WO2014193009A1 - 이동통신 시스템의 중계 장치 및 방법 - Google Patents

이동통신 시스템의 중계 장치 및 방법 Download PDF

Info

Publication number
WO2014193009A1
WO2014193009A1 PCT/KR2013/004801 KR2013004801W WO2014193009A1 WO 2014193009 A1 WO2014193009 A1 WO 2014193009A1 KR 2013004801 W KR2013004801 W KR 2013004801W WO 2014193009 A1 WO2014193009 A1 WO 2014193009A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
filter
frequency band
intermediate frequency
high frequency
Prior art date
Application number
PCT/KR2013/004801
Other languages
English (en)
French (fr)
Inventor
안영완
이경재
진덕호
김성현
양규호
Original Assignee
(주)기산텔레콤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)기산텔레콤 filed Critical (주)기산텔레콤
Priority to PCT/KR2013/004801 priority Critical patent/WO2014193009A1/ko
Publication of WO2014193009A1 publication Critical patent/WO2014193009A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/155Ground-based stations

Definitions

  • the present invention relates to a relay apparatus and method for a mobile communication system, and in particular, Long Term Evolution (LTE) Orthogonal Frequency Division Multiple Access (OFDMA)
  • LTE Long Term Evolution
  • OFDMA Orthogonal Frequency Division Multiple Access
  • the present invention relates to a superheterodyne RF repeater and a relay method for maximizing the use of a normal CP (Cyclic Prefix) 4.7 ms in a mobile communication system.
  • Mobile communication systems are widely deployed to provide various types of communication content such as voice, data, and the like.
  • Such systems may be multiple access systems capable of supporting communication with multiple users by sharing the available system resources (eg, bandwidth, transmit power).
  • Such multiple access systems are for example code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency division multiple access (FDMA) systems, 3GPP long term evolution (LTE) systems, and orthogonal frequency division multiple access (OFDMA) system and the like.
  • CDMA code division multiple access
  • TDMA time division multiple access
  • FDMA frequency division multiple access
  • LTE 3GPP long term evolution
  • OFDMA orthogonal frequency division multiple access
  • a wireless multiple access communication system can simultaneously support communication for multiple wireless terminals.
  • Each terminal communicates with one or more base stations via transmissions on the forward and reverse links.
  • the forward link (or referred to as downlink or downlink) refers to the communication link from the base stations to the terminals
  • the reverse link or referred to as uplink or uplink refers to the communication link from the terminals to the base stations. do.
  • the communication link may be established through a single input single output (SISO) method, a multiple input single output (MISO) method, or a multiple input multiple output (MIMO) method.
  • SISO single input single output
  • MISO multiple input single output
  • MIMO multiple input multiple output
  • the repeater in the area covering the radio shade area or the installation cost of the base station, generally using a super heterodyne RF repeater, such a super
  • the heterodyne RF repeater uses a high Q intermediate frequency acoustic wave (SAW) filter for selectivity, sensitivity, and image frequency rejection, so the SAW filter's default delay (approximately 1.5) ⁇ s to 2.5 ⁇ s) is reflected in the instrument.
  • SAW intermediate frequency acoustic wave
  • the superheterodyne method easily removes selectivity, sensitivity, and image frequency, and uses an intermediate frequency of 500 MHz or less in order to use a general SAW filter band.
  • a SAW filter basically has a delay and a 10 MHz band (Bandwidth).
  • SAW filter using has a delay time of 1.5 ⁇ 2.5 ⁇ s.
  • the existing RF repeater uses SAW filter to satisfy the selectivity and sensitivity characteristics and to effectively remove the image frequency. Therefore, the delay of other elements is added to the delay caused by the SAW filter. Has an equipment delay of ⁇ 3 ⁇ s.
  • the present invention has been made to solve the above-mentioned conventional problems, and an object thereof is to minimize equipment delay caused by an RF repeater of a mobile communication system such as an LTE OFDMA system. It is to provide a relay device and method of a mobile communication system that can be used to the maximum.
  • a relay device of a mobile communication system is a relay device for amplifying a superheterodyne system, the frequency of converting a received signal of a high frequency band into a signal of an intermediate frequency band Down converter; An IF filter performing filtering to obtain a signal of a desired intermediate frequency band from the signal of the converted intermediate frequency band; And a frequency up converter for converting a signal of an intermediate frequency band output from the IF filter into a signal of a high frequency band, wherein the frequency down converter converts the signal of the high frequency band into a signal of an intermediate frequency band of 500 MHz or more in frequency and outputs the signal.
  • the IF filter may be configured as a filter having a delay of 1 dB or less.
  • the IF filter may include at least one of a cavity filter, a DR-cavity filter, a dielectric resonator (DR) filter, a film bulk acoustic resonator (FBAR) filter, and an RF SAW (RF surface acoustic wave) filter. It can be composed of one.
  • a cavity filter a DR-cavity filter
  • DR dielectric resonator
  • FBAR film bulk acoustic resonator
  • RF SAW RF surface acoustic wave
  • the frequency down converter, the IF filter, and the frequency up converter may be installed on at least one of a forward signal path and a reverse path.
  • a method for relaying a mobile communication signal includes a method for amplifying a superheterodyne system, the method comprising: (a) converting a received signal of a high frequency band into a signal of an intermediate frequency band; Converting; (b) performing filtering to obtain a signal of a desired intermediate frequency band from the converted intermediate frequency signal; And (c) converting the filtered intermediate frequency band signal into a signal of a high frequency band and outputting the signal, wherein the step (a) converts the signal of the high frequency band into a signal of an intermediate frequency band of 500 MHz or more in frequency.
  • filtering may be performed using an IF filter having a delay of 1 dB or less.
  • At least one of a cavity filter, a dial-cavity filter, a DR filter, an FBAR filter, and a high frequency (RF) SAW filter may be used as an IF filter.
  • the step (a), the step (b), and the step (c) may be performed, for example, on a forward signal path, on another example on a reverse signal path, or in another example on both a forward signal path and a reverse signal path. Can be done.
  • FIG. 1 is a block diagram of a relay device of a mobile communication system according to an embodiment of the present invention
  • FIG. 2 is a detailed configuration diagram of the downlink signal amplifier of FIG. 1;
  • FIG. 3 is a detailed configuration diagram of an uplink signal amplifier of FIG. 1;
  • FIG. 4 is a flowchart of a method of relaying a mobile communication signal according to an embodiment of the present invention
  • FIG. 5 is an exemplary diagram for comparing a service distance between the relay device of FIG. 1 and the existing relay device.
  • FIG. 1 is a configuration diagram of a relay device of a mobile communication system according to an embodiment of the present invention. As shown in the figure, the duplexers 121 and 122, the downlink signal amplifier 130, and the uplink signal amplifier 150 are shown in FIG. It may include.
  • the duplexer 121 is connected to a donor antenna 111 facing a base station (not shown), and is a downward (or forward) signal received through the donor antenna 111 and an upward (or reverse) signal transmitted.
  • the downlink signal received from the donor antenna 111 is output to the downlink signal amplifier 130 and the uplink signal input from the uplink signal amplifier 150 is the donor antenna 111. To transmit to the base station side through.
  • the duplexer 122 is connected to the service antenna 112 facing the user terminal (not shown) and is used to separate the uplink signal and the downlink signal transmitted through the service antenna 112 from each other.
  • the uplink signal received from the service antenna 112 is output to the uplink signal amplifying unit 150 and the downlink signal input from the downlink signal amplifying unit 130 is for transmitting to the user terminal through the service antenna 112.
  • the downlink signal amplification unit 130 is for amplifying the downlink signal input from the duplexer 121 and outputting the amplified signal to the duplexer 122.
  • the downlink signal amplifier 130 may be configured as a superheterodyne amplifier structure, and in particular, a superhetero
  • the frequency down converter (refer to 131 of FIG. 2) in the multi-in amplifier structure allows the downlink signal of the input high frequency band to be converted into a downlink signal of the intermediate frequency band having a frequency of 500 MHz or more, and outputs the intermediate signal output from the frequency down converter.
  • An IF filter (see 130e of FIG. 2) that performs filtering to obtain a signal of a desired intermediate frequency band from a downlink signal of a frequency band is composed of a filter having a delay of 1 dB or less.
  • the uplink signal amplifier 150 amplifies the downlink signal input from the duplexer 122 and outputs the amplified signal to the duplexer 121.
  • the uplink signal amplifier 150 may be configured as a super heterodyne amplifier structure.
  • the frequency down converter (refer to 151 of FIG. 3) in the multi-input amplifier structure converts the input upstream signal of the high frequency band into an uplink signal of the intermediate frequency band having a frequency of 500 MHz or more, and outputs the output signal from the frequency down converter.
  • An IF filter (see 150e of FIG. 3) that performs filtering to obtain a signal of a desired intermediate frequency band from a downlink signal of an intermediate frequency band is composed of a filter having a delay of 1 dB or less.
  • the up / down intermediate frequency must be 500 MHz or less to use the band of the SAW filter.
  • the up / down intermediate frequency is used upwards of 500 MHz or more (recommended 1 GHz or more) to satisfy the selectivity and sensitivity characteristics, and the image frequency removal is effective, and the delay is better than that of the conventional SAW filter. Filters with significantly less delay, i.e., 1 kHz or less or 0.5 kHz or less, can be used.
  • the RF delay can be made significantly smaller than in the conventional equipment delay, and the limitation of the use of the RF repeater due to the limitation of the Normal CP (about 4.7 kHz) range in the OFDMA scheme is solved.
  • the high power RF repeater can be used to expand the service area of high quality.
  • FIG. 2 illustrates an example of a detailed configuration of the downlink signal amplifying unit 130 of FIG. 1, and as shown in FIG. 1, includes an amplifier 130a, a local oscillator 130b, and a mixer 130c.
  • the frequency down converter 131 converts an input downlink signal of a high frequency band into a downlink signal of an intermediate frequency band having a frequency of 500 MHz or more, and outputs the IF filter 130e. Filtering may be performed to obtain a signal of a desired intermediate frequency band from the signal, but may be configured as a filter having a delay of 1 kHz or less.
  • the IF filter 130e includes a cavity filter, a DR-cavity filter, a dielectric resonator filter, and a bulk bulk having a delay of about 1 dB or less or about 0.5 dB or less.
  • At least one of an acoustic resonator (RF), and a high frequency (RF) surface acoustic wave (SAW) filter may be configured.
  • FIG. 3 illustrates an example of a detailed configuration of the uplink signal amplifier 150 of FIG. 1, and as illustrated in the drawing, includes an amplifier 150a, a local oscillator 150b, and a mixer 150c.
  • the frequency down converter 151 converts an input uplink signal of a high frequency band into an uplink signal of an intermediate frequency band having a frequency of 500 MHz or more, and outputs the IF filter 150e. Filtering may be performed to obtain a signal of a desired intermediate frequency band from the signal, but may be configured as a filter having a delay of about 1 kHz or less.
  • the IF filter 150e may include at least one of a cavity filter, a dial-cavity filter, a DR filter, an FBAR filter, and a high frequency (RF) SAW filter having a delay of about 1 dB or less or about 0.5 dB or less. have.
  • FIG. 4 is a flowchart of a method of relaying a mobile communication signal according to an exemplary embodiment of the present invention, which is applied to the relay device 100 of FIG. 1, and thus will be described in parallel with the operation of the relay device 100. Described by separating the path.
  • the received forward OFDMA RF signal is input to the input of the downlink signal amplifier 130 through the duplexer 121. It is provided (S401).
  • the downlink signal amplification unit 130 converts the forward OFDMA RF signal input from the duplexer 121 into an OFDMA IF signal as a signal of an intermediate frequency band through a frequency down converter (see 131 of FIG. 2), in particular having a frequency of 500 MHz or more.
  • the signal is converted into an OFDMA IF signal as a signal of an intermediate frequency band (S402).
  • the downlink signal amplification unit 130 performs filtering using an IF filter (see 131e of FIG. 2) to obtain a signal of a desired intermediate frequency band from an OFDMA IF signal having a frequency of 500 MHz or more converted in step S402.
  • the above-described IF filter uses at least one of a cavity filter, a dial-cavity filter, a DR filter, an FBAR filter, and a high frequency (RF) SAW filter as an IF filter having a delay of 1 dB or less ( S403).
  • the downlink signal amplifier 130 converts the signal of the intermediate frequency band filtered in step S403 into an OFDMA RF signal of a high frequency band through a frequency up converter (see 133 of FIG. 2), and then amplifies, RF filters, and attenuates the signal. After the process of power amplification and the like, the input to the input of the duplex 122 (S404).
  • the OFDMA RF signal of the high frequency band output from the downlink signal amplifier 130 in step S404 is separated into a downlink path through the duplex 122 and transmitted to the user terminal (not shown) through the service antenna 112. (S405).
  • the received forward OFDMA RF signal is input to the input of the uplink signal amplifier 150 through the duplexer 122. It is provided (S501).
  • the uplink signal amplifying unit 150 converts the reverse OFDMA RF signal input from the duplexer 122 into an OFDMA IF signal as a signal of an intermediate frequency band through a frequency down converter (see 151 of FIG. 3), in particular having a frequency of 500 MHz or more.
  • the signal is converted into an OFDMA IF signal as a signal of an intermediate frequency band (S502).
  • the uplink signal amplification unit 150 performs filtering using an IF filter (see 151e in FIG. 3) to obtain a signal of a desired intermediate frequency band from the OFDMA IF signal having a frequency of 500 MHz or more converted in step S502.
  • the above-described IF filter uses at least one of a cavity filter, a dial-cavity filter, a DR filter, an FBAR filter, and a high frequency (RF) SAW filter as an IF filter having a delay of 1 dB or less ( S503).
  • the uplink signal amplifier 150 converts the signal of the intermediate frequency band filtered in step S503 into an OFDMA RF signal of a high frequency band through a frequency up converter (see 153 of FIG. 3), and then amplifies, RF filters, and attenuates the signal. After the process of power amplification and the like, it is provided as an input of the duplex 121 (S504).
  • the OFDMA RF signal of the high frequency band output from the uplink signal amplifier 150 in step S504 is separated into an upward path through the duplex 121 and transmitted to the base station (not shown) through the donor antenna 111 ( S505).
  • FIG. 5 is an exemplary diagram for comparing a service distance between the relay device 100 of FIG. 1 and the conventional relay device 200.
  • FIG. 5 shows a service distance that may occur in a conventional CP of about 4.7 ms in LTE OFDMA scheme for a relay apparatus 100 according to the present invention having a conventional delay apparatus 200 having an equipment delay of about 3 ms and about 0.5 Hz. For example, shown.
  • the RF repeater 100 having the equipment delay of 0.5 kHz is about 4.65 kHz due to the normal CP of about 4.7 kHz.
  • the RF repeater 100 of the present invention has a much smaller delay compared to the conventional RF repeater 200 by the normal CP of about 4.7 kHz of the LTE OFDMA scheme.
  • an IF filter for removing selectivity, sensitivity characteristics, and image frequency is increased due to an increase in a forward / reverse intermediate frequency (IF) band of 500 MHz or more in an OFDMA RF repeater.
  • IF forward / reverse intermediate frequency
  • It can be configured as cavity filter, dial-cavity filter, DR filter, FBAR filter, or high frequency (RF) SAW filter with much smaller delay than SAW filter in the system. Has the effect of minimizing.
  • the limitation of the use of the RF repeater due to the limitation of the Normal CP (approximately 4.7 ms) range in the OFDMA scheme is solved, thereby improving the service quality by increasing the utilization of the high output RF repeater.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Relay Systems (AREA)

Abstract

본 발명은 LTE(Long Term Evolution) OFDMA(Orthogonal Frequency Division Multiple Access) 방식의 이동통신 시스템에서 노멀(Normal) CP(Cyclic Prefix) 4.7㎲를 최대한 사용할 수 있도록 하기 위한 슈퍼헤테로다인 RF 중계기 및 중계 방법에 관한 것으로, 본 발명의 일 측면에 따른 이동통신 시스템의 중계 장치는, 슈퍼헤테로다인 방식의 증폭을 위한 중계 장치에 있어서, 수신된 고 주파수 대의 신호를 중간 주파수 대의 신호로 변환하는 주파수 다운 컨버터; 상기 변환된 중간 주파수 대의 신호에서 원하는 중간 주파수 대역의 신호를 얻기 위해 필터링을 수행하는 IF 필터; 및 상기 IF 필터로부터 출력된 중간 주파수 대역의 신호를 고 주파수 대의 신호로 변환하는 주파수 업 컨버터를 포함하고, 상기 주파수 다운 컨버터는 상기 고 주파수 대의 신호를 주파수가 500MHz 이상의 중간 주파수 대의 신호로 변환하여 출력하고, 상기 IF 필터는 1㎲ 이하의 딜레이를 갖는 필터로 구성될 수 있다.

Description

이동통신 시스템의 중계 장치 및 방법
본 발명은 이동통신 시스템의 중계 장치 및 방법에 관한 것으로, 특히 LTE(Long Term Evolution) OFDMA(Orthogonal Frequency Division Multiple Access) 방식의 이동통신 시스템에서 노멀(Normal) CP(Cyclic Prefix) 4.7㎲를 최대한 사용할 수 있도록 하기 위한 슈퍼헤테로다인 RF 중계기 및 중계 방법에 관한 것이다.
이동통신 시스템들은 음성, 데이터, 등과 같은 다양한 타입의 통신 콘텐츠를 제공하기 위하여 폭넓게 전개된다. 이러한 시스템들은 이용 가능한 시스템 리소스들(예를 들어, 대역폭, 전송 전력)을 공유함으로써 다수의 사용자들과의 통신을 지원할 수 있는 다중 접속 시스템들일 수 있다. 그러한 다중 접속 시스템들은 예를 들어 코드분할다중접속(CDMA) 시스템, 시분할다중접속(TDMA) 시스템, 주파수분할다중접속(FDMA) 시스템, 3GPP 롱텀에벌루션(LTE) 시스템, 및 직교주파수분할다중접속(OFDMA) 시스템 등을 포함한다.
일반적으로, 무선 다중 접속 통신 시스템은 다수의 무선 단말들에 대한 통신을 동시에 지원할 수 있다. 각각의 단말은 순방향 링크 및 역방향 링크상의 전송들을 통해 하나 이상의 기지국들과 통신한다. 순방향 링크(또는 다운링크나 하향링크라 칭함)는 기지국들로부터 단말들로의 통신 링크를 지칭하고, 역방향 링크(또는 업링크나 상향링크라 칭함)는 단말들로부터 기지국들로의 통신 링크를 지칭한다. 이러한 통신 링크는 단일입력단일출력(SISO) 방식, 다중입력단일출력(MISO) 방식, 또는 다중입력다중출력(MIMO) 방식을 통해 설정될 수 있다.
한편, 전술한 다양한 방식의 이동통신 시스템에서는 전파음영지역을 커버하거나 기지국의 설치비용이 부담스러운 지역에 중계기를 구성시킬 필요가 있는데, 일반적으로 슈퍼헤테로다인 방식의 RF 중계기를 사용하고 있고, 이러한 슈퍼헤테로다인 방식의 RF 중계기는 선택도, 민감도 특성, 및 영상주파수 제거를 위해 높은 Q값을 갖는 중간주파(IF) SAW(Surface Acoustic Wave) 필터를 사용하므로 SAW 필터의 기본 딜레이(Delay)(약 1.5㎲ ~ 2.5㎲사이)가 장비에 반영되었다.
즉, 슈퍼헤테로다인 방식은 선택도, 민감도 및 영상주파수 제거가 용이하며 일반적인 SAW 필터 대역을 사용하기 위하여 중간주파수를 500MHz 이하로 사용하고 있으며, 이러한 SAW 필터는 기본적으로 딜레이가 발생하며 10MHz 대역(Bandwidth)을 사용하는 SAW 필터는 대략 1.5 ~ 2.5㎲의 지연시간이 발생한다.
전술한 바와 같이 기존의 RF 중계기는 선택도, 민감도 특성을 만족하며 영상주파수 제거를 효과적으로 하기 위하여 SAW 필터를 사용하고 있기 때문에, 기본적으로 SAW 필터에 의한 딜레이에 추가적으로 다른 소자의 딜레이가 더해져서 최소 2 ~ 3㎲의 장비 딜레이를 갖는다.
그러나, 전술한 장비 딜레이로 인하여 OFDMA의 Normal CP(약 4.7㎲) 범위 안에서 고출력 RF중계기를 사용하는데 한계를 갖는 문제점이 있었다.
본 발명은 전술한 종래의 문제점을 해결하기 위한 것으로, 그 목적은 LTE OFDMA 시스템과 같은 이동통신 시스템의 RF 중계기에 의한 장비 딜레이를 최소화할 수 있도록 하여 노멀(Normal) CP(Cyclic Prefix) 4.7㎲를 최대한 사용할 수 있도록 하는, 이동통신 시스템의 중계 장치 및 방법을 제공하는 것이다.
전술한 목적을 달성하기 위하여 본 발명의 일 측면에 따른 이동통신 시스템의 중계 장치는, 슈퍼헤테로다인 방식의 증폭을 위한 중계 장치에 있어서, 수신된 고 주파수 대의 신호를 중간 주파수 대의 신호로 변환하는 주파수 다운 컨버터; 상기 변환된 중간 주파수 대의 신호에서 원하는 중간 주파수 대역의 신호를 얻기 위해 필터링을 수행하는 IF 필터; 및 상기 IF 필터로부터 출력된 중간 주파수 대역의 신호를 고 주파수 대의 신호로 변환하는 주파수 업 컨버터를 포함하고, 상기 주파수 다운 컨버터는 상기 고 주파수 대의 신호를 주파수가 500MHz 이상의 중간 주파수 대의 신호로 변환하여 출력하고, 상기 IF 필터는 1㎲ 이하의 딜레이를 갖는 필터로 구성될 수 있다.
상기 IF 필터는 캐비티(Cavity) 필터, 디알-캐비티(DR-Cavity) 필터, DR(Dielectric Resonator) 필터, FBAR(Film Bulk Acoustic Resonator) 필터, 및 고주파(RF) SAW(Surface Acoustic Wave) 필터 중 적어도 하나로 구성될 수 있다.
상기 주파수 다운 컨버터, 상기 IF 필터, 및 상기 주파수 업 컨버터는 순방향 신호 경로 또는 역방향 경로 중 적어도 하나의 경로 상에 설치될 수 있다.
전술한 목적을 달성하기 위하여 본 발명의 일 측면에 따른 이동통신 신호의 중계 방법은, 슈퍼헤테로다인 방식의 증폭을 위한 중계 방법에 있어서, (a) 수신된 고 주파수 대의 신호를 중간 주파수 대의 신호로 변환하는 단계; (b) 상기 변환된 중간 주파수 대의 신호에서 원하는 중간 주파수 대역의 신호를 얻기 위해 필터링을 수행하는 단계; 및 (c) 상기 필터링된 중간 주파수 대역의 신호를 고 주파수 대의 신호로 변환하여 출력하는 단계를 포함하고, 상기 단계 (a)는 상기 고 주파수 대의 신호를 주파수가 500MHz 이상의 중간 주파수 대의 신호로 변환하여 출력하고, 상기 단계 (b)에서는 1㎲ 이하의 딜레이를 갖는 IF 필터를 사용하여 필터링을 수행할 수 있다.
단계 (b)에서의 IF 필터링 시 캐비티 필터, 디알-캐비티 필터, DR 필터, FBAR 필터, 및 고주파(RF) SAW 필터 중 적어도 하나를 IF 필터로 사용할 수 있다.
상기 단계 (a), 상기 단계 (b), 및 상기 단계 (c)는, 일 예로 순방향 신호 경로상에서 수행하거나, 다른 예로 역방향 신호 경로상에서 수행하거나, 또 다른 예로 순방향 신호 경로 및 역방향 신호 경로 모두에서 수행할 수 있다.
도 1은 본 발명의 실시예에 따른 이동통신 시스템의 중계 장치의 구성도,
도 2는 도 1의 하향 신호 증폭부의 세부 구성도,
도 3은 도 1의 상향 신호 증폭부의 세부 구성도,
도 4는 본 발명의 실시예에 따른 이동통신 신호의 중계 방법의 흐름도,
도 5는 도 1의 중계 장치와 기존의 중계 장치의 서비스 거리 비교를 위한 예시도이다.
이하, 첨부도면을 참조하여 본 발명의 실시예에 대해 구체적으로 설명한다. 각 도면의 구성요소들에 참조부호를 부가함에 있어서 동일한 구성요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가지도록 한다. 또한, 본 발명의 실시예에 대한 설명 시 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략한다.
도 1은 본 발명의 실시예에 따른 이동통신 시스템의 중계 장치의 구성도로, 동 도면에 도시된 바와 같이, 듀플렉서(121,122), 하향 신호 증폭부(130), 및 상향 신호 증폭부(150)를 포함할 수 있다.
듀플렉서(121)는 기지국(미도시)과 대향하는 도너 안테나(111)에 연결되어 그 도너 안테나(111)를 통해 수신되는 하향(또는 순방향이라 칭함) 신호와 송신되는 상향(또는 역방향이라 칭함) 신호를 서로 분리하기 위한 것으로, 예를 들어, 도너 안테나(111)로부터 수신된 하향 신호는 하향 신호 증폭부(130)측으로 출력하고 상향 신호 증폭부(150)로부터 입력된 상향 신호는 도너 안테나(111)를 통해 기지국 측으로 송신하기 위한 것이다.
듀플렉서(122)는 사용자 단말(미도시)과 대향하는 서비스 안테나(112)에 연결되어 그 서비스 안테나(112)를 통해 수신되는 상향 신호와 송신되는 하향 신호를 서로 분리하기 위한 것으로, 예를 들어, 서비스 안테나(112)로부터 수신된 상향 신호는 상향 신호 증폭부(150)측으로 출력하고 하향 신호 증폭부(130)로부터 입력된 하향 신호는 서비스 안테나(112)를 통해 사용자 단말 측으로 송신하기 위한 것이다.
하향 신호 증폭부(130)는 듀플렉서(121)로부터 입력된 하향 신호를 증폭 처리하여 듀플렉서(122)로 출력하기 위한 것으로, 예를 들어 슈퍼헤테로다인 방식의 증폭기 구조로 구성될 수 있고, 특히 슈퍼헤테로다인 방식의 증폭기 구조에서 주파수 다운 컨버터(도 2의 131 참조)는 입력된 고 주파수 대의 하향 신호를 주파수가 500MHz 이상인 중간 주파수 대의 하향 신호로 변환하여 출력할 수 있도록 하고, 주파수 다운 컨버터로부터 출력된 중간 주파수 대의 하향 신호로부터 원하는 중간 주파수 대역의 신호를 얻기 위해 필터링을 수행하는 IF 필터(도 2의 130e 참조)는 1㎲ 이하의 딜레이를 갖는 필터로 구성한다.
상향 신호 증폭부(150)는 듀플렉서(122)로부터 입력된 하향 신호를 증폭 처리하여 듀플렉서(121)로 출력하기 위한 것으로, 예를 들어 슈퍼헤테로다인 방식의 증폭기 구조로 구성될 수 있고, 특히 슈퍼헤테로다인 방식의 증폭기 구조에서 주파수 다운 컨버터(도 3의 151 참조)는 입력된 고 주파수 대의 상향 신호를 주파수가 500MHz 이상인 중간 주파수 대의 상향 신호로 변환하여 출력할 수 있도록 하고, 이 주파수 다운 컨버터로부터 출력된 중간 주파수 대의 하향 신호로부터 원하는 중간 주파수 대역의 신호를 얻기 위해 필터링을 수행하는 IF 필터(도 3의 150e 참조)는 1㎲ 이하의 딜레이를 갖는 필터로 구성한다.
종래의 기술에 따른 슈퍼헤테로다인 방식의 증폭기에서는 선택도, 민감도 및 영상주파수 제거가 용이하도록 통상적으로 SAW 필터를 사용하였기 때문에, 이러한 SAW 필터의 대역을 사용하기 위하여 상/하향 중간주파수를 반드시 500MHz 이하로 사용하여만 하였으나, 본 실시예에 따르면 상/하향 중간주파수를 500MHz이상(권장은 1GHz이상) 상향해서 사용하여 선택도, 민감도 특성을 만족하며 영상주파수 제거가 효과적이며 딜레이가 기존의 SAW 필터보다 현저히 적은 즉, 1㎲ 이하 또는 0.5㎲ 이하의 딜레이를 갖는 필터를 사용할 수 있다.
따라서, 전술한 본 실시예에 따르면 OFDMA방식에서 장비 딜레이가 기존과 비교하여 현저히 작은 RF 중계기를 만들 수 있고, OFDMA 방식에서의 Normal CP(약 4.7㎲) 범위의 제약으로 인한 RF 중계기 사용제한이 해결되어 고출력 RF 중계기의 활용도를 높여 고품질의 서비스 영역을 확장할 수 있다.
도 2는 도 1의 하향 신호 증폭부(130)의 세부 구성의 일 예를 도시한 것으로, 동 도면에 도시된 바와 같이, 증폭기(130a), 국부발진기(130b)와 믹서(130c)를 포함하는 주파수 다운 컨버터(131), 증폭기(130d), IF 필터(130e), 증폭기(130f,130g), 국부발진기(130h)와 믹서(130i)를 포함하는 주파수 업 컨버터(133), 증폭기(130j), RF 필터(130k), 증폭기(130l), 가변 감쇠기(130m), 및 증폭기(130n)가 순차적으로 직렬 연결된 일반적인 슈퍼헤테로다인 방식의 증폭기의 구조와 동일 또는 유사한 구조로 구성할 수 있으므로, 구체적인 설명은 생략한다.
본 실시예에 따르면 주파수 다운 컨버터(131)는 입력된 고 주파수 대의 하향 신호를 주파수가 500MHz 이상인 중간 주파수 대의 하향 신호로 변환하여 출력할 수 있도록 하고, IF 필터(130e)는 500MHz 이상인 중간 주파수 대의 하향 신호에서 원하는 중간 주파수 대역의 신호를 얻기 위해 필터링을 수행하되 1㎲ 이하의 딜레이를 갖는 필터로 구성할 수 있다.
본 실시예에서 IF 필터(130e)는 약 1㎲ 이하 또는 약 0.5㎲ 이하의 딜레이를 갖는 캐비티(Cavity) 필터, 디알-캐비티(DR-Cavity) 필터, DR(Dielectric Resonator) 필터, FBAR(Film Bulk Acoustic Resonator), 및 고주파(RF) SAW(Surface Acoustic Wave) 필터 필터 중 적어도 하나로 구성할 수 있다.
도 3은 도 1의 상향 신호 증폭부(150)의 세부 구성의 일 예를 도시한 것으로, 동 도면에 도시된 바와 같이, 증폭기(150a), 국부발진기(150b)와 믹서(150c)를 포함하는 주파수 다운 컨버터(151), 증폭기(150d), IF 필터(150e), 증폭기(150f,150g), 국부발진기(150h)와 믹서(150i)를 포함하는 주파수 업 컨버터(153), 증폭기(150j), RF 필터(150k), 증폭기(150l), 가변 감쇠기(150m), 및 증폭기(150n)가 순차적으로 직렬 연결된 일반적인 슈퍼헤테로다인 방식의 증폭기의 구조와 동일 또는 유사한 구조로 구성할 수 있으므로, 구체적인 설명은 생략한다.
본 실시예에 따르면 주파수 다운 컨버터(151)는 입력된 고 주파수 대의 상향 신호를 주파수가 500MHz 이상인 중간 주파수 대의 상향 신호로 변환하여 출력할 수 있도록 하고, IF 필터(150e)는 500MHz 이상인 중간 주파수 대의 상향 신호에서 원하는 중간 주파수 대역의 신호를 얻기 위해 필터링을 수행하되 약 1㎲ 이하의 딜레이를 갖는 필터로 구성할 수 있다.
본 실시예에서 IF 필터(150e)는 약 1㎲ 이하 또는 약 0.5㎲ 이하의 딜레이를 갖는 캐비티 필터, 디알-캐비 필터, DR필터, FBAR 필터, 및 고주파(RF) SAW 필터 중 적어도 하나로 구성할 수 있다.
도 4는 본 발명의 실시예에 따른 이동통신 신호의 중계 방법의 흐름도로, 도 1의 중계 장치(100)에 적용되므로, 그 중계 장치(100)의 동작과 병행하여 설명하되, 순방향 경로와 역방향 경로로 구분하여 설명한다.
순방향 경로
먼저, OFDMA 시스템에서의 순방향 경로상의 하향 신호에 대한 중계 방법에 대해 설명한다.
도너 안테나(111)를 통해 순방향(또는 하향이라 칭함) 고 주파수 대의 신호로서의 OFDMA RF 신호가 수신되면, 그 수신된 순방향 OFDMA RF 신호는 듀플렉서(121)를 통해 하향 신호 증폭부(130)의 입력으로 제공된다(S401).
하향 신호 증폭부(130)는 듀플렉서(121)로부터 입력된 순방향 OFDMA RF 신호를 주파수 다운 컨버터(도 2의 131 참조)를 통해 중간 주파수 대의 신호로서의 OFDMA IF 신호로 변환하되, 특히 500MHz 이상의 주파수를 갖는 중간 주파수 대의 신호로서의 OFDMA IF 신호로 변환한다(S402).
이어, 하향 신호 증폭부(130)는 단계 S402를 통해 변환된 500MHz 이상의 주파수를 갖는 OFDMA IF 신호에서 원하는 중간 주파수 대역의 신호를 얻기 위해 IF 필터(도 2의 131e 참조)를 이용하여 필터링을 수행하되, 특히 본 실시예에서 전술한 IF 필터는 1㎲ 이하의 딜레이를 갖는 IF 필터로서 캐비티 필터, 디알-캐비티 필터, DR 필터, FBAR 필터, 및 고주파(RF) SAW 필터 중 적어도 하나를 사용하도록 한다(S403).
이어, 하향 신호 증폭부(130)는 단계 S403에서 필터링된 중간 주파수 대역의 신호를 주파수 업 컨버터(도 2의 133 참조)를 통해 고 주파수 대의 OFDMA RF 신호로 변환한 후, 증폭, RF 필터링, 감쇄, 전력 증폭 등의 과정을 거쳐 듀플렉스(122)의 입력으로 제공한다(S404).
마지막으로, 단계 S404에서 하향 신호 증폭부(130)로부터 출력된 고 주파수 대의 OFDMA RF 신호는 듀플렉스(122)를 통해 하향 경로로 분리되어 서비스 안테나(112)를 통해 사용자 단말(미도시) 측으로 송출된다(S405).
역방향 경로
다음, OFDMA 시스템에서의 역방향 경로상의 상향 신호에 대한 중계 방법에 대해 설명한다.
서비스 안테나(112)를 통해 역방향(또는 상향이라 칭함) 고 주파수 대의 신호로서의 OFDMA RF 신호가 수신되면, 그 수신된 순방향 OFDMA RF 신호는 듀플렉서(122)를 통해 상향 신호 증폭부(150)의 입력으로 제공된다(S501).
상향 신호 증폭부(150)는 듀플렉서(122)로부터 입력된 역방향 OFDMA RF 신호를 주파수 다운 컨버터(도 3의 151 참조)를 통해 중간 주파수 대의 신호로서의 OFDMA IF 신호로 변환하되, 특히 500MHz 이상의 주파수를 갖는 중간 주파수 대의 신호로서의 OFDMA IF 신호로 변환한다(S502).
이어, 상향 신호 증폭부(150)는 단계 S502를 통해 변환된 500MHz 이상의 주파수를 갖는 OFDMA IF 신호에서 원하는 중간 주파수 대역의 신호를 얻기 위해 IF 필터(도 3의 151e 참조)를 이용하여 필터링을 수행하되, 특히 본 실시예에서 전술한 IF 필터는 1㎲ 이하의 딜레이를 갖는 IF 필터로서 캐비티 필터, 디알-캐비티 필터, DR 필터, FBAR 필터, 및 고주파(RF) SAW 필터 중 적어도 하나를 사용하도록 한다(S503).
이어, 상향 신호 증폭부(150)는 단계 S503에서 필터링된 중간 주파수 대역의 신호를 주파수 업 컨버터(도 3의 153 참조)를 통해 고 주파수 대의 OFDMA RF 신호로 변환한 후, 증폭, RF 필터링, 감쇄, 전력 증폭 등의 과정을 거쳐 듀플렉스(121)의 입력으로 제공한다(S504).
마지막으로, 단계 S504에서 상향 신호 증폭부(150)로부터 출력된 고 주파수 대의 OFDMA RF 신호는 듀플렉스(121)를 통해 상향 경로로 분리되어 도너 안테나(111)를 통해 기지국(미도시) 측으로 송출된다(S505).
도 5는 도 1의 중계 장치(100)와 기존의 중계 장치(200)의 서비스 거리 비교를 위한 예시도이다.
도 5는 장비 딜레이가 약 3㎲인 종래의 중계 장치(200)와 약 0.5㎲인 본 발명에 따른 중계 장치(100)에 대한, LTE OFDMA방식의 Normal CP 약4.7㎲에서 발생할 수 있는 서비스 거리를 예를 들어 도시하였다.
기지국으로부터 2㎲지점에 장비 딜레이가 각각 약 0.5㎲와 3㎲인 RF 중계기(100,200)가 설치되었을 때, 장비 딜레이가 0.5㎲인 RF 중계기(100)는 Normal CP 약4.7㎲로 인해 대략 4.65㎲(서비스 거리=1.4Km) 만큼 더 서비스가 가능하나, 장비 딜레이가 3㎲인 RF 중계기(200)는 Normal CP 약4.7㎲로 인해 대략 1.7㎲(서비스 거리=0.5Km)만이 서비스가 가능하다.
따라서, LTE OFDMA방식의 Normal CP 약4.7㎲에 의해 기존의 RF 중계기(200)와 비교하여 딜레이가 매우 작은 본 발명의 RF 중계기(100)가 서비스 거리가 확장됨을 알 수 있다.
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다.
이상에서 설명한 바와 같이 본 발명의 다양한 측면에 따르면 OFDMA 방식의 RF 중계기에서 순방향/역방향의 중간주파수(IF) 대역을 500MHz 이상으로 상향시킴으로 인해 선택도, 민감도 특성 및 영상주파수 제거를 위한 IF 필터를 기존의 SAW 필터보다 딜레이가 매우 작은 캐비티 필터, 디알-캐비티 필터, DR 필터, FBAR 필터, 또는 고주파(RF) SAW 필터 등으로 구성할 수 있고, 딜레이가 매우 작은 IF 필터를 사용함으로 인해 결과적으로 장비 딜레이가 최소화되는 효과가 있다.
또한, 장비 딜레이를 최소화 함으로써 OFDMA 방식에서의 Normal CP(약 4.7㎲) 범위의 제약으로 인한 RF 중계기 사용제한이 해결되어 고출력 RF 중계기의 활용도를 높여 서비스 품질을 향상하는 효과가 있다.

Claims (8)

  1. 슈퍼헤테로다인 방식의 증폭을 위한 중계 장치에 있어서,
    수신된 고 주파수 대의 신호를 중간 주파수 대의 신호로 변환하는 주파수 다운 컨버터;
    상기 변환된 중간 주파수 대의 신호에서 원하는 중간 주파수 대역의 신호를 얻기 위해 필터링을 수행하는 IF 필터; 및
    상기 IF 필터로부터 출력된 중간 주파수 대역의 신호를 고 주파수 대의 신호로 변환하는 주파수 업 컨버터를 포함하고,
    상기 주파수 다운 컨버터는 상기 고 주파수 대의 신호를 주파수가 500MHz 이상의 중간 주파수 대의 신호로 변환하여 출력하고, 상기 IF 필터는 1㎲ 이하의 딜레이를 갖는 필터로 구성된 것을 특징으로 하는 이동통신 시스템의 중계 장치.
  2. 제1항에 있어서,
    상기 IF 필터는 캐비티(Cavity) 필터, 디알-캐비티(DR-Cavity) 필터, DR(Dielectric Resonator) 필터, FBAR(Film Bulk Acoustic Resonator) 필터, 및 고주파(RF) SAW(Surface Acoustic Wave) 필터 중 적어도 하나로 구성된 것을 특징으로 하는 이동통신 시스템의 중계 장치.
  3. 제1항에 있어서,
    상기 주파수 다운 컨버터, 상기 IF 필터, 및 상기 주파수 업 컨버터는 순방향 신호 경로상에 설치된 것을 특징으로 하는 이동통신 시스템의 중계 장치.
  4. 제1항에 있어서,
    상기 주파수 다운 컨버터, 상기 IF 필터, 및 상기 주파수 업 컨버터는 역방향 신호 경로상에 설치된 것을 특징으로 하는 이동통신 시스템의 중계 장치.
  5. 슈퍼헤테로다인 방식의 증폭을 위한 중계 방법에 있어서,
    (a) 수신된 고 주파수 대의 신호를 중간 주파수 대의 신호로 변환하는 단계;
    (b) 상기 변환된 중간 주파수 대의 신호에서 원하는 중간 주파수 대역의 신호를 얻기 위해 필터링을 수행하는 단계; 및
    (c) 상기 필터링된 중간 주파수 대역의 신호를 고 주파수 대의 신호로 변환하여 출력하는 단계를 포함하고,
    상기 단계 (a)는 상기 고 주파수 대의 신호를 주파수가 500MHz 이상의 중간 주파수 대의 신호로 변환하여 출력하고, 상기 단계 (b)에서는 1㎲ 이하의 딜레이를 갖는 IF 필터를 사용하여 필터링을 수행하는 것을 특징으로 하는 이동통신 신호의 중계 방법.
  6. 제5항에 있어서,
    상기 단계 (b)에서 캐비티 필터, 디알-캐비티 필터, DR 필터, FBAR 필터, 및 고주파(RF) SAW 필터 중 적어도 하나를 상기 IF 필터로 사용하는 것을 특징으로 하는 이동통신 신호의 중계 방법.
  7. 제5항에 있어서,
    상기 단계 (a), 상기 단계 (b), 및 상기 단계 (c)를 순방향 신호 경로상에서 수행하는 것을 특징으로 하는 이동통신 신호의 중계 방법.
  8. 제5항에 있어서,
    상기 단계 (a), 상기 단계 (b), 및 상기 단계 (c)를 역방향 신호 경로상에서 수행하는 것을 특징으로 하는 이동통신 신호의 중계 방법.
PCT/KR2013/004801 2013-05-31 2013-05-31 이동통신 시스템의 중계 장치 및 방법 WO2014193009A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2013/004801 WO2014193009A1 (ko) 2013-05-31 2013-05-31 이동통신 시스템의 중계 장치 및 방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2013/004801 WO2014193009A1 (ko) 2013-05-31 2013-05-31 이동통신 시스템의 중계 장치 및 방법

Publications (1)

Publication Number Publication Date
WO2014193009A1 true WO2014193009A1 (ko) 2014-12-04

Family

ID=51989013

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/004801 WO2014193009A1 (ko) 2013-05-31 2013-05-31 이동통신 시스템의 중계 장치 및 방법

Country Status (1)

Country Link
WO (1) WO2014193009A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010037265A (ko) * 1999-10-15 2001-05-07 이종화 통화공간의 커버리지 확대를 위한 rf 지연장치
KR20060124459A (ko) * 2005-05-31 2006-12-05 에스케이 텔레콤주식회사 디지털 지연기를 내장한 휴대 인터넷 시스템의 기지국
KR20080070243A (ko) * 2007-01-25 2008-07-30 주식회사 에이스테크놀로지 간소화된 구조의 타워 탑재 증폭기 및 이를 포함하는이동통신 기지국 시스템
KR20100062324A (ko) * 2008-12-02 2010-06-10 현광전자통신 주식회사 피크대 평균전력비 저감장치 및 이를 이용한 중계기
KR20120066749A (ko) * 2010-12-15 2012-06-25 이승호 다중섹터 안테나 기반 이동통신 중계장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010037265A (ko) * 1999-10-15 2001-05-07 이종화 통화공간의 커버리지 확대를 위한 rf 지연장치
KR20060124459A (ko) * 2005-05-31 2006-12-05 에스케이 텔레콤주식회사 디지털 지연기를 내장한 휴대 인터넷 시스템의 기지국
KR20080070243A (ko) * 2007-01-25 2008-07-30 주식회사 에이스테크놀로지 간소화된 구조의 타워 탑재 증폭기 및 이를 포함하는이동통신 기지국 시스템
KR20100062324A (ko) * 2008-12-02 2010-06-10 현광전자통신 주식회사 피크대 평균전력비 저감장치 및 이를 이용한 중계기
KR20120066749A (ko) * 2010-12-15 2012-06-25 이승호 다중섹터 안테나 기반 이동통신 중계장치

Similar Documents

Publication Publication Date Title
US20160329957A1 (en) Distributed duplexer configuration for blocking and linearity
WO2010085062A2 (en) Method and apparatus of transmitting backhaul signal in wireless communication system including relay station
CN101166068A (zh) 用于控制传输时间的光纤无线电系统和方法
KR101463239B1 (ko) 멀티 밴드를 지원하는 분산 안테나 시스템
CN106357310B (zh) 多输入多输出信号传输方法和系统
WO2011065773A2 (ko) 무선 채널의 주파수 선택적 특성을 증가시키는 중계 방법 및 이를 이용하는 중계 장치
CN102118757A (zh) 一种无线中继装置及其与基站和终端通信的方法
WO2017115925A1 (ko) 메인 유닛 및 이를 포함하는 분산 안테나 시스템
JP5763863B2 (ja) Mimo中継装置
WO2017171120A1 (ko) 기지국 신호 정합 장치, 이를 포함하는 기지국 인터페이스 유닛 및 분산 안테나 시스템
EP3005469B1 (en) Leaky cable communication
CN106850033B (zh) Lte分布式中继系统中的上行噪声抑制方法
WO2011123015A1 (en) Relay radio front-end
CN103067317A (zh) 一种对上行信号进行噪声抑制的方法、设备和系统
KR20100104677A (ko) 이동통신 시스템의 간섭 제거 장치 및 그 방법
WO2015050295A1 (ko) 다중 안테나 무선 중계 시스템 및 이를 이용한 궤환 간섭 제거 방법
WO2014193009A1 (ko) 이동통신 시스템의 중계 장치 및 방법
WO2022220499A1 (ko) 인공지능에 기반하여 동기를 획득하는 중계 장치 및 그 중계 장치의 동작 방법
WO2016195202A1 (ko) Fdr 방식으로 동작하는 장치가 참조신호 할당 모드 정보를 전송하는 방법
CN110289879B (zh) 射频单元和终端设备
WO2015156508A1 (ko) 이동통신 시스템의 중계 장치의 필터
KR101415753B1 (ko) 이동통신 시스템의 중계 장치 및 방법
WO2012151984A1 (zh) 一种消除邻频干扰的方法及系统
WO2019093552A1 (ko) 자기간섭 제거를 수행하는 방법 및 이를 위한 통신 장치
WO2016108488A1 (ko) 간섭 제거 중계기

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13885713

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13885713

Country of ref document: EP

Kind code of ref document: A1