WO2014194516A1 - 多射频拉远单元rru共小区的信号传输方法及装置 - Google Patents

多射频拉远单元rru共小区的信号传输方法及装置 Download PDF

Info

Publication number
WO2014194516A1
WO2014194516A1 PCT/CN2013/076935 CN2013076935W WO2014194516A1 WO 2014194516 A1 WO2014194516 A1 WO 2014194516A1 CN 2013076935 W CN2013076935 W CN 2013076935W WO 2014194516 A1 WO2014194516 A1 WO 2014194516A1
Authority
WO
WIPO (PCT)
Prior art keywords
rru
reference signal
signal measurement
measurement value
serving cell
Prior art date
Application number
PCT/CN2013/076935
Other languages
English (en)
French (fr)
Inventor
周鹏斌
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201380001804.7A priority Critical patent/CN103688585B/zh
Priority to PCT/CN2013/076935 priority patent/WO2014194516A1/zh
Publication of WO2014194516A1 publication Critical patent/WO2014194516A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • H04W88/085Access point devices with remote components

Definitions

  • the embodiments of the present invention relate to communication technologies, and in particular, to a signal transmission method and apparatus for a multi-radio remote unit RRU common cell. Background technique
  • RRU radio remote unit
  • BBU baseband unit
  • the method for determining a working RRU for a user equipment generally includes: first receiving, by a UE, a Reference Signal Receiving Power (RSRP) or a reference signal under each RRU.
  • the comparison Reference Signal Receiving Quality, RSRQ
  • RSRQ Reference Signal Receiving Quality
  • the difference is compared, and the RRU corresponding to the largest RSRP or RSRQ is used as a working RRU of the UE, and then the RSRP or RSRQ of the UE under other RRUs and the RSRP or RSRQ of the UE under the working RRU are obtained.
  • the difference is compared with the preset difference threshold, and the RRU whose difference is smaller than the preset difference threshold is selected as the other working RRU of the UE.
  • a plurality of working RRUs are generally selected for the UE, but in practical applications, for example, a UE close to the base station only needs less working RRUs to meet the working requirements.
  • the existing method of determining the working RRU will result in waste of Resource Block (RB).
  • the embodiments of the present invention provide a multi-RRU common cell signal transmission method and device, which are used to solve the problem that the existing RRU determination method allocates more working RRUs to the near-point UE, thereby avoiding waste of RB.
  • a first aspect of the embodiments of the present invention provides a signal transmission method for a multi-RRU common cell, including: Setting an initial working RRU for the user equipment UE;
  • first reference signal measurement value of the serving cell where the UE is located and a second reference signal measurement value of each neighboring cell of the UE, where the first reference signal measurement value is used to represent the serving cell a downlink signal quality, where the second reference signal measurement is used to represent a downlink signal quality of the neighboring cell to the UE;
  • the first interference factor is less than or equal to the preset first interference threshold, select a first working RRU for the UE from other RRUs other than the initial working RRU in the serving cell, A working RRU and the initial working RRU perform signal transmission for the UE.
  • a second aspect of the embodiments of the present invention provides a signal transmission method for a multi-RRU common cell, including:
  • each RRU of the RRUs other than the initial working RRU in the serving cell in the serving cell as the first RRU Obtaining, by the signal measurement value and the first reference signal measurement value of the first RRU, a first interference factor of the first RRU to the UE, where the first reference signal measurement value is used to represent the first The uplink signal quality of the RRU corresponding to the reference signal measurement value; if the isolation degree of the first RRU is less than a preset first interference threshold, the first RRU is selected as the first working RRU of the UE, The first working RRU and the initial working RRU perform signal transmission for the UE.
  • a third aspect of the embodiments of the present invention provides a base station, including:
  • a setting module configured to set an initial working RRU for the user equipment UE
  • An acquiring module configured to acquire a first reference signal measurement value of the serving cell where the UE is located, and a second reference signal measurement value of each neighboring cell of the UE, where the first reference signal measurement value is used for characterization a downlink signal quality of the serving cell, where the second reference signal measurement value is used to represent a downlink signal quality of the neighboring cell to the UE;
  • a determining module configured to use a ratio of the first reference signal measurement value to a sum of all the second reference signal measurement values as a first interference factor of the UE; a selecting module, configured to: if the first interference factor is less than or equal to a preset first interference threshold, select a first working RRU for the UE from other RRUs other than the initial working RRU in the serving cell, and use The first working RRU and the initial working RRU perform signal transmission for the UE.
  • a fourth aspect of the embodiments of the present invention provides a base station, including:
  • a setting module configured to set an initial working RRU for the user equipment UE
  • a first acquiring module configured to use, as the first RRU, each RRU in the RRU except the initial working RRU in the serving cell where the UE is located, according to the current determination in the serving cell that the UE is currently working.
  • the first reference signal measurement value of the RRU of the RRU and the first reference signal measurement value of the first RRU are used to obtain the isolation of the first RRU to the UE, where the first reference signal measurement value is used for Characterizing an uplink signal quality of the RRU corresponding to the first reference signal measurement value;
  • a module configured to: if the isolation of the first RRU is less than a preset first interference threshold, select the first RRU as the first working RRU of the UE, and use the first working RRU and the The initial working RRU performs signal transmission for the UE.
  • a fifth aspect of the embodiments of the present invention provides a base station, including:
  • a receiver configured to acquire a first reference signal measurement value of a serving cell where the user equipment UE is located, and a second reference signal measurement value of each neighboring cell of the UE, where the first reference signal measurement value is used for characterization a downlink signal quality of the serving cell, where the second reference signal measurement value is used to represent a downlink signal quality of the neighboring cell to the UE;
  • the processor configured to: set an initial working RRU for the UE, after the receiver acquires the first reference signal measurement value and the second reference signal measurement value of each of the neighboring cells, Comparing a ratio of the first reference signal measurement value to a sum of all the second reference signal measurement values as a first interference factor of the UE, and if the first interference factor is less than or equal to a preset first An interference threshold, the first working RRU is selected for the UE from the RRUs other than the initial working RRU, and the first working RRU and the initial working RRU are used to perform signals for the UE. transmission.
  • a sixth aspect of the embodiments of the present invention provides a base station, including:
  • Memory for storing programs; a processor, configured to: set an initial working RRU for the user equipment UE, and use, as the first RRU, each RRU in the RRU except the initial working RRU in the serving cell where the UE is located, according to the current Determining, as a first reference signal measurement value of the RRU of the working RRU of the UE, a first reference signal measurement value of the first RRU, obtaining an isolation of the first RRU from the UE, and if the The isolation of the RRU is smaller than the preset first interference threshold, and the first RRU is selected as the first working RRU of the UE, and the first working RRU and the initial working RRU are used for the UE.
  • Signal transmission wherein the first RRU is any one of the other RRUs in the serving cell; the first reference signal measurement value is used to represent an uplink signal quality of the RRU corresponding to the first reference signal measurement value.
  • the initial working RRU is set for the UE, according to the obtained first reference signal measurement value of the serving cell where the UE is located, and the second neighboring cell of the UE.
  • the embodiment of the present invention determines the working RRU of the UE according to the interference factor of the neighboring cell to the UE, or according to the isolation degree of each RRU to the UE except the initial working RRU in the serving cell, which is beneficial to reduce to the near-point UE.
  • 3 is a schematic diagram of another multi-RRU common cell signal transmission method according to an embodiment of the present invention
  • 4 is a schematic diagram of another multi-RRU common cell signal transmission method according to an embodiment of the present invention
  • FIG. 5 is a schematic structural diagram of a base station according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic structural diagram of another base station according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic structural diagram of another base station according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram of another base station according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic structural diagram of another base station according to an embodiment of the present invention.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The technical solutions of the present invention will be further described in detail below with reference to the accompanying drawings and embodiments.
  • GSM Global System for Mobile Communication
  • UMTS Universal Mobile Telecommunications System
  • a scenario of multiple RRU co-cells such as the Worldwide Interoperability for Microwave Access (WIMAX) system and the Long Term Evolution (LTE) system.
  • the executor of the signal transmission method of the multiple RRU common cell provided by the following embodiments may be the base station in any of the above scenarios.
  • FIG. 1 is a schematic diagram of a signal transmission method of a multi-RRU common cell according to an embodiment of the present invention. As shown in Figure 1, the method includes the following steps:
  • the base station can set an initial working RRU for the UE. Specifically, the base station may obtain the third reference signal measurement value in each RRU in the serving cell, where the third reference signal measurement value is used to represent the uplink signal quality of the RRU corresponding to the third reference signal measurement value. The base station selects the RRU corresponding to the largest third reference signal measurement value as the initial working RRU of the UE.
  • first reference signal measurement value of the serving cell where the UE is located and a second reference signal measurement value of each neighboring cell of the UE, where the first reference signal measurement value is used to represent the service.
  • each neighboring cell of the serving cell of the UE sends The resulting signal generally has some interference to the UE.
  • the base station may acquire the first interference factor of all neighboring cells of the serving cell of the UE to the UE.
  • the base station may acquire a first reference signal measurement value that characterizes the downlink signal quality of the UE serving cell and a second reference signal measurement value that characterizes the downlink signal quality of each neighboring cell to the UE of the UE.
  • the first reference signal measurement value is the downlink RSRP of the UE serving cell
  • the second reference signal measurement value is the downlink RSRP of the neighboring cell.
  • the base station obtains the downlink RSRP of the UE serving cell, and receives the downlink RSRP of each neighboring cell reported by the UE.
  • the base station obtains the downlink RSRQ of the UE serving cell, and receives each neighbor reported by the UE.
  • the downlink RSRQ of the cell The UE reports the downlink RSRP or RSRQ of each neighboring cell to the base station, and the base station calculates the downlink RSRP or RSRQ of each neighboring cell.
  • the base station obtains the first interference factor according to the ratio of the sum of the first reference signal measurement value and the second reference signal measurement value:
  • be the first interference factor
  • ⁇ ⁇ is the first reference signal measurement value
  • z is the second reference signal measurement value of the first neighboring cell of the UE serving cell
  • z l, 2, ... ⁇
  • N is the number of neighboring cells of the UE serving cell.
  • the first reference signal measurement value may be RSRP or RSRQ
  • the second reference signal measurement value may be RSRP or RSRQ
  • the first reference signal measurement value and the second reference signal measurement value must be the same type of measurement value, that is, if it is RSRP, it is also RSRP; and if G is RSRQ, it is also RSRQ.
  • the base station can receive a channel quality indicator (CQI) fed back by the UE. Since the CQI can indicate the interference situation of the neighboring cell to the UE, the base station can directly use the CQI as the first interference factor.
  • the UE may be based on a Signal to Noise Ratio (SNR), a Signal to Interference plus Noise Ratio (SINR), or a Signal to Noise and Distortion Ratio (SNDR).
  • SNR Signal to Noise Ratio
  • SINR Signal to Interference plus Noise Ratio
  • SNDR Signal to Noise and Distortion Ratio
  • the base station After obtaining the first interference factor, the base station compares the first interference factor with a preset first interference threshold to determine whether the first interference factor is less than or equal to the first interference threshold. If the first interference factor is less than or equal to the first interference threshold, step 104 is performed; if the first interference factor is greater than the first interference threshold, step 105 is performed.
  • the far-point or edge UE is far away from the base station, so that the signal strength of the downlink signal of the UE serving cell is small, the interference of the neighboring cell to the UE is relatively strong, and the first interference factor is relatively small, and the base station needs A plurality of working RRUs are allocated to the UE to improve signal quality of the UE.
  • the UE if the first interference factor is less than or equal to the first interference threshold, the UE is a remote or edge user equipment. In this case, in order to improve the signal quality of the UE, the base station needs to obtain an RRU from the UE serving cell. The first working RRU is selected for the UE. Optionally, the base station may determine all RRUs in the serving cell as the first working RRU of the UE. In this embodiment, when the number of working RRUs of the UE exceeds one, the UE is a joint scheduling device.
  • the signal strength of the downlink signal of the near-point UE serving cell is relatively high, the interference of the neighboring cell to the UE is relatively weak, and the first interference factor is relatively large, so that the first interference factor of the near-point UE is generally higher than the first interference factor.
  • An interference threshold the base station allocates a working RRU to the near-point UE to meet the requirements of the UE.
  • the UE is a near-point user equipment, and the UE only needs one working RRU, and the working RRU is an initial working RRU.
  • the base station does not need to select the first working RRU for the UE from other RRUs.
  • the UE if the UE has only one working RRU, the UE is an independent scheduling device.
  • the UE uses the first working RRU of the UE and the initial working RRU to perform signal transmission on the UE.
  • the initial working RRU can meet the requirements of the UE, and the base station does not need to select the first working RRU from other RRUs. At this time, the initial working RRU is used to perform signal transmission for the UE.
  • the multi-RRU common cell signal transmission method sets initial work for the UE.
  • the RRU obtains a first interference factor of the UE according to the first reference signal measurement value of the UE serving cell and the second reference signal measurement value of each neighboring cell of the UE, if the first interference factor is less than or equal to the first interference threshold,
  • the RRU in the serving cell of the UE selects a first working RRU for the UE, and uses the first working RRU and the initial working RRU to perform signal transmission for the UE.
  • the embodiment of the present invention determines the working RRU of the UE according to the interference situation of the neighboring cell to the UE, which is beneficial to reducing the number of working RRUs allocated to the near-point UE, thereby reducing the waste of the RB.
  • FIG. 2 is a schematic diagram of another multi-RRU common cell signal transmission method according to an embodiment of the present invention. As shown in FIG. 2, the method includes the following steps:
  • the process of setting the initial working RRU for the UE by the base station is the same as the step 100 of the foregoing embodiment, the base station acquires the third reference signal measurement value of each RRU in the serving cell, and sets the RRU corresponding to the largest third reference signal measurement value to The initial working RRU of the UE, and the sequence number of the initial working RRU is defined as 1.
  • the step 201 is the same as the step 101 in the foregoing embodiment.
  • the value of the first interference threshold in this embodiment may be specifically set according to an actual application, and may be different from the value of the first interference threshold in the foregoing embodiment, or may be the same.
  • the step 202 is the same as the step 102 in the foregoing embodiment.
  • the step 202 is the same as the step 102 in the foregoing embodiment.
  • details refer to the description of the foregoing embodiment, and details are not described herein again.
  • step 203 Determine whether the first interference factor is less than or equal to the first interference threshold.
  • the base station compares the first interference factor with a preset first interference threshold to determine whether the first interference factor is less than or equal to the first interference threshold. If the first interference factor is less than or equal to the first interference threshold, step 204 is performed. If the first interference factor is greater than the first interference threshold, step 206 is performed.
  • the base station may use the CQI fed back by the UE as the first interference factor, and obtain the CQI.
  • the process of the process refer to the related content in the foregoing embodiment, and details are not described herein again.
  • each RRU can send a signal to the UE.
  • the UE receives or sends a signal, it will generate certain interference to the UE.
  • the first RRU is taken as an example to describe a process in which the base station acquires the isolation of the first RRU from the UE after determining that the first interference factor is less than or equal to the first interference threshold.
  • the first implementation manner of the base station acquiring the isolation of the first RRU to the UE is: for the first RRU in the RRUs other than the initial working RRU in the UE serving cell, the base station acquires the currently determined UE as the UE.
  • the second implementation manner of the base station acquiring the isolation of the first RRU to the UE is: for the first RRU in the RRUs other than the initial working RRU in the UE serving cell, the base station acquires the currently determined UE as the UE.
  • the ratio of the third reference signal measurement of the working RRU to the third reference signal measurement of the first RRU is used as the isolation of the first RRU.
  • the base station may perform, according to the third reference measurement value of all the RRUs in the acquired UE serving cell, from large to small. Sorting, and then obtaining the isolation of each RRU in the other RRUs to the UE in the sorted order.
  • the base station can determine that the RRU is not the first working RRU of the UE.
  • the base station can easily determine that the remaining RRUs after the RRU are not the first working RRU of the UE, simplifying The process of selecting a working RRU for the UE improves the timeliness of selecting a working RRU for the UE, and reduces the energy consumption and resource waste of the base station.
  • M is The number of RRUs in the UE serving cell; the first work in the working RRU that has been determined to be the UE
  • the third reference signal measurement value of the RRU e "the third reference signal measurement value of the Vth working RRU in the RRU other than the RRU that has been determined to be the UE working RRU; the third working RSR that has been determined to be the UE currently
  • the sum of the reference signal measurements indicates the sum of the remaining RRU third reference signal measurements other than the working RRU that has been determined to be the UE in the other RRUs.
  • the formula for the base station to obtain the isolation of the first RRU to the UE is:
  • the third reference signal measurement value of the RRU is the third reference signal measurement value of the first RRU; and is the sum of the measured values of the third reference signal of the working RRU that have been determined to be the UE currently.
  • the RRU that is currently determined to be the working RRU of the UE is stored in the working RRU set of the UE.
  • the base station acquires the first interference factor of the first RRU to the UE, the base station learns, according to the working RRU set, the RRU that has been determined to be the working RRU of the UE, and then acquires the RRU third reference signal of the working RRU that has been determined to be the UE. The sum of the measured values.
  • the isolation of the first RRU is less than a preset second interference threshold, the first RRU is selected as the first working RRU of the UE, and the first working RRU and the initial working RRU are used.
  • the UE performs signal transmission.
  • the base station After the isolation of the first RRU is obtained, the base station compares the isolation with the preset second interference threshold. If the isolation of the first RRU is smaller than the second interference threshold, the base station selects the first RRU as the UE. The first work RRU. The base station adds the first RRU selected as the first working RRU to the working RRU set of the UE.
  • the base station sequentially uses each RRU of the other RRUs as the first RRU to obtain the isolation of each RRU from the other RRUs to the UE, and determines whether each RRU is the first work of the UE according to the isolation. RRU. It should be noted that, in this embodiment, after obtaining the isolation degree of an RRU, the base station directly determines whether the RRU is the first working RRU of the UE according to the isolation of the RRU and the second interference threshold.
  • the UE After the base station selects the first working RRU for the UE, the UE performs signal transmission on the UE by using the first working RRU and the initial working RRU of the UE. 206. Perform signal transmission for the UE by using the initial working RRU.
  • the initial working RRU can meet the requirements of the UE, and the base station does not need to allocate other working RRUs to the UE. In this case, the initial working RRU is used.
  • the UE performs signal transmission.
  • the multi-RRU common cell signal transmission method provided by this embodiment sets initial work for the UE.
  • the first interference factor of all neighboring cells of the UE serving cell to the UE is obtained.
  • each RRU in the serving cell except the initial working RRU is further selected.
  • the RRUs are used as the first RRU to obtain the isolation of the first RRU to the UE. If the isolation of the first RRU is less than the second interference threshold, the first RRU is selected as the working RRU of the UE, and the first working RRU and the initial working RRU are utilized. Signal transmission for the UE.
  • the embodiment of the present invention combines the first interference factor and the isolation to select a working RRU for the UE, further reduces the number of working RRUs allocated for the near-point UE, and can also reduce the allocation of working RRUs for the far-point or edge UE.
  • the number increases the accuracy of determining the working RRU for the UE and reduces the waste of RB.
  • FIG. 3 is a schematic diagram of another multi-RRU common cell signal transmission method according to an embodiment of the present invention. As shown in FIG. 3, the method includes the following steps:
  • the process of setting the initial working RRU for the UE by the base station is the same as the step 100 of the foregoing embodiment, the base station acquires the third reference signal measurement value of each RRU in the serving cell, and sets the RRU corresponding to the largest third reference signal measurement value to The initial working RRU of the UE.
  • the sequence number of the initial working RRU can be defined as 1.
  • the step 301 is the same as the step 101 in the foregoing embodiment.
  • the value of the first interference threshold in this embodiment may be specifically set according to an actual application, and may be different from the value of the first interference threshold in the foregoing embodiment, or may be the same.
  • the step 302 is the same as the step 102 in the foregoing embodiment.
  • the step 302 is the same as the step 102 in the foregoing embodiment.
  • step 303 Determine whether the first interference factor is less than or equal to the first interference threshold. After obtaining the first interference factor, the base station compares the first interference factor with a preset first interference threshold to determine whether the first interference factor is less than or equal to the first interference threshold. If the first interference factor is less than or equal to the first interference threshold, step 304 is performed. If the first interference factor is greater than the first interference threshold, step 306 is performed.
  • each RRU of the RRUs other than the initial working RRU as the second RRU uses the first reference signal measurement value and the third reference signal measurement value of the second RRU. a difference between the difference between the measured value of the second reference signal and the third reference signal of the second RRU is used as the second interference factor of the second RRU.
  • the second RRU is taken as an example to describe a process in which the base station acquires a second interference factor of each RRU to the UE in the other RRUs after determining that the first interference factor is less than or equal to the first interference threshold.
  • the base station After determining that the first interference factor is less than or equal to the first interference threshold, the base station is configured according to the first reference signal measurement value of the serving cell, the second reference signal measurement value of each neighboring cell of the UE, and the initial working RRU in the serving cell.
  • the third reference signal measurement of the other second RRU obtains the second interference factor of the second RRU to the UE.
  • the first reference signal measurement value may be a downlink RSRP or a reference RSRQ of the UE serving cell
  • the second reference signal measurement value may be a downlink RSRP or an RSRQ of the neighboring cell
  • the third signal measurement value may be the UE in the serving cell.
  • RSRP or RSRQ under two RRUs.
  • the base station may buffer the acquired first reference signal measurement value of the serving cell and the second reference signal measurement value of each neighboring cell, and in step 304, the base station may obtain the first reference signal from the cache unit. A reference signal measurement and a second reference signal measurement.
  • the base station may buffer the third reference signal measurement value obtained by each RRU in the serving cell, and in step 304, the base station may obtain the third reference signal measurement value from the buffer unit. .
  • the base station obtains a difference between the first reference signal measurement value and the third reference signal measurement value of the second RRU according to the first reference signal measurement value and the third reference signal measurement value of the second RRU, and according to all neighbors a second reference signal measurement value of the cell and a third reference signal measurement value of the second RRU, to obtain a second reference signal measurement value of all neighboring cells and a third reference signal of the second RRU
  • the sum of the measured values is compared with the sum of the above values to obtain a second interference factor of the second RRU to the UE.
  • the base station uses each of the other RRUs as the second RRU, and obtains the second interference factor of the second RRU pair UE according to the foregoing method, and obtains the second interference factor of each RRU to the UE in the other RRUs.
  • the formula for the base station to acquire the second interference factor of the second RRU pair UE is:
  • the first reference signal measurement value, the second reference signal measurement value, and the third reference signal measurement value must be the same type of measurement value, that is, if the first reference signal measurement value is RSRP The second reference signal measurement value and the third signal measurement value are both RSRP, and if the first reference signal measurement value is RSRQ, the second reference signal measurement value and the third signal measurement value are both RSRQ.
  • the difference between the first interference factor and the second interference factor of the second RRU is greater than a preset third interference threshold, select the second RRU as the first working RRU of the UE, Signaling the UE with the first working RRU and the initial working RRU.
  • the base station After acquiring the second interference factor of the second RRU, the base station compares the first interference factor with the second interference factor of the second RRU, and compares the difference with a preset third interference threshold, if the difference The value is greater than the third interference threshold, and the base station selects the second RRU as the first working RRU of the UE. The base station places the second RRU selected as the first working RRU of the UE into the working RRU set of the UE.
  • the base station uses each RRU of the other RRUs as the second RRU, and selects the first working RRU for the UE according to the second RRU second interference factor and the third interference threshold, and determines each RRU in the other RRUs. Whether it is the first working RRU of the UE.
  • the UE uses the first working RRU and the initial working RRU of the UE to perform signal transmission for the UE.
  • the initial working RRU performs signal transmission for the UE by using the initial working RRU. If the first interference factor is greater than the first interference threshold, the initial working RRU can satisfy the requirement of the UE, and the base station does not need to select the first working RRU for the UE. At this time, the initial working RRU is used for signal transmission of the UE.
  • the signal transmission method of the multiple RRU common cell is: after setting the initial working RRU for the UE, acquiring the first interference factor of all neighboring cells of the UE to the UE, when the first interference factor is less than or equal to the first interference threshold And obtaining, by using the RRU of the other RRUs as the second RRU, the second interference factor of the second RRU to the UE, if the difference between the first interference factor and the second interference factor is greater than a preset third interference threshold,
  • the second RRU is a first working RRU of the UE, and uses the first working RRU and the initial working RRU to perform signal transmission for the UE.
  • the embodiment of the present invention combines the first interference factor and the second interference factor to determine the working RRU for the UE, further reduces the number of working RRUs allocated for the near-point UE, and can also reduce the allocation to the far-end UE or the edge UE.
  • the number of working RRUs improves the accuracy of determining the working RRU for the UE and reduces the waste of RB.
  • FIG. 4 is a schematic diagram of another multi-RRU common cell signal transmission method according to an embodiment of the present invention. As shown in FIG. 4, the method includes the following steps:
  • the base station can set an initial working RRU for the UE. Specifically, the base station may obtain the first reference signal measurement value in each RRU in the serving cell, and the base station selects the RRU corresponding to the largest first reference signal measurement value as the initial working RRU of the UE, and defines the sequence number of the initial working RRU as 1.
  • each RRU can send a signal, and when the UE sends or receives a signal, it will generate certain interference to the UE.
  • the process of obtaining the isolation of the first RRU from the UE by using the first RRU is used as an example.
  • the base station measures according to the first reference signal of the RRU of the working RRU that has been determined to be the UE in the serving cell.
  • the first reference signal measurement value of the first RRU is used to obtain the isolation of the first RRU to the UE in the serving cell of the UE.
  • the first reference signal measurement value is used to represent the first reference signal measurement value.
  • the uplink signal quality of the corresponding RRU may be RSRP or RSRQ under each RRU except the initial working RRU in the serving cell of the UE.
  • the first implementation manner in which the base station acquires the isolation of the first RRU to the UE is: the base station acquires a sum of the first reference signal measurement values of the RRU of the working RRU that has been determined to be the UE in the serving cell, and the serving cell The ratio after the measured value of the third reference signal of the remaining RRUs that have been determined to be the working RRU of the UE is included as the isolation of the first RRU to the UE.
  • the second implementation manner of the base station acquiring the isolation of the first RRU to the UE is: the base station acquires a sum of the first reference signal measurement values that are currently determined to be the working RRU of the UE, and the first reference of the first RRU. The ratio of the measured values of the signals is taken as the isolation of the first RRU.
  • the base station may obtain the first of all the RRUs.
  • the reference signal measurement values are sorted from large to small, and the isolation of the first RRU to the UE in the serving cell is sequentially obtained in the sorted order.
  • the base station determines that the RRU is not the working RRU of the UE.
  • the base station can easily determine that the remaining RRUs after the RRU are not the working RRUs of the UE, which is simplified to The UE determines the working RRU process, improves the timeliness of determining the working RRU for the UE, and reduces the energy consumption and resource waste of the base station.
  • the base station obtains the isolation formula of the first RRU to the UE as: y K - l c
  • the number of RRUs in the UE serving cell; the first reference signal measurement value of the first working RRU in the working RRU that has been determined to be the UE, and C and j are the Vths of the RRUs other than the RRU that have been determined to be the UE working RRU.
  • the sum of the remaining RRU first reference signal measurements is determined in addition to the working RRU that has been determined to be the UE.
  • the formula for the base station to obtain the isolation of the first RRU to the UE is:
  • the first reference signal measurement of the RRU C - is the first reference signal measurement of the first RRU; ⁇ - Cli is the sum of the measured values of the first reference signal of the working RRU that have been determined to be currently the UE.
  • the RRU of the working RRU that is currently determined to be the UE is stored in the
  • the work of the UE is in the RRU set.
  • the base station acquires the isolation of the first RRU to the UE, the base station learns, according to the working RRU set, the RRU that has been determined to be the working RRU of the UE, and then obtains the RRU first reference signal measurement value of the working RRU that has been determined to be the UE. Sum.
  • the isolation of the first RRU is less than a preset first interference threshold, the first RRU is selected as the first working RRU of the UE, and the first working RRU and the initial working are utilized.
  • the RRU performs signal transmission for the UE.
  • the base station After obtaining the isolation of the first RRU, the base station compares the isolation of the first RRU with a preset first interference threshold. If the isolation of the first RRU is less than the first interference threshold, the base station selects the first RRU as The working RRU of the UE. The base station may put the first RRU selected as the working RRU into the working RRU set of the UE.
  • the base station sequentially uses each RRU of the other RRUs as the first RRU to obtain the isolation of each RRU from the other RRUs to the UE, and determines whether each RRU is the first work of the UE according to the isolation. RRU. It should be noted that, in this embodiment, after obtaining the isolation degree of an RRU, the base station directly determines whether the RRU is the first working RRU of the UE according to the isolation of the RRU and the second interference threshold.
  • the base station After the first working RRU is selected for the UE, the base station performs signal transmission for the UE by using the first working RRU initial working RRU of the UE.
  • each RRU in the RRU except the initial working RRU in the UE serving cell is used as the first RRU, according to the current current in the serving cell.
  • the first reference signal measurement value of the RRU of the working RRU of the UE is determined to be the first reference signal measurement value of the first RRU, and the isolation of the first RRU to the UE is obtained, if the isolation of the first RRU is less than a preset First interference threshold, select the first An RRU is a first working RRU of the UE, and the UE is used for signal transmission by using the first working RRU and the initial working RRU.
  • the embodiment of the present invention selects a working RRU for the UE according to the isolation degree of each RRU to the UE in the serving cell except the initial working RRU, which is beneficial to reducing the number of working RRUs allocated to the near-point UE, and improving the determining work for the UE.
  • the accuracy of the RRU reduces the waste of RB.
  • a signal sent by each neighboring cell of the UE generally also generates certain interference to the UE.
  • the base station may also acquire a first interference factor of all neighboring cells of the UE to the UE. Specifically, the base station acquires a second reference signal measurement value that characterizes the downlink signal quality of the UE serving cell and a third reference signal measurement value that characterizes the downlink signal quality of each neighboring cell to the UE of the UE.
  • the second reference signal measurement value may be a downlink RSRP or a downlink RSRQ of the UE serving cell
  • the third reference signal measurement value is a downlink RSRP or a downlink RSRQ of the neighboring cell.
  • the base station uses the ratio of the second reference signal measurement value to the sum of all the second reference signal measurement values as the first interference factor of the UE.
  • the procedure of the first interference factor of the base station UE refer to the description of the related content in the foregoing embodiment, and details are not described herein again.
  • the embodiment of the present invention combines the first interference factor and the isolation to select a working RRU for the UE, and can further reduce the number of working RRUs allocated to the near-point UE, and can also reduce the number of working RRUs.
  • the number of working RRUs allocated by the point or edge UE improves the accuracy of determining the working RRU for the UE and reduces the waste of the RB.
  • the working RRU related content is selected for the UE. For details, refer to the related content in the foregoing related embodiments, and details are not described herein again.
  • FIG. 5 is a schematic structural diagram of a base station according to an embodiment of the present invention. As shown in FIG. 5, the base station includes: a setting module 50, an obtaining module 51, a determining module 52, and a selecting module 53.
  • the setting module 50 may set an initial working RRU for the UE when the UE accesses the network. Specifically, the setting module 50 may obtain the third reference signal measurement value in each RRU in the serving cell, where the third reference signal measurement value is used to represent the uplink signal of the RRU corresponding to the third reference signal measurement value. quality. Then, the setting module 50 selects the RRU corresponding to the largest third reference signal measurement value as the initial working RRU of the UE, and sets the sequence number of the initial working RRU to 1.
  • the obtaining module 51 acquires a first reference signal measurement value of the serving cell where the UE is located and a second reference signal measurement value of each neighboring cell of the UE.
  • the first reference signal measurement is used to characterize the service
  • the downlink signal quality of the cell and the second reference signal measurement value is used to characterize the downlink signal quality of the neighboring cell to the UE.
  • a signal sent by each neighboring cell of the serving cell of the UE generally generates certain interference to the UE.
  • the base station may acquire the first interference factor of all neighboring cells of the serving cell of the UE to the UE.
  • the second reference signal measurement value is the downlink RSRP of the neighboring cell.
  • the obtaining module 51 obtains the downlink RSRP of the UE serving cell, and receives the downlink RSRP of each neighboring cell reported by the UE.
  • the first reference signal measurement value is the downlink RSRQ of the UE serving cell
  • the second reference signal measurement value is the downlink RSRQ of the neighboring cell
  • the obtaining module 51 obtains the downlink RSRQ of the UE serving cell, and each of the received UE reports Downstream RSRQ of the neighboring cell.
  • the UE reports the downlink RSRP or RSRQ of each neighboring cell to the obtaining module 51.
  • the determining module 52 performs a summation calculation on the downlink RSRP or RSRQ of each neighboring cell.
  • the determining module 52 uses the ratio of the first reference signal measured value to the sum of all the second reference signal measured values as the first interference factor of the UE.
  • the determining module 51 obtains the first interference factor according to the first reference signal measurement value and the second reference signal measurement value:
  • be the first interference factor
  • e i be the first reference signal measurement value
  • is the second reference signal measurement value of the first neighboring cell of the UE serving cell
  • z l, 2, ... N
  • W is the number of neighboring cells of the UE serving cell.
  • the first reference signal measurement value and the second reference signal measurement value must be the same type of measurement value, that is, if it is RSRP, it is also RSRP; and if it is RSRQ, it is also RSRQ. .
  • the obtaining module 51 may receive the CQI fed back by the UE. Since the CQI can indicate the interference situation of the neighboring cell to the UE, the base station can directly use the CQI as the first interference factor.
  • the process of obtaining the CQI refer to the related content in the foregoing embodiment, and details are not described herein again.
  • the far-point or edge UE is far away from the base station, so that the signal strength of the downlink signal of the UE serving cell is small, and the interference of the neighboring cell to the UE is relatively strong, and the first interference factor Relatively small, the base station needs to allocate multiple working RRUs to the UE to improve the signal quality of the UE.
  • the selecting module 53 compares the first interference factor with a preset first interference threshold. If the first interference factor is less than or equal to the preset first interference threshold, the UE is described.
  • the determining module 52 needs to select the first working RRU for the UE from the RRU in the UE serving cell.
  • the selecting module 53 may select all RRUs in the serving cell as the first working RRU of the UE.
  • the UE is a joint scheduling device.
  • the signal strength of the downlink signal of the near-point UE serving cell is relatively high, the interference of the neighboring cell to the UE is relatively weak, and the first interference factor is relatively large, so that the first interference factor of the near-point UE is generally higher than the first interference factor.
  • An interference threshold the base station allocates a working RRU to the near-point UE to meet the requirements of the UE.
  • the selection module 53 indicates that the UE is a near-point user equipment, and the UE only needs one working RRU, and the working RRU is an initial working RRU.
  • the selection module 53 does not need to select the first working RRU for the UE from other RRUs.
  • the UE if the UE has only one working RRU, the UE is an independent scheduling device.
  • the UE uses the first working RRU and the initial working RRU to perform signal transmission for the UE.
  • the initial working RRU can satisfy the requirement of the UE, and the first working RRU is not required to be selected from other RRUs, and the selecting module 53 uses the initial working RRU to perform signal transmission for the UE.
  • the base station after setting the initial working RRU for the UE, acquires the first interference factor of the UE according to the first reference signal measurement value of the serving cell of the UE and the second reference signal measurement value of each neighboring cell of the UE, If the first interference factor is less than or equal to the first interference threshold, the working RRU is selected for the UE from the RRUs other than the initial RRU in the serving cell of the UE, and the first working RRU and the initial working RRU are used for signal transmission.
  • the embodiment of the present invention determines the working RRU of the UE according to the interference situation of the neighboring cell to the UE, which is beneficial to reduce the number of working RRUs allocated to the near-point UE, thereby reducing the waste of the RB.
  • FIG. 6 is a schematic structural diagram of another base station according to an embodiment of the present invention.
  • the base station includes: a setting module 60, an obtaining module 61, a determining module 62, and a selecting module 63.
  • the modules 60, the obtaining module 61, and the determining module 62 implement functions.
  • the connection relationship refer to the description of related content in the above examples, and details are not described herein again.
  • each RRU can send a signal, and when the UE sends or receives a signal, it will generate certain interference to the UE.
  • the implementation structure of the selection module 63 includes: a first determination unit 631, an acquisition unit 632, a second determination unit 633, a selection unit 634, and a signal transmission unit 635.
  • the selection module 63 selects an optional implementation manner of the first working RRU for the UE in the RRU other than the initial working RRU in the serving cell:
  • the first determining unit 631 is connected to the determining module 62. After the determining module 62 obtains the first interference factor, the first determining unit 631 compares the first interference factor with the preset first interference threshold, and determines whether the first interference factor is Less than or equal to the first interference threshold. The first determining unit 631 is further connected to the obtaining unit 632. After the first determining unit 631 determines that the first interference factor is less than or equal to the first interference threshold, the obtaining unit 632 acquires other RRUs in the serving cell except the initial working RRU. The isolation of each RRU to the UE.
  • the obtaining unit 632 uses each RRU of the other RRUs as the first RRU, according to the first reference signal measurement value of the RRU of the working RRU that has been determined to be the UE in the serving cell, and the first reference of the first RRU.
  • the signal measurement value obtains the isolation of the first RRU from the UE.
  • the obtaining, by the obtaining unit 632, the first implementation manner of the isolation of the first RRU to the UE is: the obtaining unit 632 acquires a sum of the first reference signal measurement values of the RRU of the working RRU that has been determined to be the UE in the serving cell. And a ratio after the third reference signal measurement value of the remaining RRUs other than the working RRU that has been determined to be the UE in the serving cell, as the isolation of the first RRU to the UE.
  • the second implementation manner of the obtaining, by the obtaining unit 632, the first RRU to the UE is: the obtaining unit 632 may obtain the sum of the first reference signal measurement values that have been determined to be the working RRU of the UE, and the first The ratio of the first reference signal measurement of the RRU is used as the isolation of the first RRU to the UE.
  • the obtaining unit 632 may sort the third reference measurement values of all the RRUs in the acquired UE serving cell according to the largest to smallest. And then, in the sorted order, each RRU in the other RRUs is used as the first RRU, and the isolation of each RRU to the UE is obtained. In this embodiment, after sorting the third reference signal measurement values of each RRU, determining whether each RRU in the other RRUs is sequentially determined In the process of the first working RRU of the UE, when the isolation of a certain RRU is greater than or equal to the second interference threshold, the base station may determine that the RRU is not the first working RRU of the UE.
  • the base station can easily determine that the remaining RRUs after the RRU are not the first working RRU of the UE, simplifying The process of selecting a working RRU for the UE improves the timeliness of selecting a working RRU for the UE, and avoids energy consumption and resource waste of the base station.
  • the obtaining unit 632 acquires a formula for the isolation of the first RRU to the UE.
  • the sum of the three reference signal measurements, jj represents the sum of the remaining RRU third reference signal measurements in the other RRUs that have been determined to be the working RRU of the UE.
  • the obtaining unit 632 obtains a formula for the isolation of the first RRU to the UE.
  • the third reference signal measurement value of the RRU is the third reference signal measurement value of the first RRU; "" ⁇ is the sum of the working RRU third reference signal measurement values that have been determined to be currently the UE.
  • the RRU that is currently determined to be the working RRU of the UE is stored in the working RRU set of the UE.
  • the base station acquires the isolation of the first RRU to the UE, the base station learns, according to the working RRU set, the RRU that has been determined to be the working RRU of the UE, and then obtains the RRU first reference signal measurement value of the working RRU that has been determined to be the UE. Sum.
  • the second determining unit 633 compares the isolation of the first RRU with a preset first interference threshold, if the isolation of the first RRU is smaller than the first interference gate.
  • the selection unit 634 selects the first RRU as the working RRU of the UE.
  • the selecting unit 634 places the first RRU selected as the working RRU into the working RRU set of the UE.
  • the base station sequentially uses each RRU of the other RRUs as the first RRU to obtain the isolation of each RRU from the other RRUs to the UE, and determines whether each RRU is the first work of the UE according to the isolation. RRU. It should be noted that, in this embodiment, after obtaining the isolation degree of an RRU, the base station directly determines whether the RRU is the first working RRU of the UE according to the isolation of the RRU and the second interference threshold.
  • the signal transmitting unit 635 After the selecting unit 634 selects the first working RRU for the UE, the signal transmitting unit 635 performs signal transmission on the UE by using the first working RRU and the initial working RRU of the UE. If the first determining unit 631 determines that the first interference factor is greater than the first interference threshold, the initial working RRU can satisfy the requirement of the UE, and the selecting unit 634 does not need to select the first working RRU for the UE from other RRUs. The transmission unit 635 performs signal transmission for the UE using the initial working RRU.
  • the base station provided by the embodiment provides isolation of the UE according to the first interference factor and each RRU in the RRU except the initial working RRU in the serving cell. Selecting a working RRU for the UE is advantageous for reducing the number of working RRUs allocated to the near-point UE, improving the accuracy of determining the working RRU for the UE, and reducing the waste of the RB.
  • selection module 63 selects the first working RRU for the UE from the RRUs other than the initial RRU in the serving cell is:
  • the obtaining unit 632 takes each RRU of the other RRUs as the second RRU, and after the first determining unit 631 determines that the first interference factor is less than or equal to the first interference threshold, acquires the second RRU to the UE.
  • Two interference factors Specifically, the obtaining unit 632 may compare the difference between the first reference signal measurement value and the third reference signal measurement value of the second RRU, and the sum of all the second reference signal measurement values and the third reference signal measurement value of the second RRU. The ratio is used as the second interference factor of the second RRU to the UE.
  • the first reference signal measurement value may be a downlink RSRP or a reference RSRQ of the UE serving cell
  • the second reference signal measurement value may be a downlink RSRP or an RSRQ of the neighboring cell
  • the third signal measurement value may be the UE in the serving cell.
  • RSRP or RSRQ under two RRUs.
  • the base station may further include a cache module 64.
  • the cache module 64 is connected to the acquisition module 61, and caches the first reference signal measurement value of the serving cell acquired by the acquisition module 61 and the second reference signal measurement value of each neighboring cell.
  • the obtaining unit 632 can then acquire the first reference signal measurement value and the second reference signal measurement value from the cache module 64.
  • the cache module 64 can also The third reference signal measurement value of each RRU in the serving cell is obtained for buffering, and the obtaining unit 64 may obtain the third reference signal measurement value from the cache module 64.
  • the obtaining unit 632 obtains a difference between the first reference signal measurement value and the third reference signal measurement value of the second RRU according to the first reference signal measurement value and the third reference signal measurement value of the second RRU, and according to all a second reference signal measurement value of the neighboring cell and a third reference signal measurement value of the second RRU, and obtaining a sum of the second reference signal measurement value of all neighboring cells and the third reference signal measurement value of the second RRU, and then The ratio is compared with the sum value to obtain a second interference factor of the second RRU to the UE.
  • the base station uses each of the other RRUs as the second RRU, and obtains the second interference factor of the second RRU pair UE according to the foregoing method, and obtains the second interference factor of each RRU to the UE in the other RRUs.
  • the formula for the base station to acquire the second interference factor of the second RRU to the UE is: ⁇ r 1 - C 3/ where, is the second interference factor of the second RRU to the UE, and / is the second RRU
  • the first reference signal measurement value, the second reference signal measurement value, and the third reference signal measurement value must be the same type of measurement value, if the first reference signal measurement value is RSRP, the second reference The signal measurement value and the third signal measurement value are both RSRP; if the first reference signal measurement value is RSRQ, the second reference signal measurement value and the third signal measurement value are both RSRQ.
  • the second determining unit 633 determines whether the difference between the first interference factor and the second interference factor of the second RRU is greater than a preset third interference threshold.
  • the selecting unit 634 is connected to the second determining unit 633. After the second determining unit 633 determines that the difference between the first interference factor and the second interference factor of the second RRU is greater than a preset third interference threshold, the selecting unit 634 The second RRU is selected as the first working RRU of the UE.
  • the selecting unit 634 may place the second RRU selected as the first working RRU of the UE into the working RRU set of the UE.
  • the signal transmitting unit 635 After the selecting unit 634 selects the first working RRU for the UE, the signal transmitting unit 635 performs signal transmission for the UE by using the first working RRU and the initial working RRU of the UE. If the first judgment When the element 631 determines that the first interference factor is greater than the first interference threshold, the initial working RRU can satisfy the requirement of the UE, and the selecting unit 634 does not need to select the first working RRU from the other RRUs. In this case, the signal transmission unit 635 utilizes The initial working RRU performs signal transmission for the UE.
  • the base station provided by this embodiment is configured according to the first interference factor and each RRU of the RRU other than the initial working RRU in the serving cell.
  • the second interference factor, the working RRU is selected for the UE, which is beneficial to reducing the number of working RRUs allocated to the near-point UE, improving the accuracy of determining the working RRU for the UE, and reducing the waste of the RB.
  • FIG. 7 is a schematic structural diagram of another base station according to an embodiment of the present invention. As shown in FIG. 7, the base station includes: a setting module 70, a first obtaining module 71, and a selecting module 72.
  • the setting module 70 may set an initial working RRU for the UE when the UE accesses the network. Specifically, the setting module 70 may obtain the first reference signal measurement value in each RRU in the serving cell, where the first reference signal measurement value is used to represent the uplink signal quality of the RRU corresponding to the first reference signal measurement value. The setting module 70 then selects the RRU corresponding to the largest first reference signal measurement value as the initial working RRU of the UE, and sets the initial working RRU number to 1.
  • each RRU of the RRUs other than the initial working RRU in the serving cell is used as the first RRU, and the first RRU is taken as an example, and the first obtaining module 71 obtains each RRU pair UE in the other RRUs.
  • the first obtaining module 71 may obtain the isolation of the first RRU from the UE according to the first reference signal measurement value of the RRU of the working RRU that is currently determined to be the UE in the serving cell and the first reference signal measurement value of the first RRU.
  • the selecting module 72 compares the isolation of the first RRU with a preset first interference threshold. If the isolation of the first RRU is less than the first interference threshold, The first RRU is selected as the first working RRU of the UE.
  • the first obtaining module 71 uses each of the other RRUs as the first RRU, and obtains the isolation of the first RRU to the UE according to the foregoing method, and obtains the isolation of each RRU from the other RRUs to the UE.
  • the selection module 72 selects the first working RRU for the UE according to the isolation of the first RRU.
  • the process of the selection module 72 selecting the first working RRU for the UE from other RRUs For the description of related content in the foregoing embodiments, reference is not made herein.
  • the selecting module 72 uses the first working RRU of the UE and the initial working RRU to perform signal transmission for the UE. If the selection module 72 determines that the first interference factor is greater than the first interference threshold, the initial working RRU can satisfy the requirement of the UE, and the selection module 72 uses the initial working RRU to perform signal transmission for the UE.
  • the base station provided in this embodiment after selecting the initial working RRU for the UE, uses each RRU in the RRUs other than the initial working RRU as the first RRU in the serving cell, according to the current determined work of the UE in the serving cell.
  • the first reference signal measurement value of the RRU and the first reference signal measurement value of the first RRU are used to obtain the isolation of the first RRU from the UE. If the isolation of the first RRU is less than the preset first interference threshold, select the first An RRU is a first working RRU of the UE, and performs signal transmission for the UE by using the first working RRU and the initial working RRU.
  • the embodiment of the present invention selects a working RRU for the UE according to the isolation degree of each RRU to the UE in the serving cell except the initial working RRU, which is beneficial to reducing the number of working RRUs allocated to the near-point UE, and improving the determining work for the UE.
  • the accuracy of the RRU reduces the waste of RB.
  • the base station may also include a second acquisition module 73 and a determination module 74.
  • the second obtaining module 73 in the first acquiring module 71, each RRU in the RRU except the initial working RRU in the UE serving cell as the first RRU, according to the first RRU of the working RRU that has been determined to be the UE in the serving cell. And obtaining a second reference signal measurement value of the UE serving cell and a third reference of each neighboring cell of the UE, before acquiring the isolation of the first RRU to the UE by using the reference signal measurement value and the first reference signal measurement value of the first RRU. Signal measurement.
  • the determining module 74 uses the ratio of the second reference signal measurement to the sum of all the third reference signal measurements as the first interference factor of the UE.
  • the determining module 74 compares the first interference factor with the second interference threshold after acquiring the first interference factor. After comparing that the first interference factor is less than or equal to the second interference threshold, the first obtaining module 71 may acquire the isolation of each RRU of the RRUs other than the initial working RRU in the serving cell.
  • the second acquisition module 73 obtaining the second reference signal measurement value and the third reference signal measurement value, and determining the module 74 to obtain the first interference factor, refer to the description of the related content in the foregoing embodiment, and details are not described herein again.
  • the embodiment of the present invention After acquiring the first interference factor, the embodiment of the present invention passes the first interference factor and the isolation degree
  • the working RRU is selected for the UE, and the number of working RRUs allocated to the near-point UE can be further reduced, and the number of working RRUs allocated to the far-point or edge UE can be reduced, and the accuracy of determining the working RRU for the UE is improved. Reduce the waste of RB.
  • FIG. 8 is a schematic structural diagram of a base station according to an embodiment of the present invention. As shown in FIG. 8, the base station includes: a memory 80, a receiver 81, and a processor 82.
  • the memory 80 is used to store a program.
  • Memory 80 may contain high speed RAM memory, and may also include non-volatile memory, such as at least one disk memory.
  • the processor 82 executes the programs stored in the memory 80.
  • the processor 82 sets an initial working RRU for the UE.
  • the processor 82 is configured to set the initial working RRU for the UE.
  • the receiver 81 acquires a first reference signal measurement value of the serving cell where the UE is located and a second reference signal measurement value of each neighboring cell of the UE.
  • the first reference signal measurement value is used to characterize a downlink signal quality of the serving cell
  • the second reference signal measurement value is used to characterize a downlink signal quality of the neighboring cell to the UE.
  • the processor 82 after the receiver 81 acquires the first reference signal measurement value and the second reference signal measurement of each of the neighboring cells, the first reference signal measurement value and all the second a ratio of a sum of reference signal measurements, as a first interference factor of the UE, and if the first interference factor is less than or equal to a preset first interference threshold, excluding the initial working RRU from the serving cell
  • the first working RRU is selected for the UE in the other RRUs, and the UE is used for signal transmission by using the first working RRU and the initial working RRU.
  • the processor 82 may be a central processing unit (CPU), or an application specific integrated circuit (ASIC), or one or more integrated circuits configured to implement the embodiments of the present invention. .
  • CPU central processing unit
  • ASIC application specific integrated circuit
  • the memory 80, the receiver 81, and the processor 82 may be connected to each other through a bus and complete communication with each other.
  • the bus may be an Industry Standard Architecture (ISA) bus, a Peripheral Component (PCI) bus, or an Extended Industry Standard Architecture (ESA) bus.
  • ISA Industry Standard Architecture
  • PCI Peripheral Component
  • ESA Extended Industry Standard Architecture
  • the bus can be divided into an address bus, a data bus, a control bus, and the like.
  • the memory 80, the receiver 81, and the processor 82 are integrated on one chip, the memory 80, the receiver 81, and the processor 82 can complete the same communication through the internal interface.
  • the function modules of the base station provided in this embodiment may be used to perform the process of the signal transmission method of the multiple RRU common cells shown in the foregoing related embodiments.
  • the specific working principle is not described here. For details, refer to the description of the method embodiments.
  • the base station provided in this embodiment sets an initial working RRU for the UE, and obtains a first interference factor of the UE according to the first reference signal measurement value of the UE serving cell and the second reference signal measurement value of each neighboring cell of the UE, if the first The interference factor is less than or equal to the first interference threshold, and the first working RRU is selected for the UE from the RRUs other than the initial working RRU in the serving cell of the UE, and the first working RRU and the initial working RRU are used for the UE. Signal transmission.
  • the embodiment of the present invention determines the working RRU of the UE according to the interference factor of the neighboring cell to the UE, which is beneficial to reduce the number of working RRUs allocated to the near-point UE, thereby reducing the waste of the RB.
  • the interference situation of each RRU in the other RRUs may be acquired, and the interference is selected from the other RRUs for the UE according to the interference situation of the UEs in the other RRUs.
  • the number of working RRUs allocated to the near-point UE is further reduced, and the number of working RRUs allocated to the far-end or edge UEs can also be reduced, and the accuracy of determining the working RRUs for the UE is improved.
  • FIG. 9 is a schematic structural diagram of another base station according to an embodiment of the present invention. As shown in FIG. 9, the base station includes: a memory 90 and a processor 91.
  • the memory 90 is used to store programs.
  • the memory 90 may include a high speed RAM memory, and may also include a non-volatile memory such as at least one disk memory.
  • the processor 91 is configured to set an initial working RRU for the user equipment UE, where each RRU of the RRUs other than the initial working RRU in the serving cell where the UE is located is used as the first RRU, according to the current Determining, as a first reference signal measurement value of the RRU of the working RRU of the UE, a first reference signal measurement value of the first RRU, obtaining an isolation of the first RRU from the UE, and if the The isolation of the RRU is less than a preset first interference threshold, and the first RRU is selected as the first working RRU of the UE, and the first work is utilized.
  • the RRU and the initial RRU are used for signal transmission of the UE.
  • the first reference signal measurement value is used to represent an uplink signal quality of the RRU corresponding to the first reference signal measurement value.
  • the processor 91 may be a CPU, or an ASIC, or one or more integrated circuits configured to implement embodiments of the present invention.
  • the memory 90 and the processor 91 can be connected to each other through a bus and complete communication with each other.
  • the bus can be an ISA bus, a PCI bus or an EISA bus.
  • the bus can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one thick line is shown in Figure 9, but it does not mean that there is only one bus or one type of bus.
  • the memory 90 and the processor 91 can complete the same communication through the internal interface.
  • the function modules of the base station provided in this embodiment may be used to perform the process of the signal transmission method of the multiple RRU common cells shown in the foregoing related embodiments.
  • the specific working principle is not described here. For details, refer to the description of the method embodiments.
  • the base station provided in this embodiment after the initial working RRU is selected for the UE, obtains the isolation of the first RRU from the UE by using the RRU in the RRU of the UE in the serving cell as the first RRU.
  • the isolation of the RRU is less than the preset first interference threshold, and the first RRU is selected as the first working RRU of the UE, and the first working RRU and the initial working RRU are used for signal transmission of the UE.
  • the embodiment of the present invention selects a working RRU for the UE according to the isolation degree of each RRU to the UE in the serving cell except the initial working RRU, which is beneficial to reducing the number of working RRUs allocated to the near-point UE, and improving the determining work for the UE.
  • the accuracy of the RRU reduces the waste of RB.
  • the interference situation of all neighboring cells to the UE may be acquired first, and the first interference factor is combined with the isolation to select a working RRU for the UE, and further reduced to
  • the number of working RRUs allocated by the near-point UE can also reduce the number of working RRUs allocated to the far-end or edge UEs, and improve the accuracy of determining the working RRUs for the UE.

Abstract

本发明实施例提供的多RRU共小区的信号传输方法及装置,为UE设置初始工作RRU;根据服务小区的第一参考信号测量值与UE每个相邻小区的第二参考信号测量值,获取UE的第一干扰因子,如果第一干扰因子小于或者等于第一干扰门限,从其他RRU中为UE选取第一工作RRU;或将UE服务小区内其他RRU中每个RRU作为第一RRU,根据服务小区内当前已经确定为UE的工作RRU的RRU的第一参考信号测量值与第一RRU的第一参考信号测量值,获取第一RRU对UE的隔离度,如果第一RRU的隔离度小于第一干扰门限,选取第一RRU为UE的第一工作RRU;利用第一工作RRU和初始工作RRU为UE进行传输信号。

Description

多射频拉远单元 RRU共小区的信号传输方法及装置 技术领域
本发明实施例涉及通信技术,尤其涉及一种多射频拉远单元 RRU共小区 的信号传输方法及装置。 背景技术
在多射频拉远单元 (Radio Remote Unit, RRU)共小区的场景中, 同一 个基带处理单元(Base Band Unit, BBU)下的多个 RRU虽然分布在不同的 地理位置上, 但在逻辑上属于同一个小区, 所以每个 RRU的载波数、 频点、 信道配置等小区参数相同。
在多 RRU共小区的场景中, 为用户设备 (User Equipment, UE) 确定 工作 RRU 的方法一般包括: 先将 UE 在各 RRU 下的参考信号接收功率 (Reference Signal Receiving Power, RSRP)或参考信号接收质量 (Reference Signal Receiving Quality, RSRQ ) 进行比较, 将最大的 RSRP或 RSRQ对应 的 RRU作为 UE的一个工作 RRU, 然后获取 UE在其他 RRU下的 RSRP或 RSRQ与 UE在该工作 RRU下的 RSRP或 RSRQ的差值, 将获取的差值与预 设差值门限进行比较, 选取差值小于预设差值门限的 RRU作为 UE的其他工 作 RRU。按照上述为 UE确定工作 RRU的方法, 一般会为 UE选出较多的工 作 RRU, 但在实际应用中, 例如靠近基站的 UE—般只需要较少的工作 RRU 就可以满足工作需求, 对这些 UE来说, 现有确定工作 RRU的方法将导致资 源块 (Resource Block, 简称为 RB) 的浪费。 发明内容
本发明实施例提供一种多 RRU共小区的信号传输方法及装置, 用以 解决现有工作 RRU确定方法中, 存在为近点 UE分配较多工作 RRU的问 题, 避免 RB的浪费。
本发明实施例第一个方面是提供一种多 RRU共小区的信号传输方法,包 括: 为用户设备 UE设置初始工作 RRU;
获取所述 UE所在服务小区的第一参考信号测量值和所述 UE的每个相邻 小区的第二参考信号测量值; 其中, 所述第一参考信号测量值用于表征所述 服务小区的下行信号质量, 所述第二参考信号测量值用于表征所述相邻小区 到所述 UE的下行信号质量;
将所述第一参考信号测量值与所有所述第二参考信号测量值之和的比 值, 作为所述 UE的第一干扰因子;
如果所述第一干扰因子小于或者等于预设的第一干扰门限, 从所述服务 小区中除所述初始工作 RRU之外的其他 RRU 中为所述 UE选取第一工作 RRU, 利用所述第一工作 RRU和所述初始工作 RRU为所述 UE进行信号传 输。
本发明实施例第二个方面是提供一种多 RRU共小区的信号传输方法,包 括:
为用户设备 UE设置初始工作 RRU;
将所述 UE所在服务小区内除所述初始工作 RRU之外的其他 RRU中每 个 RRU作为第一 RRU,根据所述服务小区内当前已经确定为所述 UE的工作 RRU的 RRU的第一参考信号测量值与所述第一 RRU的第一参考信号测量 值, 获取所述第一 RRU对所述 UE的第一干扰因子; 其中, 所述第一参考信 号测量值用于表征所述第一参考信号测量值对应的 RRU的上行信号质量; 如果所述第一 RRU的所述隔离度小于预设的第一干扰门限,选取所述第 一 RRU为所述 UE的第一工作 RRU, 利用所述第一工作 RRU和所述初始工 作 RRU为所述 UE进行信号传输。
本发明实施例第三个方面是提供一种基站, 包括:
设置模块, 用于为用户设备 UE设置初始工作 RRU;
获取模块, 用于获取所述 UE所在服务小区的第一参考信号测量值和所 述 UE 的每个相邻小区的第二参考信号测量值; 其中, 所述第一参考信号测 量值用于表征所述服务小区的下行信号质量, 所述第二参考信号测量值用于 表征所述相邻小区到所述 UE的下行信号质量;
确定模块, 用于将所述第一参考信号测量值与所有所述第二参考信号测 量值之和的比值, 作为所述 UE的第一干扰因子; 选取模块, 用于如果所述第一干扰因子小于或者等于预设的第一干扰门 限, 从所述服务小区中除初始工作 RRU之外的其他 RRU中为所述 UE选取 第一工作 RRU, 利用所述第一工作 RRU和所述初始工作 RRU为所述 UE进 行信号传输。
本发明实施例第四个方面是提供一种基站, 包括:
设置模块, 用于为用户设备 UE设置初始工作 RRU;
第一获取模块, 用于将所述 UE所在服务小区内除所述初始工作 RRU之 外的其他 RRU中每个 RRU作为第一 RRU, 根据所述服务小区内当前已经确 定为所述 UE的工作 RRU的 RRU的第一参考信号测量值与所述第一 RRU的 第一参考信号测量值, 获取所述第一 RRU对所述 UE的隔离度, 其中, 所述 第一参考信号测量值用于表征所述第一参考信号测量值对应的 RRU 的上行 信号质量;
选取模块,用于如果所述第一 RRU的所述隔离度小于预设的第一干扰门 限,选取所述第一 RRU为所述 UE的第一工作 RRU,利用所述第一工作 RRU 和所述初始工作 RRU为所述 UE进行信号传输。
本发明实施例第五个方面是提供一种基站, 包括:
存储器, 用于存储程序;
接收器, 用于获取用户设备 UE所在服务小区的第一参考信号测量值和 所述 UE 的每个相邻小区的第二参考信号测量值; 其中, 所述第一参考信号 测量值用于表征所述服务小区的下行信号质量, 所述第二参考信号测量值用 于表征所述相邻小区到所述 UE的下行信号质量;
所述处理器, 用于为所述 UE设置初始工作 RRU, 在所述接收器获取到 所述第一参考信号测量值和每个所述相邻小区的所述第二参考信号测量值之 后,将所述第一参考信号测量值与所有所述第二参考信号测量值之和的比值, 作为所述 UE 的第一干扰因子, 以及如果所述第一干扰因子小于或者等于预 设的第一干扰门限,从所述服务小区中除所述初始工作 RRU之外的其他 RRU 中为所述 UE选取第一工作 RRU, 利用所述第一工作 RRU和所述初始工作 RRU为所述 UE进行信号传输。
本发明实施例第六个方面是提供一种基站, 包括:
存储器, 用于存储程序; 处理器, 用于为用户设备 UE设置初始工作 RRU, 将所述 UE所在服务 小区内除所述初始工作 RRU之外的其他 RRU中每个 RRU作为第一 RRU, 根据所述服务小区内当前已经确定为所述 UE的工作 RRU的 RRU的第一参 考信号测量值与所述第一 RRU的第一参考信号测量值, 获取所述第一 RRU 对所述 UE的隔离度, 以及如果所述第一 RRU的所述隔离度小于预设的第一 干扰门限,选取所述第一 RRU为所述 UE的第一工作 RRU,利用所述第一工 作 RRU和所述初始工作 RRU为所述 UE进行信号传输;其中,所述第一 RRU 为所述服务小区内其他 RRU中任意一个 RRU; 所述第一参考信号测量值用 于表征所述第一参考信号测量值对应的 RRU的上行信号质量。
本发明实施例提供的多 RRU共小区的信号传输方法及装置, 为 UE设置 初始工作 RRU,根据获取到的 UE所在服务小区的第一参考信号测量值与 UE 的每个相邻小区的第二参考信号测量值, 获取所有相邻小区对 UE 的第一干 扰因子, 如果第一干扰因子小于预设的第一干扰门限, 从服务小区中的 RRU 中为 UE选取第一工作 RRU, 利用第一工作 RRU和初始工作 RRU为 UE进 行信号传输; 或者为 UE设置初始工作 RRU, 将 UE所在服务小区内除初始 工作 RRU之外的其他 RRU中每个 RRU作为第一 RRU, 根据服务小区内当 前已经确定为该 UE的工作 RRU的 RRU的第一参考信号测量值与第一 RRU 的第一参考信号测量值, 获取第一 RRU对 UE的隔离度, 如果第一 RRU的 隔离度小于预设的第一干扰门限,选取第一 RRU为 UE的第一工作 RRU,利 用第一工作 RRU和初始工作 RRU为 UE进行信号传输。 本发明实施例根据 相邻小区对 UE的干扰因子, 或者根据服务小区内除初始工作 RRU之外的其 他每个 RRU对 UE的隔离度, 来确定 UE的工作 RRU, 有利于降低为近点 UE分配的工作 RRU的数量, 从而降低了 RB的浪费。 附图说明 图 1为本发明实施例提供的一种多 RRU共小区的信号传输方法示意图; 图 2为本发明实施例提供的另一种多 RRU共小区的信号传输方法示意 图;
图 3 为本发明实施例提供的另一种多 RRU共小区的信号传输方法示意 图; 图 4为本发明实施例提供的另一种多 RRU共小区的信号传输方法示意 图;
图 5为本发明实施例提供的一种基站的结构示意图;
图 6为本发明实施例提供的另一种基站的结构示意图;
图 7为本发明实施例提供的另一种基站的结构示意图;
图 8为本发明实施例提供的另一种基站的结构示意图;
图 9为本发明实施例提供的另一种基站的结构示意图。 具体实施方式 下面通过附图和实施例, 对本发明的技术方案做进一歩的详细描述。 在此需要说明, 下述实施例中提供的多 RRU共小区的信号传输方法 可以应用在全球移动通信系统 (Global System for Mobile Communication, GSM)、通用移动通信系统 ( Universal Mobile Telecommunications System, UMTS )、全球微波互耳关接入(Worldwide Interoperability for Microwave Access, WIMAX) 系统和长期演进 (Long Term Evolution, LTE) 系统等多 RRU共 小区的场景。下述实施例提供的多 RRU共小区的信号传输方法的执行主体可 以为上述任一场景下的基站。
实施例一
图 1为本发明实施例提供的一种多 RRU共小区的信号传输方法。 如 图 1所示, 该方法包括以下歩骤:
100、 为用户设备 UE设置初始工作 RRU。
在 UE入网时, 基站可以为 UE设置一个初始工作 RRU。 具体地, 基站 可以获取服务小区内各 RRU下的第三参考信号测量值, 其中, 第三参考信号 测量值用于表征第三参考信号测量值对应的 RRU的上行信号质量。基站选取 最大的第三参考信号测量值对应的 RRU作为 UE的初始工作 RRU。
101、 获取所述 UE所在服务小区的第一参考信号测量值和所述 UE的每 个相邻小区的第二参考信号测量值; 其中, 所述第一参考信号测量值用于表 征所述服务小区的下行信号质量, 所述第二参考信号测量值用于表征所述相 邻小区到所述 UE的下行信号质量。
实际应用中 UE在接收或者发送信号时, UE的服务小区的各相邻小区发 出的信号一般会对 UE产生一定的干扰。基站可以获取 UE的服务小区的所有 相邻小区对 UE的第一干扰因子。
在本实施例中, 基站可以获取表征 UE服务小区的下行信号质量的第一 参考信号测量值和表征 UE的每个相邻小区到 UE的下行信号质量的第二参考 信号测量值。 具体地, 第一参考信号测量值为 UE服务小区的下行 RSRP时, 第二参考信号测量值为相邻小区的下行 RSRP。基站获得 UE服务小区的下行 RSRP, 以及接收 UE上报的每个相邻小区的下行 RSRP。 相应地, 第一参考 信号测量值为 UE服务小区的下行 RSRQ时, 第二参考信号测量值为相邻小 区的下行 RSRQ, 基站获得 UE服务小区的下行 RSRQ, 以及接收 UE上报的 每个相邻小区的下行 RSRQ。 UE将每个相邻小区下行 RSRP或 RSRQ上报给 基站, 基站将每个相邻小区的下行 RSRP或 RSRQ进行求和计算。
102、将所述第一参考信号测量值与所有所述第二参考信号测量值之和的 比值, 作为所述 UE的第一干扰因子。
在本实施例中, 基站根据第一参考信号测量值和第二参考信号测量值之 和的比值, 获取第一干扰因子的公式为:
设^为第一干扰因子, ϋι为第一参考信号测量值, 为 UE服务小区的 第 个相邻小区的第二参考信号测量值, z=l, 2, ...... Ν, 为 UE服务 小区的所有相邻小区的第二参考信号测量值之和, N为 UE服务小区的相邻 小区的个数。
需要说明, 在上述公式中, 第一参考信号测量值 可以为 RSRP, 也可 以为 RSRQ, 第二参考信号测量值 可以为 RSRP, 也可以为 RSRQ。 但是, 第一参考信号测量值和第二参考信号测量值, 必须为同一类型的测量值, 也 就是说,如果 为 RSRP, 也为 RSRP;而如果 G为 RSRQ, 也为 RSRQ。
实际应用中, 基站可以接收到 UE反馈的信道质量指标 (Channel quality indicator, CQI) 。 由于 CQI能指示出相邻小区对 UE的干扰情况, 基站可 以直接将 CQI作为第一干扰因子。 一般, UE可以根据信号噪声比 (Signal to Noise Ratio, SNR) 、 信号与干扰力口噪声比 ( Signal to Interference plus Noise Ratio, SINR) 或信号与噪声失真比(Signal to Noise and Distortion Ratio, SNDR)等信道的性能指标计算得到 CQI, 然后将该 CQI反馈给基站。 103、 判断所述第一干扰因子是否小于或者等于预设的第一干扰门限。 在获取到第一干扰因子后, 基站将第一干扰因子与预设的第一干扰门限 进比较, 以判断第一干扰因子是否小于或者等于第一干扰门限。 如果第一干 扰因子小于或者等于第一干扰门限, 执行歩骤 104; 如果第一干扰因子大于 第一干扰门限, 执行歩骤 105。
104、从所述 UE服务小区中除所述初始 RRU之外的其他 RRU中为所述 UE选取工作 RRU, 利用所述第一工作 RRU和初始工作 RRU为 UE进行信 号传输。
实际应用中,远点或者边缘 UE由于距离基站较远,导致 UE服务小区的 下行信号的信号强度较小, 相邻小区对 UE 的干扰相对较强, 第一干扰因子 相对较小, 基站就需要为该 UE分配多个工作 RRU, 以提高 UE的信号质量。
在本实施例中, 如果第一干扰因子小于或者等于第一干扰门限, 说明该 UE为远点或者边缘用户设备, 此时, 为了提高 UE的信号质量, 基站就需要 从 UE服务小区中的 RRU中为该 UE选取第一工作 RRU。可选地, 基站可以 将服务小区内所有的 RRU确定为 UE的第一工作 RRU。 在本实施例中, UE 的工作 RRU的个数超过 1个时, 该 UE为联合调度设备。
实际应用中, 近点 UE服务小区的下行信号的信号强度较高, 相邻小区 对 UE的干扰相对较弱,第一干扰因子较大,这样近点 UE的第一干扰因子一 般会高于第一干扰门限, 基站为该近点 UE分配一个工作 RRU就可以满足 UE 的需求。 在本实施例中, 如果第一干扰因子大于第一干扰门限, 说明该 UE为近点用户设备, 该 UE只需要一个工作 RRU, 该工作 RRU为初始工作 RRU。 基站不需要从其他 RRU中为 UE选取第一工作 RRU。 在本实施例中, 如果 UE仅有一个工作 RRU, 该 UE为独立调度设备。
进一歩地, 在基站为 UE选取完第一工作 RRU后, 利用 UE的第一工作 RRU和初始工作 RRU对 UE进行信号传输。
105、 利用所述初始工作 RRU为所述 UE进行信号传输。
如果第一干扰因子大于第一干扰门限时, 初始工作 RRU就可以满足 UE 的需求, 基站不需要从其他 RRU中为选取第一工作 RRU, 此时, 利用初始 工作 RRU为 UE进行信号传输。
本实施例提供的多 RRU共小区的信号传输方法, 为 UE设置初始工作 RRU, 根据 UE服务小区的第一参考信号测量值与 UE每个相邻小区的第二 参考信号测量值, 获取 UE 的第一干扰因子, 如果第一干扰因子小于或者等 于第一干扰门限, 从 UE的服务小区中的 RRU中为 UE选取第一工作 RRU, 利用所述第一工作 RRU和初始工作 RRU为 UE进行信号传输。 本发明实施 例根据相邻小区对 UE的干扰情况, 来确定 UE的工作 RRU, 有利于降低为 近点 UE分配工作 RRU的数量, 从而降低了 RB的浪费。
实施例二
图 2为本发明实施例提供的另一种多 RRU共小区的信号传输方法示意 图。 如图 2所示, 该方法包括以下歩骤:
200、 为用户设备 UE设置初始工作 RRU。
基站为 UE设置初始工作 RRU的过程, 与上述实施例中歩骤 100相同, 基站获取服务小区内各 RRU下的第三参考信号测量值,将最大的第三参考信 号测量值对应的 RRU设置为 UE的初始工作 RRU, 并将初始工作 RRU的序 号定义为 1。
201、 获取所述 UE所在服务小区的第一参考信号测量值和所述 UE的每 个相邻小区的第二参考信号测量值。
在本实施例中, 歩骤 201与上述实施例中歩骤 101相同, 参见上述实施 例的介绍, 此处不再赘述。 需要说明, 本实施例中的第一干扰门限的取值可 以根据实际应用具体设置, 与上述实施例中的第一干扰门限的取值可以是不 同的, 也可以是相同的。
202、将所述第一参考信号测量值与所有所述第二参考信号测量值之和的 比值, 作为所述 UE的第一干扰因子。
在本实施例中, 歩骤 202与上述实施例中歩骤 102相同, 参见上述实施 例的介绍, 此处不再赘述。
203、 判断所述第一干扰因子是否小于或者等于所述第一干扰门限。 在获取到第一干扰因子后, 基站将第一干扰因子与预设的第一干扰门限 进行比较, 以判断第一干扰因子是否小于或者等于第一干扰门限。 如果第一 干扰因子小于或者等于第一干扰门限, 执行歩骤 204。 如果第一干扰因子大 于第一干扰门限, 执行歩骤 206。
可选地, 基站可以将 UE反馈的 CQI作为第一干扰因子, 关于 CQI的获 取过程, 可以参见上述实施例中相关内容记载, 此处不再赘述。
204、 将所述服务小区内除初始 RRU之外的其他 RRU中每个 RRU作为 第一 RRU, 获取所述第一 RRU对所述 UE的隔离度。
UE的服务小区内有多个 RRU, 每个 RRU都可以向 UE发送信号, 在 UE接收或者发送信号时, 会对 UE产生一定的干扰。 在本实施例中, 以第一 RRU为例, 说明在判断出第一干扰因子小于或者等于第一干扰门限后, 基站 获取第一 RRU对 UE的隔离度的过程。
可选地, 基站获取第一 RRU对 UE 的隔离度的第一种实现方式为: 对 UE服务小区内除初始工作 RRU之外的其他 RRU中的第一 RRU, 基站获取 当前已经确定为 UE的工作 RRU的 RRU的第三参考信号测量值之和, 与其 他 RRU中除已经确定为 UE的工作 RRU之外剩余 RRU的第三参考信号测量 值之和的比值作为第一 RRU的隔离度。
可选地, 基站获取第一 RRU对 UE 的隔离度的第二种实现方式为: 对 UE服务小区内除初始工作 RRU之外的其他 RRU中的第一 RRU, 基站获取 当前已经确定为 UE的工作 RRU的第三参考信号测量值之和, 与第一 RRU 的第三参考信号测量值的比值作为第一 RRU的隔离度。
可选地, 在歩骤 204获取第一 RRU对 UE的隔离度的上述两种实现方式 中, 基站可以将获取到的 UE服务小区内所有 RRU的第三参考测量值, 按照 由大到小进行排序, 然后按排序后的顺序依次获取其他 RRU中每个 RRU对 UE的隔离度。 在本实施例中, 通过对每个 RRU的第三参考信号测量值进行 排序后, 在依次确定其他每个 RRU是否为 UE第一工作 RRU的过程中, 当 某个 RRU的隔离度大于或者等于第二干扰门限时,基站就可以确定出该 RRU 不是 UE的第一工作 RRU。 由于在该 RRU后的剩余 RRU的第三参考信号测 量值均小于该 RRU 的第三参考信号测量值, 进而基站可以容易地确定出该 RRU后的剩余 RRU均不是 UE的第一工作 RRU,简化了为 UE选取工作 RRU 的过程,提高了为 UE选取工作 RRU的时效性,减少基站的能耗及资源浪费。
在上述第一种实现方式中,基站获取第一 RRU对 UE的隔离度的公式为: r _∑,·=ι C3,. 设 为第一 RRU的隔离度, 为第一 RRU的序号, =2,3...M; M为 UE服务小区内 RRU的个数; 为已经确定为 UE的工作 RRU中第 个工作
RRU的第三参考信号测量值, e"为其他 RRU除已经确定为 UE工作 RRU之 外的 RRU中第 V个工作 RRU的第三参考信号测量值; 为当前已经确 定为 UE的工作 RRU第三参考信号测量值之和, 表示其他 RRU中出 除已经确定为 UE的工作 RRU之外剩余 RRU第三参考信号测量值之和。
在上述第二种实现方式中,基站获取第一 RRU对 UE的隔离度的公式为:
设°^为第一 RRU的隔离度, 为第一 RRU的序号, =2,3...M; M为 UE服务小区内 RRU的个数; 为已经确定为 UE的工作 RRU中第 个工作 RRU的第三参考信号测量值, 为第一 RRU的第三参考信号测量值; 为当前已经确定为 UE的工作 RRU第三参考信号测量值之和。
需要说明, 在本实施例中当前已确定为 UE的工作 RRU的 RRU存放在 UE的工作 RRU集合中。在基站获取第一 RRU对 UE的第一干扰因子时, 基 站根据该工作 RRU集合得知当前已经确定为 UE的工作 RRU的 RRU, 然后 获取当前已经确定为 UE的工作 RRU的 RRU第三参考信号测量值之和。
205、 如果所述第一 RRU的隔离度小于预设的第二干扰门限, 选取所述 第一 RRU为所述 UE的第一工作 RRU, 利用所述第一工作 RRU和所述初始 工作 RRU为所述 UE进行信号传输。
在获取到第一 RRU的隔离度后,基站将该隔离度与预设的第二干扰门限 进行比较, 如果比较出第一 RRU的隔离度小于第二干扰门限, 基站选取出第 一 RRU为 UE的第一工作 RRU。 基站将选取为第一工作 RRU的第一 RRU 加入到 UE的工作 RRU集合中。
在本实施例中, 基站逐次将其他 RRU中每个 RRU作为第一 RRU, 以获 取到其他 RRU中每个 RRU对 UE的隔离度,并根据隔离度判断每个 RRU是 否为 UE的第一工作 RRU。需要说明,本实施例中基站获取到一个 RRU的隔 离度后,直接根据该 RRU的隔离度和第二干扰门限,判断该 RRU是否为 UE 的第一工作 RRU。
在基站为 UE选取完第一工作 RRU后, 利用 UE的第一工作 RRU和初 始工作 RRU对 UE进行信号传输。 206、 利用所述初始工作 RRU为所述 UE进行信号传输。
如果第一干扰因子大于第一干扰门限, 初始工作 RRU就可以满足 UE的 需求, 基站不需要再为 UE分配其他工作 RRU, 此时, 利用初始工作 RRU为
UE进行信号传输。
本实施例提供的多 RRU共小区的信号传输方法, 在为 UE设置初始工作
RRU后, 获取 UE服务小区的所有相邻小区对 UE的第一干扰因子, 在第一 干扰因子小于或者等于第一干扰门限时, 进一歩将服务小区中除初始工作 RRU之外其他 RRU中每个 RRU作为第一 RRU, 获取第一 RRU对 UE的隔 离度,如果第一 RRU的隔离度小于第二干扰门限,选取该第一 RRU作为 UE 的工作 RRU, 利用第一工作 RRU和初始工作 RRU为 UE进行信号传输。 本 发明实施例通过第一干扰因子和隔离度相结合, 来为 UE选取工作 RRU, 进 一歩减少了为近点 UE分配的工作 RRU的数量, 而且还可以减少为远点或者 边缘 UE分配工作 RRU的数量, 提高了为 UE确定工作 RRU的精确性, 降 低了 RB的浪费。
实施例三
图 3 为本发明实施例提供的另一种多 RRU共小区的信号传输方法示意 图。 如图 3所示, 该方法包括以下歩骤:
300、 为用户设备 UE设置初始工作 RRU。
基站为 UE设置初始工作 RRU的过程, 与上述实施例中歩骤 100相同, 基站获取服务小区内各 RRU下的第三参考信号测量值,将最大的第三参考信 号测量值对应的 RRU设置为 UE的初始工作 RRU。在本实施例中,可以初始 工作 RRU的序号定义为 1。
301、 获取所述 UE所在服务小区的第一参考信号测量值和所述 UE的每 个相邻小区的第二参考信号测量值。
在本实施例中, 歩骤 301与上述实施例中歩骤 101相同, 参见上述实施 例的介绍, 此处不再赘述。 需要说明, 本实施例中的第一干扰门限的取值可 以根据实际应用具体设置, 与上述实施例中的第一干扰门限的取值可以是不 同的, 也可以是相同的。
302、将所述第一参考信号测量值与所有所述第二参考信号测量值之和的 比值, 作为所述 UE的第一干扰因子。 在本实施例中, 歩骤 302与上述实施例中歩骤 102相同, 参见上述实施 例的介绍, 此处不再赘述。
303、 判断所述第一干扰因子是否小于或者等于所述第一干扰门限。 在获取到第一干扰因子后, 基站将第一干扰因子与预设的第一干扰门限 进行比较, 以判断第一干扰因子是否小于或者等于第一干扰门限。 如果第一 干扰因子小于或者等于第一干扰门限, 执行歩骤 304。 如果第一干扰因子大 于第一干扰门限, 执行歩骤 306。
304、 将所述服务小区内除所述初始工作 RRU之外的其他 RRU中每个 RRU作为第二 RRU, 将所述第一参考信号测量值与所述第二 RRU的第三参 考信号测量值的差值,与所有所述第二参考信号测量值与所述第二 RRU的第 三参考信号测量值之和的比值作为所述第二 RRU的所述第二干扰因子。
在本实施例中, 以第二 RRU为例, 说明在判断出第一干扰因子小于或者 等于第一干扰门限后, 基站获取其他 RRU中每个 RRU对 UE的第二干扰因 子的过程。
判断出第一干扰因子小于或者等于第一干扰门限后, 基站根据服务小区 的第一参考信号测量值、 UE每个相邻小区的第二参考信号测量值和服务小区 内除初始工作 RRU之外的其他第二 RRU的第三参考信号测量值, 获取第二 RRU对 UE的第二干扰因子。 其中, 第一参考信号测量值可以为 UE服务小 区的下行 RSRP或者参 RSRQ, 第二参考信号测量值可以为相邻小区的下行 RSRP或 RSRQ, 第三信号测量值可以为 UE在服务小区内第二 RRU下的 RSRP或 RSRQ。
在歩骤 301 中, 基站可以将获取到的服务小区的第一参考信号测量值和 每个相邻小区的第二参考信号测量值进行缓存, 在歩骤 304中基站可以从缓 存单元中获取第一参考信号测量值和第二参考信号测量值。 类似地, 在歩骤 300中, 基站可以将获取到服务小区中每个 RRU的第三参考信号测量值进行 缓存, 在歩骤 304中, 基站可以从缓存单元中获取到第三参考信号测量值。
具体地,基站根据第一参考信号测量值与第二 RRU的第三参考信号测量 值, 得到第一参考信号测量值与第二 RRU的第三参考信号测量值的差值, 并 且根据所有相邻小区的第二参考信号测量值和第二 RRU 的第三参考信号测 量值,得到所有相邻小区的第二参考信号测量值与第二 RRU的第三参考信号 测量值的和值, 再将上述差值与上述和值做比值, 得到第二 RRU对 UE的第 二干扰因子。
类似地, 基站将其他 RRU中的每个 RRU作为第二 RRU, 按照上述获取 第二 RRU对 UE的第二干扰因子的方法, 得到其他 RRU中每个 RRU对 UE 的第二干扰因子。
在本实施例中, 基站获取第二 RRU对 UE的第二干扰因子的公式为:
其中, 设^为第二 RRU对 UE的第二干扰因子, /为第二 RRU的序号, /=2, 3...M, M为 UE服务小区内 RRU的个数; 为第一参考信号测量值, ^为第二 RRU的第三参考信号测量值; ^为 UE服务小区的第 个相邻小区 的第二参考信号测量值; z = l, 2, 3...N, W为 UE服务小区的相邻小区的个 数; ∑ cUE服务小区的所有相邻小区的第二参考信号测量值之和。
需要说明, 在上述公式中, 第一参考信号测量值、 第二参考信号测量值 和第三参考信号测量值, 必须为同一类型的测量值, 也就是说, 如果第一参 考信号测量值为 RSRP, 第二参考信号测量值和第三信号测量值均为 RSRP, 而如果第一参考信号测量值为 RSRQ, 第二参考信号测量值和第三信号测量 值均为 RSRQ。
305、 如果所述第一干扰因子与所述第二 RRU的所述第二干扰因子的差 值大于预设的第三干扰门限,选取所述第二 RRU为所述 UE的第一工作 RRU, 利用所述第一工作 RRU和所述初始工作 RRU为所述 UE进行信号传输。
在获取到第二 RRU的第二干扰因子后,基站将第一干扰因子与第二 RRU 的第二干扰因子做差值, 将该差值与预设的第三干扰门限进行比较, 如果该 差值大于第三干扰门限,基站选取该第二 RRU为 UE的第一工作 RRU。基站 将选取为 UE第一工作 RRU的第二 RRU放入 UE的工作 RRU集合中。
相应地, 基站将其他 RRU中每个 RRU作为第二 RRU, 按照上述根据第 二 RRU第二干扰因子与第三干扰门限, 为 UE选取第一工作 RRU的方法, 判断其他 RRU中的每个 RRU是否为 UE的第一工作 RRU。
在基站为 UE选取完第一工作 RRU后, 利用 UE的第一工作 RRU和初 始工作 RRU为 UE进行信号传输。
306、 利用所述初始工作 RRU为所述 UE进行信号传输。 如果第一干扰因子大于第一干扰门限, 初始工作 RRU就可以满足 UE的 需求, 基站不需要再为 UE选取第一工作 RRU, 此时, 利用初始工作 RRU为 UE进行信号传输。
本实施例提供的多 RRU共小区的信号传输方法, 在为 UE设置初始工作 RRU后, 获取 UE所有相邻小区对 UE的第一干扰因子, 在第一干扰因子小 于或者等于第一干扰门限时,进一歩将其他 RRU中每个 RRU作为第二 RRU, 获取第二 RRU对 UE的第二干扰因子, 如果第一干扰因子与第二干扰因子的 差值大于预设的第三干扰门限,选取第二 RRU为 UE的第一工作 RRU,利用 所述第一工作 RRU和所述初始工作 RRU为所述 UE进行信号传输。 本发明 实施例通过第一干扰因子和第二干扰因子相结合, 为 UE确定工作 RRU, 进 一歩减少了为近点 UE分配的工作 RRU的数量, 而且还可以减少为远点 UE 或者边缘 UE分配工作 RRU的数量, 提高了为 UE确定工作 RRU的精确性, 降低了 RB的浪费。
实施例四
图 4为本发明实施例提供的另一种多 RRU共小区的信号传输方法示意 图。 如图 4所示, 该方法包括以下歩骤:
400、 为用户设备 UE设置初始工作 RRU。
在 UE入网时, 基站可以为 UE设置一个初始工作 RRU。 具体地, 基站 可以获取服务小区内各 RRU下的第一参考信号测量值,基站选取最大的第一 参考信号测量值对应的 RRU作为 UE的初始工作 RRU,并将该初始工作 RRU 的序号定义为 1。
401、 将所述 UE所在服务小区内除所述初始工作 RRU之外的其他 RRU 中每个 RRU作为第一 RRU, 根据所述服务小区内当前已经确定为所述 UE 的工作 RRU的 RRU的第一参考信号测量值与所述第一 RRU的第一参考信号 测量值, 获取所述第一 RRU对所述 UE的隔离度, 其中, 所述第一参考信号 测量值用于表征所述第一参考信号测量值对应的 RRU的上行信号质量。
在本实施例中, UE的服务小区内有多个 RRU, 每个 RRU都可以发出信 号, 在 UE发送或者接收信号时, 会对 UE产生一定的干扰。 在本实施例中, 以第一 RRU为例, 说明基站获取第一 RRU对 UE的隔离度的过程。 基站根 据服务小区内当前已经确定为 UE的工作 RRU的 RRU的第一参考信号测量 值与第一 RRU的第一参考信号测量值, 获取 UE的服务小区内第一 RRU对 UE的隔离度, 在本实施例中,第一参考信号测量值用于表征该第一参考信号 测量值对应的 RRU 的上行信号质量, 可以为 UE 的服务小区内除初始工作 RRU之外的其他每个 RRU下的 RSRP或 RSRQ。
可选地, 基站获取第一 RRU对 UE的隔离度的第一种实现方式为: 基站 获取服务小区内当前已经确定为 UE的工作 RRU的 RRU的第一参考信号测 量值之和, 与服务小区内除已经确定为 UE的工作 RRU之外的剩余 RRU的 第三参考信号的测量值之后的比值, 作为第一 RRU对 UE的隔离度。
可选地, 基站获取第一 RRU对 UE的隔离度的第二种实现方式为: 基站 获取当前已经确定为 UE 的工作 RRU 的第一参考信号测量值之和, 与第一 RRU的第一参考信号测量值的比值作为第一 RRU的隔离度。
可选地, 在歩骤 401中获取第一 RRU对 UE的隔离度上述两种实现方式 中, 基站在获取到服务小区内每个 RRU 的第一参考测量值后, 可以将所有 RRU的第一参考信号测量值由大到小进行排序, 按排序后的顺序依次获取服 务小区内第一 RRU对 UE的隔离度。 在本实施例中, 通过对每个 RRU的第 一参考信号测量值进行排序后, 再依次确定服务小区内的 RRU是否为 UE的 工作过程中, 当某个 RRU对 UE的隔离度大于或者等于第一干扰门限时, 基 站确定出该 RRU不是 UE的工作 RRU。 由于在该 RRU后的剩余 RRU的第 一参考信号测量值均小于该 RRU的第一参考信号测量值,进而基站可以容易 地确定出该 RRU后的剩余 RRU均不是 UE的工作 RRU, 简化了为 UE确定 工作 RRU的过程, 提高了为 UE确定工作 RRU的时效性, 减少基站的能耗 及资源浪费。
在上述第一种实现方式中,基站获取第一 RRU对 UE的隔离度的公式为: yK-l c
设 为第一 RRU的隔离度, 为第一 RRU的序号, =2,3...M; M为
UE服务小区内 RRU的个数; 为已经确定为 UE的工作 RRU中第 个工作 RRU的第一参考信号测量值, C、j为其他 RRU除已经确定为 UE工作 RRU之 外的 RRU中第 V个工作 RRU的第一参考信号测量值; 为当前已经确 定为 UE的工作 RRU第一参考信号测量值之和, j_-k C"表示其他 RRU中出 除已经确定为 UE的工作 RRU之外剩余 RRU第一参考信号测量值之和。 在上述第二种实现方式中,基站获取第一 RRU对 UE的隔离度的公式为:
设^为第一 RRU的隔离度, 为第一 RRU的序号, =2,3...M; M为 UE服务小区内 RRU的个数; 为已经确定为 UE的工作 RRU中第 个工作
RRU的第一参考信号测量值, C-为第一 RRU的第一参考信号测量值;- Cli 为当前已经确定为 UE的工作 RRU第一参考信号测量值之和。
需要说明, 在本实施例中当前已确定为 UE的工作 RRU的 RRU存放在
UE的工作 RRU集合中。在基站获取第一 RRU对 UE的隔离度时, 基站根据 该工作 RRU集合得知当前已经确定为 UE的工作 RRU的 RRU, 然后获取当 前已经确定为 UE的工作 RRU的 RRU第一参考信号测量值之和。
402、 如果所述第一 RRU的所述隔离度小于预设的第一干扰门限, 选取 所述第一 RRU为所述 UE的第一工作 RRU, 利用所述第一工作 RRU和所述 初始工作 RRU为所述 UE进行信号传输。
在获取到第一 RRU的隔离度后, 基站将第一 RRU的隔离度与预设的第 一干扰门限进行比较, 如果第一 RRU的隔离度小于第一干扰门限, 基站选取 该第一 RRU为 UE的工作 RRU。 基站可以将选取为工作 RRU的第一 RRU 放入 UE的工作 RRU集合中。
在本实施例中, 基站逐次将其他 RRU中每个 RRU作为第一 RRU, 以获 取到其他 RRU中每个 RRU对 UE的隔离度,并根据隔离度判断每个 RRU是 否为 UE的第一工作 RRU。需要说明,本实施例中基站获取到一个 RRU的隔 离度后,直接根据该 RRU的隔离度和第二干扰门限,判断该 RRU是否为 UE 的第一工作 RRU。
在为 UE选取完第一工作 RRU后, 基站利用 UE的第一工作 RRU初始 工作 RRU为 UE进行信号传输。
本实施例提供的多 RRU共小区的信号传输方法, 在为 UE选取初始工作 RRU之后, 将 UE服务小区内除初始工作 RRU之外其他 RRU中每个 RRU 作为第一 RRU, 根据服务小区内当前已经确定为该 UE的工作 RRU的 RRU 的第一参考信号测量值与第一 RRU的第一参考信号测量值, 获取第一 RRU 对 UE的隔离度, 如果第一 RRU的隔离度小于预设的第一干扰门限, 选取第 一 RRU为 UE的第一工作 RRU,利用所述第一工作 RRU和所述初始工作 RRU 为所述 UE进行信号传输。本发明实施例根据服务小区内除初始工作 RRU之 外的每个 RRU对 UE的隔离度, 为 UE选取工作 RRU, 有利于降低为近点 UE分配的工作 RRU的数量, 提高了为 UE确定工作 RRU的精确性, 降低 RB的浪费。
实际应用中 UE在接收或者发送信号时, UE的每个相邻小区发出的信号, 一般也会对 UE产生一定的干扰。 基站还可以获取 UE所有相邻小区对该 UE 的第一干扰因子。 具体地, 基站获取表征 UE服务小区的下行信号质量的第 二参考信号测量值和表征 UE的每个相邻小区到 UE的下行信号质量的第三参 考信号测量值。其中, 第二参考信号测量值可以为 UE服务小区的下行 RSRP 或者下行 RSRQ, 第三参考信号测量值为相邻小区的下行 RSRP 或者下行 RSRQ。 基站将第二参考信号测量值与所有第二参考信号测量值之和的比值, 作为 UE的第一干扰因子。关于基站 UE的第一干扰因子的过程,可参见上述 实施例相关内容的记载, 此处不再赘述。
在获取到第一干扰因子后, 本发明实施例通过第一干扰因子与隔离度结 合,为 UE选取工作 RRU,可进一歩减少为近点 UE分配的工作 RRU的数量, 而且还可以减少为远点或者边缘 UE分配工作 RRU的数量, 提高了为 UE确 定工作 RRU的精确性, 降低了 RB的浪费。 关于第一干扰因子与隔离度结合 后, 为 UE选取工作 RRU相关内容, 可参见上述相关实施例中相关内容的记 载, 此处不再赘述。
实施例五
图 5为本发明实施例提供的一种基站的结构示意图。 如图 5所示, 该基 站包括: 设置模块 50、 获取模块 51、 确定模块 52和选取模块 53。
其中, 在 UE入网时, 设置模块 50可以为 UE设置一个初始工作 RRU。 具体地,设置模块 50可以在获取模块 51获取到服务小区内各 RRU下的第三 参考信号测量值, 其中, 第三参考信号测量值用于表征第三参考信号测量值 对应的 RRU的上行信号质量。 然后设置模块 50选取最大的第三参考信号测 量值对应的 RRU作为 UE的初始工作 RRU,将初始工作 RRU的序号设为 1。
获取模块 51获取 UE所在服务小区的第一参考信号测量值和 UE的每个 相邻小区的第二参考信号测量值。 其中, 第一参考信号测量值用于表征服务 小区的下行信号质量, 第二参考信号测量值用于表征相邻小区到 UE 的下行 信号质量。
实际应用中 UE在接收或者发送信号时, UE的服务小区的各相邻小区发 出的信号一般会对 UE产生一定的干扰。基站可以获取 UE的服务小区的所有 相邻小区对 UE的第一干扰因子。
具体地, 第一参考信号测量值为 UE服务小区的下行 RSRP时, 第二参 考信号测量值为相邻小区的下行 RSRP。 获取模块 51获得 UE服务小区的下 行 RSRP, 以及接收 UE上报的每个相邻小区的下行 RSRP。 相应地, 第一参 考信号测量值为 UE服务小区的下行 RSRQ时, 第二参考信号测量值为相邻 小区的下行 RSRQ, 获取模块 51获得 UE服务小区的下行 RSRQ, 以及接收 UE上报的每个相邻小区的下行 RSRQ。 UE将每个相邻小区下行 RSRP 或 RSRQ上报给获取模块 51。确定模块 52将每个相邻小区的下行 RSRP或 RSRQ 进行求和计算。确定模块 52在获取到所有第二参考信号测量值之和后, 将第 一参考信号测量值与所有第二参考信号测量值之和的比值作为 UE 的第一干 扰因子。
在本实施例中,确定模块 51根据第一参考信号测量值和第二参考信号测 量值之 , 获取第一干扰因子的公式为:
Figure imgf000020_0001
设^为第一干扰因子, ei为第一参考信号测量值, ^为 UE服务小区的 第 个相邻小区的第二参考信号测量值, z =l, 2, ...... N, 为 UE服务 小区的所有相邻小区的第二参考信号测量值之和, W为 UE服务小区的相邻 小区的个数。
需要说明, 在上述公式中, 第一参考信号测量值和第二参考信号测量值, 必须为同一类型的测量值, 也就是说, 如果 为 RSRP, 也为 RSRP; 而如 果 为 RSRQ, 也为 RSRQ。
可选地, 获取模块 51可以接收到 UE反馈的 CQI。 由于 CQI能指示出相 邻小区对 UE的干扰情况,基站可以直接将 CQI作为第一干扰因子。关于 CQI 的获取过程, 可以参见上述实施例中相关内容记载, 此处不再赘述。
实际应用中,远点或者边缘 UE由于距离基站较远,导致 UE服务小区的 下行信号的信号强度较小, 相邻小区对 UE 的干扰相对较强, 第一干扰因子 相对较小, 基站就需要为该 UE分配多个工作 RRU, 以提高 UE的信号质量。 在确定模块 52获取到第一干扰因子后, 选取模块 53将第一干扰因子与 预设的第一干扰门限进行比较, 如果第一干扰因子小于或者等于预设的第一 干扰门限, 说明该 UE为远点或者边缘用户设备, 此时, 为了提高 UE的信号 质量, 确定模块 52需要从 UE服务小区中的 RRU中为该 UE选取第一工作 RRU。 可选地, 选取模块 53可以将服务小区内所有的 RRU选取为 UE的第 一工作 RRU。 在本实施例中, UE的工作 RRU的个数超过 1个时, 该 UE为 联合调度设备。
实际应用中, 近点 UE服务小区的下行信号的信号强度较高, 相邻小区 对 UE的干扰相对较弱,第一干扰因子较大,这样近点 UE的第一干扰因子一 般会高于第一干扰门限, 基站为该近点 UE分配一个工作 RRU就可以满足 UE的需求。 在本实施例中, 选取模块 53在第一干扰因子大于第一干扰门限 时, 说明该 UE为近点用户设备, 该 UE只需要一个工作 RRU, 该工作 RRU 为初始工作 RRU。 选取模块 53不需要从其他 RRU中为 UE选取第一工作 RRU。在本实施例中, 如果 UE仅有一个工作 RRU, 该 UE为独立调度设备。
在选取模块 53为 UE选取完第一工作 RRU后,利用 UE的第一工作 RRU 和初始工作 RRU为 UE进行信号传输。而在第一干扰因子大于第一干扰门限 时, 初始工作 RRU就可以满足 UE的需求, 不需要从其他 RRU中为选取第 一工作 RRU, 选取模块 53利用初始工作 RRU为 UE进行信号传输。
本实施例提供的基站, 在为 UE设置初始工作 RRU后, 根据 UE服务小 区的第一参考信号测量值与 UE每个相邻小区的第二参考信号测量值, 获取 UE的第一干扰因子, 如果第一干扰因子小于或者等于第一干扰门限, 从 UE 的服务小区中除初始 RRU之外的其他 RRU中为 UE选取工作 RRU, 并利用 第一工作 RRU和初始工作 RRU为 UE进行信号传输。 本发明实施例根据相 邻小区对 UE的干扰情况, 来确定 UE的工作 RRU, 有利于降低为近点 UE 分配工作 RRU的数量, 从而降低了 RB的浪费。
实施例六
图 6为本发明实施例提供的另一种基站的结构示意图。 如图 6所示, 该 基站包括: 设置模块 60、 获取模块 61、 确定模块 62和选取模块 63。
其中, 设置模块 60、 获取模块 61以及确定模块 62这些模块实现功能以 及连接关系, 可参见上述实例中相关内容的记载, 此处不再赘述。 在本实施例中, UE的服务小区内有多个 RRU, 每个 RRU都可以发出信 号, 在 UE发送或者接收信号时, 会对 UE产生一定的干扰。
选取模块 63的实现结构方式包括: 第一判断单元 631、 获取单元 632、 第二判断单元 633、 选取单元 634和信号传输单元 635。
在本实施例中, 选取模块 63 服务小区中除初始工作 RRU 之外的其他 RRU中为 UE选取第一工作 RRU的一可选实现方式:
第一判断单元 631与确定模块 62连接, 在确定模块 62获取到第一干扰 因子后,第一判断单元 631将第一干扰因子与预设的第一干扰门限进行比较, 判断第一干扰因子是否小于或者等于第一干扰门限。 第一判断单元 631还与 获取单元 632连接, 在第一判断单元 631判断出第一干扰因子小于或等于第 一干扰门限后, 获取单元 632获取服务小区内除初始工作 RRU之外的其他 RRU中每个 RRU对 UE的隔离度。
在本实施例中, 获取单元 632将其他 RRU中每个 RRU作为第一 RRU, 根据服务小区内当前已经确定为 UE的工作 RRU的 RRU的第一参考信号测 量值与第一 RRU的第一参考信号测量值, 获取第一 RRU对 UE的隔离度。
可选地, 获取单元 632获取第一 RRU对 UE的隔离度的第一种实现方式 为: 获取单元 632获取服务小区内当前已经确定为 UE的工作 RRU的 RRU 的第一参考信号测量值之和, 与服务小区内除已经确定为 UE的工作 RRU之 外剩余 RRU的第三参考信号测量值之后的比值, 作为第一 RRU对 UE的隔 离度。
可选地, 获取单元 632获取第一 RRU对 UE的隔离度的第二种实现方式 为: 获取单元 632可以获取当前已经确定为 UE的工作 RRU的第一参考信号 测量值之和,与第一 RRU的第一参考信号测量值的比值作为第一 RRU对 UE 的隔离度。
可选地, 在获取第一 RRU对 UE的隔离度的上述两种实现方式中, 获取 单元 632可以将获取到的 UE服务小区内所有 RRU的第三参考测量值, 按照 由大到小进行排序, 然后按排序后的顺序依次将其他 RRU中每个 RRU作为 第一 RRU,获取每个 RRU对 UE的隔离度。在本实施例中,通过对每个 RRU 的第三参考信号测量值进行排序后, 在依次确定其他 RRU中每个 RRU是否 为 UE第一工作 RRU的过程中, 当某个 RRU的隔离度大于或者等于第二干 扰门限时, 基站就可以确定出该 RRU不是 UE的第一工作 RRU。 由于在该 RRU后的剩余 RRU的第三参考信号测量值均小于该 RRU的第三参考信号测 量值, 进而基站可以容易地确定出该 RRU后的剩余 RRU均不是 UE的第一 工作 RRU,简化了为 UE选取工作 RRU的过程,提高了为 UE选取工作 RRU 的时效性, 避免了基站的能耗及资源浪费。
在上述第一种实现方式中, 获取单元 632获取第一 RRU对 UE的隔离度 的公式
Figure imgf000023_0001
设* ^为第一 RRU的隔离度, 为第一 RRU的序号, =2,3...M; M为 UE服务小区内 RRU的个数; 为已经确定为 UE的工作 RRU中第 个工作
RRU的第三参考信号测量值, ^ ^为其他 RRU除已经确定为 UE工作 RRU之 外的 RRU中第 V个工作 RRU的第三参考信号测量值; e3i为当前已经确 定为 UE的工作 RRU第三参考信号测量值之和, j j表示其他 RRU中出 除已经确定为 UE的工作 RRU之外剩余 RRU第三参考信号测量值之和。
在上述第二种实现方式中, 获取单元 632获取第一 RRU对 UE的隔离度 的公式
Figure imgf000023_0002
设 G2为第一 RRU的隔离度, 为第一 RRU的序号, =2,3...M; M为 UE服务小区内 RRU的个数; 为已经确定为 UE的工作 RRU中第 个工作
RRU的第三参考信号测量值, 为第一 RRU的第三参考信号测量值; ""^ 为当前已经确定为 UE的工作 RRU第三参考信号测量值之和。
需要说明, 在本实施例中当前已确定为 UE的工作 RRU的 RRU存放在 UE的工作 RRU集合中。在基站获取第一 RRU对 UE的隔离度时, 基站根据 该工作 RRU集合得知当前已经确定为 UE的工作 RRU的 RRU, 然后获取当 前已经确定为 UE的工作 RRU的 RRU第一参考信号测量值之和。
在获取到第一 RRU的隔离度后, 第二判断单元 633将第一 RRU的隔离 度与预设的第一干扰门限进行比较,如果第一 RRU的隔离度小于第一干扰门 限,选取单元 634选取该第一 RRU为 UE的工作 RRU。选取单元 634将选取 为工作 RRU的第一 RRU放入 UE的工作 RRU集合中。
在本实施例中, 基站逐次将其他 RRU中每个 RRU作为第一 RRU, 以获 取到其他 RRU中每个 RRU对 UE的隔离度,并根据隔离度判断每个 RRU是 否为 UE的第一工作 RRU。需要说明,本实施例中基站获取到一个 RRU的隔 离度后,直接根据该 RRU的隔离度和第二干扰门限,判断该 RRU是否为 UE 的第一工作 RRU。
在选取单元 634为 UE选取完第一工作 RRU后,信号传输单元 635利用 UE的第一工作 RRU和初始工作 RRU对 UE进行信号传输。如果第一判断单 元 631判断出第一干扰因子大于第一干扰门限时,初始工作 RRU就可以满足 UE的需求, 选取单元 634不需要为 UE从其他 RRU中选取第一工作 RRU, 此时, 信号传输单元 635利用初始工作 RRU为 UE进行信号传输。
在为 UE选取工作 RRU的一可选的实现方式中, 本实施例提供的基站根 据第一干扰因子以及服务小区内除初始工作 RRU之外的其他 RRU中的每个 RRU对 UE的隔离度, 为 UE选取工作 RRU, 有利于降低为近点 UE分配的 工作 RRU的数量, 提高了为 UE确定工作 RRU的精确性, 降低 RB的浪费。
本实施例中选取模块 63从服务小区中除初始 RRU之外的其他 RRU中为 UE选取第一工作 RRU的另一可选的实现方式为:
在本实施例中, 获取单元 632将其他 RRU中每个 RRU作为第二 RRU, 在第一判断单元 631判断出第一干扰因子小于或者等于第一干扰门限后, 获 取第二 RRU对 UE的第二干扰因子。 具体地, 获取单元 632可以将第一参考 信号测量值与第二 RRU的第三参考信号测量值的差值,与所有第二参考信号 测量值与第二 RRU的第三参考信号测量值之和的比值,作为第二 RRU对 UE 的第二干扰因子。其中,第一参考信号测量值可以为 UE服务小区的下行 RSRP 或者参 RSRQ, 第二参考信号测量值可以为相邻小区的下行 RSRP或 RSRQ, 第三信号测量值可以为 UE在服务小区内第二 RRU下的 RSRP或 RSRQ。
可选地,基站还可以包括缓存模块 64。缓存模块 64与获取模块 61连接, 将获取模块 61 获取到的服务小区的第一参考信号测量值和每个相邻小区的 第二参考信号测量值进行缓存。然后获取单元 632可以从缓存模块 64中获取 第一参考信号测量值和第二参考信号测量值。类似地, 缓存模块 64还可以将 获取到服务小区中每个 RRU的第三参考信号测量值进行缓存, 获取单元 64 可以从缓存模块 64中获取到第三参考信号测量值。
具体地,获取单元 632根据第一参考信号测量值与第二 RRU的第三参考 信号测量值,得到第一参考信号测量值与第二 RRU的第三参考信号测量值的 差值,并且根据所有相邻小区的第二参考信号测量值和第二 RRU的第三参考 信号测量值,得到所有相邻小区的第二参考信号测量值与第二 RRU的第三参 考信号测量值的和值, 再将上述差值与上述和值做比值, 得到第二 RRU对 UE的第二干扰因子。
类似地, 基站将其他 RRU中的每个 RRU作为第二 RRU, 按照上述获取 第二 RRU对 UE的第二干扰因子的方法, 得到其他 RRU中每个 RRU对 UE 的第二干扰因子。
在本实施例中, 基站获取第二 RRU对 UE的第二干扰因子的公式为: ― r 1 - C 3/ 其中, 设^为第二 RRU对 UE的第二干扰因子, /为第二 RRU的序号, /=2, 3...M, M为 UE服务小区内 RRU的个数; 为第一参考信号测量值,
^为第二 RRU的第三参考信号测量值; ^为 UE服务小区的第 个相邻小区 的第二参考信号测量值; z= l, 2, 3...N, W为 UE服务小区的相邻小区的个 数; 为 UE服务小区的所有相邻小区的第二参考信号测量值之和。
需要说明, 在上述公式中, 第一参考信号测量值、 第二参考信号测量值 和第三参考信号测量值, 必须为同一类型的测量值, 如果第一参考信号测量 值为 RSRP, 第二参考信号测量值和第三信号测量值均为 RSRP; 如果第一参 考信号测量值为 RSRQ, 第二参考信号测量值和第三信号测量值均为 RSRQ。
进一歩地,第二判断单元 633判断第一干扰因子与第二 RRU的第二干扰 因子的差值是否大于预设的第三干扰门限。选取单元 634与第二判断单元 633 连接,在第二判断单元 633判断出第一干扰因子与第二 RRU的第二干扰因子 的差值大于预设的第三干扰门限后, 选取单元 634将该第二 RRU选取为 UE 的第一工作 RRU。 选取单元 634可以将选取为 UE的第一工作 RRU的第二 RRU放入 UE的工作 RRU集合中。
在选取单元 634为 UE选取完第一工作 RRU后,信号传输单元 635利用 UE的第一工作 RRU和初始工作 RRU为 UE进行信号传输。如果第一判断单 元 631判断出第一干扰因子大于第一干扰门限时,初始工作 RRU就可以满足 UE的需求, 选取单元 634不需要为 UE从其他 RRU中选取第一工作 RRU, 此时, 信号传输单元 635利用初始工作 RRU为 UE进行信号传输。
在为 UE选取第一工作 RRU的另一可选的实现方式中, 本实施例提供的 基站根据第一干扰因子以及服务小区内除初始工作 RRU之外的其他 RRU中 每个 RRU对 UE的第二干扰因子, 为 UE选取工作 RRU, 有利于降低为近点 UE分配的工作 RRU的数量, 提高了为 UE确定工作 RRU的精确性, 降低 RB的浪费。
实施例七
图 7为本发明实施例提供的另一基站的结构示意图。 如图 7所示, 该基 站包括: 设置模块 70、 第一获取模块 71和选取模块 72。
其中, 在 UE入网时, 设置模块 70可以为 UE设置一个初始工作 RRU。 具体地,设置模块 70可以获取服务小区内各 RRU下的第一参考信号测量值, 其中,第一参考信号测量值用于表征第一参考信号测量值对应的 RRU的上行 信号质量。 然后设置模块 70选取最大的第一参考信号测量值对应的 RRU作 为 UE的初始工作 RRU, 并将初始工作 RRU的序号设定为 1。
在本实施例中, 将服务小区内除初始工作 RRU之外的其他 RRU中每个 RRU作为第一 RRU,以第一 RRU为例,说明第一获取模块 71获取其他 RRU 中每个 RRU对 UE的隔离度的过程。 第一获取模块 71可以根据服务小区内 当前已经确定为 UE的工作 RRU的 RRU的第一参考信号测量值与第一 RRU 的第一参考信号测量值, 获取第一 RRU对 UE的隔离度。 关于第一获取模块 71获取第一 RRU对 UE隔离度的过程,可以参见上述实施例中相关内容的记 载, 此处不再赘述。
在第一获取模块 71获取到第一 RRU的隔离度后, 选取模块 72将第一 RRU的隔离度与预设的第一干扰门限进行比较, 如果第一 RRU的隔离度小 于第一干扰门限, 选取第一 RRU为 UE的第一工作 RRU。
类似地, 第一获取模块 71将其他 RRU中的每个 RRU作为第一 RRU, 按照上述获取第一 RRU对 UE隔离度的方法,得到其他 RRU中每个 RRU对 UE的隔离度。然后选取模块 72根据第一 RRU的隔离度, 为 UE选取第一工 作 RRU。 关于选取模块 72从其他 RRU中为 UE选取第一工作 RRU的过程, 可以参见上述实施例中相关内容的记载, 此处不再赘述。
在为 UE选取完第一工作 RRU后,选取模块 72利用 UE的第一工作 RRU 和初始工作 RRU为 UE进行信号传输。 如果选取模块 72判断出第一干扰因 子大于第一干扰门限时,初始工作 RRU就可以满足 UE的需求,选取模块 72 利用初始工作 RRU为 UE进行信号传输。
本实施例提供的基站, 在为 UE选取初始工作 RRU之后, 将 UE服务小 区内除初始工作 RRU之外其他 RRU中每个 RRU作为第一 RRU, 根据服务 小区内当前已经确定为该 UE的工作 RRU的 RRU的第一参考信号测量值与 第一 RRU的第一参考信号测量值, 获取第一 RRU对 UE的隔离度, 如果第 一 RRU的隔离度小于预设的第一干扰门限, 选取第一 RRU为 UE的第一工 作 RRU, 利用第一工作 RRU和初始工作 RRU为 UE进行信号传输。 本发明 实施例根据服务小区内除初始工作 RRU之外的每个 RRU对 UE的隔离度, 为 UE选取工作 RRU, 有利于降低为近点 UE分配的工作 RRU的数量, 提高 了为 UE确定工作 RRU的精确性, 降低 RB的浪费。
进一歩地, 实际应用中 UE在接收或者发送信号时, UE的每个相邻小区 发出的信号, 一般也会对 UE产生一定的干扰。 基站还可以包括第二获取模 块 73和确定模块 74。
第二获取模块 73在第一获取模块 71将 UE服务小区内除初始工作 RRU 之外其他 RRU中每个 RRU作为第一 RRU, 根据服务小区内当前已经确定为 UE的工作 RRU的 RRU的第一参考信号测量值与第一 RRU的第一参考信号 测量值, 获取第一 RRU对 UE的隔离度之前, 可以获取 UE服务小区的第二 参考信号测量值和 UE每个相邻小区的第三参考信号测量值。确定模块 74将 第二参考信号测量值与所有第三参考信号测量值之和的比值, 作为 UE 的第 一干扰因子。确定模块 74在获取到第一干扰因子后, 将第一干扰因子与第二 干扰门限进行比较。 在比较出第一干扰因子小于或者等于第二干扰门限, 第 一获取模块 71可以获取服务小区内除初始工作 RRU之外的其他 RRU的每个 RRU对 UE的隔离度。关于第二获取模块 73获取第二参考信号测量值和第三 参考信号测量值, 以及确定模块 74获取第一干扰因子的过程, 可参见上述实 施例中相关内容的记载, 此处不再赘述。
在获取到第一干扰因子后, 本发明实施例通过第一干扰因子与隔离度结 合,为 UE选取工作 RRU,可进一歩减少为近点 UE分配的工作 RRU的数量, 而且还可以减少为远点或者边缘 UE分配工作 RRU的数量, 提高了为 UE确 定工作 RRU的精确性, 降低了 RB的浪费。
实施例八
图 8为本发明实施例提供的一种基站的结构示意图。 如图 8所示, 该基 站包括: 存储器 80、 接收器 81和处理器 82。
存储器 80, 用于存储程序。 存储器 80可能包含高速 RAM存储器, 也 可能包括非易失性存储器(non-volatile memory) ,如至少一个磁盘存储器。
处理器 82执行存储器 80中存储的程序。 处理器 82为 UE设置初始工作 RRU。 具体地处理器 82为 UE设置初始工作 RRU的过程, 可参见上述实施 例中相关内容的记载, 此处不再赘述。
接收器 81获取所述 UE所在服务小区的第一参考信号测量值和所述 UE 的每个相邻小区的第二参考信号测量值。 其中, 所述第一参考信号测量值用 于表征所述服务小区的下行信号质量, 所述第二参考信号测量值用于表征所 述相邻小区到所述 UE的下行信号质量。
处理器 82在接收器 81获取到所述第一参考信号测量值和每个所述相邻 小区的所述第二参考信号测量后, 将所述第一参考信号测量值与所有所述第 二参考信号测量值之和的比值, 作为所述 UE 的第一干扰因子, 以及如果所 述第一干扰因子小于或者等于预设的第一干扰门限, 从所述服务小区中除所 述初始工作 RRU之外的其他 RRU中为所述 UE的选取第一工作 RRU, 利用 所述第一工作 RRU和所述初始工作 RRU为所述 UE进行信号传输。
其中, 处理器 82可能是一个中央处理器 (Central Processing Unit, CPU ) , 或者是特定集成电路 (Application Specific Integrated Circuit , ASIC ) , 或者是被配置成实施本发明实施例的一个或多个集成电路。
可选地, 在具体实现上, 如果存储器 80、 接收器 81和处理器 82独立实 现, 则存储器 80、 接收器 81和处理器 82可以通过总线相互连接并完成相互 间的通信。该总线可以是工业标准体系结构(Industry Standard Architecture, ISA) 总线、 外部设备互连 (Peripheral Component, PCI) 总线或扩展工 业标准体系结构(Extended Industry Standard Architecture, EISA)总线等。 所述总线可以分为地址总线、 数据总线、 控制总线等。 为便于表示图 8中 仅用一条粗线表示, 但并不表示仅有一根总线或一种类型的总线。 可选的, 在具体实现上, 如果存储器 80、 接收器 81和处理器 82集成在 一块芯片上实现, 则存储器 80、 接收器 81和处理器 82可以通过内部接口完 成相同间的通信。
本实施例提供的基站的各功能模块可用于执行上述相关实施例中所示的 多 RRU共小区的信号传输方法的流程, 其具体工作原理不再赘述, 详见方法 实施例的描述。
本实施例提供的基站为 UE设置初始工作 RRU, 根据 UE服务小区的第 一参考信号测量值与 UE每个相邻小区的第二参考信号测量值,获取 UE的第 一干扰因子, 如果第一干扰因子小于或者等于第一干扰门限, 从 UE 的服务 小区中除初始工作 RRU之外的其他 RRU中为 UE选取第一工作 RRU, 利用 所述第一工作 RRU和所述初始工作 RRU为 UE进行信号传输。 本发明实施 例根据相邻小区对 UE的干扰因子, 来确定 UE的工作 RRU, 有利于降低为 近点 UE分配工作 RRU的数量, 从而降低了 RB的浪费。
而且在第一干扰因子小于或者等于第一干扰门限时, 可以获取其他 RRU 中每个 RRU对 UE的干扰情况, 根据其他 RRU中每个 RRU对 UE的干扰情 况, 从其他 RRU中为 UE选取第一工作 RRU, 进一歩减少为近点 UE分配的 工作 RRU的数量, 还可以减少为远点或者边缘 UE分配工作 RRU的数量, 提高了为 UE确定工作 RRU的精确性。
实施例九
图 9为本发明实施例提供的另一种基站的结构示意图。 如图 9所示, 基 站包括: 存储器 90和处理器 91。
存储器 90用于存储程序。存储器 90可能包含高速 RAM存储器, 也可 能包括非易失性存储器(non-volatile memory) ,例如至少一个磁盘存储器。
处理器 91用于为用户设备 UE设置初始工作 RRU,将所述 UE所在服务 小区内除所述初始工作 RRU之外的其他 RRU中每个 RRU作为第一 RRU, 根据所述服务小区内当前已经确定为所述 UE的工作 RRU的 RRU的第一参 考信号测量值与所述第一 RRU的第一参考信号测量值, 获取所述第一 RRU 对所述 UE的隔离度, 以及如果所述第一 RRU的所述隔离度小于预设的第一 干扰门限,选取所述第一 RRU为所述 UE的第一工作 RRU,利用所述第一工 作 RRU和所述初始 RRU为所述 UE进行信号传输; 其中, 所述第一参考信 号测量值用于表征所述第一参考信号测量值对应的 RRU的上行信号质量。
其中, 处理器 91可能是一个 CPU, 或者是 ASIC, 或者是被配置成实 施本发明实施例的一个或多个集成电路。
可选地, 在具体实现上, 如果存储器 90和处理器 91, 则存储器 90和处 理器 91 可以通过总线相互连接并完成相互间的通信。 所述总线可以是 ISA 总线、 PCI总线或 EISA总线等。 所述总线可以分为地址总线、 数据总线、 控制总线等。 为便于表示, 图 9中仅用一条粗线表示, 但并不表示仅有一 根总线或一种类型的总线。
可选的, 在具体实现上, 如果存储器 90和处理器 91集成在一块芯片上 实现, 则存储器 90和处理器 91可以通过内部接口完成相同间的通信。
本实施例提供的基站的各功能模块可用于执行上述相关实施例中所示的 多 RRU共小区的信号传输方法的流程, 其具体工作原理不再赘述, 详见方法 实施例的描述。
本实施例提供的基站, 在为 UE选取初始工作 RRU之后, 将 UE服务小 区内除初始工作 RRU之外其他 RRU中每个 RRU作为第一 RRU, 获取第一 RRU对 UE的隔离度,如果第一 RRU的隔离度小于预设的第一干扰门限,选 取该第一 RRU为 UE的第一工作 RRU,利用第一工作 RRU和初始工作 RRU 为 UE进行信号传输。本发明实施例根据服务小区内除初始工作 RRU之外的 每个 RRU对 UE的隔离度, 为 UE选取工作 RRU, 有利于降低为近点 UE分 配的工作 RRU的数量, 提高了为 UE确定工作 RRU的精确性, 降低 RB的 浪费。
在获取其他 RRU中每个 RRU对 UE的隔离度之前, 可以先获取所有相 邻小区对 UE的干扰情况,将第一干扰因子与隔离度相结合,来为 UE选取工 作 RRU,进一歩减少为近点 UE分配的工作 RRU的数量,还可以减少为远点 或者边缘 UE分配工作 RRU的数量, 提高了为 UE确定工作 RRU的精确性。
本领域普通技术人员可以理解: 实现上述方法实施例的全部或部分歩骤 可以通过程序指令相关的硬件来完成, 前述的程序可以存储于一计算机可读 取存储介质中, 该程序在执行时, 执行包括上述方法实施例的歩骤; 而前述 的存储介质包括: ROM、 RAM, 磁碟或者光盘等各种可以存储程序代码的介 质。
最后应说明的是: 以上各实施例仅用以说明本发明的技术方案, 而非对 其限制; 尽管参照前述各实施例对本发明进行了详细的说明, 本领域的普通 技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改, 或者对其中部分或者全部技术特征进行等同替换; 而这些修改或者替换, 并 不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims

权 利 要 求 书
1、 一种多 RRU共小区的信号传输方法, 其特征在于, 包括:
为用户设备 UE设置初始工作 RRU;
获取所述 UE所在服务小区的第一参考信号测量值和所述 UE的每个相邻 小区的第二参考信号测量值; 其中, 所述第一参考信号测量值用于表征所述 服务小区的下行信号质量, 所述第二参考信号测量值用于表征所述相邻小区 到所述 UE的下行信号质量;
将所述第一参考信号测量值与所有所述第二参考信号测量值之和的比 值, 作为所述 UE的第一干扰因子;
如果所述第一干扰因子小于或者等于预设的第一干扰门限, 从所述服务 小区中除所述初始工作 RRU之外的其他 RRU中为所述 UE的选取第一工作 RRU, 利用所述第一工作 RRU和所述初始工作 RRU为所述 UE进行信号传 输。
2、 根据权利要求 1所述的方法, 其特征在于, 所述为用户设备 UE设置 初始工作 RRU包括:
获取所述服务小区内各 RRU下的第三参考信号测量值, 其中, 所述第三 参考信号测量值用于表征所述第三参考信号测量值对应的 RRU 的上行信号 质量;
将最大的第三参考信号测量值对应的 RRU设置为所述初始工作 RRU。
3、 根据权利要求 1或 2所述的方法, 其特征在于, 还包括:
如果所述第一干扰因子大于所述第一干扰门限, 利用所述初始工作 RRU 为所述 UE进行信号传输。
4、 根据权利要求 2所述的方法, 其特征在于, 所述第三参考信号测量值 为所述服务小区内各 RRU下的 RSRP或 RSRQ。
5、 根据权利要求 1-4任一项所述的方法, 其特征在于, 所述第一参考信 号测量值为所述服务小区的下行 RSRP;所述第二参考信号测量值为所述相邻 小区的下行 RSRP;
所述获取所述 UE所在服务小区的第一参考信号测量值和所述 UE每个所 述相邻小区的第二参考信号测量值包括:
获得所述服务小区的下行 RSRP; 接收所述 UE上报的每个所述相邻小区的下行 RSRP。
6、 根据权利要求 1-4任一项所述的方法, 其特征在于, 所述第一参考信 号测量值为所述服务小区的下行 RSRQ; 所述第二参考信号测量值为所述相 邻小区的下行 RSRQ;
所述获取所述 UE所在服务小区的第一参考信号测量值和所述 UE每个所 述相邻小区的第二参考信号测量值包括:
获得所述服务小区的下行 RSRQ;
接收所述 UE上报的每个所述相邻小区的下行 RSRQ。
7、 根据权利要求 1所述的方法, 其特征在于, 所述如果所述第一干扰因 子小于或者等于预设的第一干扰门限, 从所述服务小区中除所述初始工作
RRU之外的其他 RRU中为所述 UE选取第一工作 RRU包括:
将所述其他 RRU中每个 RRU作为第一 RRU, 获取所述第一 RRU对所 述 UE的隔离度;
如果所述第一 RRU的所述隔离度小于预设的第二干扰门限,选取所述第 一 RRU作为所述 UE的所述第一工作 RRU。
8、 根据权利要求 7所述的方法, 其特征在于, 所述获取所述第一 RRU 对所述 UE的隔离度包括:
获取当前已经确定为所述 UE的工作 RRU的 RRU的第三参考信号测量 值之和,与所述服务小区内除已经确定为所述 UE的工作 RRU之外剩余 RRU 的第三参考信号测量值之和的比值作为所述第一 RRU的所述隔离度;
或者, 获取当前已经确定为所述 UE的工作 RRU的第三参考信号测量值 之和, 与所述第一 RRU的第三参考信号测量值的比值作为所述第一 RRU的 所述隔离度。
9、 根据权利要求 1所述的方法, 其特征在于, 所述如果所述第一干扰因 子小于或者等于预设的第一干扰门限, 从所述服务小区内除所述初始工作
RRU之外的其他 RRU中为所述 UE选取第一工作 RRU包括:
将所述其他 RRU中每个 RRU作为第二 RRU,将所述第一参考信号测量 值与所述第二 RRU的第三参考信号测量值的差值,与所有所述第二参考信号 测量值与所述第二 RRU 的第三参考信号测量值之和的比值作为所述第二 RRU的所述第二干扰因子; 如果所述第一干扰因子与所述第二 RRU 的所述第二干扰因子的差值大 于预设的第三干扰门限,选取所述第二 RRU为所述 UE的所述第一工作 RRU。
10、 一种多 RRU共小区的信号传输方法, 其特征在于, 包括:
为用户设备 UE设置初始工作 RRU;
将所述 UE所在服务小区内除所述初始工作 RRU之外的其他 RRU中每 个 RRU作为第一 RRU,根据所述服务小区内当前已经确定为所述 UE的工作 RRU的 RRU的第一参考信号测量值与所述第一 RRU的第一参考信号测量 值, 获取所述第一 RRU对所述 UE的隔离度; 其中, 所述第一参考信号测量 值用于表征所述第一参考信号测量值对应的 RRU的上行信号质量;
如果所述第一 RRU的所述隔离度小于预设的第一干扰门限,选取所述第 一 RRU为所述 UE的第一工作 RRU, 利用所述第一工作 RRU和所述初始工 作 RRU为所述 UE进行信号传输。
11、 根据权利要求 10所述的方法, 其特征在于, 所述为用户设备 UE设 置初始工作 RRU包括:
获取所述服务小区内各 RRU下的第一参考信号测量值;
将最大的第一参考信号测量值对应的 RRU设置为所述初始工作 RRU。
12、 根据权利要求 10或 11所述的方法, 其特征在于, 所述将所述 UE 所在服务小区内除所述初始工作 RRU之外的其他 RRU中每个 RRU作为第一 RRU, 根据所述服务小区内当前已经确定为所述 UE的工作 RRU的 RRU的 第一参考信号测量值与所述第一 RRU的第一参考信号测量值,获取所述第一 RRU对所述 UE的隔离度包括:
获取所述服务小区内当前已经确定为所述 UE的工作 RRU的 RRU的第 一参考信号测量值之和, 与所述服务小区内除已经确定为所述 UE 的工作 RRU之外剩余 RRU的第一参考信号测量值之和的比值作为所述第一 RRU的 所述隔离度;
或者, 获取所述服务小区内当前已经确定为所述 UE的工作 RRU的第一 参考信号测量值之和,与所述第一 RRU的第一参考信号测量值的比值作为所 述第一 RRU的所述隔离度。
13、 根据权利要求 10或 11或 12所述的方法, 其特征在于, 所述第一参 考信号测量值为所述服务小区内各 RRU下的 RSRP或 RSRQ。
14、 根据权利要求 10-13任一项所述的方法, 其特征在于, 所述将所述 UE所在服务小区内除所述初始工作 RRU之外的其他 RRU中每个 RRU作为 第一 RRU,根据所述服务小区内当前已经确定为所述 UE的工作 RRU的 RRU 的第一参考信号测量值与所述第一 RRU的第一参考信号测量值,获取所述第 一 RRU对所述 UE的隔离度之前包括:
获取所述服务小区的第二参考信号测量值和所述 UE 的每个所述相邻小 区的第三参考信号测量值; 其中, 所述第二参考信号测量值用于表征所述服 务小区的下行信号质量, 所述第三参考信号测量值用于表征所述相邻小区到 所述 UE的下行信号质量;
将所述第一参考信号测量值与所有所述第二参考信号测量值之和的比 值, 作为所述 UE 的第二干扰因子, 并确定所述第二干扰因子小于或者等于 预设的第二干扰门限。
15、 根据权利要求 14所述的方法, 其特征在于, 所述第二参考信号测量 值为所述服务小区的下行 RSRP;所述第三参考信号测量值为所述相邻小区的 下行 RSRP;
所述获取所述服务小区第二参考信号测量值和所述 UE 的每个相邻小区 的第二参考信号测量值包括:
获得所述服务小区的下行 RSRP;
接收所述 UE上报的所述相邻小区的下行 RSRP。
16、 根据权利要求 14所述的方法, 其特征在于, 所述第二参考信号测量 值为所述服务小区的下行 RSRQ; 所述第三参考信号测量值为所述相邻小区 的下行 RSRQ;
所述获取所述服务小区第二参考信号测量值和所述 UE 的每个相邻小区 的第二参考信号测量值包括:
获得所述服务小区的下行 RSRQ;
接收所述 UE上报的所述相邻小区的下行 RSRQ。
17、 一种基站, 其特征在于, 包括:
设置模块, 用于为用户设备 UE设置初始工作 RRU;
获取模块, 用于获取所述 UE所在服务小区的第一参考信号测量值和所 述 UE 的每个相邻小区的第二参考信号测量值; 其中, 所述第一参考信号测 量值用于表征所述服务小区的下行信号质量, 所述第二参考信号测量值用于 表征所述相邻小区到所述 UE的下行信号质量;
确定模块, 用于将所述第一参考信号测量值与所有所述第二参考信号测 量值之和的比值, 作为所述 UE的第一干扰因子;
选取模块, 用于如果所述第一干扰因子小于或者等于预设的第一干扰门 限, 从所述服务小区中除所述初始工作 RRU之外的其他 RRU中为所述 UE 的选取第一工作 RRU,利用所述第一工作 RRU和所述初始工作 RRU为所述 UE进行信号传输。
18、 根据权利要求 17所述的基站, 其特征在于, 所述设置模块具体用于 获取所述服务小区内各 RRU下的第三参考信号测量值,将最大的第三参考信 号测量值对应的 RRU设置为所述初始工作 RRU, 所述第三参考信号测量值 用于表征所述第三参考信号测量值对应的 RRU的上行信号质量。
19、 根据权利要求 17或 18所述的基站, 其特征在于, 所述选取模块, 还用于在所述第一干扰因子大于所述第一干扰门限, 利用所述初始工作 RRU 为所述 UE进行信号传输。
20、 根据权利要求 18所述的基站, 其特征在于, 所述第三参考信号测量 值为所述服务小区内各 RRU下的 RSRP或 RSRQ。
21、 根据权利要求 17-20任一项所述的基站, 其特征在于, 所述第一参 考信号测量值为所述服务小区的下行 RSRP;所述第二参考信号测量值为所述 相邻小区的下行 RSRP;
所述获取模块具体用于获得所述服务小区的下行 RSRP, 以及接收所述 UE上报的每个所述相邻小区的下行 RSRP。
22、 根据权利要求 17-20任一项所述的基站, 其特征在于, 所述第一参 考信号测量值为所述服务小区的下行 RSRQ; 所述第二参考信号测量值为所 述相邻小区的下行 RSRQ;
所述获取模块具体用于获得所述服务小区的下行 RSRQ, 以及接收所述 UE上报的每个所述相邻小区的下行 RSRQ。
23、 根据权利要求 17所述的基站, 其特征在于, 所述选取模块包括: 第一判断单元, 判断所述第一干扰因子是否小于或者等于所述第一干扰 门限; 获取单元, 用于在所述判断单元判断出所述第一干扰因子小于或者等于 所述第一干扰门限后, 将所述其他 RRU中每个 RRU作为第一 RRU, 获取所 述第一 RRU对所述 UE的隔离度;
第二判断单元,用于判断所述第一 RRU的所述隔离度是否小于预设的第 二干扰门限;
选取单元,用于在所述第二判断单元判断出所述第一 RRU的所述隔离度 小于所述第二干扰门限后, 选取所述第一 RRU作为所述 UE的所述第一工作 RRU;
信号传输单元, 用于利用所述第一工作 RRU和所述初始工作 RRU为所 述 UE进行信号传输。
24、 根据权利要求 23所述的基站, 其特征在于, 所述获取单元具体用于 获取当前已经确定为所述 UE的工作 RRU的 RRU的第三参考信号测量值之 和,与所述其他 RRU中除已经确定为所述 UE的工作 RRU之外剩余 RRU的 第三参考信号测量值之和的比值作为所述第一 RRU的所述隔离度;
或者, 所述获取单元具体用于获取当前已经确定为所述 UE的工作 RRU 的第三参考信号测量值之和,与所述第一 RRU的第三参考信号测量值的比值 作为所述第一 RRU的所述隔离度。
25、 根据权利要求 23所述的基站, 其特征在于, 所述获取单元, 还用于 在所述第一判断单元判断出所述第一干扰因子小于或者等于第一干扰门限 后, 将所述其他 RRU中每个 RRU作为第二 RRU, 将所述第一参考信号测量 值与所述第二 RRU的第三参考信号测量值的差值,与所有所述第二参考信号 测量值与所述第二 RRU 的第三参考信号测量值之和的比值作为所述第二 RRU的所述第二干扰因子;
所述第二判断单元,还用于判断所述第一干扰因子与所述第二 RRU的所 述第二干扰因子的差值是否大于预设的第三干扰门限;
所述选取单元, 还用于在所述第二判断单元判断出所述第一干扰因子与 所述第二 RRU的所述第二干扰因子的差值大于所述第三干扰门限,选取所述 第二 RRU为所述 UE的所述第一工作 RRU。
26、 一种基站, 其特征在于, 包括:
设置模块, 用于为用户设备 UE设置初始工作 RRU; 第一获取模块, 用于将所述 UE所在服务小区内除所述初始工作 RRU之 外的其他 RRU中每个 RRU作为第一 RRU, 根据所述服务小区内当前已经确 定为所述 UE的工作 RRU的 RRU的第一参考信号测量值与所述第一 RRU的 第一参考信号测量值, 获取所述第一 RRU对所述 UE的隔离度, 其中, 所述 第一 RRU为所述其他 RRU中任意一个 RRU;所述第一参考信号测量值用于 表征所述第一参考信号测量值对应的 RRU的上行信号质量;
选取模块,用于如果所述第一 RRU的所述隔离度小于预设的第一干扰门 限, 选取所述第一 RRU为所述 UE的工作 RRU, 利用所述第一工作 RRU和 所述初始工作 RRU为所述 UE进行信号传输。
27、 根据权利要求 26所述的基站, 其特征在于, 所述设置模块具体用于 获取所述服务小区内各 RRU下的第一参考信号测量值,将最大的第一参考信 号测量值对应的 RRU设置为所述初始工作 RRU。
28、 根据权利要求 26或 27所述的基站, 其特征在于, 所述第一获取模 块具体用于获取所述服务小区内当前已经确定为所述 UE的工作 RRU的 RRU 的第一参考信号测量值之和, 与所述服务小区内除已经确定为所述 UE 的工 作 RRU之外剩余 RRU的第一参考信号测量值之和的比值作为所述第一 RRU 的所述隔离度;
或者, 所述第一获取模块具体用于获取所述服务小区内当前已经确定为 所述 UE的工作 RRU的第一参考信号测量值之和, 与所述第一 RRU的第一 参考信号测量值的比值作为所述第一 RRU的所述隔离度。
29、 根据权利要求 26或 27或 28所述的基站, 其特征在于, 所述第一参 考信号测量值为所述服务小区内各 RRU下的 RSRP或 RSRQ。
30、 根据权利要求 26-29任一项所述的基站, 其特征在于, 还包括: 第二获取模块, 用于在所述第一获取模块将所述其他 RRU中每个 RRU 作为所述第一 RRU, 根据所述服务小区内当前已经确定为所述 UE 的工作 RRU的 RRU的第一参考信号测量值与所述第一 RRU的第一参考信号测量 值, 获取所述第一 RRU对所述 UE的隔离度之前, 获取所述服务小区的第二 参考信号测量值和所述 UE 的每个相邻小区的第三参考信号测量值; 其中, 所述第二参考信号测量值用于表征所述服务小区的下行信号质量, 所述第三 参考信号测量值用于表征所述相邻小区到所述 UE的下行信号质量; 确定模块, 用于将所述第二参考信号测量值与所有所述第三参考信号测 量值之和的比值, 作为所述 UE 的第一干扰因子, 并确定所述第一干扰因子 小于或者等于预设的第二干扰门限。
31、 根据权利要求 30所述的基站, 其特征在于, 所述第二参考信号测量 值为所述服务小区的下行 RSRP;所述第三参考信号测量值为所述相邻小区的 下行 RSRP;
所述第二获取模块具体用于获得所述服务小区的下行 RSRP,以及接收所 述 UE上报的所述相邻小区的下行 RSRP。
32、 根据权利要求 30所述的基站, 其特征在于, 所述第二参考信号测量 值为所述服务小区的下行 RSRQ; 所述第三参考信号测量值为所述相邻小区 的下行 RSRQ;
所述第二获取模块具体用于获得所述服务小区的下行 RSRQ, 以及接收 所述 UE上报的所述相邻小区的下行 RSRQ。
33、 一种基站, 其特征在于, 包括:
存储器, 用于存储程序;
接收器, 用于获取用户设备 UE所在服务小区的第一参考信号测量值和 所述 UE 的每个相邻小区的第二参考信号测量值; 其中, 所述第一参考信号 测量值用于表征所述服务小区的下行信号质量, 所述第二参考信号测量值用 于表征所述相邻小区到所述 UE的下行信号质量;
处理器, 用于为所述 UE设置初始工作 RRU, 以及将所述第一参考信号 测量值与所有所述第二参考信号测量值之和的比值, 作为所述 UE 的第一干 扰因子, 以及如果所述第一干扰因子小于或者等于预设的第一干扰门限, 从 所述服务小区中除所述初始工作 RRU之外的其他 RRU中为所述 UE的选取 工作 RRU, 利用所述第一工作 RRU和所述初始工作 RRU为所述 UE进行信 号传输。
34、 一种基站, 其特征在于, 包括:
存储器, 用于存储程序;
处理器, 用于为用户设备 UE设置初始工作 RRU, 将所述 UE所在服务 小区内除所述初始工作 RRU之外的其他 RRU中每个 RRU作为第一 RRU, 根据所述服务小区内当前已经确定为所述 UE的工作 RRU的 RRU的第一参 考信号测量值与所述第一 RRU的第一参考信号测量值, 获取所述第一 RRU 对所述 UE的隔离度, 以及如果所述第一 RRU的所述隔离度小于预设的第一 干扰门限,选取所述第一 RRU为所述 UE的第一工作 RRU,利用所述第一工 作 RRU和所述初始工作 RRU为所述 UE进行信号传输; 其中, 所述第一参 考信号测量值用于表征所述第一参考信号测量值对应的 RRU 的上行信号质
PCT/CN2013/076935 2013-06-07 2013-06-07 多射频拉远单元rru共小区的信号传输方法及装置 WO2014194516A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201380001804.7A CN103688585B (zh) 2013-06-07 2013-06-07 多射频拉远单元rru共小区的信号传输方法及装置
PCT/CN2013/076935 WO2014194516A1 (zh) 2013-06-07 2013-06-07 多射频拉远单元rru共小区的信号传输方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/076935 WO2014194516A1 (zh) 2013-06-07 2013-06-07 多射频拉远单元rru共小区的信号传输方法及装置

Publications (1)

Publication Number Publication Date
WO2014194516A1 true WO2014194516A1 (zh) 2014-12-11

Family

ID=50323351

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/076935 WO2014194516A1 (zh) 2013-06-07 2013-06-07 多射频拉远单元rru共小区的信号传输方法及装置

Country Status (2)

Country Link
CN (1) CN103688585B (zh)
WO (1) WO2014194516A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105636219B (zh) 2014-10-29 2019-04-05 华为技术有限公司 资源调度方法和装置
CN104579441B (zh) * 2014-12-29 2018-01-23 三维通信股份有限公司 一种室内das系统与小基站下行干扰避免方法
CN104617995B (zh) * 2014-12-29 2018-04-03 三维通信股份有限公司 一种基于天线选择的室内das系统抗小基站上行信号干扰方法
CN105992229B (zh) * 2015-02-27 2019-08-27 上海诺基亚贝尔股份有限公司 一种在无线通信网络中实施小区分割的方法及其设备
WO2018035858A1 (zh) * 2016-08-26 2018-03-01 华为技术有限公司 一种调节空口容量密度的方法及装置
EP3518430B1 (en) * 2016-10-21 2020-07-29 Huawei Technologies Co., Ltd. Method and device for assigning antenna port
CN107135481B (zh) * 2017-05-15 2019-11-29 中国移动通信集团江苏有限公司 射频拉远单元共小区的资源分配方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101448306A (zh) * 2008-12-26 2009-06-03 华为技术有限公司 Gsm电路域选择服务站址的方法、系统及射频拉远单元
CN102388645A (zh) * 2011-09-19 2012-03-21 华为技术有限公司 一种多射频拉远单元共小区的资源分配方法及装置
WO2013025160A1 (en) * 2011-08-15 2013-02-21 Telefonaktiebolaget Lm Ericsson (Publ) Methods and nodes for handling measurements in a wireless communication system
CN102958115A (zh) * 2011-08-30 2013-03-06 中兴通讯股份有限公司 信号处理方法及装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9072055B2 (en) * 2011-06-21 2015-06-30 Telefonaktiebolaget L M Ericsson (Publ) Systems and methods for controlling the power at which a communication device transmits an uplink signal
CN102916754A (zh) * 2012-10-15 2013-02-06 华为技术有限公司 一种参考信号接收功率的测量方法及装置
CN103051370B (zh) * 2012-12-28 2016-12-28 华为技术有限公司 一种用户设备的工作拉远射频单元选择方法和基站

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101448306A (zh) * 2008-12-26 2009-06-03 华为技术有限公司 Gsm电路域选择服务站址的方法、系统及射频拉远单元
WO2013025160A1 (en) * 2011-08-15 2013-02-21 Telefonaktiebolaget Lm Ericsson (Publ) Methods and nodes for handling measurements in a wireless communication system
CN102958115A (zh) * 2011-08-30 2013-03-06 中兴通讯股份有限公司 信号处理方法及装置
CN102388645A (zh) * 2011-09-19 2012-03-21 华为技术有限公司 一种多射频拉远单元共小区的资源分配方法及装置

Also Published As

Publication number Publication date
CN103688585B (zh) 2017-04-26
CN103688585A (zh) 2014-03-26

Similar Documents

Publication Publication Date Title
WO2014194516A1 (zh) 多射频拉远单元rru共小区的信号传输方法及装置
US10615937B2 (en) Data transmission method, user equipment, and base station
US20150304889A1 (en) Load balancing method and network control node
KR101794784B1 (ko) 제어 방법 및 장치
TWI475839B (zh) 降低多細胞合作網路中回傳負載及回傳冗餘的方法及其通訊裝置
EP2421295B1 (en) Downlink inter-cell interference coordination method and base station
CN109890079A (zh) 一种资源配置方法及其装置
KR101907326B1 (ko) 원격 무선 유닛(rru)을 결정하기 위한 방법 및 장치
JP7271684B2 (ja) 干渉又は信号受信電力の測定の方法及び装置
KR101909968B1 (ko) 자원 스케줄링 방법 및 장치
WO2020078318A1 (zh) 通信方法及装置
EP3138341A1 (en) Method and radio network node for scheduling of wireless devices in a cellular network
US9867195B2 (en) Methods and network nodes for performing a joint reception in a cellular radio communication network
WO2015077987A1 (zh) 传输模式的选择、配置方法、基站及用户设备
US20190313418A1 (en) Transmission Apparatus and Method Based on Dynamic Time Division Duplex and Communication System
US11212715B2 (en) Methods and apparatus for radio resource measurement between wireless communication systems
US20220368454A1 (en) Method for Determining Transmission Mode in Sidelink, Terminal Apparatus, and Network Apparatus
CN111642020B (zh) 干扰处理方法、终端设备、网络设备及计算机存储介质
WO2021056844A1 (zh) 数据处理方法、主机单元、基站系统和存储介质
WO2021203392A1 (zh) 边链路传输方法以及装置
US9813209B2 (en) Transmission of probing pilots in a shared radio cell
US20140226500A1 (en) Conditional channel measurement operations based on resource availability
WO2021017893A1 (zh) 波束测量方法及装置
WO2019028704A1 (zh) 下行信号传输的方法、终端设备和网络设备
WO2015096594A1 (zh) 网络的分流方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13886308

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13886308

Country of ref document: EP

Kind code of ref document: A1