WO2014192852A1 - Rotary pump - Google Patents

Rotary pump Download PDF

Info

Publication number
WO2014192852A1
WO2014192852A1 PCT/JP2014/064230 JP2014064230W WO2014192852A1 WO 2014192852 A1 WO2014192852 A1 WO 2014192852A1 JP 2014064230 W JP2014064230 W JP 2014064230W WO 2014192852 A1 WO2014192852 A1 WO 2014192852A1
Authority
WO
WIPO (PCT)
Prior art keywords
pump
cylinder
rotary
rotor
gas
Prior art date
Application number
PCT/JP2014/064230
Other languages
French (fr)
Japanese (ja)
Inventor
吉田 洋介
真吾 原山
俊 宮澤
文彦 山田
Original Assignee
オリオン機械株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2013114154A external-priority patent/JP5663798B2/en
Priority claimed from JP2013114146A external-priority patent/JP2014231813A/en
Application filed by オリオン機械株式会社 filed Critical オリオン機械株式会社
Publication of WO2014192852A1 publication Critical patent/WO2014192852A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/08Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C18/12Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
    • F04C18/123Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with radially or approximately radially from the rotor body extending tooth-like elements, co-operating with recesses in the other rotor, e.g. one tooth
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/001Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of similar working principle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C25/00Adaptations of pumps for special use of pumps for elastic fluids
    • F04C25/02Adaptations of pumps for special use of pumps for elastic fluids for producing high vacuum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/02Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids specially adapted for several pumps connected in series or in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/24Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by using valves controlling pressure or flow rate, e.g. discharge valves or unloading valves
    • F04C28/26Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by using valves controlling pressure or flow rate, e.g. discharge valves or unloading valves using bypass channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/50Bearings
    • F04C2240/51Bearings for cantilever assemblies
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2270/00Control; Monitoring or safety arrangements
    • F04C2270/17Tolerance; Play; Gap

Definitions

  • the present invention relates to a rotary pump that includes a rotor that rotates in a cylinder, and that sucks gas into the cylinder and exhausts compressed gas from the cylinder.
  • Rotating pumps include claw pumps that are non-contact type vacuum pumps equipped with claw rotors.
  • the cylinder forming the pump chamber, one side plate that closes the end face of the cylinder, and the other side plate are parallel to each other in the cylinder.
  • the two rotating shafts arranged to be positioned at each other and rotated in opposite directions, and integrally fixed to each of the two rotating shafts, are in contact with each other and inhaled gas
  • Both are provided with an exhaust port that opens to a portion of the pump chamber where the gas in the cylinder is compressed (see Patent Document 1). According to this, the pump performance of the claw pump can be improved by increasing the exhaust efficiency.
  • the claw pump there is a compression step, and the exhaust efficiency is improved by compressing the intake gas (air).
  • intake air exists due to leakage from a small gap even during ultimate operation, and the space (sealed space) immediately before the exhaust opening formed by the rotor and cylinder is externally (largely exhausted from the inside of the pump) through the exhaust port.
  • the exhaust air above the atmospheric pressure flows back into the pump because the space just before the exhaust opening is negative. The backflowed air is recompressed and discharged to the outside again.
  • the ultimate operation is the operation at the ultimate pressure, and the ultimate pressure is when the suction port of the vacuum pump, which is the maximum capacity for creating the vacuum of the pump, is closed (the exhaust flow rate becomes zero). Is the pressure that can be reached.
  • the present applicant has previously proposed the following configuration of a rotary vacuum pump (vane pump) having a vane.
  • the vacuum pump is provided with a gas exhaust hole, and the exhaust hole is provided with a first check valve.
  • a pressure relief hole is provided to release the gas compressed above the atmospheric pressure in the vacuum pump into the outside air, and to reduce the power loss of the vacuum pump, and the pressure relief hole includes A second check valve is provided.
  • the exhaust hole and the pressure relief hole constitute a gas exhaust port of the vacuum pump (see Patent Document 3).
  • the escape hole is provided in the peripheral wall part of the wall part which forms a cylinder, and it can suppress that the inside of the pump to be compressed becomes overcompressed and the temperature rises.
  • JP 2011-38476 A (first page) JP 2002-332963 A (FIG. 1) JP 2001-289167 A ([0020])
  • the problems to be solved with respect to the rotary pump are to prevent the exhaust gas from flowing back into the pump as much as possible, to improve the operating efficiency and suppress the temperature rise inside the pump, and to prevent the inside of the pump from being overcompressed.
  • a rational configuration for suppression is that no rotary pump has been proposed. Accordingly, an object of the present invention is to prevent the exhaust gas from flowing back into the pump as much as possible and to prevent the pump from becoming overcompressed as much as possible, to suppress the temperature rise inside the pump and to improve the reliability.
  • An object of the present invention is to provide a rotary pump that can improve operating efficiency.
  • an object of the present invention is to provide a plurality of rotors in the axial direction of the rotating shaft, avoid the influence of the thermal expansion of the plurality of rotors being added together, reduce the side clearance, and prevent gas leakage.
  • An object of the present invention is to provide a rotary pump capable of further improving pump performance by reducing generation.
  • the present invention has the following configuration in order to achieve the above object.
  • a rotor that is provided on the cantilever end surface side of the rotating shaft and rotates in the cylinder is cantilevered via the rotating shaft by a bearing disposed on one side of the rotor.
  • the cantilever in which the rotating shaft is not inserted among the end wall portions constituting both ends in the axial direction of the cylinder
  • an escape hole capable of releasing a part of the compressed gas is provided so as to open in the axial direction of the rotating shaft.
  • the unit pump configuration including the cylinder and the rotor is provided in a plurality of stages in the axial direction of the rotary shaft, and the final stage that compresses the gas to the highest pressure is provided.
  • the escape hole may be provided in an end wall portion on the side of the cantilever end surface constituting the cylinder.
  • the final stage rotor provided on the cantilever end side of the rotary shaft in the unit pump configuration of the final stage that compresses gas to the highest pressure is the final stage. It can be characterized in that it is supported in a cantilever state via the rotary shaft by a bearing disposed between the unit pump configuration of the stage and the unit pump configuration of the previous stage.
  • the unit pump structure comprised by the said cylinder and the said rotor is provided in the both ends of each said rotating shaft, and both of the said unit pump structures are the said rotors.
  • the rotor is supported in a cantilever state via the rotating shaft by a bearing disposed on one side of the rotating shaft in the axial direction and between the unit pump structures.
  • the rotary pump which concerns on this invention, it is at least one cylinder of the said unit pump structure of the both ends of the said rotating shaft, Comprising: Among the end wall parts which comprise the both ends of the axial direction of this cylinder An escape hole that allows a part of the compressed gas to escape is provided in the end wall portion on the side of the cantilevered end face through which the rotation shaft is not inserted, so as to open in the axial direction of the rotation shaft. Can do.
  • a plurality of the escape holes can be provided.
  • the relief hole is opened when the pressure in the cylinder is higher than a predetermined pressure, and closed when the pressure is lower than the predetermined pressure.
  • a check valve may be provided.
  • the said non-return valve can be a reed valve.
  • the silencer part which forms the space which joins the exhaust_gas
  • two rotary shafts including the rotor are provided, the two rotors are rotated in a non-contact manner while maintaining a minute clearance, and the two rotors Can be rotated on the inner surface of the cylinder in a non-contact manner while maintaining a minute clearance, and the two rotation shafts including the rotor can be supported and provided by bearings.
  • the said rotor is a rotor of the claw pump provided with a hook-shaped claw part
  • the said cylinder is provided in the said end wall part by which the said escape hole was provided in the said free end side
  • An exhaust port for exhausting the compressed gas is provided.
  • exhaust gas is prevented from flowing back into the pump as much as possible, and the pump is prevented from being over-compressed as much as possible, and temperature rise inside the pump is suppressed.
  • the driving efficiency can be improved.
  • the side clearance is avoided so as to prevent the thermal expansion of the plurality of rotors from being added together. Since the occurrence of gas leakage can be further reduced by reducing the pressure, the pump performance can be further improved.
  • FIG. 3 is a central cross-sectional view of the embodiment of FIG. 2. It is a center longitudinal cross-sectional view of the form example of FIG.
  • FIG. 5 is a cross-sectional view taken along line XX of the embodiment of FIG. It is a side view which shows the end wall part which removed the muffler case of FIG. It is a side view which shows the state which removed the relief valve of the end wall part of FIG.
  • FIG. 1 is a cross-sectional view with reference numerals so as to show an example of a superordinate concept of a rotary pump according to the present invention.
  • FIG. 1 is a cross-sectional view with reference numerals so as to show an example of a superordinate concept of a rotary pump according to the present invention.
  • this embodiment is a positive displacement pump among the rotary pumps and belongs to the biaxial rotary pump.
  • the biaxial rotary pump include a claw pump that is a rotor non-contact type pump, a screw pump, and a roots pump.
  • a vane pump etc. as a uniaxial rotary pump.
  • Such a rotary pump is driven by, for example, an electric motor and used as a pneumatic device such as a vacuum pump or a blower.
  • the two rotors 30 and 30 are rotated in a non-contact manner while maintaining a minute clearance, and the two rotors 30 and 30 are rotated in a non-contact manner while maintaining a minute clearance on the inner surface of the cylinder 50.
  • the two rotary shafts 20, 20 including the rotors 30, 30 are supported by the bearings 40, 40, and the compressed gas is discharged from the cylinder 50 by sucking gas into the cylinder 50. It is a biaxial rotary pump.
  • This biaxial rotary pump is a claw pump, and the rotors 30 and 30 are provided with hook-shaped claw portions (see FIG. 5).
  • the rotor 30 of this embodiment two (plural) hook-shaped claw portions are provided.
  • the shape of the claw pump rotor is not limited to this. In some cases, the above-described claw portion may be provided.
  • the claw pump of the present embodiment is a multistage in which the unit pump configuration 10 including the cylinder 50 and the two rotors 30 and 30 is provided in a plurality of stages (two stages) in the axial direction of the two rotary shafts 20 and 20. This is a biaxial rotary pump.
  • an escape hole 70 is provided so that a part of the compressed gas can escape to at least one of the end wall portions 52, 52 constituting both ends of the cylinder 50. (Refer to FIGS. 4 and 7) are provided so as to be opened in the axial direction of the rotary shafts 20 and 20.
  • a plurality of escape holes 70 are provided in the end wall portion 52.
  • a mouth 55B see FIGS.
  • positioning, etc. which concern on the escape hole 70 are not limited to this form example.
  • at least a part (plurality) of the large number of escape holes 70 is opened on the inner bottom surface of a groove-shaped recess formed and formed in a groove shape so as to be continuous with the inner surface of the cylinder 50,
  • the plurality of escape holes 70 may be integrated with each other on the inner surface side of the cylinder 50 so as to communicate with the band-shaped recess and function as one large hole.
  • a check valve (reed valve 71), which will be described later, may be individually provided on the outer surface (exhaust side surface) of the cylinder 50 so as to correspond to each relief hole 70.
  • This relief hole 70 can suppress over-compression on the air release side in a rotary pump such as a non-contact type vacuum pump equipped with a claw rotor. Since over-compression can be suppressed, it is possible to increase the compression ratio by reducing the exhaust port (rear exhaust port 55B) so as to reduce the volume immediately before the exhaust is released. By reducing the volume immediately before the exhaust is released, the amount of exhaust gas flowing back into the pump can be suppressed. By controlling the amount of gas that flows backward, it is possible to save energy by reducing the power load during the ultimate operation of the vacuum pump, and to suppress an increase in the internal temperature of the pump during the ultimate operation, thereby suppressing thermal expansion and extending the life of important parts. Can be realized.
  • the relief hole 70 provided in the end wall portion 52 is formed to open in the axial direction of the rotary shafts 20 and 20, the depth thereof is short corresponding to the thickness of the end wall portion 52.
  • the responsiveness as the escape hole 70 is excellent. That is, the overcompressed gas can be exhausted sequentially with a short time lag.
  • the escape hole 70 can be easily disposed at the optimum position on the surface of the end wall portion 52 and can be provided so as to optimally exert its function.
  • the overcompressed gas can be exhausted in a timely manner in a well-balanced manner during the gas compression process, and its functionality can be further improved.
  • Reference numeral 11 denotes an oil bath cover, which is a driving gear 21 integrally fixed to a driving side rotating shaft 20A (see FIG. 3) and a driven gear integrally fixed to a driven side rotating shaft 20B (see FIG. 3). 22 constitutes an oil bath portion.
  • 11a is an oil gauge and is arrange
  • the drive force transmission means is not limited to this, and for example, the drive-side rotary shaft 20A and the drive shaft of the electric motor may be arranged in series and coupled by coupling.
  • the oil cover 11, the front pump body 12, the front side plate 13, the rear pump body 15, the rear side plate 16, and the muffler case 17 are connected in the axial direction of the rotary shaft 20.
  • An outer shell is provided.
  • the oil bath portion formed by the oil cover 11 of the present embodiment is provided on the power transmission side, and the drive gear 21 and the driven gear 22 are each supported by a bearing 40 in a cantilever manner.
  • the shaft 20 is integrally fixed to the rear end side.
  • Each cylinder 50 provided in the front-stage pump main body 12 and the rear-stage pump main body 15 is formed by end wall portions 52 and 52 and peripheral wall portions 53 at both ends.
  • Reference numeral 60 denotes a silencer unit, which exhausts air from an exhaust port (exhaust port 55B (see FIGS. 4 and 7, etc.) at the rear stage) for exhausting the compressed gas of the cylinder 50 and escape holes 70 (see FIGS. 4, 7 and so on).
  • a muffler case 17 is formed as a space for joining and exhausting the exhaust air. According to this, exhaust noise can be effectively merged and silenced.
  • the structure of the silencer portion is that normal exhaust from an exhaust port that is always open (for example, the exhaust port 55B at the rear stage), and over-compression prevention exhaust that is exhausted from the relief hole 70 when the check valve 71 is open.
  • the two exhaust systems are combined into a single muffler that silences and has a rational and inexpensive construction.
  • At least one (unit pump configuration 10A) of a plurality (two stages) of unit pump configurations 10A and 10B includes rotors 30A and 30B with respect to two rotating shafts 20A and 20B as shown in FIG. Both ends are supported by arranging bearings 40A, 40B, 40C and 40D on both sides.
  • the unit pump configuration 10A is arranged at the front stage of the gas flow
  • the unit pump configuration 10B is arranged at the rear stage of the gas flow.
  • At least one (unit pump configuration 10B) located on both end surfaces in the axial direction of the rotation shafts 20A and 20B among the plurality of unit pump configurations 10A and 10B is two
  • the rotary shafts 20A and 20B are configured to be supported in a cantilevered manner by bearings 40C and 40D disposed on one side of the rotors 30C and 30D and adjacent to the unit pump configuration 10A.
  • bearings 40C and 40D angular double row ball bearings can be used.
  • the rotors 30A and 30B are arranged on one side, and the rotors 30C and 30D are arranged on the other side.
  • the thermal expansion occurs separately on both sides in the axial direction of the rotating shaft with reference to the bearings 40C and 40D. Therefore, the influence of thermal expansion related to the side clearance, which is the clearance between the rotor 30 and the end wall portion 52 of the cylinder, is distributed to one rotor 30A, 30B side and the other rotor 30C, 30D side.
  • the thermal expansion related to the side clearance is reduced.
  • the impact will be small. Therefore, the side clearance can be made smaller, and the occurrence of gas leakage can be made smaller, and the pump performance can be improved.
  • the final stage rotors 30C and 30D provided on the cantilever end face side of the rotary shafts 20A and 20B in the unit pump configuration 10B of the final stage that compresses the gas to the highest pressure are the final stage.
  • the bearings 40C and 40D arranged between the unit pump configuration 10B and the preceding unit pump configuration 10A are supported in a cantilever state via the rotary shafts 20A and 20B.
  • the unit pump configuration 10B including the rotors 30C and 30D provided on the rotary shafts 20A and 20B and supported in a cantilever state is a final unit pump configuration that compresses gas to the highest pressure.
  • the rotors 30A and 30B of the first unit pump configuration 10A have a large width because a large volume of gas is introduced into the cylinder 50A in the previous stage. It has a large mass and is supported at both ends.
  • the rotors 30C and 30D of the unit pump configuration 10B in the final stage (second stage in this embodiment) are narrow in width and smaller in mass because of the relationship in which the gas is compressed and introduced into the cylinder 50B in the subsequent stage.
  • both end support since the load is dispersed and it can easily cope with a large mass, the both end support is suitable for the first stage rotors 30A and 30B. Compared to this, the cantilever support is difficult to deal with a large mass, so that the cantilever support is suitable for the rotors 30C and 30D in the final stage having a smaller mass. Therefore, as in this embodiment, a multistage pump structure can be rationally configured.
  • the final stage unit pump configuration 10B is a cantilevered end face side through which the rotary shafts 20A and 20B are not inserted among the end wall parts 52C and 52D constituting both ends of the rear cylinder 50B.
  • An escape hole 70 (see FIGS. 4 and 7, etc.) through which a part of the compressed gas can escape is provided in the end wall portion 52D so as to open in the axial direction of the rotary shafts 20A and 20B.
  • the escape hole 70 is an example of a component of an overcompression suppressing mechanism that can suppress overcompression on the atmosphere opening side.
  • the rotary shafts 20A and 20B are not inserted into the end wall portion 52D, there are almost no restrictions on the arrangement of the escape holes 70 on the surface of the end wall portion 52D, and the escape holes 70 can be appropriately and easily placed at a required position. Can be provided. This also improves the pump performance. That is, in the case of a conventional both-end support structure in which the rotary shafts 20A and 20B (shafts) pass through the side plates, even if the relief hole 70 can be arranged, the shaft interferes and the check valve 71 is set to the optimum position. It is difficult to place.
  • the check valve 71 can be suitably arranged and configured without such restriction.
  • the final stage of the multistage pump may be a cantilever support structure that does not allow the shaft to penetrate the side plate.
  • the relief hole 70 opens when the pressure in the cylinders 50A and 50B is higher than a predetermined pressure, and closes when the pressure is lower than the predetermined pressure (see FIGS. 4 and 6). ) Is provided.
  • the check valve 71 functions as a backflow suppression mechanism that suppresses exhaust gas that flows back from the escape hole 70 into the high vacuum cylinder. Since the backflow of the exhaust gas into the high vacuum can be prevented as much as possible, the pump efficiency can be improved.
  • the check valve of this embodiment is constituted by a reed valve 71.
  • the reed valve 71 is formed in a semicircular strip plate shape at the front end, is held and fixed in a cantilever state at the rear end side, and the front end side is a free end so that the relief hole 70 can be opened and closed. Yes.
  • the reed valve 71 is fixed by a check valve fixing bolt 72 that is screwed into the bolt hole 72a.
  • the reed valve 71 is a check valve fixed to the exhaust side of the relief hole 70, and the differential pressure between the pressure on the exhaust side and the pressure in the compression space exceeds the spring force (elasticity) of the reed valve.
  • the check valve using the reed valve 71 has a simple structure, can be configured compactly and inexpensively, can be easily mounted, and can be easily maintained. Further, the check valve is not limited to the reed valve 71 as in the present embodiment, and for example, a check valve that uses an elastic body such as rubber or silicon, or a valve that opens and closes using a spring (spring) is used. Can do.
  • the above configuration can also be applied to a single-shaft rotary pump having a single-stage unit pump configuration. That is, the rotor 30 provided on the cantilever end face side of the rotating shaft 20 and rotating in the cylinder 50 is supported in a cantilever state by the bearing 40 disposed on one side of the rotor 30 via the rotating shaft 20,
  • the present invention can also be suitably applied to a rotary pump that exhausts gas compressed into the cylinder 50 by being sucked into the cylinder 50.
  • part of the compressed gas may be released to the end wall portion 52D on the side of the cantilevered end surface where the rotation shaft is not inserted among the end wall portions 52, 52 constituting both ends in the axial direction of the cylinder 50.
  • a possible escape hole 70 can be provided in the axial direction of the rotary shaft 20. Since the rotation shaft 20 is not inserted into the end wall portion 52D, there is almost no restriction on the arrangement of the escape holes 70 on the surface of the end wall portion 52D, and the escape holes 70 can be provided appropriately and easily at a required position. it can. This also improves the pump performance.
  • the above configuration can also be applied to a single-shaft rotary pump having a multi-stage unit pump configuration. That is, even when the unit pump configuration 10 including the cylinder 50 and the rotor 30 is provided in a plurality of stages in the axial direction of the rotating shaft 20, the cantilever constituting the final stage cylinder 50B that compresses the gas to the highest pressure.
  • An escape hole 70 can be provided in the end wall portion 52D on the end surface side. This also has the same effect as described above.
  • an escape hole 70 that allows a part of the compressed gas to escape is provided in the peripheral wall portion 53A (see FIG. 5) of the cylinder constituting the cylinder portion of the cylinder 50A of the preceding stage. Yes.
  • the escape gas from the escape hole 70 is discharged to an escape box 61 provided outside the peripheral wall portion 53A of the cylinder, and further, the escape box outlet 61a (see FIG. 4) and the escape pipe connection port 17c of the muffler case 17 are provided. Is discharged to the silencer unit 60 through an escape pipe 62 connecting between the two. Then, the exhaust gas is silenced by being merged with exhaust gas from exhaust ports 55A and 55B, which will be described later, by the silencer unit 60, and discharged to the outside from the exhaust port 17a (see FIG. 2) of the muffler case.
  • the escape hole 70 provided in the peripheral wall portion 53A of the cylinder can also prevent the compression space 51A inside the pump from being overcompressed and improve the pump performance.
  • the relief hole 70 is provided in the peripheral wall portion 53A of the cylinder, the depth becomes longer than that in the case where it is provided in the end wall portion 52 as described above, so that the responsiveness as the relief hole 70 is slightly inferior. It is done.
  • the escape hole 70 is provided in the peripheral wall portion 53A of the cylinder, the drilling position is easily restricted, and there are some difficulties compared to the case where the escape wall 70 is provided in the end wall portion 52 as described above. For example, when the rotor width is small, the number of escape holes 70 that can be secured is small and may not be sufficiently applied.
  • connection air passage 65 (see FIG. 4) connected from the exhaust port 55A of the preceding unit pump configuration 10A to the intake port (rear intake port 35B) of the subsequent unit pump configuration 10B is configured.
  • the vent passage wall 66a is provided with an escape hole 70 through which a part of the compressed gas can escape.
  • the connection air passage 65 is a connection case formed of a connection case base 66b having a connection case inlet 66c and a connection case outlet 66d, and a lid plate-like portion constituting the air passage wall 66a.
  • the main body 66 is provided.
  • the escape gas from the escape hole 70 is discharged into the cover part 67 of the connection case fixed to the outside of the air passage wall part 66a, and further, the escape outlet 67a (see FIG. 4) of the connection case and the muffler case 17 It is discharged to the silencer part 60 via an escape hose 68 (see FIG. 2) that connects the escape hose connection port 17b (see FIG. 2). Then, the exhaust gas is merged with the exhaust gas from the exhaust ports 55A and 55B by the silencer unit 60, muffled, and discharged to the outside from the exhaust port 17a of the muffler case.
  • 36 is an intake case
  • 36a is an intake port of the intake case, which communicates with the upstream intake port 35A that opens to the upstream unit pump configuration 10A.
  • 43 is an oil seal and 45 is a shaft seal.
  • FIG. 10 shows the configuration of the claw pump and the exhaust state
  • FIG. 11 (a) shows the initial state of the gas compression process in the claw pump of FIG. 10
  • FIG. 11 (b) shows the compression of the gas
  • FIG. 11C shows a state immediately before the end of the gas compression process, in which the exhaust port 55B is closed with a margin by the side surface of the rotor 30C in the middle of the process.
  • the arrow described in FIG. 11 has shown the rotation direction of the rotor.
  • the cylinder walls (one end wall 52C of the rear cylinder, the other end wall 52D of the rear cylinder, and the peripheral wall 53B of the rear stage) constituting the cylinder (the rear cylinder 50B) are gas.
  • a plurality of escape holes 70 through which a part of the compressed gas can be released are provided in a portion of the wall portion constituting the compression space in the compression step (a part of the other end wall portion 52D of the rear cylinder). Yes.
  • the escape hole 70 of the present embodiment is provided so as to be opened in the axial direction of the rotation shafts 20A and 20B.
  • the latter cylinder 50B the latter cylinder 50B
  • the cylinder in which a plurality of escape holes 70 are opened with respect to the volume of the compression space that decreases as the compression ratio of the compression process increases.
  • the plurality of escape holes 70 are arranged so that the ratio of the total area gradually increases. That is, the product of the compression ratio of the gas and the total open area of the escape holes gradually increases from the start of compression to the end of compression in the compression process, and maximizes at the end of compression.
  • a plurality of escape holes 70 are arranged. Note that the maximum compression ratio of gas is the ratio of the volume at the moment when compression starts to the volume at the moment when exhaust starts.
  • the area opened by the escape holes 70 in the range closer to the exhaust port 55B becomes larger than the area opened by the escape holes 70 in the range far from the exhaust port 55B. It should be set as follows. Therefore, in the case where a plurality of escape holes 70 having the same size (same diameter) are arranged, it is preferable that the number of the escape holes 70 is increased as the portion is closer to the exhaust port 55B of the end wall portion 52D. . In other words, the closer to the exhaust port 55B, the higher the density at which the escape holes 70 are present. Furthermore, it is also possible to satisfy the above condition by increasing the size of the escape hole 70 in a portion closer to the exhaust port 55B of the end wall portion 52D.
  • the total number of the plurality of escape holes 70 for the rear cylinder 50B is provided in the other end wall 52D of the rear cylinder.
  • the present invention is not limited to this, and the end walls in which a part of the plurality of escape holes 70 constitute both ends of the cylinder (the front cylinder 50A and the rear cylinder 50B). (At one end wall 52A of the front cylinder, the other end wall 52B of the front cylinder, one end wall 52C of the rear cylinder, and the other end wall 52D of the rear cylinder). Form may be sufficient.
  • the ratio of the total area in which the plurality of escape holes 70 are opened gradually increases with respect to the volume of the compression space that decreases as the compression ratio of the compression process increases. If the above condition is satisfied, a plurality of escape holes 70 may be provided in the peripheral wall portion 53 of the cylinder.
  • the check valve 71 attached to the relief hole 70 is provided so as to open in a state where the pressure inside the pump becomes positive before the exhaust port 55B is opened.
  • “positive pressure” means a pressure in which the pressure in the compression space exceeds the pressure on the exhaust side of the escape hole 70, and is not limited to a pressure higher than the atmospheric pressure.
  • the differential pressure between the pressure on the exhaust side and the pressure in the compression space exceeds the spring force (elasticity) of the check valve (reed valve 71)
  • the reed valve 71 is opened.
  • the vacuum pump the sucked negative pressure air is compressed by the claw-shaped rotor, the check valve 71 is opened by positive pressure (pressure at which the check valve 71 operates), and exhaust from the escape hole 70 is performed.
  • the escape hole 70 it is necessary to arrange the escape hole 70 at a position where the inside of the pump becomes a positive pressure in the compression process of the rotary track formed by the rotor shape. Since the compression process proceeds closer to the exhaust port and the inside is in a high pressure state, the check valve 71 is easier to operate, and the longer the compression process time is, the longer the operation time of the check valve 71 is. The over-compression suppressing effect on the open side is great. Further, in this embodiment, the check valve 71 is constituted by a reed valve, and the operating pressure can be changed / adjusted by changing its hardness / thickness.
  • the shape such as the number of holes, the hole diameter, and the chamfering of the holes may be selectively optimized as appropriate.
  • a rotary pump such as a non-contact type vacuum pump equipped with a claw rotor is provided with a mechanism for suppressing overcompression by the escape hole 70.
  • this overcompression suppressing mechanism relievef hole 70
  • the entrance of exhaust gas that flows backward from the escape hole 70 into the vacuum cylinder can be suppressed by a backflow suppression mechanism using a check valve 71 that closes the escape hole 70.
  • the volume of the backflow gas can be suppressed by reducing the volume immediately before the exhaust is released, the power load and the temperature increase can be suppressed, and the overcompression suppressing mechanism (relief hole 70) can be opened to the atmosphere.
  • the inside of the cylinder which is over-compressed on the side and is in a high vacuum, is controlled by the backflow suppression mechanism (check valve 71) to suppress the backflow gas from the escape hole 70, so that the flow rate is not reduced and A high-efficiency pump structure on the high vacuum pressure side that can use the full pressure range of a stage pump can be realized, and the effect can be maximized.
  • the exhaust port In order to reduce the volume immediately before the exhaust is released, it is preferable to make the exhaust port small and provide the exhaust port at a position where the air inside the pump is compressed as much as possible. That is, the exhaust port is provided so as to increase the compression ratio.
  • the exhaust port In order to suppress the amount of the exhaust gas flowing backward, there are other methods in which the exhaust from the front-stage pump is pulled by the rear-stage pump by a multistage structure and a check valve is attached to the exhaust port.
  • An escape hole 70 is provided as an over-compression suppressing mechanism.
  • a check valve 71 is provided as a backflow suppression mechanism that suppresses exhaust gas that flows back from the escape hole 70 into the cylinder in a high vacuum.
  • This embodiment is a positive displacement pump among the rotary pumps, and belongs to the biaxial rotary pump.
  • the biaxial rotary pump include a claw pump that is a rotor non-contact type pump, a screw pump, and a roots pump.
  • Such a rotary pump is driven by, for example, an electric motor and used as a pneumatic device such as a vacuum pump or a blower.
  • the two rotors 130 (each set of 130A and 130B, 130C and 130D) are rotated in a non-contact manner while maintaining a minute clearance, and the two rotors 130 and 130 are cylinders 150 (150A and 150B).
  • the two rotary shafts 120 (120A and 120B) having the rotors 130 and 130 are rotated on the inner surfaces of the bearings 140 (140A and 140B, 140C and 140D) so that the inner surfaces of the rotors 130 and 130 are rotated without contact.
  • a biaxial rotary pump that sucks gas into the cylinder 150 and exhausts the compressed gas from the cylinder 150. The air is sucked through the air inlets 135A and 135B and exhausted through the air outlets 155A and 155B.
  • the biaxial rotary pump of this embodiment is a claw pump, and the rotors 130 and 130 have a plurality of hook-shaped claw portions (see FIG. 15).
  • the claw pump can compress the gas to a high pressure, the temperature inside the pump tends to rise.
  • the unit pump configuration 110 (110A, 110B) including the cylinder 150 and the two rotors 130, 130 is divided into a plurality of stages (two stages) in the axial direction of the two rotary shafts 120A, 120B. It is a multistage biaxial rotary pump provided.
  • the unit pump configuration 110 (110A, 110B) configured by the cylinder 150 and the two rotors 130, 130 is provided at both ends of the rotating shaft 120. Which of the unit pump configurations 110A, 110B is selected? Also, the two rotors 130 and 130 are bearings 140 disposed on one side of the two rotors 130 and 130 in the axial direction of the rotating shaft 120 (120A, 120B) and between both unit pump configurations 110A and 110B. (Each set of 140A and 140B, 140C and 140D) is supported in a cantilever state via the rotating shaft 120. As the bearing 140, for example, an angular double row ball bearing can be used.
  • both ends of the gears 121 and 122 are supported.
  • it is comprised so that the two rotating shafts 120A and 120B may rotate at the same speed in the opposite direction because the two gears 121 and 122 mesh.
  • the rotors 130A, 130B are arranged on one side and the rotors 130C, 130D are arranged on the other side via the rotating shaft 120. It has become. For this reason, the thermal expansion is generated separately on both sides in the axial direction of the rotating shaft with reference to the bearing 140. Therefore, the influence of thermal expansion on the side clearance, which is the clearance between the rotor 130 and the end wall 152 in the axial direction of the cylinder, is distributed to one rotor 130A, 130B side and the other rotor 130C, 130D side. .
  • the thermal expansion related to the side clearance is reduced.
  • the impact will be small. Therefore, the side clearance can be made smaller, and the occurrence of gas leakage can be made smaller, and the pump performance can be improved.
  • both cylinders 150 (150A, 150B) of the unit pump configurations 110A, 110B at both ends of the rotating shaft 120, and end wall portions 152 (152A, 152B) constituting both ends of the cylinder 150 are provided.
  • the end wall 152 (152A, 152D) on the side of the cantilever end surface through which the rotating shaft 120 is not inserted has an escape hole 170 through which a part of the compressed gas can escape. Open in the direction.
  • a plurality of the escape holes 170 are provided in the end wall portion 152 (152A, 152D) on the cantilever end surface side. Further, exhaust ports 155 (155A, 155B) for exhausting the compressed gas of the cylinder 150 (150A, 150B) are provided in the end wall portion 152 on the side of the cantilever end surface provided with the escape hole 170.
  • positioning, etc. which concern on the escape hole 170 are not limited to this example of a form.
  • the large number of escape holes 170 is opened on the inner bottom surface of a groove-shaped recess formed and formed in a groove shape so as to be continuous with the inner surface of the cylinder 150 (150A, 150B).
  • the plurality of escape holes 170 may be integrated on the inner surface side of the cylinder 150 so as to communicate with the band-shaped recess and function as one large hole.
  • a check valve (reed valve 171), which will be described later, may be individually provided on the outer surface (exhaust side surface) of the cylinder 150 so as to correspond to each relief hole 170.
  • This relief hole 170 can suppress overcompression on the open side of the atmosphere in a rotary pump such as a non-contact type vacuum pump equipped with a claw rotor. Since over-compression can be suppressed, it is possible to increase the compression ratio by reducing the exhaust ports (155A, 155B) so as to reduce the volume immediately before the exhaust is released. By reducing the volume immediately before the exhaust is released, the amount of exhaust air flowing back into the pump can be suppressed. By controlling the amount of air that flows back, energy can be saved by reducing the power load during the ultimate operation of the vacuum pump, and by suppressing the rise in the internal temperature of the pump during the ultimate operation, thermal expansion is suppressed and long life of important parts is achieved. Can be realized.
  • the relief hole 170 provided in the end wall portion 152 is formed so as to open in the axial direction of the rotating shaft 120. Therefore, the depth is a short one corresponding to the thickness of the end wall portion 152, and the relief hole 170 is provided. It has a form excellent in responsiveness as the hole 170. That is, the overcompressed gas can be exhausted sequentially with a short time lag. In addition, the escape hole 170 can be easily disposed at an optimum position on the surface of the end wall portion 152, and can be provided so as to optimally exert its function. Further, by providing a plurality of escape holes 170 in the end wall portion 152, the overcompressed gas can be exhausted in a timely manner in a balanced manner during the gas compression step, and the functionality can be further improved.
  • the rotation shafts 120A and 120B are not inserted into the end wall portions 152A and 152D arranged at both ends of the apparatus, and therefore the escape holes 170 are arranged on the surfaces of the end wall portions 152A and 152D.
  • the relief hole 170 can be provided appropriately and easily, and the pump performance can be improved. That is, in the case of a conventional both-end support structure in which the two rotating shafts 120A and 120B (shafts) pass through the side plate, even if the escape hole 170 can be arranged, the shaft disturbs and the check valve 171 is optimal. It is difficult to arrange at a position.
  • the check valve 171 can be suitably arranged and configured without such restriction.
  • the input shaft part 180 extended for the input of motive power about one rotating shaft 120A is provided, the input shaft part 180 is the side plate 111.
  • the other rotating shaft 120B does not penetrate the side plate 111. Even in this case, there is an advantage that restrictions on the arrangement of the escape holes 170 are reduced.
  • the relief hole 170 is provided with a check valve 171 that opens when the pressure in the cylinders 150A and 150B is higher than a predetermined pressure and closes when the pressure is lower than the predetermined pressure.
  • the check valve 171 functions as a backflow suppressing mechanism that suppresses exhaust gas that flows back from the escape hole 170 into the high vacuum cylinder. Since the backflow of the exhaust gas into the high vacuum can be prevented as much as possible, the pump efficiency can be improved.
  • the check valve of this embodiment is constituted by a reed valve 171.
  • the reed valve 171 is formed in a semicircular strip plate shape at the tip, is held and fixed in a cantilevered state at the rear end side, and the tip end side is a free end, so that the relief hole 170 can be opened and closed. Yes.
  • the reed valve 171 is fixed by a check valve fixing bolt 172 that is screwed into the bolt hole 172a.
  • the reed valve 171 is a check valve fixed to the exhaust side of the relief hole 170, and the differential pressure between the pressure on the exhaust side and the pressure in the compression space exceeds the spring force (elasticity) of the reed valve.
  • the check valve using the reed valve 171 has a simple structure, can be configured compactly and inexpensively, can be easily mounted, and can be easily maintained.
  • the check valve is not limited to the reed valve 171 as in the present embodiment, but, for example, a check valve that uses an elastic body such as rubber or silicon, or a valve that opens and closes using a spring (spring) is used. Can do.
  • Reference numeral 111 denotes one side plate
  • 112 denotes a pump body
  • 113 denotes the other side plate.
  • Reference numeral 115 denotes an oil bath section, which constitutes an oil chamber in which a gear 121 integrally fixed to the rotating shaft 120A and a driven gear 122 fixed integrally to the rotating shaft 120B are built.
  • the oil bath portion 115 is provided between one set of bearings (140A, 140B) and the other set of bearings (140C, 140D), and is configured to be appropriately lubricated.
  • Reference numeral 143 denotes an oil seal.
  • the power unit is not shown, but for example, it can be provided so that the biaxial rotary pump of this embodiment is driven by transmitting power from an electric motor.
  • a gear mechanism can be used as the driving force transmission means.
  • the driving force transmission means when 120A is a driving side rotating shaft and 120B is a driven side rotating shaft, the driving shaft of the electric motor is arranged in series on the rotating shaft 210A, and coupling is performed.
  • a known technique such as a form of connection may be appropriately used as appropriate.
  • the unit pump configuration on one side can be a downstream unit pump configuration that compresses gas to the highest pressure.
  • a connection air passage may be provided so as to connect the exhaust port 155A of the preceding unit pump configuration 110A and the intake port 135B of the subsequent unit pump configuration 110B.
  • the rotors 130A and 130B of the front unit pump configuration 110A can be made wider and larger in mass because a large volume of gas is introduced into the front cylinder 150A.
  • the rotors 130C and 130D of the rear unit pump configuration 110B can be made narrower and have a smaller mass because the gas is compressed and introduced into the rear cylinder 150B.
  • the rotor 130 can be easily accessed, and the assembly and maintenance of the rotor requiring clearance adjustment are excellent. Furthermore, there is an advantage that a series with different flow rates can be easily manufactured only by changing the cylinder 150 and the rotor width on both sides, and the expandability of the series is high.
  • reed valves 171 can be mounted on both ends of the apparatus, and both unit pump configurations 110 can be manufactured easily and inexpensively while realizing high pump performance as described above.
  • the basic configuration is the same on both sides, there is symmetry, and it is easy to balance the entire apparatus, and it is possible to more appropriately realize a structure that is suitable for downsizing and more reliable and economical.
  • the pump structure of both sides it is also possible to comprise various application forms, without changing the essence of this invention, such as increasing the compression ratio of gas by multi-stage at least one side.
  • FIG. 15 shows the configuration of the claw pump and the form of the exhaust state
  • FIG. 11 (a) shows the initial state of the gas compression process
  • FIG. 11 (b) shows the exhaust port in the middle of the gas compression process
  • 155 shows a state where the side surface of the rotor 130 is closed with a margin
  • FIG. 11C shows a state immediately before the gas compression process is finished.
  • the arrow described in FIG. 11 has shown the rotation direction of the rotor.
  • a plurality of cylinder walls 152 and 153 constituting the cylinder 150 that can release part of the compressed gas to the wall portions constituting the compression space 151 in the gas compression step.
  • a relief hole 170 is provided.
  • the escape hole 170 of the present embodiment is provided in the end wall portion 152 so as to be opened in the axial direction of the rotating shaft 120.
  • the total number of the relief holes 170 that are open is reduced with respect to the volume of the compression space 151 that decreases as the compression ratio of the compression process increases.
  • the plurality of escape holes 170 are arranged so that the area ratio gradually increases. That is, the product of the compression ratio of the gas and the total area facing the cylinder where the escape holes are open gradually increases from the start of compression to the end of compression in the compression process, and reaches the maximum at the end of compression.
  • a plurality of escape holes 170 are arranged so as to be.
  • the area opened by the escape holes 170 in the range closer to the exhaust port 155 becomes larger than the area opened by the escape holes 170 in the range far from the exhaust port 155. It should be set as follows. Therefore, in the case where a plurality of escape holes 170 having the same size (same diameter) are arranged, it is preferable that the number of the escape holes 170 is larger in the portion closer to the exhaust port 155 of the end wall portion 152. . In other words, the closer to the exhaust port 155, the higher the density of the escape holes 170 may be. Furthermore, it is also possible to satisfy the above condition by increasing the size of the escape hole 170 in a portion closer to the exhaust port 155 of the end wall portion 152.
  • the total number of the plurality of escape holes 170 applied to the cylinder 150 is provided in the end wall portion 152 on the free end side of the cylinder.
  • the present invention is not limited to this, and a part of the plurality of escape holes 170 is provided on at least one of the end wall portions 152 constituting both ends of the cylinder 150. Form may be sufficient.
  • the ratio of the total area where the plurality of escape holes 170 are opened gradually increases with respect to the volume of the compression space 151 that decreases as the compression ratio of the compression process increases.
  • a plurality of escape holes 170 may be provided in the peripheral wall portion 153 of the cylinder as long as the condition to do so is satisfied.
  • the check valve 171 attached to the escape hole 170 is provided so as to open in a state where the pressure inside the pump becomes positive before the exhaust port 155 is opened.
  • “positive pressure” means a pressure in which the pressure in the compression space exceeds the pressure on the exhaust side of the escape hole 170, and is not limited to a pressure higher than the atmospheric pressure.
  • the differential pressure between the pressure on the exhaust side and the pressure in the compression space exceeds the spring force (elasticity) of the check valve (reed valve 171)
  • the reed valve 171 is opened.
  • the vacuum pump the sucked negative pressure air is compressed by the claw-shaped rotor, the check valve 171 is opened by positive pressure (pressure at which the check valve 171 operates), and exhaust from the escape hole 170 is performed.
  • the escape hole 170 it is necessary to arrange the escape hole 170 at a position where the pressure inside the pump becomes positive pressure in the compression process of the rotary track formed by the rotor shape. Since the compression process progresses closer to the exhaust port and the inside is in a high pressure state, the check valve 171 is easier to operate, and the longer the compression process time is, the longer the operation time of the check valve 171 is. The over-compression suppressing effect on the open side is great. Further, in this embodiment, the check valve 171 is constituted by a reed valve, and the operating pressure can be changed / adjusted by changing its hardness / plate thickness.
  • the escape holes 170 for suppressing overcompression on the atmosphere opening side, it is possible to maximize the effect of suppressing overcompression on the atmosphere opening side.
  • the shape such as the number of holes, the hole diameter, and the chamfering of the holes may be selectively optimized as appropriate.
  • the rotary pump such as the non-contact type vacuum pump equipped with the claw rotor is provided with the over-compression suppressing mechanism by the escape hole 170.
  • the over-compression suppression mechanism relievef hole 170
  • over-compression can be suppressed on the atmosphere opening side where the exhaust flow rate is large (when operation is performed in a state where the pressure of the sucked air is close to atmospheric pressure).
  • the inflow of exhaust gas that flows backward from the escape hole 170 into the vacuumed cylinder can be suppressed by a backflow suppression mechanism using a check valve 71 that closes the escape hole 170.
  • the volume of the backflow gas can be suppressed by reducing the volume immediately before the exhaust is released, the power load and the temperature increase can be suppressed, and the overcompression suppressing mechanism (relief hole 170) can be opened to the atmosphere.
  • the inside of the cylinder which is over-compressed on the side and is in a high vacuum, is controlled by the backflow suppression mechanism (check valve 171) to suppress the backflow gas from the relief hole 170, so that the flow rate does not decrease and A high-efficiency pump structure on the high vacuum pressure side that can use the full pressure range of a stage pump can be realized, and the effect can be maximized.
  • the exhaust port In order to reduce the volume immediately before the exhaust is released, it is preferable to make the exhaust port small and provide the exhaust port at a position where the air inside the pump is compressed as much as possible. That is, the exhaust port is provided so as to increase the compression ratio.
  • the exhaust port In order to suppress the amount of the exhaust gas flowing backward, there are other methods in which the exhaust from the front-stage pump is pulled by the rear-stage pump by a multistage structure and a check valve is attached to the exhaust port.
  • the escape hole 170 is provided as an over-compression suppressing mechanism.
  • a check valve 171 is provided as a backflow suppression mechanism that suppresses exhaust gas that flows back from the escape hole 170 toward the inside of the cylinder in a high vacuum.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

Provided is a rotary pump which achieves improved reliability and improved operation efficiency by preventing an exhaust gas from flowing backward into a pump as much as possible, preventing the interior of the pump from being excessively compressed as much as possible, and suppressing temperature rise in the pump. A rotary pump in which a rotor (30) that is provided on the cantilever end face side of a rotating shaft (20) and rotates in a cylinder (50) is supported in a cantilever state by a bearing (40) disposed on one side of the rotor (30) via the rotating shaft (20), and gas sucked into the cylinder and compressed is discharged from the cylinder (50), wherein an escape hole (70) capable of letting part of the compressed gas escape is provided in a cantilever end face-side end wall portion (52) through which the rotating shaft (20) is not inserted out of the end wall portions (52) constituting both ends in the axial direction of the cylinder (50) so as to open in the axial direction of the rotating shaft (20).

Description

回転ポンプRotary pump
 本発明は、シリンダ内で回転するロータを備え、気体を前記シリンダ内へ吸気して圧縮された気体を前記シリンダから排気する回転ポンプに関する。 The present invention relates to a rotary pump that includes a rotor that rotates in a cylinder, and that sucks gas into the cylinder and exhausts compressed gas from the cylinder.
 回転ポンプとしては、クローロータを搭載する非接触型の真空ポンプであるクローポンプがある。例えば、本出願人が先に提案したクローポンプの排気構造及び排気方法によれば、ポンプ室を形成するシリンダと、シリンダの端面を塞ぐ一方のサイドプレート及び他方のサイドプレートと、シリンダ内で平行に位置するように配されて反対方向に回転される二つの回転軸と、その二つの回転軸のそれぞれに一体的に固定されて設けられ、相互に非接触状態で噛合って吸入した気体を圧縮できるように鉤形の爪部が形成された二つのロータと、回転駆動装置と、シリンダ内の気体が圧縮されないポンプ室の部分に連通する吸気口と、一方のサイドプレート及び他方のサイドプレートの両方にシリンダ内の気体が圧縮されるポンプ室の部分に開口する排気口を具備する(特許文献1参照)。これによれば、排気効率を高めることで、クローポンプのポンプ性能を向上させることができる。 Rotating pumps include claw pumps that are non-contact type vacuum pumps equipped with claw rotors. For example, according to the claw pump exhaust structure and exhaust method previously proposed by the present applicant, the cylinder forming the pump chamber, one side plate that closes the end face of the cylinder, and the other side plate are parallel to each other in the cylinder. The two rotating shafts arranged to be positioned at each other and rotated in opposite directions, and integrally fixed to each of the two rotating shafts, are in contact with each other and inhaled gas Two rotors with hook-shaped claws formed so that they can be compressed, a rotary drive device, an intake port communicating with a portion of the pump chamber where the gas in the cylinder is not compressed, one side plate and the other side plate Both are provided with an exhaust port that opens to a portion of the pump chamber where the gas in the cylinder is compressed (see Patent Document 1). According to this, the pump performance of the claw pump can be improved by increasing the exhaust efficiency.
 このようなクローポンプなどの回転ポンプについて多段ポンプとする場合、従来は軸方向に複数のロータを備える回転軸を、その複数のロータを二つの軸受で挟むように両端支持する構造になっている(特許文献2参照)。これによれば、複数(多段)のロータによって、多段のシリンダを介して気体の圧縮比を高めることができるが、各段のシリンダにおいては気体を圧縮することで発熱するため、各段のロータについて熱膨張が生じる。そして、多段のロータが一つの回転軸に配されているため、複数のロータの熱膨張が合算されるようにロータとシリンダの端壁部とのクリアランスであるサイドクリアランスに影響を及ぼすことになる。すなわち、複数のロータの熱膨張が合算されるように影響するため、サイドクリアランスをより小さくして、気体漏れの発生をより小さくすることが難しくなり、ポンプ性能を向上させることができないという課題がある。 When a multistage pump is used for such a rotary pump such as a claw pump, a rotary shaft having a plurality of rotors in the axial direction is conventionally supported at both ends so that the plurality of rotors are sandwiched between two bearings. (See Patent Document 2). According to this, although the compression ratio of the gas can be increased through the multi-stage cylinders by a plurality of (multi-stage) rotors, each stage cylinder generates heat by compressing the gas. Thermal expansion occurs. Since the multi-stage rotor is arranged on one rotating shaft, the side clearance, which is the clearance between the rotor and the end wall of the cylinder, is affected so that the thermal expansion of the plurality of rotors is added up. . That is, since it affects the thermal expansion of a plurality of rotors to be added together, it is difficult to reduce the side clearance and reduce the occurrence of gas leakage, and the pump performance cannot be improved. is there.
 また、クローポンプにおいては、圧縮工程があり、吸入気体(空気)を圧縮することで排気効率が向上する。このような回転ポンプの到達運転時は、吸入空気量が無いため、原理的にはポンプの空気輸送及び圧縮が無く、ポンプとしての仕事はゼロである。しかし、実際は到達運転時でも僅かな隙間からの漏れにより吸入空気は存在し、且つロータとシリンダで形成される排気開放直前の空間(密閉空間)が排気口を通じて外部(ポンプ内部から排出された大気圧以上の空気がある空間)と連通した際に、排気開放直前の空間は負圧であるため大気圧以上の排気空気がポンプ内部へ逆流する。逆流した空気は再圧縮され再度外部へ排出される。ここで無駄な工程が発生し、動力負荷及びポンプ内部温度が上昇する。なお、到達運転とは、到達圧力での運転のことで、その到達圧力とは、そのポンプの真空をつくる最大の能力である真空ポンプの吸入口を締め切ったとき(排気流量が0となったとき)に到達できる圧力のことである。 Also, in the claw pump, there is a compression step, and the exhaust efficiency is improved by compressing the intake gas (air). During the reaching operation of such a rotary pump, since there is no intake air amount, in principle, there is no pneumatic transport and compression of the pump, and work as a pump is zero. However, in reality, intake air exists due to leakage from a small gap even during ultimate operation, and the space (sealed space) immediately before the exhaust opening formed by the rotor and cylinder is externally (largely exhausted from the inside of the pump) through the exhaust port. When communicating with a space having air above the atmospheric pressure), the exhaust air above the atmospheric pressure flows back into the pump because the space just before the exhaust opening is negative. The backflowed air is recompressed and discharged to the outside again. Here, useless processes occur, and the power load and the pump internal temperature rise. The ultimate operation is the operation at the ultimate pressure, and the ultimate pressure is when the suction port of the vacuum pump, which is the maximum capacity for creating the vacuum of the pump, is closed (the exhaust flow rate becomes zero). Is the pressure that can be reached.
 すなわち、この到達運転時などのポンプ内部へ逆流する排気空気によれば、動力負荷が上昇して運転効率が悪化する。また、その逆流する排気空気によれば、ポンプ内部温度が上昇することで、熱膨張によるロータ接触、オイルシールやベアリングなど重要部品の劣化が生じやすくなり、ポンプ装置の信頼性が低下する。これに対しては、逆流空気量を抑制するように、単純に排気開放直前の容積を減少させると、排気流量の多い場合の大気開放側(吸入される空気の圧力が大気圧に近い状態での運転がされる場合)が過圧縮状態となる。また、ポンプ内部容積の減少による流量の減少が発生するという問題が生じる。なお、排気開放直前の容積が存在する限り、逆流空気は必ず発生することになり、以上の問題を合理的に緩和することが課題になる。この課題に対して、従来は、運転条件に所要の制約をかけることによって対応しており、運転効率をより向上させることができなかった。 That is, according to the exhaust air that flows back into the pump during this reaching operation, the power load increases and the operation efficiency deteriorates. Further, the exhaust air flowing backward increases the internal temperature of the pump, so that deterioration of important parts such as rotor contact, oil seals and bearings due to thermal expansion tends to occur, and the reliability of the pump device is lowered. On the other hand, if the volume immediately before the exhaust opening is simply reduced so as to suppress the amount of backflow air, the air opening side when the exhaust flow rate is high (in the state where the pressure of the sucked air is close to the atmospheric pressure) Is overcompressed). Further, there arises a problem that the flow rate is reduced due to the reduction of the pump internal volume. As long as there is a volume immediately before the exhaust is released, backflow air is always generated, and it becomes a problem to rationally mitigate the above problems. Conventionally, this problem has been dealt with by restricting the operating conditions, and the operating efficiency has not been improved.
 なお、先に本出願人は、ベーンを持つロータリー式の真空ポンプ(ベーンポンプ)について、次の構成を提案してある。真空ポンプには、気体の排気孔が設けられていて、その排気孔には第1逆止弁が備えられている。加えて、この真空ポンプの内の外気圧以上に圧縮された気体を外気中に逃がして、真空ポンプの動力ロスを少なく抑えるための圧力逃がし孔が設けられていて、その圧力逃がし孔には、第2逆止弁が備えられている。この排気孔と圧力逃がし孔とは、真空ポンプの気体の排気口を構成している(特許文献3参照)。
 これによれば、シリンダを形成する壁部のうちの周壁部に逃がし孔が設けられており、圧縮されるポンプ内部が過圧縮になって温度が上昇することを抑制することができる。
Note that the present applicant has previously proposed the following configuration of a rotary vacuum pump (vane pump) having a vane. The vacuum pump is provided with a gas exhaust hole, and the exhaust hole is provided with a first check valve. In addition, a pressure relief hole is provided to release the gas compressed above the atmospheric pressure in the vacuum pump into the outside air, and to reduce the power loss of the vacuum pump, and the pressure relief hole includes A second check valve is provided. The exhaust hole and the pressure relief hole constitute a gas exhaust port of the vacuum pump (see Patent Document 3).
According to this, the escape hole is provided in the peripheral wall part of the wall part which forms a cylinder, and it can suppress that the inside of the pump to be compressed becomes overcompressed and the temperature rises.
特開2011-38476号公報(第1頁)JP 2011-38476 A (first page) 特開2002-332963号公報(図1)JP 2002-332963 A (FIG. 1) 特開2001-289167号公報([0020])JP 2001-289167 A ([0020])
 回転ポンプに関して解決しようとする問題点は、排気気体がポンプ内部へ逆流することを極力防止し、運転効率を向上させてポンプ内部の温度上昇を抑制すると共に、ポンプ内部が過圧縮になることを抑制するための合理的な構成が、回転ポンプについては提案されていない点にある。
 そこで本発明の目的は、排気気体がポンプ内部へ逆流することを極力防止すると共に、ポンプ内部が過圧縮になることを極力防止し、ポンプ内部の温度上昇を抑制して信頼性を向上できると共に、運転効率を向上できる回転ポンプを提供することにある。
The problems to be solved with respect to the rotary pump are to prevent the exhaust gas from flowing back into the pump as much as possible, to improve the operating efficiency and suppress the temperature rise inside the pump, and to prevent the inside of the pump from being overcompressed. A rational configuration for suppression is that no rotary pump has been proposed.
Accordingly, an object of the present invention is to prevent the exhaust gas from flowing back into the pump as much as possible and to prevent the pump from becoming overcompressed as much as possible, to suppress the temperature rise inside the pump and to improve the reliability. An object of the present invention is to provide a rotary pump that can improve operating efficiency.
 また、回転ポンプに関して解決しようとする問題点は、回転軸の軸線方向に複数のロータを備える場合、その複数のロータの熱膨張が合算されるように影響するため、サイドクリアランスをより小さくして、気体漏れの発生をより小さくすることが難しくなり、ポンプ性能をより向上させることができない点にもある。
 そこで本発明の目的は、回転軸の軸線方向に複数のロータを備える場合、その複数のロータの熱膨張が合算されるように影響することを避け、サイドクリアランスをより小さくして、気体漏れの発生をより小さくすることができることで、ポンプ性能をより向上させることができる回転ポンプを提供することにある。
In addition, the problem to be solved with respect to the rotary pump is that when a plurality of rotors are provided in the axial direction of the rotation shaft, the thermal expansion of the plurality of rotors is affected so that the side clearance is reduced. Further, it is difficult to reduce the occurrence of gas leakage, and the pump performance cannot be further improved.
Therefore, an object of the present invention is to provide a plurality of rotors in the axial direction of the rotating shaft, avoid the influence of the thermal expansion of the plurality of rotors being added together, reduce the side clearance, and prevent gas leakage. An object of the present invention is to provide a rotary pump capable of further improving pump performance by reducing generation.
 本発明は、上記目的を達成するために次の構成を備える。
 本発明に係る回転ポンプの一形態によれば、回転軸の片持ち端面側に設けられシリンダ内で回転するロータが、該ロータの片側に配された軸受によって前記回転軸を介して片持ち状態に支持され、気体を前記シリンダ内へ吸気して圧縮された気体を前記シリンダから排気する回転ポンプにおいて、前記シリンダの軸方向に両端を構成する端壁部のうち前記回転軸が挿通されない片持ち端面側の端壁部に、圧縮された気体の一部を逃がすことができる逃がし孔が前記回転軸の軸方向に開口して設けられている。
The present invention has the following configuration in order to achieve the above object.
According to one aspect of the rotary pump according to the present invention, a rotor that is provided on the cantilever end surface side of the rotating shaft and rotates in the cylinder is cantilevered via the rotating shaft by a bearing disposed on one side of the rotor. In the rotary pump that is supported by the gas and sucks compressed gas into the cylinder and exhausts the compressed gas from the cylinder, the cantilever in which the rotating shaft is not inserted among the end wall portions constituting both ends in the axial direction of the cylinder In the end wall portion on the end face side, an escape hole capable of releasing a part of the compressed gas is provided so as to open in the axial direction of the rotating shaft.
 また、本発明に係る回転ポンプの一形態によれば、前記シリンダと前記ロータとによる単位ポンプ構成が、前記回転軸の軸方向において複数段に設けられ、気体を最も高圧に圧縮する最終段のシリンダを構成する前記片持ち端面側の端壁部に、前記逃がし孔が設けられていることを特徴とすることができる。 Further, according to one aspect of the rotary pump according to the present invention, the unit pump configuration including the cylinder and the rotor is provided in a plurality of stages in the axial direction of the rotary shaft, and the final stage that compresses the gas to the highest pressure is provided. The escape hole may be provided in an end wall portion on the side of the cantilever end surface constituting the cylinder.
 また、本発明に係る回転ポンプの一形態によれば、気体を最も高圧に圧縮する最終段の前記単位ポンプ構成における前記回転軸の片持ち端側に設けられた最終段のロータが、該最終段の単位ポンプ構成と前段の単位ポンプ構成の間に配された軸受によって前記回転軸を介して片持ち状態に支持されていることを特徴とすることができる。 Further, according to one aspect of the rotary pump according to the present invention, the final stage rotor provided on the cantilever end side of the rotary shaft in the unit pump configuration of the final stage that compresses gas to the highest pressure is the final stage. It can be characterized in that it is supported in a cantilever state via the rotary shaft by a bearing disposed between the unit pump configuration of the stage and the unit pump configuration of the previous stage.
 また、本発明に係る回転ポンプの一形態によれば、前記回転軸それぞれの両端に、前記シリンダと前記ロータによって構成される単位ポンプ構成が設けられ、該単位ポンプ構成のどちらも、前記ロータが、該ロータにおける前記回転軸の軸方向の片側であって両方の単位ポンプ構成の間に配された軸受によって前記回転軸を介して片持ち状態に支持されていることを特徴とすることができる。 Moreover, according to one form of the rotary pump which concerns on this invention, the unit pump structure comprised by the said cylinder and the said rotor is provided in the both ends of each said rotating shaft, and both of the said unit pump structures are the said rotors. The rotor is supported in a cantilever state via the rotating shaft by a bearing disposed on one side of the rotating shaft in the axial direction and between the unit pump structures. .
 また、本発明に係る回転ポンプの一形態によれば、前記回転軸の両端の前記単位ポンプ構成の少なくとも一方のシリンダであって、該シリンダの軸方向の両端を構成する端壁部のうち前記回転軸が挿通されない片持ち端面側の端壁部に、圧縮された気体の一部を逃がすことができる逃がし孔が前記回転軸の軸方向に開口して設けられていることを特徴とすることができる。 Moreover, according to one form of the rotary pump which concerns on this invention, it is at least one cylinder of the said unit pump structure of the both ends of the said rotating shaft, Comprising: Among the end wall parts which comprise the both ends of the axial direction of this cylinder An escape hole that allows a part of the compressed gas to escape is provided in the end wall portion on the side of the cantilevered end face through which the rotation shaft is not inserted, so as to open in the axial direction of the rotation shaft. Can do.
 また、本発明に係る回転ポンプの一形態によれば、前記逃がし孔が複数設けられていることを特徴とすることができる。 Further, according to an embodiment of the rotary pump according to the present invention, a plurality of the escape holes can be provided.
 また、本発明に係る回転ポンプの一形態によれば前記逃がし孔には、前記シリンダ内の圧力が、所定の圧力よりも高圧の場合には開き、所定の圧力よりも低圧の場合には閉じる逆止弁が設けられていることを特徴とすることができる。
 また、本発明に係る回転ポンプの一形態によれば、前記逆止弁がリード弁であることを特徴とすることができる。
According to another aspect of the rotary pump of the present invention, the relief hole is opened when the pressure in the cylinder is higher than a predetermined pressure, and closed when the pressure is lower than the predetermined pressure. A check valve may be provided.
Moreover, according to one form of the rotary pump which concerns on this invention, the said non-return valve can be a reed valve.
 また、本発明に係る回転ポンプの一形態によれば、前記シリンダの圧縮された気体を排気する排気口からの排気と前記逃がし孔からの排気とを合流させて消音させる空間を形成するサイレンサ部を備えることを特徴とすることができる。 Moreover, according to one form of the rotary pump which concerns on this invention, the silencer part which forms the space which joins the exhaust_gas | exhaustion which exhausts the compressed gas of the said cylinder, and the exhaust_gas | exhaustion from the said escape hole, and silences It can be characterized by comprising.
 また、本発明に係る回転ポンプの一形態によれば、前記ロータを備える回転軸が二つ設けられ、二つのロータ同士が微小なクリアランスを保って非接触で回転されると共に、前記二つのロータがシリンダの内面にも微小なクリアランスを保って非接触で回転されるように、前記ロータを備える二つの回転軸が軸受によって支持されて設けられていることを特徴とすることができる。 Further, according to one embodiment of the rotary pump according to the present invention, two rotary shafts including the rotor are provided, the two rotors are rotated in a non-contact manner while maintaining a minute clearance, and the two rotors Can be rotated on the inner surface of the cylinder in a non-contact manner while maintaining a minute clearance, and the two rotation shafts including the rotor can be supported and provided by bearings.
 また、本発明に係る回転ポンプの一形態によれば、前記ロータが鉤形の爪部を備えるクローポンプのロータであり、前記逃がし孔が設けられた前記自由端側の端壁部に前記シリンダの圧縮された気体を排気する排気口が設けられていることを特徴とすることができる。 Moreover, according to one form of the rotary pump which concerns on this invention, the said rotor is a rotor of the claw pump provided with a hook-shaped claw part, The said cylinder is provided in the said end wall part by which the said escape hole was provided in the said free end side An exhaust port for exhausting the compressed gas is provided.
 本発明に係る回転ポンプの一形態によれば、排気気体がポンプ内部へ逆流することを極力防止すると共に、ポンプ内部が過圧縮になることを極力防止し、ポンプ内部の温度上昇を抑制して信頼性を向上できると共に、運転効率を向上できるという特別有利な効果を奏する。 According to one aspect of the rotary pump according to the present invention, exhaust gas is prevented from flowing back into the pump as much as possible, and the pump is prevented from being over-compressed as much as possible, and temperature rise inside the pump is suppressed. In addition to improving the reliability, there is a particularly advantageous effect that the driving efficiency can be improved.
 また、本発明に係る回転ポンプの他の形態によれば、回転軸の軸線方向に複数のロータを備える場合、その複数のロータの熱膨張が合算されるように影響することを避け、サイドクリアランスをより小さくして、気体漏れの発生をより小さくすることができることで、ポンプ性能をより向上させることができるという特別有利な効果を奏する。 According to another aspect of the rotary pump according to the present invention, when a plurality of rotors are provided in the axial direction of the rotating shaft, the side clearance is avoided so as to prevent the thermal expansion of the plurality of rotors from being added together. Since the occurrence of gas leakage can be further reduced by reducing the pressure, the pump performance can be further improved.
本発明に係る回転ポンプの上位概念としての形態例を示す断面図である。It is sectional drawing which shows the example of a form as a high-order concept of the rotary pump which concerns on this invention. 本発明に係る二軸回転ポンプの形態例を示す斜視図である。It is a perspective view which shows the example of a form of the biaxial rotary pump which concerns on this invention. 図2の形態例の中央横断面図である。FIG. 3 is a central cross-sectional view of the embodiment of FIG. 2. 図2の形態例の中央縦断面図である。It is a center longitudinal cross-sectional view of the form example of FIG. 図4の形態例のX-X線断面図である。FIG. 5 is a cross-sectional view taken along line XX of the embodiment of FIG. 図2のマフラーケースを外した端壁部を示す側面図である。It is a side view which shows the end wall part which removed the muffler case of FIG. 図6の端壁部の逃止弁を外した状態を示す側面図である。It is a side view which shows the state which removed the relief valve of the end wall part of FIG. 図2の形態例のエスケープボックスを外した状態を底面側から見た斜視図である。It is the perspective view which looked at the state which removed the escape box of the example of a form of Drawing 2 from the bottom face side. 図2の形態例の接続ケースのカバー部を外した状態を上面側から見た斜視図である。It is the perspective view which looked at the state which removed the cover part of the connection case of the form example of FIG. 2 from the upper surface side. 図2の形態例の二つのロータと複数の逃がし孔との配置関係を説明する断面図である。It is sectional drawing explaining the arrangement | positioning relationship between the two rotors of a form example of FIG. 2, and a some escape hole. 図2及び図12の形態例の二つのロータによる気体の圧縮状態の変化と複数の逃がし孔による開口との比率の変化を説明する断面図である。It is sectional drawing explaining the change of the ratio of the compression state of the gas by the two rotors of the form example of FIG.2 and FIG.12, and the opening by a some escape hole. 本発明に係る二軸回転ポンプの形態例を模式的に示す断面図である。It is sectional drawing which shows typically the example of a form of the biaxial rotary pump which concerns on this invention. 図12の形態例のシリンダの端壁部を示す側面図である。It is a side view which shows the end wall part of the cylinder of the example of FIG. 図13の端壁部の逃止弁を外した状態を示す側面図である。It is a side view which shows the state which removed the relief valve of the end wall part of FIG. 図12の形態例の二つのロータと複数の逃がし孔との配置関係を説明する断面図である。It is sectional drawing explaining the arrangement | positioning relationship between two rotors and the several escape hole of the form example of FIG.
 以下、本発明に係る形態例を、添付図面に基づいて説明する。図1は、本発明に係る回転ポンプの上位概念としての形態例を示すように符号を付した断面図であり、先ず、この図1に基づいて本発明の上位概念としての形態例を説明する。 Hereinafter, exemplary embodiments according to the present invention will be described with reference to the accompanying drawings. FIG. 1 is a cross-sectional view with reference numerals so as to show an example of a superordinate concept of a rotary pump according to the present invention. First, an example of a superordinate concept of the present invention will be described based on FIG. .
 なお、本形態例は、回転ポンプのうち、容積型ポンプであって、二軸回転ポンプに属するものとなっている。二軸回転ポンプとしては、例えば、ロータ非接触型のポンプであるクローポンプ、スクリューポンプやルーツポンプなどが挙げられる。また、一軸の回転ポンプとしては、ベーンポンプなどがある。このような回転ポンプは、例えば、電動モータによって駆動され、真空ポンプやブロアなどの空気圧装置として使用される。 In addition, this embodiment is a positive displacement pump among the rotary pumps and belongs to the biaxial rotary pump. Examples of the biaxial rotary pump include a claw pump that is a rotor non-contact type pump, a screw pump, and a roots pump. Moreover, there exists a vane pump etc. as a uniaxial rotary pump. Such a rotary pump is driven by, for example, an electric motor and used as a pneumatic device such as a vacuum pump or a blower.
 本形態例は、二つのロータ30、30同士が微小なクリアランスを保って非接触で回転されると共に、二つのロータ30、30がシリンダ50の内面にも微小なクリアランスを保って非接触で回転されるように、そのロータ30、30を備える二つの回転軸20、20が軸受40、40によって支持されて設けられ、気体をシリンダ50内へ吸気して圧縮された気体をシリンダ50から排気する二軸回転ポンプになっている。 In this embodiment, the two rotors 30 and 30 are rotated in a non-contact manner while maintaining a minute clearance, and the two rotors 30 and 30 are rotated in a non-contact manner while maintaining a minute clearance on the inner surface of the cylinder 50. As shown, the two rotary shafts 20, 20 including the rotors 30, 30 are supported by the bearings 40, 40, and the compressed gas is discharged from the cylinder 50 by sucking gas into the cylinder 50. It is a biaxial rotary pump.
 この二軸回転ポンプは、クローポンプであり、ロータ30、30は、鉤形の爪部を備えている(図5参照)。本形態例のロータ30では、二つ(複数)の鉤形の爪部を備えているが、クローポンプのロータの形態はこれに限定されることなく、一つの爪部の場合や、三つ以上の爪部を備える場合もある。なお、クローポンプでは、気体を高圧に圧縮できるため、ポンプ内部の温度が上昇しやすい。
 また、本形態例のクローポンプは、シリンダ50と二つのロータ30、30とによる単位ポンプ構成10が、二つの回転軸20、20の軸方向について複数段(二段)に設けられている多段の二軸回転ポンプになっている。
This biaxial rotary pump is a claw pump, and the rotors 30 and 30 are provided with hook-shaped claw portions (see FIG. 5). In the rotor 30 of this embodiment, two (plural) hook-shaped claw portions are provided. However, the shape of the claw pump rotor is not limited to this. In some cases, the above-described claw portion may be provided. In addition, since the claw pump can compress the gas to a high pressure, the temperature inside the pump tends to rise.
Further, the claw pump of the present embodiment is a multistage in which the unit pump configuration 10 including the cylinder 50 and the two rotors 30 and 30 is provided in a plurality of stages (two stages) in the axial direction of the two rotary shafts 20 and 20. This is a biaxial rotary pump.
 複数の単位ポンプ構成10のうち少なくとも一つについて、シリンダ50の両端部を構成する端壁部52、52の少なくとも一方に、圧縮された気体の一部を逃がすことができるように、逃がし孔70(図4、7など参照)が、回転軸20、20の軸方向に開口して設けられている。
 本形態例では、その逃がし孔70(図4、7など参照)が、端壁部52に複数設けられている。また、その逃がし孔70が設けられた端壁部(後段シリンダの他方の端壁部52D(図4、7など参照))に、シリンダ50の圧縮された気体を排気する排気口(後段の排気口55B(図4、7など参照))が設けられている。
 なお、逃がし孔70に係る形状、大きさ、数量、配置などの形態は、本形態例に限定されるものではない。例えば、多数の逃がし孔70のうち少なくとも一部(複数)が、シリンダ50の内面に帯状に連続するように溝状に加工・形成された帯溝状凹部の内底面に開口されることで、その複数の逃がし孔70が、そのシリンダ50の内面の側では、その帯溝状凹部に連通して一体化され、一つの大きな孔として機能できるようにしてもよい。この場合でも、シリンダ50の外面(排気側の面)には、後述する逆止弁(リード弁71)を、各逃がし孔70に対応させて個々に設けてもよい。
For at least one of the plurality of unit pump configurations 10, an escape hole 70 is provided so that a part of the compressed gas can escape to at least one of the end wall portions 52, 52 constituting both ends of the cylinder 50. (Refer to FIGS. 4 and 7) are provided so as to be opened in the axial direction of the rotary shafts 20 and 20.
In this embodiment, a plurality of escape holes 70 (see FIGS. 4 and 7) are provided in the end wall portion 52. Further, an exhaust port for exhausting the compressed gas of the cylinder 50 (rear-stage exhaust gas) into an end wall part (the other end wall part 52D of the rear-stage cylinder (see FIGS. 4 and 7)) provided with the escape hole 70. A mouth 55B (see FIGS. 4 and 7, etc.) is provided.
In addition, forms, such as a shape, a magnitude | size, a quantity, arrangement | positioning, etc. which concern on the escape hole 70 are not limited to this form example. For example, at least a part (plurality) of the large number of escape holes 70 is opened on the inner bottom surface of a groove-shaped recess formed and formed in a groove shape so as to be continuous with the inner surface of the cylinder 50, The plurality of escape holes 70 may be integrated with each other on the inner surface side of the cylinder 50 so as to communicate with the band-shaped recess and function as one large hole. Even in this case, a check valve (reed valve 71), which will be described later, may be individually provided on the outer surface (exhaust side surface) of the cylinder 50 so as to correspond to each relief hole 70.
 この逃がし孔70によれば、クローロータを搭載する非接触型真空ポンプなどの回転ポンプにおいて、大気開放側の過圧縮を抑制できる。過圧縮が抑制できるため、排気開放直前の容積を減少させるように排気口(後段の排気口55B)を小さくして圧縮比を上げることが可能となる。排気開放直前の容積を減少させることで、ポンプ内部へ逆流する排気の気体量を抑制できる。この逆流する気体量を抑制できることで、真空ポンプの到達運転時における動力負荷低減による省エネができ、到達運転時のポンプ内部温度の上昇を抑制することができることで熱膨張抑制及び重要部品の長寿命化が可能となる。 This relief hole 70 can suppress over-compression on the air release side in a rotary pump such as a non-contact type vacuum pump equipped with a claw rotor. Since over-compression can be suppressed, it is possible to increase the compression ratio by reducing the exhaust port (rear exhaust port 55B) so as to reduce the volume immediately before the exhaust is released. By reducing the volume immediately before the exhaust is released, the amount of exhaust gas flowing back into the pump can be suppressed. By controlling the amount of gas that flows backward, it is possible to save energy by reducing the power load during the ultimate operation of the vacuum pump, and to suppress an increase in the internal temperature of the pump during the ultimate operation, thereby suppressing thermal expansion and extending the life of important parts. Can be realized.
 そして、端壁部52に設けられた逃がし孔70は、回転軸20、20の軸方向へ開口して形成されているため、その深さは端壁部52の厚みに相当する短いものであり、逃がし孔70としての応答性に優れた形態となっている。すなわち、過圧縮の気体を、タイムラグが短い状態で逐次に排気できる。しかも、この逃がし孔70は、端壁部52の面において最適位置に容易に配置でき、その機能を最適に発揮させるように設けることができる。
 また、逃がし孔70が、端壁部52に複数設けられることで、気体圧縮の工程中において過圧縮の気体をバランスよく適時に排気でき、その機能性をより向上できる。
Since the relief hole 70 provided in the end wall portion 52 is formed to open in the axial direction of the rotary shafts 20 and 20, the depth thereof is short corresponding to the thickness of the end wall portion 52. The responsiveness as the escape hole 70 is excellent. That is, the overcompressed gas can be exhausted sequentially with a short time lag. In addition, the escape hole 70 can be easily disposed at the optimum position on the surface of the end wall portion 52 and can be provided so as to optimally exert its function.
In addition, by providing a plurality of escape holes 70 in the end wall portion 52, the overcompressed gas can be exhausted in a timely manner in a well-balanced manner during the gas compression process, and its functionality can be further improved.
 11はオイルバスカバーであり、駆動側の回転軸20A(図3参照)に一体的に固定された駆動歯車21と従動側の回転軸20B(図3参照)に一体的に固定された従動歯車22とが内蔵されるオイルバス部を構成している。なお、11aはオイルゲージであり、オイルバス部内の潤滑油の油量を確認できるように配置されている。 Reference numeral 11 denotes an oil bath cover, which is a driving gear 21 integrally fixed to a driving side rotating shaft 20A (see FIG. 3) and a driven gear integrally fixed to a driven side rotating shaft 20B (see FIG. 3). 22 constitutes an oil bath portion. In addition, 11a is an oil gauge and is arrange | positioned so that the amount of lubricating oil in an oil bath part can be confirmed.
 23は従動プーリであり、駆動側の回転軸20Aの一端部に一体的に固定されている。この従動プーリ23に駆動ベルトが掛け回されて、例えば電動モータからの動力が伝達されることで、本形態例の二軸回転ポンプが駆動されるように設けられている。なお、駆動力の伝達手段はこれに限定されるものではなく、例えば、駆動側の回転軸20Aと電動モータの駆動軸を直列的に配置して、カップリングによって連結する形態としてもよい。 23 is a driven pulley which is integrally fixed to one end of the rotating shaft 20A on the drive side. A drive belt is wound around the driven pulley 23 to transmit power from, for example, an electric motor, so that the biaxial rotary pump of this embodiment is driven. The drive force transmission means is not limited to this, and for example, the drive-side rotary shaft 20A and the drive shaft of the electric motor may be arranged in series and coupled by coupling.
 また、本形態例は、オイルカバー11、前段のポンプ本体12、前段のサイドプレート13、後段のポンプ本体15、後段のサイドプレート16、及びマフラーケース17が回転軸20の軸方向に連結されて外郭が構成されるように設けられている。本形態例のオイルカバー11によって形成されているオイルバス部は、動力が伝達される側に設けられており、駆動歯車21と従動歯車22は、それぞれが片持ちに軸受40によって支持された回転軸20の後端側に一体的に固定された構成となっている。
 また、前段のポンプ本体12及び後段のポンプ本体15に備えられている各シリンダ50は、両端の端壁部52、52と周壁部53とによって形成されている。
In this embodiment, the oil cover 11, the front pump body 12, the front side plate 13, the rear pump body 15, the rear side plate 16, and the muffler case 17 are connected in the axial direction of the rotary shaft 20. An outer shell is provided. The oil bath portion formed by the oil cover 11 of the present embodiment is provided on the power transmission side, and the drive gear 21 and the driven gear 22 are each supported by a bearing 40 in a cantilever manner. The shaft 20 is integrally fixed to the rear end side.
Each cylinder 50 provided in the front-stage pump main body 12 and the rear-stage pump main body 15 is formed by end wall portions 52 and 52 and peripheral wall portions 53 at both ends.
 60はサイレンサ部であり、シリンダ50の圧縮された気体を排気する排気口(後段の排気口55B(図4、7など参照))からの排気と逃がし孔70(図4、7など参照)からの排気とを合流させて消音させる空間としてマフラーケース17によって形成されている。これによれば、排気音を効果的に合流消音させることができる。
 すなわち、このサイレンサ部の構造は、常に開放している排気口(例えば後段の排気口55B)からの通常排気と、逆止弁71が開状態で逃がし孔70から排気される過圧縮防止排気との2系統の排気を合流させて消音する1つのマフラーになっており、合理的で且つ安価な構成となっている。
Reference numeral 60 denotes a silencer unit, which exhausts air from an exhaust port (exhaust port 55B (see FIGS. 4 and 7, etc.) at the rear stage) for exhausting the compressed gas of the cylinder 50 and escape holes 70 (see FIGS. 4, 7 and so on). A muffler case 17 is formed as a space for joining and exhausting the exhaust air. According to this, exhaust noise can be effectively merged and silenced.
In other words, the structure of the silencer portion is that normal exhaust from an exhaust port that is always open (for example, the exhaust port 55B at the rear stage), and over-compression prevention exhaust that is exhausted from the relief hole 70 when the check valve 71 is open. The two exhaust systems are combined into a single muffler that silences and has a rational and inexpensive construction.
 次に、図2~10に基づいて、本発明にかかる多段(二段)の単位ポンプ構成を備える二軸回転ポンプであって、クローポンプである形態例について、より具体的に説明する。
 本形態例では、複数(二段)の単位ポンプ構成10A、10Bのうちの少なくとも一つ(単位ポンプ構成10A)が、図3に示すように、二つの回転軸20A、20Bについてロータ30A、30Bの両側に軸受40A、40B、40C、40Dを配することで両端が支持されることで構成されている。なお、本形態例によれば、単位ポンプ構成10Aが気体の流れの前段に配され、単位ポンプ構成10Bが気体の流れの後段に配された構成になっている。
Next, based on FIGS. 2 to 10, an embodiment in which the biaxial rotary pump having the multi-stage (two-stage) unit pump configuration according to the present invention is a claw pump will be described more specifically.
In the present embodiment, at least one (unit pump configuration 10A) of a plurality (two stages) of unit pump configurations 10A and 10B includes rotors 30A and 30B with respect to two rotating shafts 20A and 20B as shown in FIG. Both ends are supported by arranging bearings 40A, 40B, 40C and 40D on both sides. In addition, according to the present embodiment, the unit pump configuration 10A is arranged at the front stage of the gas flow, and the unit pump configuration 10B is arranged at the rear stage of the gas flow.
 また、本形態例では、図3に示すように、複数の単位ポンプ構成10A、10Bのうち回転軸20A、20Bの軸方向の両端面に位置する少なくとも一方(単位ポンプ構成10B)が、二つの回転軸20A、20Bについてロータ30C、30Dの片側であって隣接する単位ポンプ構成10Aとの間に配された軸受40C、40Dによって片持ち状態に支持されることで構成されている。なお、この軸受40C、40Dとしては、アンギュラ複列玉軸受を用いることができる。 Moreover, in this embodiment, as shown in FIG. 3, at least one (unit pump configuration 10B) located on both end surfaces in the axial direction of the rotation shafts 20A and 20B among the plurality of unit pump configurations 10A and 10B is two The rotary shafts 20A and 20B are configured to be supported in a cantilevered manner by bearings 40C and 40D disposed on one side of the rotors 30C and 30D and adjacent to the unit pump configuration 10A. As the bearings 40C and 40D, angular double row ball bearings can be used.
 これによれば、軸受40C、40Dを基準にして、一方にロータ30A、30Bが配置され、他方にロータ30C、30Dが配置された形態となっている。このため、熱膨張が軸受40C、40Dを基準にして回転軸の軸方向の両サイドに分かれて生じる形態となっている。従って、ロータ30とシリンダの端壁部52とのクリアランスであるサイドクリアランスに関する熱膨張の影響は、一方のロータ30A、30B側と他方のロータ30C、30D側へ分散されることになる。このため、従来の軸方向に複数のロータを備える回転軸を、その複数のロータを二つの軸受で挟むように両端支持する構造とした多段ポンプの場合に比較して、サイドクリアランスに関する熱膨張の影響は小さくて済むことになる。従って、サイドクリアランスをより小さくして、気体漏れの発生をより小さくすることが可能となり、ポンプ性能を向上させることができる。 According to this, on the basis of the bearings 40C and 40D, the rotors 30A and 30B are arranged on one side, and the rotors 30C and 30D are arranged on the other side. For this reason, the thermal expansion occurs separately on both sides in the axial direction of the rotating shaft with reference to the bearings 40C and 40D. Therefore, the influence of thermal expansion related to the side clearance, which is the clearance between the rotor 30 and the end wall portion 52 of the cylinder, is distributed to one rotor 30A, 30B side and the other rotor 30C, 30D side. For this reason, compared to the conventional multi-stage pump in which a rotary shaft having a plurality of rotors in the axial direction is supported at both ends so that the plurality of rotors are sandwiched between two bearings, the thermal expansion related to the side clearance is reduced. The impact will be small. Therefore, the side clearance can be made smaller, and the occurrence of gas leakage can be made smaller, and the pump performance can be improved.
 さらに、本形態例では、気体を最も高圧に圧縮する最終段の前記単位ポンプ構成10Bにおける回転軸20A、20Bの片持ち端面側に設けられた最終段のロータ30C、30Dが、その最終段の単位ポンプ構成10Bと前段の単位ポンプ構成10Aの間に配された軸受40C、40Dによって回転軸20A、20Bを介して片持ち状態に支持されている。 Further, in the present embodiment, the final stage rotors 30C and 30D provided on the cantilever end face side of the rotary shafts 20A and 20B in the unit pump configuration 10B of the final stage that compresses the gas to the highest pressure are the final stage. The bearings 40C and 40D arranged between the unit pump configuration 10B and the preceding unit pump configuration 10A are supported in a cantilever state via the rotary shafts 20A and 20B.
 すなわち、回転軸20A、20Bに設けられ片持ち状態に支持されたロータ30C、30Dを備える単位ポンプ構成10Bが、気体を最も高圧に圧縮する最終段の単位ポンプ構成になっている。
 このように単位ポンプ構成10Bが最終段になっている場合、一段目の単位ポンプ構成10Aのロータ30A、30Bは、容積の大きい気体が前段のシリンダ50Aに導入されるため、幅が広くてより質量の大きなものになっており、両端で支持されている。そして、最終段(本形態例では2段目)の単位ポンプ構成10Bのロータ30C、30Dは、気体が圧縮されて後段のシリンダ50Bに導入される関係から、幅が狭くてより質量の小さなものになっており、片持ち状態に支持されている。
 両端支持では、荷重が分散し、質量の大きなものにも容易に対応できるため、一段目のロータ30A、30Bについては、その両端支持が適している。これに比較して、片持ち支持では、質量の大きなものには対応しにくいため、より質量の小さな最終段のロータ30C、30Dについては、片持ち支持が適している。従って、本形態例のように、多段のポンプ構造を合理的に構成することができる。
That is, the unit pump configuration 10B including the rotors 30C and 30D provided on the rotary shafts 20A and 20B and supported in a cantilever state is a final unit pump configuration that compresses gas to the highest pressure.
When the unit pump configuration 10B is in the final stage as described above, the rotors 30A and 30B of the first unit pump configuration 10A have a large width because a large volume of gas is introduced into the cylinder 50A in the previous stage. It has a large mass and is supported at both ends. The rotors 30C and 30D of the unit pump configuration 10B in the final stage (second stage in this embodiment) are narrow in width and smaller in mass because of the relationship in which the gas is compressed and introduced into the cylinder 50B in the subsequent stage. It is supported in a cantilevered state.
In both end support, since the load is dispersed and it can easily cope with a large mass, the both end support is suitable for the first stage rotors 30A and 30B. Compared to this, the cantilever support is difficult to deal with a large mass, so that the cantilever support is suitable for the rotors 30C and 30D in the final stage having a smaller mass. Therefore, as in this embodiment, a multistage pump structure can be rationally configured.
 さらに、本形態例では、その最終段の単位ポンプ構成10Bであって、後段のシリンダ50Bの両端部を構成する端壁部52C、52Dのうち回転軸20A、20Bが挿通されない片持ち端面側の端壁部52Dに、圧縮された気体の一部を逃がすことができる逃がし孔70(図4、7など参照)が、回転軸20A、20Bの軸方向に開口して設けられている。
 この逃がし孔70によれば、排気開放直前の容積の減少のために排気口を小さくしても大気開放側過圧縮を抑制できる。従って、この逃がし孔70は、大気開放側過圧縮を抑制することのできる過圧縮抑制機構の構成要素の一例となっている。
Further, in the present embodiment, the final stage unit pump configuration 10B is a cantilevered end face side through which the rotary shafts 20A and 20B are not inserted among the end wall parts 52C and 52D constituting both ends of the rear cylinder 50B. An escape hole 70 (see FIGS. 4 and 7, etc.) through which a part of the compressed gas can escape is provided in the end wall portion 52D so as to open in the axial direction of the rotary shafts 20A and 20B.
According to the relief hole 70, even if the exhaust port is made small in order to reduce the volume immediately before the exhaust is released, over-compression on the atmosphere open side can be suppressed. Therefore, the escape hole 70 is an example of a component of an overcompression suppressing mechanism that can suppress overcompression on the atmosphere opening side.
 また、端壁部52Dについては回転軸20A、20Bが挿通されないため、端壁部52Dの面においては逃がし孔70の配置に関する制約がほとんど無く、その逃がし孔70を所要の位置に適切且つ容易に設けることができる。これによっても、ポンプ性能を向上できる。
 つまり、回転軸20A、20B(シャフト)がサイドプレートを貫通している従来のような両端支持構造の場合、逃がし孔70を配置できてもシャフトが邪魔をして逆止弁71を最適位置に配置することが困難である。これに対してサイドプレートにシャフトを貫通させない片持ち支持構造とした場合、そのような制約がなく好適に逆止弁71を配置・構成できる。なお、ポンプ構成を多段化した場合は、多段のポンプのうち最終段をサイドプレートにシャフトを貫通させない片持ち支持構造とすればよい。
Further, since the rotary shafts 20A and 20B are not inserted into the end wall portion 52D, there are almost no restrictions on the arrangement of the escape holes 70 on the surface of the end wall portion 52D, and the escape holes 70 can be appropriately and easily placed at a required position. Can be provided. This also improves the pump performance.
That is, in the case of a conventional both-end support structure in which the rotary shafts 20A and 20B (shafts) pass through the side plates, even if the relief hole 70 can be arranged, the shaft interferes and the check valve 71 is set to the optimum position. It is difficult to place. On the other hand, when a cantilever support structure in which the shaft does not pass through the side plate is used, the check valve 71 can be suitably arranged and configured without such restriction. If the pump configuration is multistage, the final stage of the multistage pump may be a cantilever support structure that does not allow the shaft to penetrate the side plate.
 この逃がし孔70には、シリンダ50A、50B内の圧力が、所定の圧力よりも高圧の場合には開き、所定の圧力よりも低圧の場合には閉じる逆止弁71(図4、6など参照)が設けられている。この逆止弁71は、逃がし孔70から高真空となっているシリンダ内へ逆流する排気気体を抑制する逆流抑制機構として機能する。排気気体の高真空となっているシリンダ内への逆流を極力防止できるため、ポンプ効率を向上させることができる。 The relief hole 70 opens when the pressure in the cylinders 50A and 50B is higher than a predetermined pressure, and closes when the pressure is lower than the predetermined pressure (see FIGS. 4 and 6). ) Is provided. The check valve 71 functions as a backflow suppression mechanism that suppresses exhaust gas that flows back from the escape hole 70 into the high vacuum cylinder. Since the backflow of the exhaust gas into the high vacuum can be prevented as much as possible, the pump efficiency can be improved.
 本形態例の逆止弁は、リード弁71によって構成されている。このリード弁71は、先端が半円形の短冊板状に形成され、後端側で片持ち状態に保持・固定され、先端側が自由端になっており、逃がし孔70を開閉できるようになっている。また、リード弁71は、ボルト穴72aに螺合する逆止弁固定ボルト72によって固定されている。このリード弁71は、逃がし孔70の排気側に固定された逆止弁であり、その排気側の圧力と、圧縮空間内の圧力との差圧が、リード弁のバネ力(弾性)を上回った場合に開となる。このリード弁71による逆止弁は、簡単な構造であり、コンパクト且つ安価に構成でき、容易に装着できると共に、メンテナンスも容易に行うことができる。また、逆止弁としては、本形態例のようなリード弁71に限らず、例えば、ゴムやシリコン等の弾性体を用いるもの、スプリング(バネ)を用いてその弾性で開閉するものを用いることができる。 The check valve of this embodiment is constituted by a reed valve 71. The reed valve 71 is formed in a semicircular strip plate shape at the front end, is held and fixed in a cantilever state at the rear end side, and the front end side is a free end so that the relief hole 70 can be opened and closed. Yes. The reed valve 71 is fixed by a check valve fixing bolt 72 that is screwed into the bolt hole 72a. The reed valve 71 is a check valve fixed to the exhaust side of the relief hole 70, and the differential pressure between the pressure on the exhaust side and the pressure in the compression space exceeds the spring force (elasticity) of the reed valve. Open when The check valve using the reed valve 71 has a simple structure, can be configured compactly and inexpensively, can be easily mounted, and can be easily maintained. Further, the check valve is not limited to the reed valve 71 as in the present embodiment, and for example, a check valve that uses an elastic body such as rubber or silicon, or a valve that opens and closes using a spring (spring) is used. Can do.
 以上の構成は、単段の単位ポンプ構成を備える一軸の回転ポンプにも応用できる。すなわち、回転軸20の片持ち端面側に設けられシリンダ50内で回転するロータ30が、そのロータ30の片側に配された軸受40によって回転軸20を介して片持ち状態に支持され、気体をシリンダ50内へ吸気して圧縮された気体をシリンダ50から排気する回転ポンプにも好適に適用できる。 The above configuration can also be applied to a single-shaft rotary pump having a single-stage unit pump configuration. That is, the rotor 30 provided on the cantilever end face side of the rotating shaft 20 and rotating in the cylinder 50 is supported in a cantilever state by the bearing 40 disposed on one side of the rotor 30 via the rotating shaft 20, The present invention can also be suitably applied to a rotary pump that exhausts gas compressed into the cylinder 50 by being sucked into the cylinder 50.
 この場合にも、シリンダ50の軸方向に両端を構成する端壁部52、52のうち回転軸が挿通されない片持ち端面側の端壁部52Dに、圧縮された気体の一部を逃がすことができる逃がし孔70を、回転軸20の軸方向に開口して設けることができる。
 端壁部52Dについては回転軸20が挿通されないため、この端壁部52Dの面においては逃がし孔70の配置に関する制約がほとんど無く、その逃がし孔70を所要の位置に適切且つ容易に設けることができる。これによっても、ポンプ性能を向上できる。
Also in this case, part of the compressed gas may be released to the end wall portion 52D on the side of the cantilevered end surface where the rotation shaft is not inserted among the end wall portions 52, 52 constituting both ends in the axial direction of the cylinder 50. A possible escape hole 70 can be provided in the axial direction of the rotary shaft 20.
Since the rotation shaft 20 is not inserted into the end wall portion 52D, there is almost no restriction on the arrangement of the escape holes 70 on the surface of the end wall portion 52D, and the escape holes 70 can be provided appropriately and easily at a required position. it can. This also improves the pump performance.
 また、以上の構成は、多段の単位ポンプ構成を備える一軸の回転ポンプにも応用できる。すなわち、シリンダ50とロータ30とによる単位ポンプ構成10が、回転軸20の軸方向について複数段に設けられている場合にも、気体を最も高圧に圧縮する最終段のシリンダ50Bを構成する片持ち端面側の端壁部52Dに、逃がし孔70が設けることができる。これによっても、前述した内容と同様の効果を奏する。 The above configuration can also be applied to a single-shaft rotary pump having a multi-stage unit pump configuration. That is, even when the unit pump configuration 10 including the cylinder 50 and the rotor 30 is provided in a plurality of stages in the axial direction of the rotating shaft 20, the cantilever constituting the final stage cylinder 50B that compresses the gas to the highest pressure. An escape hole 70 can be provided in the end wall portion 52D on the end surface side. This also has the same effect as described above.
 さらに、本形態例では、前段のシリンダ50Aのシリンダの筒部を構成するシリンダの周壁部53A(図5参照)に、圧縮された気体の一部を逃がすことができる逃がし孔70が設けられている。この逃がし孔70からの逃がし気体は、シリンダの周壁部53Aの外側に設けられたエスケープボックス61へ排出され、さらに、エスケープボックスの出口61a(図4参照)とマフラーケース17のエスケープパイプ接続口17cとの間を接続するエスケープパイプ62を介して、サイレンサ部60へ排出される。そして、その排気は、サイレンサ部60で後述する排気口55A、55Bからの排気などと合流されて消音され、マフラーケースの排気口17a(図2参照)から外部へ放出される。 Further, in the present embodiment, an escape hole 70 that allows a part of the compressed gas to escape is provided in the peripheral wall portion 53A (see FIG. 5) of the cylinder constituting the cylinder portion of the cylinder 50A of the preceding stage. Yes. The escape gas from the escape hole 70 is discharged to an escape box 61 provided outside the peripheral wall portion 53A of the cylinder, and further, the escape box outlet 61a (see FIG. 4) and the escape pipe connection port 17c of the muffler case 17 are provided. Is discharged to the silencer unit 60 through an escape pipe 62 connecting between the two. Then, the exhaust gas is silenced by being merged with exhaust gas from exhaust ports 55A and 55B, which will be described later, by the silencer unit 60, and discharged to the outside from the exhaust port 17a (see FIG. 2) of the muffler case.
 このシリンダの周壁部53Aに設けた逃がし孔70によっても、前述したように、ポンプ内部の圧縮空間51Aが過圧縮になることを抑制でき、ポンプ性能を向上できる。
 但し、シリンダの周壁部53Aに逃がし孔70を設けた場合、その深さが前述したような端壁部52に設けた場合より長くなるため、逃がし孔70としての応答性については若干劣るもの考えられる。また、シリンダの周壁部53Aに逃がし孔70を設ける場合は、その穿設位置に制約がかかり易く、前述したような端壁部52に設ける場合と比較すると若干の難点がある。例えば、ロータ幅が小さい場合は確保できる逃がし孔70の数が少なく、十分に適用できない場合もある。
As described above, the escape hole 70 provided in the peripheral wall portion 53A of the cylinder can also prevent the compression space 51A inside the pump from being overcompressed and improve the pump performance.
However, when the relief hole 70 is provided in the peripheral wall portion 53A of the cylinder, the depth becomes longer than that in the case where it is provided in the end wall portion 52 as described above, so that the responsiveness as the relief hole 70 is slightly inferior. It is done. Further, when the escape hole 70 is provided in the peripheral wall portion 53A of the cylinder, the drilling position is easily restricted, and there are some difficulties compared to the case where the escape wall 70 is provided in the end wall portion 52 as described above. For example, when the rotor width is small, the number of escape holes 70 that can be secured is small and may not be sufficiently applied.
 また、本形態例では、前段の単位ポンプ構成10Aの排気口55Aから後段の単位ポンプ構成10Bの吸気口(後段の吸気口35B)に接続される接続通気路65(図4参照)を構成する通気路壁部66aに、圧縮された気体の一部を逃がすことができる逃がし孔70が設けられている。なお、接続通気路65は、接続ケースの入口66c及び接続ケースの出口66dを備える接続ケースのベース部66bと、通気路壁部66aを構成する蓋板状部とで形成されている接続ケースの本体部66によって設けられている。 Further, in the present embodiment, a connection air passage 65 (see FIG. 4) connected from the exhaust port 55A of the preceding unit pump configuration 10A to the intake port (rear intake port 35B) of the subsequent unit pump configuration 10B is configured. The vent passage wall 66a is provided with an escape hole 70 through which a part of the compressed gas can escape. The connection air passage 65 is a connection case formed of a connection case base 66b having a connection case inlet 66c and a connection case outlet 66d, and a lid plate-like portion constituting the air passage wall 66a. The main body 66 is provided.
 この逃がし孔70からの逃がし気体は、通気路壁部66aの外側に固定された接続ケースのカバー部67内へ排出され、さらに、接続ケースのエスケープ出口67a(図4参照)とマフラーケース17のエスケープホース接続口17b(図2参照)との間を接続するエスケープホース68(図2参照)を介して、サイレンサ部60へ排出される。そして、その排気は、サイレンサ部60で排気口55A、55Bからの排気などと合流されて消音され、マフラーケースの排気口17aから外部へ放出される。 The escape gas from the escape hole 70 is discharged into the cover part 67 of the connection case fixed to the outside of the air passage wall part 66a, and further, the escape outlet 67a (see FIG. 4) of the connection case and the muffler case 17 It is discharged to the silencer part 60 via an escape hose 68 (see FIG. 2) that connects the escape hose connection port 17b (see FIG. 2). Then, the exhaust gas is merged with the exhaust gas from the exhaust ports 55A and 55B by the silencer unit 60, muffled, and discharged to the outside from the exhaust port 17a of the muffler case.
 また、36は吸気ケースであって、36aは吸気ケースの吸気口であり、前段の単位ポンプ構成10Aに開口する前段の吸気口35Aに連通している。43はオイルシールであり、45は軸シールになっている。 In addition, 36 is an intake case, and 36a is an intake port of the intake case, which communicates with the upstream intake port 35A that opens to the upstream unit pump configuration 10A. 43 is an oil seal and 45 is a shaft seal.
 次に、図10及び図11に基づいて、複数の逃がし孔70を設ける場合の形態例について詳細に説明する。なお、図10はクローポンプの構成を示すと共に排気状態の形態を示し、図11(a)は図10のクローポンプにおける気体の圧縮工程の初期状態を示し、図11(b)は気体の圧縮工程の中途で排気口55Bがロータ30Cの側面によって余裕を持って塞がれた状態を示し、図11(c)は気体の圧縮工程が終わる直前の状態を示している。また、図11に記載した矢印は、ロータの回転方向を示している。
 本形態例では、シリンダ(後段のシリンダ50B)を構成するシリンダの壁部(後段シリンダの一方の端壁部52C、後段シリンダの他方の端壁部52D、後段の周壁部53B)であって気体の圧縮工程で圧縮空間を構成する壁部の部位(後段シリンダの他方の端壁部52Dの一部)に、圧縮された気体の一部を逃がすことができる複数の逃がし孔70が設けられている。なお、本形態例の逃がし孔70は、回転軸20A、20Bの軸方向に開口されて設けられている。
Next, based on FIG.10 and FIG.11, the example in the case of providing the several escape hole 70 is demonstrated in detail. 10 shows the configuration of the claw pump and the exhaust state, FIG. 11 (a) shows the initial state of the gas compression process in the claw pump of FIG. 10, and FIG. 11 (b) shows the compression of the gas. FIG. 11C shows a state immediately before the end of the gas compression process, in which the exhaust port 55B is closed with a margin by the side surface of the rotor 30C in the middle of the process. Moreover, the arrow described in FIG. 11 has shown the rotation direction of the rotor.
In the present embodiment, the cylinder walls (one end wall 52C of the rear cylinder, the other end wall 52D of the rear cylinder, and the peripheral wall 53B of the rear stage) constituting the cylinder (the rear cylinder 50B) are gas. A plurality of escape holes 70 through which a part of the compressed gas can be released are provided in a portion of the wall portion constituting the compression space in the compression step (a part of the other end wall portion 52D of the rear cylinder). Yes. The escape hole 70 of the present embodiment is provided so as to be opened in the axial direction of the rotation shafts 20A and 20B.
 そして、シリンダ(後段のシリンダ50B)の内部での圧縮工程を通じて、その圧縮工程の圧縮比の増大に応じて減少する圧縮空間の容積に対し、複数の逃がし孔70の開いているシリンダに面する総面積の割合が徐々に増大するように、その複数の逃がし孔70が配置されている。すなわち、気体の圧縮比と逃がし孔の開口している総面積との積が、圧縮工程の圧縮開始から圧縮終わりまでの間で徐々に大きくなり、圧縮終わりの際には最大になるように、複数の逃がし孔70が配置されている。なお、気体の最大の圧縮比は、圧縮を開始する瞬間の容積と、排気が開始する瞬間の容積との比となる。 Then, through the compression process inside the cylinder (the latter cylinder 50B), it faces the cylinder in which a plurality of escape holes 70 are opened with respect to the volume of the compression space that decreases as the compression ratio of the compression process increases. The plurality of escape holes 70 are arranged so that the ratio of the total area gradually increases. That is, the product of the compression ratio of the gas and the total open area of the escape holes gradually increases from the start of compression to the end of compression in the compression process, and maximizes at the end of compression. A plurality of escape holes 70 are arranged. Note that the maximum compression ratio of gas is the ratio of the volume at the moment when compression starts to the volume at the moment when exhaust starts.
 このように複数の逃がし孔70を配置するには、排気口55Bから遠い範囲の逃がし孔70による開口された面積よりも、排気口55Bにより近い範囲の逃がし孔70による開口された面積が大きくなるように設定すればよい。従って、複数の同じ大きさ(同径)の逃がし孔70を配置する場合には、前記端壁部52Dの排気口55Bに近い部位ほど、その逃がし孔70の数が多く設けられているとよい。すなわち、排気口55Bに近いところほど、逃がし孔70の存在する密度が高くなるように設けられているとよい。さらに、前記端壁部52Dの排気口55Bに近い部位ほど、逃がし孔70のサイズを大きくすることで、上記の条件を満たすことも可能である。 In order to arrange the plurality of escape holes 70 in this way, the area opened by the escape holes 70 in the range closer to the exhaust port 55B becomes larger than the area opened by the escape holes 70 in the range far from the exhaust port 55B. It should be set as follows. Therefore, in the case where a plurality of escape holes 70 having the same size (same diameter) are arranged, it is preferable that the number of the escape holes 70 is increased as the portion is closer to the exhaust port 55B of the end wall portion 52D. . In other words, the closer to the exhaust port 55B, the higher the density at which the escape holes 70 are present. Furthermore, it is also possible to satisfy the above condition by increasing the size of the escape hole 70 in a portion closer to the exhaust port 55B of the end wall portion 52D.
 なお、本形態例では、後段のシリンダ50Bにかかる複数の逃がし孔70の全数が、後段シリンダの他方の端壁部52Dに設けられている。しかしながら、上述したような条件を満たせば、これに限定されることはなく、複数の逃がし孔70の一部が、シリンダ(前段のシリンダ50A、後段のシリンダ50B)の両端部を構成する端壁部(前段シリンダの一方の端壁部52A、前段シリンダの他方の端壁部52B、後段シリンダの一方の端壁部52C、後段シリンダの他方の端壁部52D)の少なくとも一方に設けられている形態であってもよい。さらに、シリンダ50の内部での圧縮工程を通じて、その圧縮工程の圧縮比の増大に応じて減少する圧縮空間の容積に対し、複数の逃がし孔70の開いている総面積の割合が徐々に増大するという条件を満たせば、複数の逃がし孔70をシリンダの周壁部53に設けてもよい。 In this embodiment, the total number of the plurality of escape holes 70 for the rear cylinder 50B is provided in the other end wall 52D of the rear cylinder. However, as long as the above-described conditions are satisfied, the present invention is not limited to this, and the end walls in which a part of the plurality of escape holes 70 constitute both ends of the cylinder (the front cylinder 50A and the rear cylinder 50B). (At one end wall 52A of the front cylinder, the other end wall 52B of the front cylinder, one end wall 52C of the rear cylinder, and the other end wall 52D of the rear cylinder). Form may be sufficient. Furthermore, through the compression process inside the cylinder 50, the ratio of the total area in which the plurality of escape holes 70 are opened gradually increases with respect to the volume of the compression space that decreases as the compression ratio of the compression process increases. If the above condition is satisfied, a plurality of escape holes 70 may be provided in the peripheral wall portion 53 of the cylinder.
 また、逃がし孔70に取り付けられた逆止弁71は、排気口55Bの開口前にポンプ内部の圧力が正圧になった状態で開くように設けられている。なお、ここで「正圧」とは、逃がし孔70の排気側の圧力よりも、圧縮空間内の圧力が上回った状態の圧力のことを意味しており、大気圧より高い圧力に限定されない。そして、排気側の圧力と、圧縮空間内の圧力との差圧が、逆止弁(リード弁71)のバネ力(弾性)を上回った場合にそのリード弁71が開となる。真空ポンプにおいて、吸気された負圧空気は、クロー形状ロータにより圧縮され、正圧(逆止弁71が動作する圧力)で逆止弁71が開き、逃がし孔70からの排気が行われる。そのため、逃がし孔70は、ロータ形状により形成される回転軌道の圧縮工程内でポンプ内部が正圧になる位置に、配置する必要がある。なお、排気口に近い位置ほど圧縮工程が進んで内部が高圧状態にあるため、逆止弁71は動作し易く、且つ、圧縮工程時間が長い位置ほど逆止弁71の動作時間が長く、大気開放側での過圧縮抑制効果が大きい。また、本形態例では、逆止弁71がリード弁によって構成されており、その硬度・板厚を変えることで、動作圧力を変更・調整できる。 Also, the check valve 71 attached to the relief hole 70 is provided so as to open in a state where the pressure inside the pump becomes positive before the exhaust port 55B is opened. Here, “positive pressure” means a pressure in which the pressure in the compression space exceeds the pressure on the exhaust side of the escape hole 70, and is not limited to a pressure higher than the atmospheric pressure. When the differential pressure between the pressure on the exhaust side and the pressure in the compression space exceeds the spring force (elasticity) of the check valve (reed valve 71), the reed valve 71 is opened. In the vacuum pump, the sucked negative pressure air is compressed by the claw-shaped rotor, the check valve 71 is opened by positive pressure (pressure at which the check valve 71 operates), and exhaust from the escape hole 70 is performed. Therefore, it is necessary to arrange the escape hole 70 at a position where the inside of the pump becomes a positive pressure in the compression process of the rotary track formed by the rotor shape. Since the compression process proceeds closer to the exhaust port and the inside is in a high pressure state, the check valve 71 is easier to operate, and the longer the compression process time is, the longer the operation time of the check valve 71 is. The over-compression suppressing effect on the open side is great. Further, in this embodiment, the check valve 71 is constituted by a reed valve, and the operating pressure can be changed / adjusted by changing its hardness / thickness.
 以上のように大気開放側の過圧縮を抑制するための逃がし孔70の配置条件を最適に設定することで、大気開放側の過圧縮抑制にかかる効果を最大限に発揮可能とすることができる。
 さらに、この逃がし孔70については、孔数、孔径、及び孔の面取りなどの形状を、適宜選択的に最適化すればよい。
As described above, by optimally setting the arrangement conditions of the relief holes 70 for suppressing overcompression on the atmosphere opening side, it is possible to maximize the effect of suppressing overcompression on the atmosphere opening side. .
Further, for the escape hole 70, the shape such as the number of holes, the hole diameter, and the chamfering of the holes may be selectively optimized as appropriate.
 本形態例によれば、クローロータを搭載する非接触型真空ポンプなどの回転ポンプにおいて、逃がし孔70による過圧縮抑制機構を設けており、この逃がし孔70の効果について、その作用の連鎖に注目して、以下に詳細に説明する。
 この過圧縮抑制機構(逃がし孔70)によれば、排気流量の多い大気開放側(吸入される空気の圧力が大気圧に近い状態での運転がされる場合)の過圧縮を抑制でき、高真空となっているシリンダ内へ逃がし孔70から逆流する排気気体の進入は、逃がし孔70を塞ぐ逆止弁71による逆流抑制機構で抑制することができる。
According to the present embodiment, a rotary pump such as a non-contact type vacuum pump equipped with a claw rotor is provided with a mechanism for suppressing overcompression by the escape hole 70. Regarding the effect of the escape hole 70, attention is paid to the chain of action. This will be described in detail below.
According to this overcompression suppressing mechanism (relief hole 70), it is possible to suppress overcompression on the atmosphere opening side where the exhaust gas flow rate is large (when operation is performed in a state where the pressure of the sucked air is close to atmospheric pressure). The entrance of exhaust gas that flows backward from the escape hole 70 into the vacuum cylinder can be suppressed by a backflow suppression mechanism using a check valve 71 that closes the escape hole 70.
 これによれば、上記のように過圧縮が抑制できるため、排気開放直前の容積を減少させるように排気口を小さくして圧縮比を上げることが可能となる。排気開放直前の容積を減少させることで、ポンプ内部へ逆流する排気の気体量を抑制できる。この逆流する気体量を抑制できることで、真空ポンプの到達運転時における動力負荷及びポンプ内部の温度の上昇を抑制することができる。 According to this, since over-compression can be suppressed as described above, it is possible to increase the compression ratio by reducing the exhaust port so as to reduce the volume immediately before the exhaust is opened. By reducing the volume immediately before the exhaust is released, the amount of exhaust gas flowing back into the pump can be suppressed. By suppressing the amount of gas that flows backward, it is possible to suppress an increase in the power load and the temperature inside the pump during the reaching operation of the vacuum pump.
 すなわち、本形態例によれば、排気開放直前の容積減少により、逆流気体量を抑制し、動力負荷及び温度上昇を抑制することを可能とし、さらに過圧縮抑制機構(逃がし孔70)で大気開放側の過圧縮を抑制し、且つ高真空となっているシリンダ内側は逆流抑制機構(逆止弁71)で逃がし孔70からの逆流気体を抑制することで、流量を減少すること無く、且つ単段ポンプで圧力フルレンジの使用が可能な高真空圧側の高効率ポンプ構造を実現でき、且つ、その効果を最大限に発揮可能な構造になっている。 That is, according to the present embodiment, the volume of the backflow gas can be suppressed by reducing the volume immediately before the exhaust is released, the power load and the temperature increase can be suppressed, and the overcompression suppressing mechanism (relief hole 70) can be opened to the atmosphere. The inside of the cylinder, which is over-compressed on the side and is in a high vacuum, is controlled by the backflow suppression mechanism (check valve 71) to suppress the backflow gas from the escape hole 70, so that the flow rate is not reduced and A high-efficiency pump structure on the high vacuum pressure side that can use the full pressure range of a stage pump can be realized, and the effect can be maximized.
 なお、排気開放直前の容積を減少させるには、排気口を小さくし、且つできる限りポンプ内部空気が圧縮された状態の位置に排気口を設けるとよい。つまり、圧縮比を上げるように排気口を設ける。逆流する排気の気体量の抑制には、他に、多段構造によって前段ポンプの排気を後段ポンプで引くこと、排気口に逆止弁を付ける方法がある。 In order to reduce the volume immediately before the exhaust is released, it is preferable to make the exhaust port small and provide the exhaust port at a position where the air inside the pump is compressed as much as possible. That is, the exhaust port is provided so as to increase the compression ratio. In order to suppress the amount of the exhaust gas flowing backward, there are other methods in which the exhaust from the front-stage pump is pulled by the rear-stage pump by a multistage structure and a check valve is attached to the exhaust port.
 さらに、以上の作用効果について逆の見地から説明すれば、排気開放直前の容積を減少させるために圧縮比を上げたことで、結果的に排気流量が多い大気開放側が過圧縮となることを抑制する過圧縮抑制機構としての逃がし孔70が設けられていることになる。また、高真空となっているシリンダ内へ逃がし孔70から逆流する排気気体を抑制する逆流抑制機構としての逆止弁71が設けられていることになる。 Furthermore, to explain the above effects from the opposite viewpoint, by increasing the compression ratio in order to reduce the volume immediately before the exhaust is released, it is possible to suppress over-compression on the open side where the exhaust flow rate is high as a result. An escape hole 70 is provided as an over-compression suppressing mechanism. In addition, a check valve 71 is provided as a backflow suppression mechanism that suppresses exhaust gas that flows back from the escape hole 70 into the cylinder in a high vacuum.
 次に、本発明に係る二軸回転ポンプの他の形態例を、添付図面(図12~15、11)に基づいて説明する。なお、図面に記載した符号については、同一名称の構成が複数ある場合について、その配されている位置を識別するために数字にA、B、C、Dを付して記載しているが、以下の文中では、総括的に同一名称の構成を説明する場合は、A、B、C、Dを付加しない数字のみの符号を記載している。例えば、回転軸を総括的に説明する場合は、「回転軸120」とし、二つの回転軸の配置について意識を喚起するような場合には、「二つの回転軸120A、120B」というように記載してある。
 本形態例は、回転ポンプのうち、容積型ポンプであって、二軸回転ポンプに属するものとなっている。二軸回転ポンプとしては、例えば、ロータ非接触型のポンプであるクローポンプ、スクリューポンプやルーツポンプなどが挙げられる。このような回転ポンプは、例えば、電動モータによって駆動され、真空ポンプやブロアなどの空気圧装置として使用される。
Next, another embodiment of the biaxial rotary pump according to the present invention will be described with reference to the accompanying drawings (FIGS. 12 to 15 and 11). In addition, about the code | symbol described in drawing, when there exist two or more structures of the same name, in order to identify the position where it has been arranged, A, B, C, and D are attached to the number, In the following text, when the configuration of the same name is generally described, only numerals with no A, B, C, and D added are described. For example, when the rotation axes are collectively described, “rotation axis 120” is described, and when the awareness of the arrangement of the two rotation axes is raised, “two rotation axes 120A and 120B” are described. It is.
This embodiment is a positive displacement pump among the rotary pumps, and belongs to the biaxial rotary pump. Examples of the biaxial rotary pump include a claw pump that is a rotor non-contact type pump, a screw pump, and a roots pump. Such a rotary pump is driven by, for example, an electric motor and used as a pneumatic device such as a vacuum pump or a blower.
 本形態例は、二つのロータ130(130Aと130B、130Cと130Dの各セット)同士が微小なクリアランスを保って非接触で回転されると共に、二つのロータ130、130がシリンダ150(150A、150B)の内面にも微小なクリアランスを保って非接触で回転されるように、そのロータ130、130を備える二つの回転軸120(120A、120B)が軸受140(140Aと140B、140Cと140Dの各セット)によって支持されて設けられ、気体をシリンダ150内へ吸気して圧縮された気体をシリンダ150から排気する二軸回転ポンプになっている。吸気口135A、135Bで吸気されて、排気口155A、155Bから排気される。 In this embodiment, the two rotors 130 (each set of 130A and 130B, 130C and 130D) are rotated in a non-contact manner while maintaining a minute clearance, and the two rotors 130 and 130 are cylinders 150 (150A and 150B). The two rotary shafts 120 (120A and 120B) having the rotors 130 and 130 are rotated on the inner surfaces of the bearings 140 (140A and 140B, 140C and 140D) so that the inner surfaces of the rotors 130 and 130 are rotated without contact. And a biaxial rotary pump that sucks gas into the cylinder 150 and exhausts the compressed gas from the cylinder 150. The air is sucked through the air inlets 135A and 135B and exhausted through the air outlets 155A and 155B.
 この形態例の二軸回転ポンプは、クローポンプであり、ロータ130、130は、複数の鉤形の爪部を備えている(図15参照)。なお、クローポンプでは、気体を高圧に圧縮できるため、ポンプ内部の温度が上昇しやすい。
 また、本形態例のクローポンプは、シリンダ150と二つのロータ130、130とによる単位ポンプ構成110(110A、110B)が、二つの回転軸120A、120Bの軸方向において複数段(二段)に設けられている多段の二軸回転ポンプになっている。
The biaxial rotary pump of this embodiment is a claw pump, and the rotors 130 and 130 have a plurality of hook-shaped claw portions (see FIG. 15). In addition, since the claw pump can compress the gas to a high pressure, the temperature inside the pump tends to rise.
Further, in the claw pump of this embodiment, the unit pump configuration 110 (110A, 110B) including the cylinder 150 and the two rotors 130, 130 is divided into a plurality of stages (two stages) in the axial direction of the two rotary shafts 120A, 120B. It is a multistage biaxial rotary pump provided.
 そして、本形態例では、回転軸120それぞれの両端に、シリンダ150と二つのロータ130、130によって構成される単位ポンプ構成110(110A、110B)が設けられ、その単位ポンプ構成110A、110Bのどちらも、二つのロータ130、130が、その二つのロータ130、130における回転軸120(120A、120B)の軸方向の片側であって両方の単位ポンプ構成110A、110Bの間に配された軸受140(140Aと140B、140Cと140Dの各セット)によって回転軸120を介して片持ち状態に支持されている。なお、この軸受140としては、例えばアンギュラ複列玉軸受を用いることができる。
 なお、二つの軸受140A、140Bと、二つの軸受140C、140Dとの間に歯車121、122を配することで、その歯車121、122については両端が支持される構成になっている。なお、二つの歯車121、122が噛合していることで、二つの回転軸120A、120Bが反対方向に同一速度で回転するように構成されている。
In this embodiment, the unit pump configuration 110 (110A, 110B) configured by the cylinder 150 and the two rotors 130, 130 is provided at both ends of the rotating shaft 120. Which of the unit pump configurations 110A, 110B is selected? Also, the two rotors 130 and 130 are bearings 140 disposed on one side of the two rotors 130 and 130 in the axial direction of the rotating shaft 120 (120A, 120B) and between both unit pump configurations 110A and 110B. (Each set of 140A and 140B, 140C and 140D) is supported in a cantilever state via the rotating shaft 120. As the bearing 140, for example, an angular double row ball bearing can be used.
In addition, by arranging the gears 121 and 122 between the two bearings 140A and 140B and the two bearings 140C and 140D, both ends of the gears 121 and 122 are supported. In addition, it is comprised so that the two rotating shafts 120A and 120B may rotate at the same speed in the opposite direction because the two gears 121 and 122 mesh.
 これによれば、軸受140(140A、140B、140C、140D)を基準にして、回転軸120を介して、一方にロータ130A、130Bが配置され、他方にロータ130C、130Dが配置された形態となっている。このため、熱膨張が軸受140を基準にして回転軸の軸方向の両サイドに分かれて生じる形態となっている。従って、ロータ130とシリンダの軸方向の端壁部152とのクリアランスであるサイドクリアランスに関する熱膨張の影響は、一方のロータ130A、130B側と他方のロータ130C、130D側へ分散されることになる。このため、従来の軸方向に複数のロータを備える回転軸を、その複数のロータを二つの軸受で挟むように両端支持する構造とした多段ポンプの場合に比較して、サイドクリアランスに関する熱膨張の影響は小さくて済むことになる。従って、サイドクリアランスをより小さくして、気体漏れの発生をより小さくすることが可能となり、ポンプ性能を向上させることができる。 According to this, on the basis of the bearing 140 (140A, 140B, 140C, 140D), the rotors 130A, 130B are arranged on one side and the rotors 130C, 130D are arranged on the other side via the rotating shaft 120. It has become. For this reason, the thermal expansion is generated separately on both sides in the axial direction of the rotating shaft with reference to the bearing 140. Therefore, the influence of thermal expansion on the side clearance, which is the clearance between the rotor 130 and the end wall 152 in the axial direction of the cylinder, is distributed to one rotor 130A, 130B side and the other rotor 130C, 130D side. . For this reason, compared to the conventional multi-stage pump in which a rotary shaft having a plurality of rotors in the axial direction is supported at both ends so that the plurality of rotors are sandwiched between two bearings, the thermal expansion related to the side clearance is reduced. The impact will be small. Therefore, the side clearance can be made smaller, and the occurrence of gas leakage can be made smaller, and the pump performance can be improved.
 また、本形態例では、回転軸120の両端の単位ポンプ構成110A、110Bの両方のシリンダ150(150A、150B)であって、そのシリンダ150の両端部を構成する端壁部152(152A、152B、152C、152D)のうち回転軸120が挿通されない片持ち端面側の端壁部152(152A、152D)に、圧縮された気体の一部を逃がすことができる逃がし孔170が回転軸120の軸方向に開口して設けられている。 Further, in this embodiment, both cylinders 150 (150A, 150B) of the unit pump configurations 110A, 110B at both ends of the rotating shaft 120, and end wall portions 152 (152A, 152B) constituting both ends of the cylinder 150 are provided. , 152C, 152D), the end wall 152 (152A, 152D) on the side of the cantilever end surface through which the rotating shaft 120 is not inserted has an escape hole 170 through which a part of the compressed gas can escape. Open in the direction.
 さらに、本形態例では、その逃がし孔170が、片持ち端面側の端壁部152(152A、152D)に複数設けられている。また、その逃がし孔170が設けられた片持ち端面側の端壁部152に、シリンダ150(150A、150B)の圧縮された気体を排気する排気口155(155A、155B)が設けられている。
 なお、逃がし孔170に係る形状、大きさ、数量、配置などの形態は、本形態例に限定されるものではない。例えば、多数の逃がし孔170のうち少なくとも一部(複数)が、シリンダ150(150A、150B)の内面に帯状に連続するように溝状に加工・形成された帯溝状凹部の内底面に開口されることで、その複数の逃がし孔170が、そのシリンダ150の内面の側では、その帯溝状凹部に連通して一体化され、一つの大きな孔として機能できるようにしてもよい。この場合でも、シリンダ150の外面(排気側の面)には、後述する逆止弁(リード弁171)を、各逃がし孔170に対応させて個々に設けてもよい。
Further, in this embodiment, a plurality of the escape holes 170 are provided in the end wall portion 152 (152A, 152D) on the cantilever end surface side. Further, exhaust ports 155 (155A, 155B) for exhausting the compressed gas of the cylinder 150 (150A, 150B) are provided in the end wall portion 152 on the side of the cantilever end surface provided with the escape hole 170.
In addition, forms, such as a shape, a magnitude | size, a quantity, arrangement | positioning, etc. which concern on the escape hole 170 are not limited to this example of a form. For example, at least a part (plurality) of the large number of escape holes 170 is opened on the inner bottom surface of a groove-shaped recess formed and formed in a groove shape so as to be continuous with the inner surface of the cylinder 150 (150A, 150B). By doing so, the plurality of escape holes 170 may be integrated on the inner surface side of the cylinder 150 so as to communicate with the band-shaped recess and function as one large hole. Even in this case, a check valve (reed valve 171), which will be described later, may be individually provided on the outer surface (exhaust side surface) of the cylinder 150 so as to correspond to each relief hole 170.
 この逃がし孔170によれば、クローロータを搭載する非接触型真空ポンプなどの回転ポンプにおいて、大気開放側の過圧縮を抑制できる。過圧縮が抑制できるため、排気開放直前の容積を減少させるように排気口(155A、155B)を小さくして圧縮比を上げることが可能となる。排気開放直前の容積を減少させることで、ポンプ内部へ逆流する排気のエア量を抑制できる。この逆流するエア量を抑制できることで、真空ポンプの到達運転時における動力負荷低減による省エネができ、到達運転時のポンプ内部温度の上昇を抑制することができることで熱膨張抑制及び重要部品の長寿命化が可能となる。 This relief hole 170 can suppress overcompression on the open side of the atmosphere in a rotary pump such as a non-contact type vacuum pump equipped with a claw rotor. Since over-compression can be suppressed, it is possible to increase the compression ratio by reducing the exhaust ports (155A, 155B) so as to reduce the volume immediately before the exhaust is released. By reducing the volume immediately before the exhaust is released, the amount of exhaust air flowing back into the pump can be suppressed. By controlling the amount of air that flows back, energy can be saved by reducing the power load during the ultimate operation of the vacuum pump, and by suppressing the rise in the internal temperature of the pump during the ultimate operation, thermal expansion is suppressed and long life of important parts is achieved. Can be realized.
 そして、端壁部152に設けられた逃がし孔170は、回転軸120の軸方向へ開口して形成されているため、その深さは端壁部152の厚みに相当する短いものであり、逃がし孔170としての応答性に優れた形態となっている。すなわち、過圧縮の気体を、タイムラグが短い状態で逐次に排気できる。しかも、この逃がし孔170は、端壁部152の面において最適位置に容易に配置でき、その機能を最適に発揮させるように設けることができる。
 また、逃がし孔170が、端壁部152に複数設けられることで、気体圧縮の工程中において過圧縮の気体をバランスよく適時に排気でき、その機能性をより向上できる。
The relief hole 170 provided in the end wall portion 152 is formed so as to open in the axial direction of the rotating shaft 120. Therefore, the depth is a short one corresponding to the thickness of the end wall portion 152, and the relief hole 170 is provided. It has a form excellent in responsiveness as the hole 170. That is, the overcompressed gas can be exhausted sequentially with a short time lag. In addition, the escape hole 170 can be easily disposed at an optimum position on the surface of the end wall portion 152, and can be provided so as to optimally exert its function.
Further, by providing a plurality of escape holes 170 in the end wall portion 152, the overcompressed gas can be exhausted in a timely manner in a balanced manner during the gas compression step, and the functionality can be further improved.
 また、本形態例では、装置両端に配されたそれぞれの端壁部152A、152Dついては、回転軸120A、120Bが挿通されないため、その端壁部152A、152Dの面においては、逃がし孔170の配置に関する制約がほとんど無く、その逃がし孔170を適切且つ容易に設けることができ、ポンプ性能を向上できる。
 すなわち、二つの回転軸120A、120B(シャフト)がサイドプレートを貫通している従来のような両端支持構造の場合、逃がし孔170を配置できてもシャフトが邪魔をして逆止弁171を最適位置に配置することが困難である。これに対して、サイドプレート111、113(端壁部152A、152D)にシャフトを貫通させない片持ち構造とした場合、そのような制約がなく好適に逆止弁171を配置・構成できる。
 なお、図1に仮想線(二点鎖線)で示したように、一方の回転軸120Aについて動力の入力のために延長された入力軸部180を備える場合、その入力軸部180はサイドプレート111を貫通するが、他方の回転軸120Bについてはサイドプレート111を貫通しない。この場合でも、逃がし孔170の配置に関する制約が少なくなるメリットがある。
Further, in this embodiment, the rotation shafts 120A and 120B are not inserted into the end wall portions 152A and 152D arranged at both ends of the apparatus, and therefore the escape holes 170 are arranged on the surfaces of the end wall portions 152A and 152D. The relief hole 170 can be provided appropriately and easily, and the pump performance can be improved.
That is, in the case of a conventional both-end support structure in which the two rotating shafts 120A and 120B (shafts) pass through the side plate, even if the escape hole 170 can be arranged, the shaft disturbs and the check valve 171 is optimal. It is difficult to arrange at a position. On the other hand, when a cantilever structure in which the shaft does not pass through the side plates 111 and 113 (end wall portions 152A and 152D), the check valve 171 can be suitably arranged and configured without such restriction.
In addition, as shown with the virtual line (dashed-two dotted line) in FIG. 1, when the input shaft part 180 extended for the input of motive power about one rotating shaft 120A is provided, the input shaft part 180 is the side plate 111. However, the other rotating shaft 120B does not penetrate the side plate 111. Even in this case, there is an advantage that restrictions on the arrangement of the escape holes 170 are reduced.
 この逃がし孔170には、シリンダ150A、150B内の圧力が、所定の圧力よりも高圧の場合には開き、所定の圧力よりも低圧の場合には閉じる逆止弁171が設けられている。この逆止弁171は、逃がし孔170から高真空となっているシリンダ内へ逆流する排気気体を抑制する逆流抑制機構として機能する。排気気体の高真空となっているシリンダ内への逆流を極力防止できるため、ポンプ効率を向上させることができる。 The relief hole 170 is provided with a check valve 171 that opens when the pressure in the cylinders 150A and 150B is higher than a predetermined pressure and closes when the pressure is lower than the predetermined pressure. The check valve 171 functions as a backflow suppressing mechanism that suppresses exhaust gas that flows back from the escape hole 170 into the high vacuum cylinder. Since the backflow of the exhaust gas into the high vacuum can be prevented as much as possible, the pump efficiency can be improved.
 本形態例の逆止弁は、リード弁171によって構成されている。このリード弁171は、先端が半円形の短冊板状に形成され、後端側で片持ち状態に保持・固定され、先端側が自由端になっており、逃がし孔170を開閉できるようになっている。また、リード弁171は、ボルト穴172aに螺合する逆止弁固定ボルト172によって固定されている。このリード弁171は、逃がし孔170の排気側に固定された逆止弁であり、その排気側の圧力と、圧縮空間内の圧力との差圧が、リード弁のバネ力(弾性)を上回った場合に開となる。このリード弁171による逆止弁は、簡単な構造であり、コンパクト且つ安価に構成でき、容易に装着できると共に、メンテナンスも容易に行うことができる。また、逆止弁としては、本形態例のようなリード弁171に限らず、例えば、ゴムやシリコン等の弾性体を用いるもの、スプリング(バネ)を用いてその弾性で開閉するものを用いることができる。 The check valve of this embodiment is constituted by a reed valve 171. The reed valve 171 is formed in a semicircular strip plate shape at the tip, is held and fixed in a cantilevered state at the rear end side, and the tip end side is a free end, so that the relief hole 170 can be opened and closed. Yes. The reed valve 171 is fixed by a check valve fixing bolt 172 that is screwed into the bolt hole 172a. The reed valve 171 is a check valve fixed to the exhaust side of the relief hole 170, and the differential pressure between the pressure on the exhaust side and the pressure in the compression space exceeds the spring force (elasticity) of the reed valve. Open when The check valve using the reed valve 171 has a simple structure, can be configured compactly and inexpensively, can be easily mounted, and can be easily maintained. In addition, the check valve is not limited to the reed valve 171 as in the present embodiment, but, for example, a check valve that uses an elastic body such as rubber or silicon, or a valve that opens and closes using a spring (spring) is used. Can do.
 また、111は一方のサイドプレートであり、112はポンプ本体、113は他方のサイドプレートである。これらの構成が回転軸120の軸方向に連結されて装置の外郭が設けられている。
 また、115はオイルバス部であり、回転軸120Aに一体的に固定された歯車121と回転軸120Bに一体的に固定された従動歯車122とが内蔵されるオイル室を構成している。このオイルバス部115は、一方の軸受(140A、140B)のセットと、他方の軸受(140C、140D)のセットの間に設けられており、適切に潤滑がなされるように構成されている。なお、143はオイルシールである。
Reference numeral 111 denotes one side plate, 112 denotes a pump body, and 113 denotes the other side plate. These components are connected in the axial direction of the rotating shaft 120 to provide an outer shell of the apparatus.
Reference numeral 115 denotes an oil bath section, which constitutes an oil chamber in which a gear 121 integrally fixed to the rotating shaft 120A and a driven gear 122 fixed integrally to the rotating shaft 120B are built. The oil bath portion 115 is provided between one set of bearings (140A, 140B) and the other set of bearings (140C, 140D), and is configured to be appropriately lubricated. Reference numeral 143 denotes an oil seal.
 図12の形態例においては、動力装置について図示していないが、例えば電動モータからの動力が伝達されることで、本形態例の二軸回転ポンプが駆動されるように設けることができる。なお、駆動力の伝達手段としては、例えば歯車機構を用いることができる。また、駆動力の伝達手段としては、120Aを駆動側の回転軸として、120Bを従動側の回転軸とした場合、回転軸210Aに電動モータの駆動軸を直列的に配置して、カップリングによって連結する形態としてもよいなど、既知の技術を適宜選択的に用いることができる。 In the embodiment shown in FIG. 12, the power unit is not shown, but for example, it can be provided so that the biaxial rotary pump of this embodiment is driven by transmitting power from an electric motor. For example, a gear mechanism can be used as the driving force transmission means. Further, as a driving force transmission means, when 120A is a driving side rotating shaft and 120B is a driven side rotating shaft, the driving shaft of the electric motor is arranged in series on the rotating shaft 210A, and coupling is performed. A known technique such as a form of connection may be appropriately used as appropriate.
 また、本形態例について、片側の単位ポンプ構成(例えば、単位ポンプ構成110B)を、気体を最も高圧に圧縮する後段の単位ポンプ構成にすることができる。このように単位ポンプ構成110Bを後段にする場合、前段の単位ポンプ構成110Aの排気口155Aと後段の単位ポンプ構成110Bの吸気口135Bを接続するように、接続通気路を設ければよい。また、その場合、前段の単位ポンプ構成110Aのロータ130A、130Bは、容積の大きい気体が前段のシリンダ150Aに導入されるため、幅が広くてより質量の大きなものにすることができる。そして、後段の単位ポンプ構成110Bのロータ130C、130Dは、気体が圧縮されて後段のシリンダ150Bに導入される関係から、幅が狭くてより質量の小さなものにすることができる。 Also, in this embodiment, the unit pump configuration on one side (for example, the unit pump configuration 110B) can be a downstream unit pump configuration that compresses gas to the highest pressure. In this way, when the unit pump configuration 110B is set to the subsequent stage, a connection air passage may be provided so as to connect the exhaust port 155A of the preceding unit pump configuration 110A and the intake port 135B of the subsequent unit pump configuration 110B. In that case, the rotors 130A and 130B of the front unit pump configuration 110A can be made wider and larger in mass because a large volume of gas is introduced into the front cylinder 150A. The rotors 130C and 130D of the rear unit pump configuration 110B can be made narrower and have a smaller mass because the gas is compressed and introduced into the rear cylinder 150B.
 以上に説明した本発明に係る両側片持ち構造の二軸回転ポンプによれば、ロータ130へのアクセスが容易で、クリアランス調整が必要なロータの組立て性、メンテナンス性に優れている。さらに、両側のシリンダ150及びロータ幅を変更するだけで、流量が異なるシリーズを容易に製作可能で、シリーズ展開の拡張性が高いという利点がある。また、装置の両端側でリード弁171を装着でき、両方の単位ポンプ構成110について、前述したように高いポンプ性能を実現しつつ、簡単且つ安価に製造できる。さらに、両側で基本的な構成が同じため、対称性があり、装置全体としてのバランスを取り易く、小型化に適し、より信頼性や経済性の高い構造をより適切に実現することができる。なお、両サイドのポンプ構成について、少なくとも一方を多段化して気体の圧縮比を高めるなど、本発明の本質を違えることなく種々の応用形態を構成することも可能である。 According to the two-sided cantilever pump of the present invention described above, the rotor 130 can be easily accessed, and the assembly and maintenance of the rotor requiring clearance adjustment are excellent. Furthermore, there is an advantage that a series with different flow rates can be easily manufactured only by changing the cylinder 150 and the rotor width on both sides, and the expandability of the series is high. In addition, reed valves 171 can be mounted on both ends of the apparatus, and both unit pump configurations 110 can be manufactured easily and inexpensively while realizing high pump performance as described above. Further, since the basic configuration is the same on both sides, there is symmetry, and it is easy to balance the entire apparatus, and it is possible to more appropriately realize a structure that is suitable for downsizing and more reliable and economical. In addition, about the pump structure of both sides, it is also possible to comprise various application forms, without changing the essence of this invention, such as increasing the compression ratio of gas by multi-stage at least one side.
 次に、図15及び図11に基づいて、複数の逃がし孔170を設ける場合の形態例について詳細に説明する。なお、図15はクローポンプの構成を示すと共に排気状態の形態を示し、図11(a)は気体の圧縮工程の初期状態を示し、図11(b)は気体の圧縮工程の中途で排気口155がロータ130の側面によって余裕を持って塞がれた状態を示し、図11(c)は気体の圧縮工程が終わる直前の状態を示している。また、図11に記載した矢印は、ロータの回転方向を示している。
 本形態例では、シリンダ150を構成するシリンダの壁部152、153であって気体の圧縮工程で圧縮空間151を構成する壁部の部位に、圧縮された気体の一部を逃がすことができる複数の逃がし孔170が設けられている。なお、本形態例の逃がし孔170は、端壁部152において回転軸120の軸方向に開口されて設けられている。
Next, based on FIG.15 and FIG.11, the example in the case of providing the several escape hole 170 is demonstrated in detail. 15 shows the configuration of the claw pump and the form of the exhaust state, FIG. 11 (a) shows the initial state of the gas compression process, and FIG. 11 (b) shows the exhaust port in the middle of the gas compression process. 155 shows a state where the side surface of the rotor 130 is closed with a margin, and FIG. 11C shows a state immediately before the gas compression process is finished. Moreover, the arrow described in FIG. 11 has shown the rotation direction of the rotor.
In the present embodiment, a plurality of cylinder walls 152 and 153 constituting the cylinder 150 that can release part of the compressed gas to the wall portions constituting the compression space 151 in the gas compression step. A relief hole 170 is provided. The escape hole 170 of the present embodiment is provided in the end wall portion 152 so as to be opened in the axial direction of the rotating shaft 120.
 そして、図11に示すように、シリンダ150の内部での圧縮工程を通じて、その圧縮工程の圧縮比の増大に応じて減少する圧縮空間151の容積に対し、複数の逃がし孔170の開いている総面積の割合が徐々に増大するように、その複数の逃がし孔170が配置されている。すなわち、気体の圧縮比と逃がし孔の開口しているシリンダに面する総面積との積が、圧縮工程の圧縮開始から圧縮終わりまでの間で徐々に大きくなり、圧縮終わりの際には最大になるように、複数の逃がし孔170が配置されている。 As shown in FIG. 11, through the compression process inside the cylinder 150, the total number of the relief holes 170 that are open is reduced with respect to the volume of the compression space 151 that decreases as the compression ratio of the compression process increases. The plurality of escape holes 170 are arranged so that the area ratio gradually increases. That is, the product of the compression ratio of the gas and the total area facing the cylinder where the escape holes are open gradually increases from the start of compression to the end of compression in the compression process, and reaches the maximum at the end of compression. A plurality of escape holes 170 are arranged so as to be.
 このように複数の逃がし孔170を配置するには、排気口155から遠い範囲の逃がし孔170による開口された面積よりも、排気口155により近い範囲の逃がし孔170による開口された面積が大きくなるように設定すればよい。従って、複数の同じ大きさ(同径)の逃がし孔170を配置する場合には、前記端壁部152の排気口155に近い部位ほど、その逃がし孔170の数が多く設けられているとよい。すなわち、排気口155に近いところほど、逃がし孔170の密度が高くなるように設けられているとよい。さらに、前記端壁部152の排気口155に近い部位ほど、逃がし孔170のサイズを大きくすることで、上記の条件を満たすことも可能である。 In order to arrange the plurality of escape holes 170 in this way, the area opened by the escape holes 170 in the range closer to the exhaust port 155 becomes larger than the area opened by the escape holes 170 in the range far from the exhaust port 155. It should be set as follows. Therefore, in the case where a plurality of escape holes 170 having the same size (same diameter) are arranged, it is preferable that the number of the escape holes 170 is larger in the portion closer to the exhaust port 155 of the end wall portion 152. . In other words, the closer to the exhaust port 155, the higher the density of the escape holes 170 may be. Furthermore, it is also possible to satisfy the above condition by increasing the size of the escape hole 170 in a portion closer to the exhaust port 155 of the end wall portion 152.
 なお、本形態例では、シリンダ150にかかる複数の逃がし孔170の全数が、シリンダの自由端側の端壁部152に設けられている。しかしながら、上述したような条件を満たせば、これに限定されることはなく、複数の逃がし孔170の一部が、シリンダ150の両端部を構成する端壁部152の少なくとも一方に設けられている形態であってもよい。
 さらに、シリンダ150の内部での圧縮工程を通じて、その圧縮工程の圧縮比の増大に応じて減少する圧縮空間151の容積に対し、複数の逃がし孔170の開いている総面積の割合が徐々に増大するという条件を満たせば、複数の逃がし孔170をシリンダの周壁部153に設けてもよい。
In this embodiment, the total number of the plurality of escape holes 170 applied to the cylinder 150 is provided in the end wall portion 152 on the free end side of the cylinder. However, as long as the above-described conditions are satisfied, the present invention is not limited to this, and a part of the plurality of escape holes 170 is provided on at least one of the end wall portions 152 constituting both ends of the cylinder 150. Form may be sufficient.
Furthermore, through the compression process inside the cylinder 150, the ratio of the total area where the plurality of escape holes 170 are opened gradually increases with respect to the volume of the compression space 151 that decreases as the compression ratio of the compression process increases. A plurality of escape holes 170 may be provided in the peripheral wall portion 153 of the cylinder as long as the condition to do so is satisfied.
 また、逃がし孔170に取り付けられた逆止弁171は、排気口155の開口前にポンプ内部の圧力が正圧になった状態で開くように設けられている。なお、ここで「正圧」とは、逃がし孔170の排気側の圧力よりも、圧縮空間内の圧力が上回った状態の圧力のことを意味しており、大気圧より高い圧力に限定されない。そして、排気側の圧力と、圧縮空間内の圧力との差圧が、逆止弁(リード弁171)のバネ力(弾性)を上回った場合にそのリード弁171が開となる。真空ポンプにおいて、吸気された負圧空気は、クロー形状ロータにより圧縮され、正圧(逆止弁171が動作する圧力)で逆止弁171が開き、逃がし孔170からの排気が行われる。そのため、逃がし孔170は、ロータ形状により形成される回転軌道の圧縮工程内でポンプ内部が正圧になる位置に、配置する必要がある。なお、排気口に近い位置ほど圧縮工程が進んで内部が高圧状態にあるため、逆止弁171は動作し易く、且つ、圧縮工程時間が長い位置ほど逆止弁171の動作時間が長く、大気開放側での過圧縮抑制効果が大きい。また、本形態例では、逆止弁171がリード弁によって構成されており、その硬度・板厚を変えることで、動作圧力を変更・調整できる。 Also, the check valve 171 attached to the escape hole 170 is provided so as to open in a state where the pressure inside the pump becomes positive before the exhaust port 155 is opened. Here, “positive pressure” means a pressure in which the pressure in the compression space exceeds the pressure on the exhaust side of the escape hole 170, and is not limited to a pressure higher than the atmospheric pressure. When the differential pressure between the pressure on the exhaust side and the pressure in the compression space exceeds the spring force (elasticity) of the check valve (reed valve 171), the reed valve 171 is opened. In the vacuum pump, the sucked negative pressure air is compressed by the claw-shaped rotor, the check valve 171 is opened by positive pressure (pressure at which the check valve 171 operates), and exhaust from the escape hole 170 is performed. Therefore, it is necessary to arrange the escape hole 170 at a position where the pressure inside the pump becomes positive pressure in the compression process of the rotary track formed by the rotor shape. Since the compression process progresses closer to the exhaust port and the inside is in a high pressure state, the check valve 171 is easier to operate, and the longer the compression process time is, the longer the operation time of the check valve 171 is. The over-compression suppressing effect on the open side is great. Further, in this embodiment, the check valve 171 is constituted by a reed valve, and the operating pressure can be changed / adjusted by changing its hardness / plate thickness.
 以上のように大気開放側の過圧縮を抑制するための逃がし孔170の配置条件を最適に設定することで、大気開放側の過圧縮抑制にかかる効果を最大限に発揮可能とすることができる。
 さらに、この逃がし孔170については、孔数、孔径、及び孔の面取りなどの形状を、適宜選択的に最適化すればよい。
As described above, by optimally setting the arrangement conditions of the escape holes 170 for suppressing overcompression on the atmosphere opening side, it is possible to maximize the effect of suppressing overcompression on the atmosphere opening side. .
Further, for the escape hole 170, the shape such as the number of holes, the hole diameter, and the chamfering of the holes may be selectively optimized as appropriate.
 本形態例によれば、クローロータを搭載する非接触型真空ポンプなどの回転ポンプにおいて、逃がし孔170による過圧縮抑制機構を設けており、この逃がし孔170の効果について、その作用の連鎖に注目して、以下に詳細に説明する。
 この過圧縮抑制機構(逃がし孔170)によれば、排気流量の多い大気開放側(吸入される空気の圧力が大気圧に近い状態での運転がされる場合)の過圧縮を抑制でき、高真空となっているシリンダ内へ逃がし孔170から逆流する排気気体の進入は、逃がし孔170を塞ぐ逆止弁71による逆流抑制機構で抑制することができる。
According to this embodiment, the rotary pump such as the non-contact type vacuum pump equipped with the claw rotor is provided with the over-compression suppressing mechanism by the escape hole 170. Regarding the effect of the escape hole 170, pay attention to the chain of action. This will be described in detail below.
According to this over-compression suppression mechanism (relief hole 170), over-compression can be suppressed on the atmosphere opening side where the exhaust flow rate is large (when operation is performed in a state where the pressure of the sucked air is close to atmospheric pressure). The inflow of exhaust gas that flows backward from the escape hole 170 into the vacuumed cylinder can be suppressed by a backflow suppression mechanism using a check valve 71 that closes the escape hole 170.
 これによれば、上記のように過圧縮が抑制できるため、排気開放直前の容積を減少させるように排気口を小さくして圧縮比を上げることが可能となる。排気開放直前の容積を減少させることで、ポンプ内部へ逆流する排気の気体量を抑制できる。この逆流する気体量を抑制できることで、真空ポンプの到達運転時における動力負荷及びポンプ内部の温度の上昇を抑制することができる。 According to this, since over-compression can be suppressed as described above, it is possible to increase the compression ratio by reducing the exhaust port so as to reduce the volume immediately before the exhaust is opened. By reducing the volume immediately before the exhaust is released, the amount of exhaust gas flowing back into the pump can be suppressed. By suppressing the amount of gas that flows backward, it is possible to suppress an increase in the power load and the temperature inside the pump during the reaching operation of the vacuum pump.
 すなわち、本形態例によれば、排気開放直前の容積減少により、逆流気体量を抑制し、動力負荷及び温度上昇を抑制することを可能とし、さらに過圧縮抑制機構(逃がし孔170)で大気開放側の過圧縮を抑制し、且つ高真空となっているシリンダ内側は逆流抑制機構(逆止弁171)で逃がし孔170からの逆流気体を抑制することで、流量を減少すること無く、且つ単段ポンプで圧力フルレンジの使用が可能な高真空圧側の高効率ポンプ構造を実現でき、且つ、その効果を最大限に発揮可能な構造になっている。 That is, according to the present embodiment, the volume of the backflow gas can be suppressed by reducing the volume immediately before the exhaust is released, the power load and the temperature increase can be suppressed, and the overcompression suppressing mechanism (relief hole 170) can be opened to the atmosphere. The inside of the cylinder, which is over-compressed on the side and is in a high vacuum, is controlled by the backflow suppression mechanism (check valve 171) to suppress the backflow gas from the relief hole 170, so that the flow rate does not decrease and A high-efficiency pump structure on the high vacuum pressure side that can use the full pressure range of a stage pump can be realized, and the effect can be maximized.
 なお、排気開放直前の容積を減少させるには、排気口を小さくし、且つできる限りポンプ内部空気が圧縮された状態の位置に排気口を設けるとよい。つまり、圧縮比を上げるように排気口を設ける。逆流する排気の気体量の抑制には、他に、多段構造によって前段ポンプの排気を後段ポンプで引くこと、排気口に逆止弁を付ける方法がある。 In order to reduce the volume immediately before the exhaust is released, it is preferable to make the exhaust port small and provide the exhaust port at a position where the air inside the pump is compressed as much as possible. That is, the exhaust port is provided so as to increase the compression ratio. In order to suppress the amount of the exhaust gas flowing backward, there are other methods in which the exhaust from the front-stage pump is pulled by the rear-stage pump by a multistage structure and a check valve is attached to the exhaust port.
 さらに、以上の作用効果について逆の見地から説明すれば、排気開放直前の容積を減少させるために圧縮比を上げたことで、結果的に排気流量が多い大気開放側が過圧縮となることを抑制する過圧縮抑制機構としての逃がし孔170が設けられていることになる。また、高真空となっているシリンダ内側へ逃がし孔170から逆流する排気気体を抑制する逆流抑制機構としての逆止弁171が設けられていることになる。 Furthermore, to explain the above effects from the opposite viewpoint, by increasing the compression ratio in order to reduce the volume immediately before the exhaust is released, it is possible to suppress over-compression on the open side where the exhaust flow rate is high as a result. The escape hole 170 is provided as an over-compression suppressing mechanism. In addition, a check valve 171 is provided as a backflow suppression mechanism that suppresses exhaust gas that flows back from the escape hole 170 toward the inside of the cylinder in a high vacuum.
 以上、本発明につき好適な形態例を挙げて種々説明してきたが、本発明はこの形態例に限定されるものではなく、発明の精神を逸脱しない範囲内で多くの改変を施し得るのは勿論のことである。 As described above, the present invention has been described in various ways with preferred embodiments. However, the present invention is not limited to these embodiments, and many modifications can be made without departing from the spirit of the invention. That is.
 10 単位ポンプ構成
 10A 前段の単位ポンプ構成
 10B 後段の単位ポンプ構成
 11 オイルバスカバー
 11a オイルゲージ
 12 前段のポンプ本体
 13 前段のサイドプレート
 15 後段のポンプ本体
 16 後段のサイドプレート
 17 マフラーケース
 17a マフラーケースの排気口
 17b エスケープホース接続口
 17c エスケープパイプ接続口
 20 回転軸
 20A 駆動回転軸
 20B 従動回転軸
 21 駆動歯車
 22 従動歯車
 23 従動プーリ
 30 ロータ
 30A 前段の駆動回転軸側のロータ
 30B 前段の従動回転軸側のロータ
 30C 後段の駆動回転軸側のロータ
 30D 後段の従動回転軸側のロータ
 35A 前段の吸気口
 35B 後段の吸気口
 36 吸気ケース
 36a 吸気ケースの吸気口
 40 軸受
 40A 一方の駆動回転軸側の軸受
 40B 一方の従動回転軸側の軸受
 40C 他方の駆動回転軸側の軸受
 40D 他方の従動回転軸側の軸受
 43 オイルシール
 45 軸シール
 50 シリンダ
 50A 前段のシリンダ
 50B 後段のシリンダ
 51A 前段の圧縮空間
 51B 後段の圧縮空間
 52 端壁部
 52A 前段シリンダの一方の端壁部
 52B 前段シリンダの他方の端壁部
 52C 後段シリンダの一方の端壁部
 52D 後段シリンダの他方の端壁部
 53 周壁部
 53A 前段の周壁部
 53B 後段の周壁部
 55A 前段の排気口
 55B 後段の排気口
 60 サイレンサ部
 61 エスケープボックス
 61a エスケープボックスの出口
 62 エスケープパイプ
 65 接続通気路
 66 接続ケースの本体部
 66a 通気路壁部
 66b 接続ケースのベース部
 66c 接続ケースの入口
 66d 接続ケースの出口
 67 接続ケースのカバー部
 67a 接続ケースのエスケープ出口
 68 エスケープホース
 70 逃がし孔
 71 逆止弁(リード弁)
 72 逆止弁固定ボルト
 72a ボルト穴
 110 単位ポンプ構成
 110A 単位ポンプ構成
 110B 単位ポンプ構成
 111 一方のサイドプレート
 112 ポンプ本体
 113 他方のサイドプレート
 115 オイルバス部
 120 回転軸
 120A 回転軸
 120B 回転軸
 121 歯車
 122 歯車
 130 ロータ
 130A ロータ
 130B ロータ
 130C ロータ
 130D ロータ
 135A 吸気口
 135B 吸気口
 140 軸受
 140A 一方側の軸受
 140B 一方側の軸受
 140C 他方側の軸受
 140D 他方側の軸受
 143 オイルシール
 150 シリンダ
 150A シリンダ
 150B シリンダ
 151 圧縮空間
 152 端壁部
 152A 端壁部
 152B 端壁部
 152C 端壁部
 152D 端壁部
 153 周壁部
 155 排気口
 155A 排気口
 155B 排気口
 170 逃がし孔
 171 逆止弁(リード弁)
 172 逆止弁固定ボルト
 172a ボルト穴
10 Unit pump configuration 10A Front unit pump configuration 10B Rear unit pump configuration 11 Oil bath cover 11a Oil gauge 12 Front pump body 13 Front side plate 15 Rear pump body 16 Rear side plate 17 Muffler case 17a Muffler case Exhaust port 17b Escape hose connection port 17c Escape pipe connection port 20 Rotary shaft 20A Drive rotary shaft 20B Driven rotary shaft 21 Drive gear 22 Driven gear 23 Driven pulley 30 Rotor 30A Front drive rotary shaft side rotor 30B Previous driven rotary shaft side Rotor 30C Rear rotor 30D Rear driven rotor side rotor 35A Front air inlet 35B Rear air inlet 36 Air intake case 36a Air intake case air inlet 40 Bearing 40A One drive rotary shaft side shaft 40B Bearing on one driven rotating shaft side 40C Bearing on the other driven rotating shaft side 40D Bearing on the other driven rotating shaft side 43 Oil seal 45 Shaft seal 50 Cylinder 50A Front cylinder 50B Rear cylinder 51A Front compression space 51B Rear stage 52 End wall portion 52A One end wall portion of the front stage cylinder 52B The other end wall portion of the front stage cylinder 52C One end wall portion of the rear stage cylinder 52D The other end wall portion of the rear stage cylinder 53 The peripheral wall portion 53A The front peripheral wall Portion 53B Rear peripheral wall portion 55A Front exhaust port 55B Rear exhaust port 60 Silencer unit 61 Escape box 61a Escape box outlet 62 Escape pipe 65 Connection air passage 66 Connection case body 66a Air passage wall portion 66b Base of connection case Portion 66c Connection case entrance 66d Connection Connection case outlet 67 Connection case cover 67a Connection case escape outlet 68 Escape hose 70 Relief hole 71 Check valve (reed valve)
72 Check Valve Fixing Bolt 72a Bolt Hole 110 Unit Pump Configuration 110A Unit Pump Configuration 110B Unit Pump Configuration 111 One Side Plate 112 Pump Main Body 113 Other Side Plate 115 Oil Bath Part 120 Rotating Shaft 120A Rotating Shaft 120B Rotating Shaft 121 Gear 122 Gear 130 Rotor 130A Rotor 130B Rotor 130C Rotor 130D Rotor 135A Intake port 135B Intake port 140 Bearing 140A One side bearing 140B One side bearing 140C The other side bearing 140D The other side bearing 143 Oil seal 150 Cylinder 150A Cylinder 150B Cylinder 151 Compression Space 152 End wall portion 152A End wall portion 152B End wall portion 152C End wall portion 152D End wall portion 153 Peripheral wall portion 155 Exhaust port 155A Exhaust port 55B outlet 170 exit hole 171 a check valve (reed valve)
172 Check valve fixing bolt 172a Bolt hole

Claims (11)

  1.  回転軸の片持ち端面側に設けられシリンダ内で回転するロータが、該ロータの片側に配された軸受によって前記回転軸を介して片持ち状態に支持され、気体を前記シリンダ内へ吸気して圧縮された気体を前記シリンダから排気する回転ポンプにおいて、
     前記シリンダの軸方向に両端を構成する端壁部のうち前記回転軸が挿通されない片持ち端面側の端壁部に、圧縮された気体の一部を逃がすことができる逃がし孔が前記回転軸の軸方向に開口して設けられていることを特徴とする回転ポンプ。
    A rotor that is provided on the cantilever end surface side of the rotating shaft and rotates in the cylinder is supported in a cantilever state via the rotating shaft by a bearing disposed on one side of the rotor, and sucks gas into the cylinder. In a rotary pump that exhausts compressed gas from the cylinder,
    Of the end wall portions constituting both ends in the axial direction of the cylinder, an end hole on the cantilever end surface side where the rotation shaft is not inserted has an escape hole through which a part of the compressed gas can escape. A rotary pump having an opening in an axial direction.
  2.  前記シリンダと前記ロータとによる単位ポンプ構成が、前記回転軸の軸方向において複数段に設けられ、気体を最も高圧に圧縮する最終段のシリンダを構成する前記片持ち端面側の端壁部に、前記逃がし孔が設けられていることを特徴とする請求項1記載の回転ポンプ。 The unit pump configuration by the cylinder and the rotor is provided in a plurality of stages in the axial direction of the rotating shaft, and the end wall on the cantilever end face side constituting the final stage cylinder that compresses gas to the highest pressure, The rotary pump according to claim 1, wherein the escape hole is provided.
  3.  気体を最も高圧に圧縮する最終段の前記単位ポンプ構成における前記回転軸の片持ち端側に設けられた最終段のロータが、該最終段の単位ポンプ構成と前段の単位ポンプ構成の間に配された軸受によって前記回転軸を介して片持ち状態に支持されていることを特徴とする請求項2記載の回転ポンプ。 In the final stage unit pump configuration for compressing gas to the highest pressure, a final stage rotor provided on the cantilever end side of the rotary shaft is disposed between the final stage unit pump configuration and the previous unit pump configuration. The rotary pump according to claim 2, wherein the rotary pump is supported in a cantilevered state via the rotary shaft by a bearing.
  4.  前記回転軸それぞれの両端に、前記シリンダと前記ロータによって構成される単位ポンプ構成が設けられ、該単位ポンプ構成のどちらも、前記ロータが、該ロータにおける前記回転軸の軸方向の片側であって両方の単位ポンプ構成の間に配された軸受によって前記回転軸を介して片持ち状態に支持されていることを特徴とする請求項1記載の回転ポンプ。 A unit pump configuration constituted by the cylinder and the rotor is provided at both ends of each of the rotary shafts, and in both of the unit pump configurations, the rotor is on one side of the rotor in the axial direction of the rotary shaft. 2. The rotary pump according to claim 1, wherein the rotary pump is supported in a cantilever state via the rotary shaft by a bearing disposed between both unit pump configurations.
  5.  前記回転軸の両端の前記単位ポンプ構成の少なくとも一方のシリンダであって、該シリンダの軸方向の両端を構成する端壁部のうち前記回転軸が挿通されない片持ち端面側の端壁部に、圧縮された気体の一部を逃がすことができる逃がし孔が前記回転軸の軸方向に開口して設けられていることを特徴とする請求項4記載の回転ポンプ。 At least one cylinder of the unit pump configuration at both ends of the rotating shaft, and an end wall portion on the cantilever end surface side through which the rotating shaft is not inserted among end wall portions constituting both ends in the axial direction of the cylinder, The rotary pump according to claim 4, wherein an escape hole through which a part of the compressed gas can escape is opened in the axial direction of the rotary shaft.
  6.  前記逃がし孔が複数設けられていることを特徴とする請求項1、2又は5記載の回転ポンプ。 The rotary pump according to claim 1, 2 or 5, wherein a plurality of the escape holes are provided.
  7.  前記逃がし孔には、前記シリンダ内の圧力が、所定の圧力よりも高圧の場合には開き、所定の圧力よりも低圧の場合には閉じる逆止弁が設けられていることを特徴とする請求項1、2又は5記載の回転ポンプ。 The relief hole is provided with a check valve that opens when the pressure in the cylinder is higher than a predetermined pressure and closes when the pressure is lower than the predetermined pressure. Item 6. The rotary pump according to Item 1, 2 or 5.
  8.  前記逆止弁がリード弁であることを特徴とする請求項7記載の回転ポンプ。 The rotary pump according to claim 7, wherein the check valve is a reed valve.
  9.  前記シリンダの圧縮された気体を排気する排気口からの排気と前記逃がし孔からの排気とを合流させて消音させる空間を形成するサイレンサ部を備えることを特徴とする請求項1、2又は5記載の回転ポンプ。 The silencer part which forms the space which combines the exhaust_gas | exhaustion port which exhausts the compressed gas of the said cylinder, and the exhaust_gas | exhaustion from the said escape hole, and silences is provided. Rotary pump.
  10.  前記ロータを備える回転軸が二つ設けられ、二つのロータ同士が微小なクリアランスを保って非接触で回転されると共に、前記二つのロータがシリンダの内面にも微小なクリアランスを保って非接触で回転されるように、前記ロータを備える二つの回転軸が軸受によって支持されて設けられていることを特徴とする請求項1、2、3、4又は5記載の回転ポンプ。 Two rotating shafts including the rotor are provided, and the two rotors are rotated in a non-contact manner with a minute clearance, and the two rotors are also in a non-contact manner with a minute clearance maintained on the inner surface of the cylinder. 6. The rotary pump according to claim 1, wherein two rotary shafts including the rotor are supported by bearings so as to be rotated.
  11.  前記ロータが鉤形の爪部を備えるクローポンプのロータであり、前記逃がし孔が設けられた前記自由端側の端壁部に前記シリンダの圧縮された気体を排気する排気口が設けられていることを特徴とする請求項10記載の回転ポンプ。 The rotor is a rotor of a claw pump having a hook-shaped claw portion, and an exhaust port for exhausting the compressed gas of the cylinder is provided in an end wall portion on the free end side where the escape hole is provided. The rotary pump according to claim 10.
PCT/JP2014/064230 2013-05-30 2014-05-29 Rotary pump WO2014192852A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013-114154 2013-05-30
JP2013114154A JP5663798B2 (en) 2013-05-30 2013-05-30 Biaxial rotary pump
JP2013114146A JP2014231813A (en) 2013-05-30 2013-05-30 Rotary pump
JP2013-114146 2013-05-30

Publications (1)

Publication Number Publication Date
WO2014192852A1 true WO2014192852A1 (en) 2014-12-04

Family

ID=51988875

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/064230 WO2014192852A1 (en) 2013-05-30 2014-05-29 Rotary pump

Country Status (1)

Country Link
WO (1) WO2014192852A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59218392A (en) * 1983-05-25 1984-12-08 Ebara Corp Screw compressor
JPH11141483A (en) * 1997-11-06 1999-05-25 Matsushita Electric Ind Co Ltd Electric gas compressor
JP2011064078A (en) * 2009-09-15 2011-03-31 Orion Machinery Co Ltd Claw pump and method of manufacturing the same
JP2011226368A (en) * 2010-04-19 2011-11-10 Ebara Corp Exhaust unit and dry vacuum pump device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59218392A (en) * 1983-05-25 1984-12-08 Ebara Corp Screw compressor
JPH11141483A (en) * 1997-11-06 1999-05-25 Matsushita Electric Ind Co Ltd Electric gas compressor
JP2011064078A (en) * 2009-09-15 2011-03-31 Orion Machinery Co Ltd Claw pump and method of manufacturing the same
JP2011226368A (en) * 2010-04-19 2011-11-10 Ebara Corp Exhaust unit and dry vacuum pump device

Similar Documents

Publication Publication Date Title
JP2005155540A (en) Multistage dry-sealed vacuum pump
TWI518245B (en) Dry vacuum pump apparatus, exhaust unit, and silencer
TWI649496B (en) Liquid ring pump with modular construction interstage bypass and overload protection
JPH11315784A (en) Hydraulic machinery
JP2011226368A (en) Exhaust unit and dry vacuum pump device
US9702361B2 (en) Claw pump with relief space
WO2014192851A1 (en) Two-shaft rotary pump
JP5914449B2 (en) Claw pump
JP5524691B2 (en) Combined silencer and dry vacuum pump device
JP2010275995A (en) Screw compressor
JP5663798B2 (en) Biaxial rotary pump
JP5663794B2 (en) Biaxial rotary pump
WO2014192852A1 (en) Rotary pump
JP5663796B2 (en) Biaxial rotary pump
JP5663797B2 (en) Rotary pump
JP5663795B2 (en) Biaxial rotary pump
JP5672171B2 (en) Turbo compressor
JP2016075242A (en) Dual-shaft type rotary pump
JP2014231813A (en) Rotary pump
JP5393577B2 (en) Dry vacuum pump device and exhaust unit
JP2022166884A (en) screw compressor
KR102036201B1 (en) Turbo Compressor
JP4483194B2 (en) Turbo compressor and packaging method thereof
JP4360005B2 (en) Gear chamber pressure relief mechanism for mechanically driven superchargers
JP2007515591A (en) Discharge system for compressor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14804798

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14804798

Country of ref document: EP

Kind code of ref document: A1