WO2014194765A1 - 设有气流分配组件的空调送风装置 - Google Patents

设有气流分配组件的空调送风装置 Download PDF

Info

Publication number
WO2014194765A1
WO2014194765A1 PCT/CN2014/078206 CN2014078206W WO2014194765A1 WO 2014194765 A1 WO2014194765 A1 WO 2014194765A1 CN 2014078206 W CN2014078206 W CN 2014078206W WO 2014194765 A1 WO2014194765 A1 WO 2014194765A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
annular
heat exchange
conditioning
supply device
Prior art date
Application number
PCT/CN2014/078206
Other languages
English (en)
French (fr)
Inventor
王永涛
刘一辉
吕静静
闫宝升
Original Assignee
海尔集团公司
青岛海尔空调器有限总公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201310216244.9A external-priority patent/CN103453638B/zh
Priority claimed from CN 201320314744 external-priority patent/CN203274153U/zh
Application filed by 海尔集团公司, 青岛海尔空调器有限总公司 filed Critical 海尔集团公司
Priority to EP14808155.7A priority Critical patent/EP3006852B1/en
Priority to ES14808155.7T priority patent/ES2667956T3/es
Publication of WO2014194765A1 publication Critical patent/WO2014194765A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0011Indoor units, e.g. fan coil units characterised by air outlets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0043Indoor units, e.g. fan coil units characterised by mounting arrangements
    • F24F1/005Indoor units, e.g. fan coil units characterised by mounting arrangements mounted on the floor; standing on the floor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/22Means for preventing condensation or evacuating condensate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/02Ducting arrangements
    • F24F13/06Outlets for directing or distributing air into rooms or spaces, e.g. ceiling air diffuser
    • F24F13/062Outlets for directing or distributing air into rooms or spaces, e.g. ceiling air diffuser having one or more bowls or cones diverging in the flow direction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/22Means for preventing condensation or evacuating condensate
    • F24F2013/221Means for preventing condensation or evacuating condensate to avoid the formation of condensate, e.g. dew

Definitions

  • the present invention relates to the field of air conditioning technology, and more particularly to an air conditioning air supply device having an air distribution unit.
  • the vertical air conditioner When the vertical air conditioner is supplied with air, the wind after the heat exchange of the heat exchanger is directly blown by the air blower opened by the internal fan, and the blown air is all heat exchanged. Generally, no additional air supply means is provided between the heat exchanger and the air outlet.
  • One of the disadvantages of this kind of air-conditioning air supply is that since the air is all heat-exchanged, the air volume is small, and the indoor air circulation speed is slow; another disadvantage is that the wind is not soft enough, especially in the cooling mode, the cool air blown out. Directly blowing on the user, the user feels uncomfortable.
  • the air-conditioning air supply device includes an annular cover body, and a through air passage penetrating the annular cover body is formed in the middle of the annular cover body.
  • An annular opening is formed in the annular cover body wall, and a plurality of annular baffles are disposed on the annular opening, and an annular air outlet duct is formed between the adjacent annular baffles.
  • the air-conditioning air blower When the air-conditioning air blower is installed between the air-conditioning heat exchanger and the air outlet of the air-conditioning case, not only the air intake amount of the air conditioner can be increased, but also the indoor air flow can be accelerated, and the softness of the air-conditioning air outlet can be improved, and the user comfort can be improved.
  • the annular guide vane and the annular air outlet duct are formed on one annular cover body, it is inconvenient to flexibly select and control the structure of the annular deflector and the air outlet duct, and the application range is narrow.
  • the air-conditioning fan is blown from the bottom to the top, the heat exchange wind is uneven in the circumferential direction when entering the annular air outlet duct, so that the air volume at the lower end of the annular air outlet duct is larger, and the air volume on the left and right sides is smaller, thereby causing The air sent by the air-conditioning air supply device is unevenly distributed in the entire circumferential direction, which affects the user's comfort effect.
  • the present invention is implemented by the following technical solutions:
  • An air-conditioning air supply device provided with an air flow distribution component, the air supply device comprising at least two annular air-conducting bodies with intermediate openings and front and rear openings, each of the annular air guiding bodies being a single component, The rear opening of the annular air guiding body is an air inlet, and the front opening is an air outlet.
  • the at least two annular air guiding bodies are arranged in sequence before and after, and a through air passage is formed in the middle and the front, and between the two adjacent annular air guiding bodies Forming an annular heat exchange air duct, the air inlet of the rear end annular air guiding body at the rear end is a non-heat exchange air inlet of the air blowing device, and the air outlet of the front end annular air guiding body at the front end is the air blowing device a mixed air outlet, wherein at least one of the annular heat exchange air ducts is provided with an air flow for distributing heat exchange air from the heat exchanger having the air conditioning air blower and entering the heat exchange air duct Assign components.
  • the air distribution unit is disposed in a structure in which the heat exchange air entering the annular heat exchange air duct is uniformly distributed in a circumferential direction of the annular heat exchange air duct
  • the annular heat exchange wind channel is described.
  • the air conditioning air distribution device is provided with the air flow distribution unit in all of the annular heat exchange air ducts.
  • the annular air guiding body is at least three, and the air distribution unit is disposed on the annular air guiding body at an intermediate position and formed by the annular air guiding body.
  • the inner and outer two annular heat exchange air ducts extend.
  • the annular air guiding body at the intermediate position is integrally formed with the air distribution unit disposed thereon.
  • the air distribution unit includes a plurality of air distribution plates, and the plurality of air distribution plates are in the circumferential direction of the annular heat exchange air duct along the heat exchange air
  • the supply wind is symmetrically distributed to the left and right.
  • the plurality of air distribution plates are bending distribution plates having the same bending direction, and the bending directions of the plurality of bending distribution plates are opposite to the air blowing direction of the heat exchange air.
  • the advantages and positive effects of the present invention are: 1. After applying the air-conditioning air supply device of the present invention to the air conditioner, the heat exchange air in the air passage inside the air conditioner is blown out through the front end of the air passage, and the non-heat exchange air that is not heat-exchanged outside the suction portion can be taken in by the negative pressure action.
  • the overall air intake of the air conditioner is increased, the flow of indoor air is accelerated, and the overall uniformity of the indoor air is improved.
  • such a mixed air is softer, and it is more comfortable to be blown to the user, thereby improving the user's comfort experience.
  • the air-conditioning air supply device is constructed by combining a plurality of annular air guiding bodies in the form of a single component, which not only facilitates flexible control of the structure of each annular air guiding body according to the air supply requirement, but also conveniently processes the circular wind guiding structures with different structures.
  • the body can also flexibly select the assembly mode of the entire air-conditioning air supply device in the air conditioner, thereby improving the applicable range of the air-conditioning air supply device and the production efficiency of the air conditioner.
  • the air distribution unit can be used to distribute the heat exchange air entering the air supply device in the circumferential direction, thereby improving the air supply uniformity of the air supply unit.
  • FIG. 1 is a schematic structural view of an embodiment of an air conditioner having an air-conditioning air supply device according to the present invention
  • FIG. 2 is a perspective view showing a three-dimensional assembly structure of an air-conditioning air supply device of the air conditioner of FIG. Schematic diagram of the explosion structure;
  • Figure 4 is a rear perspective view of the air-conditioning air supply device of Figure 2.
  • the following heat exchange wind refers to the wind from the inside of the air conditioner after heat exchange by the heat exchanger; the non-heat exchange wind refers to the air conditioner
  • the wind in the environmental space is part of the wind relative to the heat exchange wind, not directly from the heat exchanger;
  • the mixed wind refers to the wind formed by the combination of the heat exchange wind and the non-heat exchange wind.
  • the ring described below refers to a closed structure formed around, and is not limited to a ring.
  • the air-conditioning air blower that can send the air by the heat exchange air exchanged between the air-conditioning heat exchanger and the external non-heat exchange air can increase the air supply amount. It is suitable to ensure the temperature of the air outlet. However, since the fan in the air conditioner is located below, the heat exchange air exchanged by the heat exchanger is blown from the bottom to the top, so that after the air conditioner is placed in the air conditioner, the air is exchanged.
  • the air distribution unit is disposed in all of the annular heat exchange air ducts of the air-conditioning air supply device, so that the heat exchange air uniformly enters the heat exchange air duct in the circumferential direction, thereby improving the air supply uniformity of the air-conditioning air supply device. Sex.
  • FIG. 1 there is shown a schematic configuration of an embodiment of an air conditioner having an air-conditioning air supply unit 1.
  • the air conditioner of this embodiment includes a front panel 2, a rear panel 3, a left side panel, a right side panel, and a top panel and a bottom panel (not shown) constituting an air conditioner housing, and the housing defines an air conditioner.
  • a mixed air outlet 21 is opened in the upper portion of the air conditioner front panel 2, and a non-heat exchange air inlet 31 is opened at an upper portion of the air conditioner rear panel 3 at a position corresponding to the mixed air outlet 21 on the front panel 2.
  • the fan 6, the heat exchanger 5, and the air-conditioning air supply device 1 are disposed in the inner air duct 4 from the bottom up, and the fan 6 is disposed such that the wind in the air-conditioning inner duct 4 is blown out from the mixed air outlet 21 on the front panel 2. .
  • the structure of the air-conditioning air supply device 1 please refer to the three-dimensional assembly structure diagram of FIG. 2, the exploded structure diagram of FIG. 3, and the rear view structure diagram of FIG.
  • the air-conditioning air supply device 1 of the embodiment includes three annular air guiding bodies, which are respectively a front end annular air guiding body 11 and a first intermediate annular guiding body. Wind The body 13 and the rear end annular wind guide 12.
  • Each of the three annular air guiding bodies arranged in sequence is a single component and is independently formed.
  • the front end annular air guiding body 11 is continuous in the middle and has two front and rear openings, respectively being a mixed air outlet 111 and an air inlet 112.
  • the first intermediate annular air guiding body 13 is continuous in the middle and has two openings at the front and the rear, respectively being the air outlet 131.
  • the air inlet 132; the rear annular air guiding body 12 is penetrated in the middle, and has two front and rear openings, respectively an air outlet 121 and a non-heat exchange air inlet 122.
  • the front end annular air guiding body 11, the first intermediate annular air guiding body 13 and the rear end annular air guiding body 12 are arranged one behind the other, and a through air passage (not shown) that penetrates all three annular air guiding bodies in the front and the rear is formed in the middle.
  • a first annular heat exchange air duct 14 is formed between the front end annular air guiding body 11 and the first intermediate annular air guiding body 13, and a first intermediate annular air guiding body 13 is formed between the first intermediate annular air guiding body 13 and the rear end annular air guiding body 12.
  • An airflow distribution assembly 16 extending into the first annular heat exchange air duct 14 and the second annular heat exchange air duct 15 is disposed on the first intermediate annular air guiding body 13.
  • the air distribution assembly 16 is preferably integrally formed with the first intermediate annular air deflector 13.
  • the air distribution unit 16 is mounted and fixed on the first intermediate annular air guiding body 13.
  • the rear end annular air guiding body 12 is fixed to the rear back plate 3 of the air conditioner, and the first intermediate annular air guiding body 13 is first fixed to the front end annular air guiding body 11 by screws.
  • the front end annular air guiding body 11 to which the first intermediate annular air guiding body 13 is fixed is then fixed to the front panel 2 of the air conditioner.
  • the mixed air outlet 111 of the front end annular air guiding body 11 serves as an air outlet of the entire air-conditioning air supply device 1, and will be closedly assembled with the mixed air outlet 21 on the front panel 2; and in the rear end annular air guiding body 12
  • the non-heat exchange air inlet 122 serves as a non-heat exchange air inlet of the entire air-conditioning air supply device 1, and is closedly assembled with the non-heat exchange air inlet 31 on the rear plate 3.
  • the indoor air enters the air conditioner during the air-conditioning operation, and the air blown to the heat exchanger 5 is accelerated by the blower 6 to exchange heat.
  • the heat exchange air after the heat exchange is blown from the internal duct 4 to the air-conditioning air blower 1.
  • the heat exchanged wind uniformly enters the first annular heat exchange air duct 14 and the second annular heat exchange air duct 14 in the circumferential direction under the distribution of the air distribution unit 16
  • the heat exchange air duct enters the through air passage, and is blown out from the mixed air outlet 111 on the front end annular air deflector 11 and the mixed air outlet 21 on the front panel 2 via the through air passage.
  • the surface pressure of the corresponding annular air guide body is reduced to form a negative pressure in the through air passage, and the indoor air outside the air conditioner is used as the non-heat exchange wind, and is negative.
  • the non-heat exchanged air inlet 31 on the back plate 3 and the non-heat exchanged air inlet 122 of the rear annular air guide body 12 enter the through air passage and are blown out by the annular heat exchange air duct.
  • the heat exchange wind forms a mixed air and is sent out to the room together.
  • the air volume test and the temperature detection of the vertical air conditioner after the air conditioning air supply device 1 is used, the non-heat exchange air introduced is about 1. 1 times the heat exchange air volume, and the obtained mixed air volume is The air-conditioning airflow is increased by about 1. 1 times compared with the air-conditioning air supply of the air-conditioning air supply device 1 in the same condition. Further, if the room temperature is about 28 ° C, the air blown by the air conditioner that does not use the air-conditioning air blower 1 is heat exchanged, and the temperature is about 14 ° C; and after the air-conditioning air blower 1 is used, the air conditioner feeds the mixture.
  • the wind is about 19 °C, and the temperature of the mixed wind is more in line with the requirements of human body temperature and temperature comfort.
  • This kind of mixed air is softer, and it will feel more comfortable when it is blown to the user, which improves the user's comfort experience.
  • the air that is not heat-exchanged outside the suction portion is taken into the final air outlet of the air conditioner by the negative pressure generated by the air blowing device 1, which increases the overall air intake of the air conditioner, accelerates the flow of the indoor air, and further improves The overall uniformity of indoor air.
  • the air-conditioning air blowing device 1 is configured by using a plurality of annular air guiding bodies in the form of a plurality of single component parts, so that the structure of each annular air guiding body can be flexibly controlled according to the air blowing requirement, and the structure is conveniently processed.
  • Each annular air guiding body ensures uniformity of air supply and air supply speed.
  • the assembly mode of the entire air conditioning air blowing device 1 in the air conditioning can be flexibly selected, thereby improving the application range of the air conditioning air blowing device 1 and the production efficiency of the air conditioning.
  • the specific structure of the air distribution assembly 16 is illustrated with reference to the rear view of FIG. 4.
  • the airflow distribution assembly 16 of this embodiment is implemented using a plurality of air distribution plates.
  • the air distribution assembly 16 of this embodiment includes a total of four pairs and eight air distribution plates, which are main air distribution plates 161 and 162, first auxiliary air distribution plates 163 and 164, and second auxiliary air distribution plates 165 and 166, respectively.
  • the four pairs of air distribution plates are sequentially in the order of the primary air distribution plates 161 and 162, the first auxiliary air distribution plates 163 and 164, the second auxiliary air distribution plates 165 and 166, and the third auxiliary air distribution plates 167 and 168.
  • the left and right sides are symmetrically distributed in the circumferential direction of the first annular heat exchange air duct 14 and the second annular heat exchange air duct 15.
  • the left side of the air-conditioning air supply device 1 (left and right sides in the rear view direction) is provided with a main air distribution plate 161 from the bottom up, first The auxiliary air distribution plate 163, the second auxiliary air distribution plate 165, and the third auxiliary air distribution plate 167, and the main air distribution plate 162, the first auxiliary air distribution plate 164, the second auxiliary air distribution plate 166, and the third auxiliary air distribution
  • the plate 168 is disposed on the right side of the air-conditioning air blower 1 in a bilaterally symmetrical manner.
  • the bending direction of each air distribution plate is opposite to the heat exchange air blowing direction. That is, the heat exchange air blowing direction is from bottom to top, and the bending reverse direction of each air distribution plate will be the reverse air blowing direction, that is, the counterclockwise bending as shown in FIG.
  • the heat exchange air from the heat exchanger can be divided into left, middle, and right by the main air distribution plates 161 and 162 by providing the air distribution assembly 16 formed by a plurality of curved air distribution plates radially distributed symmetrically in the heat exchange air duct.
  • the heat exchange winds on the left and right sides can be diverted again by the auxiliary air distribution plates, and finally the uniformity of the air and air in the circumferential direction of the heat exchange air duct of the air conditioning air supply device 1 is realized.
  • the air supply uniformity of the air-conditioning air supply device 1 is improved.
  • the air distribution unit 16 can be implemented in addition to a plurality of curved air distribution plates, and other configurations can be employed as long as it is possible to uniformly distribute the heat exchange air from the heat exchanger 5 in the circumferential direction.
  • the shape of the mixed air outlet 21 on the front panel 2 and the non-heat exchange air inlet 31 on the rear panel 3 is circular; correspondingly, in the air-conditioning air supply device 1
  • Each of the annular air guiding bodies has a circular shape.
  • the air-conditioning air supply device 1 of this embodiment has three annular air guiding bodies, it is not limited to such three, and may be only the front end annular air guiding body 11 and the rear end annular air guiding body 12.
  • a circular air guiding body, the two annular air guiding bodies form a heat exchange air duct.
  • an air distribution unit fixed to one of the annular air guiding bodies may be disposed in the heat exchange air duct to realize the distribution of the heat exchange air.
  • the front end annular air guiding body 11 and the rear end annular air guiding body 12 there may be more, for example, in addition to the front end annular air guiding body 11 and the rear end annular air guiding body 12, there are two or more first intermediate annular air guiding bodies 13 configured to have Air conditioning air supply unit with four or more annular air guiding bodies. Under this structure, three or more heat exchange wind channels will be formed. In such an air-conditioning air blower, it is preferable to provide an air flow distribution unit in all of the heat exchange air ducts. Moreover, in order to simplify the structure, one air distribution unit may be shared by the two heat exchange air ducts, that is, the air distribution unit is disposed on the annular air guiding body located in the middle, and is formed inside and outside the annular air guiding body. Two of the annular heat exchange air ducts extend.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Air-Conditioning Room Units, And Self-Contained Units In General (AREA)
  • Duct Arrangements (AREA)

Abstract

一种设有气流分配组件的空调送风装置(1),送风装置(1)包括有至少两个中间贯通、具有前后开口的环形导风体,每一环形导风体为单体部件,环形导风体的后开口为进风口、前开口为出风口,多个环形导风体前后依次排列、中间形成前后贯通的贯通风道,相邻两环形导风体之间形成环形热交换风风道(14、15),在至少一个环形热交换风风道(14、15)中设置有对来自具有该空调送风装置的空调的热交换器(5)、并进入热交换风风道(14、15)的热交换风进行分配的气流分配组件(16)。

Description

设有气流分配组件的空调送风装置 技术领域
本发明属于空气调节技术领域, 具体地说, 是涉及一种设有气流分配组件 的空调送风装置。
背景技术
现有立式空调送风时, 热交换器热交换后的风直接在内部风扇的作用下、 从空调上开设的出风口吹出, 且所吹出的风全部是热交换风。 一般的, 在热交 换器与出风口之间不设置额外的送风装置。 这种空调送风的一个缺点是由于送 出风全部是热交换风, 风量较少, 室内风循环速度慢; 另一个缺点是送出的风 不够柔和, 尤其是在制冷模式下, 所吹出的凉风直接吹到用户身上, 用户感觉 不舒适。
为解决上述问题, 本申请人曾提出了一种可以应用在空调上的空调送风装 置, 空调送风装置包括有环形罩体, 在环形罩体中间形成有贯穿环形罩体的贯 通风道, 在环形罩体壁上形成环形开口, 在环形开口上设置若干环形导流片, 相邻环形导流片之间形成环形出风风道。 在空调热交换器与空调壳体的出风口 之间设置该空调送风装置后,不仅可以增大空调的进风量、加速室内空气流动, 而且能够提高空调出风的柔和性, 改善用户舒适性体验效果。 但是, 由于环形 导流片及环形出风风道均形成在一个环形罩体上, 不便于灵活选择和控制环形 导流片及出风风道的结构, 适用范围较窄。而且, 由于空调风扇由下向上送风, 热交换风在进入环形出风风道时周向方向上不均匀, 使得环形出风风道下端风 量较大, 而左右两侧风量较小, 进而导致空调送风装置所送出的风在整个周向 方向上分布不均匀, 影响用户舒适性使用效果。
发明内容
本发明的目的是提供一种设有气流分配组件的空调送风装置, 利用气流分 配组件对送风装置周向方向上的进风进行分配, 以提高送风均匀性。 为实现上述发明目的, 本发明采用下述技术方案予以实现:
一种设有气流分配组件的空调送风装置, 所述送风装置包括有至少两个中 间贯通、 具有前后开口的环形导风体, 每一所述环形导风体为单体部件, 所述 环形导风体的后开口为进风口、 前开口为出风口, 所述至少两个环形导风体前 后依次排列、 中间形成前后贯通的贯通风道, 相邻两所述环形导风体之间形成 环形热交换风风道, 位于后端的后端环形导风体的进风口为所述送风装置的非 热交换风进口, 位于前端的前端环形导风体的出风口为所述送风装置的混合风 出口, 在至少一个所述环形热交换风风道中设置有对来自具有该空调送风装置 的空调的热交换器、 并进入所述热交换风风道的热交换风进行分配的气流分配 组件。
如上所述的空调送风装置, 所述气流分配组件以将进入所述环形热交换风 风道的所述热交换风沿所述环形热交换风风道周向方向均匀分配的结构设置在 所述环形热交换风风道内。
如所述的空调送风装置, 在所有所述环形热交换风风道中均设置有所述气 流分配组件。
如上所述的空调送风装置, 所述环形导风体至少为三个, 所述气流分配组 件设置在位于中间位置的所述环形导风体上、并向由该环形导风体所形成的内、 外两个所述环形热交换风风道中延伸。
优选的, 所述位于中间位置的所述环形导风体与设置在其上的所述气流分 配组件一体成型。
如上所述的空调送风装置, 所述气流分配组件包括有多个气流分配板, 所 述多个气流分配板在所述环形热交换风风道的周向方向上、 沿所述热交换风送 风风向左右对称分布。
如上所述的空调送风装置, 所述多个气流分配板为具有相同弯曲方向的弯 曲分配板,且多个所述弯曲分配板的弯曲方向与所述热交换风的送风方向相逆。
与现有技术相比, 本发明的优点和积极效果是: 1、 在空调中应用本发明的空调送风装置之后, 将空调内部风道中的热交 换风经贯通风道前端吹出的同时, 能利用负压作用吸入部分外部未热交换的非 热交换风参与到空调最后的出风中, 增大了空调的整体进风量, 加快了室内空 气的流动, 进一歩提高了室内空气的整体均匀性。 且, 这样的混合空气较为柔 和, 吹到用户身上会感觉更加舒适, 提高了用户舒适性体验效果。
2、 通过采用多个单体部件形式的环形导风体组合构成空调送风装置, 不 仅便于根据送风要求灵活控制每个环形导风体的结构, 方便地加工出结构不同 的各环形导风体, 还可以灵活选择整个空调送风装置在空调中的装配方式, 进 而提高了空调送风装置的适用范围和空调的生产效率。
3、 通过在热交换风风道内设置气流分配组件, 可利用气流分配组件对进 入送风装置的热交换风在周向方向上进行分配, 从而提高了送风装置的送风均 匀性。
结合附图阅读本发明的具体实施方式后, 本发明的其他特点和优点将变得 更加清楚。
附图说明:
图 1是具有本发明空调送风装置的空调一个实施例的结构示意图; 图 2是图 1空调中的空调送风装置一个实施例的立体组装结构示意图; 图 3是图 2空调送风装置的爆炸结构示意图;
图 4是图 2空调送风装置的后视结构示意图。
具体实施方式:
下面结合附图和具体实施方式对本发明的技术方案作进一歩详细的说明。 首先, 对该具体实施方式中涉及到的技术术语作一简要说明: 下述在提到 每个结构件的前端或后端时, 是以结构件正常使用状态下相对于使用者的位置 来定义的; 对于多个结构件的排列位置进行前或后的描述时, 也是以多个结构 件构成的装置在正常使用状态下相对于使用者的位置所做的定义。 下述的热交 换风是指来自空调内部、 经热交换器热交换后的风; 非热交换风是指来自空调 所处环境空间的风, 是相对于热交换风而言、 不是直接来自于热交换器的部分 风; 混合风是指热交换风与非热交换风混合形成的风。 下述的环, 是指环绕形 成的封闭结构, 并不局限于圆环。
然后, 简要说明本发明的设计思路: 对于能够将空调热交换器交换后的热 交换风及外部非热交换风形成混合风而送出的空调送风装置来说, 虽然能够增 大送风量、 保证出风温度的适宜, 但是, 由于空调内的风扇位于下方, 热交换 器交换后的热交换风自下而上送风, 使得在空调中放置上这样的空调送风装置 之后,热交换风在风扇的吹动下大多从空调送风装置下部进入空调送风装置中, 而左右两侧及上部进风量相对较少, 使得空调送风装置在周向方向上所送出的 风不够均匀。 为解决该问题, 可在空调送风装置的环形热交换风风道中设置对 来自空调热交换器、 并进入该环形热交换风风道的热交换风进行分配、 尤其是 进行均匀分配的气流分配组件。 更优选的, 在空调送风装置的所有环形热交换 风风道中均设置气流分配组件, 使得热交换风在周向方向上均匀进入热交换风 风道中, 从而提高空调送风装置的送风均匀性。
请参考图 1, 该图所示为具有空调送风装置 1的空调一个实施例的结构示 意图。
如图 1所示意, 该实施例的空调包括有构成空调壳体的前面板 2、 后背板 3、 左侧面板、 右侧面板及顶板和底板 (图中未标注), 壳体限定了空调的内部 风道 4。 在空调前面板 2的上部开设有混合风出口 21, 在空调后背板 3上部、 与前面板 2上的混合风出口 21相对应的位置处开设有非热交换风进口 31。 在 内部风道 4中自下而上设置有风机 6、 热交换器 5和空调送风装置 1, 且风机 6 的设置使得空调内部风道 4中的风从前面板 2上的混合风出口 21吹出。
其中, 空调送风装置 1的结构请参考图 2的立体组装结构示意图、 图 3的 爆炸结构示意图及图 4的后视结构示意图所示。
如图 2、 图 3及图 4所示意, 同时结合图 1所示意, 该实施例的空调送风 装置 1包括有三个环形导风体, 分别为前端环形导风体 11、第一中间环形导风 体 13和后端环形导风体 12。 前后依次排列的这三个环形导风体中的每一个环 形导风体均为单体部件, 独立成型。 其中, 前端环形导风体 11中间贯通、 具有 前后两个开口, 分别为混合风出口 111和进风口 112; 第一中间环形导风体 13 中间贯通、 具有前后两个开口, 分别为出风口 131和进风口 132; 后端环形导 风体 12中间贯通、 具有前后两个开口, 分别为出风口 121和非热交换风进口 122。 前端环形导风体 11、 第一中间环形导风体 13和后端环形导风体 12前后 依次排列之后, 中间形成前后贯通所有三个环形导风体的贯通风道 (图中未标 注)。而且,前端环形导风体 11与第一中间环形导风体 13之间形成有第一环形 热交换风风道 14,第一中间环形导风体 13与后端环形导风体 12之间形成有第 二环形热交换风风道 15,空调中的内部风道 4将通过第一环形热交换风风道 14 及第二环形热交换风风道 15与空调送风装置 1中的贯通风道相连通。在第一中 间环形导风体 13上设置有向第一环形热交换风风道 14和第二环形热交换风风 道 15中延伸的气流分配组件 16。 而且, 为方便加工, 气流分配组件 16优选与 第一中间环形导风体 13—体成型。 当然, 也可以是分体成型, 然后将气流分配 组件 16安装固定在第一中间环形导风体 13上。
在将空调送风装置 1装配到空调中时, 后端环形导风体 12与空调的后背 板 3进行固定,第一中间环形导风体 13先与前端环形导风体 11通过螺钉固定, 然后将固定有第一中间环形导风体 13的前端环形导风体 11固定到空调的前面 板 2上。固定到位之后,前端环形导风体 11的混合风出口 111作为整个空调送 风装置 1的出风口,将与前面板 2上的混合风出口 21进行封闭装配;而后端环 形导风体 12中的非热交换风进口 122作为整个空调送风装置 1的非热交换风进 风口, 将与后背板 3上的非热交换风进口 31进行封闭装配。
在空调中采用上述结构的空调送风装置 1之后, 空调运行时, 室内风进入 空调内部, 在风机 6的作用下, 加速吹向热交换器 5进行热交换。 热交换后的 热交换风从内部风道 4吹向空调送风装置 1。热交换风在气流分配组件 16的分 配下,沿周向方向均匀地进入第一环形热交换风风道 14和第二环形热交换风风 道 15内,再经热交换风风道进入贯通风道,进而经贯通风道从前端环形导风体 11上的混合风出口 111及前面板 2上的混合风出口 21吹出。 由于从环形热交 换风风道吹出的热交换风风速变大, 从而使得相应环形导风体表面压力减小而 在贯通风道内形成负压,空调外部的室内风作为非热交换风,在负压的作用下, 将从后背板 3上的非热交换风进口 31及后端环形导风体 12的非热交换风进口 122 进入贯通风道, 并与环形热交换风风道所吹出的热交换风形成混合风后一 起送出到室内。
在一定风机转速下、 对立式空调进行风量测试及温度检测, 采用上述空调 送风装置 1之后, 引入的非热交换风为热交换风风量的 1. 1倍左右, 获得的混 合风风量为热交换风风量的 2. 1倍左右, 比同状况下、 未采用空调送风装置 1 的空调送风相比, 空调出风增加了 1. 1倍左右。 而且, 如果室温为 28°C左右, 未采用空调送风装置 1的空调所吹出的风为热交换风, 其温度为 14°C左右; 而 使用空调送风装置 1之后, 空调所送出的混合风为 19°C左右, 混合风的温度更 符合人体体感温度舒适性的要求。 这样的混合风较为柔和, 吹到用户身上会感 觉更加舒适, 提高了用户舒适性体验效果。 而且, 利用空气送风装置 1所产生 的负压作用吸入部分外部未热交换的风参与到空调最后的出风中, 增大了空调 的整体进风量,加快了室内空气的流动,进一歩提高了室内空气的整体均匀性。
在该实施例中, 通过采用多个单体部件形式的环形导风体组合构成空调送 风装置 1, 便于根据送风要求灵活控制每个环形导风体的结构, 方便地加工出 结构不同的各环形导风体, 以保证送风的均匀性和送风速度。 而且, 由于每个 环形导风体为单体部件, 可以灵活选择整个空调送风装置 1在空调中的装配方 式, 进而提高了空调送风装置 1的适用范围和空调的生产效率。
气流分配组件 16的具体结构请参考图 4的后视图所示意, 该实施例的气 流分配组件 16采用多个气流分配板来实现。 该实施例的气流分配组件 16共包 括有四对、 八个气流分配板, 分别为主气流分配板 161和 162、 第一辅助气流 分配板 163和 164、第二辅助气流分配板 165和 166、第三辅助气流分配板 167 和 168。 所有气流分配板为具有相同弯曲方向的弯曲分配板, 且每个气流分配 板的表面均为弧形曲线面, 可以有效地引导风向, 并降低气流在分流过程中的 压损和噪音, 实现低噪音前提下的高速送风。 这四对气流分配板以主气流分配 板 161和 162在下、第一辅助气流分配板 163和 164、第二辅助气流分配板 165 和 166及第三辅助气流分配板 167和 168依次往上的顺序左右对称分布在第一 环形热交换风风道 14和第二环形热交换风风道 15的周向方向上。 也即沿自下 而上的热交换风送风方向上,空调送风装置 1的左侧(以后视图方向而言的左、 右侧) 自下而上设置有主气流分配板 161、第一辅助气流分配板 163、第二辅助 气流分配板 165和第三辅助气流分配板 167,而主气流分配板 162、第一辅助气 流分配板 164、 第二辅助气流分配板 166和第三辅助气流分配板 168以左右对 称的形式设置在空调送风装置 1的右侧。 而且, 各气流分配板的弯曲方向与热 交换风送风方向相逆。 也即, 热交换风送风方向自下而上, 则各气流分配板的 弯曲反向将是逆向送风方向, 即如图 4所示的逆时针方向弯曲。
通过在热交换风风道中设置呈放射状对称分布的多个弯曲气流分配板构 成的气流分配组件 16,可以利用主气流分配板 161和 162将来自热交换器的热 交换风分成左、 中、 右三部分, 而左、 右两侧的热交换风又可以被各辅助气流 分配板再次分流, 最终实现了空调送风装置 1的热交换风风道在周向方向上进 风及出风的均匀性, 提高了空调送风装置 1的送风均匀性。
当然, 气流分配组件 16 除了采用多个弯曲气流分配板来实现之外, 还可 以采用其他的结构, 只要能保证将来自热交换器 5的热交换风在周向方向上进 行均匀分配即可。
在该实施例的空调中, 作为优选实施方式, 前面板 2 上的混合风出口 21 和后背板 3上的非热交换风进口 31 的形状为圆形; 相应的, 空调送风装置 1 中各环形导风体的形状为圆环形。 但不局限于此, 还可以设计成其他形状的组 合, 如椭圆形和椭圆环、 正多边形和正多边形环等, 也都能实现本发明的技术 目的。 虽然该实施例中的空调送风装置 1具有三个环形导风体, 但并不局限于这 样的三个, 还可以是仅有前端环形导风体 11和后端环形导风体 12这两个环形 导风体, 两个环形导风体形成一个热交换风风道。 此结构下, 可以在该热交换 风风道内设置与其中一个环形导风体相固定的气流分配组件来实现对热交换风 的分配。
当然, 还可以是更多个, 例如, 除了前端环形导风体 11 和后端环形导风 体 12之外, 还包括有两个及两个以上的第一中间环形导风体 13, 构成具有四 个或四个以上环形导风体的空调送风装置。 该结构下, 将会形成三个或三个以 上的热交换风风道。 在这样的空调送风装置中, 优选在所有热交换风风道中均 设置气流分配组件。 而且, 为简化结构, 可以两个热交换风风道共用一个气流 分配组件, 也即将气流分配组件设置在位于中间的环形导风体上、 并向由该环 形导风体所形成的内、 外两个所述环形热交换风风道中延伸。
以上实施例仅用以说明本发明的技术方案, 而非对其进行限制; 尽管参照 前述实施例对本发明进行了详细的说明, 对于本领域的普通技术人员来说, 依 然可以对前述实施例所记载的技术方案进行修改, 或者对其中部分技术特征进 行等同替换; 而这些修改或替换, 并不使相应技术方案的本质脱离本发明所要 求保护的技术方案的精神和范围。

Claims

权 利 要 求 书
1、一种设有气流分配组件的空调送风装置, 其特征在于, 所述送风装置包 括有至少两个中间贯通、 具有前后开口的环形导风体, 每一所述环形导风体为 单体部件, 所述环形导风体的后开口为进风口、 前开口为出风口, 所述至少两 个环形导风体前后依次排列、 中间形成前后贯通的贯通风道, 相邻两所述环形 导风体之间形成环形热交换风风道, 位于后端的后端环形导风体的进风口为所 述送风装置的非热交换风进口, 位于前端的前端环形导风体的出风口为所述送 风装置的混合风出口, 在至少一个所述环形热交换风风道中设置有对来自具有 该空调送风装置的空调的热交换器、 并进入所述环形热交换风风道的热交换风 进行分配的气流分配组件。
2、根据权利要求 1所述的空调送风装置, 其特征在于, 所述气流分配组件 以将进入所述环形热交换风风道的所述热交换风沿所述环形热交换风风道周向 方向均匀分配的结构设置在所述环形热交换风风道内。
3、根据权利要求 1所述的空调送风装置, 其特征在于, 在所有所述环形热 交换风风道中均设置有所述气流分配组件。
4、根据权利要求 1所述的空调送风装置, 其特征在于, 所述环形导风体至 少为三个, 所述气流分配组件设置在位于中间位置的所述环形导风体上、 并向 由该环形导风体所形成的内、 外两个所述环形热交换风风道中延伸。
5、根据权利要求 4所述的空调送风装置, 其特征在于, 所述位于中间位置 的所述环形导风体与设置在其上的所述气流分配组件一体成型。
6、根据权利要求 1至 5中任一项所述的空调送风装置, 其特征在于, 所述 气流分配组件包括有多个气流分配板, 所述多个气流分配板在所述环形热交换 风风道的周向方向上、 沿所述热交换风送风风向左右对称分布。
7、根据权利要求 6所述的空调送风装置, 其特征在于, 所述多个气流分配 板为具有相同弯曲方向的弯曲分配板, 且多个所述弯曲分配板的弯曲方向与所 述热交换风的送风方向相逆
PCT/CN2014/078206 2013-06-03 2014-05-23 设有气流分配组件的空调送风装置 WO2014194765A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP14808155.7A EP3006852B1 (en) 2013-06-03 2014-05-23 Air-conditioner air supply apparatus with airflow distribution assembly
ES14808155.7T ES2667956T3 (es) 2013-06-03 2014-05-23 Aparato de suministro de aire de equipo de aire acondicionado con un conjunto de distribución de circulación de aire

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201310216244.9A CN103453638B (zh) 2013-06-03 2013-06-03 设有气流分配组件的空调送风装置
CN201310216244.9 2013-06-03
CN201320314744.1 2013-06-03
CN 201320314744 CN203274153U (zh) 2013-06-03 2013-06-03 设有气流分配组件的空调送风装置

Publications (1)

Publication Number Publication Date
WO2014194765A1 true WO2014194765A1 (zh) 2014-12-11

Family

ID=52007536

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/078206 WO2014194765A1 (zh) 2013-06-03 2014-05-23 设有气流分配组件的空调送风装置

Country Status (3)

Country Link
EP (1) EP3006852B1 (zh)
ES (1) ES2667956T3 (zh)
WO (1) WO2014194765A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201983400U (zh) * 2010-08-17 2011-09-21 木村工机株式会社 诱导吹出口
CN202074660U (zh) * 2010-08-17 2011-12-14 木村工机株式会社 诱导吹出口
KR101203540B1 (ko) * 2011-12-20 2012-11-21 엘지전자 주식회사 공기조화기
KR101234065B1 (ko) * 2011-12-20 2013-02-15 엘지전자 주식회사 공기조화기
CN203274153U (zh) * 2013-06-03 2013-11-06 海尔集团公司 设有气流分配组件的空调送风装置
CN103453638A (zh) * 2013-06-03 2013-12-18 海尔集团公司 设有气流分配组件的空调送风装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06272949A (ja) * 1993-03-16 1994-09-27 Kajima Corp 空調ダクト装置
CN102840627B (zh) * 2011-12-08 2013-10-30 Lg电子株式会社 空气调节器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201983400U (zh) * 2010-08-17 2011-09-21 木村工机株式会社 诱导吹出口
CN202074660U (zh) * 2010-08-17 2011-12-14 木村工机株式会社 诱导吹出口
KR101203540B1 (ko) * 2011-12-20 2012-11-21 엘지전자 주식회사 공기조화기
KR101234065B1 (ko) * 2011-12-20 2013-02-15 엘지전자 주식회사 공기조화기
CN203274153U (zh) * 2013-06-03 2013-11-06 海尔集团公司 设有气流分配组件的空调送风装置
CN103453638A (zh) * 2013-06-03 2013-12-18 海尔集团公司 设有气流分配组件的空调送风装置

Also Published As

Publication number Publication date
EP3006852B1 (en) 2018-04-18
ES2667956T3 (es) 2018-05-16
EP3006852A4 (en) 2017-03-15
EP3006852A1 (en) 2016-04-13

Similar Documents

Publication Publication Date Title
WO2014194769A1 (zh) 利用空调送风装置送风的方法
WO2014194764A1 (zh) 空调送风装置防凝露的方法
CN203478539U (zh) 立式空调送风装置
CN203478543U (zh) 空调送风装置及立式空调
CN103453632B (zh) 空调送风装置
CN103453638B (zh) 设有气流分配组件的空调送风装置
CN104807077B (zh) 一种空调室内机
CN103453643A (zh) 设有气流分配组件的立式空调送风装置
CN106091320A (zh) 空调送风装置及空调室内机
WO2014194705A1 (zh) 立式空调及立式空调送风装置
CN103453646B (zh) 空调及空调送风装置
CN104456888A (zh) 空调送风装置及立式空调
CN203857578U (zh) 一种空调器
CN105091084B (zh) 一种空调室内机
CN203274162U (zh) 空调及空调送风装置
CN203274153U (zh) 设有气流分配组件的空调送风装置
WO2014194763A1 (zh) 设有气流分配组件的立式空调送风装置
CN104807076B (zh) 空调室内机
CN105091118A (zh) 一种空调器
CN105091085B (zh) 一种空气调节器
CN103453639A (zh) 一种立式空调送风装置
WO2014194771A1 (zh) 空调送风装置及具有该装置的空调
WO2014194767A1 (zh) 一种立式空调中的空调送风装置
WO2014194765A1 (zh) 设有气流分配组件的空调送风装置
EP3006853B1 (en) Air conditioner with an air supply device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14808155

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2014808155

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE