WO2014193186A1 - Battery pack and method for manufacturing same - Google Patents

Battery pack and method for manufacturing same Download PDF

Info

Publication number
WO2014193186A1
WO2014193186A1 PCT/KR2014/004834 KR2014004834W WO2014193186A1 WO 2014193186 A1 WO2014193186 A1 WO 2014193186A1 KR 2014004834 W KR2014004834 W KR 2014004834W WO 2014193186 A1 WO2014193186 A1 WO 2014193186A1
Authority
WO
WIPO (PCT)
Prior art keywords
protection circuit
battery protection
lead
battery
circuit package
Prior art date
Application number
PCT/KR2014/004834
Other languages
French (fr)
Korean (ko)
Inventor
나혁휘
황호석
박종운
강향원
박승용
송성호
정다운
Original Assignee
주식회사 아이티엠반도체
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR20130061928A external-priority patent/KR101480060B1/en
Priority claimed from KR1020130104660A external-priority patent/KR101529237B1/en
Application filed by 주식회사 아이티엠반도체 filed Critical 주식회사 아이티엠반도체
Publication of WO2014193186A1 publication Critical patent/WO2014193186A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/584Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries
    • H01M50/586Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries inside the batteries, e.g. incorrect connections of electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/147Lids or covers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/147Lids or covers
    • H01M50/148Lids or covers characterised by their shape
    • H01M50/15Lids or covers characterised by their shape for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/172Arrangements of electric connectors penetrating the casing
    • H01M50/174Arrangements of electric connectors penetrating the casing adapted for the shape of the cells
    • H01M50/176Arrangements of electric connectors penetrating the casing adapted for the shape of the cells for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2200/00Safety devices for primary or secondary batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a battery pack and a method for manufacturing the same, and more particularly, to a battery pack and a method for manufacturing the battery pack configured to be miniaturized.
  • batteries are used in portable terminals such as mobile phones and PDAs.
  • Lithium-ion batteries are the most widely used batteries in portable terminals and the like. They generate heat during overcharging and overcurrent, and if the heating continues and the temperature rises, performance deterioration and risk of explosion occur. Therefore, in the conventional battery, a protection circuit module for detecting and blocking overcharge, overdischarge, and overcurrent is mounted, or a battery protection circuit package for detecting overcharge, overdischarge, and heat from outside the battery and blocking the operation of the battery is installed. Can be used.
  • the size of the battery pack is limited because the space occupied by protection integrated circuits, FETs, resistors, and capacitors constituting the battery protection circuit package is too large. have.
  • the present invention has been made to solve various problems including the above problems, and an object thereof is to provide a battery pack and a method of manufacturing the battery pack configured to easily miniaturize and integrate the battery pack.
  • these problems are exemplary, and the scope of the present invention is not limited thereby.
  • a battery pack includes a bare cell having a first polarity and a cap plate including a concave portion to form a step downward, and an electrode terminal having a second polarity; A battery protection circuit package bonded to the electrode terminal and the cap plate to be electrically connected, wherein at least a part of the battery protection circuit package is disposed in the recess; And a filler that seals and fixes at least a portion of the battery protection circuit package by filling at least a portion of the recess, wherein the battery protection circuit package includes a lead frame and a lead composed of a plurality of leads spaced apart from each other.
  • the electrode terminal and the battery protection circuit package may be located in the recess formed in the cap plate.
  • the top surface of the filler in the battery pack may form the same plane as the top surface of the cap plate around the recess.
  • the battery pack may further include an upper case disposed on the bare cell and the battery protection circuit package and including an opening exposing external connection terminals of the battery protection circuit package.
  • the upper case may include at least one selected from the group consisting of aluminum, an alloy containing aluminum, SUS, and resin.
  • the battery protection circuit package is mounted on the lead frame, and further includes a battery protection circuit element, including a protection IC, a field effect transistor (FET) and at least one passive element,
  • the passive element is arranged to connect at least some of the plurality of spaced leads, and an electrical connection member for electrically connecting any two selected from the group consisting of the protection integrated circuit, the field effect transistor and the plurality of leads.
  • the battery protection circuit can be configured without using a separate printed circuit board.
  • the lead frame is disposed at both edges, respectively, and includes a first internal connection terminal lead connected to the electrode terminal and a second internal connection terminal lead connected to the cap plate; An external connection terminal lead disposed between the first internal connection lead and the second internal connection lead and constituting an external connection terminal; And an element mounting lead disposed between the first internal connection lead and the second internal connection lead, in which the battery protection circuit element may be mounted.
  • the battery protection circuit package in the battery pack is a printed circuit board; And a battery protection circuit element including a protection IC, a field effect transistor, and at least one passive element disposed on the printed circuit board.
  • a method of manufacturing a battery pack includes the steps of providing a bare cell having a first polarity and a cap plate including a concave portion to form a step downward and an electrode terminal having a second polarity; Arranging at least a portion of a basic package including a lead frame composed of a plurality of spaced leads and a protection circuit component on the lead frame in the recess and electrically connecting the electrode terminal and the cap plate; Forming an encapsulant that seals the protection circuit component while exposing a portion of the leadframe; And forming a filler bonded to the encapsulant and filling at least a portion of the recess, wherein the forming of the encapsulant and the forming of the filler may be simultaneously performed by injecting a melt of the resin. have.
  • the forming of the encapsulant and the forming of the filler may be simultaneously performed by injecting a melt of the resin by a dispensing method or an injection molding method.
  • FIG. 1 is a circuit diagram of a battery protection circuit constituting a part of a battery protection circuit package applied to a battery pack according to some embodiments of the present invention.
  • FIG. 2 is a diagram illustrating an arrangement structure of a stacked chip constituting a part of a battery protection circuit package applied to a battery pack according to some embodiments of the present disclosure.
  • FIG. 3 is a plan view illustrating a structure of a lead frame constituting a part of a battery protection circuit package applied to a battery pack according to some embodiments of the present invention.
  • FIG. 4 is a plan view illustrating a basic package constituting a part of a battery protection circuit package applied to a battery pack according to an embodiment of the present invention.
  • 5A is a perspective view illustrating a basic package constituting a part of a battery protection circuit package applied to a battery pack according to some embodiments of the present disclosure.
  • 5B and 5C are diagrams illustrating a battery protection circuit package applied to a battery pack according to some embodiments of the present invention.
  • FIG. 6 is a schematic cross-sectional view illustrating a structure of a bare cell in a battery pack according to some embodiments of the present invention.
  • FIG. 7 is an exploded perspective view illustrating a process of bonding a basic package on a bare cell in a method of manufacturing a battery pack according to an embodiment of the present invention.
  • FIG. 8 is an exploded perspective view illustrating a process of bonding a basic package on a bare cell in a method of manufacturing a battery pack according to a modified embodiment of the present invention.
  • FIG. 9 is a cross-sectional view illustrating a structure in which a basic package is bonded on a bare cell in a method of manufacturing a battery pack according to some embodiments of the present disclosure.
  • FIG. 10 is a cross-sectional view illustrating a battery pack according to an embodiment of the present invention.
  • FIG. 11 is a perspective view illustrating a battery pack according to an embodiment of the present invention.
  • FIG. 12 is a perspective view illustrating a battery pack according to another embodiment of the present invention.
  • FIG. 13 is a cross-sectional view illustrating a portion of a battery pack according to another embodiment of the present invention.
  • FIG. 14 and 15 are perspective views illustrating a process of combining a battery protection circuit package with a battery can in a battery pack according to still another and modified embodiments of the present invention.
  • 16 is a perspective view illustrating the appearance of a battery pack in accordance with some embodiments of the present disclosure.
  • 17 and 18 are cross-sectional views and perspective views illustrating a part of a battery pack according to another embodiment of the present invention.
  • FIG. 19 is a cross-sectional view illustrating a portion of a battery pack according to another embodiment of the present invention.
  • FIG. 20 is a perspective view illustrating a PTC structure constituting a part of a battery protection circuit package in a battery pack according to another embodiment of the present invention.
  • 21 is a diagram illustrating a battery protection circuit package in a battery pack according to another embodiment of the present invention.
  • first, second, etc. are used herein to describe various members, parts, regions, layers, and / or parts, these members, parts, regions, layers, and / or parts are defined by these terms. It is obvious that not. These terms are only used to distinguish one member, part, region, layer or portion from another region, layer or portion. Thus, the first member, part, region, layer or portion, which will be discussed below, may refer to the second member, component, region, layer or portion without departing from the teachings of the present invention.
  • top or “above” and “bottom” or “bottom” may be used herein to describe the relationship of certain elements to other elements as illustrated in the figures. It may be understood that relative terms are intended to include other directions of the device in addition to the direction depicted in the figures. For example, if the device is turned over in the figures, elements depicted as present on the face of the top of the other elements are oriented on the face of the bottom of the other elements. Thus, the exemplary term “top” may include both “bottom” and “top” directions depending on the particular direction of the figure. If the device faces in the other direction (rotated 90 degrees relative to the other direction), the relative descriptions used herein can be interpreted accordingly.
  • the battery pack disclosed in the present invention includes a configuration in which at least a part of the battery protection circuit module package is disposed in a bare cell including a recess. First, the configuration of the battery protection circuit package will be described.
  • FIG. 1 is a circuit diagram of a battery protection circuit constituting a part of a battery protection circuit package applied to a battery pack according to some embodiments of the present invention.
  • the battery protection circuit 10 applied to the battery protection circuit package 300 may include first and second internal connection terminals B + to be connected to a battery bare cell. , B-), the first to third external connection terminals (P +, CF, P) to be connected to the charger when charging, and to the electronic device (eg, portable terminal, etc.) operated by the battery power during the discharge -)
  • the first external connection terminal P + and the third external connection terminal P- among the first to third external connection terminals P +, CF, and P- are for power supply and the other external connection terminal is
  • the second external connection terminal CF may be configured to charge the battery by classifying the battery.
  • thermistor a component that senses battery temperature during charging, can be applied. Other functions can be applied and used as terminals.
  • the battery protection circuit 10 includes a connection structure of the dual FET chip 110, the protection integrated circuit 120, the resistors R1, R2, and R3, the varistor V1, and the capacitors C1 and C2.
  • the dual FET chip 110 includes a first field effect transistor FET1 and a second field effect transistor FET2 having a drain common structure.
  • the protection IC 120 is connected to the first internal connection terminal B +, which is a positive terminal of the battery, through a resistor R1, and a charge voltage or a discharge voltage is applied through the first node n1.
  • VDD terminal for sensing voltage and battery voltage
  • VSS terminal reference terminal
  • V- Terminal sensing terminal for sensing the charge and discharge and overcurrent conditions
  • DO terminal for turning off the first field effect transistor FET1 in the overdischarge state
  • OFF charge interruption signal output terminal
  • the inside of the protection integrated circuit 120 includes a reference voltage setting unit, a comparison unit for comparing the reference voltage and the charge / discharge voltage, an overcurrent detector, and a charge / discharge detector.
  • the criterion for determining the state of charge and discharge may be changed to a specification required by the user, and the charge / discharge state is determined by recognizing the voltage difference of each terminal of the protection integrated circuit 120 according to the determined criterion.
  • the DO terminal goes low to turn off the first field effect transistor FET1
  • the overcharge state reaches the overcharge state
  • the CO terminal goes low.
  • the second field effect transistor FET2 is turned off, and when the overcurrent flows, the second field effect transistor FET2 is turned off during charging and the first field effect transistor FET1 is turned off when discharging.
  • the resistor R1 and the capacitor C1 serve to stabilize fluctuations in the power supply of the protection integrated circuit 120.
  • the resistor R1 is connected between the first node n1, which is the power supply V1 of the battery, and the VDD terminal of the protection integrated circuit 120, and the capacitor C1 is connected between the VDD terminal and the VSS terminal of the protection integrated circuit. Is connected to.
  • the first node n1 is connected to the first internal connection terminal B + and the first external connection terminal P +.
  • the resistor R1 is made larger, the detection voltage is increased by the current penetrating into the protection integrated circuit 120 when the voltage is detected. Therefore, the value of the resistor R1 is set to an appropriate value of 1 K? Or less.
  • the value of the capacitor (C1) has a suitable value of 0.01 ⁇ F or more for stable operation.
  • the resistors R1 and R2 become current limiting resistors when the high voltage charger or the charger exceeding the absolute maximum rating of the protection integrated circuit 120 is connected upside down.
  • the resistor R2 is connected between the V-terminal of the protection integrated circuit 120 and the second node n2 to which the source terminal S2 of the second field effect transistor FET2 is connected. Since the resistors R1 and R2 may cause power consumption, the sum of the resistance values of the resistors R1 and R2 is usually set to be larger than 1 K ⁇ . If the resistor R2 is too large, no recovery may occur after the overcharge cutoff, and thus the value of the resistor R2 is set to a value of 10 K? Or less.
  • the capacitor C2 is the source node S1 (or VSS terminal, the second internal connection terminal B) of the second node n2 (or the third external connection terminal P ⁇ ) and the first field effect transistor FET1. -)) Has a structure that is connected between.
  • the capacitor C2 does not significantly affect the characteristics of the battery protection circuit product, but is added for the user's request or stability.
  • the capacitor C2 is for the effect of stabilizing the system by improving resistance to voltage fluctuations or external noise.
  • the resistor R3 and the varistor V1 are elements for ESD protection and surge protection.
  • the resistor R3 and the varistor V1 are connected to each other in parallel to each other so that the second external connection terminal CF and the second node n2 ( Or it is connected between the third external connection terminal (P-).
  • the varistor (V1) is a device that lowers the resistance when an overvoltage occurs, and when the overvoltage occurs, the resistance is lowered to minimize circuit damage due to the overvoltage.
  • the present invention implements a package of a battery protection circuit configured by packaging the battery protection circuit 10 shown in FIG. 1 including external connection terminals (P +, P-, CF) and internal connection terminals (B +, B-). Doing.
  • the protection circuit according to an embodiment of the present invention described above is exemplary, and the configuration, number, arrangement, and the like of the protection integrated circuit, the field effect transistor, or the passive element may be appropriately modified according to the additional function of the protection circuit.
  • an exemplary embodiment of the configuration, number, arrangement, etc. of the protection integrated circuit and the field effect transistor will be described with reference to FIG.
  • FIG. 2 is a diagram illustrating an arrangement structure of a stacked chip constituting a part of a battery protection circuit package applied to a battery pack according to an embodiment of the present invention.
  • the arrangement of the dual FET chip 110 and the protection integrated circuit 120 has a structure in which the dual FET chip 110 and the protection integrated circuit 120 are stacked up and down or adjacent to each other.
  • the protection integrated circuit 120 may be stacked on the upper surface of the dual FET chip 110, or the dual FET chip 110 may be disposed adjacent to the left or right side of the protection integrated circuit 120. have.
  • the dual FET chip 110 includes a first field effect transistor having a common drain structure and a second field effect transistor, that is, two field effect transistors, and the external connection terminal includes a first gate terminal G1 of the first field effect transistor. ) And a first source terminal S1, a second gate terminal G2, and a second source terminal S2 of the second field effect transistor on the upper surface of the dual FET chip 110.
  • the common drain terminal D may have a structure provided on the lower surface of the dual FET chip 110.
  • the protection integrated circuit 120 has a structure in which the protection integrated circuit 120 is stacked on the upper surface of the dual FET chip 110.
  • the protection integrated circuit 120 is stacked in a region (for example, a central portion) except for a portion where external connection terminals on the dual FET chip 110 are disposed.
  • an insulating film for insulation may be disposed between the protection integrated circuit 120 and the dual FET chip 110, and the protection integrated circuit 120 and the dual FET chip 110 may be bonded with an adhesive of an insulating material. . Since the size of the dual FET chip 110 is generally larger than that of the protection integrated circuit 120, an arrangement structure in which the protection integrated circuit 120 is stacked on the dual FET chip 110 is adopted.
  • the DO terminal DO of the protection integrated circuit 120 is electrically connected to the first gate terminal G1 through a wire or a wire.
  • the CO terminal CO of the protection integrated circuit 120 is electrically connected to the second gate terminal G2 through a wire or a wire.
  • the connection structure of the remaining terminals will be described later.
  • the protection integrated circuit 120 and the dual FET chip 110 having the stacked structure as described above will be collectively referred to as a stacked chip 100a.
  • a protection integrated circuit 120 having a stacked structure and a stacked chip 100a of a dual FET chip are introduced to be mounted on a lead frame to be described later.
  • the area can be reduced, thereby miniaturizing or increasing the capacity of the battery.
  • the battery protection circuit package may include a printed circuit board and a battery protection circuit device disposed on the printed circuit board.
  • the battery protection circuit package may include a lead frame and a battery protection circuit element disposed on the lead frame.
  • the battery protection circuit device may include a protection integrated circuit, a field effect transistor, and at least one passive device.
  • the lead frame is a structure in which lead terminals are patterned on a metal frame, and may be distinguished from a printed circuit board having a metal wiring layer formed on an insulating core in its structure or thickness.
  • FIG. 3 is a plan view illustrating a structure of a lead frame constituting a part of a battery protection circuit package applied to a battery pack according to some embodiments of the present invention
  • FIG. 4 is a view of a battery pack according to an embodiment of the present invention.
  • the lead frame 50 includes a first internal connection terminal region A1 and an external connection terminal region A2.
  • the protection circuit region and the second internal connection terminal region A5 of the device region A3 and the chip region A4 are sequentially arranged.
  • the protection circuit region is disposed between the external connection terminal region A2 and the second internal connection terminal region A5, and the arrangement order of the device region A3 and the chip region A4 may be changed in various ways.
  • the first internal connection terminal area A1 and the second internal terminal area A5 are respectively provided at both edge portions of the package and are connected to the first internal connection terminal connected to the cap assembly 450 constituting the bare cell 400.
  • the first internal connection terminal lead B + serving as a second internal connection terminal lead B- functioning as a second internal connection terminal is disposed, respectively.
  • the external connection terminal region A2 is adjacent to the first internal connection terminal region A1 and leads to the first to third external connection terminals P +, which are leads for a plurality of external connection terminals, which function as a plurality of external connection terminals.
  • CF and P-) are each disposed sequentially.
  • the order of arranging the first to third external connection leads P +, CF, and P ⁇ may vary.
  • the lead P + for the first external connection terminal and the lead B + for the first internal connection terminal are connected to each other. That is, the first internal connection lead B + is configured to extend from the first external connection lead P +, or the first external connection lead P + is formed from the first internal connection lead B +. It may be extended.
  • the device region A3 is for arranging a plurality of passive elements R1, R2, R3, C1, C2, and V1 constituting the battery protection circuit.
  • the sixth passive element leads L1, L2, L3, L4, L5, L6 are disposed.
  • the first to third passive element leads L1, L2 and L3 may have a sequential arrangement structure on an upper side of the device region A3, and the fourth to sixth passive element leads L4, L5 and L6 may have a structure disposed below the device region A3.
  • the first passive element lead L1 is disposed at a predetermined size in the element region A3 adjacent to the external connection terminal region A2, and the second passive element lead L2 is the first passive element. It is arranged in a predetermined size adjacent to the lead L1.
  • the third passive element lead L3 is disposed at a predetermined size in the element region A3 adjacent to the chip region A4 and adjacent to the second passive element lead L2.
  • the fourth passive element lead L4 is disposed in a predetermined size in the element region A3 adjacent to the external connection terminal region A2, and the fifth passive element lead L5 and the sixth passive element lead L6 are fixed. ) Is disposed adjacent to the fourth passive element lead L1 in such a manner that the fifth passive element lead L5 surrounds the sixth passive element lead L6.
  • the chip area A4 is an area for arranging a protection integrated circuit and a dual FET chip adjacent to the device area A3 and constituting a battery protection circuit.
  • a die pad DP for mounting the stacked chip 100a is disposed. Can be.
  • the die pad DP may be electrically connected to the common drain terminal of the dual FET chip 110 constituting the stacked chip 100a, and may be exposed during packaging of the subsequent process to function as an external connection terminal and to exhibit heat dissipation characteristics. It can be improved.
  • FIG. 3 a plurality of passive elements R1, R2, R3, C1, C2, and V1 and a stacked chip 100a are disposed in the lead frame of FIG. 3, and FIG.
  • the stacked chip 100a is mounted on the die pad DP of the chip region A4, and the reference voltage terminal VSS of the protection integrated circuit 120 constituting the stacked chip 100a is a first field effect transistor.
  • the protection integrated circuit 120 electrically connects the terminal VDD to which the charge voltage and the discharge voltage are applied and detects the battery voltage through the wire L2 of the second passive element through wire bonding.
  • a sensing terminal V ⁇ for sensing a charge / discharge and an overcurrent state is electrically connected to the sixth passive element lead L6 through wire bonding.
  • the source terminal S1 of the first field effect transistor is electrically connected to the lead L3 for the third passive element through wire bonding, and the source terminal S2 of the second field effect transistor is the lead for the fifth passive element. It is electrically connected with the L5 through wire bonding.
  • the first passive element lead L1 and the first external connection terminal lead P + are electrically connected through wire bonding, and the third passive element lead L3 and the second internal connection terminal are used.
  • the lead B- is electrically connected through wire bonding or the like.
  • the fourth passive element lead L4 is electrically connected to the second external connection terminal lead CF through wire bonding, and the fifth passive element lead L5 is the third external connection terminal lead L3. And is electrically connected through wire bonding or the like.
  • the first resistor R1 of the plurality of passive elements is disposed between the first passive element lead L1 and the second passive element lead L2, and the second resistor of the passive elements is a second resistor.
  • R2 is disposed between the fifth passive element lead L5 and the sixth passive element lead L6.
  • the third resistor R3 constituting the surge protection circuit among the plurality of passive elements is disposed between the fourth passive element lead L4 and the fifth passive element lead L5, and among the plurality of passive elements.
  • the first capacitor C1 is disposed between the second passive element lead L2 and the third passive element lead L3, and the second capacitor C2 of the plurality of passive elements is used for the third passive element. It is arranged between the lead L3 and the fifth passive element lead L5.
  • Varistor (V1) constituting the surge protection circuit of the plurality of passive elements is configured in parallel with the third resistor (R3) to the fourth passive element lead (L4) and the fifth passive element lead ( It is arranged between L5).
  • circuit diagram of the battery protection circuit shown in FIG. 1 and the basic package 200a shown in FIG. 4 implementing the same may be variously modified, and thus, various modified structures may be modified. It can be carried out including.
  • the first field effect transistor FET1, the second field effect transistor FET2, and the protection integrated circuit may be provided integrated into one chip.
  • the integrated single chip may be mounted on the lead frame 50 in the form of a flip chip.
  • Flip chip has the advantage of improving the electrical conductivity, lowering production cost and process simplification compared to wire bonding since the external terminal is soldered and connected to the lead etc. which requires the electrical connection without the need for separate wire bonding. This has the advantage of reducing the volume occupied.
  • the first field effect transistor FET1 and the second field effect transistor FET2 may be spaced apart from each other on the lead frame 50 without being implemented as a dual FET chip. Can be.
  • a conductive plate for connecting the lower surface of the lead frame 50 to each other is further provided. Can be placed.
  • FIG. 5A is a perspective view illustrating a basic package constituting a part of a battery protection circuit package applied to a battery pack according to some embodiments of the present invention
  • FIGS. 5B and 5C are batteries according to some embodiments of the present invention.
  • the basic package 200a implementing the battery protection circuit having the above-described arrangement structure may be understood as a structure before forming the encapsulant 250, and then molding the encapsulant 250.
  • the battery protection circuit module package (300 of FIGS. 5B and 5C) is implemented through the process. That is, the protection circuit components 100a, 100b, and 130 are sealed in the basic package 200a, and the first internal connection lead B + and the second internal connection lead B which are part of the lead frame 50 are sealed.
  • the encapsulant 250 that exposes-) may be formed to implement the battery protection circuit module package 300.
  • the encapsulant 250 may include, for example, an epoxy molding compound (EMC).
  • the protection circuit element 130 shown in FIG. 5A includes a plurality of passive elements R1, R2, R3, C1, C2, and V1 shown in FIG. 4.
  • the external connection terminals P +, CF, and P ⁇ may be exposed from an upper surface thereof, and the first internal connection terminal B + and the second internal parts thereof may be exposed to a lower surface thereof.
  • the connecting terminal B- is configured to be exposed.
  • the upper surface of the package 300 may be packaged to further expose the lower surface (opposite side of the surface on which the stacked chip 100a is mounted) of the die pad DP according to heat dissipation or other needs.
  • at least one of the first internal connection lead B + and the second internal connection lead B- may be bent in a gull-form form.
  • the lead B + for the first internal connection terminal may be bent in a gull-form form to compensate for a step between the top surface of the electrode terminal 410 and the bottom surface of the recess 435. .
  • the package 300 including the lead frame 50 may configure the battery protection circuit without using a separate printed circuit board.
  • Such a configuration is arranged so that at least one passive element connects at least some of the plurality of spaced leads, and at least any one selected from the group consisting of the field effect transistor 110, the protection integrated circuit 120, and the plurality of leads. It can be implemented by providing an electrical connection member for electrically connecting the two.
  • the electrical connection member may include a bonding wire or a bonding ribbon.
  • a circuit is formed by arranging an electrical connection member such as a bonding wire or a bonding ribbon on the lead frame 50, an important advantage of simplifying the process of designing and manufacturing the lead frame 50 for constructing a battery protection circuit.
  • the protection integrated circuit 120 and / or the field effect transistor 110 may not be inserted into and fixed in the form of a semiconductor package on the lead frame 50, but may be fixed by a surface mounting technology.
  • On at least a portion of the surface of the c) may be mounted and fixed in the form of a chip die sawed on a wafer that is not sealed with a separate encapsulant.
  • a chip die is implemented by performing a sawing process without sealing with a separate encapsulant on a wafer on which a plurality of array-type structures (eg, a protection integrated circuit or a field effect transistor) are formed. Mean individual structures.
  • the subsequent encapsulant after mounting without sealing with a separate encapsulant Since the protection integrated circuit and the field effect transistor are sealed by the 250, the process of forming the encapsulant may be performed only once in implementing the battery protection circuit package 300.
  • the protection integrated circuit and / or the field effect transistor are separately inserted and fixed or mounted on a printed circuit board (PCB)
  • PCB printed circuit board
  • the bare cell 400 in which the basic package 200a may be mounted in the battery pack according to some embodiments of the present invention will be described.
  • a battery pack according to some embodiments of the present disclosure includes a bare cell 400 having a cap plate 430 having a first polarity and an electrode terminal 410 having a second polarity.
  • the bare cell 400 includes an electrode assembly 405, a can 401 for receiving the electrode assembly 405, and a cap assembly 450 provided on an opening of the can 401.
  • the electrode assembly 405 is interposed between the positive electrode plate 402 formed by applying a positive electrode active material to a positive electrode current collector, the negative electrode plate 403 formed by applying a negative electrode active material to a negative electrode current collector, and between the positive electrode plate 402 and the negative electrode plate 403.
  • the separator 404 may be formed to prevent short circuits of the electrode plates 402 and 403 and to allow movement of lithium ions.
  • the positive electrode plate 402 may be formed with a positive electrode non-coating portion, to which the positive electrode active material is not coated, and the negative electrode plate 403 may be formed with a negative electrode non-coated portion to which the negative electrode active material is not coated.
  • the positive electrode tab 407 may be bonded to the positive electrode tab 407 electrically connected to the cap plate 430, and the negative electrode tab may be bonded to the negative electrode tab 408 electrically connected to the electrode terminal 410.
  • the positive electrode tab 407 and the negative electrode tab 408 may be bonded to the positive electrode non-coating portion and the negative electrode non-coating portion, for example, by welding.
  • the positive electrode current collector may be stainless steel, nickel, aluminum, titanium or alloys thereof, or carbon, nickel, titanium, or silver surface treated on the surface of aluminum or stainless steel, and may include foil, film, sheet, and punched material. It may be provided in the form of a thing, a porous body, a blowing agent and the like.
  • the positive electrode active material is a material capable of occluding or desorbing lithium ions, and may include at least one selected from a complex oxide with lithium, cobalt, manganese, and nickel.
  • the negative electrode current collector may be stainless steel, nickel, copper, titanium or alloys thereof, or carbon, nickel, titanium, or silver surface treated on the surface of copper or stainless steel, and may include foil, film, sheet, and punched material. It may be provided in the form of a thing, a porous body, a blowing agent and the like.
  • a material capable of occluding or detaching lithium ions a carbon material such as crystalline carbon, amorphous carbon, carbon composite, carbon fiber, lithium metal, lithium alloy, or the like may be used.
  • the separator 404 is formed of thermoplastic resin, such as polyethylene (PE) and polypropylene (PP), for example, and the surface has a porous membrane structure.
  • a porous membrane structure may become an insulating film when the separator 404 is melted and clogged when the temperature inside the battery approaches the melting point of the thermoplastic resin.
  • the can 401 may be formed of a metal material having an open upper end portion, accommodate the electrode assembly 405 and the electrolyte, and accommodate the insulating case 406 on the electrode assembly 405.
  • a metal material light and ductile aluminum, aluminum alloy, stainless steel, or the like may be used.
  • the metal material may have polarity and may be used as an electrode terminal.
  • the shape of the can 401 may be rectangular or oval with rounded corners, and the open upper end of the can 401 may be sealed by welding or heat fusion with the cap plate 430.
  • the cap assembly 450 may include an insulating case 406, a cap plate 430, a gasket 420, an electrode terminal 410, an insulating plate 412, a terminal plate 411, and an electrolyte inlet plug 415.
  • the insulating case 406 is positioned above the electrode assembly 405 inserted into the can 401 to prevent the flow of the electrode assembly 405.
  • the insulating case 406 spaces the positive electrode tab 407 and the negative electrode tab 408 a predetermined distance to prevent a short.
  • the cap plate 430 is coupled to the opening of the can 401 to seal the opening of the can 401, and a through hole through which the gasket 420 and the electrode terminal 410 may be inserted may be formed.
  • the cap plate 430 is formed with an electrolyte injection hole that provides a passage for injecting the electrolyte into the can 401, and an electrolyte injection hole stopper 415 is coupled to seal the electrolyte injection hole.
  • the cap plate 430 includes a recess 435 to form a step below (eg, Z direction in FIG. 6). That is, the cap plate 430 has a step formed such that the level of the bottom surface of the recess 435 and the level around the recess 435 are different.
  • the recess 435 may be understood as a hole, a cavity, a trench, or the like depending on shape and size.
  • the cross-sectional shape of the recess 435 may have a polygonal, circular, elliptical or any amorphous shape.
  • the recessed portion 435 may have a structure that is open upward (for example, opposite to the Z direction of FIG. 6).
  • the gasket 420 is coupled to a through hole formed in the cap plate 430, and is formed of an insulating material to insulate the electrode terminal 410 of the second polarity and the cap plate 430 of the first polarity.
  • the second polarity is a negative electrode and the first polarity may be configured as an anode, but if necessary, the second polarity may be an anode and the first polarity may be configured as a negative electrode.
  • a central portion of the gasket 420 may form a hole so that the electrode terminal 410 may be coupled.
  • the electrode terminal 410 is inserted into a hole formed in the gasket 420 to be coupled to the cap plate 430, and the lower end of the electrode terminal 410 is connected to the terminal plate 411 while penetrating through the cap plate 430. do.
  • the insulating plate 412 is disposed on the lower surface of the cap plate 430, and insulates the outer surface of the terminal plate 411 and forms a hole for connecting the electrode terminal 410 and the terminal plate 411.
  • the terminal plate 411 is disposed on the lower surface of the insulating plate 412 and is made of a conductive material to be connected to the electrode terminal 410 to form an electrical path.
  • FIG. 7 is an exploded perspective view illustrating a process of bonding a basic package on a bare cell in a method of manufacturing a battery pack according to an embodiment of the present invention
  • FIG. 9 is a method of manufacturing a battery pack according to some embodiments of the present invention. Is a cross-sectional view illustrating a structure in which a basic package is bonded onto a bare cell.
  • the base package 200a including the lead frame 50 including the plurality of spaced leads and the protection circuit components on the lead frame 50 may have a recess 435. Can be disposed within. For example, the entirety of the base package 200a may be disposed in the space in the recess 435.
  • the lead B + for the first internal connection terminal of the lead frame 50 constituting the basic package 200a is joined to be electrically connected to the cap plate 430 and the lead frame constituting the basic package 200a.
  • the lead B- for the second internal connection terminal 50 may be joined to be electrically connected to the electrode terminal 410.
  • the basic package 200a is bonded to the electrode terminal 410 and / or the cap plate 430 by laser welding, resistance welding, soldering and conductive adhesive (for example, conductive epoxy) and conductive tape. It may include any one selected from the group.
  • the first internal connection lead (B +) is electrically connected by bonding to the cap plate 430
  • the second internal connection lead (B-) is electrically connected by bonding to the electrode terminal 410
  • the length of the lead frame 50 may correspond to the length L / 2 from one end of the cap plate 430 to the electrode terminal 410.
  • the battery protection circuit package 300 including the base package 200a is disposed using only one side area based on the electrode terminal 410 located in the center of the cap plate 430, the battery pack Miniaturization or high capacity can be achieved.
  • an additional cell may be formed in the remaining one side region based on the electrode terminal 410 to increase battery capacity or to place a chip having another additional function, thereby contributing to miniaturization of an application having such a battery.
  • a battery protection including a recess 435 is formed using a part of the space 414 located between the insulating case 406 and the cap plate 430 and includes a basic package 200a in the recess 435.
  • the recess 435 in which the basic package 200a is disposed includes a space defined by a bottom surface and a side surface.
  • Sides defining the recess 435 may be composed of two sides facing each other and perpendicular to the y axis and two sides facing each other and perpendicular to the x axis.
  • the recess 435 may have a structure that is open upward (for example, opposite to the z direction). Since the side surface of the concave portion 435 is not an open structure, the effect that it is easy to fill the space in the concave portion 435 with the filler (555 in Fig. 10) can be expected.
  • the recess 435 in which the battery protection circuit package 300 is disposed includes a space defined by a bottom surface and a side surface.
  • the side defining the recess 435 may consist of only two sides perpendicular to the x-axis and facing each other.
  • the recessed portion 435 may have a structure that is open upwards (eg, opposite the z direction) and laterally (eg, ⁇ y direction). Since the side of the recess 435 has an open structure, the effect that the process of inserting and placing the basic package 200a in the recess 435 can be expected easily.
  • FIG 10 and 11 are cross-sectional views and perspective views illustrating a battery pack 600a according to an embodiment of the present invention.
  • an encapsulant 250 for sealing the protection circuit elements 100a and 130 of FIG. 9 is formed while exposing at least a part of the lead frame 50 constituting the basic package 200a. And forming a filler 555 that is bonded to the encapsulant 250 and fills at least a portion of the recess 435.
  • Forming the encapsulant 250 and forming the filler 555 may be performed simultaneously in one process.
  • the forming of the encapsulant 250 and the forming of the filler 555 may be simultaneously performed by one process of injecting a melt of the resin.
  • the forming of the encapsulant 250 and the forming of the filler 555 may be simultaneously performed by injecting a melt of the resin by a dispensing method or an insert injection molding method.
  • the encapsulant 250 and the filler 555 are illustrated for convenience, the encapsulant 250 and the filler 555 are simultaneously formed by one process by injecting a melt of the same resin. It can be formed integrally with the same material without being distinguished.
  • the process can be expected to be simplified, and the bonding force between the encapsulant 250 and the filler 555 is enhanced.
  • the effect of securing structural stability of the battery pack can be expected.
  • the forming of the encapsulant 250 and the forming of the filler 555 may be sequentially performed by individual processes instead of one process.
  • the battery protection circuit module package 300 is implemented. At least a portion of the battery protection circuit package 300 may be disposed in the recess 435. Furthermore, the top surface of the encapsulant 250 constituting the battery protection circuit package 300 may form the same plane as the top surface of the cap plate 430 around the recess 435. In addition, the upper surface of the filler 555 filling the recess 435 may have the same plane as the upper surface of the cap plate 430 around the recess 435. Accordingly, as shown in FIG.
  • the top surface of the battery pack 600a in which the encapsulant 250 and the filler 555 are formed may form a plane where no step is formed, and in this state, selectively labeling may be performed. The process may be performed to complete the battery pack of the final product.
  • FIG. 12 is a perspective view illustrating a battery pack 600b according to another embodiment of the present invention.
  • the battery pack according to another embodiment of the present invention is implemented by further mounting the upper case 500 on the structure 600a illustrated in FIG. 11.
  • the upper case 500 is disposed on the bare cell 400 and the battery protection circuit module package 300 and exposes external connection terminals (P +, CF, and P ⁇ ) of the battery protection circuit module package 300.
  • the opening 550 may be included.
  • a labeling process may be selectively performed to complete the battery pack of the final product.
  • Such a battery pack may be generally understood as a battery inserted into a mobile phone or a terminal.
  • the upper case 500 may be made of resin.
  • the upper portion of the structure shown in FIG. 11 may be cased with the upper case 500.
  • the structure shown in FIG. 11 and the upper case 500 may be coupled in various ways such as bonding by prefabricated fastening, bonding by welding, and / or bonding by adhesive.
  • the upper case 500 may be implemented by placing the structure shown in FIG. 11 in an injection mold and injecting a melt of resin to insert injection molding.
  • the upper case 500 may be configured to include at least one selected from the group consisting of aluminum, an alloy including aluminum, and stainless steel (SUS) in addition to the above-described resin.
  • FIG. 13 is a cross-sectional view illustrating a portion of a battery pack according to another embodiment of the present invention.
  • FIG. 13 is a cross-sectional view illustrating a portion of a battery pack according to another embodiment of the present invention. Description of the configuration of the bare cell 400 shown in FIG. 13 has been described above with the same contents in FIG. 6, and thus will not be described herein.
  • the base package 200a is mounted in the recess 435 configured to form a step below the cap plate 430 (for example, Z direction in FIG. 13). Rather, at least a part of the battery protection circuit package 300 including the encapsulant 250 is directly mounted. For example, the whole of the battery protection circuit package 300 may be disposed in a space in the recess 435.
  • the upper surface of the encapsulant 250 constituting the battery protection circuit package 300 may have the same plane as the upper surface of the cap plate 430 around the recess 435. Description of the configuration of the battery protection circuit package 300 has been described with the same contents with reference to FIGS.
  • the electrode terminal 410 may also be configured to be disposed in the recess 435.
  • the battery protection circuit package 300 is bonded to the electrode terminal 410 and / or the cap plate 430 by laser welding, resistance welding, soldering and conductive adhesive (for example, conductive epoxy), It may include any one selected from the group consisting of a conductive tape.
  • a recess 435 is formed using a portion of the space 414 positioned between the insulating case 406 and the cap plate 430, and at least a portion of the battery protection circuit package 300 is disposed in the recess 435.
  • the overall height of the battery pack may be lowered, and thus, an advantageous effect of increasing the ratio of the electrode assembly 405 in the battery pack to realize a high capacity battery pack may be expected.
  • FIG. 14 and 15 are perspective views illustrating a process in which a battery protection circuit package is coupled to a battery can in a battery pack according to still another and modified embodiments of the present invention
  • FIG. 16 is some embodiments of the present invention. Is a perspective view illustrating the appearance of a battery pack according to the present invention.
  • the battery protection circuit package 300 is inserted between the upper surface of the bare cell 400 and the upper case 500 illustrated in FIG. 13 to form a battery pack as shown in FIG. 16 ( 600c).
  • the upper case 500 may include at least one selected from the group consisting of aluminum, an alloy including aluminum, stainless use steel (SUS), and a resin.
  • the upper case 500 has an opening 550 which is a through hole in a portion corresponding to the external connection terminals P +, CF, and P ⁇ of the battery protection circuit package 300.
  • the edge of the upper case 500 may be bonded to the can constituting the bare cell 400, for example, may be bonded by laser welding or mechanically fastened by bolts.
  • the battery pack 600c may generally be understood as a battery inserted into a mobile phone or a terminal.
  • the lead B + for the first internal connection terminal may be electrically connected to the cap plate 430, and the lead B- for the second internal connection terminal may be electrically connected to the electrode terminal 410.
  • the length of the lead frame 50 may correspond to the length L / 2 from one end of the cap plate 430 to the electrode terminal 410.
  • the battery pack can be miniaturized or increased in capacity. .
  • an additional cell may be formed in the remaining one side region based on the electrode terminal 410 to increase battery capacity or to place a chip having another additional function, thereby contributing to miniaturization of an application having such a battery.
  • the recess 435 in which the battery protection circuit package 300 is disposed includes a space defined by a bottom surface and a side surface.
  • the side defining the recess 435 may be composed of two sides perpendicular to the y-axis and facing each other and two sides perpendicular to the x-axis and facing each other.
  • the recess 435 may have a structure that is open upward (for example, opposite to the z direction). Since the side surface of the concave portion 435 is not an open structure, the effect that it is easy to fill the space in the concave portion 435 with the sealing material (555 in Fig. 17) can be expected.
  • the recess 435 in which the battery protection circuit package 300 is disposed includes a space defined by a bottom surface and a side surface.
  • the side defining the recess 435 may be composed of two sides perpendicular to the x axis and facing each other.
  • the recessed portion 435 may have a structure that is open upwards (eg, opposite the z direction) and laterally (eg, ⁇ y direction). Since the side of the concave portion 435 is open, the effect of inserting and placing the battery protection circuit package 300 in the concave portion 435 can be expected to be easy.
  • Filling at least a portion of the recess 435 with the encapsulant prior to bonding the upper case 500 may optionally be performed. That is, after the battery protection circuit package 300 is bonded to the recess 435, the can constituting the bare cell 400 of the upper case 500 without filling at least a portion of the recess 435 with an encapsulant ( 401). On the other hand, after bonding the battery protection circuit package 300 in the recess 435, at least a portion of the recess 435 is filled with an encapsulant and the upper case 500 constitutes a bare cell 400. The can 401 can also be joined.
  • 16 is a perspective view illustrating the appearance of a battery pack in accordance with some embodiments of the present disclosure.
  • the battery pack 600c may be bonded by bonding the upper case 500 to the structure illustrated in FIG. 13 without filling the recess 435 formed in the cap plate 430 with the encapsulant 555. Can be implemented. External connection terminals P +, CF, and P ⁇ of the battery protection circuit package 300 may be exposed through the opening 550 of the upper case 500. In the state of the battery pack 600c in which the upper case 500 is formed, a labeling process may be selectively performed to complete the battery pack of the final product.
  • 17 and 18 are cross-sectional and perspective views illustrating a part of a battery pack according to still another embodiment of the present invention.
  • the battery pack 600d may be implemented by preparing the structure illustrated in FIG. 13 and then filling the recess 435 with the encapsulant 555.
  • the encapsulant 250 constituting the battery protection circuit package 300 and the encapsulant 555 filled with the recess 435 are not formed at the same time, but are formed in separate processes. Therefore, the materials constituting the encapsulant 250 constituting the battery protection circuit package 300 and the encapsulant 555 filled with the recess 435 may be the same or different from each other.
  • the battery pack may be implemented by bonding the upper case 500 to the structure illustrated in FIG. 18 as shown in FIG. 16. In the state of the battery pack in which the upper case 500 is formed, a labeling process may be selectively performed to complete the battery pack of the final product.
  • the top surface of the encapsulant 250 constituting the battery protection circuit package 300 may form the same plane as the top surface of the cap plate 430 around the recess 435.
  • the upper surface of the filler 555 filling the recess 435 may have the same plane as the upper surface of the cap plate 430 around the recess 435.
  • the top surface of the battery pack 600d in which the encapsulant 250 and the filler 555 are formed may form a plane where no step is formed, and in this state, labeling may be selectively performed. The process may be performed to complete the battery pack of the final product.
  • FIG. 19 is a cross-sectional view illustrating a portion of a battery pack according to another embodiment of the present invention.
  • the electrode terminal 410 is not positioned in the recess 435 that forms a step in the cap plate 430. This is provided. Since structures such as the electrode terminal 410 and the gasket 420 having a complicated structure are not located in the recess 435, it is easy to implement the recess 435.
  • a recess 435 is formed using a portion of the space 414 positioned between the insulating case 406 and the cap plate 430, and at least a part of the battery protection circuit package 300 is formed in the recess 435.
  • the electrode terminal 410 is located outside the recess 435, only a part of the battery protection circuit package 300 is located in a space in the recess 435, and the remaining part of the battery protection circuit package 300 is Since it is positioned to protrude upward in the space in the recess 435, the structure of the battery pack illustrated in FIG. 18 is difficult to implement, and the structure of the battery pack illustrated in FIG. 19 may finally be implemented.
  • FIG. 20 is a perspective view illustrating a PTC structure constituting a part of a battery protection circuit package in a battery pack according to another embodiment of the present invention
  • FIG. 21 is a battery protection circuit in a battery pack according to another embodiment of the present invention.
  • a battery protection circuit package includes a PTC structure 350.
  • the PTC structure 350 may include the PTC device 310, the metal layer 320 attached to the first surface, which is one of the top and bottom surfaces of the PTC device 310, and the other of the top and bottom surfaces of the PTC device 310. It includes a conductive connecting member (330, 340) attached to the second surface of the surface.
  • the metal layer 320 is bonded to one of the leads selected from the first internal connection lead (B +) and the second internal connection lead (B-), and the connection members 330 and 340 are electrode terminals (FIG. 1). 410).
  • the metal layer 320, the connection members 330 and 340, and / or the lead frame 50 may be made of nickel, copper, nickel plated copper, or other metal.
  • the metal layer 320 may be formed of any one of the first internal terminal lead (B +) and the second internal terminal lead (B-) and laser welding, resistance welding, soldering, and a conductive adhesive (eg, For example, it may be bonded in any one manner selected from the group consisting of a conductive epoxy), a conductive tape.
  • the PTC (Positive Temperature Coefficient) element 310 can be formed by, for example, dispersing conductive particles in a crystalline polymer. Accordingly, the PTC element 310 becomes a passage through which current flows between the metal layer 320 and the conductive connection members 330 and 340 below the set temperature. However, when the temperature rises above the set temperature due to overcurrent, the crystalline polymer expands and the connection between the conductive particles dispersed in the crystalline polymer is separated, thereby rapidly increasing the resistance. Therefore, the flow of current between the metal layer 320 and the conductive connecting members 330 and 340 is blocked or the flow of current is reduced.
  • the PTC device 310 serves as a safety device for preventing the battery from being ruptured.
  • the PTC device 310 contracts the crystalline polymer to restore the connection between the conductive particles, thereby smoothly flowing the current.
  • the lead frame 50 constituting the battery protection circuit package 300 is electrically connected to the electrode terminal 410 via a PTC structure.
  • the lead B- for the second internal connection terminal of the lead frame 50 may be electrically connected to the electrode terminal 410 of the battery bare cell through the PTC structure 350. That is, the lead B- of the second internal connection terminal of the lead frame 50 is bonded to the metal layer 320, and passes through the PTC element 310 to the conductive connection member 330 and 340, and then to the electrode of the battery bare cell. Is electrically connected to the terminal 410.
  • the metal layer 320 is configured to be limited in the upper surface on the upper surface of the PTC element 310
  • the connection member 330, 340 is the electrode terminal 410 of the battery bare cell on the lower surface of the PTC element 310 It can be configured to stretch until.
  • the connecting members 330 and 340 of the PTC structure are connected to the first connecting member 330 and the first connecting member 330 attached to one surface of the PTC element 310 to extend to the electrode terminal 410 of the battery bare cell. It may be composed of a second connecting member 340. Since the second connection member 340 should have an appropriate level to be bonded to the electrode terminal 410, a portion where the first connection member 330 and the second connection member 340 are connected may be bent.
  • the second connection member 340 is any one selected from the group consisting of an electrode terminal 410 of the battery bare cell, laser welding, resistance welding, soldering, conductive adhesive (for example, conductive epoxy), and conductive tape. Can be joined in one way.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

The present invention relates to a battery pack advantageous for integration and miniaturization, and the battery pack includes: a bare cell having a cap plate of a first polarity with a concave part forming a step downward, and an electrode terminal of a second polarity; a battery protective circuit package electrically connected to the electrode terminal and the cap plate with at least a part thereof arranged in the concave part; and a filling material for filling at least a part of the concave part so as to seal at least a part thereof and to fix the battery protective circuit package, wherein said battery protective circuit package includes a lead frame consisting of a plurality of isolated leads, a basic package for including protective circuit components on the lead frame, and a sealing material for sealing the protective circuit components by exposing a part of the lead frame, the filling material and sealing material being formed by injecting a molten resin.

Description

배터리팩 및 그 제조방법Battery pack and manufacturing method
본 발명은 배터리팩 및 그 제조방법에 관한 것으로, 보다 구체적으로는, 배터리팩을 소형화할 수 있도록 구성된 배터리팩 및 그 제조방법에 관한 것이다.The present invention relates to a battery pack and a method for manufacturing the same, and more particularly, to a battery pack and a method for manufacturing the battery pack configured to be miniaturized.
일반적으로 휴대폰, PDA 등의 휴대단말기 등에 배터리가 사용되고 있다. 리튬이온 배터리는 휴대단말기 등에 가장 널리 사용되는 배터리로 과충전, 과전류 시에 발열하고, 발열이 지속되어 온도가 상승하게 되면 성능열화는 물론 폭발의 위험성까지 갖는다. 따라서, 통상의 배터리에는 과충전, 과방전 및 과전류를 감지하고 차단하는 보호회로모듈이 실장되어 있거나, 배터리 외부에서 과충전, 과방전, 발열을 감지하고 배터리의 동작을 차단하는 배터리 보호회로 패키지를 설치하여 사용할 수 있다. 그러나, 배터리 보호회로 패키지를 구성하는 프로텍션 집적회로(protection integrated circuit)와 전계효과 트랜지스터(fieled effect transistor, FET), 저항, 및 커패시터 등이 차지하는 공간이 너무 커서 배터리팩의 소형화에 한계가 있다는 문제점이 있다. In general, batteries are used in portable terminals such as mobile phones and PDAs. Lithium-ion batteries are the most widely used batteries in portable terminals and the like. They generate heat during overcharging and overcurrent, and if the heating continues and the temperature rises, performance deterioration and risk of explosion occur. Therefore, in the conventional battery, a protection circuit module for detecting and blocking overcharge, overdischarge, and overcurrent is mounted, or a battery protection circuit package for detecting overcharge, overdischarge, and heat from outside the battery and blocking the operation of the battery is installed. Can be used. However, there is a problem in that the size of the battery pack is limited because the space occupied by protection integrated circuits, FETs, resistors, and capacitors constituting the battery protection circuit package is too large. have.
본 발명은 상기와 같은 문제점을 포함하여 여러 문제점들을 해결하기 위한 것으로서, 배터리팩을 용이하게 소형화 및 집적화할 수 있도록 구성된 배터리팩 및 그 제조방법들을 제공하는 것을 목적으로 한다. 그러나 이러한 과제는 예시적인 것으로, 이에 의해 본 발명의 범위가 한정되는 것은 아니다.Disclosure of Invention The present invention has been made to solve various problems including the above problems, and an object thereof is to provide a battery pack and a method of manufacturing the battery pack configured to easily miniaturize and integrate the battery pack. However, these problems are exemplary, and the scope of the present invention is not limited thereby.
본 발명의 일 관점에 의한 배터리팩이 제공된다. 상기 배터리팩은 제 1 극성을 가지며 하방으로 단차를 형성하도록 오목부를 포함하는 캡 플레이트와 제 2 극성을 가지는 전극 단자를 구비하는 베어셀; 상기 전극 단자 및 상기 캡 플레이트와 전기적으로 연결되도록 접합되며, 적어도 일부가 상기 오목부 내에 배치되는, 배터리 보호회로 패키지; 및 상기 오목부의 적어도 일부를 충전(filling)함으로써 상기 배터리 보호회로 패키지의 적어도 일부를 밀봉하면서 고정하는 충전재;를 구비하고, 상기 배터리 보호회로 패키지는 이격된 복수의 리드들로 구성된 리드프레임과 상기 리드프레임 상의 보호회로 구성소자를 구비하는 기본 패키지 및 상기 리드프레임의 일부를 노출시키면서 상기 보호회로 구성소자를 밀봉하는 봉지재를 포함하며, 상기 충전재와 상기 봉지재는 수지의 용융물을 주입하여 동시에 일체로 형성되면서 접합된다. A battery pack according to one aspect of the present invention is provided. The battery pack includes a bare cell having a first polarity and a cap plate including a concave portion to form a step downward, and an electrode terminal having a second polarity; A battery protection circuit package bonded to the electrode terminal and the cap plate to be electrically connected, wherein at least a part of the battery protection circuit package is disposed in the recess; And a filler that seals and fixes at least a portion of the battery protection circuit package by filling at least a portion of the recess, wherein the battery protection circuit package includes a lead frame and a lead composed of a plurality of leads spaced apart from each other. A base package having a protective circuit component on a frame and an encapsulant for sealing the protective circuit component while exposing a portion of the lead frame, wherein the filler and the encapsulant are integrally formed at the same time by injecting a melt of resin. Are joined.
상기 배터리팩에서 상기 전극 단자 및 상기 배터리 보호회로 패키지는 상기 캡 플레이트에 형성된 상기 오목부 내에 위치할 수 있다. In the battery pack, the electrode terminal and the battery protection circuit package may be located in the recess formed in the cap plate.
상기 배터리팩에서 상기 충전재의 상면은 상기 오목부 주변의 상기 캡 플레이트의 상면과 동일한 평면을 이룰 수 있다. The top surface of the filler in the battery pack may form the same plane as the top surface of the cap plate around the recess.
상기 배터리팩은 상기 베어셀 및 상기 배터리 보호회로 패키지 상에 배치되며, 상기 배터리 보호회로 패키지의 외부연결단자를 노출시키는 개구부를 포함하는, 상부케이스를 더 구비할 수 있다. The battery pack may further include an upper case disposed on the bare cell and the battery protection circuit package and including an opening exposing external connection terminals of the battery protection circuit package.
상기 배터리팩에서 상기 상부케이스는 알루미늄, 알루미늄을 포함하는 합금, SUS 및 수지로 이루어진 군에서 선택된 적어도 어느 하나를 포함할 수 있다. In the battery pack, the upper case may include at least one selected from the group consisting of aluminum, an alloy containing aluminum, SUS, and resin.
상기 배터리팩에서 상기 배터리 보호회로 패키지는 상기 리드프레임 상에 실장되며, 프로텍션(protection) IC, 전계효과 트랜지스터(FET) 및 적어도 하나 이상의 수동소자를 포함하는, 배터리 보호회로 소자를 더 구비하고, 상기 수동소자는 상기 이격된 복수의 리드들 중의 적어도 일부를 연결하도록 배치되며, 상기 프로텍션 집적회로, 상기 전계효과 트랜지스터 및 상기 복수의 리드들로 이루어진 군에서 선택된 어느 두 개를 전기적으로 연결하는 전기적 연결부재를 더 구비함으로써, 별도의 인쇄회로기판을 사용하지 않고 배터리 보호회로가 구성될 수 있다. In the battery pack, the battery protection circuit package is mounted on the lead frame, and further includes a battery protection circuit element, including a protection IC, a field effect transistor (FET) and at least one passive element, The passive element is arranged to connect at least some of the plurality of spaced leads, and an electrical connection member for electrically connecting any two selected from the group consisting of the protection integrated circuit, the field effect transistor and the plurality of leads. By further providing, the battery protection circuit can be configured without using a separate printed circuit board.
상기 배터리팩에서 상기 리드프레임은 양쪽가장자리부분에 각각 배치되며, 상기 전극 단자와 접합되는 제 1 내부연결단자용 리드 및 상기 캡 플레이트와 접합되는 제 2 내부연결단자용 리드; 상기 제 1 내부연결단자용 리드 및 제 2 내부연결단자용 리드 사이에 배치되며, 외부연결단자를 구성하는, 외부연결단자용 리드; 및 상기 제 1 내부연결단자용 리드 및 제 2 내부연결단자용 리드 사이에 배치되며, 상기 배터리 보호회로 소자가 실장될 수 있는, 소자실장용 리드;를 포함할 수 있다. In the battery pack, the lead frame is disposed at both edges, respectively, and includes a first internal connection terminal lead connected to the electrode terminal and a second internal connection terminal lead connected to the cap plate; An external connection terminal lead disposed between the first internal connection lead and the second internal connection lead and constituting an external connection terminal; And an element mounting lead disposed between the first internal connection lead and the second internal connection lead, in which the battery protection circuit element may be mounted.
상기 배터리팩에서 상기 배터리 보호회로 패키지는 인쇄회로기판; 및 상기 인쇄회로기판 상에 배치된 프로텍션(protection) IC, 전계효과 트랜지스터(FET) 및 적어도 하나 이상의 수동소자를 구비하는 배터리 보호회로 소자;를 포함할 수 있다. The battery protection circuit package in the battery pack is a printed circuit board; And a battery protection circuit element including a protection IC, a field effect transistor, and at least one passive element disposed on the printed circuit board.
본 발명의 다른 관점에 의한 배터리팩의 제조방법이 제공된다. 상기 배터리팩의 제조방법은 제 1 극성을 가지며 하방으로 단차를 형성하도록 오목부를 포함하는 캡 플레이트와 제 2 극성을 가지는 전극 단자를 구비하는 베어셀을 제공하는 단계; 이격된 복수의 리드들로 구성된 리드프레임과 상기 리드프레임 상의 보호회로 구성소자를 구비하는 기본 패키지의 적어도 일부를 상기 오목부 내에 배치하고 상기 전극 단자 및 상기 캡 플레이트와 전기적으로 연결되도록 접합하는 단계; 상기 리드프레임의 일부를 노출시키면서 상기 보호회로 구성소자를 밀봉하는 봉지재를 형성하는 단계; 및 상기 봉지재와 접합되며 상기 오목부의 적어도 일부를 충전하는 충전재를 형성하는 단계;를 포함하고, 상기 봉지재를 형성하는 단계와 상기 충전재를 형성하는 단계는 수지의 용융물의 주입함으로써 동시에 수행될 수 있다. According to another aspect of the present invention, a method of manufacturing a battery pack is provided. The method of manufacturing the battery pack includes the steps of providing a bare cell having a first polarity and a cap plate including a concave portion to form a step downward and an electrode terminal having a second polarity; Arranging at least a portion of a basic package including a lead frame composed of a plurality of spaced leads and a protection circuit component on the lead frame in the recess and electrically connecting the electrode terminal and the cap plate; Forming an encapsulant that seals the protection circuit component while exposing a portion of the leadframe; And forming a filler bonded to the encapsulant and filling at least a portion of the recess, wherein the forming of the encapsulant and the forming of the filler may be simultaneously performed by injecting a melt of the resin. have.
상기 배터리팩의 제조방법에서 상기 봉지재를 형성하는 단계와 상기 충전재를 형성하는 단계는 상기 수지의 용융물을 디스펜싱법 또는 사출성형법에 의하여 주입함으로써 동시에 수행될 수 있다. In the method of manufacturing the battery pack, the forming of the encapsulant and the forming of the filler may be simultaneously performed by injecting a melt of the resin by a dispensing method or an injection molding method.
상기한 바와 같이 이루어진 본 발명의 일부 실시예들에 따르면, 집적화 및 소형화에 유리한 배터리팩 및 그 제조방법을 제공할 수 있다. 물론 이러한 효과에 의해 본 발명의 범위가 한정되는 것은 아니다.According to some embodiments of the present invention made as described above, it is possible to provide a battery pack and a method of manufacturing the same that is advantageous for integration and miniaturization. Of course, the scope of the present invention is not limited by these effects.
도 1은 본 발명의 일부 실시예들에 따른 배터리팩에 적용되는 배터리 보호회로 패키지의 일부를 구성하는 배터리 보호회로의 회로도이다.1 is a circuit diagram of a battery protection circuit constituting a part of a battery protection circuit package applied to a battery pack according to some embodiments of the present invention.
도 2는 본 발명의 일부 실시예들에 따른 배터리팩에 적용되는 배터리 보호회로 패키지의 일부를 구성하는 적층칩의 배치구조를 도해하는 도면이다. 2 is a diagram illustrating an arrangement structure of a stacked chip constituting a part of a battery protection circuit package applied to a battery pack according to some embodiments of the present disclosure.
도 3은 본 발명의 일부 실시예들에 따른 배터리팩에 적용되는 배터리 보호회로 패키지의 일부를 구성하는 리드프레임의 구조를 도해하는 평면도이다. 3 is a plan view illustrating a structure of a lead frame constituting a part of a battery protection circuit package applied to a battery pack according to some embodiments of the present invention.
도 4는 본 발명의 일 실시예에 따른 배터리팩에 적용되는 배터리 보호회로 패키지의 일부를 구성하는 기본 패키지를 도해하는 평면도이다. 4 is a plan view illustrating a basic package constituting a part of a battery protection circuit package applied to a battery pack according to an embodiment of the present invention.
도 5a는 본 발명의 일부 실시예들에 따른 배터리팩에 적용되는 배터리 보호회로 패키지의 일부를 구성하는 기본 패키지를 도해하는 사시도이다. 5A is a perspective view illustrating a basic package constituting a part of a battery protection circuit package applied to a battery pack according to some embodiments of the present disclosure.
도 5b 및 도 5c는 본 발명의 일부 실시예들에 따른 배터리팩에 적용되는 배터리 보호회로 패키지를 도해하는 도면들이다.5B and 5C are diagrams illustrating a battery protection circuit package applied to a battery pack according to some embodiments of the present invention.
도 6은 본 발명의 일부 실시예들에 따른 배터리팩에서 베어셀의 구조를 도해하는 개략적인 단면도이다. 6 is a schematic cross-sectional view illustrating a structure of a bare cell in a battery pack according to some embodiments of the present invention.
도 7은 본 발명의 일 실시예에 따른 배터리팩의 제조방법에서 베어셀 상에 기본 패키지를 접합하는 과정을 도해하는 분해사시도이다. 7 is an exploded perspective view illustrating a process of bonding a basic package on a bare cell in a method of manufacturing a battery pack according to an embodiment of the present invention.
도 8은 본 발명의 변형된 실시예에 따른 배터리팩의 제조방법에서 베어셀 상에 기본 패키지를 접합하는 과정을 도해하는 분해사시도이다. 8 is an exploded perspective view illustrating a process of bonding a basic package on a bare cell in a method of manufacturing a battery pack according to a modified embodiment of the present invention.
도 9는 본 발명의 일부 실시예에 따른 배터리팩의 제조방법에서 베어셀 상에 기본 패키지가 접합된 구조체를 도해하는 단면도이다. 9 is a cross-sectional view illustrating a structure in which a basic package is bonded on a bare cell in a method of manufacturing a battery pack according to some embodiments of the present disclosure.
도 10은 본 발명의 일 실시예에 따른 배터리팩을 도해하는 단면도이다. 10 is a cross-sectional view illustrating a battery pack according to an embodiment of the present invention.
도 11은 본 발명의 일 실시예에 따른 배터리팩을 도해하는 사시도이다. 11 is a perspective view illustrating a battery pack according to an embodiment of the present invention.
도 12는 본 발명의 다른 실시예에 따른 배터리팩을 도해하는 사시도이다. 12 is a perspective view illustrating a battery pack according to another embodiment of the present invention.
도 13은 본 발명의 또 다른 실시예에 따른 배터리 팩의 일부를 도해하는 단면도이다. 13 is a cross-sectional view illustrating a portion of a battery pack according to another embodiment of the present invention.
도 14 및 도 15는 본 발명의 또 다른 실시예 및 변형된 실시예에 따른 배터리 팩에서 배터리 보호회로 패키지가 배터리 캔과 결합되는 과정을 도해하는 사시도들이다. 14 and 15 are perspective views illustrating a process of combining a battery protection circuit package with a battery can in a battery pack according to still another and modified embodiments of the present invention.
도 16은 본 발명의 일부 실시예들에 따른 배터리 팩의 외형을 도해하는 사시도이다. 16 is a perspective view illustrating the appearance of a battery pack in accordance with some embodiments of the present disclosure.
도 17 및 도 18은 본 발명의 다른 실시예에 따른 배터리 팩의 일부를 도해하는 단면도 및 사시도이다. 17 and 18 are cross-sectional views and perspective views illustrating a part of a battery pack according to another embodiment of the present invention.
도 19는 본 발명의 또 다른 실시예에 따른 배터리 팩의 일부를 도해하는 단면도이다. 19 is a cross-sectional view illustrating a portion of a battery pack according to another embodiment of the present invention.
도 20은 본 발명의 또 다른 실시예에 따른 배터리 팩에서 배터리 보호회로 패키지의 일부를 구성하는 PTC 구조체를 도해하는 사시도이다. 20 is a perspective view illustrating a PTC structure constituting a part of a battery protection circuit package in a battery pack according to another embodiment of the present invention.
도 21은 본 발명의 또 다른 실시예에 따른 배터리 팩에서 배터리 보호회로 패키지를 도해하는 도면이다. 21 is a diagram illustrating a battery protection circuit package in a battery pack according to another embodiment of the present invention.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 여러 실시예들을 상세히 설명하기로 한다.Hereinafter, various exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.
본 발명의 실시예들은 당해 기술 분야에서 통상의 지식을 가진 자에게 본 발명을 더욱 완전하게 설명하기 위하여 제공되는 것이며, 하기 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 하기 실시예에 한정되는 것은 아니다. 오히려 이들 실시예들은 본 개시를 더욱 충실하고 완전하게 하고, 당업자에게 본 발명의 사상을 완전하게 전달하기 위하여 제공되는 것이다. 또한, 도면에서 각 층의 두께나 크기는 설명의 편의 및 명확성을 위하여 과장된 것이다.The embodiments of the present invention are provided to more fully explain the present invention to those skilled in the art, and the following examples can be modified in various other forms, and the scope of the present invention is It is not limited to an Example. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art. In addition, the thickness or size of each layer in the drawings is exaggerated for convenience and clarity of description.
명세서 전체에 걸쳐서, 막, 영역 또는 기판과 같은 하나의 구성요소가 다른 구성요소 "상에", "연결되어", "적층되어" 또는 "커플링되어" 위치한다고 언급할 때는, 상기 하나의 구성요소가 직접적으로 다른 구성요소 "상에", "연결되어", "적층되어" 또는 "커플링되어" 접합하거나, 그 사이에 개재되는 또 다른 구성요소들이 존재할 수 있다고 해석될 수 있다. 반면에, 하나의 구성요소가 다른 구성요소 "직접적으로 상에", "직접 연결되어", 또는 "직접 커플링되어" 위치한다고 언급할 때는, 그 사이에 개재되는 다른 구성요소들이 존재하지 않는다고 해석된다. 동일한 부호는 동일한 요소를 지칭한다. 본 명세서에서 사용된 바와 같이, 용어 "및/또는"은 해당 열거된 항목 중 어느 하나 및 하나 이상의 모든 조합을 포함한다.Throughout the specification, when referring to one component, such as a film, region or substrate, being positioned on, "connected", "stacked" or "coupled" to another component, said one configuration It may be interpreted that an element may be directly bonded onto, “connected”, “stacked” or “coupled” to another component, or there may be other components interposed therebetween. On the other hand, when one component is said to be located on another component "directly on", "directly connected", or "directly coupled", it is interpreted that there are no other components intervening therebetween. do. Like numbers refer to like elements. As used herein, the term "and / or" includes any and all combinations of one or more of the listed items.
본 명세서에서 제 1, 제 2 등의 용어가 다양한 부재, 부품, 영역, 층들 및/또는 부분들을 설명하기 위하여 사용되지만, 이들 부재, 부품, 영역, 층들 및/또는 부분들은 이들 용어에 의해 한정되어서는 안 됨은 자명하다. 이들 용어는 하나의 부재, 부품, 영역, 층 또는 부분을 다른 영역, 층 또는 부분과 구별하기 위하여만 사용된다. 따라서, 이하 상술할 제 1 부재, 부품, 영역, 층 또는 부분은 본 발명의 가르침으로부터 벗어나지 않고서도 제 2 부재, 부품, 영역, 층 또는 부분을 지칭할 수 있다.Although the terms first, second, etc. are used herein to describe various members, parts, regions, layers, and / or parts, these members, parts, regions, layers, and / or parts are defined by these terms. It is obvious that not. These terms are only used to distinguish one member, part, region, layer or portion from another region, layer or portion. Thus, the first member, part, region, layer or portion, which will be discussed below, may refer to the second member, component, region, layer or portion without departing from the teachings of the present invention.
또한, "상의" 또는 "위의" 및 "하의" 또는 "아래의"와 같은 상대적인 용어들은 도면들에서 도해되는 것처럼 다른 요소들에 대한 어떤 요소들의 관계를 기술하기 위해 여기에서 사용될 수 있다. 상대적 용어들은 도면들에서 묘사되는 방향에 추가하여 소자의 다른 방향들을 포함하는 것을 의도한다고 이해될 수 있다. 예를 들어, 도면들에서 소자가 뒤집어 진다면(turned over), 다른 요소들의 상부의 면 상에 존재하는 것으로 묘사되는 요소들은 상기 다른 요소들의 하부의 면 상에 방향을 가지게 된다. 그러므로, 예로써 든 "상의"라는 용어는, 도면의 특정한 방향에 의존하여 "하의" 및 "상의" 방향 모두를 포함할 수 있다. 소자가 다른 방향으로 향한다면(다른 방향에 대하여 90도 회전), 본 명세서에 사용되는 상대적인 설명들은 이에 따라 해석될 수 있다.Also, relative terms such as "top" or "above" and "bottom" or "bottom" may be used herein to describe the relationship of certain elements to other elements as illustrated in the figures. It may be understood that relative terms are intended to include other directions of the device in addition to the direction depicted in the figures. For example, if the device is turned over in the figures, elements depicted as present on the face of the top of the other elements are oriented on the face of the bottom of the other elements. Thus, the exemplary term "top" may include both "bottom" and "top" directions depending on the particular direction of the figure. If the device faces in the other direction (rotated 90 degrees relative to the other direction), the relative descriptions used herein can be interpreted accordingly.
본 명세서에서 사용된 용어는 특정 실시예를 설명하기 위하여 사용되며, 본 발명을 제한하기 위한 것이 아니다. 본 명세서에서 사용된 바와 같이, 단수 형태는 문맥상 다른 경우를 분명히 지적하는 것이 아니라면, 복수의 형태를 포함할 수 있다. 또한, 본 명세서에서 사용되는 경우 "포함한다(comprise)" 및/또는 "포함하는(comprising)"은 언급한 형상들, 숫자, 단계, 동작, 부재, 요소 및/또는 이들 그룹의 존재를 특정하는 것이며, 하나 이상의 다른 형상, 숫자, 동작, 부재, 요소 및/또는 그룹들의 존재 또는 부가를 배제하는 것이 아니다.The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. As used herein, the singular forms "a", "an" and "the" may include the plural forms as well, unless the context clearly indicates otherwise. Also, as used herein, "comprise" and / or "comprising" specifies the presence of the mentioned shapes, numbers, steps, actions, members, elements and / or groups of these. It is not intended to exclude the presence or the addition of one or more other shapes, numbers, acts, members, elements and / or groups.
이하, 본 발명의 실시예들은 본 발명의 이상적인 실시예들을 개략적으로 도시하는 도면들을 참조하여 설명한다. 도면들에 있어서, 예를 들면, 제조 기술 및/또는 공차(tolerance)에 따라, 도시된 형상의 변형들이 예상될 수 있다. 따라서, 본 발명 사상의 실시예는 본 명세서에 도시된 영역의 특정 형상에 제한된 것으로 해석되어서는 아니 되며, 예를 들면 제조상 초래되는 형상의 변화를 포함하여야 한다.Embodiments of the present invention will now be described with reference to the drawings, which schematically illustrate ideal embodiments of the present invention. In the figures, for example, variations in the shape shown may be expected, depending on manufacturing techniques and / or tolerances. Accordingly, embodiments of the inventive concept should not be construed as limited to the specific shapes of the regions shown herein, but should include, for example, changes in shape resulting from manufacturing.
본 발명에 개시된 배터리팩은 오목부를 포함하는 베어셀 내에 배터리 보호회로 모듈 패키지의 적어도 일부가 배치되는 구성을 포함하는바, 먼저, 배터리 보호회로 패키지의 구성에 대하여 설명하고자 한다. The battery pack disclosed in the present invention includes a configuration in which at least a part of the battery protection circuit module package is disposed in a bare cell including a recess. First, the configuration of the battery protection circuit package will be described.
도 1은 본 발명의 일부 실시예들에 따른 배터리팩에 적용되는 배터리 보호회로 패키지의 일부를 구성하는 배터리 보호회로의 회로도이다.1 is a circuit diagram of a battery protection circuit constituting a part of a battery protection circuit package applied to a battery pack according to some embodiments of the present invention.
도 1에 도시된 바와 같이, 본 발명의 일 실시예에 따른 배터리 보호회로 패키지(300)에 적용되는 배터리 보호회로(10)는 배터리 베어셀에 연결되기 위한 제 1 및 제 2 내부연결단자(B+, B-), 충전시에는 충전기에 연결되고, 방전시에는 배터리 전원에 의하여 동작되는 전자기기(예, 휴대단말기 등)와 연결되기 위한 제 1 내지 제 3 외부연결단자들(P+, CF, P-)을 구비한다. 여기서 제 1 내지 제 3 외부연결단자들(P+, CF, P-) 중 제 1 외부연결단자(P+) 및 제 3 외부연결단자(P-)는 전원공급을 위한 것이고 나머지 하나의 외부연결단자인 제 2 외부연결단자(CF)는 배터리를 구분하여 배터리에 맞게 충전을 하도록 한다. 또한, 충전시 배터리 온도로 감지하는 부품인 써미스터(Thermistor)를 적용할 수 있으며, 기타 기능이 적용되고 단자로서 활용될 수 있다. As shown in FIG. 1, the battery protection circuit 10 applied to the battery protection circuit package 300 according to an embodiment of the present invention may include first and second internal connection terminals B + to be connected to a battery bare cell. , B-), the first to third external connection terminals (P +, CF, P) to be connected to the charger when charging, and to the electronic device (eg, portable terminal, etc.) operated by the battery power during the discharge -) Here, the first external connection terminal P + and the third external connection terminal P- among the first to third external connection terminals P +, CF, and P- are for power supply and the other external connection terminal is The second external connection terminal CF may be configured to charge the battery by classifying the battery. In addition, thermistor, a component that senses battery temperature during charging, can be applied. Other functions can be applied and used as terminals.
그리고 배터리 보호회로(10)는 듀얼 FET칩(110), 프로텍션 집적회로(120), 저항(R1,R2,R3), 배리스터(varistor)(V1), 및 커패시터(C1, C2)의 연결구조를 가진다. 듀얼 FET칩(110)은 드레인 공통 구조를 가지는 제 1 전계효과 트랜지스터(FET1)와 제 2 전계효과 트랜지스터(FET2)로 구성된다. 프로텍션 집적회로(Protection IC, 120)는 저항(R1)을 통하여 배터리의 (+)단자인 제 1 내부연결단자(B+)와 연결되고 제 1 노드(n1)를 통해 충전전압 또는 방전전압이 인가되는 전압인가와 배터리 전압을 감지하는 단자(VDD단자), 프로텍션 집적회로(110) 내부의 동작전압에 대한 기준이 되는 기준단자(VSS단자), 충방전 및 과전류 상태를 감지하기 위한 감지단자(V-단자), 과방전 상태에서 제 1 전계효과 트랜지스터(FET1)를 오프시키기 위한 방전차단신호 출력단자(DO단자), 과충전 상태에서 제 2 전계효과 트랜지스터(FET2)를 오프시키기 위한 충전차단신호 출력단자(C0단자)를 갖는다.The battery protection circuit 10 includes a connection structure of the dual FET chip 110, the protection integrated circuit 120, the resistors R1, R2, and R3, the varistor V1, and the capacitors C1 and C2. Have The dual FET chip 110 includes a first field effect transistor FET1 and a second field effect transistor FET2 having a drain common structure. The protection IC 120 is connected to the first internal connection terminal B +, which is a positive terminal of the battery, through a resistor R1, and a charge voltage or a discharge voltage is applied through the first node n1. Terminal for sensing voltage and battery voltage (VDD terminal), reference terminal (VSS terminal) as a reference for the operating voltage inside the protection integrated circuit 110, sensing terminal for sensing the charge and discharge and overcurrent conditions (V- Terminal), the discharge interruption signal output terminal (DO terminal) for turning off the first field effect transistor FET1 in the overdischarge state, and the charge interruption signal output terminal (OFF) for turning off the second field effect transistor FET2 in the overcharge state ( C0 terminal).
이때, 프로텍션 집적회로(120)의 내부는 기준전압 설정부, 기준전압과 충방전 전압을 비교하기 위한 비교부, 과전류 검출부, 충방전 검출부를 구비하고 있다. 여기서 충전 및 방전상태의 판단 기준은 유저가 요구하는 스펙(SPEC)으로 변경이 가능하며 그 정해진 기준에 따라 프로텍션 집적회로(120)의 각 단자별 전압차를 인지하여 충ㆍ방전상태를 판정한다.In this case, the inside of the protection integrated circuit 120 includes a reference voltage setting unit, a comparison unit for comparing the reference voltage and the charge / discharge voltage, an overcurrent detector, and a charge / discharge detector. The criterion for determining the state of charge and discharge may be changed to a specification required by the user, and the charge / discharge state is determined by recognizing the voltage difference of each terminal of the protection integrated circuit 120 according to the determined criterion.
프로텍션 집적회로(120)는 방전시에 과방전상태에 이르게 되면, DO단자는 로우(LOW)로 되어 제 1 전계효과 트랜지스터(FET1)를 오프시키고, 과충전 상태에 이르게 되면 CO 단자가 로우로 되어 제 2 전계효과 트랜지스터(FET2)를 오프시키고, 과전류가 흐르는 경우에는 충전시에는 제 2 전계효과 트랜지스터(FET2), 방전시에는 제 1 전계효과 트랜지스터(FET1)를 오프시키도록 구성되어 있다. When the protection integrated circuit 120 reaches an overdischarge state during discharge, the DO terminal goes low to turn off the first field effect transistor FET1, and when the overcharge state reaches the overcharge state, the CO terminal goes low. The second field effect transistor FET2 is turned off, and when the overcurrent flows, the second field effect transistor FET2 is turned off during charging and the first field effect transistor FET1 is turned off when discharging.
저항(R1)과 커패시터(C1)는 프로텍션 집적회로(120)의 공급전원의 변동을 안정시키는 역할을 한다. 저항(R1)은 배터리의 전원(V1) 공급노드인 제 1 노드(n1)와 프로텍션 집적회로(120)의 VDD 단자 사이에 연결되고, 커패시터(C1)는 프로텍션 집적회로의 VDD단자와 VSS단자 사이에 연결된다. 여기서 제 1 노드(n1)는 제 1 내부연결단자(B+)와 제 1 외부연결단자(P+)에 연결되어 있다. 저항(R1)을 크게 하면 전압 검출시 프로텍션 집적회로(120) 내부에 침투되는 전류에 의해서 검출전압이 높아지기 때문에 저항(R1)의 값은 1KΩ 이하의 적당한 값으로 설정된다. 또한 안정된 동작을 위해서 상기 커패시터(C1)의 값은 0.01μF 이상의 적당한 값을 가진다.The resistor R1 and the capacitor C1 serve to stabilize fluctuations in the power supply of the protection integrated circuit 120. The resistor R1 is connected between the first node n1, which is the power supply V1 of the battery, and the VDD terminal of the protection integrated circuit 120, and the capacitor C1 is connected between the VDD terminal and the VSS terminal of the protection integrated circuit. Is connected to. Here, the first node n1 is connected to the first internal connection terminal B + and the first external connection terminal P +. When the resistor R1 is made larger, the detection voltage is increased by the current penetrating into the protection integrated circuit 120 when the voltage is detected. Therefore, the value of the resistor R1 is set to an appropriate value of 1 K? Or less. In addition, the value of the capacitor (C1) has a suitable value of 0.01μF or more for stable operation.
그리고 저항(R1)과 저항(R2)은 프로텍션 집적회로(120)의 절대 최대정격을 초과하는 고전압 충전기 또는 충전기가 거꾸로 연결되는 경우 전류 제한 저항이 된다. 저항(R2)은 프로텍션 집적회로(120)의 V-단자와 제 2 전계효과 트랜지스터(FET2)의 소오스 단자(S2)가 연결된 제 2 노드(n2) 사이에 연결된다. 저항(R1)과 저항(R2)은 전원소비의 원인이 될 수 있으므로 통상 저항(R1)과 저항(R2)의 저항값의 합은 1KΩ 보다 크게 설정된다. 그리고 저항(R2)이 너무 크다면 과충전 차단후에 복귀가 일어나지 않을 수 있으므로, 저항(R2)의 값은 10KΩ 또는 그 이하의 값으로 설정된다.In addition, the resistors R1 and R2 become current limiting resistors when the high voltage charger or the charger exceeding the absolute maximum rating of the protection integrated circuit 120 is connected upside down. The resistor R2 is connected between the V-terminal of the protection integrated circuit 120 and the second node n2 to which the source terminal S2 of the second field effect transistor FET2 is connected. Since the resistors R1 and R2 may cause power consumption, the sum of the resistance values of the resistors R1 and R2 is usually set to be larger than 1 KΩ. If the resistor R2 is too large, no recovery may occur after the overcharge cutoff, and thus the value of the resistor R2 is set to a value of 10 K? Or less.
커패시터(C2)는 제 2 노드(n2)(또는 제 3 외부연결단자(P-))와 제 1 전계효과 트랜지스터(FET1)의 소오스 단자(S1)(또는 VSS 단자, 제 2 내부연결단자(B-)) 사이에 연결되는 구조를 가진다. 커패시터(C2)는 상기 배터리 보호회로 제품의 특성에 크게 영향을 끼치지는 않지만, 유저의 요청이나 안정성을 위해 추가되고 있다. 상기 커패시터(C2)는 전압변동이나 외부 노이즈에 대한 내성을 향상시켜 시스템을 안정화시키는 효과를 위한 것이다.The capacitor C2 is the source node S1 (or VSS terminal, the second internal connection terminal B) of the second node n2 (or the third external connection terminal P−) and the first field effect transistor FET1. -)) Has a structure that is connected between. The capacitor C2 does not significantly affect the characteristics of the battery protection circuit product, but is added for the user's request or stability. The capacitor C2 is for the effect of stabilizing the system by improving resistance to voltage fluctuations or external noise.
그리고 저항(R3) 및 배리스터(V1)는 ESD(Electrostatic Discharge), 서지(surge) 보호를 위한 소자들로써, 서로 병렬연결되는 구조로 제 2 외부연결단자(CF)와 상기 제 2 노드(n2)(또는 제 3 외부연결단자(P-)) 사이에 연결 배치된다. 상기 배리스터(V1)는 과전압 발생시 저항이 낮아지는 소자로, 과전압이 발생되는 경우 저항이 낮아져 과전압으로 인한 회로손상 등을 최소화할 수 있다.The resistor R3 and the varistor V1 are elements for ESD protection and surge protection. The resistor R3 and the varistor V1 are connected to each other in parallel to each other so that the second external connection terminal CF and the second node n2 ( Or it is connected between the third external connection terminal (P-). The varistor (V1) is a device that lowers the resistance when an overvoltage occurs, and when the overvoltage occurs, the resistance is lowered to minimize circuit damage due to the overvoltage.
본 발명에서는 외부연결단자들(P+,P-,CF), 내부연결단자(B+,B-)를 포함하여 도 1에 도시된 배터리 보호회로(10)를 패키징하여 구성한 배터리 보호회로의 패키지를 구현하고 있다.The present invention implements a package of a battery protection circuit configured by packaging the battery protection circuit 10 shown in FIG. 1 including external connection terminals (P +, P-, CF) and internal connection terminals (B +, B-). Doing.
전술한 본 발명의 일 실시예에 따른 보호회로는 예시적이고, 프로텍션 집적회로, 전계효과 트랜지스터 또는 수동소자의 구성이나 수, 배치 등은 보호회로의 부가 기능에 따라서 적절하게 변형될 수 있다. 이러한 예로서, 프로텍션 집적회로 및 전계효과 트랜지스터의 구성이나 수, 배치 등의 예시적인 실시예를 도 2를 참조하여 설명한다. The protection circuit according to an embodiment of the present invention described above is exemplary, and the configuration, number, arrangement, and the like of the protection integrated circuit, the field effect transistor, or the passive element may be appropriately modified according to the additional function of the protection circuit. As such an example, an exemplary embodiment of the configuration, number, arrangement, etc. of the protection integrated circuit and the field effect transistor will be described with reference to FIG.
도 2는, 본 발명의 일 실시예에 따른 배터리팩에 적용되는 배터리 보호회로 패키지의 일부를 구성하는 적층칩의 배치구조를 도해하는 도면이다. 2 is a diagram illustrating an arrangement structure of a stacked chip constituting a part of a battery protection circuit package applied to a battery pack according to an embodiment of the present invention.
도 2에 도시된 바와 같이, 듀얼 FET칩(110)과 프로텍션 집적회로(120)의 배치는 듀얼 FET칩(110)과 프로텍션 집적회로(120)가 상하 적층된 구조를 가지거나 서로 인접 배치되는 구조를 가진다. 예를 들어, 듀얼 FET칩(110)의 상면에 프로텍션 집적회로(120)가 적층된 구조를 가지거나, 프로텍션 집적회로(120)의 좌측 또는 우측에 인접되어 듀얼 FET칩(110)이 배치될 수 있다.As shown in FIG. 2, the arrangement of the dual FET chip 110 and the protection integrated circuit 120 has a structure in which the dual FET chip 110 and the protection integrated circuit 120 are stacked up and down or adjacent to each other. Has For example, the protection integrated circuit 120 may be stacked on the upper surface of the dual FET chip 110, or the dual FET chip 110 may be disposed adjacent to the left or right side of the protection integrated circuit 120. have.
듀얼 FET 칩(110)은 공통드레인 구조의 제 1 전계효과 트랜지스터 및 제 2 전계효과 트랜지스터, 즉 2개의 전계효과 트랜지스터를 내장하고 있으며, 외부연결단자는 제 1 전계효과 트랜지스터의 제 1 게이트단자(G1) 및 제 1 소오스 단자(S1)와 제 2 전계효과 트랜지스터의 제 2 게이트 단자(G2) 및 제 2 소오스 단자(S2)를 상기 듀얼 FET칩(110)의 상면에 구비하는 구조를 가진다. 또한, 공통드레인 단자(D)가 듀얼 FET 칩(110)의 하부면에 구비되는 구조를 가질 수 있다.The dual FET chip 110 includes a first field effect transistor having a common drain structure and a second field effect transistor, that is, two field effect transistors, and the external connection terminal includes a first gate terminal G1 of the first field effect transistor. ) And a first source terminal S1, a second gate terminal G2, and a second source terminal S2 of the second field effect transistor on the upper surface of the dual FET chip 110. In addition, the common drain terminal D may have a structure provided on the lower surface of the dual FET chip 110.
프로텍션 집적회로(120)는 듀얼 FET칩(110)의 상면에 적층 배치되는 구조를 가진다. 프로텍션 집적회로(120)는 듀얼 FET 칩(110) 상의 외부연결단자들이 배치된 부분을 제외한 영역(예를 들면, 중앙부위)에 적층 배치된다. 이때 프로텍션 집적회로(120)와 듀얼 FET칩(110)의 사이에는 절연을 위한 절연막이 배치될 수 있고, 프로텍션 집적회로(120)와 듀얼 FET칩(110)은 절연성 재질의 접착제로 접착될 수 있다. 통상적으로 듀얼 FET칩(110)의 사이즈가 프로텍션 집적회로(120) 보다는 크기 때문에, 듀얼 FET칩(110)의 상부에 프로텍션 집적회로(120)를 적층하는 배치구조를 채택한다.The protection integrated circuit 120 has a structure in which the protection integrated circuit 120 is stacked on the upper surface of the dual FET chip 110. The protection integrated circuit 120 is stacked in a region (for example, a central portion) except for a portion where external connection terminals on the dual FET chip 110 are disposed. In this case, an insulating film for insulation may be disposed between the protection integrated circuit 120 and the dual FET chip 110, and the protection integrated circuit 120 and the dual FET chip 110 may be bonded with an adhesive of an insulating material. . Since the size of the dual FET chip 110 is generally larger than that of the protection integrated circuit 120, an arrangement structure in which the protection integrated circuit 120 is stacked on the dual FET chip 110 is adopted.
프로텍션 집적회로(120)가 듀얼 FET칩(110)의 상면에 적층 배치된 이후에 프로텍션 집적회로(120)의 DO 단자(DO)는, 제 1 게이트 단자(G1)와 와이어 또는 배선을 통해 전기적으로 연결되고, 프로텍션 집적회로(120)의 CO 단자(CO)는, 제 2 게이트 단자(G2)와 와이어 또는 배선을 통해 전기적으로 연결되게 된다. 나머지 단자들의 연결구조는 추후 설명한다. 상술한 바와 같은 적층구조를 가지는 프로텍션 집적회로(120)와 듀얼 FET칩(110)을 적층칩(100a)이라고 통칭하기로 한다.After the protection integrated circuit 120 is stacked on the upper surface of the dual FET chip 110, the DO terminal DO of the protection integrated circuit 120 is electrically connected to the first gate terminal G1 through a wire or a wire. The CO terminal CO of the protection integrated circuit 120 is electrically connected to the second gate terminal G2 through a wire or a wire. The connection structure of the remaining terminals will be described later. The protection integrated circuit 120 and the dual FET chip 110 having the stacked structure as described above will be collectively referred to as a stacked chip 100a.
본 발명의 일 실시예에 따른 배터리팩에 적용되는 배터리 보호회로 패키지에서는 적층구조를 가지는 프로텍션 집적회로(120)와 듀얼 FET칩의 적층칩(100a)을 도입함으로써, 후술할 리드프레임 상에 실장하는 면적을 줄일 수 있으며 이에 따라 배터리의 소형화 또는 고용량화를 구현할 수 있다. In the battery protection circuit package applied to the battery pack according to an embodiment of the present invention, a protection integrated circuit 120 having a stacked structure and a stacked chip 100a of a dual FET chip are introduced to be mounted on a lead frame to be described later. The area can be reduced, thereby miniaturizing or increasing the capacity of the battery.
배터리 보호회로 패키지는 인쇄회로기판 및 상기 인쇄회로기판 상에 배치된 배터리 보호회로 소자를 포함할 수 있다. 또는, 배터리 보호회로 패키지는 리드프레임 및 상기 리드프레임 상에 배치된 배터리 보호회로 소자를 포함할 수 있다. 여기에서, 배터리 보호회로 소자는 프로텍션 집적회로, 전계효과 트랜지스터 및 적어도 하나 이상의 수동소자를 포함할 수 있다. 본 발명의 실시예들에서, 리드프레임은 금속 프레임에 리드 단자들이 패터닝된 구성으로서, 절연코어 상에 금속 배선층이 형성된 인쇄회로기판과는 그 구조나 두께 등에서 구분될 수 있다. 이하에서는, 리드프레임 상에 배터리 보호회로 소자를 배치하는 패키지에 대하여 살펴본다. The battery protection circuit package may include a printed circuit board and a battery protection circuit device disposed on the printed circuit board. Alternatively, the battery protection circuit package may include a lead frame and a battery protection circuit element disposed on the lead frame. Herein, the battery protection circuit device may include a protection integrated circuit, a field effect transistor, and at least one passive device. In embodiments of the present invention, the lead frame is a structure in which lead terminals are patterned on a metal frame, and may be distinguished from a printed circuit board having a metal wiring layer formed on an insulating core in its structure or thickness. Hereinafter, a package for disposing a battery protection circuit element on a lead frame will be described.
도 3은 본 발명의 일부 실시예들에 따른 배터리팩에 적용되는 배터리 보호회로 패키지의 일부를 구성하는 리드프레임의 구조를 도해하는 평면도이고, 도 4는 본 발명의 일 실시예에 따른 배터리팩에 적용되는 배터리 보호회로 패키지의 일부를 구성하는 기본 패키지를 도해하는 평면도이다. 3 is a plan view illustrating a structure of a lead frame constituting a part of a battery protection circuit package applied to a battery pack according to some embodiments of the present invention, and FIG. 4 is a view of a battery pack according to an embodiment of the present invention. A plan view illustrating a basic package constituting part of a battery protection circuit package to be applied.
도 3 및 도 4를 참조하면, 본 발명의 일 실시예에 따른 배터리팩에 적용되는 배터리 보호회로 패키지에서 리드프레임(50)은 제 1 내부연결단자영역(A1), 외부연결단자영역(A2), 소자영역(A3) 및 칩영역(A4)의 보호회로영역, 제 2 내부연결단자영역(A5)이 순차적으로 배치되는 구조를 가진다. 상기 보호회로영역은 외부연결단자영역(A2)과 제 2 내부연결단자영역(A5) 사이에 배치되는 것으로, 소자영역(A3) 및 칩영역(A4)의 배치순서는 다양하게 변경 가능하다.3 and 4, in the battery protection circuit package applied to the battery pack according to an embodiment of the present invention, the lead frame 50 includes a first internal connection terminal region A1 and an external connection terminal region A2. In this case, the protection circuit region and the second internal connection terminal region A5 of the device region A3 and the chip region A4 are sequentially arranged. The protection circuit region is disposed between the external connection terminal region A2 and the second internal connection terminal region A5, and the arrangement order of the device region A3 and the chip region A4 may be changed in various ways.
제 1 내부연결단자영역(A1) 및 제 2 내부단자영역(A5)은 패키지의 양쪽가장자리부분에 각각 구비되며, 베어셀(400)을 구성하는 캡 조립체(450)와 연결되는 제 1 내부연결단자로서 기능하는 제 1 내부연결단자용 리드(B+)와 제 2 내부연결단자로서 기능하는 제 2 내부연결단자용 리드(B-)가 각각 배치된다.The first internal connection terminal area A1 and the second internal terminal area A5 are respectively provided at both edge portions of the package and are connected to the first internal connection terminal connected to the cap assembly 450 constituting the bare cell 400. The first internal connection terminal lead B + serving as a second internal connection terminal lead B- functioning as a second internal connection terminal is disposed, respectively.
외부연결단자영역(A2)은 제 1 내부연결단자영역(A1)에 인접되며, 복수의 외부연결단자들로서 기능하는 복수의 외부연결단자용 리드들인 제 1 내지 제 3 외부연결단자용 리드(P+, CF, P-)가 각각 순차적으로 배치된다. 제 1 내지 제 3 외부연결단자용 리드(P+, CF, P-)의 배치순서는 다양하게 달라질 수 있다. 여기서 제 1 외부연결단자용 리드(P+)와 제 1 내부연결단자용 리드(B+)는 서로 연결되어 있다. 즉 제 1 내부연결단자용 리드(B+)는 제 1 외부연결단자용 리드(P+)에서 연장되어 구성되거나, 제 1 외부연결단자용 리드(P+)가 제 1 내부연결단자용 리드(B+)에서 연장되어 구성될 수 있다.The external connection terminal region A2 is adjacent to the first internal connection terminal region A1 and leads to the first to third external connection terminals P +, which are leads for a plurality of external connection terminals, which function as a plurality of external connection terminals. CF and P-) are each disposed sequentially. The order of arranging the first to third external connection leads P +, CF, and P− may vary. Here, the lead P + for the first external connection terminal and the lead B + for the first internal connection terminal are connected to each other. That is, the first internal connection lead B + is configured to extend from the first external connection lead P +, or the first external connection lead P + is formed from the first internal connection lead B +. It may be extended.
소자영역(A3)은 배터리 보호회로를 구성하는 복수의 수동소자들(R1, R2, R3, C1, C2, V1)이 배치되기 위한 것으로, 예를 들어, 복수의 도전성 라인들로 구성된 제 1 내지 제 6 수동소자용 리드(L1, L2, L3, L4, L5, L6)가 배치된다. 예를 들어, 제 1 내지 제 3 수동소자용 리드(L1, L2, L3)는 상기 소자영역(A3)의 상부쪽에 순차적 배치구조를 가질 수 있고, 제 4 내지 제 6 수동소자용 리드(L4, L5, L6)는 소자영역(A3)의 하부쪽에 배치되는 구조를 가질 수 있다.The device region A3 is for arranging a plurality of passive elements R1, R2, R3, C1, C2, and V1 constituting the battery protection circuit. The sixth passive element leads L1, L2, L3, L4, L5, L6 are disposed. For example, the first to third passive element leads L1, L2 and L3 may have a sequential arrangement structure on an upper side of the device region A3, and the fourth to sixth passive element leads L4, L5 and L6 may have a structure disposed below the device region A3.
예를 들어, 제 1 수동소자용 리드(L1)는 외부연결단자영역(A2)에 인접된 소자영역(A3)에 일정크기로 배치되고, 제 2 수동소자용 리드(L2)는 제 1 수동소자용 리드(L1)에 인접하여 일정크기로 배치된다. 제 3 수동소자용 리드(L3)는 칩영역(A4)에 인접된 소자영역(A3)에 제 2 수동소자용 리드(L2)에 인접하여 일정크기로 배치된다. 제 4 수동소자용 리드(L4)는 외부연결단자영역(A2)에 인접된 소자영역(A3)에 일정크기로 배치되고, 제 5 수동소자용 리드(L5)와 제 6 수동소자용 리드(L6)는 제 5 수동소자용 리드(L5)가 제 6 수동소자용 리드(L6)를 둘러싸는 형태로 제 4 수동소자용 리드(L1)에 인접되어 배치된다.For example, the first passive element lead L1 is disposed at a predetermined size in the element region A3 adjacent to the external connection terminal region A2, and the second passive element lead L2 is the first passive element. It is arranged in a predetermined size adjacent to the lead L1. The third passive element lead L3 is disposed at a predetermined size in the element region A3 adjacent to the chip region A4 and adjacent to the second passive element lead L2. The fourth passive element lead L4 is disposed in a predetermined size in the element region A3 adjacent to the external connection terminal region A2, and the fifth passive element lead L5 and the sixth passive element lead L6 are fixed. ) Is disposed adjacent to the fourth passive element lead L1 in such a manner that the fifth passive element lead L5 surrounds the sixth passive element lead L6.
칩영역(A4)은 소자영역(A3)에 인접되며 배터리 보호회로를 구성하는 프로텍션 집적회로 및 듀얼 FET칩이 배치되기 위한 영역으로, 적층칩(100a)이 장착되기 위한 다이패드(DP)가 배치될 수 있다. 다이패드(DP)는 적층칩(100a)을 구성하는 듀얼 FET칩(110)의 공통드레인 단자와 전기적으로 연결될 수 있으며, 후속공정의 패키징시 노출되도록 하여 외부연결단자로써 기능함과 동시에 방열특성을 개선하도록 할 수 있다.The chip area A4 is an area for arranging a protection integrated circuit and a dual FET chip adjacent to the device area A3 and constituting a battery protection circuit. A die pad DP for mounting the stacked chip 100a is disposed. Can be. The die pad DP may be electrically connected to the common drain terminal of the dual FET chip 110 constituting the stacked chip 100a, and may be exposed during packaging of the subsequent process to function as an external connection terminal and to exhibit heat dissipation characteristics. It can be improved.
도 3 및 도 4를 참조하면, 도 3의 리드프레임에 복수의 수동소자들(R1, R2, R3, C1, C2, V1) 및 적층칩(100a)이 배치되고, 와이어 본딩 등을 통해 도 1에 도시된 등가회로를 구성하게 된다. 3 and 4, a plurality of passive elements R1, R2, R3, C1, C2, and V1 and a stacked chip 100a are disposed in the lead frame of FIG. 3, and FIG. The equivalent circuit shown in FIG.
우선 칩영역(A4)의 다이패드(DP) 상에 적층칩(100a)을 장착하고, 적층칩(100a)을 구성하는 프로텍션 집적회로(120)의 기준전압단자(VSS)는 제 1 전계효과 트랜지스터의 소오스 단자 또는 제 3 수동소자용 리드(L3)와 와이어 본딩을 수행하여 전기적으로 연결한다.First, the stacked chip 100a is mounted on the die pad DP of the chip region A4, and the reference voltage terminal VSS of the protection integrated circuit 120 constituting the stacked chip 100a is a first field effect transistor. The wire terminal and the third passive element lead (L3) of the wire bonding to perform the electrical connection.
그리고 프로텍션 집적회로(120)에서 충전전압 및 방전전압이 인가되는 전압인가와 배터리 전압을 감지하는 단자(VDD)는 제 2 수동소자용 리드(L2)와 와이어 본딩 등을 통해 전기적으로 연결하고, 프로텍션 집적회로(120)에서 충방전 및 과전류 상태를 감지하기 위한 감지단자(V-)를 제 6 수동소자용 리드(L6)에 와이어 본딩을 통해 전기적으로 연결한다.In addition, the protection integrated circuit 120 electrically connects the terminal VDD to which the charge voltage and the discharge voltage are applied and detects the battery voltage through the wire L2 of the second passive element through wire bonding. In the integrated circuit 120, a sensing terminal V− for sensing a charge / discharge and an overcurrent state is electrically connected to the sixth passive element lead L6 through wire bonding.
제 1 전계효과 트랜지스터의 소오스단자(S1)는 제 3 수동소자용 리드(L3)와 와이어 본딩 등을 통해 전기적으로 연결하고, 제 2 전계효과 트랜지스터의 소오스단자(S2)는 제 5 수동소자용 리드(L5)와 와이어 본딩 등을 통해 전기적으로 연결하게 된다.The source terminal S1 of the first field effect transistor is electrically connected to the lead L3 for the third passive element through wire bonding, and the source terminal S2 of the second field effect transistor is the lead for the fifth passive element. It is electrically connected with the L5 through wire bonding.
다음으로, 제 1 수동소자용 리드(L1)와 제 1 외부연결단자용 리드(P+)를 와이어 본딩 등을 통해 전기적으로 연결하고, 제 3 수동소자용 리드(L3)와 제 2 내부연결단자용 리드(B-)를 와이어 본딩 등을 통해 전기적으로 연결한다. 제 4 수동소자용 리드(L4)는 제 2 외부연결단자용 리드(CF)와 와이어 본딩을 통해 전기적으로 연결되고, 제 5 수동소자용 리드(L5)는 제 3 외부연결단자용 리드(L3)와 와이어 본딩 등을 통해 전기적으로 연결된다. 그리고, 상기 복수의 수동소자들 중 제 1 저항(R1)은 제 1 수동소자용 리드(L1)와 제 2 수동소자용 리드(L2) 사이에 배치되고, 상기 복수의 수동소자들 중 제 2 저항(R2)은 제 5 수동소자용 리드(L5)와 제 6 수동소자용 리드(L6) 사이에 배치된다.Next, the first passive element lead L1 and the first external connection terminal lead P + are electrically connected through wire bonding, and the third passive element lead L3 and the second internal connection terminal are used. The lead B- is electrically connected through wire bonding or the like. The fourth passive element lead L4 is electrically connected to the second external connection terminal lead CF through wire bonding, and the fifth passive element lead L5 is the third external connection terminal lead L3. And is electrically connected through wire bonding or the like. The first resistor R1 of the plurality of passive elements is disposed between the first passive element lead L1 and the second passive element lead L2, and the second resistor of the passive elements is a second resistor. R2 is disposed between the fifth passive element lead L5 and the sixth passive element lead L6.
복수의 수동소자들 중 서지보호회로를 구성하는 제 3 저항(R3)은 제 4 수동소자용 리드(L4)와 제 5 수동소자용 리드(L5) 사이에 배치되고, 상기 복수의 수동소자들 중 제 1 커패시터(C1)는 제 2 수동소자용 리드(L2)와 제 3 수동소자용 리드(L3) 사이에 배치되고, 상기 복수의 수동소자들 중 제 2 커패시터(C2)는 제 3 수동소자용 리드(L3)와 제 5 수동소자용 리드(L5) 사이에 배치된다. 상기 복수의 수동소자들 중 상기 서지보호회로를 구성하는 배리스터(varistor)(V1)는 제 3 저항(R3)과 병렬로 구성되어 제 4 수동소자용 리드(L4)와 제 5 수동소자용 리드(L5) 사이에 배치되게 된다. The third resistor R3 constituting the surge protection circuit among the plurality of passive elements is disposed between the fourth passive element lead L4 and the fifth passive element lead L5, and among the plurality of passive elements. The first capacitor C1 is disposed between the second passive element lead L2 and the third passive element lead L3, and the second capacitor C2 of the plurality of passive elements is used for the third passive element. It is arranged between the lead L3 and the fifth passive element lead L5. Varistor (V1) constituting the surge protection circuit of the plurality of passive elements is configured in parallel with the third resistor (R3) to the fourth passive element lead (L4) and the fifth passive element lead ( It is arranged between L5).
한편, 본 발명의 다른 실시예들에서, 도 1에 도시된 배터리 보호회로의 회로도와 이를 구현하는 도 4에 도시된 기본 패키지(200a)는 다양하게 변형될 수 있으며, 이에 따라 다양한 변형된 구조체를 포함하여 실시될 수 있다. Meanwhile, in other embodiments of the present invention, the circuit diagram of the battery protection circuit shown in FIG. 1 and the basic package 200a shown in FIG. 4 implementing the same may be variously modified, and thus, various modified structures may be modified. It can be carried out including.
예를 들어, 변형된 제 1 구조체에서는, 제 1 전계효과 트랜지스터(FET1), 제 2 전계효과 트랜지스터(FET2), 및 프로텍션 집적회로가 하나의 칩에 통합되어 제공될 수 있다. 통합된 상기 하나의 칩은 리드프레임(50) 상에 플립칩 형태로 실장될 수 있다. 플립칩은, 별도의 와이어 본딩이 필요없이, 외부단자부분이 전기적 접속이 필요한 리드 등에 솔더링 결합되어 전기적 연결되므로 와이어 본딩 대비 전기전도도가 향상되고 생산단가가 낮아지고 공정단순화를 이룰 수 있는 장점이 있으며, 차지하는 부피를 줄일 수 있다는 장점이 있다.For example, in the modified first structure, the first field effect transistor FET1, the second field effect transistor FET2, and the protection integrated circuit may be provided integrated into one chip. The integrated single chip may be mounted on the lead frame 50 in the form of a flip chip. Flip chip has the advantage of improving the electrical conductivity, lowering production cost and process simplification compared to wire bonding since the external terminal is soldered and connected to the lead etc. which requires the electrical connection without the need for separate wire bonding. This has the advantage of reducing the volume occupied.
또한, 예를 들어, 변형된 제 2 구조체에서는, 제 1 전계효과 트랜지스터(FET1)와 제 2 전계효과 트랜지스터(FET2)가 리드프레임(50) 상에 듀얼 FET칩으로 구현되지 않고 서로 이격되어 배치될 수 있다. 이 경우, 제 1 전계효과 트랜지스터(FET1)의 드레인과 제 2 전계효과 트랜지스터(FET2)의 드레인이 서로 전기적으로 연결되도록 하기 위하여, 리드프레임(50)의 하부면을 서로 연결하는 도전성 플레이트를 추가로 배치할 수 있다.In addition, for example, in the modified second structure, the first field effect transistor FET1 and the second field effect transistor FET2 may be spaced apart from each other on the lead frame 50 without being implemented as a dual FET chip. Can be. In this case, in order to allow the drain of the first field effect transistor FET1 and the drain of the second field effect transistor FET2 to be electrically connected to each other, a conductive plate for connecting the lower surface of the lead frame 50 to each other is further provided. Can be placed.
도 5a는 본 발명의 일부 실시예들에 따른 배터리팩에 적용되는 배터리 보호회로 패키지의 일부를 구성하는 기본 패키지를 도해하는 사시도이고, 도 5b 및 도 5c는 본 발명의 일부 실시예들에 따른 배터리팩에 적용되는 배터리 보호회로 패키지를 도해하는 도면들이다.5A is a perspective view illustrating a basic package constituting a part of a battery protection circuit package applied to a battery pack according to some embodiments of the present invention, and FIGS. 5B and 5C are batteries according to some embodiments of the present invention. A diagram illustrating a battery protection circuit package applied to a pack.
도 5a를 참조하면, 상술한 배치구조를 가지는 배터리 보호회로를 구현하는 기본 패키지(200a)는 봉지재(250)를 형성하기 이전의 구조체로 이해될 수 있으며, 이후에 봉지재(250)로 몰딩하는 등의 공정을 통해 배터리 보호회로 모듈 패키지(도 5b 및 도 5c의 300)를 구현하게 된다. 즉, 기본 패키지(200a)에서 보호회로 구성소자(100a, 100b, 130)를 밀봉하고, 리드프레임(50)의 일부인 제 1 내부연결단자용 리드(B+) 및 제 2 내부연결단자용 리드(B-)를 노출시키는, 봉지재(250)가 형성되어 배터리 보호회로 모듈 패키지(300)가 구현될 수 있다. 봉지재(250)는, 예를 들어, 에폭시 몰딩 컴파운드(EMC)를 포함할 수 있다. 도 5a에 도시된 보호회로 구성소자(130)는 도 4에 도시된 복수의 수동소자들(R1, R2, R3, C1, C2, V1)을 포함한다. Referring to FIG. 5A, the basic package 200a implementing the battery protection circuit having the above-described arrangement structure may be understood as a structure before forming the encapsulant 250, and then molding the encapsulant 250. The battery protection circuit module package (300 of FIGS. 5B and 5C) is implemented through the process. That is, the protection circuit components 100a, 100b, and 130 are sealed in the basic package 200a, and the first internal connection lead B + and the second internal connection lead B which are part of the lead frame 50 are sealed. The encapsulant 250 that exposes-) may be formed to implement the battery protection circuit module package 300. The encapsulant 250 may include, for example, an epoxy molding compound (EMC). The protection circuit element 130 shown in FIG. 5A includes a plurality of passive elements R1, R2, R3, C1, C2, and V1 shown in FIG. 4.
본 발명의 일실시예에 따른 배터리 보호회로 패키지(300)는 상면에서 상기 외부연결단자들(P+, CF, P-)이 노출되고, 하부면에는 제 1 내부연결단자(B+) 및 제 2 내부연결단자(B-)가 노출되도록 구성된다. 여기서 패키지(300)의 상면에는 방열이나 기타 필요에 따라 다이패드(DP)의 하부면(적층칩(100a)이 장착된 면의 반대면)이 추가로 노출되도록 패키징될 수 있다. 한편, 제 1 내부연결단자용 리드(B+) 및 제 2 내부연결단자용 리드(B-) 중에서 적어도 어느 하나는 걸폼(gull-form) 형태로 절곡될 수 있다. 예를 들어, 제 1 내부연결단자용 리드(B+)는 전극 단자(410)의 상면과 오목부(435)의 바닥면 사이의 단차를 보상하기 위하여 걸폼(gull-form) 형태로 절곡될 수 있다. In the battery protection circuit package 300 according to the exemplary embodiment of the present invention, the external connection terminals P +, CF, and P− may be exposed from an upper surface thereof, and the first internal connection terminal B + and the second internal parts thereof may be exposed to a lower surface thereof. The connecting terminal B- is configured to be exposed. Here, the upper surface of the package 300 may be packaged to further expose the lower surface (opposite side of the surface on which the stacked chip 100a is mounted) of the die pad DP according to heat dissipation or other needs. Meanwhile, at least one of the first internal connection lead B + and the second internal connection lead B- may be bent in a gull-form form. For example, the lead B + for the first internal connection terminal may be bent in a gull-form form to compensate for a step between the top surface of the electrode terminal 410 and the bottom surface of the recess 435. .
본 발명의 일 실시예에 따른 배터리팩에 적용되는 배터리 보호회로 패키지에서, 리드프레임(50)을 포함하는 패키지(300)는 별도의 인쇄회로기판을 사용하지 않고 배터리 보호회로를 구성할 수 있다. 이러한 구성은 적어도 하나 이상의 수동소자가 이격된 복수의 리드들 중의 적어도 일부를 연결하도록 배치되며, 전계효과 트랜지스터(110), 프로텍션 집적회로(120) 및 상기 복수의 리드들로 이루어진 군에서 선택된 적어도 어느 두 개를 전기적으로 연결하는 전기적 연결부재를 제공함으로써 구현될 수 있다. 상기 전기적 연결부재는 본딩 와이어 또는 본딩 리본을 포함할 수 있다. In the battery protection circuit package applied to the battery pack according to an embodiment of the present invention, the package 300 including the lead frame 50 may configure the battery protection circuit without using a separate printed circuit board. Such a configuration is arranged so that at least one passive element connects at least some of the plurality of spaced leads, and at least any one selected from the group consisting of the field effect transistor 110, the protection integrated circuit 120, and the plurality of leads. It can be implemented by providing an electrical connection member for electrically connecting the two. The electrical connection member may include a bonding wire or a bonding ribbon.
본딩 와이어나 본딩 리본과 같은 전기적 연결부재를 리드프레임(50) 상에 배치하여 회로를 구성하므로, 배터리 보호회로를 구성하기 위한 리드프레임(50)을 설계하고 제조하는 과정이 단순화될 수 있다는 중요한 이점을 가진다. 만약, 본 발명의 실시예들에서 상술한 전기적 연결부재를 배터리 보호회로 구성부를 구현함에 있어서 도입하지 않는다면 리드프레임(50)을 구성하는 복수의 리드들의 구성이 매우 복잡하게 되므로 적절한 리드프레임(50)을 효과적으로 제공하는 것이 용이하지 않을 수 있다. Since a circuit is formed by arranging an electrical connection member such as a bonding wire or a bonding ribbon on the lead frame 50, an important advantage of simplifying the process of designing and manufacturing the lead frame 50 for constructing a battery protection circuit. Has If the above-described electrical connection member is not introduced in implementing the battery protection circuit component in the embodiments of the present invention, since the configuration of the plurality of leads constituting the lead frame 50 becomes very complicated, an appropriate lead frame 50 may be used. It may not be easy to provide effectively.
그리고, 프로텍션 집적회로(120) 및/또는 전계효과 트랜지스터(110)는 리드프레임(50) 상에 반도체 패키지의 형태로 삽입되어 고정되는 것이 아니라 표면실장기술(Surface Mounting Technology)에 의하여 리드프레임(50)의 표면의 적어도 일부 상에, 별도의 봉지재로 밀봉되지 않은 웨이퍼에서 소잉(sawing)된 칩 다이(chip die) 형태로, 실장되어 고정될 수 있다. 여기에서, 칩 다이(chip die)라 함은 어레이 형태의 복수의 구조체(예를 들어, 프로텍션 집적회로, 전계효과 트랜지스터)가 형성된 웨이퍼 상에 별도의 봉지재로 밀봉하지 않고 소잉 공정을 수행하여 구현된 개별적인 구조체를 의미한다. 즉, 리드프레임(50) 상에 프로텍션 집적회로 및 전계효과 트랜지스터(FET)로 이루어진 군에서 선택된 적어도 어느 하나를 실장할 때에는 별도의 봉지재로 밀봉하지 않은 상태에서 실장한 이후에, 후속의 봉지재(250)에 의하여 프로텍션 집적회로 및 전계효과 트랜지스터를 밀봉하므로, 배터리 보호회로 패키지(300)를 구현함에 있어서 봉지재를 형성하는 공정을 한 번만 수행할 수 있다. 이에 반하여, 프로텍션 집적회로 및/또는 전계효과 트랜지스터를 인쇄회로기판(PCB)에 별도로 삽입하여 고정하거나 실장하는 경우는, 각 부품에 대하여 한 번의 몰딩 공정이 먼저 필요하고, 인쇄회로기판 상에 고정하거나 실장한 이후에 실장된 각 부품에 대하여 또 한 번의 몰딩 공정이 추가로 필요하므로, 제조공정이 복잡하고 제조비용이 높아질 수 있다. In addition, the protection integrated circuit 120 and / or the field effect transistor 110 may not be inserted into and fixed in the form of a semiconductor package on the lead frame 50, but may be fixed by a surface mounting technology. On at least a portion of the surface of the c) may be mounted and fixed in the form of a chip die sawed on a wafer that is not sealed with a separate encapsulant. Here, a chip die is implemented by performing a sawing process without sealing with a separate encapsulant on a wafer on which a plurality of array-type structures (eg, a protection integrated circuit or a field effect transistor) are formed. Mean individual structures. That is, when mounting at least one selected from the group consisting of a protection integrated circuit and a field effect transistor (FET) on the lead frame 50, the subsequent encapsulant after mounting without sealing with a separate encapsulant Since the protection integrated circuit and the field effect transistor are sealed by the 250, the process of forming the encapsulant may be performed only once in implementing the battery protection circuit package 300. On the other hand, when the protection integrated circuit and / or the field effect transistor are separately inserted and fixed or mounted on a printed circuit board (PCB), one molding process is required for each component first, and then fixed on the printed circuit board Since another molding process is additionally required for each component mounted after mounting, the manufacturing process may be complicated and manufacturing cost may be high.
계속하여, 본 발명의 일부 실시예들에 의한 배터리팩에서 기본 패키지(200a)가 실장될 수 있는 베어셀(400)을 설명한다. Subsequently, the bare cell 400 in which the basic package 200a may be mounted in the battery pack according to some embodiments of the present invention will be described.
도 6은 본 발명의 일부 실시예들에 따른 배터리팩에서 베어셀의 구조를 도해하는 개략적인 단면도이다. 도 6을 참조하면, 본 발명의 일부 실시예들에 따른 배터리팩은 제 1 극성의 캡 플레이트(430)와 제 2 극성의 전극 단자(410)를 구비하는 베어셀(400)을 포함한다. 6 is a schematic cross-sectional view illustrating a structure of a bare cell in a battery pack according to some embodiments of the present invention. Referring to FIG. 6, a battery pack according to some embodiments of the present disclosure includes a bare cell 400 having a cap plate 430 having a first polarity and an electrode terminal 410 having a second polarity.
구체적으로 비제한적인 예를 살펴보면, 베어셀(400)은 전극 조립체(405), 전극 조립체(405)를 수용하는 캔(401) 및 캔(401)의 개구부 상에 구비되는 캡 조립체(450)로 이루어질 수 있다. 전극 조립체(405)는 양극 집전체에 양극 활물질을 도포해서 형성된 양극판(402), 음극 집전체에 음극 활물질을 도포해서 형성된 음극판(403) 및 양극판(402)과 음극판(403) 사이에 개재되어 두 극판(402, 403)의 단락을 방지하고 리튬 이온의 이동을 가능하게 하는 세퍼레이터(404)로 이루어질 수 있다. In particular, by way of non-limiting example, the bare cell 400 includes an electrode assembly 405, a can 401 for receiving the electrode assembly 405, and a cap assembly 450 provided on an opening of the can 401. Can be done. The electrode assembly 405 is interposed between the positive electrode plate 402 formed by applying a positive electrode active material to a positive electrode current collector, the negative electrode plate 403 formed by applying a negative electrode active material to a negative electrode current collector, and between the positive electrode plate 402 and the negative electrode plate 403. The separator 404 may be formed to prevent short circuits of the electrode plates 402 and 403 and to allow movement of lithium ions.
양극판(402)에는 양극 활물질이 도포되지 않는 양극 무지부가 형성되며, 음극판(403)에는 음극 활물질이 도포되지 않는 음극 무지부가 형성될 수 있다. 양극 무지부에는 캡 플레이트(430)와 전기적으로 연결되는 양극 탭(407)이 접합되며, 음극 무지부에는 전극 단자(410)와 전기적으로 연결되는 음극 탭(408)이 접합될 수 있다. 이때, 양극 탭(407) 및 음극 탭(408)은, 예를 들어, 용접에 의해 양극 무지부 및 음극 무지부에 접합될 수 있다. The positive electrode plate 402 may be formed with a positive electrode non-coating portion, to which the positive electrode active material is not coated, and the negative electrode plate 403 may be formed with a negative electrode non-coated portion to which the negative electrode active material is not coated. The positive electrode tab 407 may be bonded to the positive electrode tab 407 electrically connected to the cap plate 430, and the negative electrode tab may be bonded to the negative electrode tab 408 electrically connected to the electrode terminal 410. At this time, the positive electrode tab 407 and the negative electrode tab 408 may be bonded to the positive electrode non-coating portion and the negative electrode non-coating portion, for example, by welding.
양극 집전체로는 스테인레스강, 니켈, 알루미늄, 티탄 또는 이들의 합금, 알루미늄 또는 스테인레스강의 표면에 카본, 니켈, 티탄, 은을 표면 처리시킨 것 등을 사용할 수 있으며, 호일, 필름, 시트, 펀칭된 것, 다공질체, 발포제 등의 형태로 제공될 수 있다. 양극 활물질은 리튬 이온을 흡장 또는 탈리할 수 있는 물질로서, 리튬과의 복합산화물, 코발트, 망간, 니켈에서 선택되는 적어도 하나 이상을 포함할 수 있다. The positive electrode current collector may be stainless steel, nickel, aluminum, titanium or alloys thereof, or carbon, nickel, titanium, or silver surface treated on the surface of aluminum or stainless steel, and may include foil, film, sheet, and punched material. It may be provided in the form of a thing, a porous body, a blowing agent and the like. The positive electrode active material is a material capable of occluding or desorbing lithium ions, and may include at least one selected from a complex oxide with lithium, cobalt, manganese, and nickel.
음극 집전체로는 스테인레스강, 니켈, 구리, 티탄 또는 이들의 합금, 구리 또는 스테인레스강의 표면에 카본, 니켈, 티탄, 은을 표면 처리시킨 것 등을 사용할 수 있으며, 호일, 필름, 시트, 펀칭된 것, 다공질체, 발포제 등의 형태로 제공될 수 있다. 음극 활물질은 리튬 이온을 흡장 또는 탈리할 수 있는 물질로서, 결정질 탄소, 비정질 탄소, 탄소 복합체, 탄소 섬유 등의 탄소 재료, 리튬 금속, 리튬 합금 등이 사용될 수 있다.The negative electrode current collector may be stainless steel, nickel, copper, titanium or alloys thereof, or carbon, nickel, titanium, or silver surface treated on the surface of copper or stainless steel, and may include foil, film, sheet, and punched material. It may be provided in the form of a thing, a porous body, a blowing agent and the like. As the negative electrode active material, a material capable of occluding or detaching lithium ions, a carbon material such as crystalline carbon, amorphous carbon, carbon composite, carbon fiber, lithium metal, lithium alloy, or the like may be used.
세퍼레이터(404)는, 예를 들어, 폴리에틸렌(PE), 폴리프로필렌(PP) 등의 열가소성 수지로 형성되며, 그 표면은 다공막 구조로 되어 있다. 이러한 다공막 구조는 배터리 내부의 온도 상승으로 열가소성 수지의 융점 근처가 되면 세퍼레이터(404)가 용융되어 막힘으로써 절연 필름이 될 수 있다. 이렇게 절연 필름으로 바뀜으로써, 양극판(402)과 음극판(403) 간의 리튬 이온 이동이 차단되고, 더 이상의 전류가 흐르지 못하게 됨으로써, 배터리 내부의 온도 상승이 중단될 수 있다.The separator 404 is formed of thermoplastic resin, such as polyethylene (PE) and polypropylene (PP), for example, and the surface has a porous membrane structure. Such a porous membrane structure may become an insulating film when the separator 404 is melted and clogged when the temperature inside the battery approaches the melting point of the thermoplastic resin. By changing to an insulating film as described above, the movement of lithium ions between the positive electrode plate 402 and the negative electrode plate 403 is blocked, and no further current flows, so that the temperature rise inside the battery can be stopped.
캔(401)은 개구된 상단부를 갖는 형태의 금속재로 형성될 수 있으며, 전극 조립체(405) 및 전해액을 수용하며, 전극 조립체(405)의 상부에 절연 케이스(406)를 수용할 수 있다. 금속재로는 가볍고 연성이 있는 알루미늄, 알루미늄 합금 또는 스테인레스강 등이 사용될 수 있으며, 캔(401)이 금속재로 형성되는 경우 극성을 가질 수 있기 때문에 전극 단자로 사용할 수도 있다. 캔(401)의 형상은 각형이거나 모서리가 둥글게 구부러진 타원형일 수 있으며, 캔(401)의 개구된 상단부는 캡 플레이트(430)와 용접 또는 열융착되어 밀봉될 수 있다.The can 401 may be formed of a metal material having an open upper end portion, accommodate the electrode assembly 405 and the electrolyte, and accommodate the insulating case 406 on the electrode assembly 405. As the metal material, light and ductile aluminum, aluminum alloy, stainless steel, or the like may be used. When the can 401 is formed of a metal material, the metal material may have polarity and may be used as an electrode terminal. The shape of the can 401 may be rectangular or oval with rounded corners, and the open upper end of the can 401 may be sealed by welding or heat fusion with the cap plate 430.
캡 조립체(450)는 절연 케이스(406), 캡 플레이트(430), 가스켓(420), 전극 단자(410), 절연 플레이트(412), 터미널 플레이트(411) 및 전해액 주입구 마개(415)를 구비할 수 있다. 절연 케이스(406)는 캔(401)의 내부에 삽입되는 전극 조립체(405)의 상부에 위치하여, 전극 조립체(405)의 유동을 방지한다. 또한, 절연 케이스(406)는 쇼트를 방지하도록 양극 탭(407)과 음극 탭(408)을 소정 거리 이격시킨다. The cap assembly 450 may include an insulating case 406, a cap plate 430, a gasket 420, an electrode terminal 410, an insulating plate 412, a terminal plate 411, and an electrolyte inlet plug 415. Can be. The insulating case 406 is positioned above the electrode assembly 405 inserted into the can 401 to prevent the flow of the electrode assembly 405. In addition, the insulating case 406 spaces the positive electrode tab 407 and the negative electrode tab 408 a predetermined distance to prevent a short.
캡 플레이트(430)는 캔(401)의 개구부를 밀봉할 수 있도록 캔(401)의 개구부에 결합되며, 가스켓(420)과 전극 단자(410)가 삽입될 수 있는 통공이 형성될 수 있다. 캡 플레이트(430)에는 캔(401)의 내부로 전해액을 주입하기 위한 통로를 제공하는 전해액 주입구가 형성되며, 전해액 주입구 마개(415)가 상기 전해액 주입구를 밀폐하며 결합된다.The cap plate 430 is coupled to the opening of the can 401 to seal the opening of the can 401, and a through hole through which the gasket 420 and the electrode terminal 410 may be inserted may be formed. The cap plate 430 is formed with an electrolyte injection hole that provides a passage for injecting the electrolyte into the can 401, and an electrolyte injection hole stopper 415 is coupled to seal the electrolyte injection hole.
캡 플레이트(430)는 하방(예를 들어, 도 6의 Z방향)으로 단차를 형성하도록 오목부(435)를 포함한다. 즉, 캡 플레이트(430)는 오목부(435) 바닥면의 레벨(level)과 오목부(435) 주변의 레벨이 다르도록 단차가 형성된다. 오목부(435)는 형상 및 크기에 따라 홀(hole), 캐비티(cavity) 또는 트렌치(trench) 등으로 이해될 수 있다. 오목부(435)의 단면 형상은 다각형, 원형, 타원형 또는 임의의 무정형을 가질 수 있다. 오목부(435)는 상방(예를 들어, 도 6의 Z 방향의 반대방향)으로 열린(open) 구조를 가질 수 있다. The cap plate 430 includes a recess 435 to form a step below (eg, Z direction in FIG. 6). That is, the cap plate 430 has a step formed such that the level of the bottom surface of the recess 435 and the level around the recess 435 are different. The recess 435 may be understood as a hole, a cavity, a trench, or the like depending on shape and size. The cross-sectional shape of the recess 435 may have a polygonal, circular, elliptical or any amorphous shape. The recessed portion 435 may have a structure that is open upward (for example, opposite to the Z direction of FIG. 6).
가스켓(420)은 캡 플레이트(430)에 형성되는 통공에 결합되며, 제 2 극성의 전극 단자(410)와 제 1 극성의 캡 플레이트(430)를 절연시기키 위해 절연성 물질로 형성된다. 상기 제 2 극성은 음극이며 상기 제 1 극성은 양극으로 구성될 수 있으나, 필요에 따라, 상기 제 2 극성이 양극이며 상기 제 1 극성은 음극으로 구성될 수도 있다. 가스켓(420)의 중앙부는 전극 단자(410)가 결합될 수 있도록 홀을 형성할 수 있다. 전극 단자(410)는 가스켓(420)에 형성된 홀에 삽입되어 캡 플레이트(430)에 결합되며, 전극 단자(410)의 하단부는 캡 플레이트(430)를 관통한 상태에서 터미널 플레이트(411)와 연결된다. 절연 플레이트(412)는 캡 플레이트(430)의 하부면에 위치하며, 터미널 플레이트(411)의 외부면을 절연하고 전극 단자(410)와 터미널 플레이트(411)와의 연결을 위한 홀을 형성한다. 터미널 플레이트(411)는 절연 플레이트(412)의 하부면에 위치하며, 전도성 물질로 이루어져 전극 단자(410)와 연결되어 전기적 경로를 형성한다.The gasket 420 is coupled to a through hole formed in the cap plate 430, and is formed of an insulating material to insulate the electrode terminal 410 of the second polarity and the cap plate 430 of the first polarity. The second polarity is a negative electrode and the first polarity may be configured as an anode, but if necessary, the second polarity may be an anode and the first polarity may be configured as a negative electrode. A central portion of the gasket 420 may form a hole so that the electrode terminal 410 may be coupled. The electrode terminal 410 is inserted into a hole formed in the gasket 420 to be coupled to the cap plate 430, and the lower end of the electrode terminal 410 is connected to the terminal plate 411 while penetrating through the cap plate 430. do. The insulating plate 412 is disposed on the lower surface of the cap plate 430, and insulates the outer surface of the terminal plate 411 and forms a hole for connecting the electrode terminal 410 and the terminal plate 411. The terminal plate 411 is disposed on the lower surface of the insulating plate 412 and is made of a conductive material to be connected to the electrode terminal 410 to form an electrical path.
도 7은 본 발명의 일 실시예에 따른 배터리팩의 제조방법에서 베어셀 상에 기본 패키지를 접합하는 과정을 도해하는 분해사시도이며, 도 9는 본 발명의 일부 실시예에 따른 배터리팩의 제조방법에서 베어셀 상에 기본 패키지가 접합된 구조체를 도해하는 단면도이다. 7 is an exploded perspective view illustrating a process of bonding a basic package on a bare cell in a method of manufacturing a battery pack according to an embodiment of the present invention, and FIG. 9 is a method of manufacturing a battery pack according to some embodiments of the present invention. Is a cross-sectional view illustrating a structure in which a basic package is bonded onto a bare cell.
도 7 및 도 9를 참조하면, 이격된 복수의 리드들로 구성된 리드프레임(50)과 리드프레임(50) 상의 보호회로 구성소자를 구비하는 기본 패키지(200a)의 적어도 일부는 오목부(435) 내에 배치될 수 있다. 예를 들어, 기본 패키지(200a)의 전체는 오목부(435) 내의 공간에 배치될 수 있다. 나아가, 기본 패키지(200a)를 구성하는 리드프레임(50)의 제 1 내부연결단자용 리드(B+)는 캡 플레이트(430)와 전기적으로 연결되도록 접합되며, 기본 패키지(200a)를 구성하는 리드프레임(50)의 제 2 내부연결단자용 리드(B-)는 전극 단자(410)와 전기적으로 연결되도록 접합될 수 있다. 기본 패키지(200a)가 전극 단자(410) 및/또는 캡 플레이트(430)와 접합되는 방식은 레이저 용접, 저항용접, 납땜(soldering) 및 도전성 접착제(예를 들어, 도전성 에폭시), 도전성 테이프로 이루어진 군에서 선택된 어느 하나의 방식을 포함할 수 있다. 7 and 9, at least a portion of the base package 200a including the lead frame 50 including the plurality of spaced leads and the protection circuit components on the lead frame 50 may have a recess 435. Can be disposed within. For example, the entirety of the base package 200a may be disposed in the space in the recess 435. Furthermore, the lead B + for the first internal connection terminal of the lead frame 50 constituting the basic package 200a is joined to be electrically connected to the cap plate 430 and the lead frame constituting the basic package 200a. The lead B- for the second internal connection terminal 50 may be joined to be electrically connected to the electrode terminal 410. The basic package 200a is bonded to the electrode terminal 410 and / or the cap plate 430 by laser welding, resistance welding, soldering and conductive adhesive (for example, conductive epoxy) and conductive tape. It may include any one selected from the group.
제 1 내부연결단자용 리드(B+)는 캡 플레이트(430)와 접합하여 전기적으로 연결되고, 제 2 내부연결단자용 리드(B-)는 전극 단자(410)와 접합하여 전기적으로 연결되는바, 이 경우, 리드프레임(50)의 길이는 캡 플레이트(430)의 일단에서 전극 단자(410)까지의 길이(L/2)에 해당할 수 있다. 이 실시예에 따르면, 캡 플레이트(430)의 중앙에 위치하는 전극 단자(410)를 기준으로 편측 영역만을 사용하여 기본 패키지(200a)를 포함하는 배터리 보호회로 패키지(300)가 배치되므로, 배터리팩의 소형화 또는 고용량화를 구현할 수 있다. 예를 들어, 전극 단자(410)를 기준으로 나머지 편측 영역에 셀을 더 형성하여 배터리 용량을 늘이거나 또는 다른 추가 기능을 갖는 칩 등을 배치함으로써 이러한 배터리를 갖는 응용제품의 소형화에 기여할 수 있다. The first internal connection lead (B +) is electrically connected by bonding to the cap plate 430, and the second internal connection lead (B-) is electrically connected by bonding to the electrode terminal 410, In this case, the length of the lead frame 50 may correspond to the length L / 2 from one end of the cap plate 430 to the electrode terminal 410. According to this embodiment, since the battery protection circuit package 300 including the base package 200a is disposed using only one side area based on the electrode terminal 410 located in the center of the cap plate 430, the battery pack Miniaturization or high capacity can be achieved. For example, an additional cell may be formed in the remaining one side region based on the electrode terminal 410 to increase battery capacity or to place a chip having another additional function, thereby contributing to miniaturization of an application having such a battery.
나아가, 절연 케이스(406)와 캡 플레이트(430) 사이에 위치하는 공간(414)의 일부를 이용하여 오목부(435)를 형성하고 오목부(435) 내에 기본 패키지(200a)를 포함하는 배터리 보호회로 패키지(300)의 적어도 일부를 배치함으로써 배터리팩의 전체 높이를 낮출 수 있으며, 이에 따라 배터리팩에서 전극 조립체(405)가 차지하는 비율을 증대시켜 고용량의 배터리팩을 구현할 수 있다는 유리한 효과를 기대할 수 있다. Furthermore, a battery protection including a recess 435 is formed using a part of the space 414 located between the insulating case 406 and the cap plate 430 and includes a basic package 200a in the recess 435. By arranging at least a portion of the circuit package 300, the overall height of the battery pack can be lowered, and thus, an advantageous effect of realizing a high capacity battery pack can be expected by increasing the proportion of the electrode assembly 405 in the battery pack. have.
한편, 도 7을 참조하면, 기본 패키지(200a)가 배치되는 오목부(435)는 바닥면과 측면으로 한정되는 공간을 포함한다. 오목부(435)를 한정하는 측면은 서로 대향하며 y축에 수직한 두 개의 측면과 서로 대향하며 x축에 수직한 두 개의 측면으로 구성될 수 있다. 오목부(435)는 상방(예를 들어, z 방향의 반대방향)으로 열린(open) 구조를 가질 수 있다. 오목부(435)의 측면이 열린 구조가 아니므로 오목부(435) 내의 공간을 충전재(도 10의 555)로 충전하는 것이 용이하다는 효과를 기대할 수 있다. Meanwhile, referring to FIG. 7, the recess 435 in which the basic package 200a is disposed includes a space defined by a bottom surface and a side surface. Sides defining the recess 435 may be composed of two sides facing each other and perpendicular to the y axis and two sides facing each other and perpendicular to the x axis. The recess 435 may have a structure that is open upward (for example, opposite to the z direction). Since the side surface of the concave portion 435 is not an open structure, the effect that it is easy to fill the space in the concave portion 435 with the filler (555 in Fig. 10) can be expected.
도 8은 본 발명의 변형된 실시예에 따른 배터리팩의 제조방법에서 베어셀 상에 기본 패키지를 접합하는 과정을 도해하는 분해사시도이다. 도 8을 참조하면, 배터리 보호회로 패키지(300)가 배치되는 오목부(435)는 바닥면과 측면으로 한정되는 공간을 포함한다. 오목부(435)를 한정하는 측면은 x축에 수직이며 서로 대향하는 두 개의 측면으로만 구성될 수 있다. 오목부(435)는 상방(예를 들어, z 방향의 반대방향) 및 측방(예를 들어, ±y 방향)으로 열린 구조를 가질 수 있다. 오목부(435)의 측방이 열린 구조를 가지므로, 오목부(435) 내에 기본 패키지(200a)를 삽입 배치하는 공정이 용이하다는 효과를 기대할 수 있다. 8 is an exploded perspective view illustrating a process of bonding a basic package on a bare cell in a method of manufacturing a battery pack according to a modified embodiment of the present invention. Referring to FIG. 8, the recess 435 in which the battery protection circuit package 300 is disposed includes a space defined by a bottom surface and a side surface. The side defining the recess 435 may consist of only two sides perpendicular to the x-axis and facing each other. The recessed portion 435 may have a structure that is open upwards (eg, opposite the z direction) and laterally (eg, ± y direction). Since the side of the recess 435 has an open structure, the effect that the process of inserting and placing the basic package 200a in the recess 435 can be expected easily.
도 10 및 도 11은 본 발명의 일 실시예에 따른 배터리팩(600a)을 도해하는 단면도 및 사시도이다. 10 and 11 are cross-sectional views and perspective views illustrating a battery pack 600a according to an embodiment of the present invention.
도 10 및 도 11을 참조하면, 기본 패키지(200a)를 구성하는 리드프레임(50)의 적어도 일부를 노출시키면서 보호회로 구성소자(도 9의 100a, 130)를 밀봉하는 봉지재(250)를 형성하는 단계와 봉지재(250)와 접합되며 오목부(435)의 적어도 일부를 충전하는 충전재(555)를 형성하는 단계를 수행할 수 있다. 10 and 11, an encapsulant 250 for sealing the protection circuit elements 100a and 130 of FIG. 9 is formed while exposing at least a part of the lead frame 50 constituting the basic package 200a. And forming a filler 555 that is bonded to the encapsulant 250 and fills at least a portion of the recess 435.
봉지재(250)를 형성하는 단계와 충전재(555)를 형성하는 단계는 하나의 공정으로 동시에 수행될 수 있다. 예를 들어, 봉지재(250)를 형성하는 단계와 충전재(555)를 형성하는 단계는 수지의 용융물을 주입하는 한 번의 공정에 의하여 동시에 수행될 수 있다. 구체적으로, 봉지재(250)를 형성하는 단계와 충전재(555)를 형성하는 단계는 상기 수지의 용융물을 디스펜싱법 또는 인서트 사출성형법에 의하여 주입함으로써 동시에 수행될 수 있다. 도 10을 참조하면, 봉지재(250)와 충전재(555)를 편의상 구분하여 도시하였으나, 동일한 수지의 용융물을 주입하여 한 번의 공정에 의하여 동시에 형성되므로, 봉지재(250)와 충전재(555)는 구분되지 않고 동일한 재질로 구성되어 일체로 형성될 수 있다. 봉지재(250)를 형성하는 단계와 충전재(555)를 형성하는 단계는 하나의 공정으로 동시에 수행하므로 공정이 단순화되는 효과를 기대할 수 있으며, 봉지재(250)와 충전재(555) 간의 접합력이 강화되어 배터리팩의 구조적 안정성을 확보할 수 있는 효과를 기대할 수 있다. Forming the encapsulant 250 and forming the filler 555 may be performed simultaneously in one process. For example, the forming of the encapsulant 250 and the forming of the filler 555 may be simultaneously performed by one process of injecting a melt of the resin. Specifically, the forming of the encapsulant 250 and the forming of the filler 555 may be simultaneously performed by injecting a melt of the resin by a dispensing method or an insert injection molding method. Referring to FIG. 10, although the encapsulant 250 and the filler 555 are illustrated for convenience, the encapsulant 250 and the filler 555 are simultaneously formed by one process by injecting a melt of the same resin. It can be formed integrally with the same material without being distinguished. Since the forming of the encapsulant 250 and the forming of the filler 555 are simultaneously performed in one process, the process can be expected to be simplified, and the bonding force between the encapsulant 250 and the filler 555 is enhanced. Thus, the effect of securing structural stability of the battery pack can be expected.
한편, 본 발명의 변형된 실시예에서는, 봉지재(250)를 형성하는 단계와 충전재(555)를 형성하는 단계는 하나의 공정에 의하지 않고 개별적인 공정에 의하여 순차적으로 수행될 수도 있다. Meanwhile, in the modified embodiment of the present invention, the forming of the encapsulant 250 and the forming of the filler 555 may be sequentially performed by individual processes instead of one process.
기본 패키지(200a) 상에 봉지재(250)가 형성됨에 따라 배터리 보호회로 모듈 패키지(300)가 구현된다. 배터리 보호회로 패키지(300)의 적어도 일부는 오목부(435) 내에 배치될 수 있다. 나아가, 배터리 보호회로 패키지(300)를 구성하는 봉지재(250)의 상면은 오목부(435) 주변의 캡 플레이트(430)의 상면과 동일한 평면을 이룰 수 있다. 또한, 오목부(435)를 충전하는 충전재(555)의 상면은 오목부(435) 주변의 캡 플레이트(430)의 상면과 동일한 평면을 이룰 수 있다. 따라서, 도 11에 도시된 것처럼, 봉지재(250)와 충전재(555)가 형성된 배터리팩(600a)의 상면은 단차가 형성되지 않은 평면을 이룰 수 있으며, 이러한 상태에서, 선택적으로 라벨링(labeling) 공정이 수행되어, 최종제품의 배터리팩이 완성될 수 있다. As the encapsulant 250 is formed on the basic package 200a, the battery protection circuit module package 300 is implemented. At least a portion of the battery protection circuit package 300 may be disposed in the recess 435. Furthermore, the top surface of the encapsulant 250 constituting the battery protection circuit package 300 may form the same plane as the top surface of the cap plate 430 around the recess 435. In addition, the upper surface of the filler 555 filling the recess 435 may have the same plane as the upper surface of the cap plate 430 around the recess 435. Accordingly, as shown in FIG. 11, the top surface of the battery pack 600a in which the encapsulant 250 and the filler 555 are formed may form a plane where no step is formed, and in this state, selectively labeling may be performed. The process may be performed to complete the battery pack of the final product.
도 12는 본 발명의 다른 실시예에 따른 배터리팩(600b)을 도해하는 사시도이다. 도 12를 참조하면, 본 발명의 다른 실시예에 따른 배터리팩은 도 11에 도시된 구조체(600a)에 상부케이스(500)를 더 장착하여 구비함으로써 구현된다. 상부케이스(500)는 베어셀(400) 및 배터리 보호회로 모듈 패키지(300) 상에 배치되며, 배터리 보호회로 모듈 패키지(300)의 외부연결단자(도 11의 P+, CF, P-)를 노출시키는 개구부(550)를 포함할 수 있다. 이러한 상부케이스(500)를 형성한 배터리팩(600b)의 상태에서, 선택적으로 라벨링 공정이 수행되어, 최종제품의 배터리팩이 완성될 수 있다. 이러한 배터리팩은 일반적으로 휴대폰이나 단말기 등에 삽입하는 배터리로 이해될 수 있다. 12 is a perspective view illustrating a battery pack 600b according to another embodiment of the present invention. Referring to FIG. 12, the battery pack according to another embodiment of the present invention is implemented by further mounting the upper case 500 on the structure 600a illustrated in FIG. 11. The upper case 500 is disposed on the bare cell 400 and the battery protection circuit module package 300 and exposes external connection terminals (P +, CF, and P−) of the battery protection circuit module package 300. The opening 550 may be included. In the state of the battery pack 600b in which the upper case 500 is formed, a labeling process may be selectively performed to complete the battery pack of the final product. Such a battery pack may be generally understood as a battery inserted into a mobile phone or a terminal.
상부케이스(500)는 수지로 이루어질 수 있다. 예를 들어, 수지로 이루어진 상부케이스(500)를 미리 준비한 후에, 도 11에 도시된 구조체의 상부를 상부케이스(500)로 케이싱(casing)할 수 있다. 이 경우, 도 11에 도시된 구조체와 상부케이스(500)는 조립식 체결에 의한 결합, 용접에 의한 결합 및/또는 접착제에 의한 결합과 같은 다양한 방식으로 결합될 수 있다. 한편, 이러한 방식과 달리, 도 11에 도시된 구조체를 사출금형 내에 배치하고 수지의 용융물을 주입하여 인서트사출 성형함으로써 상부케이스(500)를 구현할 수도 있다. The upper case 500 may be made of resin. For example, after preparing the upper case 500 made of resin in advance, the upper portion of the structure shown in FIG. 11 may be cased with the upper case 500. In this case, the structure shown in FIG. 11 and the upper case 500 may be coupled in various ways such as bonding by prefabricated fastening, bonding by welding, and / or bonding by adhesive. On the other hand, unlike this manner, the upper case 500 may be implemented by placing the structure shown in FIG. 11 in an injection mold and injecting a melt of resin to insert injection molding.
상부케이스(500)는 상술한 수지 외에도 알루미늄, 알루미늄을 포함하는 합금 및 SUS(Stainless Use Steel)로 이루어진 군에서 선택된 적어도 어느 하나를 포함하여 구성될 수도 있다. The upper case 500 may be configured to include at least one selected from the group consisting of aluminum, an alloy including aluminum, and stainless steel (SUS) in addition to the above-described resin.
도 13은 본 발명의 또 다른 실시예에 따른 배터리 팩의 일부를 도해하는 단면도이다. 13 is a cross-sectional view illustrating a portion of a battery pack according to another embodiment of the present invention.
도 13은 본 발명의 또 다른 실시예에 따른 배터리 팩의 일부를 도해하는 단면도이다. 도 13에 도시된 베어셀(400)의 구성에 대한 설명은 도 6에서 동일한 내용으로 상술하였으므로 여기에서는 생략한다. 다만, 도 13에서는, 도 9와 달리, 캡 플레이트(430)의 하방(예를 들어, 도 13의 Z방향)으로 단차를 형성하도록 구성된 오목부(435) 내에, 기본 패키지(200a)를 실장하는 것이 아니라, 봉지재(250)를 구비하는 배터리 보호회로 패키지(300)의 적어도 일부를 바로 실장한다. 예를 들어, 배터리 보호회로 패키지(300)의 전체는 오목부(435) 내의 공간에 배치될 수 있다. 나아가, 배터리 보호회로 패키지(300)를 구성하는 봉지재(250)의 상부면은 오목부(435) 주변의 캡 플레이트(430)의 상부면과 동일한 평면을 이룰 수 있다. 배터리 보호회로 패키지(300)의 구성에 대한 설명은 도 1 내지 도 5c를 참조하여 동일한 내용으로 설명하였으므로 여기에서는 생략한다. 13 is a cross-sectional view illustrating a portion of a battery pack according to another embodiment of the present invention. Description of the configuration of the bare cell 400 shown in FIG. 13 has been described above with the same contents in FIG. 6, and thus will not be described herein. In FIG. 13, however, unlike FIG. 9, the base package 200a is mounted in the recess 435 configured to form a step below the cap plate 430 (for example, Z direction in FIG. 13). Rather, at least a part of the battery protection circuit package 300 including the encapsulant 250 is directly mounted. For example, the whole of the battery protection circuit package 300 may be disposed in a space in the recess 435. In addition, the upper surface of the encapsulant 250 constituting the battery protection circuit package 300 may have the same plane as the upper surface of the cap plate 430 around the recess 435. Description of the configuration of the battery protection circuit package 300 has been described with the same contents with reference to FIGS.
필요에 따라, 전극 단자(410)도 오목부(435) 내에 배치될 수 있도록 구성될 수 있다. 한편, 배터리 보호회로 패키지(300)가 전극 단자(410) 및/또는 캡 플레이트(430)와 접합되는 방식은 레이저 용접, 저항용접, 납땜(soldering) 및 도전성 접착제(예를 들어, 도전성 에폭시), 도전성 테이프로 이루어진 군에서 선택된 어느 하나의 방식을 포함할 수 있다. If necessary, the electrode terminal 410 may also be configured to be disposed in the recess 435. In the meantime, the battery protection circuit package 300 is bonded to the electrode terminal 410 and / or the cap plate 430 by laser welding, resistance welding, soldering and conductive adhesive (for example, conductive epoxy), It may include any one selected from the group consisting of a conductive tape.
절연 케이스(406)와 캡 플레이트(430) 사이에 위치하는 공간(414)의 일부를 이용하여 오목부(435)를 형성하고 오목부(435) 내에 배터리 보호회로 패키지(300)의 적어도 일부를 배치함으로써 배터리 팩의 전체 높이를 낮출 수 있으며, 이에 따라 배터리 팩에서 전극 조립체(405)가 차지하는 비율을 증대시켜 고용량의 배터리 팩을 구현할 수 있다는 유리한 효과를 기대할 수 있다. A recess 435 is formed using a portion of the space 414 positioned between the insulating case 406 and the cap plate 430, and at least a portion of the battery protection circuit package 300 is disposed in the recess 435. As a result, the overall height of the battery pack may be lowered, and thus, an advantageous effect of increasing the ratio of the electrode assembly 405 in the battery pack to realize a high capacity battery pack may be expected.
도 14 및 도 15는 본 발명의 또 다른 실시예 및 변형된 실시예에 따른 배터리 팩에서 배터리 보호회로 패키지가 배터리 캔과 결합되는 과정을 도해하는 사시도들이고, 도 16은 본 발명의 일부 실시예들에 따른 배터리 팩의 외형을 도해하는 사시도이다. 14 and 15 are perspective views illustrating a process in which a battery protection circuit package is coupled to a battery can in a battery pack according to still another and modified embodiments of the present invention, and FIG. 16 is some embodiments of the present invention. Is a perspective view illustrating the appearance of a battery pack according to the present invention.
도 14 내지 도 16을 참조하면, 배터리 보호회로 패키지(300)는 도 13에 도시된 베어셀(400)의 상부면과 상부케이스(500) 사이에 삽입되어 도 16에 도시된 바와 같은 배터리 팩(600c)을 구성하게 된다. 상부케이스(500)는 알루미늄, 알루미늄을 포함하는 합금, SUS(Stainless Use Steel) 및 수지로 이루어진 군에서 선택된 적어도 어느 하나를 포함하여 구성될 수 있다. 상부케이스(500)는 배터리 보호회로 패키지(300)의 외부연결단자들(P+, CF, P-)이 노출될 수 있도록 대응되는 부분에 관통홀인 개구부(550)가 형성되어 있다. 상부케이스(500)의 테두리는 베어셀(400)을 구성하는 캔과 접합될 수 있는데, 예를 들어, 레이저 용접으로 접합하거나 볼트로 기계적으로 체결하여 접합할 수 있다. 배터리 팩(600c)은 일반적으로 휴대폰이나 단말기 등에 삽입하는 배터리로 이해될 수 있다. 14 to 16, the battery protection circuit package 300 is inserted between the upper surface of the bare cell 400 and the upper case 500 illustrated in FIG. 13 to form a battery pack as shown in FIG. 16 ( 600c). The upper case 500 may include at least one selected from the group consisting of aluminum, an alloy including aluminum, stainless use steel (SUS), and a resin. The upper case 500 has an opening 550 which is a through hole in a portion corresponding to the external connection terminals P +, CF, and P− of the battery protection circuit package 300. The edge of the upper case 500 may be bonded to the can constituting the bare cell 400, for example, may be bonded by laser welding or mechanically fastened by bolts. The battery pack 600c may generally be understood as a battery inserted into a mobile phone or a terminal.
제 1 내부연결단자용 리드(B+)는 캡 플레이트(430)와 접합하여 전기적으로 연결되고, 제 2 내부연결단자용 리드(B-)는 전극 단자(410)와 접합하여 전기적으로 연결될 수 있다. 이 경우, 리드프레임(50)의 길이는 캡 플레이트(430)의 일단에서 전극 단자(410)까지의 길이(L/2)에 해당할 수 있다. 이 실시예에 따르면, 캡 플레이트(430)의 중앙에 위치하는 전극 단자(410)를 기준으로 편측 영역만을 사용하여 배터리 보호회로 패키지(300)를 장착하므로, 배터리 팩의 소형화 또는 고용량화를 구현할 수 있다. 예를 들어, 전극 단자(410)를 기준으로 나머지 편측 영역에 셀을 더 형성하여 배터리 용량을 늘이거나 또는 다른 추가 기능을 갖는 칩 등을 배치함으로써 이러한 배터리를 갖는 응용제품의 소형화에 기여할 수 있다.The lead B + for the first internal connection terminal may be electrically connected to the cap plate 430, and the lead B- for the second internal connection terminal may be electrically connected to the electrode terminal 410. In this case, the length of the lead frame 50 may correspond to the length L / 2 from one end of the cap plate 430 to the electrode terminal 410. According to this embodiment, since the battery protection circuit package 300 is mounted using only one side area based on the electrode terminal 410 positioned in the center of the cap plate 430, the battery pack can be miniaturized or increased in capacity. . For example, an additional cell may be formed in the remaining one side region based on the electrode terminal 410 to increase battery capacity or to place a chip having another additional function, thereby contributing to miniaturization of an application having such a battery.
한편, 도 14를 참조하면, 배터리 보호회로 패키지(300)가 배치되는 오목부(435)는 바닥면과 측면으로 한정되는 공간을 포함한다. 오목부(435)를 한정하는 측면은 y축에 수직이며 서로 대향하는 두 개의 측면과 x축에 수직이며 서로 대향하는 두 개의 측면으로 구성될 수 있다. 오목부(435)는 상방(예를 들어, z 방향의 반대방향)으로 열린(open) 구조를 가질 수 있다. 오목부(435)의 측면이 열린 구조가 아니므로 오목부(435) 내의 공간을 봉지재(도 17의 555)로 충전하는 것이 용이하다는 효과를 기대할 수 있다. Meanwhile, referring to FIG. 14, the recess 435 in which the battery protection circuit package 300 is disposed includes a space defined by a bottom surface and a side surface. The side defining the recess 435 may be composed of two sides perpendicular to the y-axis and facing each other and two sides perpendicular to the x-axis and facing each other. The recess 435 may have a structure that is open upward (for example, opposite to the z direction). Since the side surface of the concave portion 435 is not an open structure, the effect that it is easy to fill the space in the concave portion 435 with the sealing material (555 in Fig. 17) can be expected.
도 15를 참조하면, 배터리 보호회로 패키지(300)가 배치되는 오목부(435)는 바닥면과 측면으로 한정되는 공간을 포함한다. 오목부(435)를 한정하는 측면은 x축에 수직이며 서로 대향하는 두 개의 측면으로 구성될 수 있다. 오목부(435)는 상방(예를 들어, z 방향의 반대방향) 및 측방(예를 들어, ±y 방향)으로 열린 구조를 가질 수 있다. 오목부(435)의 측방이 열린 구조를 가지므로, 오목부(435) 내에 배터리 보호회로 패키지(300)를 삽입 배치하는 공정이 용이하다는 효과를 기대할 수 있다. Referring to FIG. 15, the recess 435 in which the battery protection circuit package 300 is disposed includes a space defined by a bottom surface and a side surface. The side defining the recess 435 may be composed of two sides perpendicular to the x axis and facing each other. The recessed portion 435 may have a structure that is open upwards (eg, opposite the z direction) and laterally (eg, ± y direction). Since the side of the concave portion 435 is open, the effect of inserting and placing the battery protection circuit package 300 in the concave portion 435 can be expected to be easy.
상부케이스(500)를 접합하기 이전에 오목부(435)의 적어도 일부를 봉지재로 충전하는 단계가, 선택적으로, 수행될 수도 있다. 즉, 오목부(435) 내에 배터리 보호회로 패키지(300)를 접합한 후에 오목부(435)의 적어도 일부를 봉지재로 충전하지 않고 상부케이스(500)를 베어셀(400)을 구성하는 캔(401)에 접합할 수 있다. 한편, 이와는 달리, 오목부(435) 내에 배터리 보호회로 패키지(300)를 접합한 후에, 오목부(435)의 적어도 일부를 봉지재로 충전하고 상부케이스(500)를 베어셀(400)을 구성하는 캔(401)에 접합할 수도 있다.Filling at least a portion of the recess 435 with the encapsulant prior to bonding the upper case 500 may optionally be performed. That is, after the battery protection circuit package 300 is bonded to the recess 435, the can constituting the bare cell 400 of the upper case 500 without filling at least a portion of the recess 435 with an encapsulant ( 401). On the other hand, after bonding the battery protection circuit package 300 in the recess 435, at least a portion of the recess 435 is filled with an encapsulant and the upper case 500 constitutes a bare cell 400. The can 401 can also be joined.
도 16은 본 발명의 일부 실시예들에 따른 배터리 팩의 외형을 도해하는 사시도이다. 16 is a perspective view illustrating the appearance of a battery pack in accordance with some embodiments of the present disclosure.
도 16을 참조하면, 캡 플레이트(430)에 형성된 오목부(435)를 봉지재(555)로 충전하지 않고, 도 13에 도시된 구조체 상에 상부케이스(500)를 접합함으로써 배터리 팩(600c)을 구현할 수 있다. 상부케이스(500)의 개구부(550)를 통하여 배터리 보호회로 패키지(300)의 외부연결단자(P+, CF, P-)가 노출될 수 있다. 이러한 상부케이스(500)를 형성한 배터리팩(600c)의 상태에서, 선택적으로 라벨링 공정이 수행되어, 최종제품의 배터리팩이 완성될 수 있다. Referring to FIG. 16, the battery pack 600c may be bonded by bonding the upper case 500 to the structure illustrated in FIG. 13 without filling the recess 435 formed in the cap plate 430 with the encapsulant 555. Can be implemented. External connection terminals P +, CF, and P− of the battery protection circuit package 300 may be exposed through the opening 550 of the upper case 500. In the state of the battery pack 600c in which the upper case 500 is formed, a labeling process may be selectively performed to complete the battery pack of the final product.
도 17 및 도 18은 본 발명의 또 다른 실시예에 따른 배터리 팩의 일부를 도해하는 단면도 및 사시도이다. 17 and 18 are cross-sectional and perspective views illustrating a part of a battery pack according to still another embodiment of the present invention.
도 17 및 도 18을 참조하면, 도 13에 도시된 구조체를 준비한 다음에 오목부(435)를 봉지재(555)로 충전함으로써 배터리 팩(600d)을 구현할 수 있다. 이 경우에는, 배터리 보호회로 패키지(300)를 구성하는 봉지재(250)와 오목부(435)를 충전한 봉지재(555)는 동시에 형성되지 않고 별개의 공정으로 각각 형성된다. 따라서, 배터리 보호회로 패키지(300)를 구성하는 봉지재(250)와 오목부(435)를 충전한 봉지재(555)를 구성하는 물질은 동일할 수도 있으나 서로 상이할 수도 있다. 한편, 도 18에 도시된 구조체 상에, 도 16과 같이, 상부케이스(500)를 접합함으로써 배터리 팩을 구현할 수 있다. 이러한 상부케이스(500)를 형성한 배터리 팩의 상태에서, 선택적으로 라벨링 공정이 수행되어, 최종제품의 배터리팩이 완성될 수 있다. 17 and 18, the battery pack 600d may be implemented by preparing the structure illustrated in FIG. 13 and then filling the recess 435 with the encapsulant 555. In this case, the encapsulant 250 constituting the battery protection circuit package 300 and the encapsulant 555 filled with the recess 435 are not formed at the same time, but are formed in separate processes. Therefore, the materials constituting the encapsulant 250 constituting the battery protection circuit package 300 and the encapsulant 555 filled with the recess 435 may be the same or different from each other. Meanwhile, the battery pack may be implemented by bonding the upper case 500 to the structure illustrated in FIG. 18 as shown in FIG. 16. In the state of the battery pack in which the upper case 500 is formed, a labeling process may be selectively performed to complete the battery pack of the final product.
배터리 보호회로 패키지(300)를 구성하는 봉지재(250)의 상면은 오목부(435) 주변의 캡 플레이트(430)의 상면과 동일한 평면을 이룰 수 있다. 또한, 오목부(435)를 충전하는 충전재(555)의 상면은 오목부(435) 주변의 캡 플레이트(430)의 상면과 동일한 평면을 이룰 수 있다. 따라서, 도 18에 도시된 것처럼, 봉지재(250)와 충전재(555)가 형성된 배터리팩(600d)의 상면은 단차가 형성되지 않은 평면을 이룰 수 있으며, 이러한 상태에서, 선택적으로 라벨링(labeling) 공정이 수행되어, 최종제품의 배터리팩이 완성될 수 있다. The top surface of the encapsulant 250 constituting the battery protection circuit package 300 may form the same plane as the top surface of the cap plate 430 around the recess 435. In addition, the upper surface of the filler 555 filling the recess 435 may have the same plane as the upper surface of the cap plate 430 around the recess 435. Thus, as shown in FIG. 18, the top surface of the battery pack 600d in which the encapsulant 250 and the filler 555 are formed may form a plane where no step is formed, and in this state, labeling may be selectively performed. The process may be performed to complete the battery pack of the final product.
도 19는 본 발명의 또 다른 실시예에 따른 배터리 팩의 일부를 도해하는 단면도이다. 19 is a cross-sectional view illustrating a portion of a battery pack according to another embodiment of the present invention.
도 19를 참조하면, 본 발명의 또 다른 실시예에 따른 배터리 팩에서는, 도 13과 달리, 캡 플레이트(430)에 단차를 형성하는 오목부(435) 내에 전극 단자(410)가 위치하는 않는 구성이 제공된다. 복잡한 구조를 가지는 전극 단자(410) 및 가스켓(420) 등의 구조체가 오목부(435) 내에 위치하지 않으므로 오목부(435)를 구현하는 것이 용이한 장점이 있다. 또한, 절연 케이스(406)와 캡 플레이트(430) 사이에 위치하는 공간(414)의 일부를 이용하여 오목부(435)를 형성하고 오목부(435) 내에 배터리 보호회로 패키지(300)의 적어도 일부를 배치함으로써 배터리 팩의 전체 높이를 낮출 수 있으며, 이에 따라 배터리 팩에서 전극 조립체(405)가 차지하는 비율을 증대시켜 고용량의 배터리 팩을 구현할 수 있다는 유리한 효과를 기대할 수 있다. Referring to FIG. 19, in the battery pack according to still another exemplary embodiment of the present invention, unlike in FIG. 13, the electrode terminal 410 is not positioned in the recess 435 that forms a step in the cap plate 430. This is provided. Since structures such as the electrode terminal 410 and the gasket 420 having a complicated structure are not located in the recess 435, it is easy to implement the recess 435. In addition, a recess 435 is formed using a portion of the space 414 positioned between the insulating case 406 and the cap plate 430, and at least a part of the battery protection circuit package 300 is formed in the recess 435. By lowering the overall height of the battery pack, it is possible to expect an advantageous effect that can implement a high capacity battery pack by increasing the proportion of the electrode assembly 405 in the battery pack.
다만, 전극 단자(410)가 오목부(435)의 외부에 위치하므로, 배터리 보호회로 패키지(300)의 일부만 오목부(435) 내의 공간에 위치하며, 배터리 보호회로 패키지(300)의 나머지 부분은 오목부(435) 내의 공간에서 상방으로 돌출되도록 위치하므로, 도 18에 도시된 배터리 팩의 구조체는 구현하기 어렵고, 도 19에 도시된 배터리 팩의 구조체를 최종적으로 구현할 수 있다. However, since the electrode terminal 410 is located outside the recess 435, only a part of the battery protection circuit package 300 is located in a space in the recess 435, and the remaining part of the battery protection circuit package 300 is Since it is positioned to protrude upward in the space in the recess 435, the structure of the battery pack illustrated in FIG. 18 is difficult to implement, and the structure of the battery pack illustrated in FIG. 19 may finally be implemented.
이하에서는, 앞에서 상술한 본 발명의 일부 실시예들의 배터리 보호회로 패키지(300)에 추가적으로 접합될 수 있는 PTC 구조체를 설명한다. Hereinafter, a PTC structure that can be additionally bonded to the battery protection circuit package 300 of some embodiments of the present invention described above will be described.
도 20은 본 발명의 또 다른 실시예에 따른 배터리 팩에서 배터리 보호회로 패키지의 일부를 구성하는 PTC 구조체를 도해하는 사시도이고, 도 21은 본 발명의 또 다른 실시예에 따른 배터리 팩에서 배터리 보호회로 패키지를 도해하는 도면이다. 20 is a perspective view illustrating a PTC structure constituting a part of a battery protection circuit package in a battery pack according to another embodiment of the present invention, and FIG. 21 is a battery protection circuit in a battery pack according to another embodiment of the present invention. A diagram illustrating a package.
도 20 및 도 21을 참조하면, 본 발명의 또 다른 실시예에 따른 배터리 보호회로 패키지는 PTC 구조체(350)를 포함한다. PTC 구조체(350)는 PTC 소자(310), PTC 소자(310)의 상면 및 하면 중 어느 하나의 면인 제 1 면에 부착된 금속층(320), 및 PTC 소자(310)의 상면 및 하면 중 나머지 하나의 면인 제 2 면에 부착된 도전성의 연결부재(330, 340)를 포함한다. 금속층(320)은 제 1 내부연결단자용 리드(B+) 및 제 2 내부연결단자용 리드(B-) 중에서 선택된 어느 하나의 리드와 접합되고, 연결부재(330, 340)는 전극 단자(도 1의 410)와 접합될 수 있다. 예를 들어, 금속층(320), 연결부재(330, 340) 및/또는 리드프레임(50)은 니켈, 구리, 니켈 도금된 구리 또는 기타 금속으로 이루어질 수도 있다. 금속층(320)은 제 1 내부연결단자용 리드(B+) 및 제 2 내부연결단자용 리드(B-) 중에서 선택된 어느 하나의 리드와 레이저 용접, 저항용접, 납땜(soldering) 및 도전성 접착제(예를 들어, 도전성 에폭시), 도전성 테이프로 이루어진 군에서 선택된 어느 하나의 방식으로 접합될 수 있다. 20 and 21, a battery protection circuit package according to another embodiment of the present invention includes a PTC structure 350. The PTC structure 350 may include the PTC device 310, the metal layer 320 attached to the first surface, which is one of the top and bottom surfaces of the PTC device 310, and the other of the top and bottom surfaces of the PTC device 310. It includes a conductive connecting member (330, 340) attached to the second surface of the surface. The metal layer 320 is bonded to one of the leads selected from the first internal connection lead (B +) and the second internal connection lead (B-), and the connection members 330 and 340 are electrode terminals (FIG. 1). 410). For example, the metal layer 320, the connection members 330 and 340, and / or the lead frame 50 may be made of nickel, copper, nickel plated copper, or other metal. The metal layer 320 may be formed of any one of the first internal terminal lead (B +) and the second internal terminal lead (B-) and laser welding, resistance welding, soldering, and a conductive adhesive (eg, For example, it may be bonded in any one manner selected from the group consisting of a conductive epoxy), a conductive tape.
PTC(Positive Temperature Coefficient) 소자(310)는, 예를 들어, 도전성 입자를 결정성 고분자에 분산시켜 형성할 수 있다. 따라서 설정된 온도 이하에서 PTC 소자(310)는 금속층(320)과 도전성의 연결부재(330, 340) 사이에서 전류가 흐르는 통로가 된다. 그러나 과전류 발생으로 인해 설정 온도 이상이 되면 결정성 고분자가 팽창되어 결정성 고분자에 분산되어 있는 상기 도전성 입자 사이의 연결이 분리되면서 저항이 급격하게 증가된다. 따라서 금속층(320)과 도전성의 연결부재(330, 340) 사이의 전류의 흐름이 차단되거나 전류의 흐름이 감소된다. 이와 같이 PTC 소자(310)에 의해 전류의 흐름이 차단될 수 있으므로, PTC 소자(310)는 배터리의 파열을 방지하는 안전장치의 역할을 수행한다. 그리고 다시 설정 온도 이하로 냉각되면 PTC 소자(310)는 결정성 고분자가 수축하여 도전성 입자 사이의 연결이 복원되므로 전류의 흐름이 원활하게 이루어진다.The PTC (Positive Temperature Coefficient) element 310 can be formed by, for example, dispersing conductive particles in a crystalline polymer. Accordingly, the PTC element 310 becomes a passage through which current flows between the metal layer 320 and the conductive connection members 330 and 340 below the set temperature. However, when the temperature rises above the set temperature due to overcurrent, the crystalline polymer expands and the connection between the conductive particles dispersed in the crystalline polymer is separated, thereby rapidly increasing the resistance. Therefore, the flow of current between the metal layer 320 and the conductive connecting members 330 and 340 is blocked or the flow of current is reduced. As such, since the flow of current may be blocked by the PTC device 310, the PTC device 310 serves as a safety device for preventing the battery from being ruptured. When the temperature is lowered below the set temperature, the PTC device 310 contracts the crystalline polymer to restore the connection between the conductive particles, thereby smoothly flowing the current.
배터리 보호회로 패키지(300)를 구성하는 리드프레임(50)은 PTC 구조체를 개재하여 전극 단자(410)와 전기적으로 연결된다. 예를 들어, 리드프레임(50)의 제 2 내부연결단자용 리드(B-)는 PTC 구조체(350)를 개재하여 배터리 베어셀의 전극 단자(410)와 전기적으로 연결될 수 있다. 즉, 리드프레임(50)의 제 2 내부연결단자용 리드(B-)는 금속층(320)과 접합되고 PTC 소자(310)를 거쳐 도전성의 연결부재(330, 340)를 거쳐 배터리 베어셀의 전극 단자(410)에 전기적으로 연결된다. 이 경우, 금속층(320)은 PTC 소자(310)의 상면 상에서 상기 상면 내에 한정되어 구성되고, 연결부재(330, 340)는 PTC 소자(310)의 하면 상에서 상기 배터리 베어셀의 전극 단자(410)까지 신장되도록 구성될 수 있다. PTC 구조체의 연결부재(330, 340)는 PTC 소자(310)의 일면에 부착되는 제 1 연결부재(330)와 제 1 연결부재(330)와 연결되어 배터리 베어셀의 전극 단자(410)까지 신장되는 제 2 연결부재(340)로 구성될 수 있다. 제 2 연결부재(340)가 전극 단자(410)와 접합할 수 있도록 적절한 레벨을 가져야하므로, 제 1 연결부재(330)와 제 2 연결부재(340)가 연결되는 부분은 절곡될 수 있다. 한편, 제 2 연결부재(340)는 배터리 베어셀의 전극 단자(410)와 레이저 용접, 저항용접, 납땜(soldering) 및 도전성 접착제(예를 들어, 도전성 에폭시), 도전성 테이프로 이루어진 군에서 선택된 어느 하나의 방식으로 접합될 수 있다. The lead frame 50 constituting the battery protection circuit package 300 is electrically connected to the electrode terminal 410 via a PTC structure. For example, the lead B- for the second internal connection terminal of the lead frame 50 may be electrically connected to the electrode terminal 410 of the battery bare cell through the PTC structure 350. That is, the lead B- of the second internal connection terminal of the lead frame 50 is bonded to the metal layer 320, and passes through the PTC element 310 to the conductive connection member 330 and 340, and then to the electrode of the battery bare cell. Is electrically connected to the terminal 410. In this case, the metal layer 320 is configured to be limited in the upper surface on the upper surface of the PTC element 310, the connection member 330, 340 is the electrode terminal 410 of the battery bare cell on the lower surface of the PTC element 310 It can be configured to stretch until. The connecting members 330 and 340 of the PTC structure are connected to the first connecting member 330 and the first connecting member 330 attached to one surface of the PTC element 310 to extend to the electrode terminal 410 of the battery bare cell. It may be composed of a second connecting member 340. Since the second connection member 340 should have an appropriate level to be bonded to the electrode terminal 410, a portion where the first connection member 330 and the second connection member 340 are connected may be bent. Meanwhile, the second connection member 340 is any one selected from the group consisting of an electrode terminal 410 of the battery bare cell, laser welding, resistance welding, soldering, conductive adhesive (for example, conductive epoxy), and conductive tape. Can be joined in one way.
본 발명은 도면에 도시된 실시예를 참고로 설명되었으나 이는 예시적인 것에 불과하며, 당해 기술분야에서 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 다른 실시예가 가능하다는 점을 이해할 것이다. 따라서 본 발명의 진정한 기술적 보호 범위는 첨부된 특허청구범위의 기술적 사상에 의하여 정해져야 할 것이다.Although the present invention has been described with reference to the embodiments shown in the drawings, this is merely exemplary, and those skilled in the art will understand that various modifications and equivalent other embodiments are possible. Therefore, the true technical protection scope of the present invention will be defined by the technical spirit of the appended claims.

Claims (21)

  1. 제 1 극성을 가지며 하방으로 단차를 형성하도록 오목부를 포함하는 캡 플레이트와 제 2 극성을 가지는 전극 단자를 구비하는 베어셀; A bare cell having a first polarity and having a cap plate including a recess to form a step below and an electrode terminal having a second polarity;
    상기 전극 단자 및 상기 캡 플레이트와 전기적으로 연결되도록 접합되며, 적어도 일부가 상기 오목부 내에 배치되는, 배터리 보호회로 패키지; 및A battery protection circuit package bonded to the electrode terminal and the cap plate to be electrically connected, wherein at least a part of the battery protection circuit package is disposed in the recess; And
    상기 오목부의 적어도 일부를 충전(filling)함으로써 상기 배터리 보호회로 패키지의 적어도 일부를 밀봉하면서 고정하는 충전재;를 구비하고,And a filler filling and sealing at least a portion of the battery protection circuit package by filling at least a portion of the recess.
    상기 배터리 보호회로 패키지는 이격된 복수의 리드들로 구성된 리드프레임과 상기 리드프레임 상의 보호회로 구성소자를 구비하는 기본 패키지 및 상기 리드프레임의 일부를 노출시키면서 상기 보호회로 구성소자를 밀봉하는 봉지재를 포함하며, The battery protection circuit package includes a base package including a lead frame composed of a plurality of spaced leads and a protection circuit component on the lead frame, and an encapsulant sealing the protection circuit component while exposing a portion of the lead frame. Include,
    상기 충전재와 상기 봉지재는 수지의 용융물을 주입하여 동시에 일체로 형성되면서 접합된, 배터리팩.The filler and the encapsulant are bonded while being formed integrally at the same time by injecting a melt of resin.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 전극 단자 및 상기 배터리 보호회로 패키지는 상기 캡 플레이트에 형성된 상기 오목부 내에 위치하는, 배터리팩.And the electrode terminal and the battery protection circuit package are located in the recess formed in the cap plate.
  3. 제 1 항에 있어서,The method of claim 1,
    상기 충전재의 상면은 상기 오목부 주변의 상기 캡 플레이트의 상면과 동일한 평면을 이루는, 배터리팩.The top surface of the filler is in the same plane as the top surface of the cap plate around the recess, the battery pack.
  4. 제 1 항에 있어서,The method of claim 1,
    상기 베어셀 및 상기 배터리 보호회로 패키지 상에 배치되며, 상기 배터리 보호회로 패키지의 외부연결단자를 노출시키는 개구부를 포함하는, 상부케이스;를 더 구비하는, 배터리팩.And an upper case disposed on the bare cell and the battery protection circuit package and including an opening exposing external connection terminals of the battery protection circuit package.
  5. 제 4 항에 있어서,The method of claim 4, wherein
    상기 상부케이스는 알루미늄, 알루미늄을 포함하는 합금, SUS 및 수지로 이루어진 군에서 선택된 적어도 어느 하나를 포함하는, 배터리팩.The upper case includes at least any one selected from the group consisting of aluminum, an alloy containing aluminum, SUS and resin.
  6. 제 1 항에 있어서,The method of claim 1,
    상기 배터리 보호회로 패키지는The battery protection circuit package
    상기 리드프레임 상에 실장되며, 프로텍션(protection) IC, 전계효과 트랜지스터(FET) 및 적어도 하나 이상의 수동소자를 포함하는, 배터리 보호회로 소자;를 더 구비하고,A battery protection circuit element mounted on the lead frame and including a protection IC, a field effect transistor (FET), and at least one passive element;
    상기 수동소자는 상기 이격된 복수의 리드들 중의 적어도 일부를 연결하도록 배치되며, 상기 프로텍션 집적회로, 상기 전계효과 트랜지스터 및 상기 복수의 리드들로 이루어진 군에서 선택된 어느 두 개를 전기적으로 연결하는 전기적 연결부재를 더 구비함으로써, 별도의 인쇄회로기판을 사용하지 않고 배터리 보호회로가 구성되는, 배터리팩.The passive element is arranged to connect at least some of the spaced plurality of leads, and electrically connects any two selected from the group consisting of the protection integrated circuit, the field effect transistor, and the plurality of leads. The battery pack further comprises a member, whereby a battery protection circuit is configured without using a separate printed circuit board.
  7. 제 6 항에 있어서,The method of claim 6,
    상기 리드프레임은,The lead frame,
    양쪽가장자리부분에 각각 배치되며, 상기 전극 단자와 접합되는 제 1 내부연결단자용 리드 및 상기 캡 플레이트와 접합되는 제 2 내부연결단자용 리드; A lead for a first internal connection terminal which is respectively disposed at both edge portions, and a lead for a second internal connection terminal which is joined to the electrode terminal and a cap plate;
    상기 제 1 내부연결단자용 리드 및 제 2 내부연결단자용 리드 사이에 배치되며, 외부연결단자를 구성하는, 외부연결단자용 리드; 및An external connection terminal lead disposed between the first internal connection lead and the second internal connection lead and constituting an external connection terminal; And
    상기 제 1 내부연결단자용 리드 및 제 2 내부연결단자용 리드 사이에 배치되며, 상기 배터리 보호회로 소자가 실장될 수 있는, 소자실장용 리드;A device mounting lead disposed between the first internal connection lead and the second internal connection lead, and on which the battery protection circuit element may be mounted;
    를 포함하는, 배터리팩.Including, a battery pack.
  8. 제 1 항에 있어서,The method of claim 1,
    상기 배터리 보호회로 패키지는 The battery protection circuit package
    인쇄회로기판; 및 Printed circuit board; And
    상기 인쇄회로기판 상에 배치된 프로텍션(protection) IC, 전계효과 트랜지스터(FET) 및 적어도 하나 이상의 수동소자를 구비하는 배터리 보호회로 소자;A battery protection circuit device including a protection IC, a field effect transistor (FET), and at least one passive device disposed on the printed circuit board;
    를 포함하는, 배터리팩.Including, a battery pack.
  9. 제 1 극성을 가지며 하방으로 단차를 형성하도록 오목부를 포함하는 캡 플레이트와 제 2 극성을 가지는 전극 단자를 구비하는 베어셀을 제공하는 단계;Providing a bare cell having a first polarity and having a cap plate including a recess to form a step below and an electrode terminal having a second polarity;
    이격된 복수의 리드들로 구성된 리드프레임과 상기 리드프레임 상의 보호회로 구성소자를 구비하는 기본 패키지의 적어도 일부를 상기 오목부 내에 배치하고 상기 전극 단자 및 상기 캡 플레이트와 전기적으로 연결되도록 접합하는 단계;Arranging at least a portion of a basic package including a lead frame composed of a plurality of spaced leads and a protection circuit component on the lead frame in the recess and electrically connecting the electrode terminal and the cap plate;
    상기 리드프레임의 일부를 노출시키면서 상기 보호회로 구성소자를 밀봉하는 봉지재를 형성하는 단계; 및Forming an encapsulant that seals the protection circuit component while exposing a portion of the leadframe; And
    상기 봉지재와 접합되며 상기 오목부의 적어도 일부를 충전하는 충전재를 형성하는 단계;를 포함하는, 배터리팩의 제조방법. Forming a filler that is bonded to the encapsulant and fills at least a portion of the concave portion.
  10. 제 9 항에 있어서,The method of claim 9,
    상기 봉지재를 형성하는 단계와 상기 충전재를 형성하는 단계는 수지의 용융물을 주입함으로써 동시에 수행되는, 배터리팩의 제조방법. The forming of the encapsulant and the forming of the filler are simultaneously performed by injecting a melt of resin.
  11. 제 9 항에 있어서,The method of claim 9,
    상기 봉지재를 형성하는 단계와 상기 충전재를 형성하는 단계는 상기 수지의 용융물을 디스펜싱법 또는 사출성형법에 의하여 주입함으로써 동시에 수행되는, 배터리팩의 제조방법.The forming of the encapsulant and the forming of the filler are simultaneously performed by injecting a melt of the resin by a dispensing method or an injection molding method.
  12. 제 1 극성의 전극 단자와 제 2 극성의 캡 플레이트를 구비하는 베어셀; 및A bare cell having an electrode terminal of a first polarity and a cap plate of a second polarity; And
    상기 전극 단자 및 상기 캡 플레이트와 전기적으로 연결되도록 접합되는 배터리 보호회로 패키지;를 포함하고,And a battery protection circuit package electrically connected to the electrode terminal and the cap plate.
    상기 캡 플레이트는 하방으로 단차를 형성하도록 오목부를 포함하고, 상기 배터리 보호회로 패키지의 적어도 일부는 상기 오목부 내에 배치되는, 배터리 팩.And the cap plate includes a recess to form a step downward, and at least a portion of the battery protection circuit package is disposed in the recess.
  13. 제 12 항에 있어서,The method of claim 12,
    상기 전극 단자 및 상기 배터리 보호회로 패키지는 상기 캡 플레이트에 형성된 상기 오목부 내에 위치하는, 배터리 팩.And the electrode terminal and the battery protection circuit package are located in the recess formed in the cap plate.
  14. 제 12 항에 있어서,The method of claim 12,
    상기 베어셀 및 상기 배터리 보호회로 패키지 상에 배치되며, 상기 배터리 보호회로 패키지의 외부연결단자를 노출시키는 개구부를 포함하는, 상부케이스;를 더 구비하는, 배터리 팩.And an upper case disposed on the bare cell and the battery protection circuit package and including an opening exposing external connection terminals of the battery protection circuit package.
  15. 제 12 항에 있어서,The method of claim 12,
    상기 캡 플레이트에 형성된 상기 오목부의 적어도 일부를 충전(filling)함으로써 상기 배터리 보호회로 패키지의 적어도 일부를 밀봉하면서 고정하는 봉지재;를 더 구비하는, 배터리 팩.And an encapsulant that seals and fixes at least a portion of the battery protection circuit package by filling at least a portion of the recess formed in the cap plate.
  16. 제 15 항에 있어서,The method of claim 15,
    상기 봉지재는 상기 배터리 보호회로 패키지의 외부연결단자를 노출시키도록 구성되며, 상기 봉지재의 상부면은 상기 오목부 주변의 상기 캡 플레이트의 상부면과 동일한 평면을 이루는, 배터리 팩.The encapsulant is configured to expose an external connection terminal of the battery protection circuit package, the upper surface of the encapsulant forms the same plane as the upper surface of the cap plate around the recess.
  17. 제 15 항에 있어서,The method of claim 15,
    상기 베어셀 및 상기 배터리 보호회로 패키지 상에 배치되며, 상기 배터리 보호회로 패키지의 외부연결단자를 노출시키는 개구부를 포함하는, 상부케이스;를 더 구비하는, 배터리 팩.And an upper case disposed on the bare cell and the battery protection circuit package and including an opening exposing external connection terminals of the battery protection circuit package.
  18. 제 14 항 또는 제 17 항에 있어서,The method according to claim 14 or 17,
    상기 상부케이스는 알루미늄, 알루미늄을 포함하는 합금, SUS 및 수지로 이루어진 군에서 선택된 적어도 어느 하나를 포함하는, 배터리 팩.The upper case includes at least one selected from the group consisting of aluminum, an alloy containing aluminum, SUS, and a resin.
  19. 제 12 항에 있어서,The method of claim 12,
    상기 배터리 보호회로 패키지는The battery protection circuit package
    이격된 복수의 리드들을 포함하며, 상기 전극 단자 및 상기 캡 플레이트와 접합하는, 리드프레임; 및 A lead frame comprising a plurality of leads spaced apart from each other and bonded to the electrode terminal and the cap plate; And
    상기 리드프레임 상에 실장되며, 프로텍션(protection) IC, 전계효과 트랜지스터(FET) 및 적어도 하나 이상의 수동소자를 포함하는, 배터리 보호회로 소자;를 구비하고,A battery protection circuit element mounted on the lead frame and including a protection IC, a field effect transistor (FET), and at least one passive element;
    상기 수동소자는 상기 이격된 복수의 리드들 중의 적어도 일부를 연결하도록 배치되며, 상기 프로텍션 집적회로, 상기 전계효과 트랜지스터 및 상기 복수의 리드들로 이루어진 군(群)에서 선택된 어느 두 개를 전기적으로 연결하는 전기적 연결부재를 더 구비함으로써, 별도의 인쇄회로기판을 사용하지 않고 배터리 보호회로가 구성되는, 배터리 팩.The passive element is arranged to connect at least some of the spaced leads, and electrically connects any two selected from the group consisting of the protection integrated circuit, the field effect transistor, and the plurality of leads. By further comprising an electrical connection member, a battery protection circuit is configured without using a separate printed circuit board, the battery pack.
  20. 제 19 항에 있어서,The method of claim 19,
    상기 리드프레임은,The lead frame,
    양쪽가장자리부분에 각각 배치되며, 상기 전극 단자와 접합되는 제 1 내부연결단자용 리드 및 상기 캡 플레이트와 접합되는 제 2 내부연결단자용 리드; A lead for a first internal connection terminal which is respectively disposed at both edge portions, and a lead for a second internal connection terminal which is joined to the electrode terminal and a cap plate;
    상기 제 1 내부연결단자용 리드 및 제 2 내부연결단자용 리드 사이에 배치되며, 상기 외부연결단자를 구성하는, 외부연결단자용 리드; 및An external connection terminal lead disposed between the first internal connection terminal lead and the second internal connection terminal lead and constituting the external connection terminal; And
    상기 제 1 내부연결단자용 리드 및 제 2 내부연결단자용 리드 사이에 배치되며, 상기 배터리 보호회로 소자가 실장될 수 있는, 소자실장용 리드;A device mounting lead disposed between the first internal connection lead and the second internal connection lead, and on which the battery protection circuit element may be mounted;
    를 포함하는, 배터리 팩.Including, a battery pack.
  21. 제 12 항에 있어서,The method of claim 12,
    상기 배터리 보호회로 패키지는 The battery protection circuit package
    인쇄회로기판; 및 Printed circuit board; And
    상기 인쇄회로기판 상에 배치된 프로텍션(protection) IC, 전계효과 트랜지스터(FET) 및 적어도 하나 이상의 수동소자를 구비하는 배터리 보호회로 소자;A battery protection circuit device including a protection IC, a field effect transistor (FET), and at least one passive device disposed on the printed circuit board;
    를 포함하는, 배터리 팩.Including, a battery pack.
PCT/KR2014/004834 2013-05-30 2014-05-30 Battery pack and method for manufacturing same WO2014193186A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2013-0061928 2013-05-30
KR20130061928A KR101480060B1 (en) 2013-05-30 2013-05-30 Battery pack
KR10-2013-0104660 2013-09-02
KR1020130104660A KR101529237B1 (en) 2013-09-02 2013-09-02 Battery pack and methods of fabricating the same

Publications (1)

Publication Number Publication Date
WO2014193186A1 true WO2014193186A1 (en) 2014-12-04

Family

ID=51989132

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/004834 WO2014193186A1 (en) 2013-05-30 2014-05-30 Battery pack and method for manufacturing same

Country Status (1)

Country Link
WO (1) WO2014193186A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114039140A (en) * 2021-11-04 2022-02-11 东莞新能德科技有限公司 Battery and electric equipment

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100867068B1 (en) * 2001-08-07 2008-11-04 파나소닉 주식회사 Non-aqueous electrolytic secondary battery
JP5005246B2 (en) * 2006-04-07 2012-08-22 パナソニック株式会社 Battery pack and manufacturing method thereof
KR101182867B1 (en) * 2009-07-06 2012-09-13 삼성에스디아이 주식회사 Battery pack and Manufacturing method for the Same
KR20130023052A (en) * 2011-05-25 2013-03-07 삼성에스디아이 주식회사 Battery pack

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100867068B1 (en) * 2001-08-07 2008-11-04 파나소닉 주식회사 Non-aqueous electrolytic secondary battery
JP5005246B2 (en) * 2006-04-07 2012-08-22 パナソニック株式会社 Battery pack and manufacturing method thereof
KR101182867B1 (en) * 2009-07-06 2012-09-13 삼성에스디아이 주식회사 Battery pack and Manufacturing method for the Same
KR20130023052A (en) * 2011-05-25 2013-03-07 삼성에스디아이 주식회사 Battery pack

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114039140A (en) * 2021-11-04 2022-02-11 东莞新能德科技有限公司 Battery and electric equipment

Similar Documents

Publication Publication Date Title
WO2015009087A1 (en) Structure of battery protection circuit module package coupled with holder, and battery pack having same
WO2015160112A1 (en) Polymer battery cell and electronic device comprising same
KR101450221B1 (en) Package of battery protection circuits module
KR101973048B1 (en) Cap assembly, battery pack using the same and manufacturing thereof
WO2017030320A1 (en) Battery protection circuit module and battery pack comprising same
WO2018203593A1 (en) Battery pack and manufacturing method therefor
WO2021112655A1 (en) Battery module, battery pack, and vehicle
KR101474741B1 (en) Battery pack and method of fabricating the same
WO2015002401A1 (en) Battery protection circuit module package, battery pack and electronic device including same
KR101434224B1 (en) Battery protection circuits and package of battery protection circuits module
KR20160025310A (en) Package of battery protection circuits
WO2016167467A1 (en) Battery protection circuit package and battery pack including same
KR101420826B1 (en) Structure of battery protection circuits module package with holder, battery pack including the same, and methods for fabricating thereof
WO2014193186A1 (en) Battery pack and method for manufacturing same
US8895183B2 (en) External terminal assembly including a terminal holder coupled to a protection circuit substrate and battery pack including the same
KR101420827B1 (en) Structure of battery protection circuits module package with holder, battery pack including the same, and methods for fabricating thereof
KR101529237B1 (en) Battery pack and methods of fabricating the same
KR101517543B1 (en) Holder to be equipped with battery protection circuits module package, method of fabricating the same, and method of fabricating battery pack using the same
KR101558271B1 (en) Battery protection circuits module package and method of fabricating the same
KR101582952B1 (en) Package of battery protection circuits and battery pack
KR101595501B1 (en) Package of battery protection circuits module and battery pack
WO2015152600A1 (en) Battery protection circuit module package and battery pack
WO2014168441A1 (en) Battery protection circuit package module
KR20140124735A (en) Package of battery protection circuits module and methods of fabricating the same
KR101480060B1 (en) Battery pack

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14805000

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14805000

Country of ref document: EP

Kind code of ref document: A1