WO2014196377A1 - Sputtering target for magnetic recording medium - Google Patents

Sputtering target for magnetic recording medium Download PDF

Info

Publication number
WO2014196377A1
WO2014196377A1 PCT/JP2014/063676 JP2014063676W WO2014196377A1 WO 2014196377 A1 WO2014196377 A1 WO 2014196377A1 JP 2014063676 W JP2014063676 W JP 2014063676W WO 2014196377 A1 WO2014196377 A1 WO 2014196377A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
sputtering target
sintered
weighed
average particle
Prior art date
Application number
PCT/JP2014/063676
Other languages
French (fr)
Japanese (ja)
Inventor
佐藤 敦
Original Assignee
Jx日鉱日石金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jx日鉱日石金属株式会社 filed Critical Jx日鉱日石金属株式会社
Priority to MYPI2015702496A priority Critical patent/MY175024A/en
Priority to JP2014550564A priority patent/JP5946922B2/en
Priority to SG11201505307QA priority patent/SG11201505307QA/en
Publication of WO2014196377A1 publication Critical patent/WO2014196377A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/14Both compacting and sintering simultaneously
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C5/00Alloys based on noble metals
    • C22C5/04Alloys based on a platinum group metal
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • G11B5/851Coating a support with a magnetic layer by sputtering
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties

Definitions

  • the present invention relates to a sputtering target used for forming a magnetic thin film in a magnetic recording medium.
  • materials based on Co, Fe, or Ni which are ferromagnetic metals, are used as materials for magnetic thin films of magnetic recording media.
  • a Co—Cr-based or Co—Cr—Pt-based ferromagnetic alloy containing Co as a main component has been used for a magnetic thin film of a hard disk employing an in-plane magnetic recording method.
  • a composite material composed of a Co—Cr—Pt-based ferromagnetic alloy mainly composed of Co and an oxide is often used for a magnetic thin film of a hard disk adopting a perpendicular magnetic recording system that has been put into practical use in recent years.
  • the above-mentioned magnetic thin film is often produced by sputtering a sputtering target containing the above material as a component with a magnetron sputtering apparatus because of its high productivity.
  • the recording density of the hard disk is rapidly increasing year by year and is exceeding 1 Tbit / in 2 .
  • the size of the recording bit becomes less than 10 nm, and in that case, superparamagnetization due to thermal fluctuation is expected to be a problem.
  • a magnetic recording medium material currently used for example, a material in which Pt is added to a Co-based alloy to increase the magnetocrystalline anisotropy is not sufficient. This is because magnetic particles that behave stably as ferromagnetism with a size of 10 nm or less need to have higher crystal magnetic anisotropy.
  • Fe-Pt alloy having an L1 0 structure is attracting attention as a material for an ultra-high density recording medium.
  • L1 0 with Fe-Pt alloy has a high crystalline magnetic anisotropy having the structure, because of its excellent corrosion resistance, oxidation resistance, is what is expected as a material suitable for the application as a magnetic recording medium.
  • Patent Document 1 Patent Document 2, Patent Document 3, Patent Document 4, and Patent Document 5 can be cited as magnetic recording media having a magnetic thin film having a granular structure and related documents.
  • the granular structure magnetic thin film having a Fe-Pt magnetic particles with the L1 0 structure, a magnetic thin film containing C as a non-magnetic material, is attracting attention particularly because of their high magnetic properties.
  • a sputtering target composed of an Fe—Pt alloy and C is to be sputtered, there is a problem that C is inadvertently detached during sputtering and a large amount of particles (dust attached to the substrate) is generated.
  • Even if a target containing carbide or nitride instead of C is used, an excellent magnetic thin film can be obtained.
  • Patent Document 6 shown below is a sputtering target containing Fe, Pt and C, and further containing a metal element other than Fe and Pt, and Cu, Ag, Mn, Ni as metal elements other than Fe and Pt. , Co, Pd, Cr, V, and B are described to contain more than 0 at% and 20 at% or less. However, Patent Document 6 has only an example containing 10 at% of Cu, and the kind and content of additive elements are greatly different from those of the present invention described later.
  • Patent Document 7 discloses a technique of mixing and hot pressing FePt alloy powder, Pt powder, and carbon black powder for the purpose of producing a sintered body in which a C phase is dispersed in an FePt alloy phase. Yes. However, in this case, no study has been made on a method for solving the problem that C is detached during sputtering and a large amount of particles (dust attached to the substrate) is generated.
  • Patent Document 8 listed below describes a FePt (Au and / or Cu) C-based sputtering target for forming a magnetic recording medium thin film. A technique is disclosed in which a part of the Au and / or Cu may be replaced with Ag, and thereby a technique of suppressing generation of particles is disclosed.
  • Patent Document 9 listed below discloses a sputtering target for forming a FePtAgC-based magnetic recording medium thin film.
  • a technique is disclosed in which a part of Ag may be replaced with Au and / or Cu, and thereby a technique of suppressing generation of particles is disclosed.
  • Patent Document 8 and Patent Document 9 are similar techniques, but the melting point of Ag, Au, and Cu added to suppress the generation of particles is low, so that there is a problem of melting out first during hot pressing. It is explained that the sintering temperature needs to be lowered.
  • AgPt powder, AuPt powder, and CuPt powder are prepared in advance from Ag, Au, and Cu powders that are raw materials, and these are mixed with other raw material powders and sintered. It is stated that it is necessary. This has the problem that the manufacturing process is complicated, and there is also a problem that the amount of these elements to be added must be increased.
  • the Fe-Pt alloy 1: 1 forms a L1 0 type ordered lattice in the vicinity of the composition, typically the material of the crystal structure ordered lattice is poor in ductility, sintering using such material pressure sintering apparatus
  • the density of the sintered body is difficult to increase.
  • C carbon
  • the present invention has an object to provide a sintered sputtering target composed of a Fe—Pt alloy and a nonmagnetic material that can greatly reduce the amount of particles generated during sputtering and can be efficiently manufactured. To do.
  • the present inventor contains 50 mass ppm to 5000 mass ppm of a trace amount of additive element when producing a sintered sputtering target mainly composed of a non-magnetic material containing an Fe—Pt alloy and at least C (carbon).
  • a trace amount element whose standard free energy of formation ⁇ G ° per 1 mol of carbon of the carbide is ⁇ 5000 [cal / mol] or less, that is, adding an element that easily becomes a carbide, as this trace addition element.
  • a carbide having better wettability than C alone is formed, and the adhesion between the Fe—Pt alloy and C is improved through the carbide.
  • the sintered sputtering target can greatly reduce the amount of particles generated during sputtering.
  • all the sintering raw materials demonstrated below use a powder raw material.
  • the present invention 1) A sintered sputtering target mainly composed of an Fe—Pt alloy and a nonmagnetic material, which contains at least C (carbon) as a nonmagnetic material, and further contains 50 mass ppm of a trace additive element in addition to the main component.
  • Sintered body sputtering target characterized in that it is contained in a range of ⁇ 5000 mass ppm, and the standard free energy of formation ⁇ G ° per mol of carbon of the carbide of the trace additive element is ⁇ 5000 [cal / mol] or less.
  • the main component and the trace additive element one or more elements selected from Ag, Au, Co, Cu, Ga, Ge, Ir, Ni, Pd, Re, Rh, Ru, Sn, Zn
  • the present invention also provides: 5) Addition of a trace amount of standard production free energy ⁇ G ° per 1 mol of carbon when Fe powder, Pt powder, C powder (graphite powder) and carbide are formed as raw material powder is ⁇ 5000 [cal / mol] or less Elemental powder is prepared, and these powders are mixed and pulverized in an Ar atmosphere, and the mixed and pulverized powder is filled in a carbon mold, and is heated in a vacuum atmosphere at a heating rate of 200 to 600 using a hot press device.
  • Fe-Pt characterized in that a sintered body is produced by pressing at 20-50 MPa from the start of temperature rise to the end of holding at a temperature of ° C / hour, a holding temperature of 800-1400 ° C, a holding time of 0-4 hours.
  • the raw material powder of the nonmagnetic material further contains any one or more of oxide, nitride, and carbide, and is sintered.
  • the present invention it is possible to provide a sputtering target in which the amount of particles generated during sputtering is greatly reduced. Thereby, it has the outstanding effect that the yield at the time of film-forming can be improved significantly and productivity can be improved.
  • the sintered sputtering target mainly comprising a Fe—Pt alloy and a nonmagnetic material according to the present invention contains at least C (carbon) as a nonmagnetic material, and further contains a trace amount of added elements in an amount of 50 ppm by mass to the main component.
  • Typical materials of the trace additive element are W and Cr, and it is effective to add one or more of these.
  • the Fe—Pt alloy composition can be used in which the atomic ratio is such that Pt is 35% or more and 55% or less and the balance is Fe, but the characteristics as an effective magnetic recording medium can be maintained. If it is within the range, there is no particular limitation.
  • Fe-Pt alloy in the sputtering target is comprised of normal L1 0 type ordered lattice, it is not also limited thereto. What is particularly important in the present invention is that the standard free energy of formation ⁇ G ° per mol of carbon is ⁇ 5000 [cal / mol] or less when the additive element forms a carbide as a trace additive element of the sputtering target. The use of a trace amount of element (addition). Further, the content of C is not particularly limited as long as the characteristics as an effective magnetic recording medium can be maintained, but it is desirable to set the content in the range of 20 to 45% by volume ratio in the sputtering target. .
  • the sintered compact sputtering target can suppress the drop-off of C during sputtering, and can greatly reduce the amount of generated particles.
  • W and Cr are effective as a trace additive element, and any one or more of these elements may be added. The following mainly describes the case where W and Cr, which are representative trace additive elements, are used.
  • the content of W or Cr is 50 mass ppm to 5000 mass ppm. If the content is less than 50 ppm by mass, the formation of carbides with good wettability will be insufficient, and an improvement in the adhesion between the Fe-Pt alloy and C cannot be expected, while the content exceeds 5000 ppm by mass. Then, there is a possibility that sufficient magnetic properties as a magnetic thin film cannot be obtained. The same effect can be obtained even if either W or Cr is contained. When both are contained, the total content is preferably 50 mass ppm to 5000 mass ppm as the content ratio in the entire sputtering target.
  • the sputtering target of the present invention can contain any one or more of oxide, nitride, and carbide in addition to the C (carbon) as a nonmagnetic material.
  • preferable oxides include Al, B, Ba, Be, Ca, Ce, Cr, Dy, Er, Eu, Ga, Gd, Ho, Li, Mg, Mn, Nb, Nd, Pr, Sc, Sm, Examples thereof include oxides of one or more elements selected from Sr, Ta, Tb, Ti, V, Y, Zn, and Zr.
  • Preferred nitrides include nitrides of one or more elements selected from Al, B, Ca, Nb, Si, Ta, Ti, and Zr.
  • Preferred carbides include carbides of one or more elements selected from B, Ca, Nb, Si, Ta, Ti, W, and Zr. Since the magnetic film produced from such a sputtering target has a structure in which carbon, carbide, nitride, and oxide insulate the magnetic interaction between magnetic particles, good magnetic properties can be expected.
  • the sputtering target of the present invention is selected from Ag, Au, Co, Cu, Ga, Ge, Ir, Ni, Pd, Re, Rh, Ru, Sn, Zn in addition to the main component and the trace additive element.
  • One or more of these elements can be included as a metal component.
  • These metal elements, in sputtered thin films are those primarily added to reduce the temperature of the heat treatment to express L1 0 structure.
  • the blending ratio is not particularly limited as long as it is within a range where the characteristics as an effective magnetic recording medium can be maintained.
  • the sputtering target of the present invention can be produced, for example, by the following method using a powder sintering method.
  • Fe powder, Pt powder, Cr powder, Cu powder, W powder, etc. are prepared as metal powder.
  • the metal powder not only a single element metal powder but also an alloy powder can be used.
  • These metal powders preferably have a particle size in the range of 1 to 10 ⁇ m. When the particle size is 1 to 10 ⁇ m, more uniform mixing is possible, and segregation and coarse crystallization can be prevented.
  • the particle size of the metal powder When the particle size of the metal powder is larger than 10 ⁇ m, the non-magnetic material may not be uniformly dispersed. When the particle size is smaller than 1 ⁇ m, the target composition deviates from the desired composition due to the influence of oxidation of the metal powder. The problem of coming may arise. It should be understood that this particle size range is only a preferable range, and that deviating from this range is not a condition for denying the present invention.
  • nonmagnetic material powder In addition to C (carbon), oxide powder, nitride powder, carbide powder, etc. are prepared as nonmagnetic material powder. These nonmagnetic material powders preferably have a particle size in the range of 1 to 30 ⁇ m. When the particle size is 1 to 30 ⁇ m, the nonmagnetic material powders hardly aggregate when mixed with the above-mentioned metal powder, and can be uniformly dispersed.
  • C powder includes those having a crystal structure such as graphite (graphite) and nanotubes, and amorphous materials such as carbon black. Any C powder can be used. it can.
  • the standard free energy of formation ⁇ G ° per 1 mol of carbon when Fe powder, Pt powder, C powder (graphite powder), and carbide are formed as raw material powder is ⁇ 5000 [cal / Mol] or less] are weighed so as to have a predetermined composition, and these powders are mixed in an Ar atmosphere together with pulverization using a known method such as a ball mill.
  • the mixed and pulverized powder is filled into a carbon mold, and using a hot press apparatus, the temperature rise rate is 200 to 600 ° C./hour, the holding temperature is 800 to 1400 ° C. in a vacuum atmosphere or an inert atmosphere.
  • the holding time is set to 0 to 4 hours, and the sintered body is manufactured by pressurizing at 20 to 50 MPa from the start of temperature rise to the end of holding.
  • the hot press In addition to the hot press, various pressure sintering methods such as a plasma discharge sintering method can be used.
  • the hot isostatic pressing is effective for improving the density of the sintered body.
  • the holding temperature at the time of sintering depends on the components of the target, but in most cases, it is in the temperature range of 800-1400 ° C.
  • the sputtering target of this invention can be produced by processing the obtained sintered compact into a desired shape with a lathe.
  • the sputtering target of the present invention can be manufactured.
  • the sputtering target manufactured in this way has an excellent effect that the amount of particles generated during sputtering can be reduced and the yield during film formation can be improved.
  • Fe powder having an average particle diameter of 3 ⁇ m, Pt powder having an average particle diameter of 3 ⁇ m, W powder having an average particle diameter of 3 ⁇ m, and C powder (graphite powder) having an average particle diameter of 10 ⁇ m were prepared as raw material powders.
  • the basic components were weighed composition (molar ratio): 30Fe-30Pt-40C, and weighed so that the total weight was 2600 g at the weighed composition ratio. Further, 5.2 g of W was weighed as a component added in a small amount.
  • composition analysis was performed using small pieces collected from the produced sintered body.
  • Fe, Pt, and W were measured using an ICP-AES apparatus, and C was measured using a carbon analyzer employing a high frequency induction furnace combustion-infrared absorption method.
  • the W content was 1990 mass ppm in the sputtering target.
  • the molar ratio was calculated from the weight ratio obtained by analysis.
  • the composition of this sputtering target was analytical composition (molar ratio): 30.09Fe-30.04Pt-39.87C.
  • the sintered body was cut into a shape having a diameter of 180.0 mm and a thickness of 5.0 mm to obtain a disk-shaped target.
  • This target was attached to a magnetron sputtering apparatus (C-3010 sputtering system manufactured by Canon Anelva), and sputtering was performed.
  • the sputtering conditions were an input power of 1 kW and an Ar gas pressure of 1.7 Pa.
  • a film was formed on a 4-inch diameter silicon substrate for 20 seconds. The number of particles adhering to the substrate was measured with a particle counter. The number of particles at this time was 185.
  • Fe powder having an average particle diameter of 3 ⁇ m, Pt powder having an average particle diameter of 3 ⁇ m, W powder having an average particle diameter of 3 ⁇ m, and C powder (graphite powder) having an average particle diameter of 10 ⁇ m were prepared as raw material powders.
  • the basic components were weighed composition (molar ratio): 30Fe-30Pt-40C, and weighed so that the total weight was 2600 g at the weighed composition ratio. Further, 0.13 g of W was weighed as a minor additive.
  • composition analysis was carried out using small pieces collected from the produced sintered body.
  • Fe, Pt, and W were measured using an ICP-AES apparatus, and C was measured using a carbon analyzer employing a high frequency induction furnace combustion-infrared absorption method.
  • the content of W was 40 mass ppm in the sputtering target.
  • the composition of this sputtering target was 30.20Fe-30.08Pt-39.72C as the analytical composition (molar ratio).
  • the sintered body was cut into a shape having a diameter of 180.0 mm and a thickness of 5.0 mm to obtain a disk-shaped target.
  • Sputtering was performed using this target under the same conditions as in Example 1, and the number of particles adhering to the substrate was measured with a particle counter. The number of particles at this time was 498, which was increased from that in Example 1.
  • Fe powder having an average particle diameter of 3 ⁇ m, Pt powder having an average particle diameter of 3 ⁇ m, W powder having an average particle diameter of 3 ⁇ m, and C powder (graphite powder) having an average particle diameter of 10 ⁇ m were prepared as raw material powders.
  • the basic components were weighed composition (molar ratio): 30Fe-30Pt-40C, and weighed so that the total weight was 2600 g at the weighed composition ratio. Further, 52.0 g of W was weighed as a minor additive.
  • composition analysis was carried out using small pieces collected from the produced sintered body.
  • Fe, Pt, and W were measured using an ICP-AES apparatus, and C was measured using a carbon analyzer employing a high frequency induction furnace combustion-infrared absorption method.
  • the content of W was 20100 mass ppm in the sputtering target.
  • the composition of this sputtering target was analytical composition (molar ratio): 30.07Fe-30.01Pt-39.92C.
  • the sintered body was cut into a shape having a diameter of 180.0 mm and a thickness of 5.0 mm to obtain a disk-shaped target.
  • Sputtering was performed using this target under the same conditions as in Example 1, and the number of particles adhering to the substrate was measured with a particle counter. The number of particles at this time was 354, an increase from that in Example 1.
  • sufficient magnetic properties were not obtained as compared with Example 1. This is presumably because the content of W was too large and the saturation magnetization and magnetocrystalline anisotropy energy were reduced.
  • Fe powder having an average particle diameter of 3 ⁇ m, Pt powder having an average particle diameter of 3 ⁇ m, C powder (graphite powder) having an average particle diameter of 10 ⁇ m, and Cr powder having an average particle diameter of 3 ⁇ m were prepared as raw material powders.
  • the basic components were weighed composition (molar ratio): 30Fe-30Pt-40C, and weighed so that the total weight was 2600 g at the weighed composition ratio. Further, 2.6 g of Cr was weighed as a component added in a small amount.
  • composition analysis was carried out using small pieces collected from the produced sintered body.
  • Fe, Pt, and Cr were measured using an ICP-AES apparatus, and C was measured using a carbon analyzer employing a high-frequency induction furnace combustion-infrared absorption method.
  • the Cr content was 990 mass ppm in the sputtering target.
  • the composition of this sputtering target was analytical composition (molar ratio): 29.85Fe-30.10Pt-40.05C.
  • the sintered body was cut into a shape having a diameter of 180.0 mm and a thickness of 5.0 mm to obtain a disk-shaped target.
  • Sputtering was performed using this target under the same conditions as in Example 1, and the number of particles adhering to the substrate was measured with a particle counter. The number of particles at this time was 255.
  • Fe powder having an average particle diameter of 3 ⁇ m, Pt powder having an average particle diameter of 3 ⁇ m, C powder (graphite powder) having an average particle diameter of 10 ⁇ m, and Cr powder having an average particle diameter of 3 ⁇ m were prepared as raw material powders.
  • the basic components were weighed composition (molar ratio): 30Fe-30Pt-40C, and weighed so that the total weight was 2600 g at the weighed composition ratio. Further, 0.13 g of Cr was weighed as a minor additive.
  • composition analysis was performed using small pieces collected from the produced sintered body.
  • Fe, Pt, and Cr were measured using an ICP-AES apparatus, and C was measured using a carbon analyzer employing a high-frequency induction furnace combustion-infrared absorption method.
  • the Cr content was 30 ppm by mass in the sputtering target.
  • the composition of this sputtering target was analytical composition (molar ratio): 30.23Fe-29.85Pt-39.92C.
  • the sintered body was cut into a shape having a diameter of 180.0 mm and a thickness of 5.0 mm to obtain a disk-shaped target.
  • the target was attached to a magnetron sputtering apparatus, sputtering was performed under the same conditions as in Example 1, and the number of particles adhering to the substrate was measured with a particle counter. The number of particles at this time was 658, an increase from that in Example 2.
  • Fe powder having an average particle diameter of 3 ⁇ m, Pt powder having an average particle diameter of 3 ⁇ m, C powder (graphite powder) having an average particle diameter of 10 ⁇ m, and Cr powder having an average particle diameter of 3 ⁇ m were prepared as raw material powders.
  • the basic components were weighed composition (molar ratio): 30Fe-30Pt-40C, and weighed so that the total weight was 2600 g at the weighed composition ratio. Furthermore, 26 g of Cr was weighed as a trace amount addition component.
  • composition analysis was performed using small pieces collected from the produced sintered body.
  • Fe, Pt, and Cr were measured using an ICP-AES apparatus, and C was measured using a carbon analyzer employing a high-frequency induction furnace combustion-infrared absorption method.
  • the Cr content was 10200 ppm by mass in the sputtering target.
  • the composition of this sputtering target was analytical composition (molar ratio): 30.05Fe-30.10Pt-39.85C.
  • the sintered body was cut into a shape having a diameter of 180.0 mm and a thickness of 5.0 mm to obtain a disk-shaped target.
  • Sputtering was performed using this target under the same conditions as in Example 1, and the number of particles adhering to the substrate was measured with a particle counter. The number of particles at this time was 325, which was almost the same as in Example 2.
  • sufficient magnetic properties were not obtained as compared with Example 2. This is presumably because the Cr content was large and the saturation magnetization and magnetocrystalline anisotropy energy were reduced.
  • Example 3 Fe powder with an average particle size of 3 ⁇ m, Pt powder with an average particle size of 3 ⁇ m, W powder with an average particle size of 3 ⁇ m, Cr powder with an average particle size of 3 ⁇ m, C powder (graphite powder) with an average particle size of 10 ⁇ m, and average particle size
  • a 10 ⁇ m BN powder was prepared.
  • the basic components were weighed composition (molar ratio): 35Fe-35Pt-20C-10BN, and weighed so that the total weight would be 2600 g at the weighed composition ratio. Further, 5.2 g of W and 5.2 g of Cr were weighed as components added in small amounts.
  • composition analysis was performed using small pieces collected from the produced sintered body.
  • Fe, Pt, B, W, and Cr were measured using an ICP-AES apparatus.
  • the content of BN was calculated from the measured value of B using the stoichiometric ratio.
  • C was measured with a carbon analyzer employing a high frequency induction furnace combustion-infrared absorption method.
  • W content was 2000 mass ppm in the sputtering target
  • the Cr content was 2050 mass ppm in the sputtering target.
  • the composition of this sputtering target was analytical composition (molar ratio): 34.91Fe-35.35Pt-20.04C-9.70BN. It was.
  • the sintered body was cut into a shape having a diameter of 180.0 mm and a thickness of 5.0 mm to obtain a disk-shaped target.
  • sputtering was performed by attaching to a magnetron sputtering apparatus, and the number of particles adhering to the substrate was measured with a particle counter. The number of particles at this time was 211.
  • composition analysis was performed using small pieces collected from the produced sintered body.
  • Fe, Pt, B, W, and Cr were measured using an ICP-AES apparatus.
  • the content of BN was calculated from the measured value of B using the stoichiometric ratio.
  • C was measured with a carbon analyzer employing a high frequency induction furnace combustion-infrared absorption method.
  • W content was 20 mass ppm in the sputtering target
  • the Cr content was 20 mass ppm in the sputtering target.
  • the composition of this sputtering target was analytical composition (molar ratio): 35.09Fe-35.11Pt-19.87C-9.93BN. It was.
  • the sintered body was cut into a shape having a diameter of 180.0 mm and a thickness of 5.0 mm to obtain a disk-shaped target.
  • the target was attached to a magnetron sputtering apparatus, sputtering was performed under the same conditions as in Example 1, and the number of particles adhering to the substrate was measured with a particle counter. The number of particles at this time was 375, an increase from that in Example 3.
  • composition analysis was performed using small pieces collected from the produced sintered body.
  • Fe, Pt, B, W, and Cr were measured using an ICP-AES apparatus.
  • the content of BN was calculated from the measured value of B using the stoichiometric ratio.
  • C was measured with a carbon analyzer employing a high frequency induction furnace combustion-infrared absorption method.
  • W content was 1980 mass ppm in the sputtering target
  • the Cr content was 5030 mass ppm in the sputtering target.
  • the composition of this sputtering target was analytical composition (molar ratio): 34.94Fe-35.26Pt-19.97C-9.83BN. It was.
  • the sintered body was cut into a shape having a diameter of 180.0 mm and a thickness of 5.0 mm to obtain a disk-shaped target.
  • sputtering was performed by attaching to a magnetron sputtering apparatus, and the number of particles adhering to the substrate was measured with a particle counter. The number of particles at this time was 208, which was almost the same as in Example 3.
  • sufficient magnetic properties were not obtained as compared with Example 3. This is presumably because the contents of W and Cr were large and the saturation magnetization and magnetocrystalline anisotropy energy were reduced.
  • Example 4 Fe powder having an average particle diameter of 3 [mu] m as a raw material powder, Pt powder having an average particle diameter of 3 [mu] m, B powder having an average grain size of 10 [mu] m, C powder (graphite powder) having an average particle size of 10 [mu] m, were prepared SiO 2 powder having an average grain size 5 ⁇ m .
  • composition analysis was performed using small pieces collected from the produced sintered body.
  • Fe, Pt, Si, and B were measured with an ICP-AES apparatus, and C was measured with a carbon analyzer employing a high frequency induction furnace combustion-infrared absorption method.
  • the content of SiO 2 was calculated from the measured value of Si using the stoichiometric ratio.
  • the B content was 110 mass ppm in the sputtering target.
  • the composition of this sputtering target was as follows: analytical composition (molar ratio): 34.95Fe-35.02Pt-24.90C-5.13SiO 2 there were.
  • the sintered body was cut into a shape having a diameter of 180.0 mm and a thickness of 5.0 mm to obtain a disk-shaped target.
  • Sputtering was performed using this target under the same conditions as in Example 1, and the number of particles adhering to the substrate was measured with a particle counter. At this time, the number of particles was 108.
  • composition analysis was performed using small pieces collected from the produced sintered body.
  • Fe, Pt, B, and Si were measured using an ICP-AES apparatus, and C was measured using a carbon analysis apparatus employing a high frequency induction furnace combustion-infrared absorption method.
  • the content of SiO 2 was calculated from the measured value of Si using the stoichiometric ratio.
  • the content of B was 20 mass ppm in the sputtering target.
  • the composition of this sputtering target was as follows: analytical composition (molar ratio): 34.77Fe-35.02Pt-25.07C-5.14SiO 2 there were.
  • the sintered body was cut into a shape having a diameter of 180.0 mm and a thickness of 5.0 mm to obtain a disk-shaped target.
  • the target was attached to a magnetron sputtering apparatus, sputtering was performed under the same conditions as in Example 1, and the number of particles adhering to the substrate was measured with a particle counter. The number of particles at this time was 245, which was increased from that in Example 4.
  • composition analysis was performed using small pieces collected from the produced sintered body.
  • Fe, Pt, Si, and B were measured with an ICP-AES apparatus, and C was measured with a carbon analyzer employing a high frequency induction furnace combustion-infrared absorption method.
  • the content of SiO 2 was calculated from the measured value of Si using the stoichiometric ratio.
  • the content of B was 6950 mass ppm in the sputtering target.
  • the composition of this sputtering target was as follows: analytical composition (molar ratio): 35.03Fe-34.87Pt-25.05C-5.05SiO 2 there were.
  • the sintered body was cut into a shape having a diameter of 180.0 mm and a thickness of 5.0 mm to obtain a disk-shaped target.
  • Sputtering was performed using this target under the same conditions as in Example 1, and the number of particles adhering to the substrate was measured with a particle counter. The number of particles at this time was 117, which was the same as in Example 4.
  • sufficient magnetic properties were not obtained as compared with Example 4. This is presumably because the content of B was large and the saturation magnetization and magnetocrystalline anisotropy energy were reduced.
  • Fe powder with an average particle diameter of 3 ⁇ m, Pt powder with an average particle diameter of 3 ⁇ m, Cu powder with an average particle diameter of 3 ⁇ m, W powder with an average particle diameter of 3 ⁇ m, C powder (graphite powder) with an average particle diameter of 10 ⁇ m, and average particle diameter 1 ⁇ m TaC powder was prepared.
  • the basic components were weighed composition (molar ratio): 30Fe-30Pt-5Cu-20C-15TaC, and weighed so that the total weight would be 3000 g at the weighed composition ratio. Furthermore, 12.0 g of W was weighed as a component added in a small amount.
  • composition analysis was performed using small pieces collected from the produced sintered body.
  • Fe, Pt, Cu, Ta, and W were measured using an ICP-AES apparatus, and C was measured using a carbon analyzer employing a high frequency induction furnace combustion-infrared absorption method.
  • the content of TaC was calculated from the measured value of Ta using the stoichiometric ratio.
  • the W content was 4000 ppm by mass in the sputtering target.
  • the composition of this sputtering target is the analytical composition (molar ratio): 29.92Fe-30.09Pt-5.04Cu-19.92C-15. 03 TaC.
  • the sintered body was cut into a shape having a diameter of 180.0 mm and a thickness of 5.0 mm to obtain a disk-shaped target.
  • Sputtering was performed using this target under the same conditions as in Example 1, and the number of particles adhering to the substrate was measured with a particle counter. At this time, the number of particles was 278.
  • Fe powder with an average particle diameter of 3 ⁇ m, Pt powder with an average particle diameter of 3 ⁇ m, Cu powder with an average particle diameter of 3 ⁇ m, W powder with an average particle diameter of 3 ⁇ m, C powder (graphite powder) with an average particle diameter of 10 ⁇ m, and average particle diameter 1 ⁇ m TaC powder was prepared.
  • the basic components were weighed composition (molar ratio): 30Fe-30Pt-5Cu-20C-15TaC, and weighed so that the total weight would be 3000 g at the weighed composition ratio. Further, 0.1 g of W was weighed as a trace additive component.
  • composition analysis was performed using small pieces collected from the produced sintered body.
  • Fe, Pt, Cu, Ta, and W were measured using an ICP-AES apparatus, and C was measured using a carbon analyzer employing a high frequency induction furnace combustion-infrared absorption method.
  • the content of TaC was calculated from the measured value of Ta using the stoichiometric ratio.
  • the W content was 30 ppm by mass in the sputtering target.
  • the composition of this sputtering target was the analytical composition (molar ratio): 29.92Fe-30.38Pt-5.18Cu-19.72C-14 80 TaC.
  • the sintered body was cut into a shape having a diameter of 180.0 mm and a thickness of 5.0 mm to obtain a disk-shaped target.
  • Sputtering was performed using this target under the same conditions as in Example 1, and the number of particles adhering to the substrate was measured with a particle counter. The number of particles at this time was 590, which was increased from that in Example 5.
  • Fe powder with an average particle diameter of 3 ⁇ m, Pt powder with an average particle diameter of 3 ⁇ m, Cu powder with an average particle diameter of 3 ⁇ m, W powder with an average particle diameter of 3 ⁇ m, C powder (graphite powder) with an average particle diameter of 10 ⁇ m, and average particle diameter 1 ⁇ m TaC powder was prepared.
  • the basic components were weighed composition (molar ratio): 30Fe-30Pt-5Cu-20C-15TaC, and weighed so that the total weight would be 3000 g at the weighed composition ratio. Further, 24.0 g of W was weighed as a component added in a small amount.
  • composition analysis was performed using small pieces collected from the produced sintered body.
  • Fe, Pt, Cu, Ta, and W were measured using an ICP-AES apparatus, and C was measured using a carbon analyzer employing a high frequency induction furnace combustion-infrared absorption method.
  • the content of TaC was calculated from the measured value of Ta using the stoichiometric ratio.
  • the W content was 7980 mass ppm in the sputtering target.
  • the composition of this sputtering target was the analytical composition (molar ratio): 30.03Fe-30.00Pt-5.06Cu-19.98C-14 .93 TaC.
  • the sintered body was cut into a shape having a diameter of 180.0 mm and a thickness of 5.0 mm to obtain a disk-shaped target.
  • Sputtering was performed using this target under the same conditions as in Example 1, and the number of particles adhering to the substrate was measured with a particle counter. The number of particles at this time was 290, which was almost the same as in Example 5.
  • sufficient magnetic properties were not obtained as compared with Example 5. This is presumably because the content of W was large and the saturation magnetization and magnetocrystalline anisotropy energy were reduced.
  • Fe powder having an average particle diameter of 3 ⁇ m, Pt powder having an average particle diameter of 3 ⁇ m, W powder having an average particle diameter of 3 ⁇ m, and C powder (graphite powder) having an average particle diameter of 10 ⁇ m were prepared as raw material powders.
  • the basic components were weighed composition (molar ratio): 45.5Fe-24.5Pt-30C, and weighed so that the total weight would be 2470 g at the weighed composition ratio. Further, 5.0 g of W was weighed as a minor additive.
  • composition analysis was performed using small pieces collected from the produced sintered body.
  • Fe, Pt, and W were measured using an ICP-AES apparatus, and C was measured using a carbon analyzer employing a high frequency induction furnace combustion-infrared absorption method.
  • the W content was 2010 mass ppm in the sputtering target.
  • the molar ratio was calculated from the weight ratio obtained by analysis.
  • the composition of this sputtering target was analytical composition (molar ratio): 45.53Fe-24.50Pt-29.97C.
  • the sintered body was cut into a shape having a diameter of 180.0 mm and a thickness of 5.0 mm to obtain a disk-shaped target.
  • This target was attached to a magnetron sputtering apparatus (C-3010 sputtering system manufactured by Canon Anelva), and sputtering was performed.
  • the sputtering conditions were an input power of 1 kW and an Ar gas pressure of 1.7 Pa.
  • a film was formed on a 4-inch diameter silicon substrate for 20 seconds. The number of particles adhering to the substrate was measured with a particle counter. The number of particles at this time was 124.
  • Fe powder having an average particle diameter of 3 ⁇ m, Pt powder having an average particle diameter of 3 ⁇ m, W powder having an average particle diameter of 3 ⁇ m, and C powder (graphite powder) having an average particle diameter of 10 ⁇ m were prepared as raw material powders.
  • the basic components were weighed composition (molar ratio): 45.5Fe-24.5Pt-30C, and weighed so that the total weight would be 2470 g at the weighed composition ratio. Furthermore, 0.25 g of W was weighed as a component added in a small amount.
  • composition analysis was carried out using small pieces collected from the produced sintered body.
  • Fe, Pt, and W were measured using an ICP-AES apparatus, and C was measured using a carbon analyzer employing a high frequency induction furnace combustion-infrared absorption method.
  • the content of W was 80 mass ppm in the sputtering target.
  • the composition of this sputtering target was 45.40Fe-24.52Pt-30.08C.
  • the sintered body was cut into a shape having a diameter of 180.0 mm and a thickness of 5.0 mm to obtain a disk-shaped target.
  • Sputtering was performed using this target under the same conditions as in Example 1, and the number of particles adhering to the substrate was measured with a particle counter. The number of particles at this time was 354, an increase from Example 6.
  • Fe powder having an average particle diameter of 3 ⁇ m, Pt powder having an average particle diameter of 3 ⁇ m, W powder having an average particle diameter of 3 ⁇ m, and C powder (graphite powder) having an average particle diameter of 10 ⁇ m were prepared as raw material powders.
  • the basic components were weighed composition (molar ratio): 45.5Fe-24.5Pt-30C, and weighed so that the total weight would be 2470 g at the weighed composition ratio. Furthermore, 50.0 g of W was weighed as a component added in a small amount.
  • composition analysis was carried out using small pieces collected from the produced sintered body.
  • Fe, Pt, and W were measured using an ICP-AES apparatus, and C was measured using a carbon analyzer employing a high frequency induction furnace combustion-infrared absorption method.
  • the content of W was 20100 mass ppm in the sputtering target.
  • the molar ratio was calculated from the weight ratio obtained by analysis.
  • the composition of this sputtering target was analytical composition (molar ratio): 45.47Fe-24.58Pt-29.95C.
  • the sintered body was cut into a shape having a diameter of 180.0 mm and a thickness of 5.0 mm to obtain a disk-shaped target.
  • Sputtering was performed using this target under the same conditions as in Example 1, and the number of particles adhering to the substrate was measured with a particle counter. The number of particles at this time was 163, which was increased from that in Example 6.
  • sufficient magnetic properties were not obtained. This is presumably because the content of W was too large and the saturation magnetization and magnetocrystalline anisotropy energy were reduced.
  • Example 7 Fe powder having an average particle diameter of 3 ⁇ m, Pt powder having an average particle diameter of 3 ⁇ m, C powder (graphite powder) having an average particle diameter of 10 ⁇ m, and Cr powder having an average particle diameter of 3 ⁇ m were prepared as raw material powders.
  • the basic components were weighed composition (molar ratio): 20.25Fe-24.75Pt-55C, and weighed so that the total weight would be 2200 g at the weighed composition ratio. Furthermore, 2.2 g of Cr was weighed as a small amount of additive component.
  • composition analysis was carried out using small pieces collected from the produced sintered body.
  • Fe, Pt, and Cr were measured using an ICP-AES apparatus, and C was measured using a carbon analyzer employing a high-frequency induction furnace combustion-infrared absorption method.
  • the Cr content was 990 mass ppm in the sputtering target.
  • the composition of this sputtering target was analytical composition (molar ratio): 20.35Fe-24.78Pt-54.87C.
  • the sintered body was cut into a shape having a diameter of 180.0 mm and a thickness of 5.0 mm to obtain a disk-shaped target.
  • Sputtering was performed using this target under the same conditions as in Example 1, and the number of particles adhering to the substrate was measured with a particle counter. At this time, the number of particles was 356.
  • Fe powder having an average particle diameter of 3 ⁇ m, Pt powder having an average particle diameter of 3 ⁇ m, C powder (graphite powder) having an average particle diameter of 10 ⁇ m, and Cr powder having an average particle diameter of 3 ⁇ m were prepared as raw material powders.
  • the basic components were weighed composition (molar ratio): 20.25Fe-24.75Pt-55C, and weighed so that the total weight would be 2200 g at the weighed composition ratio. Further, 0.1 g of Cr was weighed as a component added in a small amount.
  • composition analysis was performed using small pieces collected from the produced sintered body.
  • Fe, Pt, and Cr were measured using an ICP-AES apparatus, and C was measured using a carbon analyzer employing a high-frequency induction furnace combustion-infrared absorption method.
  • the Cr content was 30 ppm by mass in the sputtering target.
  • the composition of this sputtering target was analytical composition (molar ratio): 20.23Fe-24.80Pt-54.97C.
  • the sintered body was cut into a shape having a diameter of 180.0 mm and a thickness of 5.0 mm to obtain a disk-shaped target.
  • the target was attached to a magnetron sputtering apparatus, sputtering was performed under the same conditions as in Example 1, and the number of particles adhering to the substrate was measured with a particle counter. The number of particles at this time was 486, an increase from Example 7.
  • Fe powder having an average particle diameter of 3 ⁇ m, Pt powder having an average particle diameter of 3 ⁇ m, C powder (graphite powder) having an average particle diameter of 10 ⁇ m, and Cr powder having an average particle diameter of 3 ⁇ m were prepared as raw material powders.
  • the basic components were weighed composition (molar ratio): 20.25Fe-24.75Pt-55C, and weighed so that the total weight would be 2200 g at the weighed composition ratio. Furthermore, 20 g of Cr was weighed as a small amount added component.
  • composition analysis was performed using small pieces collected from the produced sintered body.
  • Fe, Pt, and Cr were measured using an ICP-AES apparatus, and C was measured using a carbon analyzer employing a high-frequency induction furnace combustion-infrared absorption method.
  • the content of Cr was 10600 mass ppm in the sputtering target.
  • the composition of this sputtering target was analytical composition (molar ratio): 20.24Fe-24.78Pt-54.98C.
  • the sintered body was cut into a shape having a diameter of 180.0 mm and a thickness of 5.0 mm to obtain a disk-shaped target.
  • Sputtering was performed using this target under the same conditions as in Example 1, and the number of particles adhering to the substrate was measured with a particle counter. The number of particles at this time was 345, which was almost the same as in Example 7.
  • sufficient magnetic properties were not obtained as compared with Example 7. This is presumably because the Cr content was large and the saturation magnetization and magnetocrystalline anisotropy energy were reduced.
  • any of the examples by adding a predetermined amount of W or Cr, the amount of particles generated during sputtering can be reduced, and the yield during film formation can be improved.
  • W or Cr has a very important role in suppressing particle generation.
  • Table 1 shows a list of the results of the above examples and comparative examples.
  • examples of BN, SiO 2 , and TaC are shown as examples in which any one or more of oxide, nitride, and carbide is added as the nonmagnetic material in addition to C (carbon).
  • oxides, nitrides, and carbides have been confirmed to show the same effect.
  • Cu is added as an example of containing one or more elements selected from Ag, Au, Co, Cu, Ga, Ge, Ir, Ni, Pd, Re, Rh, Ru, Sn, and Zn as metal components. Although an example is shown, this is similarly applied if it is one or more elements selected from Ag, Au, Co, Cu, Ga, Ge, Ir, Ni, Pd, Re, Rh, Ru, Sn, and Zn. It has been confirmed that the effect of.
  • the sputtering target of the present invention has an excellent effect that the amount of particles generated at the time of sputtering can be reduced and the yield at the time of film formation can be improved. Therefore, it is useful as a sputtering target for forming a granular structure type magnetic thin film.

Abstract

A sintered sputtering target containing a Fe-Pt alloy and a non-magnetic material as the main components, said sintered sputtering target being characterized in that at least C (carbon) is contained as the non-magnetic material, an additional trace element other than the above-mentioned main components is contained in an amount of 50 to 5000 ppm by mass, and the standard free energy of formation (ΔG°) of the additional trace element per 1 mole of carbon in a carbide is -5000 [cal/mol] or less. The present invention addresses the problem of providing a sputtering target which undergoes the formation of particles in a greatly reduced amount upon sputtering and contains a Fe-Pt alloy and a non-magnetic material as the main components.

Description

磁性記録媒体用スパッタリングターゲットSputtering target for magnetic recording media
 本発明は、磁気記録媒体における磁性薄膜の形成に使用されるスパッタリングターゲットに関する。 The present invention relates to a sputtering target used for forming a magnetic thin film in a magnetic recording medium.
 ハードディスクドライブに代表される磁気記録の分野では、磁気記録媒体の磁性薄膜の材料として、強磁性金属であるCo、Fe、あるいはNiをベースとした材料が用いられている。例えば、面内磁気記録方式を採用するハードディスクの磁性薄膜にはCoを主成分とするCo-Cr系やCo-Cr-Pt系の強磁性合金が用いられてきた。
 また、近年実用化された垂直磁気記録方式を採用するハードディスクの磁性薄膜には、Coを主成分とするCo-Cr-Pt系の強磁性合金と酸化物からなる複合材料が多く用いられている。そして上記の磁性薄膜は、生産性の高さから、上記材料を成分とするスパッタリングターゲットをマグネトロンスパッタ装置でスパッタして作製されることが多い。
In the field of magnetic recording typified by hard disk drives, materials based on Co, Fe, or Ni, which are ferromagnetic metals, are used as materials for magnetic thin films of magnetic recording media. For example, a Co—Cr-based or Co—Cr—Pt-based ferromagnetic alloy containing Co as a main component has been used for a magnetic thin film of a hard disk employing an in-plane magnetic recording method.
In addition, a composite material composed of a Co—Cr—Pt-based ferromagnetic alloy mainly composed of Co and an oxide is often used for a magnetic thin film of a hard disk adopting a perpendicular magnetic recording system that has been put into practical use in recent years. . The above-mentioned magnetic thin film is often produced by sputtering a sputtering target containing the above material as a component with a magnetron sputtering apparatus because of its high productivity.
 一方、ハードディスクの記録密度は年々急速に増大しており、1Tbit/inを超えつつある。1Tbit/inに記録密度が達すると記録bitのサイズが10nmを下回るようになり、その場合、熱揺らぎによる超常磁性化が問題となってくると予想される。現在、使用されている磁気記録媒体の材料、例えばCo基合金にPtを添加して結晶磁気異方性を高めた材料では十分ではないことが予想される。
 10nm以下のサイズで安定的に強磁性として振る舞う磁性粒子は、より高い結晶磁気異方性を持っている必要があるからである。
On the other hand, the recording density of the hard disk is rapidly increasing year by year and is exceeding 1 Tbit / in 2 . When the recording density reaches 1 Tbit / in 2 , the size of the recording bit becomes less than 10 nm, and in that case, superparamagnetization due to thermal fluctuation is expected to be a problem. It is expected that a magnetic recording medium material currently used, for example, a material in which Pt is added to a Co-based alloy to increase the magnetocrystalline anisotropy is not sufficient.
This is because magnetic particles that behave stably as ferromagnetism with a size of 10 nm or less need to have higher crystal magnetic anisotropy.
 上記のような理由から、L1構造を有するFe-Pt合金が超高密度記録媒体用材料として注目されている。L1構造を有するFe-Pt合金は高い結晶磁気異方性とともに、耐食性、耐酸化性に優れているため、磁気記録媒体としての応用に適した材料として期待されているものである。
 そしてL1構造を有するFe-Pt合金を超高密度記録媒体用材料として使用する場合には、L1構造へ規則化したFe-Pt磁性粒子を磁気的に孤立させた状態で出来るだけ高密度に方位をそろえて分散させるという技術の開発が求められている。
For the reasons described above, Fe-Pt alloy having an L1 0 structure is attracting attention as a material for an ultra-high density recording medium. L1 0 with Fe-Pt alloy has a high crystalline magnetic anisotropy having the structure, because of its excellent corrosion resistance, oxidation resistance, is what is expected as a material suitable for the application as a magnetic recording medium.
The L1 0 the Fe-Pt alloy having a structure when used as a material for an ultra-high density recording medium, high density as possible in a state where the magnetically to isolate the L1 0 rules to structured Fe-Pt magnetic particles There is a need for the development of technology that aligns and disperses the directions.
 このようなことから、L1構造を有するFe-Pt磁性粒子をC(炭素)や酸化物といった非磁性材料で孤立させたグラニュラー構造磁性薄膜が、熱アシスト磁気記録方式を採用した次世代ハードディスクの磁気記録媒体用として提案されている。このグラニュラー構造磁性薄膜は、非磁性材料が磁性粒子を取り囲むことにより磁性粒子間の磁気的相互作用を遮断する構造を有している。
 グラニュラー構造の磁性薄膜を有する磁気記録媒体及びこれに関連する公知文献としては、特許文献1、特許文献2、特許文献3、特許文献4、特許文献5を挙げることができる。
For this reason, a granular structure magnetic thin film of Fe-Pt magnetic particles are isolated by a non-magnetic material such C (carbon) and oxides having an L1 0 structure, next-generation hard disk employing a thermally assisted magnetic recording method It has been proposed for magnetic recording media. This granular structure magnetic thin film has a structure in which the magnetic interaction between the magnetic particles is blocked by the nonmagnetic material surrounding the magnetic particles.
Patent Document 1, Patent Document 2, Patent Document 3, Patent Document 4, and Patent Document 5 can be cited as magnetic recording media having a magnetic thin film having a granular structure and related documents.
 上記L1構造を有するFe-Pt磁性粒子を有するグラニュラー構造磁性薄膜としては、非磁性材料としてCを含有する磁性薄膜が、特にその磁気特性の高さから注目されている。ところが、Fe-Pt合金とCからなるスパッタリングターゲットをスパッタしようとすると、スパッタ時にCの不用意な脱離が生じパーティクル(基板上に付着したゴミ)が大量に発生するという問題がある。
 この問題を解決するには、Fe-Pt合金とCの密着性を高めたスパッタリングターゲットを提供する必要がある。また、Cのかわりに炭化物や窒化物を含有するターゲットを用いても、優れた磁性薄膜を得ることができるが、この場合もスパッタ時にパーティクルが多く発生するという問題があった。
The granular structure magnetic thin film having a Fe-Pt magnetic particles with the L1 0 structure, a magnetic thin film containing C as a non-magnetic material, is attracting attention particularly because of their high magnetic properties. However, when a sputtering target composed of an Fe—Pt alloy and C is to be sputtered, there is a problem that C is inadvertently detached during sputtering and a large amount of particles (dust attached to the substrate) is generated.
In order to solve this problem, it is necessary to provide a sputtering target with improved adhesion between the Fe—Pt alloy and C. Even if a target containing carbide or nitride instead of C is used, an excellent magnetic thin film can be obtained. However, in this case as well, there is a problem that many particles are generated during sputtering.
 下記に示す特許文献6には、Fe、PtおよびCを含有し、さらにFe、Pt以外の金属元素を含有するスパッタリングターゲットであって、Fe、Pt以外の金属元素としてCu、Ag、Mn、Ni、Co、Pd、Cr、V、Bを0at%よりも多く20at%以下含有することが記載されている。しかし、特許文献6には、Cuを10at%含有する一例しかなく、後述する本発明とは添加元素の種類及び含有量が大きく異なる。 Patent Document 6 shown below is a sputtering target containing Fe, Pt and C, and further containing a metal element other than Fe and Pt, and Cu, Ag, Mn, Ni as metal elements other than Fe and Pt. , Co, Pd, Cr, V, and B are described to contain more than 0 at% and 20 at% or less. However, Patent Document 6 has only an example containing 10 at% of Cu, and the kind and content of additive elements are greatly different from those of the present invention described later.
 また、下記特許文献7には、FePt合金相中にC相が分散した焼結体を作製する目的で、FePt合金粉とPt粉とカーボンブラック粉を混合してホットプレスする技術が開示されている。しかし、この場合は、スパッタ時にCの脱離が生じパーティクル(基板上に付着したゴミ)が大量に発生するという問題を解決する方策の検討がなされていない。
 また、下記特許文献8には、FePt(Au及び/又はCu)C系の磁気記録媒体薄膜形成用スパッタリングターゲットが記載されている。前記Au及び/又はCuの一部をAgに置き換えても良いという技術が開示され、これによってパーティクルの発生を抑制するという技術が開示されている。
 また、下記特許文献9にはFePtAgC系の磁気記録媒体薄膜形成用スパッタリングターゲットが記載されている。前記Agの一部をAu及び/又はCuに置き換えても良いという技術が開示され、これによってパーティクルの発生を抑制するという技術が開示されている。
Patent Document 7 below discloses a technique of mixing and hot pressing FePt alloy powder, Pt powder, and carbon black powder for the purpose of producing a sintered body in which a C phase is dispersed in an FePt alloy phase. Yes. However, in this case, no study has been made on a method for solving the problem that C is detached during sputtering and a large amount of particles (dust attached to the substrate) is generated.
Patent Document 8 listed below describes a FePt (Au and / or Cu) C-based sputtering target for forming a magnetic recording medium thin film. A technique is disclosed in which a part of the Au and / or Cu may be replaced with Ag, and thereby a technique of suppressing generation of particles is disclosed.
Patent Document 9 listed below discloses a sputtering target for forming a FePtAgC-based magnetic recording medium thin film. A technique is disclosed in which a part of Ag may be replaced with Au and / or Cu, and thereby a technique of suppressing generation of particles is disclosed.
 上記特許文献8と特許文献9は、類似する技術であるが、パーティクルの発生を抑制するために添加するAg、Au、Cuの融点が低いために、ホットプレス時に先に溶け出してしまう問題があり、焼結温度を下げる必要があると説明されている。
 そして、これを防止するために、予め原料となるAg、Au、Cuの粉を、AgPt粉、AuPt粉、CuPt粉を作製し、これらを他の原料粉と混合して焼結するということが必要であると記載されている。これは製造工程の煩雑さを招くという問題があり、これらの元素の添加量も多くする必要がある問題もある。
The above-mentioned Patent Document 8 and Patent Document 9 are similar techniques, but the melting point of Ag, Au, and Cu added to suppress the generation of particles is low, so that there is a problem of melting out first during hot pressing. It is explained that the sintering temperature needs to be lowered.
In order to prevent this, AgPt powder, AuPt powder, and CuPt powder are prepared in advance from Ag, Au, and Cu powders that are raw materials, and these are mixed with other raw material powders and sintered. It is stated that it is necessary. This has the problem that the manufacturing process is complicated, and there is also a problem that the amount of these elements to be added must be increased.
特開2000-306228号公報JP 2000-306228 A 特開2000-311329号公報JP 2000-31329 A 特開2008-59733号公報JP 2008-59733 A 特開2008-169464号公報JP 2008-169464 A 特開2004-152471号公報JP 2004-152471 A 特開2012-214874号公報JP 2012-214874 A 特開2012-102387号公報JP 2012-102387 A 特開2012-178210号公報(特許第5041261号公報)JP 2012-178210 A (Patent No. 5041261) 特開2012-178211号公報(特許第5041262号公報)JP 2012-178211 A (Patent No. 5041262)
 上記Fe-Pt合金は1:1組成付近でL1型規則格子を形成するが、一般に結晶構造が規則格子の材料は延性に乏しく、このような材料は加圧焼結装置を用いて焼結しても、焼結体の密度が上がり難いという問題がある。特に、難焼結材料であるC(炭素)を含有するFe-Pt-C系では、緻密な焼結体を得ることが極めて難しい。そのためこのような密度の低い焼結体スパッタリングターゲットをスパッタすると、非磁性材料の不用意な脱離が生じて、パーティクル(基板上に付着したゴミ)が大量に発生するという問題がある。 The Fe-Pt alloy 1: 1 forms a L1 0 type ordered lattice in the vicinity of the composition, typically the material of the crystal structure ordered lattice is poor in ductility, sintering using such material pressure sintering apparatus However, there is a problem that the density of the sintered body is difficult to increase. In particular, in a Fe—Pt—C system containing C (carbon), which is a hardly sintered material, it is extremely difficult to obtain a dense sintered body. Therefore, when such a low-density sintered sputtering target is sputtered, the nonmagnetic material is carelessly detached, and there is a problem that a large amount of particles (dust attached to the substrate) is generated.
 また、Fe-Pt合金のL1規則格子では、1300℃以上まで加熱すると、規則状態から不規則状態へ転移し延性が増すが、そこに含有させる非磁性材料の種類によっては、1300℃以上の温度で分解してしまうものもある。さらに、1300℃以上の高温域では、結晶粒の成長による焼結体組織の粗大化が生じることがあり、このような粗大な結晶粒はスパッタ時の異常放電(アーキング)の起点となって、パーティクルが発生するという問題がある。
 このようなことから、本発明は、スパッタ時に発生するパーティクル量を大幅に低減し、かつ効率よく製造できるFe-Pt系合金と非磁性材料からなる焼結体スパッタリングターゲットを提供することを課題とする。
In addition, in the L1 0 ordered lattice of Fe—Pt alloy, when heated to 1300 ° C. or higher, the transition from the ordered state to the irregular state increases and the ductility increases. However, depending on the type of nonmagnetic material contained therein, the temperature is 1300 ° C. or higher. Some will decompose at temperature. Furthermore, in a high temperature region of 1300 ° C. or higher, coarse structure of the sintered body may occur due to the growth of crystal grains. Such coarse crystal grains serve as a starting point for abnormal discharge (arcing) during sputtering. There is a problem that particles are generated.
For this reason, the present invention has an object to provide a sintered sputtering target composed of a Fe—Pt alloy and a nonmagnetic material that can greatly reduce the amount of particles generated during sputtering and can be efficiently manufactured. To do.
 本発明者は、Fe-Pt合金と少なくともC(炭素)を含む非磁性材料を主成分とする焼結体スパッタリングターゲットの作製に際して、微量添加元素を50質量ppm~5000質量ppmを含有させるのであるが、この微量添加元素として炭化物の炭素1mol当たりの標準生成自由エネルギーΔG°が、-5000[cal/mol]以下である微量の元素を添加すること、すなわち炭化物になり易い元素を添加することにより、C単体に比べて濡れ性が良好となる炭化物を形成し、この炭化物を介してFe-Pt系合金とCと密着性を向上させるものである。
 これを、本願発明の基礎とするものであり、この結果、焼結体スパッタリングターゲットは、スパッタ時に発生するパーティクル量を大幅に低減できるとの知見を得た。なお、以下で説明する焼結原料は、全て粉末原料を用いるものである。
The present inventor contains 50 mass ppm to 5000 mass ppm of a trace amount of additive element when producing a sintered sputtering target mainly composed of a non-magnetic material containing an Fe—Pt alloy and at least C (carbon). However, by adding a trace amount element whose standard free energy of formation ΔG ° per 1 mol of carbon of the carbide is −5000 [cal / mol] or less, that is, adding an element that easily becomes a carbide, as this trace addition element. , A carbide having better wettability than C alone is formed, and the adhesion between the Fe—Pt alloy and C is improved through the carbide.
This is the basis of the present invention. As a result, it has been found that the sintered sputtering target can greatly reduce the amount of particles generated during sputtering. In addition, all the sintering raw materials demonstrated below use a powder raw material.
 このような知見に基づき、本発明は、
 1)Fe-Pt合金と非磁性材料を主成分とする焼結体スパッタリングターゲットであって、非磁性材料として少なくともC(炭素)を含有し、さらに前記主成分以外に微量添加元素を50質量ppm~5000質量ppmの範囲で含有し、該微量添加元素の炭化物の炭素1mol当たりの標準生成自由エネルギーΔG°が、-5000[cal/mol]以下であることを特徴とする焼結体スパッタリングターゲット
 2)前記微量添加元素が、W、Crのいずれか一種以上であることを特徴とする上記1)に記載の焼結体スパッタリングターゲット
 3)非磁性材料として、前記C(炭素)に加えて、さらに酸化物、窒化物、炭化物のいずれか一種以上を含有することを特徴とする上記1)又は2)のいずれか一項に記載の焼結体スパッタリングターゲット
 4)前記主成分及び微量添加元素に加えて、さらにAg、Au、Co、Cu、Ga、Ge、Ir、Ni、Pd、Re、Rh、Ru、Sn、Znから選択した一種以上の元素を、金属成分として含有することを特徴とする上記1)~3)のいずれか一項に記載の焼結体スパッタリングターゲット、を提供する。
Based on such knowledge, the present invention
1) A sintered sputtering target mainly composed of an Fe—Pt alloy and a nonmagnetic material, which contains at least C (carbon) as a nonmagnetic material, and further contains 50 mass ppm of a trace additive element in addition to the main component. Sintered body sputtering target, characterized in that it is contained in a range of ˜5000 mass ppm, and the standard free energy of formation ΔG ° per mol of carbon of the carbide of the trace additive element is −5000 [cal / mol] or less. ) The sintered body sputtering target according to 1) above, wherein the trace additive element is at least one of W and Cr. 3) As a nonmagnetic material, in addition to C (carbon), The sintered body sputter according to any one of 1) or 2) above, which contains at least one of oxide, nitride, and carbide. 4) In addition to the main component and the trace additive element, one or more elements selected from Ag, Au, Co, Cu, Ga, Ge, Ir, Ni, Pd, Re, Rh, Ru, Sn, Zn The sintered compact sputtering target according to any one of 1) to 3) above, wherein the sintered body sputtering target is contained as a metal component.
 また、本発明は、
 5)原料粉として、Fe粉、Pt粉、C粉(グラファイト粉)、及び炭化物を形成した場合の炭素1mol当たりの標準生成自由エネルギーΔG°が、-5000[cal/mol]以下である微量添加元素粉を準備し、これらの粉末をAr雰囲気中で混合・粉砕し、混合・粉砕後の粉末をカーボン製の型に充填し、ホットプレス装置を用いて、真空雰囲気、昇温速度200~600°C/時間、保持温度800~1400°C、保持時間0~4時間とし、昇温開始時から保持終了まで20~50MPaで加圧して焼結体を製造することを特徴とするFe-Pt合金と非磁性材料を主成分とする焼結体スパッタリングターゲットの製造方法
 6)前記微量添加元素が、W、Crのいずれか一種以上であることを特徴とする上記4)に記載の焼結体スパッタリングターゲットの製造方法
 7)非磁性材料の原料粉として、前記C(炭素)に加えて、さらに酸化物、窒化物、炭化物のいずれか一種以上を含有させて焼結することを特徴とする上記5)又は6)のいずれか一項に記載の焼結体スパッタリングターゲットの製造方法
 8)さらに、Ag、Au、Co、Cu、Ga、Ge、Ir、Ni、Pd、Re、Rh、Ru、Sn、Znから選択した一種以上の元素を、金属成分の原料として含有させ、焼結することを特徴とする上記5)~7)のいずれか一項に記載の焼結体スパッタリングターゲットの製造方法、を提供する。
The present invention also provides:
5) Addition of a trace amount of standard production free energy ΔG ° per 1 mol of carbon when Fe powder, Pt powder, C powder (graphite powder) and carbide are formed as raw material powder is −5000 [cal / mol] or less Elemental powder is prepared, and these powders are mixed and pulverized in an Ar atmosphere, and the mixed and pulverized powder is filled in a carbon mold, and is heated in a vacuum atmosphere at a heating rate of 200 to 600 using a hot press device. Fe-Pt characterized in that a sintered body is produced by pressing at 20-50 MPa from the start of temperature rise to the end of holding at a temperature of ° C / hour, a holding temperature of 800-1400 ° C, a holding time of 0-4 hours. 6. Manufacturing method of sintered compact sputtering target mainly composed of alloy and non-magnetic material 6) The sintered compact according to 4) above, wherein the trace additive element is at least one of W and Cr. Method for manufacturing a sputtering target 7) In addition to the C (carbon), the raw material powder of the nonmagnetic material further contains any one or more of oxide, nitride, and carbide, and is sintered. The manufacturing method of the sintered compact sputtering target as described in any one of said 5) or 6) 8) Furthermore, Ag, Au, Co, Cu, Ga, Ge, Ir, Ni, Pd, Re, Rh, Ru, The method for producing a sintered sputtering target according to any one of 5) to 7) above, wherein one or more elements selected from Sn and Zn are contained as a raw material for the metal component and sintered. ,I will provide a.
 本発明によれば、スパッタリングの際に、発生するパーティクル量を大幅に低減したスパッタリングターゲットを提供することができる。これにより、成膜時における歩留まりを著しく向上することができ、また生産性を向上させることができるという、優れた効果を有する。 According to the present invention, it is possible to provide a sputtering target in which the amount of particles generated during sputtering is greatly reduced. Thereby, it has the outstanding effect that the yield at the time of film-forming can be improved significantly and productivity can be improved.
 本発明のFe-Pt合金と非磁性材料を主成分とする焼結体スパッタリングターゲットは、非磁性材料として少なくともC(炭素)を含有し、さらに前記主成分以外に微量添加元素を50質量ppm~5000質量ppmの範囲で含有し、該微量添加元素の炭化物の炭素1mol当たりの標準生成自由エネルギーΔG°が、-5000[cal/mol]以下であることを特徴とする焼結体スパッタリングターゲットである。
 前記微量添加元素の代表的な材料は、W、Crであり、これらのいずれか一種以上を添加するのが有効である。しかし、焼結の温度域において、該微量添加元素の炭化物の炭素1mol当たりの標準生成自由エネルギーΔG°が、-5000[cal/mol]以下という条件を満たすものであれば、他の元素を使用することは特に問題はない。
The sintered sputtering target mainly comprising a Fe—Pt alloy and a nonmagnetic material according to the present invention contains at least C (carbon) as a nonmagnetic material, and further contains a trace amount of added elements in an amount of 50 ppm by mass to the main component. A sintered compact sputtering target characterized in that it is contained in the range of 5000 ppm by mass, and the standard free energy of formation ΔG ° per mol of the carbide of the trace additive element is −5000 [cal / mol] or less. .
Typical materials of the trace additive element are W and Cr, and it is effective to add one or more of these. However, other elements may be used as long as the standard free energy of formation ΔG ° per 1 mol of carbon of the carbide of the trace additive element satisfies the condition of −5000 [cal / mol] or less in the sintering temperature range. There is no particular problem to do.
 Fe-Pt合金の組成として一般には、原子数比率においてPtが35%以上55%以下、残部がFeの割合で配合したものを用いることができるが、有効な磁気記録媒体としての特性を維持できる範囲内であれば、特に制限はない。スパッタリングターゲット中のFe-Pt合金は、通常L1型規則格子からなるが、これにも制限はない。
 本願発明において特に重要なことは、スパッタリングターゲットの微量添加元素として、この添加元素が炭化物を形成した場合の、炭素1mol当たりの標準生成自由エネルギーΔG°が、-5000[cal/mol]以下である微量の元素を用いること(添加すること)である。またCの含有量は、有効な磁気記録媒体としての特性を維持できる範囲内であれば、特に制限はないが、スパッタリングターゲット中の体積比率で20~45%の範囲内に設定することが望ましい。
In general, the Fe—Pt alloy composition can be used in which the atomic ratio is such that Pt is 35% or more and 55% or less and the balance is Fe, but the characteristics as an effective magnetic recording medium can be maintained. If it is within the range, there is no particular limitation. Fe-Pt alloy in the sputtering target is comprised of normal L1 0 type ordered lattice, it is not also limited thereto.
What is particularly important in the present invention is that the standard free energy of formation ΔG ° per mol of carbon is −5000 [cal / mol] or less when the additive element forms a carbide as a trace additive element of the sputtering target. The use of a trace amount of element (addition). Further, the content of C is not particularly limited as long as the characteristics as an effective magnetic recording medium can be maintained, but it is desirable to set the content in the range of 20 to 45% by volume ratio in the sputtering target. .
 すなわち、炭化物になり易い元素を添加することにより、C単体に比べて濡れ性が良好となる炭化物を形成し、この炭化物を介してFe-Pt系合金とCと密着性を向上させることができるようにするものである。
 この結果、焼結体スパッタリングターゲットは、スパッタ時にCの脱落を抑制することができ、発生するパーティクル量を大幅に低減できる。
 上記の通り、微量添加元素として、W、Crが有効であり、これらのいずれか一種以上を添加するのが良い。以下については、主として代表的な微量添加元素であるW、Crを用いた場合について説明する。
That is, by adding an element that easily becomes a carbide, a carbide having better wettability than C alone can be formed, and the adhesion between the Fe—Pt alloy and C can be improved through this carbide. It is what you want to do.
As a result, the sintered compact sputtering target can suppress the drop-off of C during sputtering, and can greatly reduce the amount of generated particles.
As described above, W and Cr are effective as a trace additive element, and any one or more of these elements may be added. The following mainly describes the case where W and Cr, which are representative trace additive elements, are used.
 前記のWやCrの含有量は、50質量ppm~5000質量ppmとする。含有量が50質量ppm未満であると、濡れ性が良好となる炭化物の形成が不十分となり、Fe-Pt合金とCの密着性向上が期待できず、一方、含有量が5000質量ppmを超えると、磁性薄膜として十分な磁気特性が得られなくなる可能性がある。
 WやCrは、いずれか一方又は両方を含有させても同様の効果が得られる。両方を含有させる場合には、その合計含有量をスパッタリングターゲット全体における含有比率として、50質量ppm~5000質量ppmとするのが良い。
The content of W or Cr is 50 mass ppm to 5000 mass ppm. If the content is less than 50 ppm by mass, the formation of carbides with good wettability will be insufficient, and an improvement in the adhesion between the Fe-Pt alloy and C cannot be expected, while the content exceeds 5000 ppm by mass. Then, there is a possibility that sufficient magnetic properties as a magnetic thin film cannot be obtained.
The same effect can be obtained even if either W or Cr is contained. When both are contained, the total content is preferably 50 mass ppm to 5000 mass ppm as the content ratio in the entire sputtering target.
 また、本発明のスパッタリングターゲットは、非磁性材料として、前記C(炭素)に加えて、酸化物、窒化物、炭化物のいずれか一種以上を含有させることができる。その場合、好ましい酸化物としてはAl、B、Ba、Be、Ca、Ce、Cr、Dy、Er、Eu、Ga、Gd、Ho、Li、Mg、Mn、Nb、Nd、Pr、Sc、Sm、Sr、Ta、Tb、Ti、V、Y、Zn、Zrから選択した一種以上の元素の酸化物が挙げられる。また好ましい窒化物としてはAl、B、Ca、Nb、Si、Ta、Ti、Zrから選択した一種以上の元素の窒化物が挙げられる。また好ましい炭化物としては、B、Ca、Nb、Si、Ta、Ti、W、Zrから選択した一種以上の元素の炭化物が挙げられる。このようなスパッタリングターゲットから作製された磁性膜は、炭素、炭化物、窒化物、酸化物が磁性粒子同士の磁気的な相互作用を絶縁する構造をとるため、良好な磁気特性が期待できる。 Further, the sputtering target of the present invention can contain any one or more of oxide, nitride, and carbide in addition to the C (carbon) as a nonmagnetic material. In that case, preferable oxides include Al, B, Ba, Be, Ca, Ce, Cr, Dy, Er, Eu, Ga, Gd, Ho, Li, Mg, Mn, Nb, Nd, Pr, Sc, Sm, Examples thereof include oxides of one or more elements selected from Sr, Ta, Tb, Ti, V, Y, Zn, and Zr. Preferred nitrides include nitrides of one or more elements selected from Al, B, Ca, Nb, Si, Ta, Ti, and Zr. Preferred carbides include carbides of one or more elements selected from B, Ca, Nb, Si, Ta, Ti, W, and Zr. Since the magnetic film produced from such a sputtering target has a structure in which carbon, carbide, nitride, and oxide insulate the magnetic interaction between magnetic particles, good magnetic properties can be expected.
 また、本発明のスパッタリングターゲットは、前記主成分及び微量添加元素に加えて、さらにAg、Au、Co、Cu、Ga、Ge、Ir、Ni、Pd、Re、Rh、Ru、Sn、Znから選択した一種以上の元素を、金属成分として含有させることができる。
 これらの金属元素は、スパッタされた薄膜において、主にL1構造を発現するための熱処理の温度を下げるために添加するものである。その配合割合は、有効な磁気記録媒体としての特性を維持できる範囲内であれば、特に制限はない。
Moreover, the sputtering target of the present invention is selected from Ag, Au, Co, Cu, Ga, Ge, Ir, Ni, Pd, Re, Rh, Ru, Sn, Zn in addition to the main component and the trace additive element. One or more of these elements can be included as a metal component.
These metal elements, in sputtered thin films are those primarily added to reduce the temperature of the heat treatment to express L1 0 structure. The blending ratio is not particularly limited as long as it is within a range where the characteristics as an effective magnetic recording medium can be maintained.
 本発明のスパッタリングターゲットは、粉末焼結法を用いて、例えば、以下の方法によって作製することができる。
 まず、金属粉としてFe粉、Pt粉、Cr粉、Cu粉、W粉などを用意する。金属粉としては、単元素の金属粉だけでなく、合金粉を用いることもできる。これらの金属粉は粒径が1~10μmの範囲のものを用いることが望ましい。粒径が1~10μmであるとより均一な混合が可能であり、偏析と粗大結晶化を防止できる。
The sputtering target of the present invention can be produced, for example, by the following method using a powder sintering method.
First, Fe powder, Pt powder, Cr powder, Cu powder, W powder, etc. are prepared as metal powder. As the metal powder, not only a single element metal powder but also an alloy powder can be used. These metal powders preferably have a particle size in the range of 1 to 10 μm. When the particle size is 1 to 10 μm, more uniform mixing is possible, and segregation and coarse crystallization can be prevented.
 金属粉末の粒径が10μmより大きい場合には、非磁性材料が均一に分散しないことがあり、また、1μmより小さい場合には、金属粉の酸化の影響でターゲットの組成が所望の組成から外れてくるという問題が生じることがある。なお、この粒径範囲はあくまで好ましい範囲であり、これを逸脱することが本願発明を否定する条件でないことは当然理解されるべきである。 When the particle size of the metal powder is larger than 10 μm, the non-magnetic material may not be uniformly dispersed. When the particle size is smaller than 1 μm, the target composition deviates from the desired composition due to the influence of oxidation of the metal powder. The problem of coming may arise. It should be understood that this particle size range is only a preferable range, and that deviating from this range is not a condition for denying the present invention.
 また、非磁性材料の粉末として、前記C(炭素)に加えて、酸化物粉、窒化物粉、炭化物粉などを用意する。これらの非磁性材料粉末は、粒径が1~30μmの範囲のものを用いることが望ましい。粒径が1~30μmであると前述の金属粉と混合した際に、非磁性材料粉同士が凝集し難くなり、均一に分散させることが可能になる。
 非磁性材料のうちC粉に関しては、グラファイト(黒鉛)やナノチューブのように結晶構造を有するものと、カーボンブラックに代表される非晶質のものがあるが、いずれのC粉も使用することができる。
In addition to C (carbon), oxide powder, nitride powder, carbide powder, etc. are prepared as nonmagnetic material powder. These nonmagnetic material powders preferably have a particle size in the range of 1 to 30 μm. When the particle size is 1 to 30 μm, the nonmagnetic material powders hardly aggregate when mixed with the above-mentioned metal powder, and can be uniformly dispersed.
Among non-magnetic materials, C powder includes those having a crystal structure such as graphite (graphite) and nanotubes, and amorphous materials such as carbon black. Any C powder can be used. it can.
 焼結体スパッタリングターゲットの製造に際しては、原料粉として、Fe粉、Pt粉、C粉(グラファイト粉)、及び炭化物を形成した場合の炭素1mol当たりの標準生成自由エネルギーΔG°が、-5000[cal/mol]以下である微量添加元素粉を所定の組成になるように秤量し、これらの粉末をAr雰囲気中でボールミル等の公知の手法を用いて粉砕を兼ねて混合する。
 この混合・粉砕後の粉末をカーボン製の型に充填し、ホットプレス装置を用いて、真空雰囲気又は不活性雰囲気中、昇温速度200~600°C/時間、保持温度800~1400°C、保持時間0~4時間とし、昇温開始時から保持終了まで20~50MPaで加圧して焼結体を製造する。
When producing a sintered sputtering target, the standard free energy of formation ΔG ° per 1 mol of carbon when Fe powder, Pt powder, C powder (graphite powder), and carbide are formed as raw material powder is −5000 [cal / Mol] or less] are weighed so as to have a predetermined composition, and these powders are mixed in an Ar atmosphere together with pulverization using a known method such as a ball mill.
The mixed and pulverized powder is filled into a carbon mold, and using a hot press apparatus, the temperature rise rate is 200 to 600 ° C./hour, the holding temperature is 800 to 1400 ° C. in a vacuum atmosphere or an inert atmosphere. The holding time is set to 0 to 4 hours, and the sintered body is manufactured by pressurizing at 20 to 50 MPa from the start of temperature rise to the end of holding.
 前記ホットプレス以外にも、プラズマ放電焼結法など様々な加圧焼結方法を使用することができる。特に、熱間静水圧焼結法は焼結体の密度向上に有効である。焼結時の保持温度は、ターゲットの構成成分にもよるが、多くの場合、800~1400°Cの温度範囲とする。そして、得られた焼結体を旋盤で所望の形状に加工することにより、本発明のスパッタリングターゲットを作製することができる。 In addition to the hot press, various pressure sintering methods such as a plasma discharge sintering method can be used. In particular, the hot isostatic pressing is effective for improving the density of the sintered body. The holding temperature at the time of sintering depends on the components of the target, but in most cases, it is in the temperature range of 800-1400 ° C. And the sputtering target of this invention can be produced by processing the obtained sintered compact into a desired shape with a lathe.
 以上により本発明のスパッタリングターゲットを製造することができる。このようにして製造したスパッタリングターゲットは、スパッタ時に発生するパーティクル量を低減することができ、成膜時における歩留まりを向上することができるという優れた効果を有する。 As described above, the sputtering target of the present invention can be manufactured. The sputtering target manufactured in this way has an excellent effect that the amount of particles generated during sputtering can be reduced and the yield during film formation can be improved.
 以下、実施例および比較例に基づいて説明する。なお、本実施例はあくまで一例であり、この例によって何ら制限されるものではない。すなわち、本発明は特許請求の範囲によってのみ制限されるものであり、本発明に含まれる実施例以外の種々の変形を包含するものである。 Hereinafter, description will be made based on examples and comparative examples. In addition, a present Example is an example to the last, and is not restrict | limited at all by this example. In other words, the present invention is limited only by the scope of the claims, and includes various modifications other than the examples included in the present invention.
(実施例1)
 原料粉として平均粒径3μmのFe粉、平均粒径3μmのPt粉、平均粒径3μmのW粉、平均粒径10μmのC粉(グラファイト粉)を用意した。
 基本成分を、秤量組成(モル比率):30Fe-30Pt-40Cとし、前記秤量組成比で、合計の重量が2600gとなるように秤量した。
 さらに微量添加成分として、Wを5.2g秤量した。
(Example 1)
Fe powder having an average particle diameter of 3 μm, Pt powder having an average particle diameter of 3 μm, W powder having an average particle diameter of 3 μm, and C powder (graphite powder) having an average particle diameter of 10 μm were prepared as raw material powders.
The basic components were weighed composition (molar ratio): 30Fe-30Pt-40C, and weighed so that the total weight was 2600 g at the weighed composition ratio.
Further, 5.2 g of W was weighed as a component added in a small amount.
 次に秤量した全ての粉末を、粉砕媒体のSUSボールと共に容量10リットルのボールミルポットに投入し、Ar雰囲気中で16時間回転させて混合・粉砕した。そしてポットから取り出した粉末をカーボン製の型に充填しホットプレス装置を用いて成型・焼結させた。ホットプレスの条件は、真空雰囲気、昇温速度300°C/時間、保持温度1400°C、保持時間2時間とし、昇温開始時から保持終了まで30MPaで加圧した。保持終了後はチャンバー内でそのまま自然冷却させた。 Next, all of the weighed powders were put into a 10 liter ball mill pot together with SUS balls as a grinding medium, and rotated and mixed for 16 hours in an Ar atmosphere. The powder taken out from the pot was filled in a carbon mold and molded and sintered using a hot press apparatus. The hot press conditions were a vacuum atmosphere, a heating rate of 300 ° C./hour, a holding temperature of 1400 ° C., and a holding time of 2 hours, and pressurization was performed at 30 MPa from the start of heating to the end of holding. After completion of the holding, it was naturally cooled in the chamber.
 次に、作製した焼結体から採取した小片を用いて組成分析を実施した。Fe、Pt、WはICP-AES装置を用いて測定し、Cは高周波誘導加熱炉燃焼-赤外線吸収法を採用した炭素分析装置で測定した。その結果、Wの含有量は、スパッタリングターゲット中1990質量ppmであった。また基本成分について、分析で得た重量比率からモル比率を計算した結果、このスパッタリングターゲットの組成は、分析組成(モル比率):30.09Fe-30.04Pt-39.87Cであった。 Next, composition analysis was performed using small pieces collected from the produced sintered body. Fe, Pt, and W were measured using an ICP-AES apparatus, and C was measured using a carbon analyzer employing a high frequency induction furnace combustion-infrared absorption method. As a result, the W content was 1990 mass ppm in the sputtering target. As for the basic component, the molar ratio was calculated from the weight ratio obtained by analysis. As a result, the composition of this sputtering target was analytical composition (molar ratio): 30.09Fe-30.04Pt-39.87C.
 さらに旋盤を用いて、焼結体を直径180.0mm、厚さ5.0mmの形状へ切削加工し、円盤状のターゲットを得た。このターゲットをマグネトロンスパッタ装置(キヤノンアネルバ製C-3010スパッタリングシステム)に取り付け、スパッタリングを行った。スパッタリングの条件は、投入電力1kW、Arガス圧1.7Paとし、2kWhrのプレスパッタリングを実施した後、4インチ径のシリコン基板上に20秒間成膜した。基板上へ付着したパーティクルの個数をパーティクルカウンターで測定した。このときのパーティクル個数は185個であった。 Further, using a lathe, the sintered body was cut into a shape having a diameter of 180.0 mm and a thickness of 5.0 mm to obtain a disk-shaped target. This target was attached to a magnetron sputtering apparatus (C-3010 sputtering system manufactured by Canon Anelva), and sputtering was performed. The sputtering conditions were an input power of 1 kW and an Ar gas pressure of 1.7 Pa. After performing 2 kWhr of pre-sputtering, a film was formed on a 4-inch diameter silicon substrate for 20 seconds. The number of particles adhering to the substrate was measured with a particle counter. The number of particles at this time was 185.
(比較例1)
 原料粉として平均粒径3μmのFe粉、平均粒径3μmのPt粉、平均粒径3μmのW粉、平均粒径10μmのC粉(グラファイト粉)を用意した。
 基本成分を、秤量組成(モル比率):30Fe-30Pt-40Cとし、前記秤量組成比で、合計の重量が2600gとなるように秤量した。
 さらに微量添加成分として、Wを0.13g秤量した。
(Comparative Example 1)
Fe powder having an average particle diameter of 3 μm, Pt powder having an average particle diameter of 3 μm, W powder having an average particle diameter of 3 μm, and C powder (graphite powder) having an average particle diameter of 10 μm were prepared as raw material powders.
The basic components were weighed composition (molar ratio): 30Fe-30Pt-40C, and weighed so that the total weight was 2600 g at the weighed composition ratio.
Further, 0.13 g of W was weighed as a minor additive.
 次に秤量した全ての粉末を、粉砕媒体のSUSボールと共に容量10リットルのボールミルポットに投入し、Ar雰囲気中で16時間回転させて混合・粉砕した。そしてポットから取り出した粉末をカーボン製の型に充填しホットプレス装置を用いて成型・焼結させた。ホットプレスの条件は、真空雰囲気、昇温速度300°C/時間、保持温度1400°C、保持時間2時間とし、昇温開始時から保持終了まで30MPaで加圧した。保持終了後はチャンバー内でそのまま自然冷却させた。 Next, all of the weighed powders were put into a 10 liter ball mill pot together with SUS balls as a grinding medium, and rotated and mixed for 16 hours in an Ar atmosphere. The powder taken out from the pot was filled in a carbon mold and molded and sintered using a hot press apparatus. The hot press conditions were a vacuum atmosphere, a heating rate of 300 ° C./hour, a holding temperature of 1400 ° C., and a holding time of 2 hours, and pressurization was performed at 30 MPa from the start of heating to the end of holding. After completion of the holding, it was naturally cooled in the chamber.
 次に作製した焼結体をから採取した小片を用いて組成分析を実施した。Fe、Pt、WはICP-AES装置を用いて測定し、Cは高周波誘導加熱炉燃焼-赤外線吸収法を採用した炭素分析装置で測定した。その結果、Wの含有量は、スパッタリングターゲット中40質量ppmであった。また基本成分について、分析で得た重量比率からモル比率を計算した結果、このスパッタリングターゲットの組成は、分析組成(モル比率)は30.20Fe-30.08Pt-39.72Cであった。 Next, composition analysis was carried out using small pieces collected from the produced sintered body. Fe, Pt, and W were measured using an ICP-AES apparatus, and C was measured using a carbon analyzer employing a high frequency induction furnace combustion-infrared absorption method. As a result, the content of W was 40 mass ppm in the sputtering target. Further, as a result of calculating the molar ratio of the basic component from the weight ratio obtained by analysis, the composition of this sputtering target was 30.20Fe-30.08Pt-39.72C as the analytical composition (molar ratio).
 さらに旋盤を用いて、焼結体を直径180.0mm、厚さ5.0mmの形状へ切削加工し、円盤状のターゲットを得た。このターゲットを用いて実施例1と同一条件でスパッタリングを行い、基板上へ付着したパーティクルの個数をパーティクルカウンターで測定した。このときのパーティクル個数は498個と、実施例1より増加した。 Further, using a lathe, the sintered body was cut into a shape having a diameter of 180.0 mm and a thickness of 5.0 mm to obtain a disk-shaped target. Sputtering was performed using this target under the same conditions as in Example 1, and the number of particles adhering to the substrate was measured with a particle counter. The number of particles at this time was 498, which was increased from that in Example 1.
(比較例2)
 原料粉として平均粒径3μmのFe粉、平均粒径3μmのPt粉、平均粒径3μmのW粉、平均粒径10μmのC粉(グラファイト粉)を用意した。
 基本成分を、秤量組成(モル比率):30Fe-30Pt-40Cとし、前記秤量組成比で、合計の重量が2600gとなるように秤量した。
 さらに微量添加成分として、Wを52.0g秤量した。
(Comparative Example 2)
Fe powder having an average particle diameter of 3 μm, Pt powder having an average particle diameter of 3 μm, W powder having an average particle diameter of 3 μm, and C powder (graphite powder) having an average particle diameter of 10 μm were prepared as raw material powders.
The basic components were weighed composition (molar ratio): 30Fe-30Pt-40C, and weighed so that the total weight was 2600 g at the weighed composition ratio.
Further, 52.0 g of W was weighed as a minor additive.
 次に秤量した全ての粉末を、粉砕媒体のSUSボールと共に容量10リットルのボールミルポットに投入し、Ar雰囲気中で16時間回転させて混合・粉砕した。そしてポットから取り出した粉末をカーボン製の型に充填しホットプレス装置を用いて成型・焼結させた。ホットプレスの条件は、真空雰囲気、昇温速度300°C/時間、保持温度1400°C、保持時間2時間とし、昇温開始時から保持終了まで30MPaで加圧した。保持終了後はチャンバー内でそのまま自然冷却させた。 Next, all of the weighed powders were put into a 10 liter ball mill pot together with SUS balls as a grinding medium, and rotated and mixed for 16 hours in an Ar atmosphere. The powder taken out from the pot was filled in a carbon mold and molded and sintered using a hot press apparatus. The hot press conditions were a vacuum atmosphere, a heating rate of 300 ° C./hour, a holding temperature of 1400 ° C., and a holding time of 2 hours, and pressurization was performed at 30 MPa from the start of heating to the end of holding. After completion of the holding, it was naturally cooled in the chamber.
 次に作製した焼結体から採取した小片を用いて組成分析を実施した。Fe、Pt、WはICP-AES装置を用いて測定し、Cは高周波誘導加熱炉燃焼-赤外線吸収法を採用した炭素分析装置で測定した。その結果、Wの含有量は、スパッタリングターゲット中20100質量ppmであった。また基本成分について、分析で得た重量比率からモル比率を計算した結果、このスパッタリングターゲットの組成は、分析組成(モル比率):30.07Fe-30.01Pt-39.92Cであった。 Next, composition analysis was carried out using small pieces collected from the produced sintered body. Fe, Pt, and W were measured using an ICP-AES apparatus, and C was measured using a carbon analyzer employing a high frequency induction furnace combustion-infrared absorption method. As a result, the content of W was 20100 mass ppm in the sputtering target. Further, as a result of calculating the molar ratio of the basic component from the weight ratio obtained by analysis, the composition of this sputtering target was analytical composition (molar ratio): 30.07Fe-30.01Pt-39.92C.
 さらに旋盤を用いて、焼結体を直径180.0mm、厚さ5.0mmの形状へ切削加工し、円盤状のターゲットを得た。このターゲットを用いて実施例1と同一条件でスパッタリングを行い、基板上へ付着したパーティクルの個数をパーティクルカウンターで測定した。このときのパーティクル個数は354個と、実施例1より増加した。
 一方で、実施例1と比較すると十分な磁気特性が得られなかった。これは、Wの含有量が多過ぎ、飽和磁化や結晶磁気異方性エネルギーが低下したためと考えられる。
Further, using a lathe, the sintered body was cut into a shape having a diameter of 180.0 mm and a thickness of 5.0 mm to obtain a disk-shaped target. Sputtering was performed using this target under the same conditions as in Example 1, and the number of particles adhering to the substrate was measured with a particle counter. The number of particles at this time was 354, an increase from that in Example 1.
On the other hand, sufficient magnetic properties were not obtained as compared with Example 1. This is presumably because the content of W was too large and the saturation magnetization and magnetocrystalline anisotropy energy were reduced.
(実施例2)
 原料粉として平均粒径3μmのFe粉、平均粒径3μmのPt粉、平均粒径10μmのC粉(グラファイト粉)、平均粒径3μmのCr粉を用意した。
 基本成分を、秤量組成(モル比率):30Fe-30Pt-40Cとし、前記秤量組成比で、合計の重量が2600gとなるように秤量した。
 さらに微量添加成分として、Crを2.6g秤量した。
(Example 2)
Fe powder having an average particle diameter of 3 μm, Pt powder having an average particle diameter of 3 μm, C powder (graphite powder) having an average particle diameter of 10 μm, and Cr powder having an average particle diameter of 3 μm were prepared as raw material powders.
The basic components were weighed composition (molar ratio): 30Fe-30Pt-40C, and weighed so that the total weight was 2600 g at the weighed composition ratio.
Further, 2.6 g of Cr was weighed as a component added in a small amount.
 次に秤量した全ての粉末を、粉砕媒体のSUSボールと共に容量10リットルのボールミルポットに投入し、Ar雰囲気中で16時間回転させて混合・粉砕した。そしてポットから取り出した粉末をカーボン製の型に充填しホットプレス装置を用いて成型・焼結させた。ホットプレスの条件は、真空雰囲気、昇温速度300°C/時間、保持温度1300°C、保持時間2時間とし、昇温開始時から保持終了まで30MPaで加圧した。保持終了後はチャンバー内でそのまま自然冷却させた。 Next, all of the weighed powders were put into a 10 liter ball mill pot together with SUS balls as a grinding medium, and rotated and mixed for 16 hours in an Ar atmosphere. The powder taken out from the pot was filled in a carbon mold and molded and sintered using a hot press apparatus. The hot pressing conditions were a vacuum atmosphere, a heating rate of 300 ° C./hour, a holding temperature of 1300 ° C., and a holding time of 2 hours. After completion of the holding, it was naturally cooled in the chamber.
 次に作製した焼結体から採取した小片を用いて組成分析を実施した。Fe、Pt、CrをICP-AES装置を用いて測定し、Cは高周波誘導加熱炉燃焼-赤外線吸収法を採用した炭素分析装置で測定した。その結果、Crの含有量は、スパッタリングターゲット中990質量ppmであった。また基本成分について、分析で得た重量比率からモル比率を計算した結果、このスパッタリングターゲットの組成は、分析組成(モル比率):29.85Fe-30.10Pt-40.05Cであった。 Next, composition analysis was carried out using small pieces collected from the produced sintered body. Fe, Pt, and Cr were measured using an ICP-AES apparatus, and C was measured using a carbon analyzer employing a high-frequency induction furnace combustion-infrared absorption method. As a result, the Cr content was 990 mass ppm in the sputtering target. Further, as a result of calculating the molar ratio from the weight ratio obtained by analysis for the basic component, the composition of this sputtering target was analytical composition (molar ratio): 29.85Fe-30.10Pt-40.05C.
 さらに、旋盤を用いて、焼結体を直径180.0mm、厚さ5.0mmの形状へ切削加工し、円盤状のターゲットを得た。このターゲットを用いて実施例1と同一条件でスパッタリングを行い、基板上へ付着したパーティクルの個数をパーティクルカウンターで測定した。このときのパーティクル個数は255個であった。 Furthermore, using a lathe, the sintered body was cut into a shape having a diameter of 180.0 mm and a thickness of 5.0 mm to obtain a disk-shaped target. Sputtering was performed using this target under the same conditions as in Example 1, and the number of particles adhering to the substrate was measured with a particle counter. The number of particles at this time was 255.
(比較例3)
 原料粉として平均粒径3μmのFe粉、平均粒径3μmのPt粉、平均粒径10μmのC粉(グラファイト粉)、平均粒径3μmのCr粉を用意した。
 基本成分を、秤量組成(モル比率):30Fe-30Pt-40Cとし、前記秤量組成比で、合計の重量が2600gとなるように秤量した。
 さらに微量添加成分として、Crを0.13g秤量した。
(Comparative Example 3)
Fe powder having an average particle diameter of 3 μm, Pt powder having an average particle diameter of 3 μm, C powder (graphite powder) having an average particle diameter of 10 μm, and Cr powder having an average particle diameter of 3 μm were prepared as raw material powders.
The basic components were weighed composition (molar ratio): 30Fe-30Pt-40C, and weighed so that the total weight was 2600 g at the weighed composition ratio.
Further, 0.13 g of Cr was weighed as a minor additive.
 次に秤量した全ての粉末を、粉砕媒体のSUSボールと共に容量10リットルのボールミルポットに投入し、Ar雰囲気中で16時間回転させて混合・粉砕した。そしてポットから取り出した粉末をカーボン製の型に充填しホットプレス装置を用いて成型・焼結させた。ホットプレスの条件は、真空雰囲気、昇温速度300°C/時間、保持温度1300°C、保持時間2時間とし、昇温開始時から保持終了まで30MPaで加圧した。保持終了後はチャンバー内でそのまま自然冷却させた。 Next, all of the weighed powders were put into a 10 liter ball mill pot together with SUS balls as a grinding medium, and rotated and mixed for 16 hours in an Ar atmosphere. The powder taken out from the pot was filled in a carbon mold and molded and sintered using a hot press apparatus. The hot pressing conditions were a vacuum atmosphere, a heating rate of 300 ° C./hour, a holding temperature of 1300 ° C., and a holding time of 2 hours. After completion of the holding, it was naturally cooled in the chamber.
 次に、作製した焼結体から採取した小片を用いて組成分析を実施した。Fe、Pt、CrをICP-AES装置を用いて測定し、Cは高周波誘導加熱炉燃焼-赤外線吸収法を採用した炭素分析装置で測定した。その結果、Crの含有量は、スパッタリングターゲット中30質量ppmであった。また基本成分について、分析で得た重量比率からモル比率を計算した結果、このスパッタリングターゲットの組成は、分析組成(モル比率):30.23Fe-29.85Pt-39.92Cであった。 Next, composition analysis was performed using small pieces collected from the produced sintered body. Fe, Pt, and Cr were measured using an ICP-AES apparatus, and C was measured using a carbon analyzer employing a high-frequency induction furnace combustion-infrared absorption method. As a result, the Cr content was 30 ppm by mass in the sputtering target. As a result of calculating the molar ratio of the basic component from the weight ratio obtained by analysis, the composition of this sputtering target was analytical composition (molar ratio): 30.23Fe-29.85Pt-39.92C.
 さらに旋盤を用いて、焼結体を直径180.0mm、厚さ5.0mmの形状へ切削加工し、円盤状のターゲットを得た。このターゲットを用いてマグネトロンスパッタ装置に取り付け、実施例1と同一条件でスパッタリングを行い、基板上へ付着したパーティクルの個数をパーティクルカウンターで測定した。このときのパーティクル個数は658個と、実施例2より増加した。 Further, using a lathe, the sintered body was cut into a shape having a diameter of 180.0 mm and a thickness of 5.0 mm to obtain a disk-shaped target. The target was attached to a magnetron sputtering apparatus, sputtering was performed under the same conditions as in Example 1, and the number of particles adhering to the substrate was measured with a particle counter. The number of particles at this time was 658, an increase from that in Example 2.
(比較例4)
 原料粉として平均粒径3μmのFe粉、平均粒径3μmのPt粉、平均粒径10μmのC粉(グラファイト粉)、平均粒径3μmのCr粉を用意した。
 基本成分を、秤量組成(モル比率):30Fe-30Pt-40Cとし、前記秤量組成比で、合計の重量が2600gとなるように秤量した。
 さらに微量添加成分として、Crを26g秤量した。
(Comparative Example 4)
Fe powder having an average particle diameter of 3 μm, Pt powder having an average particle diameter of 3 μm, C powder (graphite powder) having an average particle diameter of 10 μm, and Cr powder having an average particle diameter of 3 μm were prepared as raw material powders.
The basic components were weighed composition (molar ratio): 30Fe-30Pt-40C, and weighed so that the total weight was 2600 g at the weighed composition ratio.
Furthermore, 26 g of Cr was weighed as a trace amount addition component.
 次に秤量した全ての粉末を、粉砕媒体のSUSボールと共に容量10リットルのボールミルポットに投入し、Ar雰囲気中で16時間回転させて混合・粉砕した。そしてポットから取り出した粉末をカーボン製の型に充填しホットプレス装置を用いて成型・焼結させた。ホットプレスの条件は、真空雰囲気、昇温速度300°C/時間、保持温度1300°C、保持時間2時間とし、昇温開始時から保持終了まで30MPaで加圧した。保持終了後はチャンバー内でそのまま自然冷却させた。 Next, all of the weighed powders were put into a 10 liter ball mill pot together with SUS balls as a grinding medium, and rotated and mixed for 16 hours in an Ar atmosphere. The powder taken out from the pot was filled in a carbon mold and molded and sintered using a hot press apparatus. The hot pressing conditions were a vacuum atmosphere, a heating rate of 300 ° C./hour, a holding temperature of 1300 ° C., and a holding time of 2 hours. After completion of the holding, it was naturally cooled in the chamber.
 次に、作製した焼結体から採取した小片を用いて組成分析を実施した。Fe、Pt、CrをICP-AES装置を用いて測定し、Cは高周波誘導加熱炉燃焼-赤外線吸収法を採用した炭素分析装置で測定した。その結果、Crの含有量は、スパッタリングターゲット中10200質量ppmであった。また基本成分について、分析で得た重量比率からモル比率を計算した結果、このスパッタリングターゲットの組成は、分析組成(モル比率):30.05Fe-30.10Pt-39.85Cであった。 Next, composition analysis was performed using small pieces collected from the produced sintered body. Fe, Pt, and Cr were measured using an ICP-AES apparatus, and C was measured using a carbon analyzer employing a high-frequency induction furnace combustion-infrared absorption method. As a result, the Cr content was 10200 ppm by mass in the sputtering target. Further, as a result of calculating the molar ratio from the weight ratio obtained by analysis for the basic component, the composition of this sputtering target was analytical composition (molar ratio): 30.05Fe-30.10Pt-39.85C.
 さらに旋盤を用いて、焼結体を直径180.0mm、厚さ5.0mmの形状へ切削加工し、円盤状のターゲットを得た。このターゲットを用いて実施例1と同一条件でスパッタリングを行い、基板上へ付着したパーティクルの個数をパーティクルカウンターで測定した。このときのパーティクル個数は325個と、実施例2とほぼ同等であった。一方で、実施例2と比較すると十分な磁気特性が得られなかった。これは、Crの含有量が多く、飽和磁化や結晶磁気異方性エネルギーが低下したためと考えられる。 Further, using a lathe, the sintered body was cut into a shape having a diameter of 180.0 mm and a thickness of 5.0 mm to obtain a disk-shaped target. Sputtering was performed using this target under the same conditions as in Example 1, and the number of particles adhering to the substrate was measured with a particle counter. The number of particles at this time was 325, which was almost the same as in Example 2. On the other hand, sufficient magnetic properties were not obtained as compared with Example 2. This is presumably because the Cr content was large and the saturation magnetization and magnetocrystalline anisotropy energy were reduced.
(実施例3)
 原料粉として平均粒径3μmのFe粉、平均粒径3μmのPt粉、平均粒径3μmのW粉、平均粒径3μmのCr粉、平均粒径10μmのC粉(グラファイト粉)、平均粒径10μmのBN粉を用意した。
 基本成分を、秤量組成(モル比率):35Fe-35Pt-20C-10BNとし、前記秤量組成比で、合計の重量が2600gとなるように秤量した。
 さらに微量添加成分として、Wを5.2g、Crを5.2g秤量した。
(Example 3)
Fe powder with an average particle size of 3 μm, Pt powder with an average particle size of 3 μm, W powder with an average particle size of 3 μm, Cr powder with an average particle size of 3 μm, C powder (graphite powder) with an average particle size of 10 μm, and average particle size A 10 μm BN powder was prepared.
The basic components were weighed composition (molar ratio): 35Fe-35Pt-20C-10BN, and weighed so that the total weight would be 2600 g at the weighed composition ratio.
Further, 5.2 g of W and 5.2 g of Cr were weighed as components added in small amounts.
 次に秤量した全ての粉末を、粉砕媒体のSUSボールと共に容量10リットルのボールミルポットに投入し、Ar雰囲気中で16時間回転させて混合・粉砕した。そしてポットから取り出した粉末をカーボン製の型に充填しホットプレス装置を用いて成型・焼結させた。ホットプレスの条件は、真空雰囲気、昇温速度300°C/時間、保持温度1200°C、保持時間2時間とし、昇温開始時から保持終了まで30MPaで加圧した。保持終了後はチャンバー内でそのまま自然冷却させた。 Next, all of the weighed powders were put into a 10 liter ball mill pot together with SUS balls as a grinding medium, and rotated and mixed for 16 hours in an Ar atmosphere. The powder taken out from the pot was filled in a carbon mold and molded and sintered using a hot press apparatus. The hot pressing conditions were a vacuum atmosphere, a temperature rising rate of 300 ° C./hour, a holding temperature of 1200 ° C., and a holding time of 2 hours, and pressurization was performed at 30 MPa from the start of temperature rising to the end of holding. After completion of the holding, it was naturally cooled in the chamber.
 次に、作製した焼結体から採取した小片を用いて組成分析を実施した。Fe、Pt、B、W、CrをICP-AES装置を用いて測定した。BNの含有量はBの測定値から化学量論比率を用いて計算した。また、Cは高周波誘導加熱炉燃焼-赤外線吸収法を採用した炭素分析装置で測定した。その結果、Wの含有量はスパッタリングターゲット中2000質量ppm、Crの含有量はスパッタリングターゲット中2050質量ppmであった。また基本成分について、分析で得た重量比率からモル比率を計算した結果、このスパッタリングターゲットの組成は、分析組成(モル比率):34.91Fe-35.35Pt-20.04C-9.70BNであった。 Next, composition analysis was performed using small pieces collected from the produced sintered body. Fe, Pt, B, W, and Cr were measured using an ICP-AES apparatus. The content of BN was calculated from the measured value of B using the stoichiometric ratio. C was measured with a carbon analyzer employing a high frequency induction furnace combustion-infrared absorption method. As a result, the W content was 2000 mass ppm in the sputtering target, and the Cr content was 2050 mass ppm in the sputtering target. As a result of calculating the molar ratio from the weight ratio obtained by analysis for the basic component, the composition of this sputtering target was analytical composition (molar ratio): 34.91Fe-35.35Pt-20.04C-9.70BN. It was.
 さらに旋盤を用いて、焼結体を直径180.0mm、厚さ5.0mmの形状へ切削加工し、円盤状のターゲットを得た。このターゲットを用いてマグネトロンスパッタ装置に取り付けスパッタリングを行い、基板上へ付着したパーティクルの個数をパーティクルカウンターで測定した。このときのパーティクル個数は211個であった。 Further, using a lathe, the sintered body was cut into a shape having a diameter of 180.0 mm and a thickness of 5.0 mm to obtain a disk-shaped target. Using this target, sputtering was performed by attaching to a magnetron sputtering apparatus, and the number of particles adhering to the substrate was measured with a particle counter. The number of particles at this time was 211.
(比較例5)
 原料粉として平均粒径3μmのFe粉、平均粒径3μmのPt粉、平均粒径3μmのW粉、平均粒径3μmのCr粉、平均粒径10μmのC粉(グラファイト粉)、平均粒径10μmのBN粉を用意した。
 基本成分を、秤量組成(モル比率):35Fe-35Pt-20C-10BNとし、前記秤量組成比で、合計の重量が2600gとなるように秤量した。
 さらに微量添加成分として、Wを0.06g、Crを0.06g秤量した。
(Comparative Example 5)
Fe powder with an average particle size of 3 μm, Pt powder with an average particle size of 3 μm, W powder with an average particle size of 3 μm, Cr powder with an average particle size of 3 μm, C powder (graphite powder) with an average particle size of 10 μm, and average particle size A 10 μm BN powder was prepared.
The basic components were weighed composition (molar ratio): 35Fe-35Pt-20C-10BN, and weighed so that the total weight would be 2600 g at the weighed composition ratio.
Further, 0.06 g of W and 0.06 g of Cr were weighed as components added in small amounts.
 次に秤量した全ての粉末を、粉砕媒体のSUSボールと共に容量10リットルのボールミルポットに投入し、Ar雰囲気中で16時間回転させて混合・粉砕した。そしてポットから取り出した粉末をカーボン製の型に充填しホットプレス装置を用いて成型・焼結させた。ホットプレスの条件は、真空雰囲気、昇温速度300°C/時間、保持温度1200°C、保持時間2時間とし、昇温開始時から保持終了まで30MPaで加圧した。保持終了後はチャンバー内でそのまま自然冷却させた。 Next, all of the weighed powders were put into a 10 liter ball mill pot together with SUS balls as a grinding medium, and rotated and mixed for 16 hours in an Ar atmosphere. The powder taken out from the pot was filled in a carbon mold and molded and sintered using a hot press apparatus. The hot pressing conditions were a vacuum atmosphere, a temperature rising rate of 300 ° C./hour, a holding temperature of 1200 ° C., and a holding time of 2 hours, and pressurization was performed at 30 MPa from the start of temperature rising to the end of holding. After completion of the holding, it was naturally cooled in the chamber.
 次に、作製した焼結体から採取した小片を用いて組成分析を実施した。Fe、Pt、B、W、CrをICP-AES装置を用いて測定した。BNの含有量はBの測定値から化学量論比率を用いて計算した。また、Cは高周波誘導加熱炉燃焼-赤外線吸収法を採用した炭素分析装置で測定した。その結果、Wの含有量はスパッタリングターゲット中20質量ppm、Crの含有量はスパッタリングターゲット中20質量ppmであった。また基本成分について、分析で得た重量比率からモル比率を計算した結果、このスパッタリングターゲットの組成は、分析組成(モル比率):35.09Fe-35.11Pt-19.87C-9.93BNであった。 Next, composition analysis was performed using small pieces collected from the produced sintered body. Fe, Pt, B, W, and Cr were measured using an ICP-AES apparatus. The content of BN was calculated from the measured value of B using the stoichiometric ratio. C was measured with a carbon analyzer employing a high frequency induction furnace combustion-infrared absorption method. As a result, the W content was 20 mass ppm in the sputtering target, and the Cr content was 20 mass ppm in the sputtering target. As a result of calculating the molar ratio from the weight ratio obtained by analysis for the basic component, the composition of this sputtering target was analytical composition (molar ratio): 35.09Fe-35.11Pt-19.87C-9.93BN. It was.
 さらに旋盤を用いて、焼結体を直径180.0mm、厚さ5.0mmの形状へ切削加工し、円盤状のターゲットを得た。このターゲットを用いてマグネトロンスパッタ装置に取り付け、実施例1と同一条件でスパッタリングを行い、基板上へ付着したパーティクルの個数をパーティクルカウンターで測定した。このときのパーティクル個数は375個と、実施例3より増加した。 Further, using a lathe, the sintered body was cut into a shape having a diameter of 180.0 mm and a thickness of 5.0 mm to obtain a disk-shaped target. The target was attached to a magnetron sputtering apparatus, sputtering was performed under the same conditions as in Example 1, and the number of particles adhering to the substrate was measured with a particle counter. The number of particles at this time was 375, an increase from that in Example 3.
(比較例6)
 原料粉として平均粒径3μmのFe粉、平均粒径3μmのPt粉、平均粒径3μmのW粉、平均粒径3μmのCr粉、平均粒径10μmのC粉(グラファイト粉)、平均粒径10μmのBN粉を用意した。
 基本成分を、秤量組成(モル比率):35Fe-35Pt-20C-10BNとし、前記秤量組成比で、合計の重量が2600gとなるように秤量した。
 さらに微量添加成分として、Wを5.2g、Crを13.0g秤量した。
(Comparative Example 6)
Fe powder with an average particle size of 3 μm, Pt powder with an average particle size of 3 μm, W powder with an average particle size of 3 μm, Cr powder with an average particle size of 3 μm, C powder (graphite powder) with an average particle size of 10 μm, and average particle size A 10 μm BN powder was prepared.
The basic components were weighed composition (molar ratio): 35Fe-35Pt-20C-10BN, and weighed so that the total weight would be 2600 g at the weighed composition ratio.
Furthermore, 5.2 g of W and 13.0 g of Cr were weighed as trace added components.
 次に秤量した全ての粉末を、粉砕媒体のSUSボールと共に容量10リットルのボールミルポットに投入し、Ar雰囲気中で16時間回転させて混合・粉砕した。そしてポットから取り出した粉末をカーボン製の型に充填しホットプレス装置を用いて成型・焼結させた。ホットプレスの条件は、真空雰囲気、昇温速度300°C/時間、保持温度1200°C、保持時間2時間とし、昇温開始時から保持終了まで30MPaで加圧した。保持終了後はチャンバー内でそのまま自然冷却させた。 Next, all of the weighed powders were put into a 10 liter ball mill pot together with SUS balls as a grinding medium, and rotated and mixed for 16 hours in an Ar atmosphere. The powder taken out from the pot was filled in a carbon mold and molded and sintered using a hot press apparatus. The hot pressing conditions were a vacuum atmosphere, a temperature rising rate of 300 ° C./hour, a holding temperature of 1200 ° C., and a holding time of 2 hours, and pressurization was performed at 30 MPa from the start of temperature rising to the end of holding. After completion of the holding, it was naturally cooled in the chamber.
 次に、作製した焼結体から採取した小片を用いて組成分析を実施した。Fe、Pt、B、W、CrをICP-AES装置を用いて測定した。BNの含有量はBの測定値から化学量論比率を用いて計算した。また、Cは高周波誘導加熱炉燃焼-赤外線吸収法を採用した炭素分析装置で測定した。その結果、Wの含有量はスパッタリングターゲット中1980質量ppm、Crの含有量はスパッタリングターゲット中5030質量ppmであった。また基本成分について、分析で得た重量比率からモル比率を計算した結果、このスパッタリングターゲットの組成は、分析組成(モル比率):34.94Fe-35.26Pt-19.97C-9.83BNであった。 Next, composition analysis was performed using small pieces collected from the produced sintered body. Fe, Pt, B, W, and Cr were measured using an ICP-AES apparatus. The content of BN was calculated from the measured value of B using the stoichiometric ratio. C was measured with a carbon analyzer employing a high frequency induction furnace combustion-infrared absorption method. As a result, the W content was 1980 mass ppm in the sputtering target, and the Cr content was 5030 mass ppm in the sputtering target. Further, as a result of calculating the molar ratio from the weight ratio obtained by analysis for the basic component, the composition of this sputtering target was analytical composition (molar ratio): 34.94Fe-35.26Pt-19.97C-9.83BN. It was.
 さらに旋盤を用いて、焼結体を直径180.0mm、厚さ5.0mmの形状へ切削加工し、円盤状のターゲットを得た。このターゲットを用いてマグネトロンスパッタ装置に取り付けスパッタリングを行い、基板上へ付着したパーティクルの個数をパーティクルカウンターで測定した。このときのパーティクル個数は208個で、実施例3とほぼ同等であった。一方で、実施例3と比較すると十分な磁気特性が得られなかった。これは、WとCrの含有量が多く、飽和磁化や結晶磁気異方性エネルギーが低下したためと考えられる。 Further, using a lathe, the sintered body was cut into a shape having a diameter of 180.0 mm and a thickness of 5.0 mm to obtain a disk-shaped target. Using this target, sputtering was performed by attaching to a magnetron sputtering apparatus, and the number of particles adhering to the substrate was measured with a particle counter. The number of particles at this time was 208, which was almost the same as in Example 3. On the other hand, sufficient magnetic properties were not obtained as compared with Example 3. This is presumably because the contents of W and Cr were large and the saturation magnetization and magnetocrystalline anisotropy energy were reduced.
(実施例4)
 原料粉として平均粒径3μmのFe粉、平均粒径3μmのPt粉、平均粒径10μmのB粉、平均粒径10μmのC粉(グラファイト粉)、平均粒径5μmのSiO粉を用意した。
 基本成分を、秤量組成(モル比率):35Fe-35Pt-25C-5SiOとし、前記秤量組成比で、合計の重量が2500gとなるように秤量した。
 さらに微量添加成分として、Bを0.25g秤量した。
Example 4
Fe powder having an average particle diameter of 3 [mu] m as a raw material powder, Pt powder having an average particle diameter of 3 [mu] m, B powder having an average grain size of 10 [mu] m, C powder (graphite powder) having an average particle size of 10 [mu] m, were prepared SiO 2 powder having an average grain size 5μm .
The basic components, weighing the composition (molar ratio): a 35Fe-35Pt-25C-5SiO 2 , in the weighing composition ratio, the weight of the total were weighed so as to 2500 g.
Further, 0.25 g of B was weighed as a component added in a small amount.
 次に秤量した全ての粉末を、粉砕媒体のSUSボールと共に容量10リットルのボールミルポットに投入し、Ar雰囲気中で16時間回転させて混合・粉砕した。そしてポットから取り出した粉末をカーボン製の型に充填しホットプレス装置を用いて成型・焼結させた。ホットプレスの条件は、真空雰囲気、昇温速度300°C/時間、保持温度1150°C、保持時間2時間とし、昇温開始時から保持終了まで30MPaで加圧した。保持終了後はチャンバー内でそのまま自然冷却させた。 Next, all of the weighed powders were put into a 10 liter ball mill pot together with SUS balls as a grinding medium, and rotated and mixed for 16 hours in an Ar atmosphere. The powder taken out from the pot was filled in a carbon mold and molded and sintered using a hot press apparatus. The hot pressing conditions were a vacuum atmosphere, a temperature rising rate of 300 ° C./hour, a holding temperature of 1150 ° C., a holding time of 2 hours, and pressurization was performed at 30 MPa from the start of temperature rising to the end of holding. After completion of the holding, it was naturally cooled in the chamber.
 次に作製した焼結体から採取した小片を用いて組成分析を実施した。Fe、Pt、Si、BはICP-AES装置を用いて、Cは高周波誘導加熱炉燃焼-赤外線吸収法を採用した炭素分析装置で測定した。SiOの含有量はSiの測定値から化学量論比率を用いて計算した。その結果、Bの含有量は、スパッタリングターゲット中110質量ppmであった。また基本成分について、分析で得た重量比率からモル比率を計算した結果、このスパッタリングターゲットの組成は、分析組成(モル比率):34.95Fe-35.02Pt-24.90C-5.13SiOであった。 Next, composition analysis was performed using small pieces collected from the produced sintered body. Fe, Pt, Si, and B were measured with an ICP-AES apparatus, and C was measured with a carbon analyzer employing a high frequency induction furnace combustion-infrared absorption method. The content of SiO 2 was calculated from the measured value of Si using the stoichiometric ratio. As a result, the B content was 110 mass ppm in the sputtering target. Further, as a result of calculating the molar ratio from the weight ratio obtained in the analysis for the basic component, the composition of this sputtering target was as follows: analytical composition (molar ratio): 34.95Fe-35.02Pt-24.90C-5.13SiO 2 there were.
 さらに旋盤を用いて、焼結体を直径180.0mm、厚さ5.0mmの形状へ切削加工し、円盤状のターゲットを得た。このターゲットを用いて実施例1と同一条件でスパッタリングを行い、基板上へ付着したパーティクルの個数をパーティクルカウンターで測定した。このときのパーティクル個数は108個であった。 Further, using a lathe, the sintered body was cut into a shape having a diameter of 180.0 mm and a thickness of 5.0 mm to obtain a disk-shaped target. Sputtering was performed using this target under the same conditions as in Example 1, and the number of particles adhering to the substrate was measured with a particle counter. At this time, the number of particles was 108.
(比較例7)
 原料粉として平均粒径3μmのFe粉、平均粒径3μmのPt粉、平均粒径10μmのB粉、平均粒径10μmのC粉(グラファイト粉)、平均粒径5μmのSiO粉を用意した。
 基本成分を、秤量組成(モル比率):35Fe-35Pt-25C-5SiOとし、前記秤量組成比で、合計の重量が2500gとなるように秤量した。
 さらに微量添加成分として、Bを0.07g秤量した。
(Comparative Example 7)
Fe powder having an average particle diameter of 3 [mu] m as a raw material powder, Pt powder having an average particle diameter of 3 [mu] m, B powder having an average grain size of 10 [mu] m, C powder (graphite powder) having an average particle size of 10 [mu] m, were prepared SiO 2 powder having an average grain size 5μm .
The basic components, weighing the composition (molar ratio): a 35Fe-35Pt-25C-5SiO 2 , in the weighing composition ratio, the weight of the total were weighed so as to 2500 g.
Furthermore, 0.07 g of B was weighed as a component added in a small amount.
 次に秤量した全ての粉末を、粉砕媒体のSUSボールと共に容量10リットルのボールミルポットに投入し、Ar雰囲気中で16時間回転させて混合・粉砕した。そしてポットから取り出した粉末をカーボン製の型に充填しホットプレス装置を用いて成型・焼結させた。ホットプレスの条件は、真空雰囲気、昇温速度300°C/時間、保持温度1150°C、保持時間2時間とし、昇温開始時から保持終了まで30MPaで加圧した。保持終了後はチャンバー内でそのまま自然冷却させた。 Next, all of the weighed powders were put into a 10 liter ball mill pot together with SUS balls as a grinding medium, and rotated and mixed for 16 hours in an Ar atmosphere. The powder taken out from the pot was filled in a carbon mold and molded and sintered using a hot press apparatus. The hot pressing conditions were a vacuum atmosphere, a temperature rising rate of 300 ° C./hour, a holding temperature of 1150 ° C., a holding time of 2 hours, and pressurization was performed at 30 MPa from the start of temperature rising to the end of holding. After completion of the holding, it was naturally cooled in the chamber.
 次に作製した焼結体から採取した小片を用いて組成分析を実施した。Fe、Pt、B、SiはICP-AES装置を用いて、Cは高周波誘導加熱炉燃焼-赤外線吸収法を採用した炭素分析装置で測定した。SiOの含有量はSiの測定値から化学量論比率を用いて計算した。その結果、Bの含有量は、スパッタリングターゲット中20質量ppmであった。また基本成分について、分析で得た重量比率からモル比率を計算した結果、このスパッタリングターゲットの組成は、分析組成(モル比率):34.77Fe-35.02Pt-25.07C-5.14SiOであった。 Next, composition analysis was performed using small pieces collected from the produced sintered body. Fe, Pt, B, and Si were measured using an ICP-AES apparatus, and C was measured using a carbon analysis apparatus employing a high frequency induction furnace combustion-infrared absorption method. The content of SiO 2 was calculated from the measured value of Si using the stoichiometric ratio. As a result, the content of B was 20 mass ppm in the sputtering target. Further, as a result of calculating the molar ratio from the weight ratio obtained in the analysis for the basic component, the composition of this sputtering target was as follows: analytical composition (molar ratio): 34.77Fe-35.02Pt-25.07C-5.14SiO 2 there were.
 さらに旋盤を用いて、焼結体を直径180.0mm、厚さ5.0mmの形状へ切削加工し、円盤状のターゲットを得た。このターゲットを用いてマグネトロンスパッタ装置に取り付け、実施例1と同一条件でスパッタリングを行い、基板上へ付着したパーティクルの個数をパーティクルカウンターで測定した。このときのパーティクル個数は245個で、実施例4より増加した。 Further, using a lathe, the sintered body was cut into a shape having a diameter of 180.0 mm and a thickness of 5.0 mm to obtain a disk-shaped target. The target was attached to a magnetron sputtering apparatus, sputtering was performed under the same conditions as in Example 1, and the number of particles adhering to the substrate was measured with a particle counter. The number of particles at this time was 245, which was increased from that in Example 4.
(比較例8)
 原料粉として平均粒径3μmのFe粉、平均粒径3μmのPt粉、平均粒径10μmのB粉、平均粒径10μmのC粉(グラファイト粉)、平均粒径5μmのSiO粉を用意した。
 基本成分を、秤量組成(モル比率):35Fe-35Pt-25C-5SiOとし、前記秤量組成比で、合計の重量が2500gとなるように秤量した。
 さらに微量添加成分として、Bを17.5g秤量した。
(Comparative Example 8)
Fe powder having an average particle diameter of 3 [mu] m as a raw material powder, Pt powder having an average particle diameter of 3 [mu] m, B powder having an average grain size of 10 [mu] m, C powder (graphite powder) having an average particle size of 10 [mu] m, were prepared SiO 2 powder having an average grain size 5μm .
The basic components, weighing the composition (molar ratio): a 35Fe-35Pt-25C-5SiO 2 , in the weighing composition ratio, the weight of the total were weighed so as to 2500 g.
Further, 17.5 g of B was weighed as a component added in a small amount.
 次に秤量した全ての粉末を、粉砕媒体のSUSボールと共に容量10リットルのボールミルポットに投入し、Ar雰囲気中で16時間回転させて混合・粉砕した。そしてポットから取り出した粉末をカーボン製の型に充填しホットプレス装置を用いて成型・焼結させた。ホットプレスの条件は、真空雰囲気、昇温速度300°C/時間、保持温度1150°C、保持時間2時間とし、昇温開始時から保持終了まで30MPaで加圧した。保持終了後はチャンバー内でそのまま自然冷却させた。 Next, all of the weighed powders were put into a 10 liter ball mill pot together with SUS balls as a grinding medium, and rotated and mixed for 16 hours in an Ar atmosphere. The powder taken out from the pot was filled in a carbon mold and molded and sintered using a hot press apparatus. The hot pressing conditions were a vacuum atmosphere, a temperature rising rate of 300 ° C./hour, a holding temperature of 1150 ° C., a holding time of 2 hours, and pressurization was performed at 30 MPa from the start of temperature rising to the end of holding. After completion of the holding, it was naturally cooled in the chamber.
 次に、作製した焼結体から採取した小片を用いて組成分析を実施した。Fe、Pt、Si、BはICP-AES装置を用いて、Cは高周波誘導加熱炉燃焼-赤外線吸収法を採用した炭素分析装置で測定した。SiOの含有量はSiの測定値から化学量論比率を用いて計算した。その結果、Bの含有量は、スパッタリングターゲット中6950質量ppmであった。また基本成分について、分析で得た重量比率からモル比率を計算した結果、このスパッタリングターゲットの組成は、分析組成(モル比率):35.03Fe-34.87Pt-25.05C-5.05SiOであった。 Next, composition analysis was performed using small pieces collected from the produced sintered body. Fe, Pt, Si, and B were measured with an ICP-AES apparatus, and C was measured with a carbon analyzer employing a high frequency induction furnace combustion-infrared absorption method. The content of SiO 2 was calculated from the measured value of Si using the stoichiometric ratio. As a result, the content of B was 6950 mass ppm in the sputtering target. Further, as a result of calculating the molar ratio from the weight ratio obtained in the analysis of the basic component, the composition of this sputtering target was as follows: analytical composition (molar ratio): 35.03Fe-34.87Pt-25.05C-5.05SiO 2 there were.
 さらに旋盤を用いて、焼結体を直径180.0mm、厚さ5.0mmの形状へ切削加工し、円盤状のターゲットを得た。このターゲットを用いて実施例1と同一条件でスパッタリングを行い、基板上へ付着したパーティクルの個数をパーティクルカウンターで測定した。このときのパーティクル個数は117個と、実施例4と同等であった。一方で、実施例4と比較すると十分な磁気特性が得られなかった。これは、Bの含有量が多く、飽和磁化や結晶磁気異方性エネルギーが低下したためと考えられる。 Further, using a lathe, the sintered body was cut into a shape having a diameter of 180.0 mm and a thickness of 5.0 mm to obtain a disk-shaped target. Sputtering was performed using this target under the same conditions as in Example 1, and the number of particles adhering to the substrate was measured with a particle counter. The number of particles at this time was 117, which was the same as in Example 4. On the other hand, sufficient magnetic properties were not obtained as compared with Example 4. This is presumably because the content of B was large and the saturation magnetization and magnetocrystalline anisotropy energy were reduced.
(実施例5)
 原料粉として平均粒径3μmのFe粉、平均粒径3μmのPt粉、平均粒径3μmのCu粉、平均粒径3μmのW粉、平均粒径10μmのC粉(グラファイト粉)、平均粒径1μmのTaC粉を用意した。基本成分を、秤量組成(モル比率):30Fe-30Pt-5Cu-20C-15TaCとし、前記秤量組成比で、合計の重量が3000gとなるように秤量した。
 さらに微量添加成分として、Wを12.0g秤量した。
(Example 5)
Fe powder with an average particle diameter of 3 μm, Pt powder with an average particle diameter of 3 μm, Cu powder with an average particle diameter of 3 μm, W powder with an average particle diameter of 3 μm, C powder (graphite powder) with an average particle diameter of 10 μm, and average particle diameter 1 μm TaC powder was prepared. The basic components were weighed composition (molar ratio): 30Fe-30Pt-5Cu-20C-15TaC, and weighed so that the total weight would be 3000 g at the weighed composition ratio.
Furthermore, 12.0 g of W was weighed as a component added in a small amount.
 次に秤量した全ての粉末を、粉砕媒体のSUSボールと共に容量10リットルのボールミルポットに投入し、Ar雰囲気中で16時間回転させて混合・粉砕した。そしてポットから取り出した粉末をカーボン製の型に充填しホットプレス装置を用いて成型・焼結させた。ホットプレスの条件は、窒素雰囲気、昇温速度300°C/時間、保持温度1100°C、保持時間2時間とし、昇温開始時から保持終了まで30MPaで加圧した。保持終了後はチャンバー内でそのまま自然冷却させた。 Next, all of the weighed powders were put into a 10 liter ball mill pot together with SUS balls as a grinding medium, and rotated and mixed for 16 hours in an Ar atmosphere. The powder taken out from the pot was filled in a carbon mold and molded and sintered using a hot press apparatus. The hot pressing conditions were a nitrogen atmosphere, a heating rate of 300 ° C./hour, a holding temperature of 1100 ° C., and a holding time of 2 hours, and pressurization was performed at 30 MPa from the start of heating to the end of holding. After completion of the holding, it was naturally cooled in the chamber.
 次に、作製した焼結体から採取した小片を用いて組成分析を実施した。Fe、Pt、Cu、Ta、WはICP-AES装置を用いて測定し、Cは高周波誘導加熱炉燃焼-赤外線吸収法を採用した炭素分析装置で測定した。TaCの含有量はTaの測定値から化学量論比率を用いて計算した。その結果、Wの含有量は、スパッタリングターゲット中4000質量ppmであった。また基本成分について分析で得た重量比率からモル比率を計算した結果、このスパッタリングターゲットの組成は、分析組成(モル比率):29.92Fe-30.09Pt-5.04Cu-19.92C-15.03TaCであった。 Next, composition analysis was performed using small pieces collected from the produced sintered body. Fe, Pt, Cu, Ta, and W were measured using an ICP-AES apparatus, and C was measured using a carbon analyzer employing a high frequency induction furnace combustion-infrared absorption method. The content of TaC was calculated from the measured value of Ta using the stoichiometric ratio. As a result, the W content was 4000 ppm by mass in the sputtering target. Further, as a result of calculating the molar ratio from the weight ratio obtained by the analysis of the basic component, the composition of this sputtering target is the analytical composition (molar ratio): 29.92Fe-30.09Pt-5.04Cu-19.92C-15. 03 TaC.
 さらに旋盤を用いて、焼結体を直径180.0mm、厚さ5.0mmの形状へ切削加工し、円盤状のターゲットを得た。このターゲットを用いて実施例1と同一条件でスパッタリングを行い、基板上へ付着したパーティクルの個数をパーティクルカウンターで測定した。このときのパーティクル個数は278個であった。 Further, using a lathe, the sintered body was cut into a shape having a diameter of 180.0 mm and a thickness of 5.0 mm to obtain a disk-shaped target. Sputtering was performed using this target under the same conditions as in Example 1, and the number of particles adhering to the substrate was measured with a particle counter. At this time, the number of particles was 278.
(比較例9)
 原料粉として平均粒径3μmのFe粉、平均粒径3μmのPt粉、平均粒径3μmのCu粉、平均粒径3μmのW粉、平均粒径10μmのC粉(グラファイト粉)、平均粒径1μmのTaC粉を用意した。基本成分を、秤量組成(モル比率):30Fe-30Pt-5Cu-20C-15TaCとし、前記秤量組成比で、合計の重量が3000gとなるように秤量した。
 さらに微量添加成分として、Wを0.1g秤量した。
(Comparative Example 9)
Fe powder with an average particle diameter of 3 μm, Pt powder with an average particle diameter of 3 μm, Cu powder with an average particle diameter of 3 μm, W powder with an average particle diameter of 3 μm, C powder (graphite powder) with an average particle diameter of 10 μm, and average particle diameter 1 μm TaC powder was prepared. The basic components were weighed composition (molar ratio): 30Fe-30Pt-5Cu-20C-15TaC, and weighed so that the total weight would be 3000 g at the weighed composition ratio.
Further, 0.1 g of W was weighed as a trace additive component.
 次に秤量した全ての粉末を、粉砕媒体のSUSボールと共に容量10リットルのボールミルポットに投入し、Ar雰囲気中で16時間回転させて混合・粉砕した。そしてポットから取り出した粉末をカーボン製の型に充填しホットプレス装置を用いて成型・焼結させた。ホットプレスの条件は、窒素雰囲気、昇温速度300°C/時間、保持温度1100°C、保持時間2時間とし、昇温開始時から保持終了まで30MPaで加圧した。保持終了後はチャンバー内でそのまま自然冷却させた。 Next, all of the weighed powders were put into a 10 liter ball mill pot together with SUS balls as a grinding medium, and rotated and mixed for 16 hours in an Ar atmosphere. The powder taken out from the pot was filled in a carbon mold and molded and sintered using a hot press apparatus. The hot pressing conditions were a nitrogen atmosphere, a heating rate of 300 ° C./hour, a holding temperature of 1100 ° C., and a holding time of 2 hours, and pressurization was performed at 30 MPa from the start of heating to the end of holding. After completion of the holding, it was naturally cooled in the chamber.
 次に、作製した焼結体から採取した小片を用いて組成分析を実施した。Fe、Pt、Cu、Ta、WはICP-AES装置を用いて測定し、Cは高周波誘導加熱炉燃焼-赤外線吸収法を採用した炭素分析装置で測定した。TaCの含有量はTaの測定値から化学量論比率を用いて計算した。その結果、Wの含有量は、スパッタリングターゲット中30質量ppmであった。また基本成分について、分析で得た重量比率からモル比率を計算した結果、このスパッタリングターゲットの組成は、分析組成(モル比率):29.92Fe-30.38Pt-5.18Cu-19.72C-14.80TaCであった。 Next, composition analysis was performed using small pieces collected from the produced sintered body. Fe, Pt, Cu, Ta, and W were measured using an ICP-AES apparatus, and C was measured using a carbon analyzer employing a high frequency induction furnace combustion-infrared absorption method. The content of TaC was calculated from the measured value of Ta using the stoichiometric ratio. As a result, the W content was 30 ppm by mass in the sputtering target. Further, as a result of calculating the molar ratio from the weight ratio obtained in the analysis of the basic component, the composition of this sputtering target was the analytical composition (molar ratio): 29.92Fe-30.38Pt-5.18Cu-19.72C-14 80 TaC.
 さらに旋盤を用いて、焼結体を直径180.0mm、厚さ5.0mmの形状へ切削加工し、円盤状のターゲットを得た。このターゲットを用いて実施例1と同一条件でスパッタリングを行い、基板上へ付着したパーティクルの個数をパーティクルカウンターで測定した。このときのパーティクル個数は590個と、実施例5より増加した。 Further, using a lathe, the sintered body was cut into a shape having a diameter of 180.0 mm and a thickness of 5.0 mm to obtain a disk-shaped target. Sputtering was performed using this target under the same conditions as in Example 1, and the number of particles adhering to the substrate was measured with a particle counter. The number of particles at this time was 590, which was increased from that in Example 5.
(比較例10)
 原料粉として平均粒径3μmのFe粉、平均粒径3μmのPt粉、平均粒径3μmのCu粉、平均粒径3μmのW粉、平均粒径10μmのC粉(グラファイト粉)、平均粒径1μmのTaC粉を用意した。基本成分を、秤量組成(モル比率):30Fe-30Pt-5Cu-20C-15TaCとし、前記秤量組成比で、合計の重量が3000gとなるように秤量した。
 さらに微量添加成分として、Wを24.0g秤量した。
(Comparative Example 10)
Fe powder with an average particle diameter of 3 μm, Pt powder with an average particle diameter of 3 μm, Cu powder with an average particle diameter of 3 μm, W powder with an average particle diameter of 3 μm, C powder (graphite powder) with an average particle diameter of 10 μm, and average particle diameter 1 μm TaC powder was prepared. The basic components were weighed composition (molar ratio): 30Fe-30Pt-5Cu-20C-15TaC, and weighed so that the total weight would be 3000 g at the weighed composition ratio.
Further, 24.0 g of W was weighed as a component added in a small amount.
 次に秤量した全ての粉末を、粉砕媒体のSUSボールと共に容量10リットルのボールミルポットに投入し、Ar雰囲気中で16時間回転させて混合・粉砕した。そしてポットから取り出した粉末をカーボン製の型に充填しホットプレス装置を用いて成型・焼結させた。ホットプレスの条件は、窒素雰囲気、昇温速度300°C/時間、保持温度1100°C、保持時間2時間とし、昇温開始時から保持終了まで30MPaで加圧した。保持終了後はチャンバー内でそのまま自然冷却させた。 Next, all of the weighed powders were put into a 10 liter ball mill pot together with SUS balls as a grinding medium, and rotated and mixed for 16 hours in an Ar atmosphere. The powder taken out from the pot was filled in a carbon mold and molded and sintered using a hot press apparatus. The hot pressing conditions were a nitrogen atmosphere, a heating rate of 300 ° C./hour, a holding temperature of 1100 ° C., and a holding time of 2 hours, and pressurization was performed at 30 MPa from the start of heating to the end of holding. After completion of the holding, it was naturally cooled in the chamber.
 次に、作製した焼結体から採取した小片を用いて組成分析を実施した。Fe、Pt、Cu、Ta、WはICP-AES装置を用いて測定し、Cは高周波誘導加熱炉燃焼-赤外線吸収法を採用した炭素分析装置で測定した。TaCの含有量はTaの測定値から化学量論比率を用いて計算した。その結果、Wの含有量は、スパッタリングターゲット中7980質量ppmであった。また基本成分について、分析で得た重量比率からモル比率を計算した結果、このスパッタリングターゲットの組成は、分析組成(モル比率):30.03Fe-30.00Pt-5.06Cu-19.98C-14.93TaCであった。 Next, composition analysis was performed using small pieces collected from the produced sintered body. Fe, Pt, Cu, Ta, and W were measured using an ICP-AES apparatus, and C was measured using a carbon analyzer employing a high frequency induction furnace combustion-infrared absorption method. The content of TaC was calculated from the measured value of Ta using the stoichiometric ratio. As a result, the W content was 7980 mass ppm in the sputtering target. Further, as a result of calculating the molar ratio from the weight ratio obtained in the analysis of the basic component, the composition of this sputtering target was the analytical composition (molar ratio): 30.03Fe-30.00Pt-5.06Cu-19.98C-14 .93 TaC.
 さらに旋盤を用いて、焼結体を直径180.0mm、厚さ5.0mmの形状へ切削加工し、円盤状のターゲットを得た。このターゲットを用いて実施例1と同一条件でスパッタリングを行い、基板上へ付着したパーティクルの個数をパーティクルカウンターで測定した。このときのパーティクル個数は290個と、実施例5とほぼ同等であった。一方で、実施例5と比較すると十分な磁気特性が得られなかった。これは、Wの含有量が多く、飽和磁化や結晶磁気異方性エネルギーが低下したためと考えられる。 Further, using a lathe, the sintered body was cut into a shape having a diameter of 180.0 mm and a thickness of 5.0 mm to obtain a disk-shaped target. Sputtering was performed using this target under the same conditions as in Example 1, and the number of particles adhering to the substrate was measured with a particle counter. The number of particles at this time was 290, which was almost the same as in Example 5. On the other hand, sufficient magnetic properties were not obtained as compared with Example 5. This is presumably because the content of W was large and the saturation magnetization and magnetocrystalline anisotropy energy were reduced.
(実施例6)
 原料粉として平均粒径3μmのFe粉、平均粒径3μmのPt粉、平均粒径3μmのW粉、平均粒径10μmのC粉(グラファイト粉)を用意した。
 基本成分を、秤量組成(モル比率):45.5Fe-24.5Pt-30Cとし、前記秤量組成比で、合計の重量が2470gとなるように秤量した。
 さらに微量添加成分として、Wを5.0g秤量した。
(Example 6)
Fe powder having an average particle diameter of 3 μm, Pt powder having an average particle diameter of 3 μm, W powder having an average particle diameter of 3 μm, and C powder (graphite powder) having an average particle diameter of 10 μm were prepared as raw material powders.
The basic components were weighed composition (molar ratio): 45.5Fe-24.5Pt-30C, and weighed so that the total weight would be 2470 g at the weighed composition ratio.
Further, 5.0 g of W was weighed as a minor additive.
 次に秤量した全ての粉末を、粉砕媒体のSUSボールと共に容量10リットルのボールミルポットに投入し、Ar雰囲気中で16時間回転させて混合・粉砕した。そしてポットから取り出した粉末をカーボン製の型に充填しホットプレス装置を用いて成型・焼結させた。ホットプレスの条件は、真空雰囲気、昇温速度300°C/時間、保持温度1300°C、保持時間2時間とし、昇温開始時から保持終了まで30MPaで加圧した。保持終了後はチャンバー内でそのまま自然冷却させた。 Next, all of the weighed powders were put into a 10 liter ball mill pot together with SUS balls as a grinding medium, and rotated and mixed for 16 hours in an Ar atmosphere. The powder taken out from the pot was filled in a carbon mold and molded and sintered using a hot press apparatus. The hot pressing conditions were a vacuum atmosphere, a heating rate of 300 ° C./hour, a holding temperature of 1300 ° C., and a holding time of 2 hours. After completion of the holding, it was naturally cooled in the chamber.
 次に、作製した焼結体から採取した小片を用いて組成分析を実施した。Fe、Pt、WはICP-AES装置を用いて測定し、Cは高周波誘導加熱炉燃焼-赤外線吸収法を採用した炭素分析装置で測定した。その結果、Wの含有量は、スパッタリングターゲット中2010質量ppmであった。また基本成分について、分析で得た重量比率からモル比率を計算した結果、このスパッタリングターゲットの組成は、分析組成(モル比率):45.53Fe-24.50Pt-29.97Cであった。 Next, composition analysis was performed using small pieces collected from the produced sintered body. Fe, Pt, and W were measured using an ICP-AES apparatus, and C was measured using a carbon analyzer employing a high frequency induction furnace combustion-infrared absorption method. As a result, the W content was 2010 mass ppm in the sputtering target. As for the basic component, the molar ratio was calculated from the weight ratio obtained by analysis. As a result, the composition of this sputtering target was analytical composition (molar ratio): 45.53Fe-24.50Pt-29.97C.
 さらに旋盤を用いて、焼結体を直径180.0mm、厚さ5.0mmの形状へ切削加工し、円盤状のターゲットを得た。このターゲットをマグネトロンスパッタ装置(キヤノンアネルバ製C-3010スパッタリングシステム)に取り付け、スパッタリングを行った。スパッタリングの条件は、投入電力1kW、Arガス圧1.7Paとし、2kWhrのプレスパッタリングを実施した後、4インチ径のシリコン基板上に20秒間成膜した。基板上へ付着したパーティクルの個数をパーティクルカウンターで測定した。このときのパーティクル個数は124個であった。 Further, using a lathe, the sintered body was cut into a shape having a diameter of 180.0 mm and a thickness of 5.0 mm to obtain a disk-shaped target. This target was attached to a magnetron sputtering apparatus (C-3010 sputtering system manufactured by Canon Anelva), and sputtering was performed. The sputtering conditions were an input power of 1 kW and an Ar gas pressure of 1.7 Pa. After performing 2 kWhr of pre-sputtering, a film was formed on a 4-inch diameter silicon substrate for 20 seconds. The number of particles adhering to the substrate was measured with a particle counter. The number of particles at this time was 124.
(比較例11)
 原料粉として平均粒径3μmのFe粉、平均粒径3μmのPt粉、平均粒径3μmのW粉、平均粒径10μmのC粉(グラファイト粉)を用意した。
 基本成分を、秤量組成(モル比率):45.5Fe-24.5Pt-30Cとし、前記秤量組成比で、合計の重量が2470gとなるように秤量した。
 さらに微量添加成分として、Wを0.25g秤量した。
(Comparative Example 11)
Fe powder having an average particle diameter of 3 μm, Pt powder having an average particle diameter of 3 μm, W powder having an average particle diameter of 3 μm, and C powder (graphite powder) having an average particle diameter of 10 μm were prepared as raw material powders.
The basic components were weighed composition (molar ratio): 45.5Fe-24.5Pt-30C, and weighed so that the total weight would be 2470 g at the weighed composition ratio.
Furthermore, 0.25 g of W was weighed as a component added in a small amount.
 次に秤量した全ての粉末を、粉砕媒体のSUSボールと共に容量10リットルのボールミルポットに投入し、Ar雰囲気中で16時間回転させて混合・粉砕した。そしてポットから取り出した粉末をカーボン製の型に充填しホットプレス装置を用いて成型・焼結させた。ホットプレスの条件は、真空雰囲気、昇温速度300°C/時間、保持温度1300°C、保持時間2時間とし、昇温開始時から保持終了まで30MPaで加圧した。保持終了後はチャンバー内でそのまま自然冷却させた。 Next, all of the weighed powders were put into a 10 liter ball mill pot together with SUS balls as a grinding medium, and rotated and mixed for 16 hours in an Ar atmosphere. The powder taken out from the pot was filled in a carbon mold and molded and sintered using a hot press apparatus. The hot pressing conditions were a vacuum atmosphere, a heating rate of 300 ° C./hour, a holding temperature of 1300 ° C., and a holding time of 2 hours. After completion of the holding, it was naturally cooled in the chamber.
 次に作製した焼結体をから採取した小片を用いて組成分析を実施した。Fe、Pt、WはICP-AES装置を用いて測定し、Cは高周波誘導加熱炉燃焼-赤外線吸収法を採用した炭素分析装置で測定した。その結果、Wの含有量は、スパッタリングターゲット中80質量ppmであった。また基本成分について、分析で得た重量比率からモル比率を計算した結果、このスパッタリングターゲットの組成は、分析組成(モル比率)は45.40Fe-24.52Pt-30.08Cであった。 Next, composition analysis was carried out using small pieces collected from the produced sintered body. Fe, Pt, and W were measured using an ICP-AES apparatus, and C was measured using a carbon analyzer employing a high frequency induction furnace combustion-infrared absorption method. As a result, the content of W was 80 mass ppm in the sputtering target. As a result of calculating the molar ratio of the basic component from the weight ratio obtained by analysis, the composition of this sputtering target was 45.40Fe-24.52Pt-30.08C.
 さらに旋盤を用いて、焼結体を直径180.0mm、厚さ5.0mmの形状へ切削加工し、円盤状のターゲットを得た。このターゲットを用いて実施例1と同一条件でスパッタリングを行い、基板上へ付着したパーティクルの個数をパーティクルカウンターで測定した。このときのパーティクル個数は354個と、実施例6より増加した。 Further, using a lathe, the sintered body was cut into a shape having a diameter of 180.0 mm and a thickness of 5.0 mm to obtain a disk-shaped target. Sputtering was performed using this target under the same conditions as in Example 1, and the number of particles adhering to the substrate was measured with a particle counter. The number of particles at this time was 354, an increase from Example 6.
(比較例12)
 原料粉として平均粒径3μmのFe粉、平均粒径3μmのPt粉、平均粒径3μmのW粉、平均粒径10μmのC粉(グラファイト粉)を用意した。
 基本成分を、秤量組成(モル比率):45.5Fe-24.5Pt-30Cとし、前記秤量組成比で、合計の重量が2470gとなるように秤量した。
 さらに微量添加成分として、Wを50.0g秤量した。
(Comparative Example 12)
Fe powder having an average particle diameter of 3 μm, Pt powder having an average particle diameter of 3 μm, W powder having an average particle diameter of 3 μm, and C powder (graphite powder) having an average particle diameter of 10 μm were prepared as raw material powders.
The basic components were weighed composition (molar ratio): 45.5Fe-24.5Pt-30C, and weighed so that the total weight would be 2470 g at the weighed composition ratio.
Furthermore, 50.0 g of W was weighed as a component added in a small amount.
 次に秤量した全ての粉末を、粉砕媒体のSUSボールと共に容量10リットルのボールミルポットに投入し、Ar雰囲気中で16時間回転させて混合・粉砕した。そしてポットから取り出した粉末をカーボン製の型に充填しホットプレス装置を用いて成型・焼結させた。ホットプレスの条件は、真空雰囲気、昇温速度300°C/時間、保持温度1300°C、保持時間2時間とし、昇温開始時から保持終了まで30MPaで加圧した。保持終了後はチャンバー内でそのまま自然冷却させた。 Next, all of the weighed powders were put into a 10 liter ball mill pot together with SUS balls as a grinding medium, and rotated and mixed for 16 hours in an Ar atmosphere. The powder taken out from the pot was filled in a carbon mold and molded and sintered using a hot press apparatus. The hot pressing conditions were a vacuum atmosphere, a heating rate of 300 ° C./hour, a holding temperature of 1300 ° C., and a holding time of 2 hours. After completion of the holding, it was naturally cooled in the chamber.
 次に作製した焼結体から採取した小片を用いて組成分析を実施した。Fe、Pt、WはICP-AES装置を用いて測定し、Cは高周波誘導加熱炉燃焼-赤外線吸収法を採用した炭素分析装置で測定した。その結果、Wの含有量は、スパッタリングターゲット中20100質量ppmであった。また基本成分について、分析で得た重量比率からモル比率を計算した結果、このスパッタリングターゲットの組成は、分析組成(モル比率):45.47Fe-24.58Pt-29.95Cであった。 Next, composition analysis was carried out using small pieces collected from the produced sintered body. Fe, Pt, and W were measured using an ICP-AES apparatus, and C was measured using a carbon analyzer employing a high frequency induction furnace combustion-infrared absorption method. As a result, the content of W was 20100 mass ppm in the sputtering target. As for the basic component, the molar ratio was calculated from the weight ratio obtained by analysis. As a result, the composition of this sputtering target was analytical composition (molar ratio): 45.47Fe-24.58Pt-29.95C.
 さらに旋盤を用いて、焼結体を直径180.0mm、厚さ5.0mmの形状へ切削加工し、円盤状のターゲットを得た。このターゲットを用いて実施例1と同一条件でスパッタリングを行い、基板上へ付着したパーティクルの個数をパーティクルカウンターで測定した。このときのパーティクル個数は163個と、実施例6より増加した。
 一方で、実施例6と比較すると十分な磁気特性が得られなかった。これは、Wの含有量が多過ぎ、飽和磁化や結晶磁気異方性エネルギーが低下したためと考えられる。
Further, using a lathe, the sintered body was cut into a shape having a diameter of 180.0 mm and a thickness of 5.0 mm to obtain a disk-shaped target. Sputtering was performed using this target under the same conditions as in Example 1, and the number of particles adhering to the substrate was measured with a particle counter. The number of particles at this time was 163, which was increased from that in Example 6.
On the other hand, compared with Example 6, sufficient magnetic properties were not obtained. This is presumably because the content of W was too large and the saturation magnetization and magnetocrystalline anisotropy energy were reduced.
(実施例7)
 原料粉として平均粒径3μmのFe粉、平均粒径3μmのPt粉、平均粒径10μmのC粉(グラファイト粉)、平均粒径3μmのCr粉を用意した。
 基本成分を、秤量組成(モル比率):20.25Fe-24.75Pt-55Cとし、前記秤量組成比で、合計の重量が2200gとなるように秤量した。
 さらに微量添加成分として、Crを2.2g秤量した。
(Example 7)
Fe powder having an average particle diameter of 3 μm, Pt powder having an average particle diameter of 3 μm, C powder (graphite powder) having an average particle diameter of 10 μm, and Cr powder having an average particle diameter of 3 μm were prepared as raw material powders.
The basic components were weighed composition (molar ratio): 20.25Fe-24.75Pt-55C, and weighed so that the total weight would be 2200 g at the weighed composition ratio.
Furthermore, 2.2 g of Cr was weighed as a small amount of additive component.
 次に秤量した全ての粉末を、粉砕媒体のSUSボールと共に容量10リットルのボールミルポットに投入し、Ar雰囲気中で16時間回転させて混合・粉砕した。そしてポットから取り出した粉末をカーボン製の型に充填しホットプレス装置を用いて成型・焼結させた。ホットプレスの条件は、真空雰囲気、昇温速度300°C/時間、保持温度1400°C、保持時間2時間とし、昇温開始時から保持終了まで30MPaで加圧した。保持終了後はチャンバー内でそのまま自然冷却させた。 Next, all of the weighed powders were put into a 10 liter ball mill pot together with SUS balls as a grinding medium, and rotated and mixed for 16 hours in an Ar atmosphere. The powder taken out from the pot was filled in a carbon mold and molded and sintered using a hot press apparatus. The hot press conditions were a vacuum atmosphere, a heating rate of 300 ° C./hour, a holding temperature of 1400 ° C., and a holding time of 2 hours, and pressurization was performed at 30 MPa from the start of heating to the end of holding. After completion of the holding, it was naturally cooled in the chamber.
 次に作製した焼結体から採取した小片を用いて組成分析を実施した。Fe、Pt、CrをICP-AES装置を用いて測定し、Cは高周波誘導加熱炉燃焼-赤外線吸収法を採用した炭素分析装置で測定した。その結果、Crの含有量は、スパッタリングターゲット中990質量ppmであった。また基本成分について、分析で得た重量比率からモル比率を計算した結果、このスパッタリングターゲットの組成は、分析組成(モル比率):20.35Fe-24.78Pt-54.87Cであった。 Next, composition analysis was carried out using small pieces collected from the produced sintered body. Fe, Pt, and Cr were measured using an ICP-AES apparatus, and C was measured using a carbon analyzer employing a high-frequency induction furnace combustion-infrared absorption method. As a result, the Cr content was 990 mass ppm in the sputtering target. As a result of calculating the molar ratio of the basic component from the weight ratio obtained by analysis, the composition of this sputtering target was analytical composition (molar ratio): 20.35Fe-24.78Pt-54.87C.
 さらに、旋盤を用いて、焼結体を直径180.0mm、厚さ5.0mmの形状へ切削加工し、円盤状のターゲットを得た。このターゲットを用いて実施例1と同一条件でスパッタリングを行い、基板上へ付着したパーティクルの個数をパーティクルカウンターで測定した。このときのパーティクル個数は356個であった。 Furthermore, using a lathe, the sintered body was cut into a shape having a diameter of 180.0 mm and a thickness of 5.0 mm to obtain a disk-shaped target. Sputtering was performed using this target under the same conditions as in Example 1, and the number of particles adhering to the substrate was measured with a particle counter. At this time, the number of particles was 356.
(比較例13)
 原料粉として平均粒径3μmのFe粉、平均粒径3μmのPt粉、平均粒径10μmのC粉(グラファイト粉)、平均粒径3μmのCr粉を用意した。
 基本成分を、秤量組成(モル比率):20.25Fe-24.75Pt-55Cとし、前記秤量組成比で、合計の重量が2200gとなるように秤量した。
 さらに微量添加成分として、Crを0.1g秤量した。
(Comparative Example 13)
Fe powder having an average particle diameter of 3 μm, Pt powder having an average particle diameter of 3 μm, C powder (graphite powder) having an average particle diameter of 10 μm, and Cr powder having an average particle diameter of 3 μm were prepared as raw material powders.
The basic components were weighed composition (molar ratio): 20.25Fe-24.75Pt-55C, and weighed so that the total weight would be 2200 g at the weighed composition ratio.
Further, 0.1 g of Cr was weighed as a component added in a small amount.
 次に秤量した全ての粉末を、粉砕媒体のSUSボールと共に容量10リットルのボールミルポットに投入し、Ar雰囲気中で16時間回転させて混合・粉砕した。そしてポットから取り出した粉末をカーボン製の型に充填しホットプレス装置を用いて成型・焼結させた。ホットプレスの条件は、真空雰囲気、昇温速度300°C/時間、保持温度1400°C、保持時間2時間とし、昇温開始時から保持終了まで30MPaで加圧した。保持終了後はチャンバー内でそのまま自然冷却させた。 Next, all of the weighed powders were put into a 10 liter ball mill pot together with SUS balls as a grinding medium, and rotated and mixed for 16 hours in an Ar atmosphere. The powder taken out from the pot was filled in a carbon mold and molded and sintered using a hot press apparatus. The hot press conditions were a vacuum atmosphere, a heating rate of 300 ° C./hour, a holding temperature of 1400 ° C., and a holding time of 2 hours, and pressurization was performed at 30 MPa from the start of heating to the end of holding. After completion of the holding, it was naturally cooled in the chamber.
 次に、作製した焼結体から採取した小片を用いて組成分析を実施した。Fe、Pt、CrをICP-AES装置を用いて測定し、Cは高周波誘導加熱炉燃焼-赤外線吸収法を採用した炭素分析装置で測定した。その結果、Crの含有量は、スパッタリングターゲット中30質量ppmであった。また基本成分について、分析で得た重量比率からモル比率を計算した結果、このスパッタリングターゲットの組成は、分析組成(モル比率):20.23Fe-24.80Pt-54.97Cであった。 Next, composition analysis was performed using small pieces collected from the produced sintered body. Fe, Pt, and Cr were measured using an ICP-AES apparatus, and C was measured using a carbon analyzer employing a high-frequency induction furnace combustion-infrared absorption method. As a result, the Cr content was 30 ppm by mass in the sputtering target. As a result of calculating the molar ratio of the basic component from the weight ratio obtained by analysis, the composition of this sputtering target was analytical composition (molar ratio): 20.23Fe-24.80Pt-54.97C.
 さらに旋盤を用いて、焼結体を直径180.0mm、厚さ5.0mmの形状へ切削加工し、円盤状のターゲットを得た。このターゲットを用いてマグネトロンスパッタ装置に取り付け、実施例1と同一条件でスパッタリングを行い、基板上へ付着したパーティクルの個数をパーティクルカウンターで測定した。このときのパーティクル個数は486個と、実施例7より増加した。 Further, using a lathe, the sintered body was cut into a shape having a diameter of 180.0 mm and a thickness of 5.0 mm to obtain a disk-shaped target. The target was attached to a magnetron sputtering apparatus, sputtering was performed under the same conditions as in Example 1, and the number of particles adhering to the substrate was measured with a particle counter. The number of particles at this time was 486, an increase from Example 7.
(比較例14)
 原料粉として平均粒径3μmのFe粉、平均粒径3μmのPt粉、平均粒径10μmのC粉(グラファイト粉)、平均粒径3μmのCr粉を用意した。
 基本成分を、秤量組成(モル比率):20.25Fe-24.75Pt-55Cとし、前記秤量組成比で、合計の重量が2200gとなるように秤量した。
 さらに微量添加成分として、Crを20g秤量した。
(Comparative Example 14)
Fe powder having an average particle diameter of 3 μm, Pt powder having an average particle diameter of 3 μm, C powder (graphite powder) having an average particle diameter of 10 μm, and Cr powder having an average particle diameter of 3 μm were prepared as raw material powders.
The basic components were weighed composition (molar ratio): 20.25Fe-24.75Pt-55C, and weighed so that the total weight would be 2200 g at the weighed composition ratio.
Furthermore, 20 g of Cr was weighed as a small amount added component.
 次に秤量した全ての粉末を、粉砕媒体のSUSボールと共に容量10リットルのボールミルポットに投入し、Ar雰囲気中で16時間回転させて混合・粉砕した。そしてポットから取り出した粉末をカーボン製の型に充填しホットプレス装置を用いて成型・焼結させた。ホットプレスの条件は、真空雰囲気、昇温速度300°C/時間、保持温度1400°C、保持時間2時間とし、昇温開始時から保持終了まで30MPaで加圧した。保持終了後はチャンバー内でそのまま自然冷却させた。 Next, all of the weighed powders were put into a 10 liter ball mill pot together with SUS balls as a grinding medium, and rotated and mixed for 16 hours in an Ar atmosphere. The powder taken out from the pot was filled in a carbon mold and molded and sintered using a hot press apparatus. The hot press conditions were a vacuum atmosphere, a heating rate of 300 ° C./hour, a holding temperature of 1400 ° C., and a holding time of 2 hours, and pressurization was performed at 30 MPa from the start of heating to the end of holding. After completion of the holding, it was naturally cooled in the chamber.
 次に、作製した焼結体から採取した小片を用いて組成分析を実施した。Fe、Pt、CrをICP-AES装置を用いて測定し、Cは高周波誘導加熱炉燃焼-赤外線吸収法を採用した炭素分析装置で測定した。その結果、Crの含有量は、スパッタリングターゲット中10600質量ppmであった。また基本成分について、分析で得た重量比率からモル比率を計算した結果、このスパッタリングターゲットの組成は、分析組成(モル比率):20.24Fe-24.78Pt-54.98Cであった。 Next, composition analysis was performed using small pieces collected from the produced sintered body. Fe, Pt, and Cr were measured using an ICP-AES apparatus, and C was measured using a carbon analyzer employing a high-frequency induction furnace combustion-infrared absorption method. As a result, the content of Cr was 10600 mass ppm in the sputtering target. Further, as a result of calculating the molar ratio from the weight ratio obtained by analysis for the basic component, the composition of this sputtering target was analytical composition (molar ratio): 20.24Fe-24.78Pt-54.98C.
 さらに旋盤を用いて、焼結体を直径180.0mm、厚さ5.0mmの形状へ切削加工し、円盤状のターゲットを得た。このターゲットを用いて実施例1と同一条件でスパッタリングを行い、基板上へ付着したパーティクルの個数をパーティクルカウンターで測定した。このときのパーティクル個数は345個と、実施例7とほぼ同等であった。一方で、実施例7と比較すると十分な磁気特性が得られなかった。これは、Crの含有量が多く、飽和磁化や結晶磁気異方性エネルギーが低下したためと考えられる。 Further, using a lathe, the sintered body was cut into a shape having a diameter of 180.0 mm and a thickness of 5.0 mm to obtain a disk-shaped target. Sputtering was performed using this target under the same conditions as in Example 1, and the number of particles adhering to the substrate was measured with a particle counter. The number of particles at this time was 345, which was almost the same as in Example 7. On the other hand, sufficient magnetic properties were not obtained as compared with Example 7. This is presumably because the Cr content was large and the saturation magnetization and magnetocrystalline anisotropy energy were reduced.
 以上の通り、いずれの実施例においても、WやCrを所定の量添加することにより、スパッタリング時に発生するパーティクル量を低減することができ、成膜時の歩留まりを向上することができた。このように、WやCrを含有させることが、パーティクル発生の抑制に非常に重要な役割を有することが分かった。 As described above, in any of the examples, by adding a predetermined amount of W or Cr, the amount of particles generated during sputtering can be reduced, and the yield during film formation can be improved. Thus, it has been found that the inclusion of W or Cr has a very important role in suppressing particle generation.
 以上の実施例及び比較例の結果の一覧を、表1に示す。 Table 1 shows a list of the results of the above examples and comparative examples.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 上記実施例と比較例では、非磁性材料として、前記C(炭素)に加えて、酸化物、窒化物、炭化物のいずれか一種以上を添加する例として、BN、SiO、TaCの例を示したが、他の酸化物、窒化物、炭化物でも同様の効果を示すことを確認している。 In the above examples and comparative examples, examples of BN, SiO 2 , and TaC are shown as examples in which any one or more of oxide, nitride, and carbide is added as the nonmagnetic material in addition to C (carbon). However, other oxides, nitrides, and carbides have been confirmed to show the same effect.
 さらに、Ag、Au、Co、Cu、Ga、Ge、Ir、Ni、Pd、Re、Rh、Ru、Sn、Znから選択した一種以上の元素を、金属成分として含有する例として、Cuを添加する例を示したが、これも同様に、Ag、Au、Co、Cu、Ga、Ge、Ir、Ni、Pd、Re、Rh、Ru、Sn、Znから選択した一種以上の元素であれば、同様の効果を得ることを確認している。 Furthermore, Cu is added as an example of containing one or more elements selected from Ag, Au, Co, Cu, Ga, Ge, Ir, Ni, Pd, Re, Rh, Ru, Sn, and Zn as metal components. Although an example is shown, this is similarly applied if it is one or more elements selected from Ag, Au, Co, Cu, Ga, Ge, Ir, Ni, Pd, Re, Rh, Ru, Sn, and Zn. It has been confirmed that the effect of.
 本発明のスパッタリングターゲットは、スパッタ時に発生するパーティクル量を低減することができ、成膜時における歩留まりを向上することができるという優れた効果を有する。したがって、グラニュラー構造型の磁性薄膜を形成するためのスパッタリングターゲットとして有用である。
 
The sputtering target of the present invention has an excellent effect that the amount of particles generated at the time of sputtering can be reduced and the yield at the time of film formation can be improved. Therefore, it is useful as a sputtering target for forming a granular structure type magnetic thin film.

Claims (8)

  1.  Fe-Pt合金と非磁性材料を主成分とする焼結体スパッタリングターゲットであって、非磁性材料として少なくともC(炭素)を含有し、さらに前記主成分以外に微量添加元素を50質量ppm~5000質量ppmの範囲で含有し、該微量添加元素の炭化物の炭素1mol当たりの標準生成自由エネルギーΔG°が、-5000[cal/mol]以下であることを特徴とする焼結体スパッタリングターゲット。 A sintered sputtering target comprising a Fe—Pt alloy and a nonmagnetic material as main components, comprising at least C (carbon) as the nonmagnetic material, and a trace amount of additional elements in addition to the main component of 50 mass ppm to 5000 A sintered compact sputtering target characterized by containing a mass ppm and having a standard free energy of formation ΔG ° per 1 mol of carbide of the carbide of the trace amount addition element of −5000 [cal / mol] or less.
  2.  前記微量添加元素が、W、Crのいずれか一種以上であることを特徴とする請求項1に記載の焼結体スパッタリングターゲット。 The sintered body sputtering target according to claim 1, wherein the trace additive element is at least one of W and Cr.
  3.  非磁性材料として、前記C(炭素)に加えて、さらに酸化物、窒化物、炭化物のいずれか一種以上を含有することを特徴とする請求項1又は2のいずれか一項に記載の焼結体スパッタリングターゲット。 3. The sintering according to claim 1, wherein the non-magnetic material further contains at least one of oxide, nitride, and carbide in addition to the C (carbon). Body sputtering target.
  4.  前記主成分及び微量添加元素に加えて、さらにAg、Au、Co、Cu、Ga、Ge、Ir、Ni、Pd、Re、Rh、Ru、Sn、Znから選択した一種以上の元素を、金属成分として含有することを特徴とする請求項1~3のいずれか一項に記載の焼結体スパッタリングターゲット。 In addition to the main component and the trace additive element, at least one element selected from Ag, Au, Co, Cu, Ga, Ge, Ir, Ni, Pd, Re, Rh, Ru, Sn, and Zn is used as a metal component. The sintered sputtering target according to any one of claims 1 to 3, which is contained as
  5.  原料粉として、Fe粉、Pt粉、C粉(グラファイト粉)、及び炭化物を形成した場合の炭素1mol当たりの標準生成自由エネルギーΔG°が、-5000[cal/mol]以下である微量添加元素粉を準備し、これらの粉末をAr雰囲気中で混合・粉砕し、混合・粉砕後の粉末をカーボン製の型に充填し、ホットプレス装置を用いて、真空雰囲気、昇温速度200~600°C/時間、保持温度800~1400°C、保持時間0~4時間とし、昇温開始時から保持終了まで20~50MPaで加圧して焼結体を製造することを特徴とするFe-Pt合金と非磁性材料を主成分とする焼結体スパッタリングターゲットの製造方法。 A small amount of additive element powder having a standard free energy of formation ΔG ° per mol of carbon of −5000 [cal / mol] or less when Fe powder, Pt powder, C powder (graphite powder), and carbide are formed as raw material powder These powders are mixed and pulverized in an Ar atmosphere, and the mixed and pulverized powder is filled in a carbon mold, and is heated in a vacuum atmosphere at a heating rate of 200 to 600 ° C. using a hot press apparatus. Fe-Pt alloy characterized in that a sintered body is produced by pressing at 20 to 50 MPa from the start of temperature rise to the end of holding at a holding temperature of 800 to 1400 ° C./hour, a holding time of 0 to 4 hours. A method for producing a sintered sputtering target mainly comprising a nonmagnetic material.
  6.  前記微量添加元素が、W、Crのいずれか一種以上であることを特徴とする請求項4に記載の焼結体スパッタリングターゲットの製造方法。 The method for producing a sintered sputtering target according to claim 4, wherein the trace additive element is at least one of W and Cr.
  7.  非磁性材料の原料粉として、前記C(炭素)に加えて、さらに酸化物、窒化物、炭化物のいずれか一種以上を含有させて焼結することを特徴とする請求項5又は6のいずれか一項に記載の焼結体スパッタリングターゲットの製造方法。 7. The non-magnetic material raw material powder, in addition to the C (carbon), further containing any one or more of oxides, nitrides and carbides, and sintering. The manufacturing method of the sintered compact sputtering target of one term.
  8.  さらに、Ag、Au、Co、Cu、Ga、Ge、Ir、Ni、Pd、Re、Rh、Ru、Sn、Znから選択した一種以上の元素を、金属成分の原料として含有させ、焼結することを特徴とする請求項5~7のいずれか一項に記載の焼結体スパッタリングターゲットの製造方法。
     
    Furthermore, one or more elements selected from Ag, Au, Co, Cu, Ga, Ge, Ir, Ni, Pd, Re, Rh, Ru, Sn, and Zn are contained as a raw material for the metal component and sintered. The method for producing a sintered sputtering target according to any one of claims 5 to 7, wherein:
PCT/JP2014/063676 2013-06-06 2014-05-23 Sputtering target for magnetic recording medium WO2014196377A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
MYPI2015702496A MY175024A (en) 2013-06-06 2014-05-23 Sputtering target for magnetic recording medium
JP2014550564A JP5946922B2 (en) 2013-06-06 2014-05-23 Sputtering target for magnetic recording media
SG11201505307QA SG11201505307QA (en) 2013-06-06 2014-05-23 Sputtering target for magnetic recording medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013119818 2013-06-06
JP2013-119818 2013-06-06

Publications (1)

Publication Number Publication Date
WO2014196377A1 true WO2014196377A1 (en) 2014-12-11

Family

ID=52008028

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/063676 WO2014196377A1 (en) 2013-06-06 2014-05-23 Sputtering target for magnetic recording medium

Country Status (5)

Country Link
JP (1) JP5946922B2 (en)
MY (1) MY175024A (en)
SG (1) SG11201505307QA (en)
TW (1) TWI605143B (en)
WO (1) WO2014196377A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018035434A (en) * 2016-09-02 2018-03-08 Jx金属株式会社 NONMAGNETIC MATERIAL DISPERSION TYPE Fe-Pt-BASED SPUTTERING TARGET

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7104001B2 (en) * 2019-06-28 2022-07-20 田中貴金属工業株式会社 Fe-Pt-BN-based sputtering target and its manufacturing method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012086335A1 (en) * 2010-12-20 2012-06-28 Jx日鉱日石金属株式会社 Fe-pt-based sputtering target with dispersed c particles
WO2012133166A1 (en) * 2011-03-30 2012-10-04 Jx日鉱日石金属株式会社 Sputtering target for magnetic recording film
JP2014041682A (en) * 2012-08-24 2014-03-06 Mitsubishi Materials Corp Sputtering target for magnetic recording medium film formation, and manufacturing method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012086335A1 (en) * 2010-12-20 2012-06-28 Jx日鉱日石金属株式会社 Fe-pt-based sputtering target with dispersed c particles
WO2012133166A1 (en) * 2011-03-30 2012-10-04 Jx日鉱日石金属株式会社 Sputtering target for magnetic recording film
JP2014041682A (en) * 2012-08-24 2014-03-06 Mitsubishi Materials Corp Sputtering target for magnetic recording medium film formation, and manufacturing method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018035434A (en) * 2016-09-02 2018-03-08 Jx金属株式会社 NONMAGNETIC MATERIAL DISPERSION TYPE Fe-Pt-BASED SPUTTERING TARGET
WO2018043680A1 (en) * 2016-09-02 2018-03-08 Jx金属株式会社 NON-MAGNETIC MATERIAL-DISPERSED Fe-Pt SPUTTERING TARGET

Also Published As

Publication number Publication date
JPWO2014196377A1 (en) 2017-02-23
TW201510257A (en) 2015-03-16
JP5946922B2 (en) 2016-07-06
TWI605143B (en) 2017-11-11
SG11201505307QA (en) 2015-08-28
MY175024A (en) 2020-06-03

Similar Documents

Publication Publication Date Title
JP5969120B2 (en) Sputtering target for magnetic thin film formation
JP5974327B2 (en) Nonmagnetic substance-dispersed Fe-Pt sputtering target
TWI550114B (en) Fe-Pt-C sputtering target
WO2012133166A1 (en) Sputtering target for magnetic recording film
JP5623552B2 (en) Fe-Pt ferromagnetic sputtering target and manufacturing method thereof
JP5705993B2 (en) Fe-Pt-Ag-C based sputtering target in which C particles are dispersed and method for producing the same
WO2012029498A1 (en) Fe-pt-type ferromagnetic material sputtering target
JP6437427B2 (en) Sputtering target for magnetic recording media
JP5801496B2 (en) Sputtering target
JP6305881B2 (en) Sputtering target for magnetic recording media
JP5946922B2 (en) Sputtering target for magnetic recording media
JP5944580B2 (en) Sputtering target
JP5826945B2 (en) Sputtering target for magnetic recording media
JP6094848B2 (en) Method for producing Fe-Co alloy soft magnetic film for perpendicular magnetic recording medium
JP2007081308A (en) Magnetic membrane
JP6062586B2 (en) Sputtering target for magnetic recording film formation
JP2018172762A (en) Sputtering target, magnetic film, and production method of magnetic film

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014550564

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14808184

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14808184

Country of ref document: EP

Kind code of ref document: A1