WO2014192997A1 - 노심감시 및 노심보호 융합형 노내계측기 집합체 - Google Patents

노심감시 및 노심보호 융합형 노내계측기 집합체 Download PDF

Info

Publication number
WO2014192997A1
WO2014192997A1 PCT/KR2013/004706 KR2013004706W WO2014192997A1 WO 2014192997 A1 WO2014192997 A1 WO 2014192997A1 KR 2013004706 W KR2013004706 W KR 2013004706W WO 2014192997 A1 WO2014192997 A1 WO 2014192997A1
Authority
WO
WIPO (PCT)
Prior art keywords
core
instrument
monitoring
measuring instrument
vanadium
Prior art date
Application number
PCT/KR2013/004706
Other languages
English (en)
French (fr)
Inventor
차균호
신호철
이환수
홍순관
문상래
김용배
Original Assignee
한국수력원자력 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국수력원자력 주식회사 filed Critical 한국수력원자력 주식회사
Priority to PCT/KR2013/004706 priority Critical patent/WO2014192997A1/ko
Priority to CN201380076892.7A priority patent/CN105247619A/zh
Priority to EP13886020.0A priority patent/EP3007176A4/en
Publication of WO2014192997A1 publication Critical patent/WO2014192997A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C17/00Monitoring; Testing ; Maintaining
    • G21C17/10Structural combination of fuel element, control rod, reactor core, or moderator structure with sensitive instruments, e.g. for measuring radioactivity, strain
    • G21C17/108Measuring reactor flux
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T3/00Measuring neutron radiation
    • G01T3/006Measuring neutron radiation using self-powered detectors (for neutrons as well as for Y- or X-rays), e.g. using Compton-effect (Compton diodes) or photo-emission or a (n,B) nuclear reaction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Definitions

  • the present invention relates to an internal measuring instrument assembly, and more particularly, to a core monitoring and core protection fusion type internal measuring instrument assembly capable of simultaneously performing a core monitoring function and a core protection function.
  • the most important indicator for the safe operation of a reactor is the output peak factor, and monitoring this value requires the ability to continuously measure the correct three-dimensional output distribution of the core.
  • in-vehicle instruments used for core monitoring of nuclear power plants: mobile (used in WH-type nuclear power plants) and fixed (used in OPR1000 nuclear power plants).
  • the mobile furnace instrument has the advantage of measuring accurate 3D core output distribution, but there is a problem that the on-line measurement is impossible because the output distribution measurement is performed only periodically.
  • on-line measurements can be made on a fixed furnace, but the number of axial instruments in the core is limited, the reaction time is slow, and combustion in the core has to be replaced periodically.
  • the rhodium furnace instrument assembly used in the OPR1000 is fixedly inserted into the guide tube in the center of the fuel assembly during normal operation and monitors the neutron flux distribution in the reactor core in real time at a rated output of 20% or more.
  • the reactor core is equipped with a set of 45 stationary in-house instruments where it is deemed appropriate to monitor power distribution in the core.
  • the conventional furnace measuring instrument assembly 10 includes five rhodium measuring instruments 11, one background measuring instrument 12, and two core outlet thermocouples capable of measuring the coolant outlet temperature of the core. (13; Core Exit T / C), Central Member Assembly and Filler Wire (14) to fill the space of the measurement period, Extension Tube (15) inside and Sheath Tube (16) outside.
  • each furnace measuring instrument assembly 10 each have a length of about 16 inches (40 cm) and have an output distribution of the core at a height of 10,30,50,70,90% of the height of the fuel assembly. It performs the function of monitoring.
  • the safety level furnace instrument is a combustion type (Depleting), and the life of the instrument is not only about 2 to 3 cycles (3 to 4 years) but also includes uncertainty due to the time delay of the measurement signal. have.
  • the conventional in-house instrument was responsible for the core monitoring function, while the off-the-counter instrument was responsible for the core protection function.
  • the life of the rhodium furnace instrument in use in the past is a burden on the operation of the nuclear power plant due to the increase in the replacement cost of the instrument and securing a high level waste storage space, such as 2-3 cycles.
  • a radiator electrode is formed in the inner center of the cladding tube constituting the current collector electrode, is connected to one end of the radiator electrode to form a coaxial cable for signal transmission, the cladding tube
  • a space between the radiator electrode connected to the coaxial cable is formed of a platinum (Pt-solid) meter;
  • a radiator electrode is formed in the inner center of the covering tube constituting the current collector electrode, and is connected to one end of the radiator electrode to form a coaxial cable for signal transmission, and a space between the radiator electrode to which the covering tube and the coaxial cable are connected is filled with an insulator.
  • Vanadium (Vanadium) measuring device formed;
  • a coaxial cable for signal transmission is formed inside the sheath of the current collector electrode, and the space between the sheath and the coaxial cable is filled with an insulator.
  • the present invention is to solve the above problems, it is possible to perform the core monitoring function and the core protection function at the same time as well as non-depleting or low combustion (low-depleting) low
  • the aim is to provide a core monitoring and core protection fusion in-vehicle instrument assembly that can be changed to a depleting material to extend the life of the instrument.
  • the core monitoring and core protection fusion type internal measuring instrument assembly is a fusion type internal measuring instrument assembly capable of simultaneously performing the core monitoring function and the core protection function, and performs the core monitoring function.
  • An outlet thermocouple is provided.
  • the three platinum meters may have lengths of 50, 100, and 150 inches, respectively.
  • the sensitivity current function is used to evaluate the minimum current levels of the vanadium and platinum instruments that satisfy the signal-to-noise ratio, and the manufacturability of the in-vehicle assembly is taken into account in order to determine the mechanical configuration of the furnace instrument assembly.
  • the emitter diameter can be determined.
  • the vanadium meter can also be used to monitor the core's output distribution and provide information about the local neutron distribution.
  • the signal generated from the vanadium measuring instrument is input to the core sense watch case is used to calculate the three-dimensional core output distribution
  • the signal generated from the platinum measuring instrument is input to the core protection system can be used to perform the core protection function.
  • the vanadium measuring instruments have a length of 30 inches in the core and may be located at 10, 30, 50, 70, and 90% of the fuel assembly height, respectively.
  • the core monitoring function and the core protection function can be simultaneously performed by using a vanadium meter and a platinum meter.
  • in-situ-based core protection system which could not be solved by the prior art, can directly measure the state of the core, thereby increasing the accuracy of the three-dimensional output distribution calculation. . Therefore, it is possible to contribute to the increase in power output of the nuclear power plant by removing the conservatism when using the out-of-counter instrument and increasing the margin of nuclear boiling deviation and local power density.
  • the life of the meter can be extended.
  • the amount of used internal measuring instrument waste which is a high-level radioactive material, can be reduced by more than three times. This not only secures a high level waste space, but also contributes to reducing the cover of nuclear workers.
  • FIG. 1 is a cross-sectional view of a conventional rhodium furnace internal measuring instrument assembly structure.
  • FIG. 2 is a conceptual diagram showing a structure of a conventional rhodium furnace instrument group.
  • Figure 3 is a conceptual diagram showing the structure of the core monitoring and core protection fusion type internal instrument group according to the present invention.
  • Figure 4 is a cross-sectional view showing the structure of the core monitoring and core protection fusion type furnace instrument according to the present invention.
  • FIG 3 is a conceptual diagram showing the structure of the core monitoring and core protection fusion type internal instrument assembly according to the present invention
  • Figure 4 is a cross-sectional view showing the structure of the core monitoring and core protection fusion type internal instrument group according to the present invention.
  • the fusion-type in-house instrument assembly according to the present invention is non-combustible and capable of instant response, simultaneously performing core monitoring function and core protection function, and non-depleting instrument emitter material reacting with neutrons. ) Or to a low-depleting material to extend the life of the instrument.
  • the fusion-type in-house instrument assembly 100 is a fusion-type in-house instrument assembly capable of performing the core monitoring function and the core protection function at the same time, in order to perform the core monitoring function greatly,
  • the vanadium measuring instrument 110 and one background measuring instrument 120 have three platinum measuring instruments 130 superimposed so as to use three upper and lower three out-of-measuring instrument input algorithms, respectively.
  • a core outlet thermocouple 140 integrated into one.
  • Reference numeral 150 denotes an outer sheath tube.
  • the fusion-type internal measuring instrument assembly 100 includes five vanadium measuring instruments 110 and 1 in the same manner as a rhodium measuring instrument used by a conventional core operating limit monitoring system (COLSS) to perform a core monitoring function. Background measuring instruments (120).
  • the vanadium meter 110 may be used to monitor the output distribution of the core in detail and to provide information on the local neutron distribution.
  • the signal generated from the vanadium measuring instrument 110 may be input to the core watch tube and used to calculate a three-dimensional core output distribution.
  • the vanadium meter 110 has a length of 30 inches (76 cm) in the core, respectively, can be located at 10, 30, 50, 70, 90% of the height of the fuel assembly.
  • the fusion type internal measuring instrument assembly 100 overlaps three platinum measuring instruments 130 so as to use three upper and lower three external measuring instrument input algorithms.
  • the three platinum measuring instruments 130 may have lengths of 50, 100, and 150 inches, respectively.
  • the platinum measuring instrument 130 does not require a signal from the background measuring instrument 120 because the signal lead wire is present outside the core and the relative value of each measuring instrument is used for output distribution calculation.
  • the signal provided from the platinum measuring instrument 130 may be used as an input of the core protection system to perform the core protection function.
  • the conventional rhodium furnace instrument includes a core outlet thermocouple separated into two
  • the fusion furnace internal instrument assembly 100 includes a core outlet thermocouple 140 integrated into one.
  • the core outlet thermocouple 140 may be disposed in the Central Member Assembly space of the conventional furnace instrument.
  • the core monitoring and core protection fusion type internal measuring instrument assembly 100 uses a sensitivity function of the instrument to determine the mechanical configuration (diameter, length, etc.) of the internal measuring instrument assembly (Signal-to- The minimum current level of the vanadium meter 110 and the platinum meter 130 satisfying the noise ratio may be evaluated.
  • the emitter diameters of the vanadium measuring instrument 110 and the platinum measuring instrument 130 may be determined in consideration of the manufacturability of the furnace measuring instrument assembly.
  • Vanadium and platinum have a smaller neutron absorption cross-sectional area than rhodium, so vanadium and platinum of the same specification show less meter signal than rhodium. Therefore, the outer diameter of the core monitoring and core protection fusion type internal measuring instrument assembly 100 according to the present invention is kept the same as the outer diameter of the rhodium measuring instrument assembly, and the diameters of the vanadium measuring instrument 110 and the platinum measuring instrument 130 emitter are The signal level of the conventional rhodium meter can be maintained by about 2.5 times that of the rhodium meter.
  • the core monitoring and core protection fusion type internal measuring instrument assembly 100 is a fusion type using the vanadium measuring instrument 110 and the platinum measuring instrument 130 to simultaneously perform the core monitoring function and the core protection function. You can do it.
  • in-situ-based core protection system which could not be solved by the prior art, can directly measure the state of the core, thereby increasing the accuracy of the three-dimensional output distribution calculation. . Therefore, it is possible to contribute to the increase in power output of the nuclear power plant by removing the conservatism when using the out-of-counter instrument and increasing the margin of nuclear boiling deviation and local power density.
  • the life of the meter can be extended.
  • the amount of used internal measuring instrument waste which is a high-level radioactive material, can be reduced by three times or more. This not only secures a high level waste space, but also contributes to reducing the cover of nuclear workers.
  • Table 1 compares the specifications and effects of the conventional rhodium measuring instrument and the core monitoring and core protection fusion type internal measuring instrument assembly 100 according to the present invention.

Landscapes

  • Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

본 발명은 노심감시 및 노심보호 융합형 노내계측기 집합체에 관한 것으로서, 노심감시기능과 노심보호기능을 동시에 수행할 수 있도록 된 융합형 노내계측기 집합체로서, 노심감시기능을 수행하기 위하여, 5개의 바나듐 계측기와 1개의 백그라운드 계측기를 구비하고, 노심보호기능을 수행하기 위하여, 상중하 3개의 노외계측기 입력 알고리즘을 각각 이용할 수 있도록 중첩 배치된 3개의 백금 계측기를 구비하고, 1개로 통합된 노심출구열전대를 구비한 것을 특징으로 한다. 본 발명에 따르면, 바나듐 계측기와 백금 계측기를 사용함으로써 노심감시기능과 노심보호기능을 동시에 수행할 수가 있다.

Description

노심감시 및 노심보호 융합형 노내계측기 집합체
본 발명은 노내계측기 집합체에 관한 것으로서, 특히 노심감시기능 및 노심보호기능을 동시에 수행할 수 있도록 된 노심감시 및 노심보호 융합형 노내계측기 집합체에 관한 것이다.
원자로의 안전운전에 가장 중요한 지표는 출력첨두계수이며 이 값을 감시하기 위해서는 노심의 정확한 3차원 출력분포를 연속적으로 측정할 수 있어야 한다. 원전의 노심감시용으로 사용되는 노내계측기는 이동형(WH형 원전에서 사용)과 고정형(OPR1000 원전에서 사용)이 있다.
이동형 노내계측기는 정확한 3차원 노심 출력분포를 측정할 수 있는 장점이 있으나 주기적으로만 출력분포 측정이 이루어지므로 On-line 측정이 불가능한 문제점이 있다. 그 반면에, 고정형 노내계측기는 On-line 측정이 가능하나 노심의 축방향 계측기 수가 제한적이고, 반응시간이 느리며, 노심 내에서 연소하므로 주기적으로 교체해야 하는 문제점이 있다.
한편, 고정형으로 OPR1000에서 사용중인 로듐 노내계측기 집합체는 정상운전기간 동안 핵연료 집합체의 중앙에 있는 안내관에 고정 삽입되어 있으면서 정격출력 20% 이상에서 실시간으로 원자로 노심의 중성자속 분포를 감시한다. 원자로 노심에는 노심내의 출력분포 감시가 적절하다고 판단되는 곳에 45개의 고정형 노내계측기 집합체가 설치된다.
도1,2에 도시한 바와 같이, 종래의 노내계측기 집합체(10)는 5개의 로듐 계측기(11), 1개의 백그라운드 계측기(12), 노심의 냉각재 출구온도를 측정할 수 있는 2개의 노심출구열전대(13; Core Exit T/C), Central Member Assembly 그리고 계측기간의 공간을 메우는 역할을 하는 Filler 와이어(14), 안쪽에 있는 Extension 튜브(15) 및 바깥에 있는 Sheath 튜브(16)로 구성된다.
그리고, 각 노내계측기 집합체(10) 내에 5개씩 들어있는 로듐 계측기(11)는 약 16인치(40cm)의 길이를 가지고 핵연료집합체 높이의 10,30,50,70,90% 높이에서 노심의 출력분포를 감시하는 기능을 수행한다.
한편, 종래의 노심보호계통에서는 노심의 주요 안전변수인 핵비등이탈률 및 국부출력밀도를 계산을 위하여 노외계측기를 사용하고 있으므로 보수적인 계산이 요구된다. 노외계측기를 사용하는 경우, 원자로의 안전운전에 가장 중요한 지표인 노심의 3차원 출력분포를 정확하게 측정할 수 없으므로 가상의 보수적인 출력분포를 이용하여 핵비등이탈률과 국부출력밀도를 계산한다.
따라서, 안전등급의 노내계측기를 이용하여 노심의 3차원 출력분포를 직접 계산하고 이를 노심보호계통에 이용한다면 매우 큰 정지여유도 또는 안전여유도를 얻을 수 있으므로 안전등급 노내계측기의 중요성이 강조되어 왔다. 그러나, 종래 로듐 노내계측기는 연소형(Depleting)으로 계측기의 수명이 2~3주기(3~4년) 정도일 뿐만 아니라 측정신호의 시간지연에 따른 불확실도를 내포하고 있으므로 안전계통에 사용할 수 없는 문제점이 있다.
종래의 노내계측기는 노심감시기능을 담당하는 한편, 노외계측기는 노심보호기능을 담당하였다. 더구나, 종래 사용중인 로듐 노내계측기의 수명은 2~3주기 정도로 계측기 교체비용 증가 및 고준위폐기물 저장공간 확보 문제 등으로 인해 원전운영에 부담이 되고 있는 실정이다.
한편, 종래 특허기술로서 원자로의 노내 계측기 조립체에 있어서, 집전자 전극을 구성하는 피복관의 내부 중앙에 방사체전극이 형성되고, 상기 방사체전극 일단에 연결되어 신호전달을 위한 동축케이블이 형성되며, 상기 피복관과 동축케이블이 연결된 방사체전극의 사이 공간은 절연체로 채워 형성된 백금(Pt-solid) 계측기; 집전자 전극을 구성하는 피복관의 내부 중앙에 방사체전극이 형성되고, 상기 방사체전극 일단에 연결되어 신호전달을 위한 동축케이블이 형성되며, 상기 피복관과 동축케이블이 연결된 방사체전극의 사이 공간은 절연체로 채워 형성된 바나듐(Vanadium) 계측기; 집전자 전극을 구성하는 피복관의 내부에 신호전달을 위한 동축케이블이 형성되며, 상기 피복관과 동축케이블 사이 공간은 절연체로 채워 형성된 백그라운드(Background) 중성자 계측기가 일체로 형성된 것을 특징으로 하는 하이브리드형 노내 계측기 조립체가 제안되어 있다.
이에 본 발명은 상기와 같은 문제점을 해결하기 위한 것으로서, 노심감시기능과 노심보호기능을 동시에 수행할 수 있을 뿐만 아니라 중성자와 반응하는 계측기 에미터 재료를 비연소형(non-depleting) 또는 저연소형(low-depleting) 재료로 변경하여 계측기 수명을 연장시킨 노심감시 및 노심보호 융합형 노내계측기 집합체를 제공하는데 그 목적이 있다.
상기와 같은 목적을 달성하기 위하여 본 발명에 따른 노심감시 및 노심보호 융합형 노내계측기 집합체는, 노심감시기능과 노심보호기능을 동시에 수행할 수 있도록 된 융합형 노내계측기 집합체로서, 노심감시기능을 수행하기 위하여 5개의 바나듐 계측기와 1개의 백그라운드 계측기를 구비하고, 노심보호기능을 수행하기 위하여 상중하 3개의 노외계측기 입력 알고리즘을 각각 이용할 수 있도록 중첩 배치된 3개의 백금 계측기를 구비하고, 1개로 통합된 노심출구열전대를 구비한 것을 특징으로 한다.
또한, 상기 3개의 백금 계측기는 각각 50, 100, 150인치의 길이를 가질 수 있다.
또한, 노내계측기 집합체의 기계적 구성을 결정하기 위해 민감도 함수를 이용하여 신호대 잡음비를 만족하는 바나듐 계측기 및 백금 계측기의 최소 전류수준을 평가하고, 노내계측기 집합체의 제작성을 고려하여 바나듐 계측기 및 백금 계측기의 에미터 직경을 결정할 수 있다.
또한, 상기 바나듐 계측기는 노심의 출력분포를 감시하고 국부적인 중성자 분포에 대한 정보를 제공하는데 사용될 수 있다.
또한, 상기 바나듐 계측기에서 발생되는 신호는 노심감시계통으로 입력되어 3차원 노심 출력분포를 산출하는데 사용되고, 상기 백금 계측기에서 발생되는 신호는 노심보호계통으로 입력되어 노심보호기능을 수행하는데 사용될 수 있다.
또한, 상기 바나듐 계측기는 노심 내에 각각 30인치의 길이를 가지고 각각 핵연료집합체 높이의 10, 30, 50, 70, 90%에 위치할 수 있다.
본 발명에 따르면, 바나듐 계측기와 백금 계측기를 사용함으로써 노심감시기능과 노심보호기능을 동시에 수행할 수가 있다.
또한, 즉발응답이 가능한 백금을 에미터 재료로 사용함으로써 종래의 기술이 해결할 수 없었던 노내계측기 기반 노심보호계통을 적용하면 노심의 상태를 직접 측정할 수가 있으므로 3차원 출력분포 계산의 정확성을 높일 수가 있다. 따라서, 노외계측기를 사용할 때의 보수성을 제거하여 핵비등이탈률 및 국부출력밀도의 여유도(Margin)를 증가시켜 원전의 출력증강에 기여할 수가 있다.
또한, 중성자와 반응하는 계측기 에미터 재료로서 바나듐 또는 백금과 같은 비연소형 또는 저연소형 재료를 적용함으로써 계측기 수명을 연장시킬 수가 있다. 이로 인해, 고준위 방사성물질인 사용후 노내계측기 폐기물량을 종래보다 3배 이상으로 줄일 수가 있으며. 이는 고준위 폐기물 사용공간을 확보할 수 있을 뿐만 아니라 원전 종사자의 피복 저감에도 기여할 수가 있게 된다.
도1은 종래의 로듐 노내계측기 집합체 구조를 단면도.
도2는 종래의 로듐 노내계측기 집합체 구조를 보여주는 개념도.
도3은 본 발명에 따른 노심감시 및 노심보호 융합형 노내계측기 집합체 구조를 보여주는 개념도.
도4는 본 발명에 따른 노심감시 및 노심보호 융합형 노내계측기 집합체 구조를 보여주는 단면도.
이하, 본 발명의 바람직한 실시예를 첨부된 도면들을 참조하여 상세히 설명한다. 본 발명을 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략한다. 또한, 이하에서 본 발명의 바람직한 실시예를 설명할 것이나, 본 발명의 기술적 사상은 이에 한정하거나 제한되지 않고 당업자에 의해 변형되어 다양하게 실시될 수 있음은 물론이다.
도3은 본 발명에 따른 노심감시 및 노심보호 융합형 노내계측기 집합체 구조를 보여주는 개념도, 도4는 본 발명에 따른 노심감시 및 노심보호 융합형 노내계측기 집합체 구조를 보여주는 단면도이다.
본 발명에 따른 융합형 노내계측기 집합체는, 비연소형이며 즉발응답이 가능하고, 노심감시기능과 노심보호기능을 동시에 수행할 수 있을 뿐만 아니라 중성자와 반응하는 계측기 에미터 재료를 비연소형(non-depleting) 또는 저연소형(low-depleting) 재료로 변경하여 계측기 수명을 연장시킬 수 있도록 된 것을 그 기술적 요지로 한다.
도면에 도시한 바와 같이, 본 발명에 따른 융합형 노내계측기 집합체(100)는 노심감시기능과 노심보호기능을 동시에 수행할 수 있도록 된 융합형 노내계측기 집합체로서, 크게 노심감시기능을 수행하기 위하여, 5개의 바나듐 계측기(110)와 1개의 백그라운드 계측기(120)를 구비하고, 노심보호기능을 수행하기 위하여, 상중하 3개의 노외계측기 입력 알고리즘을 각각 이용할 수 있도록 중첩 배치된 3개의 백금 계측기(130)를 구비하고, 1개로 통합된 노심출구열전대(140)를 구비한다. 도면부호 "150"은 바깥에 있는 Sheath 튜브를 의미한다.
즉, 본 발명에 따른 융합형 노내계측기 집합체(100)는, 노심감시기능을 수행하기 위하여, 종래 노심운전제한치 감시계통(COLSS)이 사용하는 로듐 계측기와 동일하게 5개의 바나듐 계측기(110)와 1개의 백그라운드 계측기(120)를 구비한다. 이때, 상기 바나듐 계측기(110)는 노심의 출력분포를 상세히 감시하고 국부적인 중성자 분포에 대한 정보를 제공하는데 사용될 수 있다.
상기 바나듐 계측기(110)에서 발생되는 신호는 노심감시계통으로 입력되어 3차원 노심 출력분포를 산출하는데 사용될 수 있다. 상기 바나듐 계측기(110)는 노심 내에 각각 30인치(76cm)의 길이를 가지고 각각 핵연료집합체 높이의 10, 30, 50, 70, 90%에 위치할 수 있다.
그리고, 본 발명에 따른 융합형 노내계측기 집합체(100)는, 노심보호기능을 수행하기 위하여, 상중하 3개의 노외계측기 입력 알고리즘을 각각 이용할 수 있도록 3개의 백금 계측기(130)를 중첩 배치한다. 이때, 3개의 백금 계측기(130)는 각각 50, 100, 150인치의 길이를 가질 수 있다. 상기 백금 계측기(130)는 Signal Lead Wire가 노심 외부에 존재하고 각 계측기의 상대값이 출력분포 계산에 사용되므로 백그라운드 계측기(120)의 신호를 필요로 하지 않는다. 또한, 백금 계측기(130)로부터 제공되는 신호는 노심보호계통의 입력으로 사용되어 노심보호기능을 수행할 수 있다.
그리고, 종래 로듐 노내계측기는 2개로 분리된 노심출구열전대를 포함하고 있으나, 본 발명에 따른 융합형 노내계측기 집합체(100)는, 1개로 통합된 노심출구열전대(140)를 구비한다. 이때, 상기 노심출구열전대(140)는 종래 노내계측기의 Central Member Assembly 공간에 배치될 수 있다.
한편, 본 발명에 따른 노심감시 및 노심보호 융합형 노내계측기 집합체(100)는 노내계측기 집합체의 기계적 구성(직경, 길이 등)을 결정하기 위해 계측기의 민감도 함수를 이용하여 신호대 잡음비(Signal-to-Noise Ratio)를 만족하는 바나듐 계측기(110) 및 백금 계측기(130)의 최소 전류수준을 평가할 수 있다. 그리고, 노내계측기 집합체의 제작성을 고려하여 바나듐 계측기(110) 및 백금 계측기(130)의 에미터 직경을 결정할 수 있다.
바나듐 및 백금은 중성자 흡수 단면적이 로듐에 비해 상대적으로 작으므로 동일한 규격의 바나듐 및 백금은 로듐보다 계측기 신호가 적게 나타난다. 따라서, 본 발명에 따른 노심감시 및 노심보호 융합형 노내계측기 집합체(100)의 외경은 로듐 계측기 집합체의 외경과 동일하게 유지하고, 바나듐 계측기(110) 및 백금 계측기(130) 에미터의 직경을 종래 로듐 계측기의 약 2.5배로 하여 종래 로듐 계측기의 신호수준을 유지할 수 있다.
상술한 바와 같이, 본 발명에 따른 노심감시 및 노심보호 융합형 노내계측기 집합체(100)는 바나듐 계측기(110)와 백금 계측기(130)를 사용한 융합형 형태로서 노심감시기능과 노심보호기능을 동시에 수행할 수가 있다.
또한, 즉발응답이 가능한 백금을 에미터 재료로 사용함으로써 종래의 기술이 해결할 수 없었던 노내계측기 기반 노심보호계통을 적용하면 노심의 상태를 직접 측정할 수가 있으므로 3차원 출력분포 계산의 정확성을 높일 수가 있다. 따라서, 노외계측기를 사용할 때의 보수성을 제거하여 핵비등이탈률 및 국부출력밀도의 여유도(Margin)를 증가시켜 원전의 출력증강에 기여할 수가 있다.
또한, 중성자와 반응하는 계측기 에미터 재료로서 바나듐 또는 백금과 같은 비연소형 또는 저연소형 재료를 적용함으로써 계측기 수명을 연장시킬 수가 있다. 이로 인해, 고준위 방사성 물질인 사용후 노내계측기 폐기물량을 종래보다 3배 이상으로 줄일 수가 있으며. 이는 고준위 폐기물 사용공간을 확보할 수 있을 뿐만 아니라 원전 종사자의 피복 저감에도 기여할 수가 있게 된다.
아래의 표 1은 종래 로듐 계측기와 본 발명에 따른 노심감시 및 노심보호 융합형 노내계측기 집합체(100)의 사양 및 효과를 비교한 것이다.
표 1
구분 로듐 계측기 융합형 노내계측기 효과
바나듐 백금
에미터 재료 Rh-45 V-51 Pt-105
에미터 직경 0.0457cm 0.113cm 0.113cm 대등한 신호
응답시간/필터사용 175sec/27sec ~500sec/수초 prompt 신속한 응답시간
계측기 수명 〈3년 〉10년 〉10년 수명연장
한편, 본 발명에 따른 노심감시 및 노심보호 융합형 노내계측기 집합체를 한정된 실시예에 따라 설명하였지만, 본 발명의 범위는 특정 실시예에 한정되는 것은 아니며, 본 발명과 관련하여 통상의 지식을 가진자에게 자명한 범위내에서 여러 가지의 대안, 수정 및 변경하여 실시할 수 있다.
따라서, 본 발명에 개시된 실시예 및 첨부된 도면들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예 및 첨부된 도면에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.

Claims (6)

  1. 노심감시기능과 노심보호기능을 동시에 수행할 수 있도록 된 융합형 노내계측기 집합체(100)로서,
    노심감시기능을 수행하기 위하여, 5개의 바나듐 계측기(110)와 1개의 백그라운드 계측기(120)를 구비하고,
    노심보호기능을 수행하기 위하여, 상중하 3개의 노외계측기 입력 알고리즘을 각각 이용할 수 있도록 중첩 배치된 3개의 백금 계측기(130)를 구비하고,
    1개로 통합된 노심출구열전대(140)를 구비한 것을 특징으로 하는 노심감시 및 노심보호 융합형 노내계측기 집합체.
  2. 청구항 1에 있어서,
    상기 3개의 백금 계측기(130)는 각각 50, 100, 150인치의 길이를 갖는 것을 특징으로 하는 노심감시 및 노심보호 융합형 노내계측기 집합체.
  3. 청구항 1에 있어서,
    노내계측기 집합체의 기계적 구성을 결정하기 위해 민감도 함수를 이용하여 신호대 잡음비를 만족하는 바나듐 계측기(110) 및 백금 계측기(130)의 최소 전류수준을 평가하고, 노내계측기 집합체의 제작성을 고려하여 바나듐 계측기(110) 및 백금 계측기(130)의 에미터 직경을 결정하는 것을 특징으로 하는 노심감시 및 노심보호 융합형 노내계측기 집합체.
  4. 청구항 1에 있어서,
    상기 바나듐 계측기(110)는 노심의 출력분포를 감시하고 국부적인 중성자 분포에 대한 정보를 제공하는데 사용되는 것을 특징으로 하는 노심감시 및 노심보호 융합형 노내계측기 집합체.
  5. 청구항 1에 있어서,
    상기 바나듐 계측기(110)에서 발생되는 신호는 노심감시계통으로 입력되어 3차원 노심 출력분포를 산출하는데 사용되고, 상기 백금 계측기(130)에서 발생되는 신호는 노심보호계통으로 입력되어 노심보호기능을 수행하는데 사용되는 것을 특징으로 하는 노심감시 및 노심보호 융합형 노내계측기 집합체.
  6. 청구항 1에 있어서,
    상기 바나듐 계측기(110)는 노심 내에 각각 30인치의 길이를 가지고 각각 핵연료집합체 높이의 10, 30, 50, 70, 90%에 위치하는 것을 특징으로 하는 노심감시 및 노심보호 융합형 노내계측기 집합체.
PCT/KR2013/004706 2013-05-29 2013-05-29 노심감시 및 노심보호 융합형 노내계측기 집합체 WO2014192997A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/KR2013/004706 WO2014192997A1 (ko) 2013-05-29 2013-05-29 노심감시 및 노심보호 융합형 노내계측기 집합체
CN201380076892.7A CN105247619A (zh) 2013-05-29 2013-05-29 用于堆芯监视和保护的聚合反应堆堆芯内探测器组件
EP13886020.0A EP3007176A4 (en) 2013-05-29 2013-05-29 Convergence reactor in-core detector assembly for core monitoring and protection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2013/004706 WO2014192997A1 (ko) 2013-05-29 2013-05-29 노심감시 및 노심보호 융합형 노내계측기 집합체

Publications (1)

Publication Number Publication Date
WO2014192997A1 true WO2014192997A1 (ko) 2014-12-04

Family

ID=51989004

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/004706 WO2014192997A1 (ko) 2013-05-29 2013-05-29 노심감시 및 노심보호 융합형 노내계측기 집합체

Country Status (3)

Country Link
EP (1) EP3007176A4 (ko)
CN (1) CN105247619A (ko)
WO (1) WO2014192997A1 (ko)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106531245B (zh) * 2016-11-25 2018-11-13 浙江伦特机电有限公司 核电站用堆芯仪表套管组件
CN107767974B (zh) * 2017-11-14 2024-04-16 国核自仪系统工程有限公司 核反应堆堆芯中子及温度探测装置
RU2683576C1 (ru) * 2018-04-12 2019-03-29 Виталий Евгеньевич Поляков Однопроходный усилитель монохроматических коллимированных поляризованных нейтронов
CN114242279A (zh) * 2021-11-18 2022-03-25 中广核研究院有限公司 在线保护方法及系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5251242A (en) * 1992-06-22 1993-10-05 Westinghouse Electric Corp. Bi-metallic, self powered, fixed incore detector, and method of calibrating same
US5745538A (en) * 1995-10-05 1998-04-28 Westinghouse Electric Corporation Self-powered fixed incore detector
KR20080011782A (ko) * 2006-07-31 2008-02-11 한국전력공사 하이브리드형 노내 계측기 조립체 및 계측 방법

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100960788B1 (ko) * 2008-05-15 2010-06-01 한국전력공사 원자로의 고정형 계측기

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5251242A (en) * 1992-06-22 1993-10-05 Westinghouse Electric Corp. Bi-metallic, self powered, fixed incore detector, and method of calibrating same
US5745538A (en) * 1995-10-05 1998-04-28 Westinghouse Electric Corporation Self-powered fixed incore detector
KR20080011782A (ko) * 2006-07-31 2008-02-11 한국전력공사 하이브리드형 노내 계측기 조립체 및 계측 방법

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHA, GYUN HO ET AL.: "Optimal Geometry and Sensitivity Evaluation of Vanadium In-core Detector", THE KOREA SOCIETY FOR ENERGY ENGINEERING 2011 FALL CONFERENCE, 20 October 2011 (2011-10-20), pages 96, XP055282323 *
PARK, MUN GYU ET AL.: "Technology development for non-depleting and prompt responding incore detectors", MINISTRY OF TRADE, INDUSTRY AND ENERGY, April 2005 (2005-04-01), XP008182303 *

Also Published As

Publication number Publication date
EP3007176A1 (en) 2016-04-13
CN105247619A (zh) 2016-01-13
EP3007176A4 (en) 2017-02-15

Similar Documents

Publication Publication Date Title
WO2016068462A1 (ko) 장수명 노내계측기
WO2014192995A1 (ko) 노심감시 및 노심보호용 하이브리드 노내계측기 집합체
KR101843603B1 (ko) 자기 보상식의 고정밀 고수명의 듀얼 로듐 바나듐 이미터 로내 핵 검출기
JPH11264887A (ja) 原子炉核計装システム、このシステムを備えた原子炉出力分布監視システムおよび原子炉出力分布監視方法
KR20130123940A (ko) 노심감시 및 노심보호 융합형 노내계측기 집합체
WO2014192997A1 (ko) 노심감시 및 노심보호 융합형 노내계측기 집합체
JP2011059117A (ja) γ線温度計を含む中性子監視システム及びγ線温度計を使用して核計装を校正する方法
JPH0365696A (ja) 沸騰水型原子炉の熱中性子束検出器用の固定形炉内校正装置
KR20080011782A (ko) 하이브리드형 노내 계측기 조립체 및 계측 방법
CN110517799A (zh) 核电厂堆芯核仪表系统
EP0052445A1 (en) Apparatus for detecting and measuring nuclear flux density within a nuclear reactor
US10224122B2 (en) Reactor instrumentation system and reactor
KR101445557B1 (ko) 노심감시 및 노심보호용 하이브리드 노내계측기 집합체
Puma et al. Requirements and proposals for control and monitoring measurements of the HCLL TBM
KR20100004572U (ko) 장수명 실시간 국부과출력보호용 노내 계측기 조립체
Raghavan et al. Application of the gamma thermometer as BWR fixed in-core calibration system
JPH06289182A (ja) 原子炉出力測定装置
Leyse et al. Gamma thermometer developments for light water reactors
US20200219630A1 (en) Temperature measurement sensor using material with a temperature dependent neutron capture cross section
JP2000258586A (ja) 原子炉出力測定装置
Z Mesquita et al. An innovative method for online power monitoring in nuclear reactors
JPH0587978A (ja) 原子炉出力計測装置
Seidenkranz et al. Experiences with prompt self-powered detectors in nuclear reactors of WWER type
JP2005172474A (ja) 原子炉炉心熱出力監視装置
Loving Neutron, temperature and gamma sensors for pressurized water reactors

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13886020

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2013886020

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE