に記載のガラステープ。 The glass tape according to claim 1, which has two side edges and is curved over the two side edges.
  3.  前記2つの側縁にわたって一方向に湾曲している、請求項2に記載のガラステープ。 The glass tape according to claim 2, which is curved in one direction over the two side edges.
  4.  前記2つの側縁を通る中心面は湾曲している、請求項2又は請求項3に記載のガラステープ。 The glass tape according to claim 2 or 3, wherein a center plane passing through the two side edges is curved.
  5.  前記側縁は凸曲面を有する、請求項2から請求項4のいずれか1項に記載のガラステープ。 The glass tape according to any one of claims 2 to 4, wherein the side edge has a convex curved surface.
  6.  平坦面上に配置して使用され、
     前記平坦面に前記2つの側縁が当接するように配置されたときに、前記平坦面との間の空間に液体が注入されることに伴って毛細管現象を引き起こす程度の湾曲率Rで湾曲している、請求項2から請求項5のいずれか1項に記載のガラステープ。
    Used on a flat surface,
    When the two side edges are arranged in contact with the flat surface, the liquid crystal is bent at a curvature R that causes capillary action when liquid is injected into the space between the flat surfaces. The glass tape according to any one of claims 2 to 5, wherein:
  7.  湾曲率Rが0.001%以上1.0%以内である、請求項2から請求項6のいずれか1項に記載のガラステープ。
     R=(H/W)×100
     Hは、平坦面に前記2つの側縁が当接するように前記ガラステープを配置したときに、前記平坦面に対向している湾曲面の底部から前記平坦面に下した垂線の長さである。
    The glass tape according to any one of claims 2 to 6, wherein the curvature R is 0.001% or more and 1.0% or less.
    R = (H / W) × 100
    H is the length of a perpendicular line extending from the bottom of the curved surface facing the flat surface to the flat surface when the glass tape is disposed so that the two side edges are in contact with the flat surface. .
  8.  第1主面、及び前記第1主面に対向する第2主面を有し、
     前記第1主面は、前記第2主面に沿うように湾曲している、請求項1から請求項7のいずれか1項に記載のガラステープ。
    A first main surface and a second main surface facing the first main surface;
    The glass tape according to any one of claims 1 to 7, wherein the first main surface is curved along the second main surface.
  9.  W<Lを満足する、請求項1から請求項8のいずれか1項に記載のガラステープ。 The glass tape according to any one of claims 1 to 8, wherein W <L is satisfied.
  10.  母ガラス板を加熱する加熱工程と、
     加熱された前記母ガラス板を延伸して、厚みDb、幅Wb、及び長さLbを有し、Db<Wbを満足する基礎ガラステープに成形する延伸工程と、
     幅方向の両端部に2つの側縁を有する前記基礎ガラステープを前記2つの側縁にわたって一方向に湾曲させる湾曲工程と
     を含む、ガラステープ製造方法。
    A heating step for heating the mother glass plate;
    Stretching the heated mother glass plate, having a thickness Db, a width Wb, and a length Lb, and stretching the base glass tape to satisfy Db <Wb;
    A bending step of bending the basic glass tape having two side edges at both ends in the width direction in one direction over the two side edges.
  11.  前記湾曲工程は、
     金型で前記基礎ガラステープを挟む工程と、
     前記基礎ガラステープの第1主面側の雰囲気温度及び第2主面側の雰囲気温度がそれぞれ第1期間で第1温度及び第2温度に到達するように、前記第1主面側と前記第2主面側とを異なる昇温速度で昇温する工程と、
     第2期間の間、前記第1主面側の雰囲気温度及び前記第2主面側の雰囲気温度をそれぞれ前記第1温度及び前記第2温度に保持する工程と、
     前記第1温度に保持された前記第1主面側の雰囲気温度及び前記第2温度に保持された前記第2主面側の雰囲気温度がそれぞれ第3期間で第3温度に到達するように、前記第1主面側と前記第2主面側とを異なる徐冷速度で徐冷する工程と
     を含み、
     前記昇温する工程、前記保持する工程、及び前記徐冷する工程は、前記基礎ガラステープが前記金型に挟まれた状態で実行される、請求項10に記載のガラステープ製造方法。
    The bending step includes
    Sandwiching the basic glass tape with a mold;
    The first main surface side and the second main surface side so that the atmospheric temperature on the first main surface side and the second main surface side of the basic glass tape reach the first temperature and the second temperature in the first period, respectively. A step of raising the temperature of the two principal surfaces at a different rate of temperature rise;
    Maintaining the atmospheric temperature on the first main surface side and the atmospheric temperature on the second main surface side at the first temperature and the second temperature, respectively, during the second period;
    The atmospheric temperature on the first main surface side held at the first temperature and the atmospheric temperature on the second main surface side held at the second temperature reach the third temperature in the third period, respectively. And gradually cooling the first main surface side and the second main surface side at different slow cooling rates,
    The glass tape manufacturing method according to claim 10, wherein the temperature raising step, the holding step, and the slow cooling step are performed in a state where the basic glass tape is sandwiched between the molds.
  12.  前記湾曲工程は、前記基礎ガラステープを加熱しながら、湾曲した金型で前記基礎ガラステープを挟む工程を含む、請求項10に記載のガラステープ製造方法。 The glass tape manufacturing method according to claim 10, wherein the bending step includes a step of sandwiching the basic glass tape with a curved mold while heating the basic glass tape.
  13.  前記湾曲工程は、
     前記基礎ガラステープを加熱しながら、金型で前記基礎ガラステープを挟む工程と、
     前記金型から出た前記基礎ガラステープの第1主面側と第2主面側とを異なる徐冷速度で徐冷する工程と
     を含む、請求項10に記載のガラステープ製造方法。
    The bending step includes
    While heating the basic glass tape, sandwiching the basic glass tape with a mold,
    The glass tape manufacturing method of Claim 10 including the process of slowly cooling the 1st main surface side and the 2nd main surface side of the said basic glass tape which came out of the said metal mold | die at a different cooling rate.
  14.  前記湾曲工程は、前記延伸工程において実行され、
     前記加熱工程は、前記母ガラス板の第1主面側と第2主面側とを異なる温度で加熱する工程を含む、請求項10に記載のガラステープ製造方法。
    The bending step is performed in the stretching step,
    The said heating process is a glass tape manufacturing method of Claim 10 including the process of heating the 1st main surface side and the 2nd main surface side of the said mother glass board at different temperature.
  15.  請求項1から請求項9のいずれか1項に記載のガラステープと第1ガラス板とを部材として含む製品の製造方法であって、
     前記ガラステープの2つの側縁が前記第1ガラス板に当接するように、前記ガラステープを前記第1ガラス板上に配置する工程と、
     前記ガラステープと前記第1ガラス板との間の空間に液体を注入する工程と
     を含む、製品製造方法。
    A method for producing a product comprising the glass tape according to any one of claims 1 to 9 and a first glass plate as members,
    Placing the glass tape on the first glass plate such that two side edges of the glass tape are in contact with the first glass plate;
    Injecting a liquid into a space between the glass tape and the first glass plate.
  16.  第2ガラス板を前記ガラステープ上に配置する工程をさらに含み、
     前記ガラステープは厚み規定部材として機能する、請求項15に記載の製品製造方法。
    Further comprising placing a second glass plate on the glass tape;
    The product manufacturing method according to claim 15, wherein the glass tape functions as a thickness regulating member.
PCT/JP2014/064617 2013-06-03 2014-06-02 Glass tape, glass tape manufacturing method and product manufacturing method WO2014196500A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014528722A JP6358090B2 (en) 2013-06-03 2014-06-02 Glass tape, glass tape manufacturing method, and product manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013117180 2013-06-03
JP2013-117180 2013-06-03

Publications (1)

Publication Number Publication Date
WO2014196500A1 true WO2014196500A1 (en) 2014-12-11

Family

ID=52008142

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/064617 WO2014196500A1 (en) 2013-06-03 2014-06-02 Glass tape, glass tape manufacturing method and product manufacturing method

Country Status (3)

Country Link
JP (1) JP6358090B2 (en)
TW (1) TW201502092A (en)
WO (1) WO2014196500A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180009697A1 (en) * 2015-03-20 2018-01-11 Schott Glass Technologies (Suzhou) Co. Ltd. Shaped glass article and method for producing such a shaped glass article

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003306340A (en) * 2002-04-12 2003-10-28 Nippon Electric Glass Co Ltd Glass substrate, its production method, and its production apparatus
JP2011046593A (en) * 2009-07-30 2011-03-10 Nippon Electric Glass Co Ltd Glass ribbon and method for producing the same
JP2011093739A (en) * 2009-10-29 2011-05-12 Nippon Electric Glass Co Ltd Method for manufacturing glass film and the glass film
WO2011102175A1 (en) * 2010-02-18 2011-08-25 日本電気硝子株式会社 Manufacturing method for glass film and manufacturing device therefor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000169167A (en) * 1998-12-03 2000-06-20 Nippon Sheet Glass Co Ltd Roller mechanism for curved glass and curved glass forming device using the same
JP4947488B2 (en) * 2006-07-10 2012-06-06 日本電気硝子株式会社 Glass plate manufacturing method and apparatus
JP5817722B2 (en) * 2010-06-21 2015-11-18 旭硝子株式会社 Glass substrate and method for manufacturing glass substrate
JP5614171B2 (en) * 2010-08-23 2014-10-29 日本電気硝子株式会社 Manufacturing method of glass plate

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003306340A (en) * 2002-04-12 2003-10-28 Nippon Electric Glass Co Ltd Glass substrate, its production method, and its production apparatus
JP2011046593A (en) * 2009-07-30 2011-03-10 Nippon Electric Glass Co Ltd Glass ribbon and method for producing the same
JP2011093739A (en) * 2009-10-29 2011-05-12 Nippon Electric Glass Co Ltd Method for manufacturing glass film and the glass film
WO2011102175A1 (en) * 2010-02-18 2011-08-25 日本電気硝子株式会社 Manufacturing method for glass film and manufacturing device therefor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180009697A1 (en) * 2015-03-20 2018-01-11 Schott Glass Technologies (Suzhou) Co. Ltd. Shaped glass article and method for producing such a shaped glass article
JP2018512363A (en) * 2015-03-20 2018-05-17 ショット グラス テクノロジーズ (スゾウ) カンパニー リミテッドSchott Glass Technologies (Suzhou) Co., Ltd. Molded glass article and method for producing the molded glass article
US10941067B2 (en) 2015-03-20 2021-03-09 Schott Glass Technologies (Suzhou) Co. Ltd. Shaped glass article and method for producing such a shaped glass article

Also Published As

Publication number Publication date
JPWO2014196500A1 (en) 2017-02-23
TW201502092A (en) 2015-01-16
JP6358090B2 (en) 2018-07-18

Similar Documents

Publication Publication Date Title
JP5428288B2 (en) Glass plate manufacturing method and manufacturing equipment
KR101679353B1 (en) Glass ribbon and process for production thereof
JP5824809B2 (en) Sealing material and sealing method using the same
US8697241B2 (en) Glass film laminate
KR101899412B1 (en) Glass film laminate and process for production thereof, and process for production of glass film
TWI576295B (en) Fabricating method of glass roll and glass roll
TWI422539B (en) Manufacturing method and apparatus for glass plate
JP2014019597A (en) Method for producing glass film, and glass film laminate
KR20160086855A (en) Glass film laminate and liquid crystal panel manufacturing method
WO2014073455A1 (en) Glass film laminate and method for producing electronic/electric device
WO2009081740A1 (en) Process and apparatus for producing glass plate
JP2012131664A (en) Glass film laminate
US10246374B2 (en) Method for manufacturing glass film laminate, glass film laminate, and method for manufacturing electronic device
JP5505857B2 (en) Element sealing body manufacturing method, element sealing method, and element sealing body
JP6358090B2 (en) Glass tape, glass tape manufacturing method, and product manufacturing method
WO2014178405A1 (en) Glass film laminate, and production method for electronic device
JP6327437B2 (en) Manufacturing method of electronic device
WO2009081741A1 (en) Process and apparatus for producing glass plate
JP2016060135A (en) Glass film laminate, and production method of electronic device
JP2013049629A (en) Thin glass plate and method for producing the same
WO2014178404A1 (en) Glass film laminate, and production method for electronic device

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014528722

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14807010

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14807010

Country of ref document: EP

Kind code of ref document: A1