WO2015077987A1 - 传输模式的选择、配置方法、基站及用户设备 - Google Patents

传输模式的选择、配置方法、基站及用户设备 Download PDF

Info

Publication number
WO2015077987A1
WO2015077987A1 PCT/CN2013/088169 CN2013088169W WO2015077987A1 WO 2015077987 A1 WO2015077987 A1 WO 2015077987A1 CN 2013088169 W CN2013088169 W CN 2013088169W WO 2015077987 A1 WO2015077987 A1 WO 2015077987A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
channel quality
information
antenna
quality information
Prior art date
Application number
PCT/CN2013/088169
Other languages
English (en)
French (fr)
Inventor
焦秉立
马猛
温容慧
周明宇
崔宏宇
王一然
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2013/088169 priority Critical patent/WO2015077987A1/zh
Priority to CN201380033304.1A priority patent/CN104956734B/zh
Publication of WO2015077987A1 publication Critical patent/WO2015077987A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • H04L5/16Half-duplex systems; Simplex/duplex switching; Transmission of break signals non-automatically inverting the direction of transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/06Terminal devices adapted for operation in multiple networks or having at least two operational modes, e.g. multi-mode terminals

Definitions

  • Transmission mode selection configuration method, base station and user equipment
  • Embodiments of the present invention relate to the field of communications, and more particularly, to a selection, configuration method, base station, and user equipment of a transmission mode. Background technique
  • the traditional duplex communication system sometimes divides the duplex and the frequency division duplex, that is, the transceiver channel is time-division or frequency-division orthogonal.
  • researchers have proposed a full-duplex method, that is, transmitting and receiving information on the same frequency channel. This method can achieve reception and transmission on the same frequency channel, which can improve the utilization of spectrum resources.
  • the transceiver channel operates at the same frequency at the same time, the interference between the transmission and reception, that is, the self-interference in the full-duplex system, has a great influence on the performance of the communication system, and is a major factor affecting the performance of the system. Due to actual limitations, self-interference cannot be completely eliminated, so residual self-interference affects full-duplex system performance. Summary of the invention
  • the embodiment of the invention provides a selection, configuration method, base station and user equipment of the transmission mode, which can avoid the influence of excessive self-interference on the full-duplex system, thereby improving the performance of the full-duplex system.
  • a method for selecting a transmission mode comprising: determining, by a base station, self-interference cancellation capability information of a full-duplex device and signal-to-noise ratio information of the target signal of the full-duplex device; The self-interference cancellation capability information of the duplex device and the signal-to-noise ratio information of the full-duplex device receiving the target signal determine a transmission mode of the full-duplex device, and the transmission mode includes a full-duplex mode and a half-duplex mode.
  • the method further includes: the base station determining channel quality information of an antenna of the base station; the base station according to the self-interference cancellation capability information of the full-duplex device and the full double The device receives the signal-to-noise ratio information of the target signal, and determines the transmission mode of the full-duplex device, including: the base station according to the self-interference cancellation capability information of the full-duplex device, and the signal-to-noise ratio information of the target signal received by the full-duplex device And determining channel transmission mode of the full duplex device and channel quality information of the antenna of the base station.
  • the determining, by the base station, the channel quality information of the antenna of the base station is: the base station receives the channel quality information of all the antennas of the base station measured by the user equipment UE under the base station, and determines the optimal channel quality information of all the antennas of the base station.
  • the channel quality information is the channel quality information of the downlink antenna of the base station; or the base station receives the channel quality information of the optimal antenna measured by the UE, and determines the channel quality information of the optimal antenna as the channel quality of the downlink antenna of the base station.
  • Information, wherein the optimal antenna is an antenna in which the UE measures the optimal channel quality among all the antennas of the base station.
  • the determining, by the base station, the channel quality information of the antenna of the base station is: the base station receiving the base station measured by the UE under the base station Channel quality information of all antennas, determining channel quality information corresponding to the downlink antenna specified by the base station in the channel quality information of all antennas of the base station is channel quality information of the downlink antenna of the base station; or receiving, by the base station, the UE measurement
  • the channel quality information of the downlink antenna that is specified by the base station, and the channel quality information of the downlink antenna specified by the base station is the channel quality information of the downlink antenna of the base station; wherein the downlink antenna specified by the base station is configured by the UE according to the UE
  • the antenna configuration information sent by the base station is obtained.
  • the determining, by the base station, the channel quality information of the antenna of the base station is: the base station receiving the channel of all the antennas measured by the UE of the base station Quality information, and determining channel quality information corresponding to the fixed downlink antenna in the channel quality information of all antennas measured by the UE as channel quality information of the downlink antenna of the base station; or receiving, by the base station, the fixed downlink antenna of the base station measured by the UE Channel quality information, and determining channel quality information of the fixed downlink antenna of the base station is channel quality information of the downlink antenna of the base station.
  • the method further includes: the base station Determine the traffic information of the base station.
  • the base station determines, according to the self-interference cancellation capability information of the full-duplex device, the signal-to-noise ratio information of the target signal of the full-duplex device, and the channel quality information of the antenna of the base station, to determine that the transmission mode of the full-duplex device is implemented as
  • the base station determines the full double according to the self-interference cancellation capability information of the full-duplex device, the signal-to-noise ratio information of the target signal received by the full-duplex device, the channel quality information of the antenna of the base station, and the traffic information of the base station.
  • the transmission mode of the equipment is the transmission mode of the equipment.
  • the specific implementation is:
  • the full duplex device is the UE of the base station, or the full duplex device is the base station.
  • the method further includes: the base station according to the channel quality information of the antenna of the base station and the transmission configuration corresponding to the transmission mode to the UE
  • the scheduling information is sent, and the scheduling information includes at least one of the following: time-frequency resource information used by the base station for uplink and downlink scheduling, a modulation and coding scheme MCS, a redundancy version RV, and a transmission power.
  • the method further includes: the base station sending transmission configuration information to the UE, where The transmission configuration information includes a transmission configuration corresponding to the transmission mode.
  • the base station when the full duplex device is When the base station obtains the self-interference cancellation capability of the full-duplex device, the base station obtains the corresponding relationship between the received interference signal power, the target signal power, and the optimal interference cancellation mode of the base station; Corresponding relationship between the received interference signal power, the target signal power and the optimal interference cancellation mode determines a current optimal interference cancellation mode corresponding to the current interference signal power of the base station and the current target signal power; the base station estimates the current optimal interference cancellation Self-interference cancellation capability in mode.
  • the determining, by the base station, the corresponding relationship between the received interference signal power, the target signal power, and the optimal interference cancellation mode of the base station is: The base station measures the performance of the base station in receiving the interference signal power, the first-order interference cancellation mode and the two-stage interference cancellation mode under the target signal power; the base station determines the optimal interference cancellation of the received interference signal power and the target signal power of the base station a mode; the base station establishes a correspondence between the received interference signal power of the base station, the target signal power, and an optimal interference cancellation mode of the base station.
  • a method for configuring a transmission mode comprising: a user equipment
  • the UE sends the transmission mode information to the base station, where the transmission mode information includes the self-interference cancellation capability information of the UE and the signal-to-noise ratio information of the target signal received by the UE, where the UE is a full-duplex device; and the UE receives the transmission configuration sent by the base station.
  • the transmission configuration information is determined by the base station according to the self-interference cancellation capability information of the UE and the signal-to-noise ratio information of the UE receiving the target signal, where the transmission configuration information is used to indicate the transmission mode of the UE and the configuration corresponding to the transmission mode.
  • the UE configures a transmission mode of the UE according to the transmission configuration information.
  • the method further includes: sending, by the UE, channel quality information of an antenna of the base station to the base station, where channel quality information of the antenna of the base station is used by the base station according to the The self-interference cancellation capability information of the UE, the signal to noise ratio information of the UE receiving the target signal, and the channel quality information of the antenna of the base station determine a transmission mode of the UE.
  • the channel quality information is: the channel quality information of all antennas of the base station measured by the UE; or the UE measurement
  • the information of the optimal channel quality in the channel quality information of all the antennas of the base station; or the channel quality information of the downlink antenna measured by the UE, the downlink antenna is a fixed downlink antenna of the base station or a downlink antenna pre-designated by the base station.
  • the method before the UE sends the transmission mode information to the base station, the method further includes The UE acquires a correspondence between the received interference signal power of the UE, the target signal power, and the optimal interference cancellation mode; the UE determines the correspondence according to the received interference signal power of the UE, the target signal power, and the optimal interference cancellation mode.
  • the current interference cancellation mode corresponding to the current interference signal power of the UE and the current target signal power; the UE acquires self-interference cancellation capability information in the current optimal interference cancellation mode.
  • the corresponding relationship between the received interference signal power, the target signal power, and the optimal interference cancellation mode of the UE is specifically implemented as:
  • the UE measures the performance of the UE in receiving the interference signal power, the first-order interference cancellation mode and the two-stage interference cancellation mode under the target signal power;
  • the UE determines the optimal interference of the UE in the received interference signal power and the target signal power Eliminating the mode;
  • the UE establishes the received interference signal power of the UE, the correspondence between the target signal power and the optimal interference cancellation mode of the UE.
  • a base station in a third aspect, includes: a determining unit, configured to determine self-interference cancellation capability information of the full-duplex device and signal-to-noise ratio information of the target signal of the full-duplex device; Determining, according to the self-interference cancellation capability information of the full-duplex device and the signal-to-noise ratio information of the target signal of the full-duplex device, determining a transmission mode of the full-duplex device, where the transmission mode includes a full-duplex mode and a half-duplex mode mode.
  • the determining unit is further configured to determine channel quality information of an antenna of the base station; in determining a transmission mode of the full duplex device, the determining unit is specifically configured to: According to the self-interference cancellation capability information of the full-duplex device, the full-duplex device receives The signal to noise ratio information of the target signal and the channel quality information of the antenna of the base station determine the transmission mode of the full duplex device.
  • the base station further includes a receiving unit.
  • the determining unit is specifically configured to: receive, by the receiving unit, channel quality information of all antennas of the base station measured by the user equipment UE under the base station, and determine the base station
  • the information of the optimal channel quality in the channel quality information of all the antennas is the channel quality information of the downlink antenna of the base station; or the channel quality information of the optimal antenna measured by the UE is received by the receiving unit, and the channel quality of the optimal antenna is determined.
  • the information is the channel quality information of the downlink antenna of the base station, wherein the optimal antenna is an antenna in which the UE measures the optimal channel quality among all the antennas of the base station.
  • the base station further includes a receiving unit.
  • the determining unit is specifically configured to: receive, by the receiving unit, channel quality information of all antennas of the base station measured by the UE under the base station, and determine all antennas of the base station.
  • the information about the channel quality corresponding to the downlink antenna that is specified by the base station in the channel quality information is the channel quality information of the downlink antenna of the base station; or the channel quality information of the downlink antenna that is pre-designated by the base station measured by the UE is received by the receiving unit.
  • the channel quality information of the downlink antenna that is specified in advance by the base station is the channel quality information of the downlink antenna of the base station, where the downlink antenna specified by the base station is obtained by the UE according to the antenna configuration information sent by the base station.
  • the base station further includes a receiving unit.
  • the determining unit is specifically configured to: receive, by the receiving unit, channel quality information of all antennas measured by the UE of the base station, and determine channel quality of all antennas measured by the UE
  • the channel quality information corresponding to the fixed downlink antenna in the information is the channel quality information of the downlink antenna of the base station; or the receiving unit receives the channel quality information of the fixed downlink antenna of the base station measured by the UE, and determines the fixed downlink of the base station.
  • the channel quality information of the antenna is the channel quality information of the downlink antenna of the base station.
  • the determining unit is further configured to determine Traffic information of the base station.
  • the determining unit is specifically configured to: according to the self-interference cancellation capability information of the full-duplex device, the signal-to-noise ratio information of the target signal received by the full-duplex device, and the base station Channel quality information of the antenna and the industry of the base station The traffic information determines the transmission mode of the full-duplex device.
  • the specific implementation is:
  • the worker device is the UE of the base station, or the full duplex device is the base station.
  • the base station further includes: a sending unit, configured to send, according to a channel quality of the base station, a transmission configuration corresponding to the transmission mode to the UE Transmit scheduling information, where the scheduling information includes at least one of the following: time-frequency resource information, MCS, RV, and transmit power used by the base station in uplink and downlink scheduling.
  • a sending unit configured to send, according to a channel quality of the base station, a transmission configuration corresponding to the transmission mode to the UE Transmit scheduling information, where the scheduling information includes at least one of the following: time-frequency resource information, MCS, RV, and transmit power used by the base station in uplink and downlink scheduling.
  • the sending unit when the full duplex device is the UE, the sending unit is further configured to send transmission configuration information to the UE, where the transmission is The configuration information includes a transmission configuration corresponding to the transmission mode.
  • the determining unit when the full duplex device is In the base station, in determining the self-interference cancellation capability of the full-duplex device, the determining unit is specifically configured to: acquire a correspondence between the received interference signal power, the target signal power, and the optimal interference cancellation mode of the base station; Corresponding relationship between the received interference signal power, the target signal power and the optimal interference cancellation mode determines the current interference signal power of the base station and the current optimal interference cancellation mode corresponding to the current target signal power; estimating the current optimal interference cancellation mode Self-interference cancellation capability.
  • the determining, the determining, the received interference signal power, the target signal power, and the optimal interference cancellation mode The unit is specifically configured to: measure performance of the first-stage interference cancellation mode and the two-stage interference cancellation mode of the base station under the received interference signal power, the target signal power, and determine the optimal power of the received interference signal and the target signal power of the base station.
  • Interference cancellation mode ; establishing a correspondence between the received interference signal power of the base station, the target signal power, and the optimal interference cancellation mode of the base station.
  • a full-duplex user equipment includes: a sending unit, configured to send, to the base station, transmission mode information, where the transmission mode information includes self-interference cancellation capability information of the user equipment, and the The user equipment receives the signal-to-noise ratio information of the target signal, and the receiving unit is configured to receive the transmission configuration information sent by the base station, where the transmission configuration information is received by the base station according to the self-interference cancellation capability information of the user equipment, and the user equipment receives the target signal. Signal to noise ratio information is determined, the The transmission configuration information is used to indicate the user equipment transmission mode and the configuration corresponding to the transmission mode.
  • the configuration unit is configured to configure a transmission mode of the user equipment according to the transmission configuration information.
  • the sending unit is further configured to send channel quality information of an antenna of the base station to the base station, where channel quality information of the antenna of the base station is used by the base station according to the UE
  • the self-interference cancellation capability information, the signal to noise ratio information of the UE receiving the target signal, and the channel quality information of the antenna of the base station determine the transmission mode of the UE.
  • the channel quality information is: the channel quality information of all antennas of the base station measured by the UE; or the UE measurement
  • the information of the optimal channel quality in the channel quality information of all the antennas of the base station; or the channel quality information of the downlink antenna measured by the UE, the downlink antenna is a fixed downlink antenna of the base station or a downlink antenna pre-designated by the base station.
  • the user equipment further includes: an acquiring unit, configured to acquire the user equipment Corresponding relationship between the received interference signal power, the target signal power and the optimal interference cancellation mode; the determining unit is configured to determine the user equipment according to the received interference signal power of the user equipment, the correspondence between the target signal power and the optimal interference cancellation mode The current interference cancellation mode corresponding to the current interference signal power and the current target signal power; the acquisition unit is further configured to acquire self-interference cancellation capability information in the current optimal interference cancellation mode.
  • the corresponding relationship between the received interference signal power, the target signal power, and the optimal interference cancellation mode is obtained.
  • the acquiring unit is specifically configured to: measure performance of the first-stage interference cancellation mode and the two-stage interference cancellation mode of the user equipment receiving the interference signal power, the target signal power, and determine the power of the user equipment at the received interference signal, the target signal power An optimal interference cancellation mode; establishing a correspondence between the received interference signal power of the user equipment, the target signal power, and an optimal interference cancellation mode of the user equipment.
  • FIG. 1 is a flow chart of a method for selecting a transmission mode according to an embodiment of the present invention.
  • FIG. 2 is a flow chart of a method for selecting another transmission mode according to an embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of a full duplex device according to an embodiment of the present invention.
  • FIG. 4 is a schematic view of an antenna direction according to an embodiment of the present invention.
  • Figure 5 is a graph comparing the average capacity of full-duplex and half-duplex in an embodiment of the present invention.
  • FIG. 6 is a flowchart of a method for configuring a transmission mode according to an embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of a base station according to an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of a full duplex user equipment according to an embodiment of the present invention.
  • FIG. 9 is another schematic structural diagram of a base station according to an embodiment of the present invention.
  • FIG. 10 is another schematic structural diagram of a full duplex user equipment according to an embodiment of the present invention. detailed description
  • GSM Global System of Mobile Communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • a user equipment which may also be called a mobile terminal (Mobile Terminal), a mobile user equipment, etc., may communicate with one or more core networks via a radio access network (eg, RAN, Radio Access Network).
  • the user equipment may be a mobile terminal, such as a mobile phone (or "cellular" phone) and a computer with a mobile terminal, for example, a mobile device that can be portable, pocket, handheld, computer built, or in-vehicle,
  • the wireless access network exchanges languages and/or data.
  • the base station may be a base station (BTS, Base Transceiver Station) in GSM or CDMA, or may be a base station (NodeB) in WCDMA, or may be an evolved base station (eNB in LTE). Or e-NodeB, evolutional Node B), the present invention is not limited, but for convenience of description, the following embodiments are described by taking an eNB as an example.
  • BTS Base Transceiver Station
  • NodeB base station
  • eNB evolved base station
  • e-NodeB evolutional Node B
  • FIG. 1 is a flow chart of a method for selecting a transmission mode of a full-duplex device according to an embodiment of the present invention, and the method of FIG. 1 is performed by a base station.
  • the base station determines self-interference cancellation capability information of the full-duplex device and signal-to-noise ratio information of the target signal received by the full-duplex device.
  • the self-interference cancellation capability information of the full-duplex device refers to the capability of the full-duplex device to eliminate the signal interference of the transmitter of the full-duplex device to the receiver of the full-duplex device in the full-duplex mode.
  • the signal-to-noise ratio information of the target signal received by the full-duplex device refers to the information of the signal-to-noise ratio of the target signal received by the full-duplex device under the influence of self-interference.
  • the base station determines, according to the self-interference cancellation capability information of the full-duplex device and the signal-to-noise ratio information of the target signal of the full-duplex device, determining a transmission mode of the full-duplex device.
  • the transmission mode includes a full duplex mode and a half duplex mode.
  • the base station may determine a transmission mode of the full duplex device based on a predetermined transmission mode selection criterion, for example, selecting a transmission mode based on a criterion that maximizes an average channel capacity of the base station.
  • the base station determines the transmission mode of the full-duplex device according to the self-interference cancellation capability information of the full-duplex device and the signal-to-noise ratio information of the target signal of the full-duplex device, thereby avoiding excessive self-interference.
  • the impact of the duplex system can improve the performance of the full-duplex system.
  • the method may further include step 111.
  • the base station determines channel quality information of an antenna of the base station.
  • the channel quality information of the antenna of the base station may include channel quality information of the uplink antenna of the base station and channel quality information of the downlink antenna, and channel quality information of the uplink antenna of the base station, that is, uplink channel quality information of the base station, and downlink of the base station.
  • the channel quality information of the antenna is the downlink channel quality information of the base station.
  • the base station may instruct the UE to measure the downlink channel quality of the base station and report the downlink channel quality information, and the base station may further instruct the UE to send the reference signal, and the base station measures the reference signal of the UE. Obtain uplink channel quality information of the base station.
  • step 120 can be as shown in step 121.
  • the base station determines, according to the self-interference cancellation capability information of the full-duplex device, the signal-to-noise ratio information of the target signal of the full-duplex device, and the channel quality information of the antenna of the base station, determining a transmission mode of the full-duplex device.
  • the transmission mode includes a full duplex mode and a half duplex mode.
  • the step 111 may be specifically implemented as follows: the base station receives the channel quality of all the antennas of the base station measured by the user equipment UE under the base station. Information, and determining that the channel quality information in the channel quality information of all antennas of the base station is the channel quality information of the downlink antenna of the base station. Specifically, the base station receives channel quality information of all antennas of the base station measured by the UE under the base station, selects an antenna with an optimal channel quality from channel quality information of all antennas of the base station, and determines the downlink antenna of the base station, and determines The optimal channel quality information is channel quality information of a downlink antenna of the base station.
  • the step 111 may be further implemented by: the base station receiving the channel quality information of the optimal antenna measured by the UE, and determining the most The channel quality information of the superior antenna is the channel quality information of the downlink antenna of the base station, wherein the optimal antenna is an antenna in which the UE measures the optimal channel quality among all the antennas of the base station. Specifically, the UE measures the channel quality of all antennas of the base station, selects the optimal channel quality and the corresponding optimal antenna, and transmits the identifier ID information of the optimal antenna and the channel quality information of the optimal antenna to the base station.
  • the base station receives the identifier ID of the optimal antenna measured by the UE and the channel quality information of the optimal antenna, and uses the optimal antenna as the downlink antenna of the base station, and uses the channel quality information of the optimal antenna as the downlink of the base station. Channel quality information of the antenna.
  • the step 111 may be specifically implemented by: receiving, by the base station, channel quality information of all antennas of the base station measured by the UE under the base station, and determining all the base stations.
  • the information about the channel quality corresponding to the downlink antenna specified by the base station in the channel quality information of the antenna is the channel quality information of the downlink antenna of the base station, where the downlink antenna specified by the base station is used by the UE according to the antenna of the base station. Configuration information is obtained.
  • the base station receives channel quality information of all antennas of the base station measured by the UE under the base station, and selects channel quality information corresponding to the downlink antenna specified by the base station from channel quality information of all antennas of the base station, as the Channel quality information of the downlink antenna of the base station.
  • the step 111 may be specifically implemented as: receiving, by the base station, a channel of the downlink antenna that is preset by the UE and configured by the UE.
  • the quality information is determined, and the channel quality information of the downlink antenna specified by the base station is determined as the channel quality information of the downlink antenna of the base station, where the downlink antenna specified by the base station is acquired by the UE according to the antenna configuration information of the base station.
  • the UE measures the channel quality of the downlink antenna specified by the base station, and transmits the channel quality of the downlink antenna specified by the base station to the base station, where the base station receives the channel quality of the downlink antenna that is determined by the UE, and the base station is scheduled.
  • the downlink antenna is obtained by the UE according to the antenna configuration information transmitted by the base station.
  • the step 111 is specifically implemented as follows: the base station receives channel quality information of all antennas measured by the UE of the base station, and determines all antennas measured by the UE.
  • the channel quality information corresponding to the fixed downlink antenna in the channel quality information is channel quality information of the downlink antenna of the base station.
  • the step 111 is specifically implemented as follows: the base station receives channel quality information of the fixed downlink antenna of the base station measured by the UE, and determines the fixed location of the base station.
  • the channel quality information of the downlink antenna is channel quality information of the downlink antenna of the base station.
  • the base station can obtain the channel quality of the downlink antenna of the base station in multiple manners.
  • the base station can also obtain the uplink channel quality of the base station by measuring the reference channel of the UE.
  • the base station can select a more suitable transmission mode from the consideration of the channel quality factor of the base station.
  • the method may further include: the base station acquiring traffic information of the base station.
  • the traffic information of the base station may include uplink traffic information and/or downlink traffic information of the base station.
  • the step 121 is specifically implemented by: the base station according to the self-interference cancellation capability information of the full-duplex device, the signal-to-noise ratio information of the target signal received by the full-duplex device, the channel quality information of the antenna of the base station, and the base station Traffic information, determining the transmission mode of the full-duplex device.
  • the base station can select a more suitable transmission mode from the consideration of the traffic factor.
  • the full duplex device may be a base station or a UE.
  • the method may further include: the base station sending scheduling information to the UE according to the channel quality information of the antenna of the base station and the transmission configuration corresponding to the transmission mode, where the scheduling information includes at least one of the following: uplink and downlink of the base station Time-frequency resource information used in scheduling, Modulation and Coding Scheme (MCS), Redundant Version (RV), and transmit power.
  • MCS Modulation and Coding Scheme
  • RV Redundant Version
  • the method further includes: The base station transmits transmission configuration information to the UE.
  • the transmission configuration information includes a transmission configuration corresponding to the transmission mode.
  • the transmission configuration information is sent to the full-duplex device so that the full-duplex device selects the transmission mode.
  • the base station when the full-duplex device is the base station, acquires self-interference cancellation capability information of the full-duplex device, where the base station acquires the received interference signal power and the target signal power of the base station.
  • the base station determines the current interference signal power of the base station and the current target signal power according to the received interference signal power of the base station, the correspondence between the target signal power and the optimal interference cancellation mode Optimal interference cancellation mode; the base station estimates self-interference cancellation capability in the current optimal interference cancellation mode.
  • the base station acquires the corresponding relationship between the received interference signal power of the base station, the target signal power, and the optimal interference cancellation mode, including: the base station measures the first-order interference cancellation mode of the base station under the received interference signal power and the target signal power, and The performance of the two-stage interference cancellation mode; the base station determines an optimal interference cancellation mode of the received interference signal power and the target signal power of the base station; the base station establishes the received interference signal power of the base station, the target signal power, and the base station Correspondence of the optimal interference cancellation mode.
  • the base station is a full duplex device.
  • the base station determines the full duplex device (base station) according to at least one of the self-interference cancellation capability and the signal-to-noise ratio information of the base station, the channel quality of the downlink antenna, the traffic quality of the base station, and the like, according to a predetermined transmission mode selection criterion. Transfer mode.
  • the specific method is as follows:
  • the base station determines its own self-interference cancellation capability information and the signal to noise ratio information of the base station reception target signal.
  • FIG. 3 is a schematic structural diagram of a full duplex device according to an embodiment of the present invention.
  • a full-duplex system typically employs two levels of self-interference cancellation techniques, analog cancellation and digital cancellation, such as the full-duplex device 1 of FIG.
  • analog cancellation and digital cancellation such as the full-duplex device 1 of FIG.
  • subsequent digital cancellation can further improve the overall elimination capability; as the analog cancellation capability becomes stronger, adding digital cancellation may not lead to an overall elimination capability;
  • the analog cancellation performance is further enhanced, and the addition of digital cancellation may even result in a reduction in overall elimination capability.
  • the self-interference cancellation mode can be dynamically selected.
  • the full-duplex device 2 may include an elimination mode selection module for determining whether to capture the one-stage analog cancellation or the analog cancellation and digital cancellation two-stage cancellation.
  • the criteria for its interference cancellation mode selection can be as follows: The base station is interfering with the interference signal and the target signal. The equipment is tested under different receiving powers, and the performance of the first-order interference cancellation and the two-stage interference cancellation is tested under given conditions, and the best interference cancellation effect is selected as the optimal interference cancellation mode under the condition.
  • the base station establishes a correspondence between the received interference signal power, the target signal power, and the optimal interference cancellation mode according to the optimal interference cancellation mode obtained by the test and its corresponding condition.
  • the base station selects an optimal mode according to the correspondence relationship each time the interference cancellation mode is selected.
  • the analog cancellation and digital cancellation are first turned off, and the power of the interfering transmitter is P, and the signal 4 received by the receiver after passing the air interface at different P values is measured. recording.
  • analog cancellation capability CIA 101og( I/IA)
  • digital cancellation capability CID 101og ( IA I
  • the elimination capability threshold T is selected.
  • CKA ⁇ T there is a greater probability of increasing the overall performance CK after adding the digital elimination.
  • the digital elimination is added; when CKA > T, the number is eliminated.
  • a small probability increases the overall performance CK, at which point no digital elimination is added. This maximizes system performance and saves signal processing time.
  • the base station can estimate the self-interference cancellation capability in the interference cancellation mode, and measure the signal-to-noise ratio in the interference cancellation mode.
  • the estimation of the self-interference cancellation capability can be obtained according to the test result of the device under different conditions in advance. Of course, the manner of obtaining the self-interference cancellation capability is not excluded, and the embodiment of the present invention is not limited herein.
  • the base station determines channel quality information of the antenna of the base station.
  • the channel quality information of the antenna of the base station may include channel quality information of the uplink antenna of the base station and channel quality information of the downlink antenna, channel quality information of the uplink antenna of the base station, that is, uplink channel quality information of the base station, and channel quality information of the downlink antenna of the base station Downlink channel quality information of the base station.
  • the base station may instruct the UE to measure the downlink channel quality of the base station and report the downlink channel quality information, and the base station may further instruct the UE to send the reference signal, and the base station obtains the uplink channel quality information of the base station by measuring the reference signal of the UE.
  • the base station selects the full-duplex transmission mode, which antennas are used to transmit the downlink signals, the following methods can be used:
  • the UE selects an optimal antenna according to channel conditions and reports it.
  • the channel that the UE needs to measure and report includes: all antenna channel quality, or the optimal antenna number and corresponding channel quality.
  • the base station sends a signaling configuration, and the UE needs to measure and report: all antenna channel quality, or used for downlink antenna channel quality.
  • a multi-antenna node having full-duplex function selects a certain number of antennas as the transmitting end, and when a certain number is used as the receiving end, it should satisfy the number of transmitting antennas selected to be less than or equal to the number of receiving antennas.
  • the manner in which the base station determines the channel quality information of the downlink antenna according to different downlink antenna selection modes is as follows:
  • the base station can use the antenna with the optimal channel quality as the downlink antenna.
  • a method for determining the channel quality of the downlink antenna the UE may report the channel quality of all the antennas measured by the UE, and the base station may select the antenna with the best channel quality from the channel quality of all the antennas measured by the UE as the downlink antenna of the base station, and select the most The superior channel quality is used as the channel quality of the downlink antenna of the base station.
  • the UE may report the identifier of the antenna corresponding to the optimal channel quality and the optimal channel quality.
  • the identifier of the antenna which can be the number of the antenna, or It is other information that can be used by the base station to identify the antenna.
  • the antenna corresponding to the optimal channel quality and the optimal channel quality is not limited to one antenna and its channel quality, and may also be optimal for several channel qualities and corresponding antennas.
  • FIG. 4 is a schematic view of an antenna direction according to an embodiment of the present invention.
  • node 1 represents a base station
  • node 2 represents a UE
  • base station (node 1) has 4 antennas.
  • the antenna of the UE and the base station can be as shown in FIG. 4.
  • the base station may send a channel state indication reference signal (CSI-RS) to the UE, and the UE performs two types of channel states according to the same CSI-RS measurement (Channel State Indication, CSI). ) Reporting (partial antenna): The first type corresponds to 4 antennas, and its rank (rank) is at most 4.
  • CSI-RS channel state indication reference signal
  • the precoding matrix indicator (PMI) information corresponds to a 4-antenna codebook, and its antenna direction is as shown in FIG. -2 is shown; the second type corresponds to 1 antenna, the rank is at most 2, and the PMI corresponds to 1 antenna codebook.
  • the transmit power of the second type of antenna is different from that of the first type of antenna. For example, the transmit power is increased by 3 dB compared with the first type, and the antenna direction is as shown in Figure 4-1.
  • the base station may send the identifier information selected for the downlink antenna to the UE in advance.
  • a method for determining the channel quality of the downlink antenna the UE may report the channel quality of all the antennas measured by the UE, and the base station selects the channel quality corresponding to the downlink antenna specified in advance as the channel quality of the downlink antenna.
  • the base station may send the downlink antenna information to the UE in advance, where the downlink antenna information may include the identifier information of the downlink antenna that is specified by the base station, and the UE may be configured according to the downlink antenna sent by the base station.
  • the identifier information is used to send the channel quality corresponding to the downlink antenna.
  • the base station can use the channel quality information of the downlink antenna of the base station.
  • the base station can send the identification information of the downlink antenna by means of signaling or the like.
  • the downlink antenna of the base station is a fixed antenna, which is known to both the base station and the UE.
  • a method for determining the channel quality of the downlink antenna the UE may report the channel quality of all the antennas measured by the UE, and the base station selects the channel quality corresponding to the fixed downlink antenna as the channel quality information of the downlink antenna of the base station.
  • the UE may directly transmit the channel quality corresponding to the fixed downlink antenna.
  • the base station may use the channel quality information of the downlink antenna of the base station. .
  • the base station obtains the quality of the downlink antenna channel by using other methods.
  • the embodiment of the present invention is not limited herein.
  • the channel mode selection criterion of the base station may be skipped. This step.
  • the base station determines the transmission mode of the base station according to a predetermined transmission mode selection criterion.
  • the base station can select an appropriate transmission mode from the full-duplex and half-duplex modes based on the self-interference cancellation capability of the base station and the signal-to-noise ratio information of the base station receiving the target signal based on a certain transmission mode selection criterion.
  • the choice of transmission mode can be based on different criteria.
  • the transmission mode selection function is fi ⁇ , i).
  • the base station may also include the channel quality of the downlink antenna of the base station and/or the traffic volume information of the base station into parameters of the transmission mode selection function, and combine the self-interference cancellation capability of the base station from the perspective of channel quality and/or traffic volume.
  • the base station receives the signal to noise ratio information of the target signal for transmission mode selection.
  • a selection criterion of the present invention can use the goal of maximizing the average channel capacity as a selection criterion.
  • Figure 5 is a comparison of full-duplex and half-double _ ⁇ average capacity, the abscissa is the power ratio of the received signal and residual self-interference power (unit decibel), and the ordinate is the average signal-to-noise ratio of the received signal is Vs (unit decibel).
  • the solid line in Fig. 5 indicates contour lines of equal capacity for full-duplex and half-duplex channels. The upper line indicates that the half-duplex capacity is greater than the full-duplex capacity, and the lower line indicates that the full-duplex capacity is greater than the half-duplex capacity. According to Figure 5, transmission mode selection can be made to achieve maximum channel capacity.
  • the transmission mode selection function corresponding to FIG. 5 can be obtained:
  • the scheduling information is sent to the UE.
  • the corresponding scheduling information (for example, uplink and downlink transmit power, MCS, and the like) is configured and sent to the user according to the downlink channel quality information reported by the user and the uplink channel quality information measured by the base station.
  • the full-duplex device is notified that there is no data on a resource element (Resource Element, RE) corresponding to a Demodulate Reference Signal (DMRS) for uplink and downlink transmission.
  • RE resource element
  • DMRS Demodulate Reference Signal
  • the UE is a full duplex device.
  • the base station determines the transmission mode of the full-duplex device according to at least one of the self-interference cancellation capability and the signal-to-noise ratio information of the UE and the information of the channel quality, the traffic volume of the base station, and the like in combination with the predetermined transmission mode selection criterion.
  • the specific method is as follows:
  • the base station acquires self-interference cancellation capability information of the UE and signal to noise ratio information of the UE receiving the target signal.
  • the UE can select the self-interference deletion mode by measurement, and estimate the self-interference cancellation capability according to the selected self-interference cancellation mode, and then report the self-interference cancellation capability and the signal-to-noise ratio of the receiving end to the base station.
  • the estimation of the self-interference cancellation capability can be obtained based on the device test results under different conditions that the system performs in advance.
  • the UE can use the two-stage self-interference cancellation technology of analog cancellation and digital cancellation, as shown in the full-duplex device 1 of FIG. 3; the self-interference cancellation mode can also be dynamically selected, such as As shown in the full-duplex device 2 of FIG. 3, the full-duplex device 2 may include an elimination mode selection module for determining whether to capture the one-stage analog cancellation or the analog cancellation and digital cancellation two-stage cancellation.
  • the criteria for selecting the interference cancellation mode may be as follows: The UE performs equipment testing on the interference signal and the target signal at different received powers, and tests the performance of the first-order interference cancellation and the two-stage interference cancellation under given conditions.
  • the UE establishes a corresponding relationship between the received interference signal power, the target signal power, and the optimal interference cancellation mode according to the optimal interference cancellation mode obtained by the test and its corresponding conditions.
  • the UE selects an optimal mode according to the correspondence relationship each time the interference cancellation mode is selected.
  • the manner in which the UE performs the interference cancellation mode selection as the full-duplex device may be similar to the manner in which the base station performs the interference cancellation mode selection as the full-duplex device, and details are not described herein again.
  • the UE After determining the interference cancellation mode, the UE can estimate the self-interference cancellation capability in the interference cancellation mode, and measure the signal-to-noise ratio in the interference cancellation mode.
  • the base station can determine the self-interference cancellation capability and the signal-to-noise ratio information of the UE according to the self-interference cancellation capability reported by the UE and the signal-to-noise ratio information of the UE receiving the target signal.
  • the base station determines channel quality information of the antenna of the base station.
  • the manner in which the base station determines the channel quality of the antenna of the base station is similar to the method in the case where the base station is used as the full-duplex device in the foregoing embodiment, and details are not described herein again.
  • this step may not be performed.
  • the UE may also not report the channel quality.
  • the base station determines the transmission mode of the UE according to a predetermined transmission mode selection criterion.
  • the base station can select an appropriate transmission mode from the full-duplex and half-duplex modes based on the self-interference cancellation capability of the base station and the signal-to-noise ratio information of the base station receiving the target signal based on a certain transmission mode selection criterion.
  • the choice of transmission mode can be based on different criteria.
  • the transmission mode selection function is /( , ,
  • the base station may also include the channel quality of the downlink antenna of the base station and/or the traffic volume information of the base station into parameters of the transmission mode selection function, and combine the self-interference cancellation capability of the base station from the perspective of channel quality and/or traffic volume.
  • the base station receives the signal to noise ratio information of the target signal for transmission mode selection.
  • the base station sends configuration information and scheduling information of the transmission mode to the UE.
  • the base station may send the selected transmission mode and corresponding transmission configuration information to the UE.
  • the base station may use a new physical downlink control channel format (PDCCH format), and the multiple input and output format (MIMO format) corresponds to the full duplex transmission mode, indicating that the user enters a full duplex state.
  • the base station and the full duplex device communicate in accordance with the selected transmission mode.
  • PDCCH format physical downlink control channel format
  • MIMO format multiple input and output format
  • the base station can also configure corresponding scheduling information according to the channel quality reported by the user, including time-frequency resources used for uplink and downlink scheduling, MCS, RV, and transmit power.
  • the base station configures the uplink and downlink scheduling parameters for the full-duplex device, it also needs to predict the impact of the transmitting end on the receiving end according to the self-interference cancellation capability reported by the full-duplex device, and appropriately adjust the uplink and downlink transmit power, MCS and other parameters.
  • an enhanced transmission mode is set, and the full-duplex device is notified that no data information is transmitted on the RE corresponding to the DM RS (demodulated reference signal) for uplink and downlink transmission, or at all
  • the DM RS corresponds to the RE transmitting data information but the data information is used with lower power.
  • FIG. 6 is a flowchart of a method for configuring a transmission mode according to an embodiment of the present invention.
  • the method of Figure 6 is performed by the UE.
  • the UE is a full duplex device.
  • the user equipment UE sends transmission mode information to the base station, where the transmission mode information includes the The self-interference cancellation capability information of the UE and the signal to noise ratio information of the UE receiving the target signal.
  • the UE receives transmission configuration information sent by the base station.
  • the transmission configuration information is determined by the base station according to the self-interference cancellation capability information of the UE and the signal-to-noise ratio information of the UE receiving the target signal, where the transmission configuration information is used to indicate the transmission mode of the UE and the configuration corresponding to the transmission mode. .
  • the UE configures a transmission mode of the UE according to the transmission configuration information.
  • the full-duplex UE sends the transmission mode information to the base station, so that the base station determines the transmission mode of the UE according to the transmission mode information, thereby avoiding the influence of excessive self-interference on the full-duplex system, thereby improving the full-duplex The performance of the system.
  • the method further includes: the UE transmitting channel quality information of the antenna of the base station to the base station.
  • the channel quality information of the antenna of the base station is used by the base station to determine a transmission mode of the UE according to the self-interference cancellation capability information of the UE, the signal to noise ratio information of the UE receiving the target signal, and the channel quality information of the antenna of the base station.
  • the channel quality information may include: channel quality information of all antennas of the base station measured by the UE; or information of an optimal channel quality of channel quality information of all antennas of the base station measured by the UE; or the UE The measured channel quality information of the downlink antenna, where the downlink antenna is a fixed downlink antenna of the base station or a downlink antenna specified in advance by the base station.
  • the method further includes: acquiring, by the UE, a corresponding relationship between the received interference signal power of the UE, the target signal power, and the optimal interference cancellation mode; and the UE receiving according to the UE Corresponding relationship between the interference signal power, the target signal power and the optimal interference cancellation mode determines a current optimal interference cancellation mode corresponding to the current dry 4 signal power of the UE and the current target signal power; the UE acquires the current optimal interference Self-interference cancellation capability information in the elimination mode.
  • the UE acquires the corresponding relationship between the received interference signal power of the UE, the target signal power, and the optimal interference cancellation mode, where the UE measures the first-order interference cancellation mode of the UE under the received interference signal power and the target signal power.
  • the method for the UE to determine the transmission mode by interacting with the base station can refer to the method in FIG.
  • FIG. 7 is a schematic structural diagram of a base station 700 according to an embodiment of the present invention.
  • the base station 700 can include: a determining unit 701.
  • the determining unit 701 is configured to determine self-interference cancellation capability information of the full duplex device and signal to noise ratio information of the target signal of the full duplex device.
  • the self-interference cancellation capability information of the full-duplex device refers to the capability of the full-duplex device to eliminate the signal interference of the transmitter of the full-duplex device to the receiver of the full-duplex device in the full-duplex mode.
  • the signal-to-noise ratio information of the target signal received by the full-duplex device refers to the information of the signal-to-noise ratio of the target signal received by the full-duplex device under the influence of self-interference.
  • the determining unit 701 is further configured to determine a transmission mode of the full-duplex device according to the self-interference cancellation capability information of the full-duplex device and the signal-to-noise ratio information of the target signal of the full-duplex device.
  • the transmission mode includes a full duplex mode and a half duplex mode.
  • the determining unit 701 may determine a transmission mode of the full-duplex device based on a predetermined transmission mode selection criterion, for example, selecting a transmission mode based on a criterion for maximizing an average channel capacity of the base station.
  • the base station 700 combines the transmission mode selection criterion according to at least one of information such as self-interference cancellation capability, signal-to-noise ratio information, channel quality of the base station 700, and traffic information of the base station 700. Determine the transmission mode of the full-duplex device, avoiding the influence of excessive self-interference on the full-duplex system, thereby improving the performance of the full-duplex system.
  • information such as self-interference cancellation capability, signal-to-noise ratio information, channel quality of the base station 700, and traffic information of the base station 700.
  • the determining unit 701 is further configured to determine channel quality information of an antenna of the base station 700.
  • the determining unit 701 is specifically configured to: according to self-interference cancellation capability information of the full-duplex device, signal-to-noise ratio information of the target signal of the full-duplex device, and an antenna of the base station 700.
  • Channel quality information determining the transmission mode of the full-duplex device.
  • the channel quality information of the antenna of the base station 700 may include channel quality information of the uplink antenna of the base station 700 and channel quality information of the downlink antenna, and channel quality information of the uplink antenna of the base station 700, that is, uplink channel quality information of the base station 700, and the base station 700
  • the channel quality information of the downlink antenna is the downlink channel quality information of the base station 700.
  • the base station 700 can instruct the UE to measure the downlink channel quality of the base station 700 and report the downlink channel quality information.
  • the base station 700 can also instruct the UE to send the reference signal, and the base station 700 obtains the uplink channel quality information of the base station 700 by measuring the reference signal of the UE.
  • the determining unit 701 is further configured to determine traffic information of the base station 700.
  • the determining unit 701 is specifically configured to be used according to the self-duplex device
  • the interference cancellation capability information, the signal to noise ratio information of the full duplex device receiving target signal, the channel quality information of the antenna of the base station 700, and the traffic volume information of the base station 700 determine the transmission mode of the full duplex device.
  • the traffic information of the base station 700 may include uplink traffic information and/or downlink traffic information of the base station 700.
  • the determining unit 701 is further configured to determine channel quality information of the antenna of the base station 700 and traffic information of the base station 700.
  • the determining unit 701 is specifically configured to: according to the self-interference cancellation capability information of the full-duplex device, the signal-to-noise ratio information of the target signal received by the full-duplex device, and the antenna of the base station 700.
  • the channel quality information, the channel quality information of the antenna of the base station 700, and the traffic information of the base station 700 determine the transmission mode of the full duplex device.
  • the base station 700 further includes a receiving unit 702.
  • the determining unit 701 when determining the channel quality information of the antenna of the base station 700, is specifically configured to: receive, by the receiving unit 702, all antennas of the base station 700 measured by the user equipment UE under the base station 700.
  • the channel quality information, and the information indicating the optimal channel quality in the channel quality information of all the antennas of the base station 700 is the channel quality information of the downlink antenna of the base station 700.
  • the determining unit 701 when determining the channel quality information of the antenna of the base station 700, is specifically configured to: receive, by the receiving unit 702, channel quality information of the optimal antenna measured by the UE, and determine The information of the channel quality of the optimal antenna is the channel quality information of the downlink antenna of the base station 700, wherein the optimal antenna is the antenna in which the UE measures the optimal channel quality among all the antennas of the base station 700.
  • the determining unit 701 when determining channel quality information of the antenna of the base station 700, is specifically configured to: receive, by the receiving unit 702, a channel of all antennas of the base station 700 measured by the UE under the base station 700.
  • the quality information determines the channel quality information corresponding to the downlink antenna specified by the base station 700 in the channel quality information of all the antennas of the base station 700, and is the channel quality information of the downlink antenna of the base station 700.
  • the downlink antenna specified by the base station 700 is obtained by the UE according to the antenna configuration information sent by the base station 700.
  • the determining unit 701 when determining the channel quality information of the antenna of the base station 700, is specifically configured to: receive, by the receiving unit 702, the channel quality of the downlink antenna specified by the base station 700 measured by the UE. The information is determined, and the channel quality information of the downlink antenna specified by the base station 700 is determined as the channel quality information of the downlink antenna of the base station 700.
  • the base station 700 is pre- The downlink antenna specified first is acquired by the UE according to the antenna configuration information transmitted by the base station 700.
  • the determining unit 701 when determining the channel quality information of the antenna of the base station 700, is specifically configured to: receive, by the receiving unit 702, channel quality information of all antennas measured by the UE of the base station 700, and The channel quality information corresponding to the fixed downlink antenna in the channel quality information of all the antennas measured by the UE is determined as the channel quality information of the downlink antenna of the base station 700.
  • the determining unit 701 when determining the channel quality information of the antenna of the base station 700, is specifically configured to: receive, by the receiving unit 702, channel quality information of the fixed downlink antenna of the base station 700 measured by the UE. And determining channel quality information of the fixed downlink antenna of the base station 700 as channel quality information of the downlink antenna of the base station 700.
  • the full duplex device is the UE of the base station 700, or the full duplex device is the base station 700.
  • the base station 700 may further include a transmitting unit 703.
  • the sending unit 703 is configured to send scheduling information to the UE according to a channel quality of the base station 700 and a transmission configuration corresponding to the transmission mode.
  • the scheduling information includes at least one of the following: time-frequency resource information, MCS, RV, and transmit power used in uplink and downlink scheduling of the base station 700.
  • the sending unit is further configured to send transmission configuration information to the UE, where the transmission configuration information includes a transmission configuration corresponding to the transmission mode.
  • the determining unit 701 is specifically configured to: acquire the received interference signal power, the target signal power, and the most Corresponding relationship of the interference cancellation mode; determining the current optimal interference cancellation corresponding to the current interference signal power of the base station 700 and the current target signal power according to the received interference signal power of the base station 700, the correspondence between the target signal power and the optimal interference cancellation mode Mode; estimates the self-interference cancellation capability in the current optimal interference cancellation mode.
  • the determining unit 701 is specifically configured to: measure, according to the received interference signal power of the base station 700, the target signal power, and the optimal interference cancellation mode, the determining unit 701 is configured to: measure, by the base station 700, the interference signal power and the target signal power. Level interference cancellation mode and two-stage interference cancellation mode performance; determining an optimal interference cancellation mode of the base station 700 at the received interference signal power and the target signal power; establishing the received interference signal power of the base station 700, the target signal power, and the base station Correspondence of the optimal interference cancellation mode of 700.
  • the base station 700 can also perform the method of FIG. 1 and implement the execution function of the base station disclosed in the specific embodiment of FIG. 1.
  • the base station determines the full-duplex device transmission mode.
  • the execution function of the base station disclosed in the specific embodiment of the present invention is implemented in the specific embodiment of the present invention, where the base station determines the full-duplex device transmission mode when the UE is a full-duplex device, and the embodiment of the present invention does not Let me repeat.
  • FIG. 8 is a schematic structural diagram of the user equipment 800.
  • User equipment 800 is a full duplex device.
  • the user equipment 800 may include: a transmitting unit 801, a receiving unit 802, and a configuration unit 803.
  • the sending unit 801 is configured to send the transmission mode information to the base station.
  • the transmission mode information includes self-interference cancellation capability information of the user equipment 800 and signal to noise ratio information of the user equipment 800 receiving the target signal.
  • the receiving unit 802 is configured to receive transmission configuration information sent by the base station.
  • the transmission configuration information transmitted by the base station may be determined by the base station according to the self-interference cancellation capability information of the user equipment 800 and the signal-to-noise ratio information of the target signal received by the user equipment 800.
  • the transmission configuration information indicates a transmission mode of the user equipment 800 and a configuration corresponding to the transmission mode.
  • the configuration unit 803 is configured to configure a transmission mode of the user equipment 800 according to the transmission configuration information.
  • the full-duplex user equipment 800 transmits the self-interference cancellation capability, the signal-to-noise ratio information, and the like to the base station, so that the base station determines the transmission mode based on a certain transmission mode selection criterion, thereby avoiding excessive self-interference to the full double.
  • the impact of the system which can improve the performance of the full-duplex system.
  • the sending unit 801 is further configured to send the channel quality information of the antenna of the base station to the base station, where the channel quality information of the antenna of the base station is used by the base station according to the self-interference cancellation capability information of the UE, and the UE receives the target signal.
  • the signal to noise ratio information and the channel quality information of the antenna of the base station determine the transmission mode of the UE.
  • the channel quality information may include: channel quality information of all antennas of the base station measured by the user equipment 800; or information of an optimal channel quality of channel quality information of all antennas of the base station measured by the user equipment 800. Or the channel quality information of the downlink antenna measured by the user equipment 800, where the downlink antenna is a fixed downlink antenna of the base station or a downlink antenna pre-designated by the base station.
  • the user equipment 800 may further include an obtaining unit 804 and a determining unit 805.
  • the obtaining unit 804 is configured to obtain a correspondence between the received interference signal power of the user equipment 800, the target signal power, and the optimal interference cancellation mode.
  • the determining unit 805 is configured to determine, according to the received interference signal power of the user equipment 800, the correspondence between the target signal power and the optimal interference cancellation mode, the current interference signal function of the user equipment 800.
  • the current optimal interference cancellation mode corresponding to the current target signal power.
  • the obtaining unit 804 is further configured to obtain self-interference cancellation capability information in the current optimal interference cancellation mode.
  • the obtaining unit 804 is specifically configured to: measure the received interference signal power and the target signal of the user equipment 800. The performance of the first-order interference cancellation mode and the two-stage interference cancellation mode under power; determining an optimal interference cancellation mode of the user equipment 800 at the received interference signal power and the target signal power; establishing the received interference signal power of the user equipment 800, Correspondence between the target signal power and the optimal interference cancellation mode of the user equipment 800.
  • the user equipment 800 can also perform the method of FIG. 6 and implement the performing function of the UE disclosed in the specific embodiment of FIG. 6, and implement the foregoing, when the base station is a full-duplex device, determine the specific mode of the full-duplex device.
  • the execution function of the UE disclosed in the embodiment is implemented in the foregoing embodiment, and the implementation function of the UE disclosed in the specific embodiment of the method for determining the full-duplex device transmission mode when the UE is a full-duplex device is not described herein.
  • FIG. 9 is a schematic structural diagram of a base station 900 according to an embodiment of the present invention.
  • Base station 900 can include a transmitter
  • Receiver 901, transmitter 903, processor 902, and memory 904 are interconnected by a bus 905 system.
  • the bus 905 can be an ISA bus, a PCI bus, or an EISA bus.
  • the bus can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one double-headed arrow is shown in Figure 9, but it does not mean that there is only one bus or one type of bus.
  • the memory 904 is configured to store a program.
  • the program can include program code, the program code including computer operating instructions.
  • Memory 904 can include read only memory and random access memory and provides instructions and data to processor 902.
  • Memory 904 may include high speed RAM memory and may also include non-volatile memory, such as at least one disk memory.
  • the processor 902 is configured to execute a program stored in the memory 904, configured to acquire, by using the transmitter 903 and the receiver 901, a self-interference cancellation capability of the full-duplex device and a signal-to-noise ratio information of the target signal of the full-duplex device, and is also used for And determining, according to the self-interference cancellation capability information of the full-duplex device and the signal-to-noise ratio information of the target signal of the full-duplex device, determining a transmission mode of the full-duplex device.
  • the self-interference cancellation capability information of the full-duplex device refers to the capability of the full-duplex device to eliminate the signal interference of the transmitter of the full-duplex device to the receiver of the full-duplex device in the full-duplex mode.
  • the signal-to-noise ratio information of the target signal received by the full-duplex device refers to the information of the signal-to-noise ratio of the target signal received by the full-duplex device under the influence of self-interference.
  • the transmission mode includes a full duplex mode and a half duplex mode.
  • the processor 902 can determine a transmission mode of the full duplex device based on a predetermined transmission mode selection criterion, for example, selecting a transmission mode based on a criterion that maximizes an average channel capacity of the base station.
  • the method performed by the base station disclosed in the specific embodiment of determining the full duplex device transmission mode when the base station is a full duplex device may be applied to the processor 902 or implemented by the processor 902.
  • Processor 902 may be an integrated circuit chip with signal processing capabilities. In an implementation process, the steps of the above method may be completed by an integrated logic circuit of hardware in the processor 902 or an instruction in the form of software.
  • the processor 902 may be a general-purpose processor, including a central processing unit (CPU), a network processor (NP processor, etc.), or a digital signal processor (DSP), an application specific integrated circuit. (ASIC), off-the-shelf programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic device, discrete hardware component.
  • CPU central processing unit
  • NP processor network processor
  • DSP digital signal processor
  • ASIC application specific integrated circuit.
  • FPGA off-the-shelf programmable gate array
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present invention may be directly implemented as a hardware decoding processor, or may be performed by a combination of hardware and software modules in the decoding processor.
  • the software modules can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in memory 904, and processor 902 reads the information in memory 904, in conjunction with its hardware to perform the steps of the above method.
  • the base station 900 determines the transmission mode of the full-duplex device according to the self-interference cancellation capability of the full-duplex device and the signal-to-noise ratio information of the target signal of the full-duplex device, thereby avoiding excessive self-interference.
  • the impact of a full-duplex system can improve the performance of a full-duplex system.
  • the processor 902 may further acquire channel quality information of an antenna of the base station 900 by using the transmitter 903 and the receiver 901.
  • the processor 902 is specifically configured to: according to the self-interference cancellation capability information of the full-duplex device, the signal-to-noise ratio information of the target signal received by the full-duplex device, and the antenna of the base station 900.
  • Channel quality information to determine the transmission of the full duplex device Mode.
  • the channel quality information of the antenna of the base station 900 may include channel quality information of the uplink antenna of the base station 900 and channel quality information of the downlink antenna, and channel quality information of the uplink antenna of the base station 900, that is, uplink channel quality information of the base station 900, and the base station 900
  • the channel quality information of the downlink antenna is the downlink channel quality information of the base station 900.
  • the processor 902 can instruct the UE to measure the downlink channel quality of the base station 900 and report the downlink channel quality information by using the transmitter 903.
  • the processor 902 can also instruct the UE to send the reference signal by using the transmitter 903, and the processor 902 obtains the reference signal of the UE by measuring Uplink channel quality information of base station 900.
  • the processor 902 can also obtain the traffic information of the base station 900 through the transmitter 903 and the receiver 901.
  • the processor 902 is specifically configured to: according to the self-interference cancellation capability information of the full-duplex device, the signal-to-noise ratio information of the target signal received by the full-duplex device, and the traffic volume of the base station 900. Information, determine the transmission mode of the full-duplex device.
  • the traffic information of the base station 900 may include uplink traffic information and/or downlink traffic information of the base station 900.
  • the processor 902 can also obtain the traffic information of the base station 900 and the channel quality information of the antenna of the base station 900 through the transmitter 903 and the receiver 901.
  • the processor 902 is specifically configured to: according to the self-interference cancellation capability information of the full-duplex device, the signal-to-noise ratio information of the target signal received by the full-duplex device, and the traffic volume of the base station 900.
  • the information and the channel quality information of the antenna of the base station 900 determine the transmission mode of the full duplex device.
  • the processor 902 when determining the channel quality information of the antenna of the base station 900, is specifically configured to: receive, by the receiver 901, all antennas of the base station 900 measured by the user equipment UE under the base station 900.
  • the channel quality information, and the information indicating the optimal channel quality in the channel quality information of all the antennas of the base station 900 is the channel quality information of the downlink antenna of the base station 900.
  • the processor 902 when determining the channel quality information of the antenna of the base station 900, is specifically configured to: receive, by the receiver 901, channel quality information of the optimal antenna measured by the UE, and determine The information of the channel quality of the optimal antenna is the channel quality information of the downlink antenna of the base station 900, wherein the optimal antenna is an antenna in which all the antennas of the base station 900 measure the optimal channel quality.
  • the processor 902 when determining channel quality information of the antenna of the base station 900, is specifically configured to: receive the UE measurement by the base station 900 by using the receiver 901. The channel quality information of all the antennas of the base station 900 is determined. The channel quality information corresponding to the downlink antenna specified by the base station 900 in the channel quality information of all the antennas of the base station 900 is the channel quality information of the downlink antenna of the base station 900. The downlink antenna specified by the base station 900 is acquired by the UE according to the antenna configuration information sent by the base station 900.
  • the processor 902 when determining the channel quality information of the antenna of the base station 900, is specifically configured to: receive, by the receiver 901, the channel of the downlink antenna that is preset by the base station 900 measured by the UE The quality information is determined, and the channel quality information of the downlink antenna specified by the base station 900 is determined as the channel quality information of the downlink antenna of the base station 900.
  • the downlink antenna pre-designated by the base station 900 is obtained by the UE according to the antenna configuration information sent by the base station 900.
  • the processor 902 when determining channel quality information of the antenna of the base station 900, is specifically configured to: receive, by using the receiver 901, channel quality information of all antennas measured by the UE of the base station 900, The channel quality information corresponding to the fixed downlink antenna in the channel quality information of all the antennas measured by the UE is determined as the channel quality information of the downlink antenna of the base station 900.
  • the processor 902 when determining the channel quality information of the antenna of the base station 900, is specifically configured to: receive, by the receiver 901, the channel quality of the fixed downlink antenna of the base station 900 measured by the UE.
  • Information, and determining channel quality information of the fixed downlink antenna of the base station 900 is channel quality information of the downlink antenna of the base station 900.
  • the full duplex device is the UE of the base station 900, or the full duplex device is the base station 900.
  • the transmitter 903 is configured to send scheduling information to the UE according to a channel quality of the base station 900 and a transmission configuration corresponding to the transmission mode.
  • the scheduling information includes at least one of the following: time-frequency resource information, MCS, RV, and transmission power used in uplink and downlink scheduling of the base station 900.
  • the sending unit is further configured to send transmission configuration information to the UE, where the transmission configuration information includes a transmission configuration corresponding to the transmission mode.
  • the processor 902 is specifically configured to: acquire, by the receiver 901, the received interference signal power and target of the base station 900 by using the self-interference cancellation capability of the full-duplex device. Corresponding relationship between the signal power and the optimal interference cancellation mode; determining the current interference signal power of the base station 900 and the current target signal power according to the received interference signal power of the base station 900, the correspondence between the target signal power and the optimal interference cancellation mode Optimal interference cancellation mode; Estimate self-interference cancellation capability in the current optimal interference cancellation mode.
  • the target signal power and The processor 902 is specifically configured to: measure the performance of the base station 900 in receiving the interference signal power, the first-order interference cancellation mode and the two-stage interference cancellation mode under the target signal power; determining that the base station 900 is receiving the Interference signal power, an optimal interference cancellation mode of the target signal power; establishing a correspondence between the received interference signal power of the base station 900, the target signal power, and the optimal interference cancellation mode of the base station 900.
  • the base station 900 can also perform the method of FIG. 1 and implement the execution function of the base station disclosed in the specific embodiment of FIG. 1.
  • the base station determines the full-duplex device transmission mode.
  • the execution function of the base station and the execution function of the base station disclosed in the specific embodiment of determining the full-duplex device transmission mode when the UE is a full-duplex device are not mentioned herein.
  • FIG. 10 is a schematic structural diagram of a full duplex user equipment 1000 according to an embodiment of the present invention.
  • the full duplex user equipment 1000 can include a transmitter 1003, a receiver 1001, a processor 1002, and a memory 1004.
  • the receiver 1001, the transmitter 1003, the processor 1002, and the memory 1004 are connected to each other through a bus 1005 system.
  • the bus 1005 can be an ISA bus, a PCI bus, or an EISA bus.
  • the bus can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one double-headed arrow is shown in Figure 10, but it does not mean that there is only one bus or one type of bus.
  • the memory 1004 is configured to store a program.
  • the program can include program code, the program code including computer operating instructions.
  • Memory 1004 can include read only memory and random access memory and provides instructions and data to processor 1002.
  • the memory 1004 may include a high speed RAM memory and may also include a non-volatile memory such as at least one disk memory.
  • the transmitter 1003 can be configured to send transmission mode information to the base station.
  • the transmission mode information includes self-interference cancellation capability information of the user equipment 1000 and signal to noise ratio information of the user equipment 1000 receiving the target signal.
  • the transmitter 1003 can also be configured to transmit channel quality information of the antenna of the base station to the base station.
  • the receiver 1001 is configured to receive transmission configuration information sent by the base station.
  • the transmission configuration information sent by the base station may be at least according to the self-interference cancellation capability information of the user equipment 1000, the signal-to-noise ratio information of the target signal received by the user equipment 1000, the traffic volume information of the base station, and the channel quality information of the antenna of the base station.
  • a type of information is determined.
  • the transmission configuration information indicates a transmission mode of the user equipment 1000 and a configuration corresponding to the transmission mode.
  • the processor 1002 executes a program stored in the memory 1004, and can be used according to the transmission configuration.
  • the information configures the transmission mode of the user device 1000.
  • the method performed by the UE disclosed in the specific embodiment of determining a full-duplex device transmission mode for a full-duplex device may be applied to the processor 1002 or implemented by the processor 1002.
  • Processor 1002 may be an integrated circuit chip with signal processing capabilities. In the implementation process, each step of the above method may be completed by an integrated logic circuit of hardware in the processor 1002 or an instruction in the form of software.
  • the processor 1002 may be a general-purpose processor, including a central processing unit (CPU), a network processor (NP Processor, etc.), or a digital signal processor (DSP), an application specific integrated circuit. (ASIC), off-the-shelf programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic device, discrete hardware component.
  • CPU central processing unit
  • NP Processor network processor
  • DSP digital signal processor
  • ASIC application specific integrated circuit.
  • FPGA off-the-shelf programmable gate array
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present invention may be directly implemented as a hardware decoding processor, or may be performed by a combination of hardware and software modules in the decoding processor.
  • the software modules can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory 1004, and the processor 1002 reads the information in the memory 1004 and completes the steps of the above method in combination with hardware.
  • the full-duplex user equipment 1000 according to the self-interference cancellation capability, the signal-to-noise ratio information of the full-duplex device, the channel quality of the full-duplex user equipment 1000, and the traffic information of the full-duplex user equipment 1000, and the like At least one of the information, combined with the transmission mode selection criterion, determines the transmission mode of the full-duplex device, avoids the influence of excessive self-interference on the full-duplex system, thereby improving the performance of the full-duplex system.
  • the channel quality information may include: channel quality information of all antennas of the base station measured by the user equipment 1000; or information about optimal channel quality of channel quality information of all antennas of the base station measured by the user equipment 1000. Or the channel quality information of the downlink antenna measured by the user equipment 1000, where the downlink antenna is a fixed downlink antenna of the base station or a downlink antenna pre-designated by the base station.
  • the processor 1002 is further configured to obtain a correspondence between the received interference signal power of the user equipment 1000, the target signal power, and the optimal interference cancellation mode, and is connected according to the user equipment 1000.
  • the correspondence between the received interference signal power, the target signal power, and the optimal interference cancellation mode determines the current interference signal power of the user equipment 1000 and the current optimal interference cancellation mode corresponding to the current target signal power.
  • the processor 1002 is further configured to obtain self-interference cancellation capability information in the current optimal interference cancellation mode.
  • the processor 1002 when acquiring the correspondence between the received interference signal power of the user equipment 1000, the target signal power, and the optimal interference cancellation mode, is specifically configured to: measure the interference power of the user equipment 1000, and the target signal. The performance of the first-order interference cancellation mode and the two-stage interference cancellation mode under power; determining an optimal interference cancellation mode of the user equipment 1000 at the received interference signal power and the target signal power; establishing the received interference signal power of the user equipment 1000, Correspondence between the target signal power and the optimal interference cancellation mode of the user equipment 1000.
  • the user equipment 1000 can also perform the method of FIG. 6 and implement the execution function of the UE disclosed in the specific embodiment of FIG. 6.
  • the base station determines a specific implementation of the full-duplex device transmission mode.
  • the execution function of the UE disclosed in the example, and the execution function of the UE disclosed in the specific embodiment of determining the full-duplex device transmission mode when the UE is a full-duplex device, is not described herein again.
  • the size of the sequence numbers of the above processes does not mean the order of execution, and the order of execution of each process should be determined by its function and internal logic, and should not be taken to the embodiments of the present invention.
  • the implementation process constitutes any limitation.
  • the disclosed systems, devices, and methods may be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another The system, or some features can be ignored, or not executed.
  • the coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separate, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions, if implemented in the form of software functional units and sold or used as separate products, may be stored in a computer readable storage medium.
  • the technical solution of the present invention which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including
  • the instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk or an optical disk, and the like, which can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例提供了一种传输模式的选择方法、基站和用户设备,该方法包括:基站确定全双工设备的自干扰消除能力信息和该全双工设备接收目标信号的信噪比信息;该基站根据该全双工设备的自干扰消除能力信息和该全双工设备接收目标信号的信噪比信息,确定该全双工设备的传输模式,该传输模式包括全双工模式和半双工模式。。本发明实施例中,基站根据全双工设备的自干扰消除能力、全双工设备接收目标信号的信噪比,确定全双工设备的传输模式,避免了过强的自干扰对系统的影响,从而提高全双工系统的性能。

Description

传输模式的选择、 配置方法、 基站及用户设备 技术领域
本发明实施例涉及通信领域, 并且更具体地, 涉及传输模式的选择、 配 置方法、 基站及用户设备。 背景技术
传统的双工通信系统有时分双工和频分双工两种方式, 即收发信道是时 分或者频分正交的。 近年来, 有研究者提出了全双工方法, 即在同频同时的 信道上进行信息收发, 该方法能够在同频率同时间的信道上实现接收和发 射, 可以提高频谱资源的利用率。 但是由于收发信道同时同频工作, 因此收 发之间的干扰, 即全双工系统中的自干扰, 对通信系统的性能造成很大的影 响, 是影响系统性能的主要因素。 由于实际情况的限制, 自干扰无法完全消 除, 因此残余的自干扰影响了全双工系统性能。 发明内容
本发明实施例提出了一种传输模式的选择、配置方法、基站及用户设备, 可以避免了过强的自干扰对全双工系统的影响,从而能够提高全双工系统的 性能。
第一方面, 提出了一种传输模式的选择方法, 该方法包括: 基站确定全 双工设备的自干扰消除能力信息和该全双工设备接收目标信号的信噪比信 息; 该基站根据该全双工设备的自干扰消除能力信息和该全双工设备接收目 标信号的信噪比信息, 确定该全双工设备的传输模式, 该传输模式包括全双 工模式和半双工模式。
结合第一方面, 在第一种可能的实现方式中, 该方法还包括: 该基站确 定该基站的天线的信道质量信息; 该基站根据该全双工设备的自干扰消除能 力信息和该全双工设备接收目标信号的信噪比信息,确定该全双工设备的传 输模式包括: 该基站根据该全双工设备的自干扰消除能力信息、 该全双工设 备接收目标信号的信噪比信息和该基站的天线的信道质量信息,确定该全双 工设备的传输模式。
结合第一方面的第一种可能的实现方式, 在第二种可能的实现方式中, 基站确定该基站的天线的信道质量信息具体实现为: 该基站接收该基站下的 用户设备 UE测量的该基站的全部天线的信道质量信息, 并确定该基站的全 部天线的信道质量信息中最优信道质量的信息为该基站的下行天线的信道 质量信息; 或者该基站接收该 UE测量的最优天线的信道质量信息, 并确定 最优天线的信道质量的信息为该基站的下行天线的信道质量信息, 其中该最 优天线为该基站的全部天线中该 UE测量出最优信道质量的天线。
结合第一方面的第一种可能的实现方式, 在第三种可能的实现方式中, 基站确定该基站的天线的信道质量信息具体实现为: 该基站接收该基站下的 UE测量的该基站的全部天线的信道质量信息, 确定该基站的全部天线的信 道质量信息中该基站预先指定的下行天线所对应的信道质量的信息为该基 站的下行天线的信道质量信息; 或者该基站接收该 UE测量的该基站预先指 定的下行天线的信道质量信息, 并确定该基站预先指定的下行天线的信道质 量信息为该基站的下行天线的信道质量信息; 其中, 该基站预先指定的下行 天线由该 UE根据该基站发送的天线配置信息获取。
结合第一方面的第一种可能的实现方式, 在第四种可能的实现方式中, 基站确定该基站的天线的信道质量信息具体实现为: 该基站接收该基站的 UE测量的全部天线的信道质量信息, 并确定该 UE测量的全部天线的信道 质量信息中固定下行天线所对应的信道质量信息为该基站的下行天线的信 道质量信息; 或者该基站接收该 UE测量的该基站的固定下行天线的信道质 量信息, 并确定该基站的固定下行天线的信道质量信息为该基站的下行天线 的信道质量信息。
结合第一方面的第一种可能的实现方式至第一方面的第四种可能的实 现方式中任一种可能的实现方式, 在第五种可能的实现方式中, 该方法还包 括: 该基站确定该基站的业务量信息。 该基站根据该全双工设备的自干扰消 除能力信息、该全双工设备接收目标信号的信噪比信息和该基站的天线的信 道质量信息, 确定该全双工设备的传输模式具体实现为: 该基站根据该全双 工设备的自干扰消除能力信息、 该全双工设备接收目标信号的信噪比信息、 该基站的天线的信道质量信息和该基站的业务量信息,确定该全双工设备的 传输模式。
结合第一方面的第一种可能的实现方式至第一方面的第五种可能的实 现方式中任一种可能的实现方式,在第六种可能的实现方式中,具体实现为: 该全双工设备为该基站的 UE, 或者该全双工设备为该基站。
结合第一方面的第六种可能的实现方式, 在第七种可能的实现方式中, 该方法还包括: 该基站根据该基站的天线的信道质量信息以及该传输模式对 应的传输配置向该 UE发送调度信息, 该调度信息包括以下至少一种: 该基 站的上下行调度时使用的时频资源信息、 调制编码方案 MCS、 冗余版本 RV 和发射功率。
结合第一方面的第七种可能的实现方式, 在第八种可能的实现方式中, 当该全双工设备为该 UE时, 该方法还包括: 该基站向该 UE发送传输配置 信息, 该传输配置信息包括该传输模式对应的传输配置。
结合第一方面的第六种可能的实现方式或第一方面的第七种可能的实 现方式中任一种可能的实现方式, 在第九种可能的实现方式中, 当该全双工 设备为该基站时, 该基站获取全双工设备的自干扰消除能力具体实现为: 该 基站获取该基站的接收干扰信号功率、 目标信号功率与最优干扰消除模式的 对应关系; 该基站根据该基站的接收干扰信号功率、 目标信号功率与最优干 扰消除模式的对应关系确定该基站的当前干扰信号功率和当前目标信号功 率所对应的当前最优干扰消除模式; 该基站估计在该当前最优干扰消除模式 下的自干扰消除能力。
结合第一方面的第九种可能的实现方式, 在第十种可能的实现方式中, 基站确定述基站的接收干扰信号功率、 目标信号功率与最优干扰消除模式的 对应关系具体实现为: 该基站测量该基站在接收干扰信号功率、 目标信号功 率下的一级干扰消除模式和两级干扰消除模式的性能; 该基站确定该基站在 该接收干扰信号功率、 该目标信号功率的最优干扰消除模式; 该基站建立该 基站的该接收干扰信号功率、该目标信号功率与该基站的最优干扰消除模式 的对应关系。
第二方面, 提出了一种传输模式的配置方法, 该方法包括: 用户设备
UE向基站发送传输模式信息, 该传输模式信息包括该 UE的自干扰消除能 力信息和该 UE接收目标信号的信噪比信息, 该 UE为全双工设备; 该 UE 接收该基站发送的传输配置信息, 该传输配置信息由该基站根据该 UE的自 干扰消除能力信息和该 UE接收目标信号的信噪比信息确定, 该传输配置信 息用于指示该 UE的传输模式及该传输模式对应的配置; 该 UE根据该传输 配置信息配置该 UE的传输模式。 结合第二方面, 在第一种可能的实现方式中, 该方法还包括: 该 UE向 该基站发送该基站的天线的信道质量信息, 其中该基站的天线的信道质量信 息用于该基站根据该 UE的自干扰消除能力信息、 该 UE接收目标信号的信 噪比信息和该基站的天线的信道质量信息确定该 UE的传输模式。
结合第二方面的第一种可能的实现方式, 在第二种可能的实现方式中, 具体实现为该信道质量信息包括: 该 UE测量的该基站的全部天线的信道质 量信息; 或者该 UE测量的该基站的全部天线的信道质量信息中最优信道质 量的信息; 或者该 UE测量的下行天线的信道质量信息, 该下行天线为该基 站的固定下行天线或该基站预先指定的下行天线。
结合第二方面的第一种可能的实现方式或第二方面的第二种可能的实 现方式, 在第三种可能的实现方式中, 在该 UE向基站发送传输模式信息之 前, 该方法还包括: 该 UE获取该 UE的接收干扰信号功率、 目标信号功率 与最优干扰消除模式的对应关系; 该 UE根据该 UE的接收干扰信号功率、 目标信号功率与最优干扰消除模式的对应关系确定该 UE的当前干扰信号功 率和当前目标信号功率所对应的当前最优干扰消除模式; 该 UE获取在该当 前最优干扰消除模式下的自干扰消除能力信息。
结合第二方面的第三种可能的实现方式, 在第四种可能的实现方式中, 该 UE获取该 UE的接收干扰信号功率、 目标信号功率与最优干扰消除模式 的对应关系具体实现为: 该 UE测量该 UE在接收干扰信号功率、 目标信号 功率下的一级干扰消除模式和两级干扰消除模式的性能; 该 UE确定该 UE 在该接收干扰信号功率、 该目标信号功率的最优干扰消除模式; 该 UE建立 该 UE的该接收干扰信号功率、 该目标信号功率与该 UE的最优干扰消除模 式的对应关系。
第三方面, 提出了一种基站, 该基站包括: 确定单元, 用于确定全双工 设备的自干扰消除能力信息和该全双工设备接收目标信号的信噪比信息; 该 确定单元还用于根据该全双工设备的自干扰消除能力信息和该全双工设备 接收目标信号的信噪比信息, 确定该全双工设备的传输模式, 该传输模式包 括全双工模式和半双工模式。
结合第三方面, 在第一种可能的实现方式中, 该确定单元还用于确定该 基站的天线的信道质量信息; 在用于确定该全双工设备的传输模式, 该确定 单元具体用于根据该全双工设备的自干扰消除能力信息、该全双工设备接收 目标信号的信噪比信息和该基站的天线的信道质量信息,确定该全双工设备 的传输模式。
结合第三方面的第一种可能的实现方式, 在第二种可能的实现方式中, 该基站还包括接收单元。 在用于确定该基站的天线的信道质量信息时, 该确 定单元具体用于: 通过该接收单元接收该基站下的用户设备 UE测量的该基 站的全部天线的信道质量信息, 并确定该基站的全部天线的信道质量信息中 最优信道质量的信息为该基站的下行天线的信道质量信息; 或者通过该接收 单元接收该 UE测量的最优天线的信道质量信息, 并确定最优天线的信道质 量的信息为该基站的下行天线的信道质量信息, 其中该最优天线为该基站的 全部天线中该 UE测量出最优信道质量的天线。
结合第三方面的第一种可能的实现方式, 在第三种可能的实现方式中, 该基站还包括接收单元。 在用于确定该基站的天线的信道质量信息时, 该确 定单元具体用于: 通过该接收单元接收该基站下的 UE测量的该基站的全部 天线的信道质量信息,确定该基站的全部天线的信道质量信息中该基站预先 指定的下行天线所对应的信道质量的信息为该基站的下行天线的信道质量 信息; 或者通过该接收单元接收该 UE测量的该基站预先指定的下行天线的 信道质量信息, 并确定该基站预先指定的下行天线的信道质量信息为该基站 的下行天线的信道质量信息; 其中, 该基站预先指定的下行天线由该 UE根 据该基站的发送的天线配置信息获取。
结合第三方面的第一种可能的实现方式, 在第四种可能的实现方式中, 该基站还包括接收单元。 在用于确定该基站的天线的信道质量信息时, 该确 定单元具体用于: 通过该接收单元接收该基站的 UE测量的全部天线的信道 质量信息, 并确定该 UE测量的全部天线的信道质量信息中固定下行天线所 对应的信道质量信息为该基站的下行天线的信道质量信息; 或者通过该接收 单元接收该 UE测量的该基站的固定下行天线的信道质量信息, 并确定该基 站的固定下行天线的信道质量信息为该基站的下行天线的信道质量信息。
结合第三方面的第一种可能的实现方式至第三方面的第四种可能的实 现方式中任一种可能的实现方式, 在第五种可能的实现方式中, 该确定单元 还用于确定该基站的业务量信息。 在用于确定该全双工设备的传输模式, 该 确定单元具体用于: 根据该全双工设备的自干扰消除能力信息、 该全双工设 备接收目标信号的信噪比信息、该基站的天线的信道质量信息和该基站的业 务量信息, 确定该全双工设备的传输模式。
结合第三方面的第一种可能的实现方式至第三方面的第五种可能的实 现方式中任一种可能的实现方式,在第六种可能的实现方式中,具体实现为: 该全双工设备为该基站的 UE, 或者该全双工设备为该基站。
结合第三方面的第六种可能的实现方式, 在第七种可能的实现方式中, 该基站还包括: 发送单元, 用于根据该基站的信道质量以及该传输模式对应 的传输配置向该 UE发送调度信息, 该调度信息包括以下至少一种: 该基站 的上下行调度时使用的时频资源信息、 MCS、 RV和发射功率。
结合第三方面的第七种可能的实现方式, 在第八种可能的实现方式中, 当该全双工设备为该 UE时,该发送单元还用于向该 UE发送传输配置信息, 该传输配置信息包括该传输模式对应的传输配置。
结合第三方面的第六种可能的实现方式或第三方面的第七种可能的实 现方式中任一种可能的实现方式, 在第九种可能的实现方式中, 当该全双工 设备为该基站时, 在用于确定全双工设备的自干扰消除能力, 该确定单元具 体用于: 获取该基站的接收干扰信号功率、 目标信号功率与最优干扰消除模 式的对应关系; 根据该基站的接收干扰信号功率、 目标信号功率与最优干扰 消除模式的对应关系确定该基站的当前干扰信号功率和当前目标信号功率 所对应的当前最优干扰消除模式; 估计在该当前最优干扰消除模式下的自干 扰消除能力。
结合第三方面的第九种可能的实现方式, 在第十种可能的实现方式中, 在用于获取该基站的接收干扰信号功率、 目标信号功率与最优干扰消除模式 的对应关系, 该确定单元具体用于: 测量该基站在接收干扰信号功率、 目标 信号功率下的一级干扰消除模式和两级干扰消除模式的性能; 确定该基站在 该接收干扰信号功率、 该目标信号功率的最优干扰消除模式; 建立该基站的 该接收干扰信号功率、该目标信号功率与该基站的最优干扰消除模式的对应 关系。
第四方面, 提出了一种全双工用户设备, 该全双工用户设备包括: 发送 单元, 用于向基站发送传输模式信息, 该传输模式信息包括该用户设备的自 干扰消除能力信息和该用户设备接收目标信号的信噪比信息; 接收单元, 用 于接收该基站发送的传输配置信息, 该传输配置信息由该基站根据该用户设 备的自干扰消除能力信息和该用户设备接收目标信号的信噪比信息确定, 该 传输配置信息用于指示该用户设备传输模式及该传输模式对应的配置; 配置 单元, 用于根据该传输配置信息配置该用户设备的传输模式。
结合第四方面, 在第一种可能的实现方式中, 该发送单元还用于向该基 站发送该基站的天线的信道质量信息, 其中该基站的天线的信道质量信息用 于该基站根据该 UE的自干扰消除能力信息、 该 UE接收目标信号的信噪比 信息和该基站的天线的信道质量信息确定该 UE的传输模式。
结合第四方面的第一种可能的实现方式, 在第二种可能的实现方式中, 具体实现为该信道质量信息包括: 该 UE测量的该基站的全部天线的信道质 量信息; 或者该 UE测量的该基站的全部天线的信道质量信息中最优信道质 量的信息; 或者该 UE测量的下行天线的信道质量信息, 该下行天线为该基 站的固定下行天线或该基站预先指定的下行天线。
结合第四方面的第一种可能的实现方式或第四方面的第二种可能的实 现方式, 在第三种可能的实现方式中, 该用户设备还包括: 获取单元, 用于 获取该用户设备的接收干扰信号功率、 目标信号功率与最优干扰消除模式的 对应关系; 确定单元, 用于根据该用户设备的接收干扰信号功率、 目标信号 功率与最优干扰消除模式的对应关系确定该用户设备的当前干扰信号功率 和当前目标信号功率所对应的当前最优干扰消除模式; 该获取单元还用于获 取在该当前最优干扰消除模式下的自干扰消除能力信息。
结合第四方面的第三种可能的实现方式, 在第四种可能的实现方式中, 在用于获取该用户设备的接收干扰信号功率、 目标信号功率与最优干扰消除 模式的对应关系, 该获取单元具体用于: 测量该用户设备在接收干扰信号功 率、 目标信号功率下的一级干扰消除模式和两级干扰消除模式的性能; 确定 该用户设备在该接收干扰信号功率、 该目标信号功率的最优干扰消除模式; 建立该用户设备的该接收干扰信号功率、该目标信号功率与该用户设备的最 优干扰消除模式的对应关系。
本发明实施例的上述技术方案, 能够避免了过强的自干扰对全双工系统 的影响, 提高全双工系统的性能。 附图说明
为了更清楚地说明本发明实施例的技术方案, 下面将对实施例或现有技 术描述中所需要使用的附图作简单地介绍, 显而易见地, 下面描述中的附图 仅仅是本发明的一些实施例, 对于本领域普通技术人员来讲, 在不付出创造 性劳动的前提下, 还可以根据这些附图获得其他的附图。
图 1是本发明实施例传输模式的选择方法流程图。
图 2是本发明实施例另一传输模式的选择方法流程图。
图 3是本发明实施例全双工设备的结构示意图。
图 4是本发明实施例的天线方向示意图。
图 5是本发明实施例全双工和半双工平均容量的比较图。
图 6是本发明实施例传输模式配置方法流程图。
图 7是本发明实施例基站的结构示意图。
图 8是本发明实施例全双工用户设备的结构示意图。
图 9是本发明实施例基站的另一结构示意图。
图 10是本发明实施例全双工用户设备的另一结构示意图。 具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行 清楚、 完整地描述, 显然, 所描述的实施例是本发明一部分实施例, 而不是 全部的实施例。 基于本发明中的实施例, 本领域普通技术人员在没有做出创 造性劳动前提下所获得的所有其他实施例, 都属于本发明保护的范围。
本发明的技术方案, 可以应用于各种通信系统, 例如: 全球移动通讯系 统(GSM, Global System of Mobile communication ), 码分多址(CDMA, Code Division Multiple Access ) 系统, 宽带码分多址( WCDMA, Wideband Code Division Multiple Access Wireless ),通用分组无线业务 ( GPRS , General Packet Radio Service ), 长期演进 ( LTE, Long Term Evolution )等。
用户设备 ( UE , User Equipment ) , 也可称之为移动终端 ( Mobile Terminal ),移动用户设备等, 可以经无线接入网(例如, RAN, Radio Access Network ) 与一个或多个核心网进行通信, 用户设备可以是移动终端, 如移 动电话(或称为"蜂窝"电话)和具有移动终端的计算机, 例如, 可以是便携 式、 袖珍式、 手持式、 计算机内置的或者车载的移动装置, 它们与无线接入 网交换语言和 /或数据。
基站,可以是 GSM或 CDMA中的基站( BTS , Base Transceiver Station ), 也可以是 WCDMA中的基站( NodeB ),还可以是 LTE中的演进型基站( eNB 或 e-NodeB, evolutional Node B ), 本发明并不限定, 但为描述方便, 下述实 施例以 eNB为例进行说明。
现有的全双工系统中, 由于收发信道同时同频工作, 全双工系统中的自 干扰会对通信系统的性能造成很大的影响, 是影响系统性能的主要因素。 由 于实际情况的限制, 自干扰无法完全消除, 因此残余的自干扰影响了全双工 系统性能。 因此需要根据残余的自干扰功率动态地选择全双工或半双工模式 以提高系统性能。
图 1是本发明实施例全双工设备传输模式的选择方法流程图, 图 1的方 法由基站执行。
110, 基站确定全双工设备的自干扰消除能力信息和全双工设备接收目 标信号的信噪比信息。
其中, 全双工设备的自干扰消除能力信息, 是指全双工设备在全双工模 式下消除全双工设备的发射机对全双工设备接收机的信号干扰的能力的信 息。
全双工设备接收目标信号的信噪比信息,是指在自干扰影响下全双工设 备接收目标信号的信噪比的信息。
120, 该基站根据该全双工设备的自干扰消除能力信息和该全双工设备 接收目标信号的信噪比信息, 确定该全双工设备的传输模式。
其中, 该传输模式包括全双工模式和半双工模式。
具体地,基站可基于预定的传输模式选择准则确定该全双工设备的传输 模式, 例如, 基于使得基站的平均信道容量最大化的准则选择传输模式。
本发明实施例中,基站根据全双工设备的自干扰消除能力信息和全双工 设备接收目标信号的信噪比信息, 确定全双工设备的传输模式, 避免了过强 的自干扰对全双工系统的影响, 从而能够提高全双工系统的性能。
可选地, 如图 2所示, 该方法还可包括步骤 111。
111 , 基站确定基站的天线的信道质量信息。
本发明实施例中,基站的天线的信道质量信息可包括基站的上行天线的 信道质量信息和下行天线的信道质量信息,基站的上行天线的信道质量信息 即基站的上行信道质量信息,基站的下行天线的信道质量信息即基站的下行 信道质量信息。 基站可指示 UE测量基站的下行信道质量并上报该下行信道 质量信息, 基站还可指示 UE发送参考信号, 基站通过测量 UE的参考信号 获取基站的上行信道质量信息。
进一步地, 步骤 120的具体实现可如步骤 121所示。
121 , 该基站根据该全双工设备的自干扰消除能力信息、 该全双工设备 接收目标信号的信噪比信息和该基站的天线的信道质量信息,确定该全双工 设备的传输模式, 其中, 该传输模式包括全双工模式和半双工模式。
可选的, 作为一个实施例, 当基站选择最优信道质量的天线作为下行天 线时, 步骤 111具体可实现为: 该基站接收该基站下的用户设备 UE测量的 该基站的全部天线的信道质量信息, 并确定该基站的全部天线的信道质量信 息中最优信道质量信息为该基站的下行天线的信道质量信息。 具体地, 该基 站接收该基站下的 UE测量的该基站的全部天线的信道质量信息, 从该基站 的全部天线的信道质量信息中选择最优信道质量的天线作为该基站的下行 天线, 并确定该最优信道质量信息为该基站的下行天线的信道质量信息。
可选的, 作为另一个实施例, 当基站选择最优信道质量的天线作为下行 天线时, 步骤 111具体还可实现为: 该基站接收该 UE测量的最优天线的信 道质量信息, 并确定最优天线的信道质量的信息为该基站的下行天线的信道 质量信息, 其中该最优天线为该基站的全部天线中该 UE测量出最优信道质 量的天线。 具体地, UE测量基站的全部天线的信道质量, 并从中选择最优 信道质量及对应的最优天线, 并将最优天线的标识 ID信息及最优天线的信 道质量信息发送给基站。 该基站接收该 UE测量的最优天线的标识 ID及该 最优天线的信道质量信息, 并将该最优天线作为该基站的下行天线, 将该最 优天线的信道质量信息作为该基站的下行天线的信道质量信息。
可选的, 作为一个实施例, 当该基站预先指定下行天线时, 步骤 111具 体可实现为: 该基站接收该基站下的 UE测量的该基站的全部天线的信道质 量信息,确定该基站的全部天线的信道质量信息中该基站预先指定的下行天 线所对应的信道质量的信息为该基站的下行天线的信道质量信息, 其中, 该 基站预先指定的下行天线由该 UE根据该基站的发送的天线配置信息获取。 具体地, 该基站接收该基站下的 UE测量的该基站的全部天线的信道质量信 息,从该基站的全部天线的信道质量信息中选择基站预先指定的下行天线所 对应的信道质量信息, 作为该基站的下行天线的信道质量信息。
可选的, 作为另一个实施例, 当该基站预先指定下行天线时, 步骤 111 具体可实现为: 该基站接收该 UE测量的该基站预先指定的下行天线的信道 质量信息, 并确定该基站预先指定的下行天线的信道质量信息为该基站的下 行天线的信道质量信息, 其中, 该基站预先指定的下行天线由该 UE根据该 基站的发送的天线配置信息获取。 具体的, UE测量基站预先指定的下行天 线的信道质量并将该基站预先指定的下行天线的信道质量发送给基站, 该基 站接收该 UE测量的该基站预定的下行天线的信道质量, 该基站预定的下行 天线由该 UE根据该基站的发送的天线配置信息获取。
可选的, 作为一个实施例, 当下行天线为固定的天线时, 步骤 111具体 可实现为: 该基站接收该基站的 UE测量的全部天线的信道质量信息, 并确 定该 UE测量的全部天线的信道质量信息中固定下行天线所对应的信道质量 信息为该基站的下行天线的信道质量信息。
可选的, 作为另一个实施例, 当下行天线为固定的天线时, 步骤 111具 体可实现为: 该基站接收该 UE测量的该基站的固定下行天线的信道质量信 息, 并确定该基站的固定下行天线的信道质量信息为该基站的下行天线的信 道质量信息。
本发明实施例中, 基站通过多种方式, 可得到基站的下行天线的信道质 量。 另外, 基站还可通过测量 UE的参考信道得到基站的上行信道质量。 通 过获取基站的下行天线的信道质量信息,使得基站可以从基站的信道质量的 因素考虑, 选择更合适的传输模式。
可选地, 该方法还可包括: 该基站获取该基站的业务量信息。 其中, 基 站的业务量信息可包括基站的上行业务量信息和 /或下行业务量信息。进一步 的,步骤 121具体实现为:该基站根据该全双工设备的自干扰消除能力信息、 该全双工设备接收目标信号的信噪比信息、该基站的天线的信道质量信息和 该基站的业务量信息, 确定该全双工设备的传输模式。 通过获取基站的业务 量信息, 基站可以从业务量的因素考虑, 选择更合适的传输模式
可选地, 本发明实施例中, 该全双工设备可以基站, 也可以是 UE。 可选地, 该方法还可包括: 该基站根据该基站的天线的信道质量信息以 及该传输模式对应的传输配置向该 UE发送调度信息, 该调度信息包括以下 至少一种: 该基站的上下行调度时使用的时频资源信息、 调制编码方案 ( Modulation and Coding Scheme , MCS )、冗余版本( Redundant Version, RV ) 和发射功率。
可选地, 作为一个实施例, 当 UE为全双工设备时, 该方法还包括: 该 基站向该 UE发送传输配置信息。 其中, 该传输配置信息包括该传输模式对 应的传输配置。 本发明实施例中, 在确定全双工设备的传输模式后, 通过向 全双工设备发送传输配置信息以便全双工设备选择传输模式。
可选地, 作为另一个实施例, 当该全双工设备为该基站时, 该基站获取 全双工设备的自干扰消除能力信息包括: 该基站获取该基站的接收干扰信号 功率、 目标信号功率与最优干扰消除模式的对应关系; 该基站根据该基站的 接收干扰信号功率、 目标信号功率与最优干扰消除模式的对应关系确定该基 站的当前干扰信号功率和当前目标信号功率所对应的当前最优干扰消除模 式; 该基站估计在该当前最优干扰消除模式下的自干扰消除能力。
进一步地, 该基站获取该基站的接收干扰信号功率、 目标信号功率与最 优干扰消除模式的对应关系包括: 该基站测量该基站在接收干扰信号功率、 目标信号功率下的一级干扰消除模式和两级干扰消除模式的性能; 该基站确 定该基站在该接收干扰信号功率、 该目标信号功率的最优干扰消除模式; 该 基站建立该基站的该接收干扰信号功率、该目标信号功率与该基站的最优干 扰消除模式的对应关系。
本发明的一个具体实施例, 基站为全双工设备。 基站根据基站自身的自 干扰消除能力和信噪比信息以及下行天线的信道质量、基站的业务量等信息 中的至少一种信息, 结合预定的传输模式选择准则确定全双工设备(基站) 的传输模式。 具体方式如下:
首先,基站确定自身的自干扰消除能力信息和基站接收目标信号的信噪 比信息。
图 3是本发明实施例全双工设备的结构示意图。 现有技术中, 全双工系 统通常釆用模拟消除与数字消除两级自干扰消除技术, 例如, 图 3的全双工 设备 1。 然而, 在模拟消除能力较低时, 后续进行数字消除可进一步带来整 体消除能力上的提升; 随着模拟消除能力逐渐变强, 加入数字消除可能不会 带来整体消除能力的提升; 随着模拟消除性能进一步加强, 加入数字消除甚 至可能导致整体消除能力下降。
本发明实施例的一种优选的方案, 可动态地选择自干扰消除模式。 如图 3的全双工设备 2所示, 全双工设备 2可包括一个消除模式选择模块, 用于 决定釆取一级模拟消除的方式还是模拟消除、 数字消除两级消除的方式。 其 干扰消除模式选择的准则可以釆用下述方式: 基站对干扰信号和目标信号在 不同接收功率的情况下进行设备测试,在给定条件下测试一级干扰消除和两 级干扰消除的性能, 并选择干扰消除效果最好的方式作为该条件下的最优干 扰消除方式。 基站根据测试获得的最优干扰消除方式及其对应条件, 建立接 收干扰信号功率、 目标信号功率与最优干扰消除模式的对应关系。 基站在每 次进行干扰消除模式选择时即根据该对应关系选择最优的模式。本发明实施 例干扰消除模式选择的一种实现的具体步骤如下:
( 1 ) 测量干扰信号。
在已搭建好的全双工干扰消除系统中, 首先关闭模拟消除和数字消除, 干扰发射机发射信号功率为 P, 测量不同 P值下信号经过空口后接收机接收 到的干 4尤信号 I并记录。
( 2 ) 测量分别加入模拟消除和数字消除的接收信号。
加入模拟消除和数字消除, 针对每一个接收信号 I, 测量若干组经过模 拟消除之后的残余干扰信号功率 IA, 以及经过数字消除之后的残余干扰信 号功率 IAD。
定义模拟消除能力 CIA = 101og( I/IA), 数字消除能力 CID =101og( IA I
IAD),整体消除能力 CI= 101og(I/IAD)。计算并记录在不同 CIA的情况下, 加入数字消除后 CI > CIA的概率, 即总体消除能力提升的概率分布情况。
( 3 ) 测量加入目标信号后的接收信号。
加入目标发射机的发射信号, 此时接收机接收到的信号记为 M。 由于干 扰发射机距离接收机距离较近, 大部分信号为直射径到达, 受周边信道环境 影响较小, 因此实际干扰信号 I可以用干扰发射机发射信号功率 P通过步骤 1中测量记录的对应关系进行估计。则可计算出接收到的目标信号功率 S = M -L 经过模拟消除后的残余信号功率为 KA, 经过数字消除后的残余信号为 KAD。 则模拟消除能力定义为 CKA= 101og(I/(KA-S)), 数字消除能力定 义为 CKAD = 101og( (KA - S) / (KAD - S) ), 总体消除能力定义为 CK = 101og(I/(KAD-S))„
(4)确定最优干扰消除模式。
根据预先测量的概率分布情况, 选择消除能力门限 T, 当 CKA < T时, 加入数字消除后有较大概率提升总体性能 CK, 此时加入数字消除; 当 CKA >T时,加入数字消除后有较小概率提升总体性能 CK,此时不加入数字消除。 这样可以最大程度的提升系统性能, 并且可以节约信号处理的时间。 基站在确定干扰消除模式后,可估计该干扰消除模式下的自干扰消除能 力, 并测量该干扰消除模式下的信噪比。 自干扰消除能力的估计可以根据提 前进行的针对不同条件下的设备测试结果获得, 当然, 也不排除其它获取自 干扰消除能力的方式, 本发明实施例在此不作限制。
其次, 基站确定基站的天线的信道质量信息。
基站的天线的信道质量信息可包括基站的上行天线的信道质量信息和 下行天线的信道质量信息,基站的上行天线的信道质量信息即基站的上行信 道质量信息, 基站的下行天线的信道质量信息即基站的下行信道质量信息。 基站可指示 UE测量基站的下行信道质量并上报该下行信道质量信息, 基站 还可指示 UE发送参考信号, 基站通过测量 UE的参考信号获取基站的上行 信道质量信息。
基站选择全双工传输模式时, 具体使用哪些天线发送下行信号, 可以通 过以下方式:
1.由 UE根据信道条件选择最优的天线并上报。 UE需要测量上报的信道 包括: 全部天线信道质量, 或者最优天线号和对应的信道质量。
2.由基站发送信令配置, 则 UE需测量上报: 全部天线信道质量, 或者 用于下行天线信道质量。
3.固定 0、 1天线端口 (例如对应交叉极化中的 X或者同极化中距离较 近的天线), UE需测量上报: 全部天线信道质量, 或者用于下行天线信道质 量。
应注意, 在具有全双工功能的多天线节点选择一定数目天线作为发送 端, 一定数目作为接收端时, 应满足选作发送天线的数目小于或等于选作接 收天线的数目。
基站根据下行天线选择方式的不同确定下行天线的信道质量信息的方 式具体如下:
第一种下行天线选择方式下,基站可将最优信道质量的天线作为下行天 线。 一种确定下行天线的信道质量的方式, UE可上报 UE测量的全部天线 的信道质量, 基站可从 UE测量的全部天线的信道质量中选择最优信道质量 的天线作为基站的下行天线,选择最优信道质量作为基站的下行天线的信道 质量。 另一种确定下行天线的信道质量的方式, UE可上报最优信道质量所 对应的天线的标识和最优信道质量。 天线的标识, 可以是天线的编号, 或者 是其它能够被基站用于识别天线的信息。 另外, 最优信道质量和最优信道质 量所对应的天线, 并不局限于一路天线及其信道质量, 也可以最优的几个信 道质量及其所对应的几路天线。
图 4是本发明实施例天线方向示意图。 在图 4中节点 1表示基站, 节点 2、 节点 3表示 UE, 基站(节点 1 )具有 4天线。 UE上报天线的信道质量 时 UE和基站的天线可如图 4所示。 以图 4为例, 基站可向 UE发送关于 4 天线的信道状态指示参考信号 (Channel State Indication RS , CSI-RS), UE根 据同一 CSI-RS测量后进行两类信道状态 ( Channel State Indication , CSI ) 上报(部分天线): 第一类对应 4天线, 其秩(rank )最大为 4, 预编码矩阵 指示( Precoding Matrix Indicator, PMI )信息对应为 4天线码本, 其天线方 向如图 4的 4-2所示; 第二类对应 1天线, rank最大为 2 , PMI对应 1天线 码本。 第二类天线的发射功率与第一类天线不同, 例如其发送功率比第一类 提高 3dB, 其天线方向如图 4的 4-1所示。
第二种下行天线选择方式下,基站可预先将被选择用于下行天线的标识 信息发送给 UE。 一种确定下行天线的信道质量的方式, UE可上报 UE测量 的全部天线的信道质量,基站从中选择预先指定的下行天线对应的信道质量 作为下行天线的信道质量。 另一种确定下行天线的信道质量的方式, 基站可 预先向 UE发送下行天线信息, 该下行天线信息可包含基站预先指定的下行 天线的标识信息, 此时, UE可根据基站发送的下行天线的标识信息, 发送 该下行天线对应的信道质量, 基站接收到下行天线对应的信道质量后, 可将 其作为基站的下行天线的信道质量信息。基站可通过信令等方式发送下行天 线的标识信息。
第三种下行天线选择方式下, 基站的下行天线为固定的天线, 为基站与 UE双方共知。 一种确定下行天线的信道质量的方式, UE可上报 UE测量的 全部天线的信道质量,基站从中选择固定下行天线对应的信道质量作为基站 的下行天线的信道质量信息。 另一种确定下行天线的信道质量的方式, UE 可直接发送固定下行天线对应的信道质量,基站接收到该固定下行天线对应 的信道质量后, 可将其作为基站的下行天线的信道质量信息。。
当然, 也不排除基站通过其它方式获取下行天线信道质量, 本发明实施 例在此不作限制。
另外, 如果基站的传输模式选择准则中不包含信道质量的因素, 可略过 此步骤。
再次, 基站根据预定的传输模式选择准则确定基站的传输模式。
基站根据基站的自干扰消除能力和基站接收目标信号的信噪比信息,可 基于一定传输模式选择准则, 从全双工和半双工模式中选择合适的传输模 式。 传输模式的选择可以基于不同的准则。
不妨假设接收信号的平均信噪比为 (单位分贝), 接收的信号和残 余自干扰功率的功率比为 fi (单位分贝)传输模式选择函数为 fi^ , i ) , 则
当 > 0时, 选择全双工模式; 当 /(^,^ )≤0时, 选择半双工模式。
基站还可将该基站的下行天线的信道质量和 /或该基站的业务量信息,纳 入传输模式选择函数的参数中,从信道质量和 /或业务量的角度,结合基站的 自干扰消除能力和基站接收目标信号的信噪比信息进行传输模式选择。
本发明的一种选择准则, 可将最大化平均信道容量的目标作为选择准 则。 图 5是全双工和半双_ ^平均容量的比较图, 横坐标为接收的信号和残余 自干扰功率的功率比为 (单位分贝), 纵坐标为收信号的平均信噪比为 Vs (单位分贝)。 图 5中实线表示全双工和半双工信道容量相等的等高线。 实线上方表示半双工容量大于全双工容量, 实线下方表示全双工容量大于半 双工容量。 根据图 5 , 可以进行传输模式选择, 以实现最大化的信道容量。
根据图 5所示 坐标, 可获得图 5对应的传输模式选择函数:
Figure imgf000018_0001
最后, 向 UE发送调度信息。
基站选定传输模式后,根据用户上报的下行信道质量信息及基站测量的 上行信道质量信息, 配置相应的调度信息 (例如, 上下行发射功率、 MCS 等参数 )并发送给用户。
此外, 为了提高传输可靠性, 设置增强的传输模式, 通知全双工设备在 用于上下行传输的解调参考信号( Demodulate Reference Signal, DMRS )对 应的资源单元(Resource Element, RE )上无数据信息传输, 或者在所有的 DMRS对应的 RE上传输数据信息但数据信息釆用较低功率。 本发明的另一个具体实施例, UE为全双工设备。 基站根据 UE的自干 扰消除能力和信噪比信息以及信道质量、基站的业务量等信息中的至少一种 信息结合预定的传输模式选择准则确定全双工设备的传输模式。具体方式如 下:
首先, 基站获取 UE的自干扰消除能力信息和 UE接收目标信号的信噪 比信息。
UE可通过测量选取其自干扰删除方式,并根据选定的自干扰消除方式, 估计能够实现的自干扰消除能力, 然后将自干扰消除能力、 接收端的信噪比 等信息上报给基站。 自干扰消除能力的估计可以根据系统提前进行的针对不 同条件下的设备测试结果获得。
与基站作为全双工设备的情况类似, UE可釆用模拟消除与数字消除两 级自干扰消除技术, 如图 3的全双工设备 1所示; 也可动态地选择自干扰消 除模式, 如图 3的全双工设备 2所示, 全双工设备 2可包括一个消除模式选 择模块, 用于决定釆取一级模拟消除的方式还是模拟消除、 数字消除两级消 除的方式。 其干扰消除模式选择的准则可以釆用下述方式: UE对干扰信号 和目标信号在不同接收功率的情况下进行设备测试,在给定条件下测试一级 干扰消除和两级干扰消除的性能, 并选择干扰消除效果最好的方式作为该条 件下的最优干扰消除方式。 UE根据测试获得的最优干扰消除方式及其对应 条件, 建立接收干扰信号功率、 目标信号功率与最优干扰消除模式的对应关 系。 UE在每次进行干扰消除模式选择时即根据该对应关系选择最优的模式。
UE作为全双工设备进行干扰消除模式选择的方式可与基站作为全双工 设备进行干扰消除模式选择的方式类似, 本发明实施例在此不再赘述。
UE在确定干扰消除模式后, 可估计该干扰消除模式下的自干扰消除能 力, 并测量该干扰消除模式下的信噪比。
基站根据 UE上报的自干扰消除能力和 UE接收目标信号的信噪比信息, 可确定 UE的自干扰消除能力和信噪比信息。
其次, 基站确定基站的天线的信道质量信息。
本发明实施例中,基站确定基站的天线的信道质量的方式与上述实施例 基站作为全双工设备时的方法类似, 本发明实施例在此不再赘述。
当基站的传输模式选择准则不需要信道质量参数时, 可不执行此步骤,
UE也可不对信道质量进行上报。 再次, 基站根据预定的传输模式选择准则确定 UE的传输模式。
基站根据基站的自干扰消除能力和基站接收目标信号的信噪比信息,可 基于一定传输模式选择准则, 从全双工和半双工模式中选择合适的传输模 式。 传输模式的选择可以基于不同的准则。
不妨假设接收信号的平均信噪比为 (单位分贝), 接收的信号和残 余自干扰功率的功率比为 fi (单位分贝)传输模式选择函数为 /( , , 则
当 /( , ) > o时, 选择全双工模式; 当 0时, 选择半双工模式。 基站还可将该基站的下行天线的信道质量和 /或该基站的业务量信息,纳 入传输模式选择函数的参数中,从信道质量和 /或业务量的角度,结合基站的 自干扰消除能力和基站接收目标信号的信噪比信息进行传输模式选择。
最后, 基站向 UE发送传输模式的配置信息及调度信息。
基站确定 UE的传输模式后, 可将选择的传输模式及相应的传输配置信 息发送给 UE。 本发明实施例中, 基站可釆用一种新的物理下行控制信道格 式(PDCCH format ), 多输入输出格式( MIMO format ) 与全双工传输模式 对应, 指示该用户进入全双工状态。 基站和全双工设备按照所选择的传输模 式进行通信。
基站还可根据用户上报的信道质量, 配置相应的调度信息, 包括上下行 调度使用的时频资源、 MCS、 RV、 发射功率等。
基站在为全双工设备配置上下行调度参数时,还需要根据全双工设备上 报的自干扰删除能力预判发射端对接收端的影响, 并适当调整上下行发射功 率、 MCS等参数。
此外, 为了提高传输可靠性, 设置增强的传输模式, 通知全双工设备在 用于上下行传输的 DM RS ( demodulate reference signal, 解调参考信号 )对 应的 RE上无数据信息传输,或者在所有的 DM RS对应的 RE上传输数据信 息但数据信息釆用较低功率。
图 6是本发明实施例传输模式配置方法流程图。图 6的方法由 UE执行。 该 UE为全双工设备。
601 , 用户设备 UE 向基站发送传输模式信息, 该传输模式信息包括该 UE的自干扰消除能力信息和该 UE接收目标信号的信噪比信息。
602 , 该 UE接收该基站发送的传输配置信息。
其中, 该传输配置信息由该基站根据该 UE的自干扰消除能力信息和该 UE接收目标信号的信噪比信息确定, 该传输配置信息用于指示该 UE的传 输模式及该传输模式对应的配置。
603 , 该 UE根据该传输配置信息配置该 UE的传输模式。
本发明实施例中, 全双工 UE通过向基站发送传输模式信息, 使得基站 根据传输模式信息确定 UE的传输模式, 避免了过强的自干扰对全双工系统 的影响, 从而能够提高全双工系统的性能。
可选地, 该方法还包括: 该 UE向该基站发送该基站的天线的信道质量 信息。 其中该基站的天线的信道质量信息用于该基站根据该 UE的自干扰消 除能力信息、 该 UE接收目标信号的信噪比信息和该基站的天线的信道质量 信息确定该 UE的传输模式。
可选地, 该信道质量信息可包括: 该 UE测量的该基站的全部天线的信 道质量信息; 或者该 UE测量的该基站的全部天线的信道质量信息中最优信 道质量的信息; 或者该 UE测量的下行天线的信道质量信息, 该下行天线为 该基站的固定下行天线或该基站预先指定的下行天线。
可选地, 在 UE向基站发送传输模式信息之前, 该方法还包括: 该 UE 获取该 UE的接收干扰信号功率、 目标信号功率与最优干扰消除模式的对应 关系; 该 UE根据该 UE的接收干扰信号功率、 目标信号功率与最优干扰消 除模式的对应关系确定该 UE的当前干 4尤信号功率和当前目标信号功率所对 应的当前最优干扰消除模式; 该 UE获取在该当前最优干扰消除模式下的自 干扰消除能力信息。
进一步地, 该 UE获取该 UE的接收干扰信号功率、 目标信号功率与最 优干扰消除模式的对应关系包括: 该 UE测量该 UE在接收干扰信号功率、 目标信号功率下的一级干扰消除模式和两级干扰消除模式的性能;
该 UE确定该 UE在该接收干扰信号功率、 该目标信号功率的最优干扰 消除模式; 该 UE建立该 UE的该接收干扰信号功率、 该目标信号功率与该
UE的最优干扰消除模式的对应关系。
UE通过与基站交互信息从而确定传输模式的方法可参考图 1的方法中
UE为全双工设备的具体实施例, 本发明实施例在此不再赘述。 图 7是本发明实施例基站 700的结构示意图。 基站 700可包括: 确定单 元 701。
确定单元 701 , 可用于确定全双工设备的自干扰消除能力信息和该全双 工设备接收目标信号的信噪比信息。
其中, 全双工设备的自干扰消除能力信息, 是指全双工设备在全双工模 式下消除全双工设备的发射机对全双工设备接收机的信号干扰的能力的信 息。
全双工设备接收目标信号的信噪比信息,是指在自干扰影响下全双工设 备接收目标信号的信噪比的信息。
确定单元 701 , 还用于根据该全双工设备的自干扰消除能力信息和该全 双工设备接收目标信号的信噪比信息, 确定该全双工设备的传输模式。
其中, 该传输模式包括全双工模式和半双工模式。
具体地,确定单元 701可基于预定的传输模式选择准则确定该全双工设 备的传输模式, 例如, 基于使得基站的平均信道容量最大化的准则选择传输 模式。
本发明实施例中, 基站 700根据全双工设备的自干扰消除能力、 信噪比 信息、 基站 700的信道质量、 基站 700的业务量信息等信息中的至少一种信 息, 结合传输模式选择准则, 确定全双工设备的传输模式, 避免了过强的自 干扰对全双工系统的影响, 从而能够提高全双工系统的性能。
可选地, 确定单元 701 , 还用于确定基站 700的天线的信道质量信息。 在用于确定该全双工设备的传输模式,确定单元 701具体用于根据该全双工 设备的自干扰消除能力信息、该全双工设备接收目标信号的信噪比信息和基 站 700的天线的信道质量信息, 确定该全双工设备的传输模式。
其中,基站 700的天线的信道质量信息可包括基站 700的上行天线的信 道质量信息和下行天线的信道质量信息,基站 700的上行天线的信道质量信 息即基站 700的上行信道质量信息,基站 700的下行天线的信道质量信息即 基站 700的下行信道质量信息。 基站 700可指示 UE测量基站 700的下行信 道质量并上报该下行信道质量信息, 基站 700还可指示 UE发送参考信号, 基站 700通过测量 UE的参考信号获取基站 700的上行信道质量信息。
可选地, 确定单元 701 , 还用于确定基站 700的业务量信息。 在用于确 定该全双工设备的传输模式,确定单元 701具体用于根据该全双工设备的自 干扰消除能力信息、 该全双工设备接收目标信号的信噪比信息、 基站 700的 天线的信道质量信息和基站 700的业务量信息,确定该全双工设备的传输模 式。
其中, 基站 700的业务量信息, 可包括基站 700的上行业务量信息和 / 或下行业务量信息。
可选地, 确定单元 701 , 还用于确定基站 700的天线的信道质量信息和 基站 700的业务量信息。在用于确定该全双工设备的传输模式,确定单元 701 具体用于根据该全双工设备的自干扰消除能力信息、该全双工设备接收目标 信号的信噪比信息、 基站 700的天线的信道质量信息、 基站 700的天线的信 道质量信息和基站 700的业务量信息, 确定该全双工设备的传输模式。
另外, 可选的, 基站 700还包括接收单元 702。
可选的, 作为一个实施例, 在用于确定基站 700的天线的信道质量信息 时, 确定单元 701具体用于: 通过接收单元 702接收基站 700下的用户设 备 UE测量的基站 700的全部天线的信道质量信息, 并确定基站 700的全部 天线的信道质量信息中最优信道质量的信息为基站 700的下行天线的信道质 量信息。
可选的, 作为另一个实施例, 在用于确定基站 700的天线的信道质量信 息时, 确定单元 701具体用于: 通过接收单元 702接收该 UE测量的最优天 线的信道质量信息, 并确定最优天线的信道质量的信息为基站 700的下行天 线的信道质量信息, 其中该最优天线为基站 700的全部天线中该 UE测量出 最优信道质量的天线。
可选的, 作为再一个实施例, 在用于确定基站 700的天线的信道质量信 息时, 确定单元 701具体用于: 通过接收单元 702接收基站 700下的 UE测 量的基站 700的全部天线的信道质量信息,确定基站 700的全部天线的信道 质量信息中基站 700预先指定的下行天线所对应的信道质量的信息为基站 700的下行天线的信道质量信息。 其中, 基站 700预先指定的下行天线由该 UE根据基站 700的发送的天线配置信息获取。
可选的, 作为再一个实施例, 在用于确定基站 700的天线的信道质量信 息时,确定单元 701具体用于:通过接收单元 702接收该 UE测量的基站 700 预先指定的下行天线的信道质量信息, 并确定基站 700预先指定的下行天线 的信道质量信息为基站 700的下行天线的信道质量信息。 其中, 基站 700预 先指定的下行天线由该 UE根据基站 700的发送的天线配置信息获取。
可选的, 作为再一个实施例, 在用于确定基站 700的天线的信道质量信 息时, 确定单元 701具体用于: 通过接收单元 702接收基站 700的 UE测量 的全部天线的信道质量信息, 并确定该 UE测量的全部天线的信道质量信息 中固定下行天线所对应的信道质量信息为基站 700的下行天线的信道质量信 息。
可选的, 作为再一个实施例, 在用于确定基站 700的天线的信道质量信 息时,确定单元 701具体用于:通过接收单元 702接收该 UE测量的基站 700 的固定下行天线的信道质量信息, 并确定基站 700的固定下行天线的信道质 量信息为基站 700的下行天线的信道质量信息。
可选地,该全双工设备为基站 700的 UE,或者该全双工设备为基站 700。 可选地, 基站 700还可包括发送单元 703。 发送单元 703 , 可用于根据 基站 700 的信道质量以及该传输模式对应的传输配置向该 UE发送调度信 息。 该调度信息包括以下至少一种: 基站 700的上下行调度时使用的时频资 源信息、 MCS、 RV和发射功率等。
进一步地, 当该全双工设备为该 UE时, 该发送单元还用于向该 UE发 送传输配置信息, 该传输配置信息包括该传输模式对应的传输配置。
可选地, 当该全双工设备为基站 700时, 在用于获取全双工设备的自干 扰消除能力, 确定单元 701具体用于: 获取基站 700的接收干扰信号功率、 目标信号功率与最优干扰消除模式的对应关系; 根据基站 700的接收干扰信 号功率、 目标信号功率与最优干扰消除模式的对应关系确定基站 700的当前 干扰信号功率和当前目标信号功率所对应的当前最优干扰消除模式;估计在 该当前最优干扰消除模式下的自干扰消除能力。
进一步地, 在用于获取基站 700的接收干扰信号功率、 目标信号功率与 最优干扰消除模式的对应关系, 确定单元 701具体用于: 测量基站 700在接 收干扰信号功率、 目标信号功率下的一级干扰消除模式和两级干扰消除模式 的性能; 确定基站 700在该接收干扰信号功率、 该目标信号功率的最优干扰 消除模式;建立基站 700的该接收干扰信号功率、该目标信号功率与基站 700 的最优干扰消除模式的对应关系。
基站 700还可执行图 1的方法,并实现在图 1的具体实施例中揭示的基 站的执行功能, 实现上述当基站为全双工设备时基站确定全双工设备传输模 式的具体实施例中揭示的基站的执行功能, 实现上述当 UE为全双工设备时 基站确定全双工设备传输模式的具体实施例中揭示的基站的执行功能, 本发 明实施例在此不再赘述。
图 8是用户设备 800的结构示意图。 用户设备 800为全双工设备。 用户 设备 800可包括: 发送单元 801、 接收单元 802和配置单元 803。
发送单元 801 , 可用于向基站发送传输模式信息。 其中, 该传输模式信 息包括用户设备 800的自干扰消除能力信息和用户设备 800接收目标信号的 信噪比信息。
接收单元 802, 可用于接收该基站发送的传输配置信息。 该基站发送的 传输配置信息可由该基站根据用户设备 800的自干扰消除能力信息和用户设 备 800接收目标信号的信噪比信息确定。 其中, 该传输配置信息指示用户设 备 800的传输模式及该传输模式对应的配置。
配置单元 803 , 可用于根据该传输配置信息配置用户设备 800的传输模 式。
本发明实施例中,全双工用户设备 800通过向基站发送自干扰消除能力、 信噪比信息等以使得基站基于一定的传输模式选择准则确定传输模式,避免 了过强的自干扰对全双工系统的影响, 从而能够提高全双工系统的性能。
可选的,发送单元 801还可用于向基站发送基站的天线的信道质量信息, 其中该基站的天线的信道质量信息用于该基站根据该 UE的自干扰消除能力 信息、 该 UE接收目标信号的信噪比信息和该基站的天线的信道质量信息确 定该 UE的传输模式。
可选地, 该信道质量信息可包括: 用户设备 800测量的所述基站的全部 天线的信道质量信息; 或者用户设备 800测量的所述基站的全部天线的信道 质量信息中最优信道质量的信息; 或者用户设备 800测量的下行天线的信道 质量信息, 所述下行天线为所述基站的固定下行天线或所述基站预先指定的 下行天线。
可选地, 用户设备 800还可包括获取单元 804和确定单元 805。
获取单元 804, 可用于获取用户设备 800的接收干扰信号功率、 目标信 号功率与最优干扰消除模式的对应关系。
确定单元 805 , 可用于根据用户设备 800的接收干扰信号功率、 目标信 号功率与最优干扰消除模式的对应关系确定用户设备 800的当前干扰信号功 率和当前目标信号功率所对应的当前最优干扰消除模式。
获取单元 804还可用于获取在该当前最优干扰消除模式下的自干扰消除 能力信息。
可选地, 在用于获取用户设备 800的接收干扰信号功率、 目标信号功率 与最优干扰消除模式的对应关系时, 获取单元 804具体用于: 测量用户设备 800在接收干扰信号功率、 目标信号功率下的一级干扰消除模式和两级干扰 消除模式的性能; 确定用户设备 800在该接收干扰信号功率、 该目标信号功 率的最优干扰消除模式; 建立用户设备 800的该接收干扰信号功率、 该目标 信号功率与用户设备 800的最优干扰消除模式的对应关系。
另外, 用户设备 800还可执行图 6的方法, 并实现在图 6的具体实施例 中揭示的 UE的执行功能, 实现上述当基站为全双工设备时基站确定全双工 设备传输模式的具体实施例中揭示的 UE的执行功能, 实现上述当 UE为全 双工设备时基站确定全双工设备传输模式的具体实施例中揭示的 UE的执行 功能, 本发明实施例在此不再赘述。
图 9是本发明实施例基站 900的结构示意图。 基站 900可包括发射器
903、 接收器 901、 处理器 902和存储器 904。
接收器 901、 发射器 903、 处理器 902和存储器 904通过总线 905系统 相互连接。 总线 905可以是 ISA总线、 PCI总线或 EISA总线等。 所述总线 可以分为地址总线、 数据总线、 控制总线等。 为便于表示, 图 9中仅用一个 双向箭头表示, 但并不表示仅有一根总线或一种类型的总线。
存储器 904, 用于存放程序。 具体地, 程序可以包括程序代码, 所述程 序代码包括计算机操作指令。存储器 904可以包括只读存储器和随机存取存 储器, 并向处理器 902提供指令和数据。 存储器 904可能包含高速 RAM存 储器, 也可能还包括非易失性存储器(non-volatile memory ), 例如至少一个 磁盘存储器。
处理器 902, 执行存储器 904所存放的程序, 用于通过发射器 903和接 收器 901获取全双工设备的自干扰消除能力和该全双工设备接收目标信号的 信噪比信息,还用于根据该全双工设备的自干扰消除能力信息和该全双工设 备接收目标信号的信噪比信息, 确定该全双工设备的传输模式。
其中, 全双工设备的自干扰消除能力信息, 是指全双工设备在全双工模 式下消除全双工设备的发射机对全双工设备接收机的信号干扰的能力的信 息。 全双工设备接收目标信号的信噪比信息, 是指在自干扰影响下全双工设 备接收目标信号的信噪比的信息。 该传输模式包括全双工模式和半双工模 式。
具体地,处理器 902可基于预定的传输模式选择准则确定该全双工设备 的传输模式, 例如, 基于使得基站的平均信道容量最大化的准则选择传输模 式。
上述如本发明图 1的实施例中揭示的基站执行的方法,上述当基站为全 双工设备时基站确定全双工设备传输模式的具体实施例中揭示的基站执行 的方法, 以及上述当 UE为全双工设备时基站确定全双工设备传输模式的具 体实施例中揭示的基站执行的方法, 可以应用于处理器 902中, 或者由处理 器 902实现。 处理器 902可能是一种集成电路芯片, 具有信号的处理能力。 在实现过程中, 上述方法的各步骤可以通过处理器 902中的硬件的集成逻辑 电路或者软件形式的指令完成。 上述的处理器 902可以是通用处理器, 包括 中央处理器(Central Processing Unit, 简称 CPU )、 网络处理器(Network Processor, 简称 NP )等; 还可以是数字信号处理器( DSP )、 专用集成电路 ( ASIC ), 现成可编程门阵列 (FPGA )或者其他可编程逻辑器件、 分立门 或者晶体管逻辑器件、 分立硬件组件。 可以实现或者执行本发明实施例中的 公开的各方法、 步骤及逻辑框图。 通用处理器可以是微处理器或者该处理器 也可以是任何常规的处理器等。 结合本发明实施例所公开的方法的步骤可以 直接体现为硬件译码处理器执行完成, 或者用译码处理器中的硬件及软件模 块组合执行完成。 软件模块可以位于随机存储器, 闪存、 只读存储器, 可编 程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质 中。 该存储介质位于存储器 904, 处理器 902读取存储器 904中的信息, 结 合其硬件完成上述方法的步骤。
本发明实施例中,基站 900根据全双工设备的自干扰消除能力和该全双 工设备接收目标信号的信噪比信息, 确定全双工设备的传输模式, 避免了过 强的自干扰对全双工系统的影响, 从而能够提高全双工系统的性能。
可选地,处理器 902还可通过发射器 903和接收器 901获取基站 900的 天线的信道质量信息。 在用于确定全双工设备的传输模式, 处理器 902具体 用于根据该全双工设备的自干扰消除能力信息、该全双工设备接收目标信号 的信噪比信息和基站 900的天线的信道质量信息,确定该全双工设备的传输 模式。
其中,基站 900的天线的信道质量信息可包括基站 900的上行天线的信 道质量信息和下行天线的信道质量信息,基站 900的上行天线的信道质量信 息即基站 900的上行信道质量信息,基站 900的下行天线的信道质量信息即 基站 900的下行信道质量信息。 处理器 902可通过发射器 903指示 UE测量 基站 900的下行信道质量并上报该下行信道质量信息,处理器 902还可通过 发射器 903指示 UE发送参考信号, 处理器 902通过测量 UE的参考信号获 取基站 900的上行信道质量信息。
可选地,处理器 902还可通过发射器 903和接收器 901获取基站 900的 业务量信息。 在用于确定全双工设备的传输模式, 处理器 902具体用于根据 该全双工设备的自干扰消除能力信息、该全双工设备接收目标信号的信噪比 信息和基站 900的业务量信息, 确定该全双工设备的传输模式。
其中, 基站 900的业务量信息, 可包括基站 900的上行业务量信息和 / 或下行业务量信息。
可选地,处理器 902还可通过发射器 903和接收器 901获取基站 900的 业务量信息和基站 900的天线的信道质量信息。在用于确定全双工设备的传 输模式, 处理器 902具体用于根据该全双工设备的自干扰消除能力信息、 该 全双工设备接收目标信号的信噪比信息、 基站 900的业务量信息和基站 900 的天线的信道质量信息, 确定该全双工设备的传输模式。
可选的, 作为一个实施例, 在用于确定基站 900的天线的信道质量信息 时, 处理器 902具体用于: 通过接收器 901接收基站 900下的用户设备 UE 测量的基站 900的全部天线的信道质量信息, 并确定基站 900的全部天线的 信道质量信息中最优信道质量的信息为基站 900 的下行天线的信道质量信 息。
可选的, 作为另一个实施例, 在用于确定基站 900的天线的信道质量信 息时, 处理器 902具体用于: 通过接收器 901接收该 UE测量的最优天线 的信道质量信息, 并确定最优天线的信道质量的信息为基站 900的下行天线 的信道质量信息, 其中该最优天线为基站 900的全部天线中该 UE测量出最 优信道质量的天线。
可选的, 作为再一个实施例,, 在用于确定基站 900的天线的信道质量 信息时, 处理器 902具体用于: 通过接收器 901接收基站 900下的 UE测 量的基站 900的全部天线的信道质量信息,确定基站 900的全部天线的信道 质量信息中基站 900预先指定的下行天线所对应的信道质量的信息为基站 900的下行天线的信道质量信息。 其中, 基站 900预先指定的下行天线由该 UE根据基站 900的发送的天线配置信息获取。
可选的, 作为再一个实施例,, 在用于确定基站 900的天线的信道质量 信息时, 处理器 902具体用于: 通过接收器 901接收该 UE测量的基站 900 预先指定的下行天线的信道质量信息, 并确定基站 900预先指定的下行天线 的信道质量信息为基站 900的下行天线的信道质量信息。 其中, 基站 900预 先指定的下行天线由该 UE根据基站 900的发送的天线配置信息获取。
可选的, 作为再一个实施例,, 在用于确定基站 900的天线的信道质量 信息时, 处理器 902具体用于: 通过接收器 901接收基站 900的 UE测量 的全部天线的信道质量信息, 并确定该 UE测量的全部天线的信道质量信息 中固定下行天线所对应的信道质量信息为基站 900的下行天线的信道质量信 息。
可选的, 作为再一个实施例,, 在用于确定基站 900的天线的信道质量 信息时, 处理器 902具体用于: 通过接收器 901接收该 UE测量的基站 900 的固定下行天线的信道质量信息, 并确定基站 900的固定下行天线的信道质 量信息为基站 900的下行天线的信道质量信息。
可选地,该全双工设备为基站 900的 UE,或者该全双工设备为基站 900。 可选地, 发射器 903 , 可用于根据基站 900的信道质量以及该传输模式 对应的传输配置向该 UE发送调度信息。 该调度信息包括以下至少一种: 基 站 900的上下行调度时使用的时频资源信息、 MCS、 RV和发射功率等。
进一步地, 当该全双工设备为该 UE时, 该发送单元还用于向该 UE发 送传输配置信息, 该传输配置信息包括该传输模式对应的传输配置。
可选地, 当该全双工设备为基站 900时, 在用于获取全双工设备的自干 扰消除能力, 处理器 902具体用于: 通过接收器 901获取基站 900的接收干 扰信号功率、 目标信号功率与最优干扰消除模式的对应关系; 根据基站 900 的接收干扰信号功率、 目标信号功率与最优干扰消除模式的对应关系确定基 站 900的当前干扰信号功率和当前目标信号功率所对应的当前最优干扰消除 模式; 估计在该当前最优干扰消除模式下的自干扰消除能力。
进一步地, 在用于获取基站 900的接收干扰信号功率、 目标信号功率与 最优干扰消除模式的对应关系, 处理器 902具体用于: 测量基站 900在接收 干扰信号功率、 目标信号功率下的一级干扰消除模式和两级干扰消除模式的 性能; 确定基站 900在该接收干扰信号功率、 该目标信号功率的最优干扰消 除模式; 建立基站 900的该接收干扰信号功率、 该目标信号功率与基站 900 的最优干扰消除模式的对应关系。
基站 900还可执行图 1的方法,并实现图 1的具体实施例中揭示的基站 的执行功能, 上述当基站为全双工设备时基站确定全双工设备传输模式的具 体实施例中揭示的基站的执行功能, 以及上述当 UE为全双工设备时基站确 定全双工设备传输模式的具体实施例中揭示的基站的执行功能, 本发明实施 例在此不再赞述。
图 10是本发明实施例全双工用户设备 1000的结构示意图。全双工用户 设备 1000可包括发射器 1003、 接收器 1001、 处理器 1002和存储器 1004。
接收器 1001、 发射器 1003、 处理器 1002和存储器 1004通过总线 1005 系统相互连接。 总线 1005可以是 ISA总线、 PCI总线或 EISA总线等。 所述 总线可以分为地址总线、 数据总线、 控制总线等。 为便于表示, 图 10中仅 用一个双向箭头表示, 但并不表示仅有一根总线或一种类型的总线。
存储器 1004, 用于存放程序。 具体地, 程序可以包括程序代码, 所述程 序代码包括计算机操作指令。 存储器 1004可以包括只读存储器和随机存取 存储器,并向处理器 1002提供指令和数据。存储器 1004可能包含高速 RAM 存储器, 也可能还包括非易失性存储器(non-volatile memory ), 例如至少一 个磁盘存储器。
发射器 1003 , 可用于向基站发送传输模式信息。 其中, 该传输模式信息 包括用户设备 1000的自干扰消除能力信息和用户设备 1000接收目标信号的 信噪比信息。
发射器 1003还可用于向基站发送基站的天线的信道质量信息。
接收器 1001 ,可用于接收该基站发送的传输配置信息。该基站发送的传 输配置信息可由该基站根据用户设备 1000的自干扰消除能力信息、 用户设 备 1000接收目标信号的信噪比信息、 基站的业务量信息和该基站的天线的 信道质量信息中的至少一种信息确定。 其中, 该传输配置信息指示用户设备 1000的传输模式及该传输模式对应的配置。
处理器 1002, 执行存储器 1004所存放的程序, 可用于根据该传输配置 信息配置用户设备 1000的传输模式。
上述如本发明图 6的实施例中揭示的 UE执行的方法, 上述当基站为全 双工设备时基站确定全双工设备传输模式的具体实施例中揭示的 UE执行的 方法, 以及上述当 UE为全双工设备时基站确定全双工设备传输模式的具体 实施例中揭示的 UE执行的方法, 可以应用于处理器 1002中, 或者由处理 器 1002实现。处理器 1002可能是一种集成电路芯片,具有信号的处理能力。 在实现过程中, 上述方法的各步骤可以通过处理器 1002 中的硬件的集成逻 辑电路或者软件形式的指令完成。 上述的处理器 1002可以是通用处理器, 包括中央处理器( Central Processing Unit, 简称 CPU )、 网络处理器( Network Processor, 简称 NP )等; 还可以是数字信号处理器( DSP )、 专用集成电路 ( ASIC ), 现成可编程门阵列 (FPGA )或者其他可编程逻辑器件、 分立门 或者晶体管逻辑器件、 分立硬件组件。 可以实现或者执行本发明实施例中的 公开的各方法、 步骤及逻辑框图。 通用处理器可以是微处理器或者该处理器 也可以是任何常规的处理器等。 结合本发明实施例所公开的方法的步骤可以 直接体现为硬件译码处理器执行完成, 或者用译码处理器中的硬件及软件模 块组合执行完成。 软件模块可以位于随机存储器, 闪存、 只读存储器, 可编 程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质 中。 该存储介质位于存储器 1004, 处理器 1002读取存储器 1004中的信息, 结合其硬件完成上述方法的步骤。
本发明实施例中, 全双工用户设备 1000根据全双工设备的自干扰消除 能力、信噪比信息、全双工用户设备 1000的信道质量、全双工用户设备 1000 的业务量信息等信息中的至少一种信息, 结合传输模式选择准则, 确定全双 工设备的传输模式, 避免了过强的自干扰对全双工系统的影响, 从而能够提 高全双工系统的性能。
可选地, 该信道质量信息可包括: 用户设备 1000测量的所述基站的全 部天线的信道质量信息; 或者用户设备 1000测量的所述基站的全部天线的 信道质量信息中最优信道质量的信息; 或者用户设备 1000测量的下行天线 的信道质量信息, 所述下行天线为所述基站的固定下行天线或所述基站预先 指定的下行天线。
可选地,处理器 1002还可用于获取用户设备 1000的接收干扰信号功率、 目标信号功率与最优干扰消除模式的对应关系, 并根据用户设备 1000的接 收干扰信号功率、 目标信号功率与最优干扰消除模式的对应关系确定用户设 备 1000的当前干扰信号功率和当前目标信号功率所对应的当前最优干扰消 除模式。
可选地, 处理器 1002还可用于获取在该当前最优干扰消除模式下的自 干扰消除能力信息。
可选地, 在用于获取用户设备 1000的接收干扰信号功率、 目标信号功 率与最优干扰消除模式的对应关系时, 处理器 1002具体用于: 测量用户设 备 1000在接收干扰信号功率、 目标信号功率下的一级干扰消除模式和两级 干扰消除模式的性能; 确定用户设备 1000在该接收干扰信号功率、 该目标 信号功率的最优干扰消除模式; 建立用户设备 1000的该接收干扰信号功率、 该目标信号功率与用户设备 1000的最优干扰消除模式的对应关系。
另外, 用户设备 1000还可执行图 6的方法, 并实现在图 6的具体实施 例中揭示的 UE的执行功能, 上述当基站为全双工设备时基站确定全双工设 备传输模式的具体实施例中揭示的 UE的执行功能, 以及上述当 UE为全双 工设备时基站确定全双工设备传输模式的具体实施例中揭示的 UE的执行功 能, 本发明实施例在此不再赘述。
应理解, 在本发明的各种实施例中, 上述各过程的序号的大小并不意味 着执行顺序的先后, 各过程的执行顺序应以其功能和内在逻辑确定, 而不应 对本发明实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各 示例的单元及算法步骤, 能够以电子硬件、 或者计算机软件和电子硬件的结 合来实现。 这些功能究竟以硬件还是软件方式来执行, 取决于技术方案的特 定应用和设计约束条件。 专业技术人员可以对每个特定的应用来使用不同方 法来实现所描述的功能, 但是这种实现不应认为超出本发明的范围。
所属领域的技术人员可以清楚地了解到, 为描述的方便和简洁, 上述描 述的系统、 装置和单元的具体工作过程, 可以参考前述方法实施例中的对应 过程, 在此不再赘述。
在本申请所提供的几个实施例中, 应该理解到, 所揭露的系统、 装置和 方法, 可以通过其它的方式实现。 例如, 以上所描述的装置实施例仅仅是示 意性的, 例如, 所述单元的划分, 仅仅为一种逻辑功能划分, 实际实现时可 以有另外的划分方式, 例如多个单元或组件可以结合或者可以集成到另一个 系统, 或一些特征可以忽略, 或不执行。 另一点, 所显示或讨论的相互之间 的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合 或通信连接, 可以是电性, 机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作 为单元显示的部件可以是或者也可以不是物理单元, 即可以位于一个地方, 或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或 者全部单元来实现本实施例方案的目的。
另外, 在本发明各个实施例中的各功能单元可以集成在一个处理单元 中, 也可以是各个单元单独物理存在, 也可以两个或两个以上单元集成在一 个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使 用时, 可以存储在一个计算机可读取存储介质中。 基于这样的理解, 本发明 的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部 分可以以软件产品的形式体现出来, 该计算机软件产品存储在一个存储介质 中, 包括若干指令用以使得一台计算机设备(可以是个人计算机, 服务器, 或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。 而前 述的存储介质包括: U盘、移动硬盘、只读存储器( ROM, Read-Only Memory )、 随机存取存储器 ( RAM, Random Access Memory ), 磁碟或者光盘等各种可 以存储程序代码的介质。
以上所述, 仅为本发明的具体实施方式, 但本发明的保护范围并不局限 于此, 任何熟悉本技术领域的技术人员在本发明揭露的技术范围内, 可轻易 想到变化或替换, 都应涵盖在本发明的保护范围之内。 因此, 本发明的保护 范围应以所述权利要求的保护范围为准。

Claims

权利要求
1、 一种传输模式的选择方法, 其特征在于, 包括:
基站确定全双工设备的自干扰消除能力信息和所述全双工设备接收目 标信号的信噪比信息;
所述基站根据所述全双工设备的自干扰消除能力信息和所述全双工设 备接收目标信号的信噪比信息, 确定所述全双工设备的传输模式, 所述传输 模式包括全双工模式和半双工模式。
2、 如权利要求 1所述的方法, 其特征在于,
所述方法还包括: 所述基站确定所述基站的天线的信道质量信息; 所述基站根据所述全双工设备的自干扰消除能力信息和所述全双工设 备接收目标信号的信噪比信息, 确定所述全双工设备的传输模式包括: 所述 基站根据所述全双工设备的自干扰消除能力信息、所述全双工设备接收目标 信号的信噪比信息和所述基站的天线的信道质量信息,确定所述全双工设备 的传输模式。
3、 如权利要求 2所述的方法, 其特征在于, 所述基站确定所述基站的 天线的信道质量信息包括:
所述基站接收所述基站下的用户设备 UE测量的所述基站的全部天线的 信道质量信息 , 并确定所述基站的全部天线的信道质量信息中最优信道质量 的信息为所述基站的下行天线的信道质量信息; 或者
所述基站接收所述 UE测量的最优天线的信道质量信息, 并确定最优天 线的信道质量的信息为所述基站的下行天线的信道质量信息,其中所述最优 天线为所述基站的全部天线中所述 UE测量出最优信道质量的天线。
4、 如权利要求 2所述的方法, 其特征在于, 所述基站确定所述基站的 天线的信道质量信息包括:
所述基站接收所述基站下的 UE测量的所述基站的全部天线的信道质量 信息,确定所述基站的全部天线的信道质量信息中所述基站预先指定的下行 天线所对应的信道质量的信息为所述基站的下行天线的信道质量信息; 或者 所述基站接收所述 UE测量的所述基站预先指定的下行天线的信道质量 信息, 并确定所述基站预先指定的下行天线的信道质量信息为所述基站的下 行天线的信道质量信息; 其中, 所述基站预先指定的下行天线由所述 UE根据所述基站发送的天 线配置信息获取。
5、 如权利要求 2所述的方法, 其特征在于, 所述基站确定所述基站的 天线的信道质量信息包括:
所述基站接收所述基站的 UE测量的全部天线的信道质量信息, 并确定 所述 UE测量的全部天线的信道质量信息中固定下行天线所对应的信道质量 信息为该基站的下行天线的信道质量信息; 或者
所述基站接收所述 UE 测量的所述基站的固定下行天线的信道质量信 息, 并确定所述基站的固定下行天线的信道质量信息为所述基站的下行天线 的信道质量信息。
6、 如权利要求 2至 5任一项所述的方法, 其特征在于,
所述方法还包括: 所述基站确定所述基站的业务量信息;
所述基站根据所述全双工设备的自干扰消除能力信息、所述全双工设备 接收目标信号的信噪比信息和所述基站的天线的信道质量信息,确定所述全 双工设备的传输模式包括: 所述基站根据所述全双工设备的自干扰消除能力 信息、 所述全双工设备接收目标信号的信噪比信息、 所述基站的天线的信道 质量信息和所述基站的业务量信息, 确定所述全双工设备的传输模式。
7、 如权利要求 2至 6任一项所述的方法, 其特征在于, 所述全双工设 备为所述基站的 UE, 或者所述全双工设备为所述基站。
8、 如权利要求 7所述的方法, 其特征在于, 所述方法还包括: 所述基站根据所述基站的天线的信道质量信息以及所述传输模式对应 的传输配置向所述 UE发送调度信息, 所述调度信息包括以下至少一种: 所 述基站的上下行调度时使用的时频资源信息、 调制编码方案 MCS、 冗余版 本 RV和发射功率。
9、 如权利要求 8所述的方法, 其特征在于, 当所述全双工设备为所述
UE时, 所述方法还包括:
所述基站向所述 UE发送传输配置信息, 所述传输配置信息包括所述传 输模式对应的传输配置。
10、 如权利要求 7或 8所述的方法, 其特征在于, 当所述全双工设备为 所述基站时, 所述基站获取全双工设备的自干扰消除能力包括:
所述基站获取所述基站的接收干扰信号功率、 目标信号功率与最优干扰 消除模式的对应关系;
所述基站根据所述基站的接收干扰信号功率、 目标信号功率与最优干扰 消除模式的对应关系确定所述基站的当前干扰信号功率和当前目标信号功 率所对应的当前最优干扰消除模式;
所述基站估计在所述当前最优干扰消除模式下的自干扰消除能力。
11、 如权利要求 10所述的方法, 其特征在于, 所述基站确定述基站的 接收干扰信号功率、 目标信号功率与最优干扰消除模式的对应关系包括: 所述基站测量所述基站在接收干扰信号功率、 目标信号功率下的一级干 扰消除模式和两级干扰消除模式的性能;
所述基站确定所述基站在所述接收干扰信号功率、所述目标信号功率的 最优干扰消除模式;
所述基站建立所述基站的所述接收干扰信号功率、所述目标信号功率与 所述基站的最优干扰消除模式的对应关系。
12、 一种传输模式配置方法, 其特征在于, 包括:
用户设备 UE 向基站发送传输模式信息, 所述传输模式信息包括所述
UE的自干扰消除能力信息和所述 UE接收目标信号的信噪比信息, 所述 UE 为全双工设备;
所述 UE接收所述基站发送的传输配置信息, 所述传输配置信息由所述 基站根据所述 UE的自干扰消除能力信息和所述 UE接收目标信号的信噪比 信息确定, 所述传输配置信息用于指示所述 UE的传输模式及所述传输模式 对应的配置;
所述 UE根据所述传输配置信息配置所述 UE的传输模式。
13、 如权利要求 12所述的方法, 其特征在于, 所述方法还包括: 所述 UE向所述基站发送所述基站的天线的信道质量信息, 其中所述基 站的天线的信道质量信息用于所述基站根据所述 UE 的自干扰消除能力信 息、 所述 UE接收目标信号的信噪比信息和所述基站的天线的信道质量信息 确定所述 UE的传输模式。
14、 如权利要求 13所述的方法, 其特征在于, 所述信道质量信息包括: 所述 UE测量的所述基站的全部天线的信道质量信息; 或者
所述 UE测量的所述基站的全部天线的信道质量信息中最优信道质量的 信息; 或者 所述 UE测量的下行天线的信道质量信息, 所述下行天线为所述基站的 固定下行天线或所述基站预先指定的下行天线。
15、 如权利要求 13或 14所述的方法, 其特征在于, 在所述 UE向基站 发送传输模式信息之前, 所述方法还包括:
所述 UE获取所述 UE的接收干扰信号功率、 目标信号功率与最优干扰 消除模式的对应关系;
所述 UE根据所述 UE的接收干扰信号功率、 目标信号功率与最优干扰 消除模式的对应关系确定所述 UE的当前干 4尤信号功率和当前目标信号功率 所对应的当前最优干扰消除模式;
所述 UE获取在所述当前最优干扰消除模式下的自干扰消除能力信息。
16、 如权利要求 15所述的方法, 其特征在于, 所述 UE获取所述 UE的 接收干扰信号功率、 目标信号功率与最优干扰消除模式的对应关系包括: 所述 UE测量所述 UE在接收干扰信号功率、 目标信号功率下的一级干 扰消除模式和两级干扰消除模式的性能;
所述 UE确定所述 UE在所述接收干扰信号功率、 所述目标信号功率的 最优干扰消除模式;
所述 UE建立所述 UE的所述接收干扰信号功率、 所述目标信号功率与 所述 UE的最优干扰消除模式的对应关系。
17、 一种基站, 其特征在于, 包括:
确定单元, 用于确定全双工设备的自干扰消除能力信息和所述全双工设 备接收目标信号的信噪比信息; 述全双工设备接收目标信号的信噪比信息, 确定所述全双工设备的传输模 式, 所述传输模式包括全双工模式和半双工模式。
18、 如权利要求 17所述的基站, 其特征在于, 所述确定单元还用于确 定所述基站的天线的信道质量信息;
在用于确定所述全双工设备的传输模式, 所述确定单元具体用于根据所 述全双工设备的自干扰消除能力信息、所述全双工设备接收目标信号的信噪 比信息和所述基站的天线的信道质量信息, 确定所述全双工设备的传输模 式。
19、 如权利要求 18所述的基站, 其特征在于, 所述基站还包括接收单 元,
在用于确定所述基站的天线的信道质量信息时, 所述确定单元具体用 于:
通过所述接收单元接收所述基站下的用户设备 UE测量的所述基站的全 部天线的信道质量信息, 并确定所述基站的全部天线的信道质量信息中最优 信道质量的信息为所述基站的下行天线的信道质量信息; 或者
通过所述接收单元接收所述 UE测量的最优天线的信道质量信息, 并确 定最优天线的信道质量的信息为所述基站的下行天线的信道质量信息, 其中 所述最优天线为所述基站的全部天线中所述 UE 测量出最优信道质量的天 线。
20、 如权利要求 18所述的基站, 其特征在于, 所述基站还包括接收单 元,
在用于确定所述基站的天线的信道质量信息时, 所述确定单元具体用 于:
通过所述接收单元接收所述基站下的 UE测量的所述基站的全部天线的 信道质量信息 ,确定所述基站的全部天线的信道质量信息中所述基站预先指 定的下行天线所对应的信道质量的信息为所述基站的下行天线的信道质量 信息; 或者
通过所述接收单元接收所述 UE测量的所述基站预先指定的下行天线的 信道质量信息, 并确定所述基站预先指定的下行天线的信道质量信息为所述 基站的下行天线的信道质量信息;
其中, 所述基站预先指定的下行天线由所述 UE根据所述基站的发送的 天线配置信息获取。
21、 如权利要求 18所述的基站, 其特征在于, 所述基站还包括接收单 元,
在用于确定所述基站的天线的信道质量信息时, 所述确定单元具体用 于:
通过所述接收单元接收所述基站的 UE 测量的全部天线的信道质量信 息, 并确定所述 UE测量的全部天线的信道质量信息中固定下行天线所对应 的信道质量信息为该基站的下行天线的信道质量信息; 或者
通过所述接收单元接收所述 UE测量的所述基站的固定下行天线的信道 质量信息, 并确定所述基站的固定下行天线的信道质量信息为所述基站的下 行天线的信道质量信息。
22、 如权利要求 18至 21任一项所述的基站, 其特征在于, 所述确定单 元还用于确定所述基站的业务量信息;
在用于确定所述全双工设备的传输模式, 所述确定单元具体用于根据所 述全双工设备的自干扰消除能力信息、所述全双工设备接收目标信号的信噪 比信息、 所述基站的天线的信道质量信息和所述基站的业务量信息, 确定所 述全双工设备的传输模式。
23、 如权利要求 18至 22任一项所述的基站, 其特征在于, 所述全双 工设备为所述基站的 UE, 或者所述全双工设备为所述基站。
24、 如权利要求 23所述的基站, 其特征在于, 所述基站还包括: 发送单元, 用于根据所述基站的信道质量以及所述传输模式对应的传输 配置向所述 UE发送调度信息, 所述调度信息包括以下至少一种: 所述基站 的上下行调度时使用的时频资源信息、 MCS、 RV和发射功率。
25、 如权利要求 24所述的基站, 其特征在于, 当所述全双工设备为所 述 UE时, 所述发送单元还用于向所述 UE发送传输配置信息, 所述传输配 置信息包括所述传输模式对应的传输配置。
26、 如权利要求 24或 25所述的基站, 其特征在于, 当所述全双工设备 为所述基站时, 在用于确定全双工设备的自干扰消除能力, 所述确定单元具 体用于:
获取所述基站的接收干扰信号功率、 目标信号功率与最优干扰消除模式 的对应关系;
根据所述基站的接收干扰信号功率、 目标信号功率与最优干扰消除模式 的对应关系确定所述基站的当前干扰信号功率和当前目标信号功率所对应 的当前最优干扰消除模式;
估计在所述当前最优干扰消除模式下的自干扰消除能力。
27、 如权利要求 26所述的基站, 其特征在于, 在用于获取所述基站的 接收干扰信号功率、 目标信号功率与最优干扰消除模式的对应关系, 所述确 定单元具体用于:
测量所述基站在接收干扰信号功率、 目标信号功率下的一级干扰消除模 式和两级干扰消除模式的性能; 确定所述基站在所述接收干扰信号功率、所述目标信号功率的最优干扰 消除模式;
建立所述基站的所述接收干扰信号功率、所述目标信号功率与所述基站 的最优干扰消除模式的对应关系。
28、 一种全双工用户设备, 其特征在于, 包括:
发送单元, 用于向基站发送传输模式信息, 所述传输模式信息包括所述 用户设备的自干扰消除能力信息和所述用户设备接收目标信号的信噪比信 息;
接收单元, 用于接收所述基站发送的传输配置信息, 所述传输配置信息 由所述基站根据所述用户设备的自干扰消除能力信息和所述用户设备接收 目标信号的信噪比信息确定, 所述传输配置信息用于指示所述用户设备传输 模式及所述传输模式对应的配置;
配置单元, 用于根据所述传输配置信息配置所述用户设备的传输模式。
29、 如权利要求 28所述的用户设备, 其特征在于,
所述发送单元还用于向所述基站发送所述基站的天线的信道质量信息, 其中所述基站的天线的信道质量信息用于所述基站根据所述 UE的自干扰消 除能力信息、 所述 UE接收目标信号的信噪比信息和所述基站的天线的信道 质量信息确定所述 UE的传输模式。
30、 如权利要求 29所述的用户设备, 其特征在于, 所述信道质量信息 包括:
所述用户设备测量的所述基站的全部天线的信道质量信息; 或者 所述用户设备测量的所述基站的全部天线的信道质量信息中最优信道 质量的信息; 或者
所述用户设备测量的下行天线的信道质量信息, 所述下行天线为所述基 站的固定下行天线或所述基站预先指定的下行天线。
31、 如权利要求 29或 30所述的用户设备, 其特征在于, 所述用户设备 还包括:
获取单元, 用于获取所述用户设备的接收干扰信号功率、 目标信号功率 与最优干扰消除模式的对应关系;
确定单元, 用于根据所述用户设备的接收干扰信号功率、 目标信号功率 与最优干扰消除模式的对应关系确定所述用户设备的当前干扰信号功率和 当前目标信号功率所对应的当前最优干扰消除模式;
所述获取单元还用于获取在所述当前最优干扰消除模式下的自干扰消 除能力信息。
32、 如权利要求 31 所述的用户设备, 其特征在于, 在用于获取所述用 户设备的接收干扰信号功率、 目标信号功率与最优干扰消除模式的对应关 系, 所述获取单元具体用于:
测量所述用户设备在接收干扰信号功率、 目标信号功率下的一级干扰消 除模式和两级干扰消除模式的性能;
确定所述用户设备在所述接收干扰信号功率、所述目标信号功率的最优 干扰消除模式;
建立所述用户设备的所述接收干扰信号功率、所述目标信号功率与所述 用户设备的最优干扰消除模式的对应关系。
PCT/CN2013/088169 2013-11-29 2013-11-29 传输模式的选择、配置方法、基站及用户设备 WO2015077987A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2013/088169 WO2015077987A1 (zh) 2013-11-29 2013-11-29 传输模式的选择、配置方法、基站及用户设备
CN201380033304.1A CN104956734B (zh) 2013-11-29 2013-11-29 传输模式的选择、配置方法、基站及用户设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/088169 WO2015077987A1 (zh) 2013-11-29 2013-11-29 传输模式的选择、配置方法、基站及用户设备

Publications (1)

Publication Number Publication Date
WO2015077987A1 true WO2015077987A1 (zh) 2015-06-04

Family

ID=53198230

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/088169 WO2015077987A1 (zh) 2013-11-29 2013-11-29 传输模式的选择、配置方法、基站及用户设备

Country Status (2)

Country Link
CN (1) CN104956734B (zh)
WO (1) WO2015077987A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104918279A (zh) * 2015-06-16 2015-09-16 山东大学 一种共享式全双工大规模天线移动通信系统及其调度方法
WO2017024441A1 (zh) * 2015-08-07 2017-02-16 华为技术有限公司 一种全双工传输的控制方法和用户设备以及基站
CN108934005A (zh) * 2017-05-27 2018-12-04 维沃移动通信有限公司 一种能力信息上报方法、相关设备和系统
EP3414962A4 (en) * 2016-03-03 2019-01-16 Huawei Technologies Co., Ltd. SYSTEM AND METHOD FOR MULTIPLE USER INTEGRATED DUPLEX LINK ADAPTATION
US20210392650A1 (en) * 2020-06-16 2021-12-16 Qualcomm Incorporated Techniques for random access channel-based self-interference measurement

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3550763B1 (en) * 2018-04-06 2020-11-18 Nokia Solutions and Networks Oy Method and apparatus for configuring operation mode of a remote transceiver unit
CN109644334B (zh) * 2018-10-30 2022-06-10 北京小米移动软件有限公司 自干扰处理方法及装置
CN113746615B (zh) * 2021-07-30 2023-09-01 天津师范大学 一种通信节点在全双工模式与半双工模式间切换的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1538640A (zh) * 2003-01-29 2004-10-20 ���ǵ�����ʽ���� 提供混合双工技术的无线通信系统及其方法
CN101951645A (zh) * 2010-09-03 2011-01-19 北京航空航天大学 一种蜂窝中继网络中的下行自适应传输方法
CN103298065A (zh) * 2005-08-19 2013-09-11 索尼公司 蜂窝通信系统、基站和用户设备

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101151812B (zh) * 2005-04-07 2014-11-19 诺基亚公司 具有可变双工性能的终端
CN101060349B (zh) * 2006-04-21 2010-05-12 中国科学院声学研究所 能够抑制本地发射干扰的全双工水声通信机
WO2009147785A1 (ja) * 2008-06-02 2009-12-10 パナソニック株式会社 データ通信システム、データ通信要求装置及びデータ通信応答装置
WO2011147045A1 (en) * 2010-05-25 2011-12-01 Telefonaktiebolaget L M Ericsson (Publ) Method and arrangement in a wireless communication network

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1538640A (zh) * 2003-01-29 2004-10-20 ���ǵ�����ʽ���� 提供混合双工技术的无线通信系统及其方法
CN103298065A (zh) * 2005-08-19 2013-09-11 索尼公司 蜂窝通信系统、基站和用户设备
CN101951645A (zh) * 2010-09-03 2011-01-19 北京航空航天大学 一种蜂窝中继网络中的下行自适应传输方法

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104918279A (zh) * 2015-06-16 2015-09-16 山东大学 一种共享式全双工大规模天线移动通信系统及其调度方法
WO2017024441A1 (zh) * 2015-08-07 2017-02-16 华为技术有限公司 一种全双工传输的控制方法和用户设备以及基站
US10779241B2 (en) 2015-08-07 2020-09-15 Huawei Technologies Co., Ltd. Full-duplex transmission control method, user equipment, and base station
EP3414962A4 (en) * 2016-03-03 2019-01-16 Huawei Technologies Co., Ltd. SYSTEM AND METHOD FOR MULTIPLE USER INTEGRATED DUPLEX LINK ADAPTATION
US10218458B2 (en) 2016-03-03 2019-02-26 Futurewei Technologies, Inc. System and method for multi-user full duplex link adaptation
US10693585B2 (en) 2016-03-03 2020-06-23 Futurewei Technologies, Inc. System and method for multi-user full duplex link adaptation
CN108934005A (zh) * 2017-05-27 2018-12-04 维沃移动通信有限公司 一种能力信息上报方法、相关设备和系统
CN108934005B (zh) * 2017-05-27 2021-01-08 维沃移动通信有限公司 一种能力信息上报方法、相关设备和系统
US10897703B2 (en) 2017-05-27 2021-01-19 Vivo Mobile Communication Co., Ltd. Capability information reporting method, relevant devices and system
US11546750B2 (en) 2017-05-27 2023-01-03 Vivo Mobile Communication Co., Ltd. Capability information reporting method, relevant devices and system
US20210392650A1 (en) * 2020-06-16 2021-12-16 Qualcomm Incorporated Techniques for random access channel-based self-interference measurement
US11743932B2 (en) * 2020-06-16 2023-08-29 Qualcomm Incorporated Techniques for random access channel-based self-interference measurement

Also Published As

Publication number Publication date
CN104956734A (zh) 2015-09-30
CN104956734B (zh) 2020-01-03

Similar Documents

Publication Publication Date Title
CN104956734B (zh) 传输模式的选择、配置方法、基站及用户设备
CN114337972B (zh) 用于传输数据的方法和终端设备
US9419693B2 (en) Method for determining rank indication RI bit number, base station, and terminal
US11296855B2 (en) Communication method, terminal device, and network device
WO2018126952A1 (zh) 通信方法、网络设备、及终端设备
CN110574458B (zh) 确定上行信号的传输参数的方法、终端和网络设备
CN109586872B (zh) 信道质量信息的上报方法、终端设备和网络设备
CN113543194B (zh) 基于信道测量资源(cmr)和干扰测量资源(imr)的l1-sinr测量周期
CN107872293B (zh) 信号传输方法和装置
KR20160138563A (ko) Csi 보고 방법 및 기기
CN112188622A (zh) 一种协作传输方法及通信装置
CN108282296B (zh) 一种参考信号传输方法及装置
KR20170018050A (ko) 원격 무선 유닛(rru)을 결정하기 위한 방법 및 장치
CN111034249A (zh) 传输数据的方法、终端设备和网络设备
WO2021031048A1 (zh) 一种通信方法及装置
WO2014194516A1 (zh) 多射频拉远单元rru共小区的信号传输方法及装置
CN110351870B (zh) 用于测量信道状态信息的方法及装置
CN110679173A (zh) 用于无线通信系统之间的无线资源测量的方法和装置
CN109151875B (zh) 用于测量信道状态的方法和装置
US10728803B2 (en) Adaptive and proactive feedback for power and performance optimization
CN115336339A (zh) 边链路传输方法以及装置
CN105532031B (zh) 资源优化的方法和装置
US20210336679A1 (en) Apparatuses and methods for rsrp measurements for a wireless device with variable output power per antenna arrangement
CN111757545A (zh) 通信方法和通信装置
CN109802734B (zh) 一种传输信道质量信息的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13898311

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13898311

Country of ref document: EP

Kind code of ref document: A1