WO2014196184A1 - Automatic bread machine - Google Patents

Automatic bread machine Download PDF

Info

Publication number
WO2014196184A1
WO2014196184A1 PCT/JP2014/002910 JP2014002910W WO2014196184A1 WO 2014196184 A1 WO2014196184 A1 WO 2014196184A1 JP 2014002910 W JP2014002910 W JP 2014002910W WO 2014196184 A1 WO2014196184 A1 WO 2014196184A1
Authority
WO
WIPO (PCT)
Prior art keywords
bread
heater
container
bread container
rotating shaft
Prior art date
Application number
PCT/JP2014/002910
Other languages
French (fr)
Japanese (ja)
Inventor
晋介 佐々木
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2015521297A priority Critical patent/JPWO2014196184A1/en
Priority to CN201480031137.1A priority patent/CN105263377B/en
Publication of WO2014196184A1 publication Critical patent/WO2014196184A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A21BAKING; EDIBLE DOUGHS
    • A21BBAKERS' OVENS; MACHINES OR EQUIPMENT FOR BAKING
    • A21B7/00Baking plants
    • A21B7/005Baking plants in combination with mixing or kneading devices
    • AHUMAN NECESSITIES
    • A21BAKING; EDIBLE DOUGHS
    • A21CMACHINES OR EQUIPMENT FOR MAKING OR PROCESSING DOUGHS; HANDLING BAKED ARTICLES MADE FROM DOUGH
    • A21C1/00Mixing or kneading machines for the preparation of dough
    • A21C1/02Mixing or kneading machines for the preparation of dough with vertically-mounted tools; Machines for whipping or beating
    • AHUMAN NECESSITIES
    • A21BAKING; EDIBLE DOUGHS
    • A21CMACHINES OR EQUIPMENT FOR MAKING OR PROCESSING DOUGHS; HANDLING BAKED ARTICLES MADE FROM DOUGH
    • A21C1/00Mixing or kneading machines for the preparation of dough
    • A21C1/14Structural elements of mixing or kneading machines; Parts; Accessories
    • A21C1/1495Arrangements for cooling or heating ; Arrangements for applying super- or sub-atmospheric pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/80Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a substantially vertical axis
    • B01F27/808Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a substantially vertical axis with stirrers driven from the bottom of the receptacle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/90Heating or cooling systems
    • B01F35/92Heating or cooling systems for heating the outside of the receptacle, e.g. heated jackets or burners
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/90Heating or cooling systems
    • B01F2035/99Heating

Definitions

  • the present invention relates to an automatic bread maker generally used for home use.
  • a commercially available automatic bread maker for home use it is common to produce bread by sequentially performing a kneading process, a fermentation process, and a baking process.
  • a kneading step a bread container containing flour, water, yeast and other bread ingredients is placed in a baking chamber in the main body, and the bread ingredients in the bread container are kneaded by kneading means such as blades.
  • the kneaded bread dough is expanded by yeast fermentation.
  • the baking process the baked dough is heated, and the bread dough is baked into bread using the bread container as it is as a baking mold.
  • Patent Document 1 As this type of automatic bread maker, those having various structures are known (for example, see Patent Document 1).
  • a communication opening is provided in the bread mold table to allow communication between the baking room space and the bread mold table space.
  • the bread-type table space is heated by the communication opening. As a result, temperature unevenness of the bread container is suppressed, heating is performed uniformly, and improvement of the bread quality is achieved.
  • an object of the present invention is to provide an automatic bread maker that solves the above-described problems and can simultaneously improve the quality of bread and ensure the reliability of the automatic bread maker.
  • the present invention is configured as follows.
  • An automatic bread maker includes a bread container that is detachably mounted in a baking chamber, A tubular protrusion protruding from the bottom of the bread container to the outside of the bread container; A rotating shaft extending through the bottom of the bread container from the inside to the outside of the bread container and extending to the inside of the protrusion; A bearing that rotatably supports the rotating shaft on the bread container; Bread blades engaged with the rotating shaft in the bread container; A first heater disposed below the bottom of the bread container and outside the protrusion in the baking chamber; A second heater disposed above the first heater in the firing chamber; A controller that controls energization of the first and second heaters, The protrusion functions as a heat shield between the rotating shaft and the bearing and the first heater when disposed on the bottom of the firing chamber.
  • the automatic bread maker of the present invention can achieve both improvement in bread quality and ensuring the reliability of the automatic bread maker.
  • FIG. 4A Longitudinal sectional view of the automatic bread maker in the first embodiment
  • Vertical sectional view of an automatic bread maker in a third embodiment 1 is a longitudinal sectional view showing a bread container and a protruding portion of an automatic bread maker according to first to third embodiments.
  • the fermentation process is performed at a temperature of 30 to 40 ° C.
  • the temperature is raised to around 200 ° C. Since fermentation and baking are performed in the same baking chamber, preheating before a baking process cannot be performed. Therefore, the temperature rise of the bread container and bread dough in the baking process is slow.
  • the baking chamber is an oven made of metal, the bread dough in the bread container is uniformly heated in the baking process, and the bread dough can be baked evenly.
  • the rotary shaft is provided in the vicinity of the bottom of the bread container, so that the rotary shaft may be excessively heated. If the rotating shaft is exposed to an overheated state, the rotating shaft and the bearing may be damaged, and rotation of the pan blades may be hindered. In addition, there is a possibility that water, which is a raw material for bread, leaks from between the damaged rotating shaft and bearing.
  • a bread container detachably mounted in the baking chamber;
  • a tubular protrusion protruding from the bottom of the bread container to the outside of the bread container;
  • a rotating shaft extending through the bottom of the bread container from the inside to the outside of the bread container and extending to the inside of the protrusion;
  • a bearing that rotatably supports the rotating shaft on the bread container;
  • a first heater disposed below the bottom of the bread container and outside the protrusion in the baking chamber;
  • a second heater disposed above the first heater in the firing chamber;
  • a controller that controls energization of the first and second heaters,
  • the protrusion provides an automatic bread maker that functions as a heat shield between the rotating shaft and the bearing and the first heater when disposed on the bottom of the baking chamber.
  • the firing chamber by providing two heaters in the firing chamber, it is possible to perform more flexible heating than when one heater is provided.
  • the first heater below the bottom of the bread container in the baking chamber, the bottom of the bread container can be intensively heated. This makes it possible to intensively heat the lower part of the bread dough, particularly when creating a hard bread, and improve the quality of the bread.
  • the protrusion has a function of shielding heat between the rotating shaft and the bearing and the first heater, the influence of the heat of the first heater on the rotating shaft and the bearing can be reduced. Thereby, the reliability of an automatic bread maker can be improved. That is, it is possible to achieve both improvement in the quality of bread and ensuring the reliability of the automatic bread maker.
  • the automatic bread maker according to the first aspect, wherein the protrusion includes a heat insulating layer between the rotary shaft and the bearing and the first heater.
  • the protrusion includes a tubular inner cylinder and an outer cylinder disposed on the inner side and the outer side with a space therebetween,
  • the heat insulating layer of the protruding portion provides the automatic bread maker according to the second aspect, which is formed in a space between the inner cylinder and the outer cylinder.
  • the automatic bread maker according to the second aspect or the third aspect, wherein the heat insulating layer is an air layer.
  • the thermal conductivity of the protrusion is lower than the thermal conductivity of the bread container.
  • the automatic bread maker according to any one of the first to fifth aspects, further comprising a cooling device for cooling the rotating shaft.
  • the material of the outer surface of the protruding portion has an infrared reflectance higher than that of the material of the bread container, and is manufactured automatically according to any one of the first to sixth aspects. Provide bread machine.
  • the bottom portion of the bread container facing the first heater is coated with a material having a higher infrared absorption rate than the material of the bread container.
  • a reflecting plate disposed around the first heater so as to reflect heat of the first heater toward the bottom of the bread container.
  • a rotation mechanism for rotating the rotation shaft is A motor for generating a rotational driving force for the rotational shaft; A drive connector disposed at the bottom of the firing chamber and driven by the motor; A driven connector attached to the rotating shaft and connected to the drive connector to be driven;
  • the automatic bread maker according to any one of the first to ninth aspects, wherein the rotational driving force by the motor is transmitted to the rotation shaft via the drive connector and the driven connector.
  • the controller starts energizing the second heater after energizing the first heater in the baking step of heating and baking the dough.
  • the automatic bread maker 50 includes a main body 1, a baking chamber 17, a heater 4, and an internal temperature sensor 16.
  • the main body 1 has a bottomed cylindrical shape, and is formed of resin in the first embodiment.
  • the firing chamber 17 is provided in the main body 1 and is made of sheet metal in the first embodiment.
  • the heater 4 is a heater that heats the inside of the firing chamber 17.
  • the heater 4 includes a first heater 4a and a second heater 4b. Both the first heater 4 a and the second heater 4 b are disposed in the baking chamber 17.
  • the first heater 4a is disposed below the second heater 4b.
  • the internal temperature sensor 16 is a sensor that detects the temperature in the baking chamber 17.
  • the automatic bread maker 50 further includes the bread container 2, the rotating shaft 6, the bearing 41, the bread blade 5, and the driven connector 14.
  • the bread container 2 is a container having a bottomed cylindrical shape, and includes a cylinder portion 2a on the upper side and a bottom portion 2b on the lower side.
  • the cylinder part 2a has a cylindrical shape extending in the vertical direction.
  • the bottom 2b is a part constituting the bottom of the bread container 2 and extends from the lower end of the cylindrical part 2a so as to be partially curved, and is formed so as to extend in the horizontal direction and close the bottom of the bread container 2.
  • the bottom portion 2b of the bread container 2 includes a curved portion that is curved from the connection portion 2c with the cylindrical portion 2a, and a horizontal portion that extends substantially horizontally from the curved portion. That is, the bottom portion 2b of the bread container 2 includes not only a horizontal portion that is located at the bottom of the bread container 2 and extends substantially horizontally, but also a curved portion that is curved to continue to the horizontal portion.
  • the connection part 2c is located in the boundary of the part (cylinder part 2a) extended in the perpendicular direction in the bread container 2, and the curved part. Further, the bread container 2 is formed with a convex portion 2d protruding inward.
  • the convex portion 2d is formed at a position straddling the cylindrical portion 2a and the bottom portion 2b.
  • the bread container 2 can be detachably installed in the baking chamber 17. That is, the bread container 2 is detachably mounted in the baking chamber 17.
  • FIG. 1 shows a state in which the bread container 2 is attached in the baking chamber 17, that is, a state in which the bread container 2 is arranged on the bottom in the baking chamber 17.
  • the bread container 2 is formed of aluminum.
  • the rotation shaft 6 is a shaft provided so as to penetrate from the inside to the outside of the bread container 2 at the bottom 2 b of the bread container 2.
  • the rotating shaft 6 is rotatably supported by the bread container 2 by a bearing 41.
  • the rotating shaft 6 extends to the inside of a protrusion 40 described later.
  • the bearing 41 is configured integrally with the bread container 2.
  • the bread blade 5 is a blade for kneading the bread dough 31 in the bread container 2.
  • the pan blade 5 can be detachably fitted (engaged) with the rotary shaft 6. When the pan blade 5 is fitted to the rotary shaft 6, it rotates with the rotation of the rotary shaft 6.
  • a driven connector 14 is integrally attached to the rotating shaft 6.
  • the driven connector 14 is disposed outside the bread container 2 and is driven by being connected to a drive connector 13 described later.
  • the pan blade 5 includes a blade bearing portion 5c and a flat plate portion 5d.
  • the blade bearing portion 5 c is a bearing that is fitted to the rotary shaft 6.
  • the flat plate portion 5d is a kneading blade plate attached to the blade bearing portion 5c.
  • the flat plate portion 5d protrudes from the outer peripheral surface of the blade bearing portion 5c in a direction perpendicular to the axial direction of the rotary shaft 6. As shown in FIG. 1, in the state where the bread container 2 is installed in the baking chamber 17, the flat plate portion 5d extends in the horizontal direction from the outer peripheral surface of the blade bearing portion 5c.
  • the automatic bread maker 50 further includes a protrusion 40.
  • the protrusion 40 is a member that protrudes from the bottom 2 b of the bread container 2 to the outside of the bread container 2, and is disposed so as to cover the rotating shaft 6 and the bearing 41.
  • the protrusion 40 is configured integrally with the bread container 2, and is formed of aluminum which is the same material as the bread container 2 in the first embodiment.
  • the protrusion 40 has a double pipe structure so as to form an air layer 40a that is a heat insulating layer.
  • the specific structure of the protrusion 40 will be described later with reference to FIGS. 4A and 4B.
  • the formation of the air layer 40a which is a heat insulating layer, suppresses heat transfer from the firing chamber 17 to the rotating shaft 6 and the bearing 41.
  • the protrusion part 40 since the protrusion part 40 has a function which shields the rotating shaft 6 and the bearing 41, it is also called a "heat shield part.”
  • the first heater 4 a is disposed in the baking chamber 17 below the bottom 2 b of the bread container 2 and outside the protruding portion 40. That is, the first heater 4a is disposed on the opposite side (that is, the outer side) of the protruding portion 40 from the inner side where the rotating shaft 6 and the bearing 41 are disposed.
  • the first heater 4a in the first embodiment is disposed inside the bread container 2 when viewed from above. That is, it does not protrude outside the bread container 2.
  • the 2nd heater 4b in 1st Embodiment is arrange
  • the automatic bread maker 50 further includes a rotation mechanism that rotates the rotation shaft 6.
  • a motor 7, a small pulley 11, a large pulley 12, and a drive connector 13 are provided as a rotation mechanism.
  • the motor 7 is a motor that generates a rotational driving force for the rotating shaft 6.
  • the small pulley 11 is a pulley that is integrally attached to the drive shaft of the motor 7.
  • the large pulley 12 is a pulley attached integrally with the drive connector 13.
  • the small pulley 11 and the large pulley 12 are connected to each other by a belt 15.
  • the rotation operation of the motor 7 is transmitted to the drive connector 13 through the small pulley 11, the belt 15, and the large pulley 12.
  • the drive connector 13 is driven by the motor 7.
  • the drive connector 13 is disposed at the bottom of the baking chamber 17.
  • the driven connector 14 on the bread container 2 side is fitted and connected to the drive connector 13 on the baking chamber 17 side. Thereby, the rotation operation of the motor 7 is transmitted to the driven connector 14 via the drive connector 13.
  • the driven connector 14 rotates, the rotating shaft 6 rotates and the bread blades 5 in the bread container 2 can be rotated.
  • the rotating mechanism that rotates the rotating shaft 6 includes at least the motor 7, the drive connector 13, and the driven connector 14.
  • the rotational driving force by the motor 7 is transmitted to the rotating shaft 6 via the drive connector 13 and the driven connector 14.
  • the automatic bread maker 50 further includes a lid 3, an inner lid 21, an ingredient storage container 20, a solenoid 10, a yeast storage section 24, and a yeast throwing means 25.
  • the lid 3 includes a lower lid 3a and an upper lid 3b. Both the lower lid 3a and the upper lid 3b are made of resin.
  • the inner lid 21 is engaged with and fixed to the lower lid 3 a so as to cover the upper portion of the main body 1.
  • the ingredient storage container 20 is a container for automatically charging raisins and nuts.
  • the ingredient storage container 20 can be detachably fixed to the inner lid 21 and the lower lid 3a.
  • the ingredient storage container 20 includes a container lid 20a, a container lid opening means 20b, and a container body 20c.
  • the container lid 20a is rotatably connected to the container body 20c.
  • the container lid opening means 20b fixes the container lid 20a in a closed state.
  • the container lid 20a constitutes a part of the inner lid 21 in a closed state. At least the bottom of the container lid 20a is made of metal.
  • a solenoid 10 is disposed in the main body 1.
  • the solenoid 10 includes a cylinder 10a and a rod 10b.
  • the cylinder 10a supports the rod 10b.
  • the solenoid 10 operates the operation of the container lid opening means 20b by operating the operation of the rod 10b. By this operation, the container lid 20a is interlocked between a closed state and an opened state with respect to the container body 20c.
  • the yeast storage unit 24 is a member for automatically charging dry yeast, and is provided on the lower lid 3a.
  • the yeast throwing means 25 holds the yeast in the yeast storage portion 24 by being pressed against the inner lid 21.
  • the yeast is automatically charged into the bread container 2 when the yeast charging means 25 is separated from the inner lid 21.
  • the atmospheric temperature in the baking chamber 17 becomes a high temperature of 150 to 230 ° C., for example, due to the heating of the heater 4.
  • the surface of the inner lid 21 also has a high temperature of about 150 to 230 ° C.
  • the surface of the outer lid 3a also has a temperature of about 60 to 90 ° C. In this way, the entire lid including the outer lid 3a and the inner lid 21 is heated.
  • the solenoid 10 is disposed in such a lid, the solenoid 10 becomes high temperature in the firing process, and there may be a problem due to an increase in the temperature of the coil wire or the lead wire (insulation deterioration or the like).
  • the solenoid 10 since the solenoid 10 is disposed in the main body 1, the temperature of the solenoid 10 is not easily increased. Therefore, the reliability of the solenoid 10 can be improved.
  • the lid 3 is attached to the main body 1 through a hinge 22 so as to be opened and closed. Therefore, when the lid 3 is closed, the inner lid 21 hits the main body 1, and the inner lid 21 receives impact and vibration from the main body 1.
  • the solenoid 10 which is a heavy component of about 100 g
  • the solenoid 10 is arrange
  • according to the structure of 1st Embodiment compared with the case where the solenoid 10 is arrange
  • the upper lid 3b is rotatably connected to the lower lid 3a via a hinge 23.
  • Such an upper lid 3b has a role of preventing leakage of steam in the baking process.
  • the ingredient storage container 20 has a form in which the upper side is closed and cannot be opened, but it may be opened upward. In this case, even when the ingredient storage container 20 is mounted on the lid 3, the ingredient can be stored in the ingredient storage container 20 by opening the upper lid 3 b.
  • the user puts hard bread materials such as flour, water, and salt into the bread container 2. Ingredients are pre-weighed by the user with reference to the recipe. After putting the material, the user puts dry yeast in the yeast storage unit 24 and operates the operation input display unit 9 to select a menu. According to the selected menu, the automatic bread maker 50 executes the bread making process.
  • hard bread materials such as flour, water, and salt
  • Ingredients are pre-weighed by the user with reference to the recipe.
  • the user puts dry yeast in the yeast storage unit 24 and operates the operation input display unit 9 to select a menu. According to the selected menu, the automatic bread maker 50 executes the bread making process.
  • the control unit 8 drives the motor 7 to rotate the bread blade 5.
  • the bread dough 31 is kneaded by the rotation of the bread blades 5. That is, the kneading process is started. Due to the rotation of the bread blades 5, the flour and water are mixed to form an integral dough 31.
  • the integrated bread dough 31 is pressed against the convex portion 2 d of the wall surface of the bread container 2 by the rotation of the bread blade 5.
  • the bread dough 31 receives a pressing force from the wall surface of the bread container 2. Part of the bread dough 31 pressed against the wall surface of the bread container 2 adheres to the wall surface of the bread container 2 due to viscosity. In this state, the bread blade 5 rotates the bread dough 31, whereby a tensile force is applied to the bread dough 31.
  • control unit 8 After forming gluten in the bread dough 31 to some extent, the control unit 8 operates the yeast throwing means 25 to throw yeast into the bread container 2.
  • the control unit 8 After the bread dough 31 is laid for a predetermined time, the control unit 8 operates the bread blade 5 again. Thus, physical pressing force and tensile force are applied to the bread dough 31 while kneading the yeast uniformly into the bread dough 31.
  • the gluten network in the bread dough 31 can grow to form the bread dough 31 with appropriate elasticity and extensibility. When such bread dough 31 is formed, the kneading process is completed.
  • the automatic bread maker 50 performs a fermentation process to ferment the dough 31.
  • the control unit 8 energizes the first heater 4a and / or the second heater 4b to heat the inside of the baking chamber 17. After the start of heating, the controller 8 controls the temperature so that the temperature detected by the internal temperature sensor 16 becomes a predetermined fermentation temperature. That is, the energization of the heater 4 is controlled.
  • the temperature control of the fermentation temperature may be performed by energizing only the first heater 4a without energizing the second heater 4b. Convective heat and radiant heat from the first heater 4 a are blocked by the bottom 2 b of the bread container 2. Therefore, according to the control for energizing only the first heater 4a, the lower space of the baking chamber 17 is easily heated, while the upper space of the baking chamber 17 is hardly heated. Thereby, the direct heating amount from the upper part of the bread dough 31 decreases. That is, drying and hardening of the bread dough 31 due to heating can be prevented. By preventing the bread dough 31 from drying and curing, the extensibility of the bread dough 31 can be improved and the bread making performance can be improved.
  • the bread dough 31 is fermented under appropriate fermentation temperature conditions.
  • the yeast is activated, consuming starch-derived sugar and generating carbon dioxide and alcohol.
  • countless bubbles are included in the bread dough 31, and the flavor of the bread dough 31 is improved.
  • the gluten network of the dough 31 relaxes and loses elasticity. Therefore, the amount of carbon dioxide gas is appropriately reduced by degassing. Thereby, the network of gluten can be tensioned again and the activity of the yeast in the bread dough 31 can be increased.
  • the degassing is performed by the control unit 8 operating the pan blade 5.
  • the bread dough 31 is wound with a rotational force that does not tear the bread dough 31.
  • the surface of the bread dough 31 is pulled, and the large bubbles in the bread dough 31 are crushed, thereby regaining the tension of the gluten network.
  • the bread dough 31 can be made into the state which can endure further fermentation.
  • the fermentation process is terminated when the final fermentation is completed.
  • the automatic bread maker 50 performs a baking process to bake the dough 31.
  • the control unit 8 starts energizing the second heater 4b after starting energizing the first heater 4a. That is, first, the control unit 8 does not energize the second heater 4b, but energizes only the first heater 4a adjacent to the bottom 2b of the bread container 2. As a result, the lower temperature of the bread dough 31 (the lower temperature of the bread dough 31 near the bottom 2b of the bread container 2) is rapidly increased.
  • the inside of the firing chamber 17 was uniformly heated in the firing step.
  • the upper temperature of the bread dough 31 (the temperature of the upper side of the bread dough 31 far from the bottom 2b of the bread container 2) rises in the same manner as the lower temperature of the bread dough 31. Therefore, in the case of a hard bread that does not contain fats and oils such as butter, drying and hardening are promoted in the upper part of the bread dough 31. Thereby, expansion
  • the first heater 4a in the baking process, only the first heater 4a is first energized, so that the rise in the upper temperature of the bread dough 31 is slowed while heating the lower part of the bread dough 31 as the center. ing. Therefore, drying and hardening of the bread dough 31 surface can be suppressed.
  • the yeast in the dough 31 since the lower temperature of the dough 31 is rapidly increased, the yeast in the dough 31 can be activated. Further, by generating water vapor inside the bread dough 31 by rapid temperature rise, the expansion of the bread dough 31 can be promoted by the action of the water vapor.
  • the control unit 8 energizes the second heater 4b after a predetermined time has elapsed or when it is detected that the lower temperature of the bread dough 31 has sufficiently increased.
  • the energization of the first heater 4a is stopped.
  • the inside of the baking chamber 17 is uniformly heated by energizing the second heater 4b.
  • the controller 8 controls the heating so that the temperature in the baking chamber 17 becomes a predetermined baking temperature. Thereby, the whole bread dough 31 can be baked uniformly.
  • the baking process is terminated.
  • the first heater 4a is disposed between the bottom 2b of the bread container 2 and the bottom of the baking chamber 17 at a position close to the protrusion 40. That is, the first heater 4 a is disposed in the vicinity of the rotating shaft 6 and the bearing 41 of the bread container 2. Therefore, in the firing step described above, when the first heater 4a is energized, the heat from the first heater 4a tends to be transmitted to the rotating shaft 6 and the bearing 41. This tendency of heat transfer in the firing chamber 17 is more conspicuous as compared to a configuration in which the lower heater is embedded in the bottom of the firing chamber and disposed outside the firing chamber as in Patent Document 1 described above.
  • the protrusion part 40 when the protrusion part 40 is arrange
  • the bearing 41 when the bearing 41 is a fluid bearing, it can prevent that a fluid flows out. In this way, the reliability of the automatic bread maker 50 can be improved and secured.
  • the automatic bread maker 50 includes the first heater 4a and the second heater 4b disposed above the first heater 4a, so that flexible heating can be performed.
  • the bottom 2b of the bread container 2 can be heated intensively. This makes it possible to rapidly heat the lower portion of the bread dough 31 particularly when making a hard bread, so that water vapor is generated inside the bread dough 31, and the water vapor forms a film between the bubbles in the bread dough 31. It can be broken and connected to form large bubbles. Due to the formation of such bubbles, the bread dough 31 can be greatly expanded and the fire passage inside the bread dough 31 can be improved. Therefore, the savory bread can be baked with good taste.
  • the automatic bread maker 50 in the first embodiment it is possible to ensure both the reliability of the automatic bread maker 50 and the improvement of the bread quality.
  • the protrusion part 40 is provided with the heat insulation layer (air layer 40a) between the rotating shaft 6, the bearing 41, and the 1st heater 4a.
  • the heat insulation layer air layer 40a
  • the thermal influence on the rotating shaft 6 and the bearing 41 by the first heater 4a can be further reduced. That is, the reliability of the automatic bread maker 50 can be improved.
  • the air layer 40a is formed as a heat insulating layer in the protruding portion 40.
  • the air layer 40a is filled only with air and is not filled with anything other than air. Thereby, reduction of manufacturing cost can also be aimed at, improving the heat insulation effect.
  • a heat insulation layer in the protrusion part 40 when filling and forming heat insulating materials other than air, you may employ
  • the material of the protruding portion 40 is the same aluminum as the material of the bread container 2, but is not limited to such a case, and may be other materials such as stainless steel, ceramic, and resin. .
  • a material for example, a heat resistant resin
  • the material having low thermal conductivity may be defined as a material having a thermal conductivity of 236 W / mK or less, which is the thermal conductivity of aluminum, for example.
  • FIGS. 4A and 4B are longitudinal sectional views of the bread container 2 and the protrusion 40
  • FIG. 4B is an A1-A1 sectional view of FIG. 4A (transverse section of the protrusion 40).
  • the projecting portion 40 includes an inner cylinder 40b and an outer cylinder 40c.
  • Both the inner cylinder 40 b and the outer cylinder 40 c are tubular members that extend downward from the bottom 2 b of the bread container 2.
  • the inner cylinder 40b and the outer cylinder 40c are arranged at an interval from each other via the air layer 40a.
  • the air layer 40a as a heat insulating layer is formed in a space between the inner cylinder 40b and the outer cylinder 40c.
  • the inner cylinder 40b arranged on the inner side has a shape in which a cylindrical shape is partially missing. Specifically, as shown in FIG. 4A, a cylindrical gap is formed in three stages inside the inner cylinder 40b so as to increase in diameter from the top. These voids are all cylindrical and communicate with each other. As shown in FIG. 4A, the rotation shaft 6 is disposed in the upper gap. The rotary shaft 6 and the bearing 41 are disposed in the central gap. The rotating shaft 6 and the driven connector 14 are disposed in the lower gap.
  • the outer cylinder 40c is a circular tubular member disposed around the inner cylinder 40b.
  • a circular air layer 40a as shown in FIG. 4B is formed between the outer cylinder 40c and the inner cylinder 40b.
  • the lower ends 40h of the inner cylinder 40b and the outer cylinder 40c are arranged in the same plane by being arranged at positions extending the same distance from the bottom 2b of the bread container 2. As shown in FIG. 4A, the lower end portion 40 h is positioned vertically downward from the lower end of the rotating shaft 6 and the driven connector 14 by a distance L. In such a configuration, when the bread container 2 is placed on a desk or the like, the protruding portion 40 functions as a pedestal.
  • the protrusion part 40 since the protrusion part 40 has covered the rotating shaft 6 and the driven connector 14, it also has a function which protects the rotating shaft 6 and the driven connector 14 from a physical impact. In this case, if the material of the protrusion 40 is a hard material, the protective function can be further improved.
  • the protrusion 40 not only has a function of a heat shield for the rotating shaft 6 and the bearing 41, but also at least a pedestal function of the bread container 2, and impact protection of the rotating shaft 5 and / or the driven connector 14. With functions.
  • the structure of the automatic bread maker 50 can be made more compact and more efficient by providing the protrusion 40 with a plurality of functions.
  • FIG. 2 is a longitudinal sectional view of an automatic bread maker 150 according to the second embodiment of the present invention.
  • the automatic bread maker 150 in the second embodiment includes a cooling device for cooling the rotating shaft 6 and the bearing 41.
  • a cooling device for cooling the rotating shaft 6 and the bearing 41.
  • a fan 42 that sucks air and blows it out is provided.
  • the automatic bread maker 150 is further provided with a first air passage 43 and a second air passage 44. Both the first air passage 43 and the second air passage 44 communicate the ambient air outside the main body 1 with the inside of the protrusion 40 (the space in which the rotating shaft 6, the bearing 41, and the driven connector 14 are disposed). It is an airway.
  • the fan 42 is disposed in the middle of the second air passage 44.
  • the automatic bread maker 150 in the second embodiment includes the cooling device (fan 42) for cooling the rotary shaft 6 and the bearing 41, so that the rotary shaft 6 and the bearing 41 by the first heater 4a are provided.
  • the thermal effect on can be further reduced.
  • the protrusion part 40 functions as a heat shield part, the inside of the baking chamber 17 is not cooled by the air of the fan 42. In this way, efficient cooling and heating in the baking chamber 17 can be performed in parallel.
  • the outside air is sucked from the first air passage 43.
  • the present invention is not limited to such a case, and the outside air is drawn from the second air passage 44 by changing the operation direction of the fan 42. You may make it retract.
  • the suction-type fan 42 is provided as the cooling device.
  • the present invention is not limited to such a case.
  • a blow-out fan or a cooling device other than the fan may be used.
  • FIG. 3 is a longitudinal sectional view of an automatic bread maker 250 according to the third embodiment of the present invention.
  • the automatic bread maker 250 includes a reflector 45 that reflects the heat of the first heater 4 a toward the bottom 2 b of the bread container 2. Specifically, a reflector 45 is provided around the first heater 4a. The reflection plate 45 partially covers the first heater 4 a and is open toward the bottom 2 b of the bread container 2.
  • the reflection plate 45 By providing the reflection plate 45, the radiant heat from the first heater 4 a can be concentrated on the bottom 2 b of the bread container 2. At the same time, heating of the protrusion 40 can be suppressed. Thus, since the bottom 2b of the bread container 2 can be heated more intensively, it is possible to improve the quality of the bread especially when producing a hard bread.
  • a galvalume steel plate, chromium plating, etc. may be sufficient, for example.
  • the automatic bread maker according to the present invention can perform flexible heating control using at least two heaters, not only hard bread such as French bread but also other automatic bread maker. It can handle applications and is particularly useful as a bread maker that is generally used for home use.

Abstract

An automatic bread machine (50) comprises: a bread container (2) that is removably mounted inside a baking chamber (17); a tube-shaped projection (40) that projects from the bottom (2b) of the bread container toward the exterior of the bread container; a rotary shaft (6) that passes through the bottom of the bread container from the interior of the bread container to the exterior and extends toward the interior of the projection; a shaft bearing (41) that rotationally supports, in the bread container, the rotary shaft; a bread blade (5) that is engaged with, in the bread container, the rotary shaft; a first heater (4a) that is disposed under the bottom of the bread chamber and on the exterior of the projection in the baking chamber; a second heater (4b) that is disposed, in the baking chamber, further toward the top than the first heater; and a controller (8) that controls current to the first and second heaters. The projection shields the rotary shaft and the shaft bearing from the first heater when the projection is disposed on the bottom in the baking chamber.

Description

自動製パン器Automatic bread machine
 本発明は、一般に家庭用に使用される自動製パン器に関する。 The present invention relates to an automatic bread maker generally used for home use.
 市販の家庭用自動製パン器では、練り工程、発酵工程、焼成工程を順に行うことでパンを生成することが一般的である。練り工程は、小麦粉、水およびイーストなどのパン原料が入ったパン容器を本体内の焼成室に入れ、羽根などの混練手段によりパン容器内のパン原料を練り上げる。発酵工程は、混練されたパン生地をイーストの発酵によって膨らませる。焼成工程は、膨らんだパン生地を加熱することにより、パン容器をそのままパン焼き型としてパン生地をパンへと焼き上げる。 In a commercially available automatic bread maker for home use, it is common to produce bread by sequentially performing a kneading process, a fermentation process, and a baking process. In the kneading step, a bread container containing flour, water, yeast and other bread ingredients is placed in a baking chamber in the main body, and the bread ingredients in the bread container are kneaded by kneading means such as blades. In the fermentation process, the kneaded bread dough is expanded by yeast fermentation. In the baking process, the baked dough is heated, and the bread dough is baked into bread using the bread container as it is as a baking mold.
 この種の自動製パン器としては、種々の構造のものが知られている(例えば、特許文献1参照)。 As this type of automatic bread maker, those having various structures are known (for example, see Patent Document 1).
特許文献1の自動製パン器では、パン型台に焼成室内空間とパン型台内空間とを連通する連通開口部を設けている。連通開口部により、パン型台内空間が加熱される。これにより、パン容器の温度ムラを抑制して、均一に加熱を行い、パンの出来栄えの向上を図っている。 In the automatic bread maker disclosed in Patent Document 1, a communication opening is provided in the bread mold table to allow communication between the baking room space and the bread mold table space. The bread-type table space is heated by the communication opening. As a result, temperature unevenness of the bread container is suppressed, heating is performed uniformly, and improvement of the bread quality is achieved.
特開昭62-217917号公報JP-A-62-217917
 しかしながら、従来の自動製パン器においては、パンの出来栄えの向上を図るものの、パン型台内空間の回転軸が露出されるため、回転軸に対して熱ダメージが与えられる。場合によっては、自動製パン器の信頼性が低下するおそれがある。このように、食味や見た目などのパンの出来栄えを向上させることと、自動製パン器の信頼性を確保することの両立に関して未だ改善の余地がある。 However, in the conventional automatic bread maker, although the quality of bread is improved, the rotation axis of the space in the pan-type table is exposed, so that the rotation axis is thermally damaged. In some cases, the reliability of the automatic bread maker may be reduced. As described above, there is still room for improvement in terms of both improving the quality of bread such as taste and appearance and ensuring the reliability of the automatic bread maker.
従って、本発明の目的は、前記問題を解決することにあって、パンの出来栄えの向上と自動製パン器の信頼性の確保を両立することができる自動製パン器を提供することである。 Accordingly, an object of the present invention is to provide an automatic bread maker that solves the above-described problems and can simultaneously improve the quality of bread and ensure the reliability of the automatic bread maker.
 前記目的を達成するために、本発明は、以下のように構成する。 In order to achieve the above object, the present invention is configured as follows.
 本発明にかかる自動製パン器は、焼成室内に着脱自在に装着されるパン容器と、
 前記パン容器の底部から前記パン容器の外側に突出した管状の突出部と、
 前記パン容器の内側から外側へ前記パン容器の前記底部を貫通し、前記突出部の内側へ延出された回転軸と、
 前記回転軸を前記パン容器に回転自在に軸支する軸受と、
 前記パン容器内にて前記回転軸と係合するパン羽根と、
 前記焼成室内において前記パン容器の前記底部の下方かつ前記突出部の外側に配置された第1のヒータと、
 前記焼成室内において前記第1のヒータよりも上方に配置された第2のヒータと、
 前記第1および第2のヒータの通電を制御する制御部とを備え、
 前記突出部は、前記焼成室内の底部上に配置されたときに前記回転軸および前記軸受と前記第1のヒータとの間における遮熱部として機能する。
An automatic bread maker according to the present invention includes a bread container that is detachably mounted in a baking chamber,
A tubular protrusion protruding from the bottom of the bread container to the outside of the bread container;
A rotating shaft extending through the bottom of the bread container from the inside to the outside of the bread container and extending to the inside of the protrusion;
A bearing that rotatably supports the rotating shaft on the bread container;
Bread blades engaged with the rotating shaft in the bread container;
A first heater disposed below the bottom of the bread container and outside the protrusion in the baking chamber;
A second heater disposed above the first heater in the firing chamber;
A controller that controls energization of the first and second heaters,
The protrusion functions as a heat shield between the rotating shaft and the bearing and the first heater when disposed on the bottom of the firing chamber.
 本発明の自動製パン器は、パンの出来栄えの向上と自動製パン器の信頼性の確保を両立させることができる。 The automatic bread maker of the present invention can achieve both improvement in bread quality and ensuring the reliability of the automatic bread maker.
 本発明のこれらの態様と特徴は、添付された図面についての好ましい実施形態に関連した次の記述から明らかになる。
第1実施形態における自動製パン器の縦断面図 第2実施形態における自動製パン器の縦断面図 第3実施形態における自動製パン器の縦断面図 第1実施形態~第3実施形態における自動製パン器のパン容器および突出部を示す縦断面図 図4AのA1-A1断面図
These aspects and features of the invention will become apparent from the following description, taken in conjunction with the preferred embodiments with reference to the accompanying drawings, in which:
Longitudinal sectional view of the automatic bread maker in the first embodiment Vertical sectional view of an automatic bread maker in the second embodiment Vertical sectional view of an automatic bread maker in a third embodiment 1 is a longitudinal sectional view showing a bread container and a protruding portion of an automatic bread maker according to first to third embodiments. A1-A1 sectional view of FIG. 4A
 (本発明の基礎となった知見)
 本発明者らは、前記従来の課題を解決するために鋭意検討を重ねた結果、以下の知見を見出した。
(Knowledge that became the basis of the present invention)
As a result of intensive studies to solve the conventional problems, the present inventors have found the following findings.
 一般的に、発酵工程は、30~40℃の温度下で行われる。その後の焼成工程では、200℃前後まで昇温される。発酵と焼成は、同じ焼成室内で行われるため、焼成工程前の予熱を行うことができない。そのため、焼成工程におけるパン容器およびパン生地の昇温は緩慢である。一方で、焼成室内は金属で構成されたオーブンとなるため、焼成工程において、パン容器内のパン生地が均一に加熱されて、パン生地をムラなく焼き上げることができる。 Generally, the fermentation process is performed at a temperature of 30 to 40 ° C. In the subsequent firing step, the temperature is raised to around 200 ° C. Since fermentation and baking are performed in the same baking chamber, preheating before a baking process cannot be performed. Therefore, the temperature rise of the bread container and bread dough in the baking process is slow. On the other hand, since the baking chamber is an oven made of metal, the bread dough in the bread container is uniformly heated in the baking process, and the bread dough can be baked evenly.
 このような加熱方法では、焼成工程前の予熱を行わずに、焼成工程における加熱が緩慢かつ均一であるため、パン生地の上部が先に加熱され、乾燥してしまう場合がある。これに対して、原材料としてバターなどの油脂類を多く含む食パンなどを焼成する際には、油脂によって、パン生地の上部の乾燥が抑制される。よって、上述のような加熱方法であっても製パン性への影響は少ない。 In such a heating method, since the heating in the baking process is slow and uniform without performing preheating before the baking process, the upper part of the bread dough may be heated first and dried. In contrast, when baking bread containing a large amount of fats and oils such as butter as a raw material, drying of the upper part of the bread dough is suppressed by the fats and oils. Therefore, even if it is the above heating methods, there is little influence on bread-making property.
しかしながら、フランスパンに代表されるハード系のパン(硬いパン)の製法では、発酵を終えたパン生地を、予熱したオーブンに投入して、パン生地の下部を急速に熱する必要がある。これにより、パン生地内に水蒸気を発生させて、その水蒸気がパンの内部に火を通すとともに、鉛直上方向に抜けようとする。このとき、パン生地内の気泡同士の膜が破れて繋がり、大きな気泡となり、パン生地を大きく膨張させる。このようにして、大きく膨張させたハード系のパンが焼き上げられる。 However, in the method of producing hard bread (hard bread) represented by French bread, it is necessary to rapidly heat the lower part of the bread dough by putting the bread dough after fermentation into a preheated oven. As a result, water vapor is generated in the dough, and the water vapor tries to escape from the inside of the bread and to escape vertically upward. At this time, the film between the bubbles in the dough is broken and connected to form large bubbles, which greatly expands the dough. In this way, the hard bread that has been greatly expanded is baked.
つまり、大きく膨張させたハード系のパンを焼き上げるために、パン生地の下部を急速に熱することで、パン生地内に水蒸気を発生させる必要がある。しかしながら、前記従来の自動製パン器のように、焼成室内を均一かつ緩慢に加熱すると、パンの内部に発生する水蒸気量は減ってしまう。これにより、パンの内部の火通りが悪く、生焼けの状態となる。また、パン生地の膨らみも悪く、パンの食味も悪くなる。 In other words, in order to bake hard bread that has been greatly expanded, it is necessary to generate water vapor in the dough by rapidly heating the lower part of the dough. However, when the baking chamber is uniformly and slowly heated as in the conventional automatic bread maker, the amount of water vapor generated in the bread is reduced. Thereby, the fire inside the bread is bad, and it becomes a state of raw baking. In addition, the bread dough swells poorly and the bread taste also deteriorates.
さらに、油脂類をほとんど含まないハード系のパンの場合には、パン生地の上部が先に加熱されると、パン生地の乾燥および硬化が進んでしまう。これにより、焼成時にパン生地が伸びる現象である「窯伸び(oven spring)」を阻害してしまう。すなわち、膨らみが少なく固いパンになってしまう。 Furthermore, in the case of a hard bread that hardly contains fats and oils, if the upper part of the bread dough is heated first, the drying and hardening of the bread dough proceeds. This obstructs “oven spring”, which is a phenomenon that bread dough stretches during baking. That is, it becomes a hard bread with little swelling.
このように、ハード系のパンの焼成時には、パン生地の下部の急速加熱によってパン生地の内部に水蒸気を発生させることと、焼成初期のパン生地の上部の乾燥を抑制することの両立が必要であることを本発明者らは見出した。 Thus, at the time of baking hard bread, it is necessary to simultaneously generate water vapor inside the dough by rapid heating of the lower part of the dough and to suppress drying of the upper part of the dough at the beginning of baking. The inventors have found.
 さらに、パン容器の底部を急速に加熱しようとした場合には、前述の回転軸がパン容器の底部の近傍に設けられているため、回転軸が過剰に加熱されるおそれがある。回転軸が過加熱状態にさらされると、回転軸や軸受がダメージを受けて、パン羽根の回転が阻害されるおそれがある。また、損傷した回転軸や軸受の間から、パンの原料である水が漏れたりといった不具合を引き起こす可能性もある。 Furthermore, when the bottom of the bread container is to be heated rapidly, the rotary shaft is provided in the vicinity of the bottom of the bread container, so that the rotary shaft may be excessively heated. If the rotating shaft is exposed to an overheated state, the rotating shaft and the bearing may be damaged, and rotation of the pan blades may be hindered. In addition, there is a possibility that water, which is a raw material for bread, leaks from between the damaged rotating shaft and bearing.
このように、ハード系のパンを焼成するためには、パン容器の底部に配置された回転軸および軸受を過加熱から保護する必要があることもさらに見出した。 Thus, it has further been found that in order to bake a hard bread, it is necessary to protect the rotating shaft and the bearing arranged at the bottom of the bread container from overheating.
上記複数の知見によって、本発明者らは以下の発明を想到した。 Based on the above findings, the present inventors have conceived the following invention.
 本発明の第1態様によれば、焼成室内に着脱自在に装着されるパン容器と、
 前記パン容器の底部から前記パン容器の外側に突出した管状の突出部と、
 前記パン容器の内側から外側へ前記パン容器の前記底部を貫通し、前記突出部の内側へ延出された回転軸と、
 前記回転軸を前記パン容器に回転自在に軸支する軸受と、
 前記パン容器内にて前記回転軸と係合するパン羽根と、
 前記焼成室内において前記パン容器の前記底部の下方かつ前記突出部の外側に配置された第1のヒータと、
 前記焼成室内において前記第1のヒータよりも上方に配置された第2のヒータと、
 前記第1および第2のヒータの通電を制御する制御部とを備え、
 前記突出部は、前記焼成室内の底部上に配置されたときに前記回転軸および前記軸受と前記第1のヒータとの間における遮熱部として機能する、自動製パン器を提供する。
According to the first aspect of the present invention, a bread container detachably mounted in the baking chamber;
A tubular protrusion protruding from the bottom of the bread container to the outside of the bread container;
A rotating shaft extending through the bottom of the bread container from the inside to the outside of the bread container and extending to the inside of the protrusion;
A bearing that rotatably supports the rotating shaft on the bread container;
Bread blades engaged with the rotating shaft in the bread container;
A first heater disposed below the bottom of the bread container and outside the protrusion in the baking chamber;
A second heater disposed above the first heater in the firing chamber;
A controller that controls energization of the first and second heaters,
The protrusion provides an automatic bread maker that functions as a heat shield between the rotating shaft and the bearing and the first heater when disposed on the bottom of the baking chamber.
 これによって、焼成室内に2つのヒータを設けることにより、ヒータを1つ設けた場合に比べてより柔軟な加熱を行うことができる。特に、焼成室内のパン容器底部の下方に第1のヒータを設けたことにより、パン容器の底部を集中的に加熱することができる。これにより、特にハード系のパンを作成する際にパン生地の下部を集中的に加熱することができ、パンの出来栄えを向上させることができる。さらに、突出部は、回転軸および軸受と第1のヒータの間を遮熱する機能を有しているため、第1のヒータの熱が回転軸および軸受に与える影響を軽減することができる。これにより、自動製パン器の信頼性を向上させることができる。すなわち、パンの出来栄えの向上と自動製パン器の信頼性の確保を両立させることができる。 Thus, by providing two heaters in the firing chamber, it is possible to perform more flexible heating than when one heater is provided. Particularly, by providing the first heater below the bottom of the bread container in the baking chamber, the bottom of the bread container can be intensively heated. This makes it possible to intensively heat the lower part of the bread dough, particularly when creating a hard bread, and improve the quality of the bread. Furthermore, since the protrusion has a function of shielding heat between the rotating shaft and the bearing and the first heater, the influence of the heat of the first heater on the rotating shaft and the bearing can be reduced. Thereby, the reliability of an automatic bread maker can be improved. That is, it is possible to achieve both improvement in the quality of bread and ensuring the reliability of the automatic bread maker.
 本発明の第2態様によれば、前記突出部は、前記回転軸および前記軸受と前記第1のヒータの間に断熱層を備える、第1態様に記載の自動製パン器を提供する。 According to a second aspect of the present invention, there is provided the automatic bread maker according to the first aspect, wherein the protrusion includes a heat insulating layer between the rotary shaft and the bearing and the first heater.
 これによって、第1のヒータによる回転軸および軸受への熱影響をさらに軽減することができるため、自動製パン器の信頼性を向上させることができる。 This makes it possible to further reduce the thermal effect of the first heater on the rotating shaft and the bearing, thereby improving the reliability of the automatic bread maker.
 本発明の第3態様によれば、前記突出部は、互いに間隔を空けて内側および外側に配置された管状の内筒および外筒を備え、
前記突出部の前記断熱層は、前記内筒と前記外筒の間の空間に形成される、第2態様に記載の自動製パン器を提供する。
According to the third aspect of the present invention, the protrusion includes a tubular inner cylinder and an outer cylinder disposed on the inner side and the outer side with a space therebetween,
The heat insulating layer of the protruding portion provides the automatic bread maker according to the second aspect, which is formed in a space between the inner cylinder and the outer cylinder.
 これによって、断熱層の断熱効果を高めることができる。 This can enhance the heat insulation effect of the heat insulation layer.
本発明の第4態様によれば、前記断熱層は、空気層である、第2態様又は第3態様に記載の自動製パン器を提供する。 According to a fourth aspect of the present invention, there is provided the automatic bread maker according to the second aspect or the third aspect, wherein the heat insulating layer is an air layer.
 これによって、自動製パン器の製造コストを削減することができる。 This makes it possible to reduce the manufacturing cost of an automatic bread maker.
 本発明の第5態様によれば、前記突出部の熱伝導率は、前記パン容器の熱伝導率よりも低い、第1態様から第4態様のいずれか1つに記載の自動製パン器を提供する。 According to a fifth aspect of the present invention, in the automatic bread maker according to any one of the first to fourth aspects, the thermal conductivity of the protrusion is lower than the thermal conductivity of the bread container. provide.
 これによって、第1のヒータによる回転軸および軸受への熱影響をさらに軽減することができるため、自動製パン器の信頼性を向上させることができる。 This makes it possible to further reduce the thermal effect of the first heater on the rotating shaft and the bearing, thereby improving the reliability of the automatic bread maker.
本発明の第6態様によれば、前記回転軸を冷却するための冷却装置をさらに備える、第1態様から第5態様のいずれか1つに記載の自動製パン器を提供する。 According to a sixth aspect of the present invention, there is provided the automatic bread maker according to any one of the first to fifth aspects, further comprising a cooling device for cooling the rotating shaft.
 これによって、第1のヒータによる回転軸への熱影響をさらに軽減することができるため、自動製パン器の信頼性を向上させることができる。 This makes it possible to further reduce the thermal effect on the rotating shaft by the first heater, and thus improve the reliability of the automatic bread maker.
本発明の第7態様によれば、前記突出部の外側表面の材料は、前記パン容器の材料よりも赤外線反射率が高い、第1態様から第6態様のいずれか1つに記載の自動製パン器を提供する。 According to the seventh aspect of the present invention, the material of the outer surface of the protruding portion has an infrared reflectance higher than that of the material of the bread container, and is manufactured automatically according to any one of the first to sixth aspects. Provide bread machine.
 これによって、第1のヒータによる回転軸および軸受への熱影響をさらに軽減することができるため、自動製パン器の信頼性を向上させることができる。 This makes it possible to further reduce the thermal effect of the first heater on the rotating shaft and the bearing, thereby improving the reliability of the automatic bread maker.
本発明の第8態様によれば、前記第1のヒータに対向する前記パン容器の前記底部は、前記パン容器の材料よりも赤外線吸収率の高い材料で塗装される、第1態様から第7態様のいずれか1つに記載の自動製パン器を提供する。 According to an eighth aspect of the present invention, the bottom portion of the bread container facing the first heater is coated with a material having a higher infrared absorption rate than the material of the bread container. An automatic bread maker according to any one of the aspects is provided.
 これによって、パン容器の底部をより集中的に加熱することができるため、特にハード系のパンを作成する際にパンの出来栄えを向上させることができる。 This makes it possible to heat the bottom of the bread container more intensively, so that it is possible to improve the quality of the bread, particularly when creating a hard bread.
本発明の第9態様によれば、前記第1のヒータの熱を前記パン容器の前記底部に向けて反射させるように前記第1のヒータの周囲に配置された反射板をさらに備える、第1態様から第8態様のいずれか1つに記載の自動製パン器を提供する。 According to a ninth aspect of the present invention, there is further provided a reflecting plate disposed around the first heater so as to reflect heat of the first heater toward the bottom of the bread container. An automatic bread maker according to any one of the eighth to eighth aspects is provided.
 これによって、パン容器の底部をより集中的に加熱することができるため、特にハード系のパンを作成する際にパンの出来栄えを向上させることができる。 This makes it possible to heat the bottom of the bread container more intensively, so that it is possible to improve the quality of the bread, particularly when creating a hard bread.
 本発明の第10態様によれば、前記回転軸を回転させる回転機構をさらに備え、
 前記回転機構は、
 前記回転軸に対する回転駆動力を発生させるモータと、
 前記焼成室の底部に配置され、前記モータによって駆動される駆動コネクタと、
 前記回転軸に取り付けられ、前記駆動コネクタに接続されて従動する従動コネクタとを備え、
前記モータによる回転駆動力は、前記駆動コネクタおよび前記従動コネクタを介して前記回転軸に伝達される、第1態様から第9態様のいずれか1つに記載の自動製パン器を提供する。
According to a tenth aspect of the present invention, further comprising a rotation mechanism for rotating the rotation shaft,
The rotation mechanism is
A motor for generating a rotational driving force for the rotational shaft;
A drive connector disposed at the bottom of the firing chamber and driven by the motor;
A driven connector attached to the rotating shaft and connected to the drive connector to be driven;
The automatic bread maker according to any one of the first to ninth aspects, wherein the rotational driving force by the motor is transmitted to the rotation shaft via the drive connector and the driven connector.
 本発明の第11態様によれば、前記制御部は、パン生地を加熱して焼き上げる焼成工程において、前記第1のヒータへの通電を開始した後に前記第2のヒータへの通電を開始する、第1態様から第10態様のいずれか1つに記載の自動製パン器を提供する。 According to the eleventh aspect of the present invention, the controller starts energizing the second heater after energizing the first heater in the baking step of heating and baking the dough. An automatic bread maker according to any one of the first to tenth aspects is provided.
 これによって、特にハード系のパンを作成する際に、第2のヒータよりも先に第1のヒータでパン生地の下部を集中的に加熱することで、パンの出来栄えを向上させることができる。 This makes it possible to improve the quality of bread by heating the lower part of the dough intensively with the first heater prior to the second heater, particularly when creating a hard bread.
 以下、本発明の第1実施形態-第3実施形態について、図面を参照しながら説明する。なお、この第1実施形態-第3実施形態によって本発明が限定されるものではない。 Hereinafter, first to third embodiments of the present invention will be described with reference to the drawings. The present invention is not limited to the first to third embodiments.
 (第1実施形態)
図1において、第1実施形態における自動製パン器50は、本体1と、焼成室17と、ヒータ4と、庫内温度センサ16とを備える。本体1は、有底筒状の形状を有し、第1実施形態では樹脂で形成されている。焼成室17は、本体1内に設けられており、第1実施形態では板金で構成されている。ヒータ4は、焼成室17内を加熱するヒータである。ヒータ4は、第1のヒータ4aと、第2のヒータ4bとを備える。第1のヒータ4aおよび第2のヒータ4bはともに焼成室17内に配置される。第1のヒータ4aは、第2のヒータ4bよりも下方に配置される。庫内温度センサ16は、焼成室17内の温度を検知するセンサである。
(First embodiment)
In FIG. 1, the automatic bread maker 50 according to the first embodiment includes a main body 1, a baking chamber 17, a heater 4, and an internal temperature sensor 16. The main body 1 has a bottomed cylindrical shape, and is formed of resin in the first embodiment. The firing chamber 17 is provided in the main body 1 and is made of sheet metal in the first embodiment. The heater 4 is a heater that heats the inside of the firing chamber 17. The heater 4 includes a first heater 4a and a second heater 4b. Both the first heater 4 a and the second heater 4 b are disposed in the baking chamber 17. The first heater 4a is disposed below the second heater 4b. The internal temperature sensor 16 is a sensor that detects the temperature in the baking chamber 17.
自動製パン器50はさらに、パン容器2と、回転軸6と、軸受41と、パン羽根5と、従動コネクタ14とを備える。パン容器2は、有底筒状の形状を有した容器であり、上側に筒部2aを備え、下側に底部2bを備える。筒部2aは、鉛直方向に延びた筒形の形状を有する。底部2bは、パン容器2の底を構成する部分であり、筒部2aの下端から延びて部分的に湾曲するとともに、水平方向に延びてパン容器2の底を閉じるよう形成される。パン容器2の底部2bは、筒部2aとの接続箇所2cから湾曲した湾曲部と、湾曲部から概ね水平方向に延びた水平部とを備える。すなわち、パン容器2の底部2bは、パン容器2の最底部に位置して概ね水平に延びる水平部だけでなく、その水平部に続くように湾曲した湾曲部の両方を含む。接続箇所2cは、パン容器2において鉛直方向に延びる部分(筒部2a)と湾曲した部分の境目に位置する。また、パン容器2には、内側に突出した凸部2dが形成されている。凸部2dは、筒部2aと底部2bにまたがる位置に形成されている。パン容器2は、焼成室17に着脱自在に設置することができる。すなわち、パン容器2は、焼成室17内に着脱自在に装着される。図1では、パン容器2が焼成室17内に取り付けられた状態、すなわち、パン容器2が焼成室17内の底部上に配置された状態が示される。第1実施形態では、パン容器2はアルミニウムで形成されている。回転軸6は、パン容器2の底部2bにおいて、パン容器2の内側から外側に貫通するように設けられた軸である。回転軸6は、軸受41によって回転自在にパン容器2に軸支されている。回転軸6は、後述する突出部40の内側へ延出されている。軸受41は、パン容器2と一体に構成される。パン羽根5は、パン容器2内のパン生地31を混練するための羽根である。パン羽根5は、着脱自在に回転軸6に嵌合(係合)させることができる。パン羽根5は、回転軸6に嵌合されると、回転軸6の回転に伴って回転する。回転軸6には、従動コネクタ14が一体的に取り付けられている。従動コネクタ14は、パン容器2の外側に配置されており、後述する駆動コネクタ13に接続されて従動する。 The automatic bread maker 50 further includes the bread container 2, the rotating shaft 6, the bearing 41, the bread blade 5, and the driven connector 14. The bread container 2 is a container having a bottomed cylindrical shape, and includes a cylinder portion 2a on the upper side and a bottom portion 2b on the lower side. The cylinder part 2a has a cylindrical shape extending in the vertical direction. The bottom 2b is a part constituting the bottom of the bread container 2 and extends from the lower end of the cylindrical part 2a so as to be partially curved, and is formed so as to extend in the horizontal direction and close the bottom of the bread container 2. The bottom portion 2b of the bread container 2 includes a curved portion that is curved from the connection portion 2c with the cylindrical portion 2a, and a horizontal portion that extends substantially horizontally from the curved portion. That is, the bottom portion 2b of the bread container 2 includes not only a horizontal portion that is located at the bottom of the bread container 2 and extends substantially horizontally, but also a curved portion that is curved to continue to the horizontal portion. The connection part 2c is located in the boundary of the part (cylinder part 2a) extended in the perpendicular direction in the bread container 2, and the curved part. Further, the bread container 2 is formed with a convex portion 2d protruding inward. The convex portion 2d is formed at a position straddling the cylindrical portion 2a and the bottom portion 2b. The bread container 2 can be detachably installed in the baking chamber 17. That is, the bread container 2 is detachably mounted in the baking chamber 17. FIG. 1 shows a state in which the bread container 2 is attached in the baking chamber 17, that is, a state in which the bread container 2 is arranged on the bottom in the baking chamber 17. In the first embodiment, the bread container 2 is formed of aluminum. The rotation shaft 6 is a shaft provided so as to penetrate from the inside to the outside of the bread container 2 at the bottom 2 b of the bread container 2. The rotating shaft 6 is rotatably supported by the bread container 2 by a bearing 41. The rotating shaft 6 extends to the inside of a protrusion 40 described later. The bearing 41 is configured integrally with the bread container 2. The bread blade 5 is a blade for kneading the bread dough 31 in the bread container 2. The pan blade 5 can be detachably fitted (engaged) with the rotary shaft 6. When the pan blade 5 is fitted to the rotary shaft 6, it rotates with the rotation of the rotary shaft 6. A driven connector 14 is integrally attached to the rotating shaft 6. The driven connector 14 is disposed outside the bread container 2 and is driven by being connected to a drive connector 13 described later.
 パン羽根5は、羽根軸受部5cと、平板部5dとを備える。羽根軸受部5cは、回転軸6に嵌合する軸受である。平板部5dは、羽根軸受部5cに取り付けられた混練用の羽根板である。平板部5dは、羽根軸受部5cの外周面から回転軸6の軸方向と垂直な方向に突出する。図1に示すように、パン容器2が焼成室17内に設置された状態では、平板部5dは、羽根軸受部5cの外周面から水平方向に向かって延びる。 The pan blade 5 includes a blade bearing portion 5c and a flat plate portion 5d. The blade bearing portion 5 c is a bearing that is fitted to the rotary shaft 6. The flat plate portion 5d is a kneading blade plate attached to the blade bearing portion 5c. The flat plate portion 5d protrudes from the outer peripheral surface of the blade bearing portion 5c in a direction perpendicular to the axial direction of the rotary shaft 6. As shown in FIG. 1, in the state where the bread container 2 is installed in the baking chamber 17, the flat plate portion 5d extends in the horizontal direction from the outer peripheral surface of the blade bearing portion 5c.
自動製パン器50はさらに、突出部40を備える。突出部40は、パン容器2の底部2bからパン容器2の外側に突出した部材であり、回転軸6と軸受41を覆うように配置されている。突出部40は、パン容器2と一体に構成されており、第1実施形態では、パン容器2と同じ材料であるアルミニウムで形成されている。 The automatic bread maker 50 further includes a protrusion 40. The protrusion 40 is a member that protrudes from the bottom 2 b of the bread container 2 to the outside of the bread container 2, and is disposed so as to cover the rotating shaft 6 and the bearing 41. The protrusion 40 is configured integrally with the bread container 2, and is formed of aluminum which is the same material as the bread container 2 in the first embodiment.
突出部40は、断熱層である空気層40aを形成するように2重管構造を有している。突出部40の具体的な構造については、図4A、4Bを用いて後述する。断熱層である空気層40aの形成により、焼成室17から回転軸6および軸受41への熱移動が抑制される。このように、突出部40は、回転軸6および軸受41を遮熱する機能を有するため、「遮熱部」とも称される。 The protrusion 40 has a double pipe structure so as to form an air layer 40a that is a heat insulating layer. The specific structure of the protrusion 40 will be described later with reference to FIGS. 4A and 4B. The formation of the air layer 40a, which is a heat insulating layer, suppresses heat transfer from the firing chamber 17 to the rotating shaft 6 and the bearing 41. Thus, since the protrusion part 40 has a function which shields the rotating shaft 6 and the bearing 41, it is also called a "heat shield part."
 図1に示すように、第1のヒータ4aは、焼成室17内においてパン容器2の底部2bの下方かつ突出部40の外側に配置されている。すなわち、第1のヒータ4aは、突出部40において回転軸6や軸受41が配置される内側とは逆側(すなわち外側)に配置されている。第1実施形態における第1のヒータ4aは、上方視において、パン容器2の内側に配置されている。すなわち、パン容器2の外側にははみ出していない。これに対して、第1実施形態における第2のヒータ4bは、上方視において、パン容器2の内側ではなく外側に配置されている。 As shown in FIG. 1, the first heater 4 a is disposed in the baking chamber 17 below the bottom 2 b of the bread container 2 and outside the protruding portion 40. That is, the first heater 4a is disposed on the opposite side (that is, the outer side) of the protruding portion 40 from the inner side where the rotating shaft 6 and the bearing 41 are disposed. The first heater 4a in the first embodiment is disposed inside the bread container 2 when viewed from above. That is, it does not protrude outside the bread container 2. On the other hand, the 2nd heater 4b in 1st Embodiment is arrange | positioned not the inner side but the outer side of the bread container 2 in the upper view.
自動製パン器50はさらに、回転軸6を回転させる回転機構を備える。具体的には、回転機構として、モータ7と、小プーリ11と、大プーリ12と、駆動コネクタ13とが設けられている。モータ7は、回転軸6に対する回転駆動力を発生させるモータである。小プーリ11は、モータ7の駆動軸に一体的に取り付けられたプーリである。大プーリ12は、駆動コネクタ13と一体に取り付けられたプーリである。小プーリ11と大プーリ12は、ベルト15で互いに接続されている。モータ7の回転動作は、小プーリ11、ベルト15、大プーリ12を介して駆動コネクタ13に伝達される。このように、駆動コネクタ13は、モータ7によって駆動される。第1実施形態では、駆動コネクタ13は焼成室17の底部に配置されている。 The automatic bread maker 50 further includes a rotation mechanism that rotates the rotation shaft 6. Specifically, a motor 7, a small pulley 11, a large pulley 12, and a drive connector 13 are provided as a rotation mechanism. The motor 7 is a motor that generates a rotational driving force for the rotating shaft 6. The small pulley 11 is a pulley that is integrally attached to the drive shaft of the motor 7. The large pulley 12 is a pulley attached integrally with the drive connector 13. The small pulley 11 and the large pulley 12 are connected to each other by a belt 15. The rotation operation of the motor 7 is transmitted to the drive connector 13 through the small pulley 11, the belt 15, and the large pulley 12. Thus, the drive connector 13 is driven by the motor 7. In the first embodiment, the drive connector 13 is disposed at the bottom of the baking chamber 17.
パン容器2を焼成室17内に設置する際には、パン容器2側の従動コネクタ14を焼成室17側の駆動コネクタ13に嵌合・接続させる。これにより、モータ7の回転動作が駆動コネクタ13を介して従動コネクタ14に伝達される。従動コネクタ14が回転すると、回転軸6が回転して、パン容器2内のパン羽根5を回転させることができる。 When the bread container 2 is installed in the baking chamber 17, the driven connector 14 on the bread container 2 side is fitted and connected to the drive connector 13 on the baking chamber 17 side. Thereby, the rotation operation of the motor 7 is transmitted to the driven connector 14 via the drive connector 13. When the driven connector 14 rotates, the rotating shaft 6 rotates and the bread blades 5 in the bread container 2 can be rotated.
 上述したように、回転軸6を回転させる回転機構は、少なくともモータ7、駆動コネクタ13および従動コネクタ14により構成されている。この回転機構において、モータ7による回転駆動力は、駆動コネクタ13および従動コネクタ14を介して、回転軸6に伝達される。 As described above, the rotating mechanism that rotates the rotating shaft 6 includes at least the motor 7, the drive connector 13, and the driven connector 14. In this rotating mechanism, the rotational driving force by the motor 7 is transmitted to the rotating shaft 6 via the drive connector 13 and the driven connector 14.
 自動製パン器50はさらに、蓋3と、内蓋21と、具材収納容器20と、ソレノイド10と、イースト収納部24と、イースト投入手段25とを備える。 The automatic bread maker 50 further includes a lid 3, an inner lid 21, an ingredient storage container 20, a solenoid 10, a yeast storage section 24, and a yeast throwing means 25.
蓋3は、下蓋3aと、上蓋3bとを備える。下蓋3aおよび上蓋3bはともに、樹脂で形成される。内蓋21は、本体1の上部を覆うように下蓋3aに係合、固定されている。具材収納容器20は、レーズンやナッツ類などを自動投入するための容器である。具材収納容器20は、内蓋21および下蓋3aに取り外し自在に固定することができる。 The lid 3 includes a lower lid 3a and an upper lid 3b. Both the lower lid 3a and the upper lid 3b are made of resin. The inner lid 21 is engaged with and fixed to the lower lid 3 a so as to cover the upper portion of the main body 1. The ingredient storage container 20 is a container for automatically charging raisins and nuts. The ingredient storage container 20 can be detachably fixed to the inner lid 21 and the lower lid 3a.
具材収納容器20は、容器蓋20aと、容器蓋開手段20bと、容器本体20cとを備える。容器蓋20aは、容器本体20cに回動自在に接続されている。容器蓋開手段20bは、容器蓋20aを閉じた状態で固定する。容器蓋20aは、閉じられた状態で、内蓋21の一部を構成する。容器蓋20aの少なくとも底部は、金属で形成される。 The ingredient storage container 20 includes a container lid 20a, a container lid opening means 20b, and a container body 20c. The container lid 20a is rotatably connected to the container body 20c. The container lid opening means 20b fixes the container lid 20a in a closed state. The container lid 20a constitutes a part of the inner lid 21 in a closed state. At least the bottom of the container lid 20a is made of metal.
 本体1内には、ソレノイド10が配置されている。ソレノイド10は、シリンダ10aと、ロッド10bとを備える。シリンダ10aは、ロッド10bを支持する。ソレノイド10は、ロッド10bの動作を操作することにより、容器蓋開手段20bの動作を操作する。この操作により、容器蓋20aは、容器本体20cに対して閉じられた状態と開放される状態との間で連動される。 A solenoid 10 is disposed in the main body 1. The solenoid 10 includes a cylinder 10a and a rod 10b. The cylinder 10a supports the rod 10b. The solenoid 10 operates the operation of the container lid opening means 20b by operating the operation of the rod 10b. By this operation, the container lid 20a is interlocked between a closed state and an opened state with respect to the container body 20c.
イースト収納部24は、ドライイーストを自動投入するための部材であり、下蓋3aに設けられている。イースト投入手段25は、内蓋21に押し当てられることで、イースト収納部24内にイーストを保持する。イースト投入手段25が内蓋21から離れることによって、イーストがパン容器2へ自動投入される。 The yeast storage unit 24 is a member for automatically charging dry yeast, and is provided on the lower lid 3a. The yeast throwing means 25 holds the yeast in the yeast storage portion 24 by being pressed against the inner lid 21. The yeast is automatically charged into the bread container 2 when the yeast charging means 25 is separated from the inner lid 21.
製パン工程の最終工程である焼成工程時には、ヒータ4の加熱により焼成室17内の雰囲気温度は例えば、150~230℃の高温となる。このとき、内蓋21の表面も約150~230℃の高温となり、外蓋3aの表面も約60~90℃の温度となる。このように、外蓋3aや内蓋21などを含む蓋体の全体が加熱される。このような蓋体の中にソレノイド10を配設すると、焼成工程においてソレノイド10が高温になり、コイル線やリード線の温度の上昇による問題が生じる場合がある(絶縁劣化など)。これに対して、第1実施形態によれば、ソレノイド10が本体1内に配置されているため、ソレノイド10の温度も高くなりにくい。よって、ソレノイド10の信頼性を向上させることができる。 During the baking process, which is the final process of the bread making process, the atmospheric temperature in the baking chamber 17 becomes a high temperature of 150 to 230 ° C., for example, due to the heating of the heater 4. At this time, the surface of the inner lid 21 also has a high temperature of about 150 to 230 ° C., and the surface of the outer lid 3a also has a temperature of about 60 to 90 ° C. In this way, the entire lid including the outer lid 3a and the inner lid 21 is heated. When the solenoid 10 is disposed in such a lid, the solenoid 10 becomes high temperature in the firing process, and there may be a problem due to an increase in the temperature of the coil wire or the lead wire (insulation deterioration or the like). On the other hand, according to the first embodiment, since the solenoid 10 is disposed in the main body 1, the temperature of the solenoid 10 is not easily increased. Therefore, the reliability of the solenoid 10 can be improved.
蓋3は、ヒンジ22を介して、本体1に開閉可能に取り付けられている。よって、蓋3を閉める時、内蓋21は本体1に当たり、内蓋21は本体1から衝撃・振動を受ける。約100g程度の重量部品であるソレノイド10を蓋体に配置した場合には、ソレノイド10をこの衝撃、振動に耐えうるように固定するために、複数のネジ止め固定等の強固な固定が必要とされる。これに対して、第1実施形態では、ソレノイド10を蓋体ではなく、蓋体の後側にある本体1の内部に配置している。よって、ネジ止め固定等の強固な固定が必要なくなる。さらに、第1実施形態の構成によれば、蓋体の中にソレノイド10を配設する場合に比べて、スペースを効率的に活用することができるため、蓋体を薄くすることができる。 The lid 3 is attached to the main body 1 through a hinge 22 so as to be opened and closed. Therefore, when the lid 3 is closed, the inner lid 21 hits the main body 1, and the inner lid 21 receives impact and vibration from the main body 1. When the solenoid 10, which is a heavy component of about 100 g, is arranged on the lid, it is necessary to firmly fix the solenoid 10 so as to be able to withstand this shock and vibration. Is done. On the other hand, in 1st Embodiment, the solenoid 10 is arrange | positioned inside the main body 1 in the back side of a cover body instead of a cover body. Therefore, it is not necessary to perform strong fixing such as screw fixing. Furthermore, according to the structure of 1st Embodiment, compared with the case where the solenoid 10 is arrange | positioned in a cover body, since a space can be utilized efficiently, a cover body can be made thin.
上蓋3bは、下蓋3aにヒンジ23を介して回動自在に接続されている。このような上蓋3bは、焼成工程における蒸気の漏洩などを防ぐ役割を有する。 The upper lid 3b is rotatably connected to the lower lid 3a via a hinge 23. Such an upper lid 3b has a role of preventing leakage of steam in the baking process.
なお、図1において、具材収納容器20は、上側が閉じられており開かない形態であるが、上方向に開くようにしても良い。その場合、具材収納容器20が蓋3に装着された状態でも、上蓋3bを開けて、具材収納容器20に具材を収納することができる。 In FIG. 1, the ingredient storage container 20 has a form in which the upper side is closed and cannot be opened, but it may be opened upward. In this case, even when the ingredient storage container 20 is mounted on the lid 3, the ingredient can be stored in the ingredient storage container 20 by opening the upper lid 3 b.
以上のように構成された第1実施形態の自動製パン器50での製パン工程とその作用について説明する。 A bread making process and its operation in the automatic bread maker 50 of the first embodiment configured as described above will be described.
まずユーザは、パン容器2の中に、小麦粉、水、塩といったハード系のパンの材料を投入する。材料は、ユーザがレシピを参照してあらかじめ計量されている。材料の投入後、ユーザは、イースト収納部24にドライイーストを入れて、操作入力表示部9を操作してメニューを選択する。選択されたメニューに沿って、自動製パン器50は製パン工程を実行する。 First, the user puts hard bread materials such as flour, water, and salt into the bread container 2. Ingredients are pre-weighed by the user with reference to the recipe. After putting the material, the user puts dry yeast in the yeast storage unit 24 and operates the operation input display unit 9 to select a menu. According to the selected menu, the automatic bread maker 50 executes the bread making process.
(混練工程)
製パン工程がスタートすると、制御部8は、モータ7を駆動させてパン羽根5を回転させる。パン羽根5の回転により、パン生地31が混練される。すなわち、混練工程が開始される。パン羽根5の回転により、小麦粉と水が混ぜられて、一体のパン生地31となる。一体となったパン生地31は、パン羽根5の回転によってパン容器2の壁面の凸部2dに押し付けられる。パン生地31は、パン容器2の壁面から押圧力を受ける。パン容器2の壁面に押し付けられたパン生地31の一部は、粘性によってパン容器2の壁面に付着する。その状態で、パン羽根5がパン生地31を回転させることによって、パン生地31に引張り力が加わる。
(Kneading process)
When the bread making process starts, the control unit 8 drives the motor 7 to rotate the bread blade 5. The bread dough 31 is kneaded by the rotation of the bread blades 5. That is, the kneading process is started. Due to the rotation of the bread blades 5, the flour and water are mixed to form an integral dough 31. The integrated bread dough 31 is pressed against the convex portion 2 d of the wall surface of the bread container 2 by the rotation of the bread blade 5. The bread dough 31 receives a pressing force from the wall surface of the bread container 2. Part of the bread dough 31 pressed against the wall surface of the bread container 2 adheres to the wall surface of the bread container 2 due to viscosity. In this state, the bread blade 5 rotates the bread dough 31, whereby a tensile force is applied to the bread dough 31.
上述した押圧力と引張り力によって、パン生地31内のグルテンのネットワークが成長して、強いパン生地31が形成される。 Due to the pressing force and the tensile force described above, a gluten network in the dough 31 grows, and a strong dough 31 is formed.
パン生地31にグルテンをある程度形成した後に、制御部8は、イースト投入手段25を動作させて、イーストをパン容器2内に投入する。 After forming gluten in the bread dough 31 to some extent, the control unit 8 operates the yeast throwing means 25 to throw yeast into the bread container 2.
その後に、パン羽根5の動作を止めて、パン生地31を所定時間寝かせる。これにより、パン生地31内のたんぱく質の水和を進め、グルテンの生成をさらに促進する。 Thereafter, the operation of the bread blades 5 is stopped, and the bread dough 31 is laid for a predetermined time. Thereby, the hydration of the protein in bread dough 31 is advanced, and the production | generation of gluten is further accelerated | stimulated.
パン生地31を所定時間寝かせた後、制御部8は、パン羽根5を再度動作させる。これにより、イーストをパン生地31に均一に練りこみつつ、パン生地31に物理的な押圧力、引張力を加える。パン生地31内のグルテンのネットワークが成長して、適度な弾力性と伸展性を備えるパン生地31を形成することができる。このようなパン生地31を形成した時点で、混練工程が終了する。 After the bread dough 31 is laid for a predetermined time, the control unit 8 operates the bread blade 5 again. Thus, physical pressing force and tensile force are applied to the bread dough 31 while kneading the yeast uniformly into the bread dough 31. The gluten network in the bread dough 31 can grow to form the bread dough 31 with appropriate elasticity and extensibility. When such bread dough 31 is formed, the kneading process is completed.
(発酵工程)
次に、自動製パン器50は、発酵工程を行い、パン生地31を発酵させる。具体的には、制御部8は、第1のヒータ4aおよび/または第2のヒータ4bに通電して、焼成室17内を加熱する。加熱開始後、制御部8は、庫内温度センサ16の検知温度が所定の発酵温度になるように温調制御する。すなわち、ヒータ4の通電が制御される。
(Fermentation process)
Next, the automatic bread maker 50 performs a fermentation process to ferment the dough 31. Specifically, the control unit 8 energizes the first heater 4a and / or the second heater 4b to heat the inside of the baking chamber 17. After the start of heating, the controller 8 controls the temperature so that the temperature detected by the internal temperature sensor 16 becomes a predetermined fermentation temperature. That is, the energization of the heater 4 is controlled.
なお、第2のヒータ4bには通電せずに、第1のヒータ4aのみに通電することで、発酵温度の温調制御を行ってもよい。第1のヒータ4aからの対流熱および輻射熱は、パン容器2の底部2bに遮られる。よって、第1のヒータ4aのみに通電する制御によれば、焼成室17の下部空間は加熱されやすい一方で、焼成室17の上部空間は加熱されにくくなる。これにより、パン生地31の上部からの直接的な加熱量は少なくなる。すなわち、加熱によるパン生地31の乾燥、硬化を防ぐことができる。パン生地31の乾燥、硬化を防ぐことで、パン生地31の伸展性を向上させて、製パン性能を向上させることができる。 Note that the temperature control of the fermentation temperature may be performed by energizing only the first heater 4a without energizing the second heater 4b. Convective heat and radiant heat from the first heater 4 a are blocked by the bottom 2 b of the bread container 2. Therefore, according to the control for energizing only the first heater 4a, the lower space of the baking chamber 17 is easily heated, while the upper space of the baking chamber 17 is hardly heated. Thereby, the direct heating amount from the upper part of the bread dough 31 decreases. That is, drying and hardening of the bread dough 31 due to heating can be prevented. By preventing the bread dough 31 from drying and curing, the extensibility of the bread dough 31 can be improved and the bread making performance can be improved.
この発酵工程では、適切な発酵温度条件にてパン生地31を発酵させる。これにより、イーストが活性し、でんぷん由来の糖分を消費して、炭酸ガスとアルコール分を発生させる。これによって、パン生地31中に無数の気泡が内包され、パン生地31の風味が良くなる。 In this fermentation process, the bread dough 31 is fermented under appropriate fermentation temperature conditions. As a result, the yeast is activated, consuming starch-derived sugar and generating carbon dioxide and alcohol. As a result, countless bubbles are included in the bread dough 31, and the flavor of the bread dough 31 is improved.
発酵工程では、時間が経過すると、パン生地31のグルテンのネットワークが弛緩し、弾力を失う。そこで、ガス抜きを実施することで、炭酸ガス量を適切に減らす。これにより、再びグルテンのネットワークを緊張させて、パン生地31内のイーストの活性を増すことができる。 In the fermentation process, as time passes, the gluten network of the dough 31 relaxes and loses elasticity. Therefore, the amount of carbon dioxide gas is appropriately reduced by degassing. Thereby, the network of gluten can be tensioned again and the activity of the yeast in the bread dough 31 can be increased.
ガス抜きは、制御部8がパン羽根5を動作させることにより実施される。パン羽根5を継続的に低速で又は間欠的に回転させることによって、パン生地31を引きちぎらない程度の回転力で、パン生地31を巻き取る。これにより、パン生地31の表面が引張られ、パン生地31内の大きな気泡が潰れることで、グルテンのネットワークの緊張を取り戻す。これにより、パン生地31を更なる発酵に耐えうる状態とすることができる。 The degassing is performed by the control unit 8 operating the pan blade 5. By continuously rotating the bread blade 5 at a low speed or intermittently, the bread dough 31 is wound with a rotational force that does not tear the bread dough 31. Thereby, the surface of the bread dough 31 is pulled, and the large bubbles in the bread dough 31 are crushed, thereby regaining the tension of the gluten network. Thereby, the bread dough 31 can be made into the state which can endure further fermentation.
所定回数、発酵とガス抜きを繰り返した後、最終の発酵を終えた時点で、発酵工程を終了する。 After repeating fermentation and degassing a predetermined number of times, the fermentation process is terminated when the final fermentation is completed.
(焼成工程)
 次に、自動製パン器50は、焼成工程を行い、パン生地31を焼き上げる。焼成工程では、制御部8は、第1のヒータ4aへの通電を開始した後に、第2のヒータ4bへの通電を開始する。すなわち、制御部8はまず、第2のヒータ4bには通電せずに、パン容器2の底部2bに近接する第1のヒータ4aのみに通電する。これにより、パン生地31の下部温度(パン生地31のうち、パン容器2の底部2bに近い下側の温度)を急速に上昇させる。
(Baking process)
Next, the automatic bread maker 50 performs a baking process to bake the dough 31. In the firing step, the control unit 8 starts energizing the second heater 4b after starting energizing the first heater 4a. That is, first, the control unit 8 does not energize the second heater 4b, but energizes only the first heater 4a adjacent to the bottom 2b of the bread container 2. As a result, the lower temperature of the bread dough 31 (the lower temperature of the bread dough 31 near the bottom 2b of the bread container 2) is rapidly increased.
 このように、第1のヒータ4aに通電することによって、パン容器2の下部を急速に加熱する一方で、第2のヒータ4bには通電しないことで、焼成室17の上部は緩慢に加熱される。 In this way, by energizing the first heater 4a, the lower part of the bread container 2 is rapidly heated, while by not energizing the second heater 4b, the upper part of the baking chamber 17 is heated slowly. The
 従来では、焼成工程において、焼成室17の内部を均一に加熱していた。このような加熱方法では、パン生地31の上部温度(パン生地31のうち、パン容器2の底部2bから遠い上側の温度)が、パン生地31の下部温度と同様に上昇する。よって、バターなどの油脂類を含まないハード系のパンの場合には、パン生地31の上部において乾燥および硬化が促進してしまう。これにより、パン生地31の膨張が妨げられる。 Conventionally, the inside of the firing chamber 17 was uniformly heated in the firing step. In such a heating method, the upper temperature of the bread dough 31 (the temperature of the upper side of the bread dough 31 far from the bottom 2b of the bread container 2) rises in the same manner as the lower temperature of the bread dough 31. Therefore, in the case of a hard bread that does not contain fats and oils such as butter, drying and hardening are promoted in the upper part of the bread dough 31. Thereby, expansion | swelling of the bread dough 31 is prevented.
 これに対して、第1実施形態では、焼成工程において、最初に第1のヒータ4aのみに通電することで、パン生地31の下部を中心に加熱しながら、パン生地31の上部温度の上昇を緩慢にしている。よって、パン生地31表面の乾燥や硬化を抑制することができる。同時に、パン生地31の下部温度を急速に上昇させているため、パン生地31内のイーストを活性させることができる。また、急速な昇温によりパン生地31の内部に水蒸気を発生させることで、その水蒸気の作用によってパン生地31の膨張を促進することができる。 On the other hand, in the first embodiment, in the baking process, only the first heater 4a is first energized, so that the rise in the upper temperature of the bread dough 31 is slowed while heating the lower part of the bread dough 31 as the center. ing. Therefore, drying and hardening of the bread dough 31 surface can be suppressed. At the same time, since the lower temperature of the dough 31 is rapidly increased, the yeast in the dough 31 can be activated. Further, by generating water vapor inside the bread dough 31 by rapid temperature rise, the expansion of the bread dough 31 can be promoted by the action of the water vapor.
 次に、制御部8は、所定時間の経過後、又は、パン生地31の下部温度が充分に上昇したことを検知したときに、第2のヒータ4bに通電する。第1のヒータ4aへの通電は停止される。第2のヒータ4bへの通電により、焼成室17内が均一に加熱される。その後、制御部8は、焼成室17内の温度が所定の焼成温度になるように加熱制御する。これにより、パン生地31全体を均一に焼き上げることができる。パン生地31が焼き上がったら、焼成工程を終了する。 Next, the control unit 8 energizes the second heater 4b after a predetermined time has elapsed or when it is detected that the lower temperature of the bread dough 31 has sufficiently increased. The energization of the first heater 4a is stopped. The inside of the baking chamber 17 is uniformly heated by energizing the second heater 4b. Thereafter, the controller 8 controls the heating so that the temperature in the baking chamber 17 becomes a predetermined baking temperature. Thereby, the whole bread dough 31 can be baked uniformly. When the bread dough 31 is baked, the baking process is terminated.
 上述した第1実施形態における自動製パン器50では、第1のヒータ4aは、パン容器2の底部2bと焼成室17の底部の間において、突出部40に近接する位置に配置されている。すなわち、第1のヒータ4aは、パン容器2の回転軸6および軸受41の近傍に配置されている。よって、上述した焼成工程において、第1のヒータ4aに通電している際には、第1のヒータ4aからの熱が回転軸6および軸受41に伝わろうとする。焼成室17内におけるこの伝熱傾向は、前述した特許文献1のように下側のヒータが焼成室の底部に埋め込まれ、焼成室の外側に配置される形態と比較すると、より顕著である。しかしながら、第1実施形態では、突出部40が、焼成室17内の底部上に配置されたときに、回転軸6および軸受41と第1のヒータ4aとの間における遮熱部として機能する。これにより、回転軸6および軸受41が過剰に加熱されることを抑制することができる。そのため、回転軸6や軸受41の変形および損傷を防ぐことができる。また、軸受41が流体軸受の場合には、流体が流出することを防ぐことができる。このようにして、自動製パン器50の信頼性を向上および確保することができる。 In the automatic bread maker 50 according to the first embodiment described above, the first heater 4a is disposed between the bottom 2b of the bread container 2 and the bottom of the baking chamber 17 at a position close to the protrusion 40. That is, the first heater 4 a is disposed in the vicinity of the rotating shaft 6 and the bearing 41 of the bread container 2. Therefore, in the firing step described above, when the first heater 4a is energized, the heat from the first heater 4a tends to be transmitted to the rotating shaft 6 and the bearing 41. This tendency of heat transfer in the firing chamber 17 is more conspicuous as compared to a configuration in which the lower heater is embedded in the bottom of the firing chamber and disposed outside the firing chamber as in Patent Document 1 described above. However, in 1st Embodiment, when the protrusion part 40 is arrange | positioned on the bottom part in the baking chamber 17, it functions as a heat shield part between the rotating shaft 6, the bearing 41, and the 1st heater 4a. Thereby, it can suppress that the rotating shaft 6 and the bearing 41 are heated too much. Therefore, deformation and damage of the rotating shaft 6 and the bearing 41 can be prevented. Moreover, when the bearing 41 is a fluid bearing, it can prevent that a fluid flows out. In this way, the reliability of the automatic bread maker 50 can be improved and secured.
また、第1実施形態における自動製パン器50は、第1のヒータ4aとその上方に配置された第2のヒータ4bを備えたことにより、柔軟な加熱を行うことができる。特に、焼成室内17内のパン容器2の底部2bの下方に第1のヒータ4aを設けたことにより、パン容器2の底部2bを集中的に加熱することができる。これにより、特にハード系のパンを作成する際に、パン生地31の下部を急速に加熱することができるため、パン生地31の内部に水蒸気を発生させ、その水蒸気によりパン生地31内の気泡同士の膜を破り、繋げて大きな気泡を形成することができる。このような気泡の形成により、パン生地31を大きく膨張させるとともに、パン生地31の内部の火通りを良くすることができる。よって、食味が良く、大きく膨らんだパンを製パンすることができる。このように、パン生地31の内部に水蒸気を発生させることと、焼成初期のパン生地31の上部の乾燥を抑制することを両立させることができる。よって、特にハード系のパンにおいて、大きく膨らませることができ、パンの出来栄えを向上させることができる。 In addition, the automatic bread maker 50 according to the first embodiment includes the first heater 4a and the second heater 4b disposed above the first heater 4a, so that flexible heating can be performed. In particular, by providing the first heater 4a below the bottom 2b of the bread container 2 in the baking chamber 17, the bottom 2b of the bread container 2 can be heated intensively. This makes it possible to rapidly heat the lower portion of the bread dough 31 particularly when making a hard bread, so that water vapor is generated inside the bread dough 31, and the water vapor forms a film between the bubbles in the bread dough 31. It can be broken and connected to form large bubbles. Due to the formation of such bubbles, the bread dough 31 can be greatly expanded and the fire passage inside the bread dough 31 can be improved. Therefore, the savory bread can be baked with good taste. In this way, it is possible to achieve both the generation of water vapor inside the bread dough 31 and the suppression of drying of the upper portion of the bread dough 31 at the initial stage of baking. Therefore, especially in hard bread, it can be greatly inflated, and the quality of bread can be improved.
 上述したように、第1実施形態における自動製パン器50によれば、自動製パン器50の信頼性の確保と、パンの出来栄えの向上とを両立することができる。 As described above, according to the automatic bread maker 50 in the first embodiment, it is possible to ensure both the reliability of the automatic bread maker 50 and the improvement of the bread quality.
 さらに、第1実施形態では、突出部40は、回転軸6および軸受41と第1のヒータ4aの間に断熱層(空気層40a)を備える。これにより、第1のヒータ4aからの熱を断熱層にて遮ることができるため、第1のヒータ4aによる回転軸6および軸受41への熱影響をさらに低減することができる。すなわち、自動製パン器50の信頼性を向上させることができる。 Furthermore, in 1st Embodiment, the protrusion part 40 is provided with the heat insulation layer (air layer 40a) between the rotating shaft 6, the bearing 41, and the 1st heater 4a. Thereby, since the heat from the first heater 4a can be shielded by the heat insulating layer, the thermal influence on the rotating shaft 6 and the bearing 41 by the first heater 4a can be further reduced. That is, the reliability of the automatic bread maker 50 can be improved.
 また、第1実施形態では、突出部40における断熱層として、空気層40aを形成している。空気層40a内には空気のみが充填され、空気以外の物は充填されない。これにより、断熱効果を高めつつ、製造コストの低減も図ることができる。なお、突出部40における断熱層としては、空気以外の断熱材などを充填して形成する場合や、真空層を採用してもよい。 In the first embodiment, the air layer 40a is formed as a heat insulating layer in the protruding portion 40. The air layer 40a is filled only with air and is not filled with anything other than air. Thereby, reduction of manufacturing cost can also be aimed at, improving the heat insulation effect. In addition, as a heat insulation layer in the protrusion part 40, when filling and forming heat insulating materials other than air, you may employ | adopt a vacuum layer.
なお、第1実施形態では、突出部40の材料を、パン容器2の材料と同じアルミニウムとしているが、このような場合に限らず例えば、ステンレス、セラミック、樹脂など他の材料であってもよい。また、突出部40の材料として例えば、パン容器2の材料よりも熱伝導率の低い材料(例えば耐熱樹脂)を採用してもよい。このように、突出部40の熱伝導率をパン容器2の熱伝導率よりも低くすることで、第1のヒータ4aによる回転軸6および軸受41への熱影響をさらに低減することができる。なお、ここでの熱伝導率の低い材料とは、例えばアルミニウムの熱伝導率である236W/mK以下の熱伝導率を有する材料と定義してもよい。 In the first embodiment, the material of the protruding portion 40 is the same aluminum as the material of the bread container 2, but is not limited to such a case, and may be other materials such as stainless steel, ceramic, and resin. . Further, for example, a material (for example, a heat resistant resin) having a lower thermal conductivity than the material of the bread container 2 may be employed as the material of the protruding portion 40. Thus, by making the thermal conductivity of the protrusion 40 lower than the thermal conductivity of the bread container 2, the thermal influence on the rotating shaft 6 and the bearing 41 by the first heater 4 a can be further reduced. Here, the material having low thermal conductivity may be defined as a material having a thermal conductivity of 236 W / mK or less, which is the thermal conductivity of aluminum, for example.
また、突出部40の焼成室17側(外側)を、赤外線反射率の高い材料で構成または塗装してもよい。すなわち、突出部40の外側表面(焼成室17の内壁に対向する表面)の材料として、パン容器2の材料よりも赤外線反射率が高い材料を採用してもよい(例えば、ガルバリウム鋼板、クロムメッキなど)。これにより、第1のヒータ4aによる回転軸6および軸受41への熱影響をさらに低減することができる。 Moreover, you may comprise or paint the baking chamber 17 side (outside) of the protrusion part 40 with a material with a high infrared reflectance. That is, a material having higher infrared reflectivity than the material of the bread container 2 may be adopted as the material of the outer surface of the protrusion 40 (the surface facing the inner wall of the baking chamber 17) (for example, galvalume steel plate, chrome plating). Such). Thereby, the thermal influence to the rotating shaft 6 and the bearing 41 by the 1st heater 4a can further be reduced.
次に、上述した第1実施形態における自動製パン器50の構成要素として、特にパン容器2および突出部40の構成について、図4A、4Bを用いてより詳細に説明する。図4Aは、パン容器2および突出部40の縦断面図であり、図4Bは、図4AのA1-A1断面図(突出部40の横断面図)である。 Next, as the components of the automatic bread maker 50 in the first embodiment described above, particularly the configurations of the bread container 2 and the protruding portion 40 will be described in more detail with reference to FIGS. 4A and 4B. 4A is a longitudinal sectional view of the bread container 2 and the protrusion 40, and FIG. 4B is an A1-A1 sectional view of FIG. 4A (transverse section of the protrusion 40).
 図4A、4Bに示すように、突出部40は、内筒40bと、外筒40cとを備える。内筒40bおよび外筒40cはともに、パン容器2の底部2bから下方に延びた管状の部材である。内筒40bおよび外筒40cは、空気層40aを介して、互いに間隔を空けて配置されている。言い換えれば、断熱層としての空気層40aは、内筒40bと外筒40cの間の空間に形成される。 As shown in FIGS. 4A and 4B, the projecting portion 40 includes an inner cylinder 40b and an outer cylinder 40c. Both the inner cylinder 40 b and the outer cylinder 40 c are tubular members that extend downward from the bottom 2 b of the bread container 2. The inner cylinder 40b and the outer cylinder 40c are arranged at an interval from each other via the air layer 40a. In other words, the air layer 40a as a heat insulating layer is formed in a space between the inner cylinder 40b and the outer cylinder 40c.
 内側に配置された内筒40bは、円柱形状が部分的に欠けた形状を有している。具体的には、図4Aに示すように、内筒40bの内側には、上から順に径が大きくなるように、円柱形の空隙が3段階で形成されている。これらの空隙は全て円柱形であるとともに、互いに連通している。図4Aに示すように、上側の空隙には、回転軸6が配置される。中央の空隙には、回転軸6と軸受41が配置される。下側の空隙には、回転軸6および従動コネクタ14が配置される。 The inner cylinder 40b arranged on the inner side has a shape in which a cylindrical shape is partially missing. Specifically, as shown in FIG. 4A, a cylindrical gap is formed in three stages inside the inner cylinder 40b so as to increase in diameter from the top. These voids are all cylindrical and communicate with each other. As shown in FIG. 4A, the rotation shaft 6 is disposed in the upper gap. The rotary shaft 6 and the bearing 41 are disposed in the central gap. The rotating shaft 6 and the driven connector 14 are disposed in the lower gap.
 外筒40cは、内筒40bの周囲に配置された円管状の部材である。このような外筒40cを設けることにより、外筒40cと内筒40bとの間には、図4Bに示すような円管状の空気層40aが形成される。 The outer cylinder 40c is a circular tubular member disposed around the inner cylinder 40b. By providing such an outer cylinder 40c, a circular air layer 40a as shown in FIG. 4B is formed between the outer cylinder 40c and the inner cylinder 40b.
 内筒40bと外筒40cの下端部40hは、パン容器2の底部2bから同じ距離延びた位置に配置されることで、同一平面内に配置されている。図4Aに示すように、下端部40hは、回転軸6および従動コネクタ14の下端から距離Lだけ鉛直下方に位置されている。このような構成において、パン容器2を机等に載置する際には、突出部40が台座として機能する。 The lower ends 40h of the inner cylinder 40b and the outer cylinder 40c are arranged in the same plane by being arranged at positions extending the same distance from the bottom 2b of the bread container 2. As shown in FIG. 4A, the lower end portion 40 h is positioned vertically downward from the lower end of the rotating shaft 6 and the driven connector 14 by a distance L. In such a configuration, when the bread container 2 is placed on a desk or the like, the protruding portion 40 functions as a pedestal.
また、突出部40は、回転軸6および従動コネクタ14を覆っていることから、回転軸6および従動コネクタ14を物理的な衝撃から保護する機能も有する。この場合、突出部40の材料を硬質材料とすれば、保護機能をさらに向上させることができる。 Moreover, since the protrusion part 40 has covered the rotating shaft 6 and the driven connector 14, it also has a function which protects the rotating shaft 6 and the driven connector 14 from a physical impact. In this case, if the material of the protrusion 40 is a hard material, the protective function can be further improved.
以上のように、突出部40は、回転軸6および軸受41に対する遮熱部の機能を有するだけでなく、少なくとも、パン容器2の台座機能と、回転軸5および/又は従動コネクタ14の衝撃保護機能とを有する。このように、突出部40に複数の機能を持たせることにより、自動製パン器50の構成をコンパクトかつより効率的なものにすることができる。 As described above, the protrusion 40 not only has a function of a heat shield for the rotating shaft 6 and the bearing 41, but also at least a pedestal function of the bread container 2, and impact protection of the rotating shaft 5 and / or the driven connector 14. With functions. Thus, the structure of the automatic bread maker 50 can be made more compact and more efficient by providing the protrusion 40 with a plurality of functions.
(第2実施形態)
図2は、本発明の第2実施形態における自動製パン器150の縦断面図である。
(Second Embodiment)
FIG. 2 is a longitudinal sectional view of an automatic bread maker 150 according to the second embodiment of the present invention.
図2において、第1実施形態と同じ構成については説明を省略し、第1実施形態との差異を主に説明する。 In FIG. 2, the description of the same configuration as that of the first embodiment is omitted, and differences from the first embodiment will be mainly described.
図2に示すように、第2実施形態における自動製パン器150は、回転軸6および軸受41を冷却するための冷却装置を備える。具体的には、冷却装置の一例として、空気を吸い込んで外へ吹き出すファン42が設けられている。自動製パン器150にはさらに、第1の風路43と、第2の風路44とが設けられている。第1の風路43と第2の風路44はともに、本体1の外側の周囲空気と突出部40の内部(回転軸6、軸受41、従動コネクタ14が配置される空間)とを連通した風路である。ファン42は、第2の風路44の途中に配置されている。 As shown in FIG. 2, the automatic bread maker 150 in the second embodiment includes a cooling device for cooling the rotating shaft 6 and the bearing 41. Specifically, as an example of the cooling device, a fan 42 that sucks air and blows it out is provided. The automatic bread maker 150 is further provided with a first air passage 43 and a second air passage 44. Both the first air passage 43 and the second air passage 44 communicate the ambient air outside the main body 1 with the inside of the protrusion 40 (the space in which the rotating shaft 6, the bearing 41, and the driven connector 14 are disposed). It is an airway. The fan 42 is disposed in the middle of the second air passage 44.
 このような構成において、ファン42を動作させると、第1の風路43から外気が入り、突出部40の内部に供給される。供給された空気により、回転軸6および軸受41が冷却される。回転軸6および軸受41を冷却した空気は、第2の風路44を通って、本体1の外へ排出される。 In such a configuration, when the fan 42 is operated, outside air enters from the first air passage 43 and is supplied into the protrusion 40. The rotating shaft 6 and the bearing 41 are cooled by the supplied air. The air that has cooled the rotating shaft 6 and the bearing 41 passes through the second air passage 44 and is discharged out of the main body 1.
 このように、第2実施形態における自動製パン器150は、回転軸6および軸受41を冷却するための冷却装置(ファン42)を備えることで、第1のヒータ4aによる回転軸6および軸受41への熱影響をさらに軽減することができる。また、突出部40は、遮熱部として機能するため、ファン42の空気によって焼成室17内が冷却されることはない。このようにして、効率的な冷却と焼成室17内の加熱を並行して行うことができる。 Thus, the automatic bread maker 150 in the second embodiment includes the cooling device (fan 42) for cooling the rotary shaft 6 and the bearing 41, so that the rotary shaft 6 and the bearing 41 by the first heater 4a are provided. The thermal effect on can be further reduced. Moreover, since the protrusion part 40 functions as a heat shield part, the inside of the baking chamber 17 is not cooled by the air of the fan 42. In this way, efficient cooling and heating in the baking chamber 17 can be performed in parallel.
 なお、第2実施形態では、第1の風路43から外気を吸い込むようにしたが、このような場合に限らず、ファン42の動作方向を変えることで、第2の風路44から外気を引き込むようにしてもよい。また、第2実施形態では、冷却装置として、吸い込み式のファン42を設けたが、このような場合に限らず例えば、吹き出し式のファンや、ファン以外の他の冷却装置であってもよい。 In the second embodiment, the outside air is sucked from the first air passage 43. However, the present invention is not limited to such a case, and the outside air is drawn from the second air passage 44 by changing the operation direction of the fan 42. You may make it retract. In the second embodiment, the suction-type fan 42 is provided as the cooling device. However, the present invention is not limited to such a case. For example, a blow-out fan or a cooling device other than the fan may be used.
(第3実施形態)
図3は、本発明の第3実施形態における自動製パン器250の縦断面図である。
(Third embodiment)
FIG. 3 is a longitudinal sectional view of an automatic bread maker 250 according to the third embodiment of the present invention.
図3において、第1実施形態、第2実施形態と同じ構成については説明を省略し、第1実施形態、第2実施形態との差異を主に説明する。 In FIG. 3, the description of the same configurations as those of the first embodiment and the second embodiment is omitted, and differences from the first embodiment and the second embodiment are mainly described.
図3に示すように、自動製パン器250は、第1のヒータ4aの熱をパン容器2の底部2bに向けて反射する反射板45を備える。具体的には、第1のヒータ4aの周囲に反射板45が設けられている。反射板45は、第1のヒータ4aを部分的に覆うとともに、パン容器2の底部2bに向けて開放されている。 As shown in FIG. 3, the automatic bread maker 250 includes a reflector 45 that reflects the heat of the first heater 4 a toward the bottom 2 b of the bread container 2. Specifically, a reflector 45 is provided around the first heater 4a. The reflection plate 45 partially covers the first heater 4 a and is open toward the bottom 2 b of the bread container 2.
反射板45を設けることにより、第1のヒータ4aによる輻射熱をパン容器2の底部2bに集中させることができる。同時に、突出部40に対する加熱を抑制することができる。このように、パン容器2の底部2bをより集中的に加熱することができるため、特にハード系のパンを作成する際にパンの出来栄えを向上させることができる。なお、反射板45の材料としては、例えば、ガルバリウム鋼板、クロムメッキなどであってもよい。 By providing the reflection plate 45, the radiant heat from the first heater 4 a can be concentrated on the bottom 2 b of the bread container 2. At the same time, heating of the protrusion 40 can be suppressed. Thus, since the bottom 2b of the bread container 2 can be heated more intensively, it is possible to improve the quality of the bread especially when producing a hard bread. In addition, as a material of the reflecting plate 45, a galvalume steel plate, chromium plating, etc. may be sufficient, for example.
また、パン容器2の下部外側を、赤外線吸収率の高い材料で構成又は塗装してもよい。すなわち、第1のヒータ4aに対向するパン容器2の底部2bを、パン容器2の材料よりも赤外線吸収率の高い材料で塗装してもよい(例えば、黒色塗装)。これにより、パン容器2の底部2bをより集中的に加熱することができ、特にハード系のパンを作成する際にパンの出来栄えを向上させることができる。 Moreover, you may comprise or paint the lower outer side of the bread container 2 with a material with a high infrared absorptivity. That is, the bottom 2b of the bread container 2 facing the first heater 4a may be painted with a material having an infrared absorption rate higher than that of the bread container 2 (for example, black painting). Thereby, the bottom part 2b of the bread container 2 can be heated more intensively, and when producing a hard bread | pan especially, the quality of bread can be improved.
 本発明は、添付図面を参照しながら好ましい実施形態に関連して充分に記載されているが、この技術の熟練した人々にとっては種々の変形や修正は明白である。そのような変形や修正は、添付した請求の範囲による本開示の範囲から外れない限りにおいて、その中に含まれると理解されるべきである。 Although the present invention has been fully described in connection with preferred embodiments with reference to the accompanying drawings, various variations and modifications will be apparent to those skilled in the art. Such changes and modifications are to be understood as included within the scope of the present disclosure as set forth in the appended claims.
 なお、上記様々な実施形態のうちの任意の実施形態およびその構成要素を適宜組み合わせることにより、それぞれの有する効果を奏するようにすることができる。 It should be noted that, by appropriately combining any of the above-described various embodiments and their constituent elements, the respective effects can be achieved.
 以上のように、本発明にかかる自動製パン器は、少なくとも2つのヒータを用いて柔軟な加熱制御を行うことができるため、フランスパンなどのハード系のパンだけでなく、他の自動製パン用途なども取り扱うことができ、特に一般に家庭用に使用される製パン器として有用である。 As described above, since the automatic bread maker according to the present invention can perform flexible heating control using at least two heaters, not only hard bread such as French bread but also other automatic bread maker. It can handle applications and is particularly useful as a bread maker that is generally used for home use.

Claims (11)

  1.  焼成室内に着脱自在に装着されるパン容器と、
     前記パン容器の底部から前記パン容器の外側に突出した管状の突出部と、
     前記パン容器の内側から外側へ前記パン容器の前記底部を貫通し、前記突出部の内側へ延出された回転軸と、
     前記回転軸を前記パン容器に回転自在に軸支する軸受と、
     前記パン容器内にて前記回転軸と係合するパン羽根と、
     前記焼成室内において前記パン容器の前記底部の下方かつ前記突出部の外側に配置された第1のヒータと、
     前記焼成室内において前記第1のヒータよりも上方に配置された第2のヒータと、
     前記第1および第2のヒータの通電を制御する制御部とを備え、
     前記突出部は、前記焼成室内の底部上に配置されたときに前記回転軸および前記軸受と前記第1のヒータとの間における遮熱部として機能する、自動製パン器。
    A bread container detachably mounted in the baking chamber;
    A tubular protrusion protruding from the bottom of the bread container to the outside of the bread container;
    A rotating shaft extending through the bottom of the bread container from the inside to the outside of the bread container and extending to the inside of the protrusion;
    A bearing that rotatably supports the rotating shaft on the bread container;
    Bread blades engaged with the rotating shaft in the bread container;
    A first heater disposed below the bottom of the bread container and outside the protrusion in the baking chamber;
    A second heater disposed above the first heater in the firing chamber;
    A controller that controls energization of the first and second heaters,
    The automatic bread maker that functions as a heat shield between the rotating shaft and the bearing and the first heater when the protruding portion is disposed on the bottom of the baking chamber.
  2.  前記突出部は、前記回転軸および前記軸受と前記第1のヒータの間に断熱層を備える、請求項1に記載の自動製パン器。 The automatic bread maker according to claim 1, wherein the protrusion includes a heat insulating layer between the rotary shaft and the bearing and the first heater.
  3.  前記突出部は、互いに間隔を空けて内側および外側に配置された管状の内筒および外筒を備え、
     前記突出部の前記断熱層は、前記内筒と前記外筒の間の空間に形成される、請求項2に記載の自動製パン器。
    The protrusion includes a tubular inner cylinder and an outer cylinder disposed on the inner side and the outer side at a distance from each other,
    The automatic bread maker according to claim 2, wherein the heat insulating layer of the protrusion is formed in a space between the inner cylinder and the outer cylinder.
  4.  前記断熱層は、空気層である、請求項2又は3に記載の自動製パン器。 The automatic bread maker according to claim 2 or 3, wherein the heat insulating layer is an air layer.
  5.  前記突出部の熱伝導率は、前記パン容器の熱伝導率よりも低い、請求項1から4のいずれか1つに記載の自動製パン器。 The automatic bread maker according to any one of claims 1 to 4, wherein the thermal conductivity of the protrusion is lower than the thermal conductivity of the bread container.
  6.  前記回転軸を冷却するための冷却装置をさらに備える、請求項1から5のいずれか1つに記載の自動製パン器。 The automatic bread maker according to any one of claims 1 to 5, further comprising a cooling device for cooling the rotating shaft.
  7.  前記突出部の外側表面の材料は、前記パン容器の材料よりも赤外線反射率が高い、請求項1から6のいずれか1つに記載の自動製パン器。 The automatic bread maker according to any one of claims 1 to 6, wherein a material of an outer surface of the protrusion has a higher infrared reflectance than a material of the bread container.
  8.  前記第1のヒータに対向する前記パン容器の前記底部は、前記パン容器の材料よりも赤外線吸収率の高い材料で塗装される、請求項1から7のいずれか1つに記載の自動製パン器。 The automatic bread making according to any one of claims 1 to 7, wherein the bottom portion of the bread container facing the first heater is coated with a material having an infrared absorption rate higher than that of the bread container. vessel.
  9.  前記第1のヒータの熱を前記パン容器の前記底部に向けて反射させるように前記第1のヒータの周囲に配置された反射板をさらに備える、請求項1から8のいずれか1つに記載の自動製パン器。 9. The reflector according to claim 1, further comprising a reflector disposed around the first heater so as to reflect heat of the first heater toward the bottom of the bread container. Automatic bread maker.
  10.  前記回転軸を回転させる回転機構をさらに備え、
     前記回転機構は、
     前記回転軸に対する回転駆動力を発生させるモータと、
     前記焼成室の底部に配置され、前記モータによって駆動される駆動コネクタと、
     前記回転軸に取り付けられ、前記駆動コネクタに接続されて従動する従動コネクタとを備え、
     前記モータによる回転駆動力は、前記駆動コネクタおよび前記従動コネクタを介して前記回転軸に伝達される、請求項1から9のいずれか1つに記載の自動製パン器。
    A rotation mechanism for rotating the rotation shaft;
    The rotation mechanism is
    A motor for generating a rotational driving force for the rotational shaft;
    A drive connector disposed at the bottom of the firing chamber and driven by the motor;
    A driven connector attached to the rotating shaft and connected to the drive connector to be driven;
    The automatic bread maker according to any one of claims 1 to 9, wherein a rotational driving force by the motor is transmitted to the rotating shaft through the driving connector and the driven connector.
  11.  前記制御部は、パン生地を加熱して焼き上げる焼成工程において、前記第1のヒータへの通電を開始した後に前記第2のヒータへの通電を開始する、請求項1から10のいずれか1つに記載の自動製パン器。 The controller according to any one of claims 1 to 10, wherein the controller starts energizing the second heater after starting energizing the first heater in a baking step of heating and baking the dough. Automatic bread maker described.
PCT/JP2014/002910 2013-06-03 2014-06-02 Automatic bread machine WO2014196184A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015521297A JPWO2014196184A1 (en) 2013-06-03 2014-06-02 Automatic bread machine
CN201480031137.1A CN105263377B (en) 2013-06-03 2014-06-02 Automatic bread device processed

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-116806 2013-06-03
JP2013116806 2013-06-03

Publications (1)

Publication Number Publication Date
WO2014196184A1 true WO2014196184A1 (en) 2014-12-11

Family

ID=52007841

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/002910 WO2014196184A1 (en) 2013-06-03 2014-06-02 Automatic bread machine

Country Status (3)

Country Link
JP (1) JPWO2014196184A1 (en)
CN (1) CN105263377B (en)
WO (1) WO2014196184A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109122743B (en) * 2018-08-31 2021-04-06 好运来(福建)食品有限公司 Intelligent food baking equipment suitable for prolonging shelf life
CN113440023B (en) * 2021-08-10 2023-12-22 阜阳市家居乐食品有限公司 Full-automatic high-intelligent bread machine for processing old bread

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5030398Y2 (en) * 1971-12-28 1975-09-05
JPS5896790U (en) * 1981-12-22 1983-07-01 株式会社東芝 cooking equipment
JPS6334597Y2 (en) * 1983-12-29 1988-09-13
JPS6335729Y2 (en) * 1983-12-02 1988-09-21
JPH0195715A (en) * 1987-10-05 1989-04-13 Hitachi Heating Appliance Co Ltd High-freguency heater
JPH0233524A (en) * 1988-07-21 1990-02-02 Hitachi Heating Appliance Co Ltd High frequency heating device
JPH0312114A (en) * 1989-06-08 1991-01-21 Matsushita Electric Ind Co Ltd Heating cooker
JPH0360251B2 (en) * 1986-12-19 1991-09-13 Matsushita Electric Ind Co Ltd
JPH0975230A (en) * 1995-09-11 1997-03-25 Matsushita Electric Ind Co Ltd Automatic bread maker
JPH10192155A (en) * 1997-01-07 1998-07-28 Mitsubishi Electric Corp Heating cooker
JP3082594B2 (en) * 1994-10-04 2000-08-28 松下電器産業株式会社 Automatic bread maker
JP3234911B2 (en) * 1997-01-31 2001-12-04 シャープ株式会社 High frequency cooking device

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5030398Y2 (en) * 1971-12-28 1975-09-05
JPS5896790U (en) * 1981-12-22 1983-07-01 株式会社東芝 cooking equipment
JPS6335729Y2 (en) * 1983-12-02 1988-09-21
JPS6334597Y2 (en) * 1983-12-29 1988-09-13
JPH0360251B2 (en) * 1986-12-19 1991-09-13 Matsushita Electric Ind Co Ltd
JPH0195715A (en) * 1987-10-05 1989-04-13 Hitachi Heating Appliance Co Ltd High-freguency heater
JPH0233524A (en) * 1988-07-21 1990-02-02 Hitachi Heating Appliance Co Ltd High frequency heating device
JPH0312114A (en) * 1989-06-08 1991-01-21 Matsushita Electric Ind Co Ltd Heating cooker
JP3082594B2 (en) * 1994-10-04 2000-08-28 松下電器産業株式会社 Automatic bread maker
JPH0975230A (en) * 1995-09-11 1997-03-25 Matsushita Electric Ind Co Ltd Automatic bread maker
JPH10192155A (en) * 1997-01-07 1998-07-28 Mitsubishi Electric Corp Heating cooker
JP3234911B2 (en) * 1997-01-31 2001-12-04 シャープ株式会社 High frequency cooking device

Also Published As

Publication number Publication date
CN105263377B (en) 2018-05-15
CN105263377A (en) 2016-01-20
JPWO2014196184A1 (en) 2017-02-23

Similar Documents

Publication Publication Date Title
CN1156225C (en) Bread maker with improved temperature and humidity control
US5590583A (en) Appliance for making bread and for cooking bagels
JPWO2014162743A1 (en) Cooker
JP2011529713A (en) Apparatus for preparing and cooking food and related household electrical equipment
JP2011010910A (en) Bread maker with steaming function
JPH0611251B2 (en) Fully automatic steamed bread machine
WO2014196184A1 (en) Automatic bread machine
KR101196924B1 (en) Multi-function cooking device
JP6102240B2 (en) Cooking device
CN213963065U (en) Multifunctional barbecue oven
JP2015167703A (en) Automatic bread maker
JP2020029978A (en) Cooker
KR0123078Y1 (en) Roaster
JP6371968B2 (en) Automatic bread machine
JP5816980B2 (en) Bread making machine and operation method of bread making machine
CN212545292U (en) Baking device for biscuit production
JP5732427B2 (en) Cooker
JP2011120753A (en) Rice cooker
JP3933638B2 (en) Bread machine
JP6255888B2 (en) Rotary heating cooker
JP2014217498A (en) Automatic breading apparatus
CN216569602U (en) Popcorn cooking device
JP2011251028A (en) Bread maker
JP6179302B2 (en) Home bakery
JP2014224636A (en) Heating cooker

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480031137.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14807351

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015521297

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14807351

Country of ref document: EP

Kind code of ref document: A1