WO2014192762A1 - Display device - Google Patents

Display device Download PDF

Info

Publication number
WO2014192762A1
WO2014192762A1 PCT/JP2014/064008 JP2014064008W WO2014192762A1 WO 2014192762 A1 WO2014192762 A1 WO 2014192762A1 JP 2014064008 W JP2014064008 W JP 2014064008W WO 2014192762 A1 WO2014192762 A1 WO 2014192762A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
wiring
gate
signal
source
Prior art date
Application number
PCT/JP2014/064008
Other languages
French (fr)
Japanese (ja)
Inventor
繁田 光浩
Original Assignee
堺ディスプレイプロダクト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 堺ディスプレイプロダクト株式会社 filed Critical 堺ディスプレイプロダクト株式会社
Publication of WO2014192762A1 publication Critical patent/WO2014192762A1/en

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3648Control of matrices with row and column drivers using an active matrix
    • G09G3/3659Control of matrices with row and column drivers using an active matrix the addressing of the pixel involving the control of two or more scan electrodes or two or more data electrodes, e.g. pixel voltage dependant on signal of two data electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0421Structural details of the set of electrodes
    • G09G2300/043Compensation electrodes or other additional electrodes in matrix displays related to distortions or compensation signals, e.g. for modifying TFT threshold voltage in column driver
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/06Details of flat display driving waveforms
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0223Compensation for problems related to R-C delay and attenuation in electrodes of matrix panels, e.g. in gate electrodes or on-substrate video signal electrodes

Definitions

  • the present invention relates to a display device capable of keeping a voltage waveform of a control voltage and a signal voltage supplied via a scanning line and a signal line substantially constant.
  • Liquid crystal display devices are widely used for computer displays, television receivers, information displays for displaying various information, and the like.
  • a thin film transistor (TFT) provided for each pixel functions as a switching element, and a signal voltage (grayscale voltage) is applied to the pixel electrode during a period in which the switching element is on.
  • TFT thin film transistor
  • a signal voltage grayscale voltage
  • a liquid crystal display device is composed of two transparent substrates made of a thin glass plate and a liquid crystal sealed between these substrates.
  • TFT substrate On one substrate (TFT substrate), a pixel electrode and a TFT are formed for each pixel, and on the other substrate (CF substrate), a color filter facing the pixel electrode, a common electrode (counter electrode) common to each pixel, and Is formed.
  • CF substrate On one substrate (TFT substrate), a pixel electrode and a TFT are formed for each pixel, and on the other substrate (CF substrate), a color filter facing the pixel electrode, a common electrode (counter electrode) common to each pixel, and Is formed.
  • a plurality of gate wirings extending in the horizontal direction and a plurality of source wirings extending in the vertical direction are formed on the TFT substrate.
  • Each rectangular area defined by the gate wiring and the source wiring is a pixel area.
  • a TFT as a switching element and a pixel electrode are formed in each pixel region.
  • the liquid crystal display device includes a gate driver connected to the gate wiring and a source driver connected to the source wiring in order to control image display in each pixel.
  • the source driver outputs display data to each source wiring at a timing synchronized with the data clock signal within one horizontal synchronization period.
  • the gate driver sequentially outputs scanning signals to the gate wiring at a timing synchronized with the gate clock signal within one vertical synchronization period.
  • the TFT of the pixel connected to the gate wiring supplied with the scanning signal is turned on, and the display data supplied to the source wiring is written to the pixel electrode. Thereby, the direction of the liquid crystal molecules in the pixel changes, and the light transmittance of the pixel changes accordingly. Display data is written to each pixel within one vertical synchronization period, and a desired image is displayed on the liquid crystal display device.
  • the present invention has been made in view of such circumstances, and even in a liquid crystal display device having a large number of pixels, each pixel is driven without causing distortion of a signal waveform or a decrease in signal intensity.
  • An object of the present invention is to provide a display device that can reliably supply signals necessary for the above.
  • the display device of the present application is provided corresponding to each of a plurality of display elements, a signal line for supplying a signal voltage to be applied to the display element, and the display element, and is opened and closed between the display element and the signal line.
  • One or more auxiliary devices electrostatically coupled to the scanning line in a display device comprising a switching element that controls conduction / non-conduction of the scanning line and a scanning line that supplies a control voltage for controlling opening and closing of the switching element
  • a scanning line and means for applying a voltage having a polarity opposite to that of the control voltage to the one or more auxiliary scanning lines are provided.
  • the display device of the present application has a first wiring layer that constitutes the scanning line and a second wiring layer that constitutes the auxiliary scanning line, and an insulating layer is provided between the first and second wiring layers. It is characterized by that.
  • the display device of the present application is provided corresponding to each of a plurality of display elements, a signal line for supplying a signal voltage to be applied to the display element, and the display element, and is opened and closed between the display element and the signal line.
  • One or a plurality of auxiliary devices electrostatically coupled to the signal line in a display device including a switching element that controls conduction / non-conduction of the scanning line and a scanning line that supplies a control voltage for controlling opening and closing of the switching element
  • a signal line and means for applying a voltage having a polarity opposite to that of the signal voltage to the one or more auxiliary signal lines are provided.
  • the display device of the present application has a first wiring layer that constitutes the signal line and a second wiring layer that constitutes the auxiliary signal line, and an insulating layer is provided between the first and second wiring layers. It is characterized by that.
  • control voltage is supplied to the switching element included in each pixel through the scanning line, and a voltage having a polarity opposite to the control voltage is applied to the auxiliary scanning line electrostatically coupled to the scanning line. Charge flows from the scanning line to the scanning line, and the voltage waveform of the control voltage in the scanning line is maintained.
  • the signal voltage to be applied to the display element through the signal line is supplied, and the auxiliary signal line electrostatically coupled to the signal line is configured to apply a voltage having a polarity opposite to that of the signal voltage. Charge flows from the auxiliary signal line into the signal line, and the voltage waveform of the signal voltage in the signal line is maintained.
  • a signal necessary for driving each pixel is reliably supplied without causing distortion of the signal waveform or a decrease in signal strength. Can do.
  • FIG. 4 is a waveform diagram showing a voltage waveform of a control voltage used in the liquid crystal display panel of Embodiment 1.
  • FIG. It is a wave form diagram which shows the modification of the voltage waveform of a control voltage.
  • FIG. 6 is a schematic diagram illustrating a configuration of each pixel in a liquid crystal display panel according to Embodiment 2.
  • FIG. It is a schematic diagram which shows the equivalent circuit of each pixel.
  • 6 is a waveform diagram showing a voltage waveform of a signal voltage used in the liquid crystal display panel of Embodiment 2.
  • FIG. 6 is a schematic diagram illustrating a configuration of each pixel in a liquid crystal display panel according to Embodiment 3.
  • FIG. It is a schematic diagram which shows the equivalent circuit of each pixel. 6 is a waveform diagram showing a voltage waveform of a control voltage used in the liquid crystal display panel of Embodiment 3.
  • FIG. 1 is a diagram showing a schematic configuration of a display device according to the present embodiment.
  • the display device according to the present embodiment is, for example, a liquid crystal display device including a liquid crystal display panel 1, a gate driver 2, a source driver 3, a power supply circuit 4, an image memory 5, a control circuit 6, and the like.
  • the liquid crystal display panel 1 includes a plurality of pixels 10, 10, 10,... Configured by a display element 11 and a switching element 12 (see FIG. 2). These pixels 10, 10, 10,... Are arranged in a matrix (for example, 1024 in the row direction and 768 in the column direction) in the liquid crystal display panel 1.
  • Each pixel 10 of the liquid crystal display panel 1 includes a liquid crystal layer 120 sealed between the pixel electrode 111 and the counter electrode 131 (see FIG. 4).
  • the voltage applied to the liquid crystal layer 120 is controlled by grounding the counter electrode 131 and controlling the voltage applied to the pixel electrode 111.
  • the control circuit 6 controls the operation of the display element 11 and the switching element 12 of each pixel 10 through the gate driver 2 and the source driver 3, thereby applying a voltage (application to the liquid crystal layer 120) to the pixel electrode 111. Voltage).
  • the voltage applied to the pixel electrode 111 By controlling the voltage applied to the pixel electrode 111, the light transmittance of the liquid crystal layer 120 in each pixel 10 is adjusted, and the display luminance of each pixel 10 is determined.
  • the control circuit 6 controls a voltage applied to the liquid crystal layer 120 in each pixel 10 based on a synchronization signal input from the outside, a memory control signal, a power supply control signal, a source driver control signal, and a gate driver control signal. And the generated control signals are output to the image memory 5, the power supply circuit 4, the source driver 3, and the gate driver 2, respectively.
  • the image memory 5 temporarily stores input display data, and outputs pixel data to be displayed on the liquid crystal display panel 1 to the source driver 3 in synchronization with a memory control signal input from the control circuit 6.
  • the image memory 5 may be built in the control circuit 6 and output image data to the source driver 3 through internal processing of the control circuit 6.
  • the synchronization signal and display data that are input include the LCD signal output from the CPU or LCD control IC mounted on the mobile phone, portable game machine, etc., and the CRT output signal of the personal computer (PC) as A / D.
  • the converted signal and the signal obtained by the control circuit 6 directly controlling the video RAM mounted on the PC or the like are included.
  • the power supply circuit 4 generates a drive voltage for the gate driver 2 and a drive voltage for the source driver 3 in synchronization with the power supply control signal input from the control circuit 6, and outputs them to the gate driver 2 and the source driver 3, respectively. To do.
  • the gate driver 2 sequentially outputs a control voltage Vg for controlling on / off of the switching element 12 in synchronization with the gate driver control signal input from the control circuit 6 and applies it to the gate main wiring 20 which is a scanning line.
  • the gate driver 2 sequentially outputs a voltage ⁇ Vg having a polarity opposite to the control voltage applied to the gate main wiring 20 in synchronization with the gate driver control signal input from the control circuit 6. Then, it is applied to the gate sub-wiring 21 which is a sub-scanning line.
  • the source driver 3 takes in the pixel data output from the image memory 5 in synchronization with the source driver control signal input from the control circuit 6, and sequentially outputs the signal voltage Vs corresponding to the pixel data.
  • the signal voltage Vs output from the source driver 3 is displayed on the display element of each pixel 10 via the source line (source main line) 30 that is a signal line of the liquid crystal display panel 1 when the corresponding switching element 12 is on. 11 (pixel electrode 111).
  • FIG. 2 is a schematic diagram showing the configuration of each pixel 10 in the liquid crystal display panel 1.
  • the liquid crystal display panel 1 includes a plurality of pixels 10, 10, 10,... Arranged in a matrix.
  • FIG. 2 for simplification, a part of the pixels 10, 10, 10,... Constituting one row is shown.
  • the control voltage Vg from the gate driver 2 is sequentially supplied to the pixels 10, 10, 10,... Constituting one row through the gate main wiring 20 formed corresponding to each row. While the control voltage Vg from the gate driver 2 is applied to the switching element 12, the switching element 12 is turned on, and the corresponding display element 11 is conducted to the source line 30. At this time, by supplying the signal voltage Vs output from the source driver 3 to the display element 11 via the source line 30, the desired signal voltage Vs can be applied to the display element 11 (pixel electrode 111). it can.
  • a gate sub-wiring 21 electrostatically coupled to the gate main wiring 20 is provided, and a voltage ⁇ Vg having a polarity opposite to the control voltage Vg supplied by the gate main wiring 20 is applied to the gate sub-wiring 21. That is, the gate main wiring 20 and the gate sub wiring 21 are configured to form a balanced wiring.
  • FIG. 3 is a schematic diagram showing an equivalent circuit of each pixel 10.
  • the switching element 12 can be represented by, for example, a TFT 12a (see FIG. 10)
  • the display element 11 can be represented as a liquid crystal capacitor 11a between the pixel electrode 111 and the counter electrode 131.
  • the gate terminal of the TFT 12 a is connected to the gate main wiring 20, and the source terminal of the TFT 12 a is connected to the source wiring 30.
  • the drain terminal of the TFT 12a is connected to one end side (pixel electrode 111) of the liquid crystal capacitor 11a. In the present embodiment, the other end side (counter electrode 131) of the liquid crystal capacitor 11a is grounded.
  • the TFT 12a is ON / OFF controlled by applying a control voltage Vg supplied line-sequentially from the gate driver 2 through the gate main wiring 20.
  • Vg control voltage supplied line-sequentially from the gate driver 2 through the gate main wiring 20.
  • the signal voltage Vs supplied from the source driver 3 through each source line 30 is applied to the liquid crystal capacitor 11a.
  • the magnitude of the signal voltage Vs By controlling the magnitude of the signal voltage Vs, the light transmittance of the liquid crystal layer 120 in each pixel 10 (display luminance of each pixel 10) can be controlled.
  • electrostatic coupling between the gate main wiring 20 and the gate sub-wiring 21 is shown by capacitive coupling.
  • a voltage ⁇ Vg having a polarity opposite to the control voltage Vg supplied by the gate main wiring 20 is applied to the gate sub wiring 21, whereby charges are supplied to the gate main wiring 20 from the gate sub wiring 21 through the capacitor 25.
  • the potential (voltage waveform) of the gate main wiring 20 can be maintained.
  • the electrostatic coupling between the gate main wiring 20 and the gate sub-wiring 21 is shown by capacitive coupling, but may be coupled by capacitance and resistance.
  • FIG. 4 is a cross-sectional view schematically showing a configuration example of the liquid crystal display panel 1.
  • the liquid crystal display panel 1 includes a TFT substrate 110 in which each pixel 10 is formed in a matrix, a liquid crystal layer 120 formed by enclosing a liquid crystal substance, and a CF substrate 130 on which a color filter and the like are formed.
  • the TFT substrate 110 and the CF substrate 130 are, for example, glass substrates, and pixel electrodes 111 corresponding to the respective pixels 10 are formed on one surface side of the TFT substrate 110. Further, a counter electrode 131 is formed on one surface side of the CF substrate 130 facing the pixel electrode 111.
  • a protective film 112 On the other surface side of the TFT substrate 110, a protective film 112, a source wiring layer 113, a semiconductor layer 114, and an insulating layer 115 are laminated.
  • the gate main wiring layer 116 constituting the gate main wiring 20 and the gate sub wiring layer 117 constituting the gate sub wiring 21 are formed inside the insulating layer 115.
  • the gate main wiring layer 116 and the gate sub wiring layer 117 are formed in a state of being physically separated in the stacking direction, and an insulating layer 115 is provided between them. With such a configuration, the gate main wiring 20 and the gate sub-wiring 21 are electrostatically coupled to each other, and charge is transferred through the insulating layer 115.
  • FIG. 5 is a cross-sectional view schematically showing another configuration example of the liquid crystal display panel 1.
  • the configuration example shown in FIG. 5 is different from the configuration example shown in FIG. 4 in that the gate main wiring layer 116 and the gate sub wiring layer 117 are juxtaposed in the in-plane direction inside the insulating layer 115.
  • the gate main wiring layer 116 and the gate sub wiring layer 117 are formed in a state of being physically separated in the in-plane direction, and an insulating layer 115 is provided therebetween.
  • the gate main wiring 20 and the gate sub-wiring 21 are electrostatically coupled to each other, and charge is transferred through the insulating layer 115.
  • the gate main wiring layer 116 and the gate sub wiring layer 117 can be formed in the same process. Further, there is a concern that the aperture ratio may be reduced by juxtaposing the gate main wiring layer 116 and the gate sub-wiring layer 117. However, in the balanced wiring, the wiring can be thinned, so that the reduction in the aperture ratio is suppressed. Can do.
  • FIG. 6 is a waveform diagram showing a voltage waveform of a control voltage used in a conventional liquid crystal display panel.
  • the voltage waveform of the control voltage output from the gate driver is, for example, a rectangular wave as shown in FIG.
  • a signal having a voltage waveform substantially the same as the voltage waveform shown in FIG. 6A is input to the display element at a position where the transmission distance of the signal from the gate driver is short.
  • the signal having the voltage waveform is affected by circuit resistance, stray capacitance, etc. while being transmitted through the gate wiring.
  • a control voltage having a constant voltage waveform is output from the gate driver, it is applied between the display element located near the gate driver and the display element located away from the gate driver. There is a clear difference in the magnitude of the control voltage.
  • FIG. 7 is a waveform diagram showing voltage waveforms of control voltages used in the liquid crystal display panel 1 of the first embodiment.
  • the liquid crystal display panel 1 according to Embodiment 1 includes a gate main wiring 20 and a gate sub-wiring 21 that are electrostatically coupled for each row, and the gate main wiring 20 has a control voltage for controlling on / off of the switching element 12.
  • One characteristic is that Vg is applied and a voltage ⁇ Vg having a polarity opposite to that of the control voltage Vg is applied to the gate sub-wiring 21.
  • the gate sub-wiring 21 includes, for example, the upper part of FIG. As shown in FIG. 6, a voltage waveform obtained by inverting the positive / negative of the voltage waveform of the control voltage supplied to the gate main wiring 20 is applied.
  • FIG. 8 is a waveform diagram showing a modification of the voltage waveform of the control voltage.
  • the voltage waveform obtained by inverting the positive / negative voltage waveform of the control voltage supplied to the gate main wiring 20 is applied to the gate sub-wiring 21.
  • a voltage having a polarity opposite to the control voltage supplied to the gate main wiring 20 is applied to the gate sub-wiring 21
  • charges from the gate sub-wiring 21 flow into the gate main wiring 20 through electrostatic coupling.
  • a control voltage having a rectangular wave voltage waveform shown in the lower part of FIG. 8A is applied to the gate main wiring 20, and the phase and the signal amplitude are slightly different as shown in the upper part of FIG. 8A.
  • a configuration in which a waveform control voltage is applied to the gate sub-wiring 21 may be adopted.
  • FIG. 1 a gate sub-wiring 21 electrostatically coupled to the gate main wiring 20 is provided, and a voltage ⁇ Vg having a polarity opposite to the control voltage Vg supplied from the gate main wiring 20 is applied to the gate sub-wiring 21.
  • a configuration may be adopted in which a wiring electrostatically coupled to the source main wiring 30 is provided and a voltage ⁇ Vs having a polarity opposite to the signal voltage Vs supplied from the source main wiring 30 is applied to the wiring.
  • an application example to the source main wiring 30 will be described. Note that the configuration of the drive system in the liquid crystal display device is the same as that in Embodiment 1, and thus the description thereof is omitted.
  • FIG. 9 is a schematic diagram showing the configuration of each pixel 10 in the liquid crystal display panel 1 of the second embodiment.
  • the liquid crystal display panel 1 includes a plurality of pixels 10, 10, 10,... Arranged in a matrix. In FIG. 9, for simplification, a part of the pixels 10, 10, 10,... Constituting one column is shown.
  • the signal voltage Vs from the source driver 3 is sequentially supplied to the pixels 10, 10, 10,... Constituting one column through the source main wiring 30 formed corresponding to each column. While the control voltage Vg from the gate driver 2 is applied to the switching element 12, the switching element 12 is turned on, and the corresponding display element 11 is conducted to the source main wiring 30. At this time, by applying the signal voltage Vs output from the source driver 3 to the display element 11 via the source main wiring 30, the desired signal voltage Vs is applied to the display element 11 (pixel electrode 111). Can do.
  • a source sub-wiring 31 electrostatically coupled to the source main wiring 30 is provided, and a voltage ⁇ Vs having a polarity opposite to the signal voltage Vs supplied by the source main wiring 30 is applied to the source sub-wiring 31. That is, the source main wiring 30 and the source sub-wiring 31 are configured to form a balanced wiring.
  • FIG. 10 is a schematic diagram showing an equivalent circuit of each pixel 10.
  • the switching element 12 can be represented by, for example, a TFT 12a
  • the display element 11 can be represented as a liquid crystal capacitor 11a between the pixel electrode 111 and the counter electrode 131.
  • the gate terminal of the TFT 12 a is connected to the gate main wiring 20, and the source terminal of the TFT 12 a is connected to the source main wiring 30.
  • the drain terminal of the TFT 12a is connected to one end side (pixel electrode 111) of the liquid crystal capacitor 11a. In the present embodiment, the other end side (counter electrode 131) of the liquid crystal capacitor 11a is grounded.
  • the TFT 12a is ON / OFF controlled by applying a control voltage Vg supplied line-sequentially from the gate driver 2 through the gate main wiring 20.
  • Vg supplied line-sequentially from the gate driver 2 through the gate main wiring 20.
  • the signal voltage Vs supplied from the source driver 3 through each source main wiring 30 is applied to the liquid crystal capacitor 11a.
  • the magnitude of the signal voltage Vs By controlling the magnitude of the signal voltage Vs, the light transmittance of the liquid crystal layer 120 in each pixel 10 (display luminance of each pixel 10) can be controlled.
  • electrostatic coupling between the source main wiring 30 and the source sub-wiring 31 is shown by capacitive coupling.
  • a voltage ⁇ Vs having a polarity opposite to that of the signal voltage Vs supplied from the source main wiring 30 to the source sub wiring 31 electric charges are supplied to the source main wiring 30 from the source sub wiring 31 through the capacitor 35.
  • the potential (voltage waveform) of the source main wiring 30 can be maintained.
  • the electrostatic coupling between the source main wiring 30 and the source sub-wiring 31 is shown by capacitive coupling, but may be coupled by capacitance and resistance.
  • FIG. 11 is a waveform diagram showing voltage waveforms of signal voltages used in the liquid crystal display panel 1 of the second embodiment.
  • the liquid crystal display panel 1 according to Embodiment 2 includes a source main line 30 and a source sub-line 31 that are electrostatically coupled to each column, and a signal voltage Vs supplied to the display element 11 is applied to the source main line 30.
  • a voltage ⁇ Vs having a polarity opposite to that of the signal voltage Vs is applied to the source sub-wiring 31.
  • the source sub-wiring 31 includes, for example, the upper part of FIG. As shown, a voltage waveform obtained by inverting the positive / negative of the voltage waveform of the signal voltage supplied to the source main wiring 30 is applied.
  • the second embodiment even when a large number of pixels 10, 10, 10,... Are arranged in the column direction, substantially the same voltage waveform is applied to these pixels 10, 10, 10,. A signal voltage can be provided. Therefore, the potential of the pixel electrode 111 corresponding to each pixel 10 can be made substantially constant, and variations in display luminance between pixels can be suppressed. Further, even when the wiring resistance is high, the potential change can be reduced, so that the wiring can be made thinner or thinner.
  • the signal voltage obtained by inverting the positive / negative of the voltage waveform of the signal voltage supplied to the source main wiring 30 is applied to the source sub wiring 31.
  • a voltage having a polarity opposite to that of the signal voltage supplied to the source main wiring 30 to the source sub wiring 31 charges from the source sub wiring 31 flow into the source main wiring 30 through electrostatic coupling. The effect is obtained. For this reason, it is not necessary to completely invert the voltage waveform including the phase and amplitude intensity.
  • a signal voltage having a rectangular wave voltage waveform shown in the lower part of FIG. 11A is applied to the source main wiring 30, and a signal voltage having a slightly different phase and signal amplitude and a reverse polarity is applied to the gate sub-wiring 21. It is good also as a structure to apply.
  • Embodiment 3 FIG.
  • a gate sub-wiring 21 electrostatically coupled to the gate main wiring 20 is provided, and a voltage ⁇ Vg having a polarity opposite to the control voltage Vg supplied from the gate main wiring 20 is applied to the gate sub-wiring 21.
  • a configuration in which a plurality of gate subwirings are provided may be employed.
  • Embodiment 3 a configuration in which a plurality of gate sub-wirings are provided will be described. Note that the configuration of the drive system in the liquid crystal display device is the same as that in Embodiment 1, and thus the description thereof is omitted.
  • FIG. 12 is a schematic diagram showing the configuration of each pixel 10 in the liquid crystal display panel 1 of the third embodiment.
  • the liquid crystal display panel 1 includes a plurality of pixels 10, 10, 10,... Arranged in a matrix.
  • FIG. 2 for simplification, a part of the pixels 10, 10, 10,... Constituting one row is shown.
  • the control voltage Vg from the gate driver 2 is sequentially supplied to the pixels 10, 10, 10,... Constituting one row through the gate main wiring 20 formed corresponding to each row. While the control voltage Vg from the gate driver 2 is applied to the switching element 12, the switching element 12 is turned on, and the corresponding display element 11 is conducted to the source line 30. At this time, by supplying the signal voltage Vs output from the source driver 3 to the display element 11 via the source line 30, the desired signal voltage Vs can be applied to the display element 11 (pixel electrode 111). it can.
  • the third embodiment includes two gate sub-wirings 21 (first gate sub-wiring 21a and second gate sub-wiring 21b) that are electrostatically coupled to the gate main wiring 20, and the control voltage supplied by the gate main wiring 20 A voltage ⁇ Vg having a polarity opposite to that of Vg is applied to the first gate sub-wiring 21a and the second gate sub-wiring 21b, respectively. That is, the gate main wiring 20, the first gate sub-wiring 21a, and the second gate sub-wiring 21b are configured to form a balanced wiring.
  • FIG. 13 is a schematic diagram showing an equivalent circuit of each pixel 10.
  • the switching element 12 can be represented by, for example, a TFT 12a
  • the display element 11 can be represented as a liquid crystal capacitor 11a between the pixel electrode 111 and the counter electrode 131.
  • the gate terminal of the TFT 12 a is connected to the gate main wiring 20, and the source terminal of the TFT 12 a is connected to the source wiring 30.
  • the drain terminal of the TFT 12a is connected to one end side (pixel electrode 111) of the liquid crystal capacitor 11a. In the present embodiment, the other end side (counter electrode 131) of the liquid crystal capacitor 11a is grounded.
  • the TFT 12a is ON / OFF controlled by applying a control voltage Vg supplied line-sequentially from the gate driver 2 through the gate main wiring 20.
  • Vg control voltage supplied line-sequentially from the gate driver 2 through the gate main wiring 20.
  • the signal voltage Vs supplied from the source driver 3 through each source line 30 is applied to the liquid crystal capacitor 11a.
  • the magnitude of the signal voltage Vs By controlling the magnitude of the signal voltage Vs, the light transmittance of the liquid crystal layer 120 in each pixel 10 (display luminance of each pixel 10) can be controlled.
  • electrostatic coupling between the gate main wiring 20 and the first gate sub-wiring 21a and electrostatic coupling between the gate main wiring 20 and the second gate sub-wiring 21b are shown by capacitive coupling.
  • a voltage ⁇ Vg having a polarity opposite to the control voltage Vg supplied from the gate main wiring 20 is applied to the first and second gate sub-wirings 21 a and 21 b, respectively, so that the capacitors 25 a and 25 b are connected to the gate main wiring 20.
  • charges from the first and second gate sub-wirings 21a and 21b flow in, and the potential (voltage waveform) of the gate main wiring 20 can be held.
  • the electrostatic coupling between the gate main wiring 20 and the first and second gate subwirings 21a and 21b is shown by capacitive coupling, but may be coupled by capacitance and resistance.
  • FIG. 14 is a waveform diagram showing a voltage waveform of a control voltage used in the liquid crystal display panel 1 of the third embodiment.
  • the liquid crystal display panel 1 according to Embodiment 3 includes a gate main wiring 20 and first and second gate sub-wirings 21a and 21b that are electrostatically coupled to each row, and the switching element 12 is turned on / off in the gate main wiring 20.
  • One of the features is that a control voltage Vg for off control is applied, and a voltage ⁇ Vg having a polarity opposite to that of the control voltage Vg is applied to the first and second gate sub-wirings 21a and 21b.
  • the first and second gate sub-wirings 21a and 21b include, for example, As shown in the upper part and interruption of FIG. 14A, a voltage waveform obtained by inverting the positive / negative of the voltage waveform of the control voltage supplied to the gate main wiring 20 is applied.
  • the gate main wiring 20 When control voltages having these voltage waveforms are respectively applied to the gate main wiring 20 and the first and second gate subwirings 21a and 21b, the gate main wiring 20 is connected to the first and second gates via electrostatic coupling. Charges from the sub-wirings 21a and 21b flow in, and the operation of maintaining the respective voltage waveforms is obtained. As a result, even at a location separated from the gate driver 2, as shown in FIG. 14B, the distortion of the voltage waveform in the gate main wiring 20 and the first and second gate sub wirings 21a and 21b is small, and the signal strength is reduced. The decrease is also suppressed.
  • the control voltage obtained by inverting the positive / negative of the voltage waveform of the control voltage supplied to the gate main wiring 20 is applied to the first and second gate sub-wirings 21a and 21b.
  • the gate main wiring 20 is connected to the first via the electrostatic coupling.
  • an effect that charges flow from the second source sub-wirings 31a and 31b is obtained. For this reason, it is not necessary to completely invert the voltage waveform including the phase and amplitude intensity.
  • a control voltage having a rectangular wave voltage waveform shown in the lower part of FIG. 14A is applied to the gate main wiring 20, and the signal voltages having slightly different phases and signal amplitudes and having opposite polarities are applied to the first and second signal voltages. It may be configured to be applied to the gate sub-wirings 21a and 21b.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Liquid Crystal Display Device Control (AREA)
  • Liquid Crystal (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

Provided is a display device capable of maintaining substantially constant the voltage waveforms of the control voltage and the signal voltage supplied via a scanning line and a signal line. This display device is provided with multiple display elements, signal lines for supplying signal voltages to be applied to said display elements, switching elements provided corresponding to the display elements and for controlling conduction or non-conduction between the display elements and the signal lines by being opened and closed, and a scanning line for supplying a control voltage for controlling the opening and closing of the switching elements, wherein the display device is also provided with one or multiple auxiliary scanning lines electrostatically coupled to the scanning line, and a means for applying to said one or multiple auxiliary scanning lines a voltage of the opposite polarity of the control voltage.

Description

表示装置Display device
 本発明は、走査線及び信号線を介して供給する制御電圧及び信号電圧の電圧波形を略一定に保つことができる表示装置に関する。 The present invention relates to a display device capable of keeping a voltage waveform of a control voltage and a signal voltage supplied via a scanning line and a signal line substantially constant.
 液晶表示装置は、コンピュータのディスプレイ、テレビジョン受像機、及び各種の情報を表示する情報ディスプレイ等に広く利用されている。例えば、アクティブマトリクス型の液晶表示装置では、画素毎に設けた薄膜トランジスタ(TFT)をスイッチング素子として機能させ、スイッチング素子がオンである期間に画素電極に対して信号電圧(階調電圧)を印加することで各画素での光透過率を制御する構成としており、画素間のクロストークがなく、高精細で多階調表示が可能である。 Liquid crystal display devices are widely used for computer displays, television receivers, information displays for displaying various information, and the like. For example, in an active matrix liquid crystal display device, a thin film transistor (TFT) provided for each pixel functions as a switching element, and a signal voltage (grayscale voltage) is applied to the pixel electrode during a period in which the switching element is on. Thus, the light transmittance of each pixel is controlled, and there is no crosstalk between pixels, and high-definition and multi-gradation display is possible.
 一般的に、液晶表示装置は、ガラス薄板からなる2枚の透明基板と、これらの基板間に封入された液晶とにより構成されている。一方の基板(TFT基板)には画素毎に画素電極及びTFT等が形成され、他方の基板(CF基板)には画素電極に対向するカラーフィルタと、各画素共通のコモン電極(対向電極)とが形成される。 Generally, a liquid crystal display device is composed of two transparent substrates made of a thin glass plate and a liquid crystal sealed between these substrates. On one substrate (TFT substrate), a pixel electrode and a TFT are formed for each pixel, and on the other substrate (CF substrate), a color filter facing the pixel electrode, a common electrode (counter electrode) common to each pixel, and Is formed.
 TFT基板には、水平方向に延びる複数のゲート配線と、垂直方向に延びる複数のソース配線とが形成されている。これらのゲート配線とソース配線とにより区画される矩形の領域がそれぞれ画素領域である。各画素領域にはスイッチング素子であるTFTと画素電極とが形成されている。また、液晶表示装置は、各画素における画像表示を制御するために、ゲート配線に接続されたゲートドライバ、及びソース配線に接続されたソースドライバを備える。 A plurality of gate wirings extending in the horizontal direction and a plurality of source wirings extending in the vertical direction are formed on the TFT substrate. Each rectangular area defined by the gate wiring and the source wiring is a pixel area. In each pixel region, a TFT as a switching element and a pixel electrode are formed. In addition, the liquid crystal display device includes a gate driver connected to the gate wiring and a source driver connected to the source wiring in order to control image display in each pixel.
 ソースドライバは、1水平同期期間内に、データクロック信号に同期したタイミングで各ソース配線に表示データを出力する。一方、ゲートドライバは、1垂直同期期間内に、ゲートクロック信号に同期したタイミングでゲート配線に順次的に走査信号を出力する。走査信号が供給されたゲート配線に接続されている画素のTFTがオンになり、ソース配線に供給された表示データが画素電極に書き込まれる。これにより、画素内の液晶分子の向きが変化し、それに伴って画素の光透過率が変化する。1垂直同期期間内に各画素にそれぞれ表示データが書き込まれて、液晶表示装置に所望の画像が表示される。 The source driver outputs display data to each source wiring at a timing synchronized with the data clock signal within one horizontal synchronization period. On the other hand, the gate driver sequentially outputs scanning signals to the gate wiring at a timing synchronized with the gate clock signal within one vertical synchronization period. The TFT of the pixel connected to the gate wiring supplied with the scanning signal is turned on, and the display data supplied to the source wiring is written to the pixel electrode. Thereby, the direction of the liquid crystal molecules in the pixel changes, and the light transmittance of the pixel changes accordingly. Display data is written to each pixel within one vertical synchronization period, and a desired image is displayed on the liquid crystal display device.
特開平9-16128号公報Japanese Patent Laid-Open No. 9-16128
 近年、液晶表示装置の大型化が求められている。しかしながら、液晶表示装置が大型化すると、TFT基板に形成されるゲート配線及びソース配線の長さが長くなり、配線抵抗等が大きくなる。このため、ゲート配線及びソース配線で比較的大きな電圧降下が発生して、例えば、ソースドライバの近くに接続された画素と、ソースドライバから離れた画素とで、同じ表示データが与えられたにもかかわらず、色や明るさに違いが生じてしまうことがある。また、極端な場合にはゲートドライバやソースドライバから出力する信号により所定の電圧を供給することができず、画像の表示品質が著しく低下することもある。 In recent years, there has been a demand for larger liquid crystal display devices. However, when the liquid crystal display device is increased in size, the lengths of the gate wiring and the source wiring formed on the TFT substrate are increased, and the wiring resistance and the like are increased. For this reason, a relatively large voltage drop occurs in the gate wiring and the source wiring. For example, the same display data is given to a pixel connected near the source driver and a pixel far from the source driver. Regardless, there may be differences in color and brightness. In extreme cases, a predetermined voltage cannot be supplied by a signal output from a gate driver or a source driver, and the display quality of an image may be remarkably deteriorated.
 本発明は、斯かる事情に鑑みてなされたものであり、多数の画素を備えた液晶表示装置であっても、信号波形の歪みや信号強度の低下を生じさせることなく、各画素を駆動するために必要な信号を確実に供給することができる表示装置を提供することを目的とする。 The present invention has been made in view of such circumstances, and even in a liquid crystal display device having a large number of pixels, each pixel is driven without causing distortion of a signal waveform or a decrease in signal intensity. An object of the present invention is to provide a display device that can reliably supply signals necessary for the above.
 本願の表示装置は、複数の表示素子、該表示素子へ印加すべき信号電圧を供給する信号線、前記表示素子の夫々に対応して設けられ、開閉により前記表示素子と前記信号線との間の導通/非導通を制御するスイッチング素子、及び該スイッチング素子の開閉を制御するための制御電圧を供給する走査線を備えた表示装置において、前記走査線に静電結合された1又は複数の補助走査線と、前記制御電圧とは逆極性の電圧を前記1又は複数の補助走査線へ印加する手段とを備えることを特徴とする。 The display device of the present application is provided corresponding to each of a plurality of display elements, a signal line for supplying a signal voltage to be applied to the display element, and the display element, and is opened and closed between the display element and the signal line. One or more auxiliary devices electrostatically coupled to the scanning line in a display device comprising a switching element that controls conduction / non-conduction of the scanning line and a scanning line that supplies a control voltage for controlling opening and closing of the switching element A scanning line and means for applying a voltage having a polarity opposite to that of the control voltage to the one or more auxiliary scanning lines are provided.
 本願の表示装置は、前記走査線を構成する第1配線層、及び前記補助走査線を構成する第2配線層を有し、前記第1及び第2配線層の間に絶縁層を設けてあることを特徴とする。 The display device of the present application has a first wiring layer that constitutes the scanning line and a second wiring layer that constitutes the auxiliary scanning line, and an insulating layer is provided between the first and second wiring layers. It is characterized by that.
 本願の表示装置は、複数の表示素子、該表示素子へ印加すべき信号電圧を供給する信号線、前記表示素子の夫々に対応して設けられ、開閉により前記表示素子と前記信号線との間の導通/非導通を制御するスイッチング素子、及び該スイッチング素子の開閉を制御するための制御電圧を供給する走査線を備えた表示装置において、前記信号線に静電結合された1又は複数の補助信号線と、前記信号電圧とは逆極性の電圧を前記1又は複数の補助信号線へ印加する手段とを備えることを特徴とする。 The display device of the present application is provided corresponding to each of a plurality of display elements, a signal line for supplying a signal voltage to be applied to the display element, and the display element, and is opened and closed between the display element and the signal line. One or a plurality of auxiliary devices electrostatically coupled to the signal line in a display device including a switching element that controls conduction / non-conduction of the scanning line and a scanning line that supplies a control voltage for controlling opening and closing of the switching element A signal line and means for applying a voltage having a polarity opposite to that of the signal voltage to the one or more auxiliary signal lines are provided.
 本願の表示装置は、前記信号線を構成する第1配線層、及び前記補助信号線を構成する第2配線層を有し、前記第1及び第2配線層の間に絶縁層を設けてあることを特徴とする。 The display device of the present application has a first wiring layer that constitutes the signal line and a second wiring layer that constitutes the auxiliary signal line, and an insulating layer is provided between the first and second wiring layers. It is characterized by that.
 本願では、走査線を通じて各画素が備えるスイッチング素子に制御電圧を供給すると共に、走査線と静電結合した補助走査線に、前記制御電圧とは逆極性の電圧を印加する構成としているので、補助走査線から走査線へ電荷が流入し、走査線における制御電圧の電圧波形が維持される。 In the present application, the control voltage is supplied to the switching element included in each pixel through the scanning line, and a voltage having a polarity opposite to the control voltage is applied to the auxiliary scanning line electrostatically coupled to the scanning line. Charge flows from the scanning line to the scanning line, and the voltage waveform of the control voltage in the scanning line is maintained.
 また、本願では、信号線を通じて表示素子に印加すべき信号電圧を供給すると共に、信号線と静電結合した補助信号線に、前記信号電圧とは逆極性の電圧を印加する構成としているので、補助信号線から信号線へ電荷が流入し、信号線における信号電圧の電圧波形が維持される。 In the present application, the signal voltage to be applied to the display element through the signal line is supplied, and the auxiliary signal line electrostatically coupled to the signal line is configured to apply a voltage having a polarity opposite to that of the signal voltage. Charge flows from the auxiliary signal line into the signal line, and the voltage waveform of the signal voltage in the signal line is maintained.
 本願によれば、多数の画素を備えた液晶表示装置であっても、信号波形の歪みや信号強度の低下を生じさせることなく、各画素を駆動するために必要な信号を確実に供給することができる。 According to the present application, even in a liquid crystal display device having a large number of pixels, a signal necessary for driving each pixel is reliably supplied without causing distortion of the signal waveform or a decrease in signal strength. Can do.
本実施の形態に係る表示装置の概略構成を示す図である。It is a figure which shows schematic structure of the display apparatus which concerns on this Embodiment. 液晶表示パネルにおける各画素の構成を示す模式図である。It is a schematic diagram which shows the structure of each pixel in a liquid crystal display panel. 各画素の等価回路を示す模式図である。It is a schematic diagram which shows the equivalent circuit of each pixel. 液晶表示パネルの構成例を概略的に示す断面図である。It is sectional drawing which shows the structural example of a liquid crystal display panel roughly. 液晶表示パネルの他の構成例を概略的に示す断面図である。It is sectional drawing which shows the other structural example of a liquid crystal display panel roughly. 従来の液晶表示パネルで用いられる制御電圧の電圧波形を示す波形図である。It is a wave form diagram which shows the voltage waveform of the control voltage used with the conventional liquid crystal display panel. 実施の形態1の液晶表示パネルで用いる制御電圧の電圧波形を示す波形図である。4 is a waveform diagram showing a voltage waveform of a control voltage used in the liquid crystal display panel of Embodiment 1. FIG. 制御電圧の電圧波形の変形例を示す波形図である。It is a wave form diagram which shows the modification of the voltage waveform of a control voltage. 実施の形態2の液晶表示パネルにおける各画素の構成を示す模式図である。6 is a schematic diagram illustrating a configuration of each pixel in a liquid crystal display panel according to Embodiment 2. FIG. 各画素の等価回路を示す模式図である。It is a schematic diagram which shows the equivalent circuit of each pixel. 実施の形態2の液晶表示パネルで用いる信号電圧の電圧波形を示す波形図である。6 is a waveform diagram showing a voltage waveform of a signal voltage used in the liquid crystal display panel of Embodiment 2. FIG. 実施の形態3の液晶表示パネルにおける各画素の構成を示す模式図である。6 is a schematic diagram illustrating a configuration of each pixel in a liquid crystal display panel according to Embodiment 3. FIG. 各画素の等価回路を示す模式図である。It is a schematic diagram which shows the equivalent circuit of each pixel. 実施の形態3の液晶表示パネルで用いる制御電圧の電圧波形を示す波形図である。6 is a waveform diagram showing a voltage waveform of a control voltage used in the liquid crystal display panel of Embodiment 3. FIG.
 本発明をその実施の形態を示す図面に基づいて具体的に説明する。
 実施の形態1.
 図1は本実施の形態に係る表示装置の概略構成を示す図である。本実施の形態に係る表示装置は、例えば、液晶表示パネル1、ゲートドライバ2、ソースドライバ3、電源回路4、画像メモリ5、制御回路6等を備えた液晶表示装置である。
The present invention will be specifically described with reference to the drawings showing the embodiments thereof.
Embodiment 1 FIG.
FIG. 1 is a diagram showing a schematic configuration of a display device according to the present embodiment. The display device according to the present embodiment is, for example, a liquid crystal display device including a liquid crystal display panel 1, a gate driver 2, a source driver 3, a power supply circuit 4, an image memory 5, a control circuit 6, and the like.
 液晶表示パネル1は、表示素子11及びスイッチング素子12(図2を参照)により構成された複数の画素10,10,10,…を備える。これらの画素10,10,10,…は、液晶表示パネル1においてマトリクス状(例えば、行方向に1024個、列方向に768個)に配置される。 The liquid crystal display panel 1 includes a plurality of pixels 10, 10, 10,... Configured by a display element 11 and a switching element 12 (see FIG. 2). These pixels 10, 10, 10,... Are arranged in a matrix (for example, 1024 in the row direction and 768 in the column direction) in the liquid crystal display panel 1.
 液晶表示パネル1の各画素10は、画素電極111と対向電極131との間に封入された液晶層120を含む(図4を参照)。本実施の形態では、対向電極131を接地し、画素電極111に印加する電圧を制御することで、液晶層120に印加する電圧の制御を行う。このとき、制御回路6は、ゲートドライバ2及びソースドライバ3を通じて、各画素10の表示素子11及びスイッチング素子12の動作を制御することで、画素電極111に印加する電圧(液晶層120への印加電圧)を制御する。画素電極111への印加電圧を制御することにより、各画素10における液晶層120の光透過率を調整し、各画素10の表示輝度を定める。 Each pixel 10 of the liquid crystal display panel 1 includes a liquid crystal layer 120 sealed between the pixel electrode 111 and the counter electrode 131 (see FIG. 4). In this embodiment mode, the voltage applied to the liquid crystal layer 120 is controlled by grounding the counter electrode 131 and controlling the voltage applied to the pixel electrode 111. At this time, the control circuit 6 controls the operation of the display element 11 and the switching element 12 of each pixel 10 through the gate driver 2 and the source driver 3, thereby applying a voltage (application to the liquid crystal layer 120) to the pixel electrode 111. Voltage). By controlling the voltage applied to the pixel electrode 111, the light transmittance of the liquid crystal layer 120 in each pixel 10 is adjusted, and the display luminance of each pixel 10 is determined.
 制御回路6は、各画素10における液晶層120に印加する電圧を制御するために、外部から入力される同期信号に基づき、メモリ制御信号、電源制御信号、ソースドライバ制御信号、及びゲートドライバ制御信号を生成し、生成した各制御信号を、それぞれ画像メモリ5、電源回路4、ソースドライバ3、ゲートドライバ2へ出力する。 The control circuit 6 controls a voltage applied to the liquid crystal layer 120 in each pixel 10 based on a synchronization signal input from the outside, a memory control signal, a power supply control signal, a source driver control signal, and a gate driver control signal. And the generated control signals are output to the image memory 5, the power supply circuit 4, the source driver 3, and the gate driver 2, respectively.
 画像メモリ5は、入力される表示データを一時的に記憶し、制御回路6から入力されたメモリ制御信号に同期して液晶表示パネル1に表示すべき画素データをソースドライバ3へ出力する。なお、画像メモリ5は、制御回路6に内蔵され、制御回路6の内部処理を経てソースドライバ3へ画像データを出力する構成であってもよい。 The image memory 5 temporarily stores input display data, and outputs pixel data to be displayed on the liquid crystal display panel 1 to the source driver 3 in synchronization with a memory control signal input from the control circuit 6. The image memory 5 may be built in the control circuit 6 and output image data to the source driver 3 through internal processing of the control circuit 6.
 ここで、入力される同期信号及び表示データは、携帯電話機、携帯型ゲーム機等に搭載されたCPU又はLCDコントロールICから出力されるLCD信号、パーソナルコンピュータ(PC)のCRT出力信号をA/D変換した信号、PC等に搭載されたビデオRAMを制御回路6が直接的に制御して取得した信号等に含まれるものである。 Here, the synchronization signal and display data that are input include the LCD signal output from the CPU or LCD control IC mounted on the mobile phone, portable game machine, etc., and the CRT output signal of the personal computer (PC) as A / D. The converted signal and the signal obtained by the control circuit 6 directly controlling the video RAM mounted on the PC or the like are included.
 電源回路4は、制御回路6から入力された電源制御信号に同期して、ゲートドライバ2用の駆動電圧、及びソースドライバ3用の駆動電圧を生成し、それぞれゲートドライバ2及びソースドライバ3へ出力する。 The power supply circuit 4 generates a drive voltage for the gate driver 2 and a drive voltage for the source driver 3 in synchronization with the power supply control signal input from the control circuit 6, and outputs them to the gate driver 2 and the source driver 3, respectively. To do.
 ゲートドライバ2は、制御回路6から入力されたゲートドライバ制御信号に同期して、スイッチング素子12をオン/オフ制御する制御電圧Vgを順次出力し、走査線であるゲート主配線20に印加する。また、実施の形態1において、ゲートドライバ2は、制御回路6から入力されたゲートドライバ制御信号に同期して、ゲート主配線20に印加する制御電圧とは逆極性の電圧-Vgを順次出力し、副走査線であるゲート副配線21へ印加する。 The gate driver 2 sequentially outputs a control voltage Vg for controlling on / off of the switching element 12 in synchronization with the gate driver control signal input from the control circuit 6 and applies it to the gate main wiring 20 which is a scanning line. In the first embodiment, the gate driver 2 sequentially outputs a voltage −Vg having a polarity opposite to the control voltage applied to the gate main wiring 20 in synchronization with the gate driver control signal input from the control circuit 6. Then, it is applied to the gate sub-wiring 21 which is a sub-scanning line.
 ソースドライバ3は、制御回路6から入力されたソースドライバ制御信号に同期して、画像メモリ5から出力された画素データを取り込み、画素データに応じた信号電圧Vsを順次出力する。ソースドライバ3が出力する信号電圧Vsは、対応するスイッチング素子12がオンである場合に、液晶表示パネル1の信号線であるソース配線(ソース主配線)30を介して、各画素10の表示素子11(画素電極111)へ供給される。 The source driver 3 takes in the pixel data output from the image memory 5 in synchronization with the source driver control signal input from the control circuit 6, and sequentially outputs the signal voltage Vs corresponding to the pixel data. The signal voltage Vs output from the source driver 3 is displayed on the display element of each pixel 10 via the source line (source main line) 30 that is a signal line of the liquid crystal display panel 1 when the corresponding switching element 12 is on. 11 (pixel electrode 111).
 図2は液晶表示パネル1における各画素10の構成を示す模式図である。前述のように、液晶表示パネル1は、マトリクス状に配置した複数の画素10,10,10,…を備える。図2では、簡略化のために、1つの行を構成する画素10,10,10,…の一部を示している。 FIG. 2 is a schematic diagram showing the configuration of each pixel 10 in the liquid crystal display panel 1. As described above, the liquid crystal display panel 1 includes a plurality of pixels 10, 10, 10,... Arranged in a matrix. In FIG. 2, for simplification, a part of the pixels 10, 10, 10,... Constituting one row is shown.
 1つの行を構成する画素10,10,10,…には、各行に対応して形成されるゲート主配線20を介して、ゲートドライバ2からの制御電圧Vgが順次供給される。ゲートドライバ2からの制御電圧Vgがスイッチング素子12に印加されている間、そのスイッチング素子12はオンとなり、対応する表示素子11はソース配線30に導通する。このとき、ソースドライバ3から出力する信号電圧Vsを、ソース配線30を介して表示素子11へ供給することにより、表示素子11(画素電極111)に対し、所望の信号電圧Vsを印加することができる。 The control voltage Vg from the gate driver 2 is sequentially supplied to the pixels 10, 10, 10,... Constituting one row through the gate main wiring 20 formed corresponding to each row. While the control voltage Vg from the gate driver 2 is applied to the switching element 12, the switching element 12 is turned on, and the corresponding display element 11 is conducted to the source line 30. At this time, by supplying the signal voltage Vs output from the source driver 3 to the display element 11 via the source line 30, the desired signal voltage Vs can be applied to the display element 11 (pixel electrode 111). it can.
 実施の形態1では、ゲート主配線20に静電結合されたゲート副配線21を備え、ゲート主配線20が供給する制御電圧Vgとは逆極性の電圧-Vgをゲート副配線21に印加する。すなわち、ゲート主配線20及びゲート副配線21は、平衡配線をなすように構成されている。 In the first embodiment, a gate sub-wiring 21 electrostatically coupled to the gate main wiring 20 is provided, and a voltage −Vg having a polarity opposite to the control voltage Vg supplied by the gate main wiring 20 is applied to the gate sub-wiring 21. That is, the gate main wiring 20 and the gate sub wiring 21 are configured to form a balanced wiring.
 図3は各画素10の等価回路を示す模式図である。各画素10において、スイッチング素子12は、例えば、TFT12aにより表すことができ(図10を参照)、表示素子11は、画素電極111と対向電極131との間の液晶容量11aとして表すことができる。 FIG. 3 is a schematic diagram showing an equivalent circuit of each pixel 10. In each pixel 10, the switching element 12 can be represented by, for example, a TFT 12a (see FIG. 10), and the display element 11 can be represented as a liquid crystal capacitor 11a between the pixel electrode 111 and the counter electrode 131.
 TFT12aのゲート端子は、ゲート主配線20に接続され、TFT12aのソース端子はソース配線30に接続されている。TFT12aのドレイン端子は、液晶容量11aの一端側(画素電極111)に接続されている。また、本実施の形態では、液晶容量11aの他端側(対向電極131)は接地されている。 The gate terminal of the TFT 12 a is connected to the gate main wiring 20, and the source terminal of the TFT 12 a is connected to the source wiring 30. The drain terminal of the TFT 12a is connected to one end side (pixel electrode 111) of the liquid crystal capacitor 11a. In the present embodiment, the other end side (counter electrode 131) of the liquid crystal capacitor 11a is grounded.
 TFT12aは、ゲートドライバ2からライン順次に供給される制御電圧Vgがゲート主配線20を介して印加されることによってオン/オフ制御される。TFT12aのオン期間には、ソースドライバ3から各ソース配線30を通じて供給される信号電圧Vsが液晶容量11aに印加される。この信号電圧Vsの大きさを制御することにより、各画素10における液晶層120の光透過率(各画素10の表示輝度)を制御することができる。 The TFT 12a is ON / OFF controlled by applying a control voltage Vg supplied line-sequentially from the gate driver 2 through the gate main wiring 20. During the on period of the TFT 12a, the signal voltage Vs supplied from the source driver 3 through each source line 30 is applied to the liquid crystal capacitor 11a. By controlling the magnitude of the signal voltage Vs, the light transmittance of the liquid crystal layer 120 in each pixel 10 (display luminance of each pixel 10) can be controlled.
 また、図3では、ゲート主配線20とゲート副配線21との静電結合を容量結合により示している。ゲート副配線21には、ゲート主配線20が供給する制御電圧Vgとは逆極性の電圧-Vgを印加することにより、ゲート主配線20には、容量25を介してゲート副配線21から電荷が流れ込み、ゲート主配線20の電位(電圧波形)を保持することができる。
 なお、図3では、ゲート主配線20とゲート副配線21との静電結合を容量結合により示したが、容量及び抵抗により結合されるものであってもよい。
In FIG. 3, electrostatic coupling between the gate main wiring 20 and the gate sub-wiring 21 is shown by capacitive coupling. A voltage −Vg having a polarity opposite to the control voltage Vg supplied by the gate main wiring 20 is applied to the gate sub wiring 21, whereby charges are supplied to the gate main wiring 20 from the gate sub wiring 21 through the capacitor 25. The potential (voltage waveform) of the gate main wiring 20 can be maintained.
In FIG. 3, the electrostatic coupling between the gate main wiring 20 and the gate sub-wiring 21 is shown by capacitive coupling, but may be coupled by capacitance and resistance.
 図4は液晶表示パネル1の構成例を概略的に示す断面図である。液晶表示パネル1は、各画素10がマトリクス状に形成されるTFT基板110、液晶物質が封入されることによって形成される液晶層120、及びカラーフィルタ等が形成されるCF基板130を備える。TFT基板110及びCF基板130は、例えばガラス基板であり、TFT基板110の一面側には、各画素10に対応する画素電極111が形成される。また、画素電極111に対向するCF基板130の一面側には対向電極131が形成される。 FIG. 4 is a cross-sectional view schematically showing a configuration example of the liquid crystal display panel 1. The liquid crystal display panel 1 includes a TFT substrate 110 in which each pixel 10 is formed in a matrix, a liquid crystal layer 120 formed by enclosing a liquid crystal substance, and a CF substrate 130 on which a color filter and the like are formed. The TFT substrate 110 and the CF substrate 130 are, for example, glass substrates, and pixel electrodes 111 corresponding to the respective pixels 10 are formed on one surface side of the TFT substrate 110. Further, a counter electrode 131 is formed on one surface side of the CF substrate 130 facing the pixel electrode 111.
 TFT基板110の他面側には、保護膜112、ソース配線層113、半導体層114、及び絶縁層115が積層される。また、絶縁層115の内部には、上述したゲート主配線20を構成するゲート主配線層116、及びゲート副配線21を構成するゲート副配線層117が形成される。図4に示す構成例では、ゲート主配線層116及びゲート副配線層117は、積層方向に物理的に離隔した状態で形成され、両者の間には絶縁層115が設けられている。このような構成により、ゲート主配線20及びゲート副配線21は互いに静電結合し、絶縁層115を介した電荷の受け渡しが行われる。 On the other surface side of the TFT substrate 110, a protective film 112, a source wiring layer 113, a semiconductor layer 114, and an insulating layer 115 are laminated. In addition, the gate main wiring layer 116 constituting the gate main wiring 20 and the gate sub wiring layer 117 constituting the gate sub wiring 21 are formed inside the insulating layer 115. In the configuration example shown in FIG. 4, the gate main wiring layer 116 and the gate sub wiring layer 117 are formed in a state of being physically separated in the stacking direction, and an insulating layer 115 is provided between them. With such a configuration, the gate main wiring 20 and the gate sub-wiring 21 are electrostatically coupled to each other, and charge is transferred through the insulating layer 115.
 図5は液晶表示パネル1の他の構成例を概略的に示す断面図である。図5に示す構成例では、絶縁層115の内部にて、ゲート主配線層116及びゲート副配線層117を面内方向に並置している点が図4に示す構成例と相違する。ゲート主配線層116及びゲート副配線層117は、面内方向に物理的に離隔した状態で形成され、両者の間には絶縁層115が設けられている。このような構成により、ゲート主配線20及びゲート副配線21は互いに静電結合し、絶縁層115を介した電荷の受け渡しが行われる。 FIG. 5 is a cross-sectional view schematically showing another configuration example of the liquid crystal display panel 1. The configuration example shown in FIG. 5 is different from the configuration example shown in FIG. 4 in that the gate main wiring layer 116 and the gate sub wiring layer 117 are juxtaposed in the in-plane direction inside the insulating layer 115. The gate main wiring layer 116 and the gate sub wiring layer 117 are formed in a state of being physically separated in the in-plane direction, and an insulating layer 115 is provided therebetween. With such a configuration, the gate main wiring 20 and the gate sub-wiring 21 are electrostatically coupled to each other, and charge is transferred through the insulating layer 115.
 図5に示す構成例では、ゲート主配線層116及びゲート副配線層117を同一工程にて形成することができる。また、ゲート主配線層116及びゲート副配線層117を並置することにより開口率が低下する懸念があるが、平衡配線では、配線の細線化が可能であるため、開口率の低下を抑制することができる。 In the configuration example shown in FIG. 5, the gate main wiring layer 116 and the gate sub wiring layer 117 can be formed in the same process. Further, there is a concern that the aperture ratio may be reduced by juxtaposing the gate main wiring layer 116 and the gate sub-wiring layer 117. However, in the balanced wiring, the wiring can be thinned, so that the reduction in the aperture ratio is suppressed. Can do.
 以下、ゲート主配線20及びゲート副配線21を通じて供給する制御電圧の電圧波形について説明する。 Hereinafter, the voltage waveform of the control voltage supplied through the gate main wiring 20 and the gate sub-wiring 21 will be described.
 図6は従来の液晶表示パネルで用いられる制御電圧の電圧波形を示す波形図である。ゲートドライバが出力する制御電圧の電圧波形は、例えば、図6(a)に示すような矩形波である。ゲートドライバからの信号の伝送距離が短い位置にある表示素子には、図6(a)に示す電圧波形と略同じ電圧波形の信号が入力される。 FIG. 6 is a waveform diagram showing a voltage waveform of a control voltage used in a conventional liquid crystal display panel. The voltage waveform of the control voltage output from the gate driver is, for example, a rectangular wave as shown in FIG. A signal having a voltage waveform substantially the same as the voltage waveform shown in FIG. 6A is input to the display element at a position where the transmission distance of the signal from the gate driver is short.
 しかしながら、上記電圧波形を有する信号は、ゲート配線を通じて伝送される間に、回路の抵抗、浮遊容量等の影響を受ける。信号の伝送距離が長くなる程、回路の抵抗、浮遊容量等の影響が大きくなるため、ゲートドライバから離隔した位置にある表示素子には、図6(b)に示すような、波形が歪み、信号強度が低下した制御電圧が印加されることになる。このため、一定の電圧波形を有する制御電圧をゲートドライバから出力した場合であっても、ゲートドライバから近い位置にある表示素子と、ゲートドライバから離れた位置にある表示素子とでは、印加される制御電圧の大きさに明らかな差異が生じる。 However, the signal having the voltage waveform is affected by circuit resistance, stray capacitance, etc. while being transmitted through the gate wiring. The longer the signal transmission distance, the greater the influence of circuit resistance, stray capacitance, etc., so the display element located at a position away from the gate driver has a distorted waveform as shown in FIG. A control voltage with a reduced signal strength is applied. For this reason, even when a control voltage having a constant voltage waveform is output from the gate driver, it is applied between the display element located near the gate driver and the display element located away from the gate driver. There is a clear difference in the magnitude of the control voltage.
 図7は実施の形態1の液晶表示パネル1で用いる制御電圧の電圧波形を示す波形図である。実施の形態1に係る液晶表示パネル1は、各行につき静電結合したゲート主配線20及びゲート副配線21を備え、ゲート主配線20には、スイッチング素子12をオン/オフ制御するための制御電圧Vgを印加し、ゲート副配線21には、制御電圧Vgとは逆極性の電圧-Vgを印加することを特徴の1つとしている。 FIG. 7 is a waveform diagram showing voltage waveforms of control voltages used in the liquid crystal display panel 1 of the first embodiment. The liquid crystal display panel 1 according to Embodiment 1 includes a gate main wiring 20 and a gate sub-wiring 21 that are electrostatically coupled for each row, and the gate main wiring 20 has a control voltage for controlling on / off of the switching element 12. One characteristic is that Vg is applied and a voltage −Vg having a polarity opposite to that of the control voltage Vg is applied to the gate sub-wiring 21.
 ゲートドライバ2がゲート主配線20に供給する制御電圧の電圧波形を図7(a)の下段に示すような矩形波とした場合、ゲート副配線21には、例えば、図7(a)の上段に示す如く、ゲート主配線20に供給する制御電圧の電圧波形の正負を反転させた電圧波形を印加する。 When the voltage waveform of the control voltage supplied to the gate main wiring 20 by the gate driver 2 is a rectangular wave as shown in the lower part of FIG. 7A, the gate sub-wiring 21 includes, for example, the upper part of FIG. As shown in FIG. 6, a voltage waveform obtained by inverting the positive / negative of the voltage waveform of the control voltage supplied to the gate main wiring 20 is applied.
 これらの電圧波形を有する制御電圧をそれぞれゲート主配線20及びゲート副配線21に印加した場合、ゲート主配線20には、静電結合を介してゲート副配線21からの電荷が流れ込み、それぞれの電圧波形を維持する作用が得られる。この結果、ゲートドライバ2から離隔した箇所においても、図7(b)に示すように、ゲート主配線20及びゲート副配線21における電圧波形の歪みは小さく、信号強度の低下も抑制される。 When control voltages having these voltage waveforms are applied to the gate main wiring 20 and the gate sub wiring 21, respectively, charges from the gate sub wiring 21 flow into the gate main wiring 20 through electrostatic coupling, and the respective voltages. The effect of maintaining the waveform is obtained. As a result, as shown in FIG. 7B, the distortion of the voltage waveform in the gate main wiring 20 and the gate sub-wiring 21 is small even at a location separated from the gate driver 2, and a decrease in signal strength is also suppressed.
 図8は制御電圧の電圧波形の変形例を示す波形図である。図7に示した例では、ゲート主配線20に供給する制御電圧の電圧波形の正負を反転させた電圧波形をゲート副配線21に印加する構成とした。しかしながら、ゲート主配線20に供給する制御電圧とは逆極性の電圧をゲート副配線21に印加することにより、ゲート主配線20には、静電結合を介してゲート副配線21からの電荷が流れ込むという作用が得られる。このため、位相及び振幅強度を含めて電圧波形を完全に反転させる必要はない。例えば、図8(a)の下段に示す矩形波の電圧波形を有する制御電圧をゲート主配線20に印加し、図8(a)の上段に示すように位相及び信号振幅が少しだけ相違する電圧波形の制御電圧をゲート副配線21に印加する構成としてもよい。 FIG. 8 is a waveform diagram showing a modification of the voltage waveform of the control voltage. In the example shown in FIG. 7, the voltage waveform obtained by inverting the positive / negative voltage waveform of the control voltage supplied to the gate main wiring 20 is applied to the gate sub-wiring 21. However, when a voltage having a polarity opposite to the control voltage supplied to the gate main wiring 20 is applied to the gate sub-wiring 21, charges from the gate sub-wiring 21 flow into the gate main wiring 20 through electrostatic coupling. The effect is obtained. For this reason, it is not necessary to completely invert the voltage waveform including the phase and amplitude intensity. For example, a control voltage having a rectangular wave voltage waveform shown in the lower part of FIG. 8A is applied to the gate main wiring 20, and the phase and the signal amplitude are slightly different as shown in the upper part of FIG. 8A. A configuration in which a waveform control voltage is applied to the gate sub-wiring 21 may be adopted.
 互いに静電結合したゲート主配線20及びゲート副配線21に対し、逆極性の制御電圧を印加した場合、ゲート主配線20には、静電結合を介してゲート副配線21からの電荷が流れ込み、それぞれの電圧波形を維持する作用が得られる。この結果、ゲートドライバ2から離隔した箇所においても、図8(b)に示すように、ゲート主配線20及びゲート副配線21における電圧波形の歪みは小さく、信号強度の低下も抑制される。 When a control voltage having a reverse polarity is applied to the gate main wiring 20 and the gate sub-wiring 21 that are electrostatically coupled to each other, charges from the gate sub-wiring 21 flow into the gate main wiring 20 via the electrostatic coupling, The effect of maintaining each voltage waveform is obtained. As a result, even at a location separated from the gate driver 2, as shown in FIG. 8B, the distortion of the voltage waveform in the gate main wiring 20 and the gate sub wiring 21 is small, and the decrease in signal strength is also suppressed.
 以上のように、実施の形態1では、行方向に多数の画素10,10,10,…が並ぶ場合であっても、それらの画素10,10,10,…を略同一の電圧波形を有する制御電圧により制御することができる。このため、配線抵抗が高い場合であっても、電位の変化を少なくすることができ、配線の細線化や薄膜化が可能となる。 As described above, in the first embodiment, even when a large number of pixels 10, 10, 10,... Are arranged in the row direction, these pixels 10, 10, 10,. It can be controlled by a control voltage. For this reason, even if the wiring resistance is high, the potential change can be reduced, and the wiring can be made thinner or thinner.
 実施の形態2.
 実施の形態1では、ゲート主配線20に静電結合したゲート副配線21を設け、ゲート副配線21にはゲート主配線20が供給する制御電圧Vgとは逆極性の電圧-Vgを印加する構成としたが、ソース主配線30に静電結合した配線を設け、当該配線には、ソース主配線30が供給する信号電圧Vsとは逆極性の電圧-Vsを印加する構成としてもよい。
 実施の形態2では、ソース主配線30への適用例について説明を行う。なお、液晶表示装置における駆動系の構成は、実施の形態1と同様であるため、その説明を省略することとする。
Embodiment 2. FIG.
In the first embodiment, a gate sub-wiring 21 electrostatically coupled to the gate main wiring 20 is provided, and a voltage −Vg having a polarity opposite to the control voltage Vg supplied from the gate main wiring 20 is applied to the gate sub-wiring 21. However, a configuration may be adopted in which a wiring electrostatically coupled to the source main wiring 30 is provided and a voltage −Vs having a polarity opposite to the signal voltage Vs supplied from the source main wiring 30 is applied to the wiring.
In the second embodiment, an application example to the source main wiring 30 will be described. Note that the configuration of the drive system in the liquid crystal display device is the same as that in Embodiment 1, and thus the description thereof is omitted.
 図9は実施の形態2の液晶表示パネル1における各画素10の構成を示す模式図である。液晶表示パネル1は、マトリクス状に配置した複数の画素10,10,10,…を備える。図9では、簡略化のために、1つの列を構成する画素10,10,10,…の一部を示している。 FIG. 9 is a schematic diagram showing the configuration of each pixel 10 in the liquid crystal display panel 1 of the second embodiment. The liquid crystal display panel 1 includes a plurality of pixels 10, 10, 10,... Arranged in a matrix. In FIG. 9, for simplification, a part of the pixels 10, 10, 10,... Constituting one column is shown.
 1つの列を構成する画素10,10,10,…には、各列に対応して形成されるソース主配線30を介して、ソースドライバ3からの信号電圧Vsが順次供給される。ゲートドライバ2からの制御電圧Vgがスイッチング素子12に印加されている間、そのスイッチング素子12はオンとなり、対応する表示素子11はソース主配線30に導通する。このとき、ソースドライバ3から出力する信号電圧Vsを、ソース主配線30を介して表示素子11へ供給することにより、表示素子11(画素電極111)に対し、所望の信号電圧Vsを印加することができる。 The signal voltage Vs from the source driver 3 is sequentially supplied to the pixels 10, 10, 10,... Constituting one column through the source main wiring 30 formed corresponding to each column. While the control voltage Vg from the gate driver 2 is applied to the switching element 12, the switching element 12 is turned on, and the corresponding display element 11 is conducted to the source main wiring 30. At this time, by applying the signal voltage Vs output from the source driver 3 to the display element 11 via the source main wiring 30, the desired signal voltage Vs is applied to the display element 11 (pixel electrode 111). Can do.
 実施の形態2では、ソース主配線30に静電結合されたソース副配線31を備え、ソース主配線30が供給する信号電圧Vsとは逆極性の電圧-Vsをソース副配線31に印加する。すなわち、ソース主配線30及びソース副配線31は、平衡配線をなすように構成されている。 In the second embodiment, a source sub-wiring 31 electrostatically coupled to the source main wiring 30 is provided, and a voltage −Vs having a polarity opposite to the signal voltage Vs supplied by the source main wiring 30 is applied to the source sub-wiring 31. That is, the source main wiring 30 and the source sub-wiring 31 are configured to form a balanced wiring.
 図10は各画素10の等価回路を示す模式図である。各画素10において、スイッチング素子12は、例えば、TFT12aにより表すことができ、表示素子11は、画素電極111と対向電極131との間の液晶容量11aとして表すことができる。 FIG. 10 is a schematic diagram showing an equivalent circuit of each pixel 10. In each pixel 10, the switching element 12 can be represented by, for example, a TFT 12a, and the display element 11 can be represented as a liquid crystal capacitor 11a between the pixel electrode 111 and the counter electrode 131.
 TFT12aのゲート端子は、ゲート主配線20に接続され、TFT12aのソース端子はソース主配線30に接続されている。TFT12aのドレイン端子は、液晶容量11aの一端側(画素電極111)に接続されている。また、本実施の形態では、液晶容量11aの他端側(対向電極131)は接地されている。 The gate terminal of the TFT 12 a is connected to the gate main wiring 20, and the source terminal of the TFT 12 a is connected to the source main wiring 30. The drain terminal of the TFT 12a is connected to one end side (pixel electrode 111) of the liquid crystal capacitor 11a. In the present embodiment, the other end side (counter electrode 131) of the liquid crystal capacitor 11a is grounded.
 TFT12aは、ゲートドライバ2からライン順次に供給される制御電圧Vgがゲート主配線20を介して印加されることによってオン/オフ制御される。TFT12aのオン期間には、ソースドライバ3から各ソース主配線30を通じて供給される信号電圧Vsが液晶容量11aに印加される。この信号電圧Vsの大きさを制御することにより、各画素10における液晶層120の光透過率(各画素10の表示輝度)を制御することができる。 The TFT 12a is ON / OFF controlled by applying a control voltage Vg supplied line-sequentially from the gate driver 2 through the gate main wiring 20. During the ON period of the TFT 12a, the signal voltage Vs supplied from the source driver 3 through each source main wiring 30 is applied to the liquid crystal capacitor 11a. By controlling the magnitude of the signal voltage Vs, the light transmittance of the liquid crystal layer 120 in each pixel 10 (display luminance of each pixel 10) can be controlled.
 また、図10では、ソース主配線30とソース副配線31との静電結合を容量結合により示している。ソース副配線31には、ソース主配線30が供給する信号電圧Vsとは逆極性の電圧-Vsを印加することにより、ソース主配線30には、容量35を介してソース副配線31から電荷が流れ込み、ソース主配線30の電位(電圧波形)を保持することができる。
 なお、図10では、ソース主配線30とソース副配線31との静電結合を容量結合により示したが、容量及び抵抗により結合されるものであってもよい。
In FIG. 10, electrostatic coupling between the source main wiring 30 and the source sub-wiring 31 is shown by capacitive coupling. By applying a voltage −Vs having a polarity opposite to that of the signal voltage Vs supplied from the source main wiring 30 to the source sub wiring 31, electric charges are supplied to the source main wiring 30 from the source sub wiring 31 through the capacitor 35. The potential (voltage waveform) of the source main wiring 30 can be maintained.
In FIG. 10, the electrostatic coupling between the source main wiring 30 and the source sub-wiring 31 is shown by capacitive coupling, but may be coupled by capacitance and resistance.
 図11は実施の形態2の液晶表示パネル1で用いる信号電圧の電圧波形を示す波形図である。実施の形態2に係る液晶表示パネル1は、各列につき静電結合したソース主配線30及びソース副配線31を備え、ソース主配線30には、表示素子11に供給する信号電圧Vsを印加し、ソース副配線31には、信号電圧Vsとは逆極性の電圧-Vsを印加することを特徴の1つとしている。 FIG. 11 is a waveform diagram showing voltage waveforms of signal voltages used in the liquid crystal display panel 1 of the second embodiment. The liquid crystal display panel 1 according to Embodiment 2 includes a source main line 30 and a source sub-line 31 that are electrostatically coupled to each column, and a signal voltage Vs supplied to the display element 11 is applied to the source main line 30. One feature is that a voltage −Vs having a polarity opposite to that of the signal voltage Vs is applied to the source sub-wiring 31.
 ソースドライバ3がソース主配線30に供給する信号電圧の電圧波形を図11(a)の下段に示すような矩形波とした場合、ソース副配線31には、例えば、図11(a)の上段に示す如く、ソース主配線30に供給する信号電圧の電圧波形の正負を反転させた電圧波形を印加する。 When the voltage waveform of the signal voltage supplied to the source main wiring 30 by the source driver 3 is a rectangular wave as shown in the lower part of FIG. 11A, the source sub-wiring 31 includes, for example, the upper part of FIG. As shown, a voltage waveform obtained by inverting the positive / negative of the voltage waveform of the signal voltage supplied to the source main wiring 30 is applied.
 これらの電圧波形を有する信号電圧をそれぞれソース主配線30及びソース副配線31に印加した場合、ソース主配線30には、静電結合を介してソース副配線31からの電荷が流れ込み、それぞれの電圧波形を維持する作用が得られる。この結果、ソースドライバ3から離隔した箇所においても、図11(b)に示すように、ソース主配線30及びソース副配線31における電圧波形の歪みは小さく、信号強度の低下も抑制される。 When signal voltages having these voltage waveforms are respectively applied to the source main wiring 30 and the source sub-wiring 31, charges from the source sub-wiring 31 flow into the source main wiring 30 through electrostatic coupling, and the respective voltages The effect of maintaining the waveform is obtained. As a result, even at a location separated from the source driver 3, as shown in FIG. 11B, the distortion of the voltage waveform in the source main wiring 30 and the source sub wiring 31 is small, and the decrease in signal strength is also suppressed.
 以上のように、実施の形態2では、列方向に多数の画素10,10,10,…が並ぶ場合であっても、それらの画素10,10,10,…に対し、略同一の電圧波形を有する信号電圧を供給することができる。よって、各画素10に対応する画素電極111の電位を略一定にすることができ、画素間の表示輝度のばらつきを抑えることができる。また、配線抵抗が高い場合であっても、電位の変化を少なくすることができるため、配線の細線化や薄膜化が可能となる。 As described above, in the second embodiment, even when a large number of pixels 10, 10, 10,... Are arranged in the column direction, substantially the same voltage waveform is applied to these pixels 10, 10, 10,. A signal voltage can be provided. Therefore, the potential of the pixel electrode 111 corresponding to each pixel 10 can be made substantially constant, and variations in display luminance between pixels can be suppressed. Further, even when the wiring resistance is high, the potential change can be reduced, so that the wiring can be made thinner or thinner.
 実施の形態2では、ソース主配線30に供給する信号電圧の電圧波形の正負を反転させた信号電圧をソース副配線31に印加する構成とした。しかしながら、ソース主配線30に供給する信号電圧とは逆極性の電圧をソース副配線31に印加することにより、ソース主配線30には、静電結合を介してソース副配線31からの電荷が流れ込むという作用が得られる。このため、位相及び振幅強度を含めて電圧波形を完全に反転させる必要はない。例えば、図11(a)の下段に示す矩形波の電圧波形を有する信号電圧をソース主配線30に印加し、位相及び信号振幅が少しだけ相違し、逆極性の信号電圧をゲート副配線21に印加する構成としてもよい。 In the second embodiment, the signal voltage obtained by inverting the positive / negative of the voltage waveform of the signal voltage supplied to the source main wiring 30 is applied to the source sub wiring 31. However, by applying a voltage having a polarity opposite to that of the signal voltage supplied to the source main wiring 30 to the source sub wiring 31, charges from the source sub wiring 31 flow into the source main wiring 30 through electrostatic coupling. The effect is obtained. For this reason, it is not necessary to completely invert the voltage waveform including the phase and amplitude intensity. For example, a signal voltage having a rectangular wave voltage waveform shown in the lower part of FIG. 11A is applied to the source main wiring 30, and a signal voltage having a slightly different phase and signal amplitude and a reverse polarity is applied to the gate sub-wiring 21. It is good also as a structure to apply.
 実施の形態3.
 実施の形態1では、ゲート主配線20に静電結合したゲート副配線21を設け、ゲート副配線21にはゲート主配線20が供給する制御電圧Vgとは逆極性の電圧-Vgを印加する構成としたが、ゲート副配線を複数設ける構成としてもよい。
 実施の形態3では、複数のゲート副配線を設けた構成について説明を行う。なお、液晶表示装置における駆動系の構成は、実施の形態1と同様であるため、その説明を省略することとする。
Embodiment 3 FIG.
In the first embodiment, a gate sub-wiring 21 electrostatically coupled to the gate main wiring 20 is provided, and a voltage −Vg having a polarity opposite to the control voltage Vg supplied from the gate main wiring 20 is applied to the gate sub-wiring 21. However, a configuration in which a plurality of gate subwirings are provided may be employed.
In Embodiment 3, a configuration in which a plurality of gate sub-wirings are provided will be described. Note that the configuration of the drive system in the liquid crystal display device is the same as that in Embodiment 1, and thus the description thereof is omitted.
 図12は実施の形態3の液晶表示パネル1における各画素10の構成を示す模式図である。前述のように、液晶表示パネル1は、マトリクス状に配置した複数の画素10,10,10,…を備える。図2では、簡略化のために、1つの行を構成する画素10,10,10,…の一部を示している。 FIG. 12 is a schematic diagram showing the configuration of each pixel 10 in the liquid crystal display panel 1 of the third embodiment. As described above, the liquid crystal display panel 1 includes a plurality of pixels 10, 10, 10,... Arranged in a matrix. In FIG. 2, for simplification, a part of the pixels 10, 10, 10,... Constituting one row is shown.
 1つの行を構成する画素10,10,10,…には、各行に対応して形成されるゲート主配線20を介して、ゲートドライバ2からの制御電圧Vgが順次供給される。ゲートドライバ2からの制御電圧Vgがスイッチング素子12に印加されている間、そのスイッチング素子12はオンとなり、対応する表示素子11はソース配線30に導通する。このとき、ソースドライバ3から出力する信号電圧Vsを、ソース配線30を介して表示素子11へ供給することにより、表示素子11(画素電極111)に対し、所望の信号電圧Vsを印加することができる。 The control voltage Vg from the gate driver 2 is sequentially supplied to the pixels 10, 10, 10,... Constituting one row through the gate main wiring 20 formed corresponding to each row. While the control voltage Vg from the gate driver 2 is applied to the switching element 12, the switching element 12 is turned on, and the corresponding display element 11 is conducted to the source line 30. At this time, by supplying the signal voltage Vs output from the source driver 3 to the display element 11 via the source line 30, the desired signal voltage Vs can be applied to the display element 11 (pixel electrode 111). it can.
 実施の形態3では、ゲート主配線20に静電結合された2本のゲート副配線21(第1ゲート副配線21a、第2ゲート副配線21b)を備え、ゲート主配線20が供給する制御電圧Vgとは逆極性の電圧-Vgを、それぞれ第1ゲート副配線21a及び第2ゲート副配線21bに印加する。すなわち、ゲート主配線20、並びに第1ゲート副配線21a及び第2ゲート副配線21bは、平衡配線をなすように構成されている。 The third embodiment includes two gate sub-wirings 21 (first gate sub-wiring 21a and second gate sub-wiring 21b) that are electrostatically coupled to the gate main wiring 20, and the control voltage supplied by the gate main wiring 20 A voltage −Vg having a polarity opposite to that of Vg is applied to the first gate sub-wiring 21a and the second gate sub-wiring 21b, respectively. That is, the gate main wiring 20, the first gate sub-wiring 21a, and the second gate sub-wiring 21b are configured to form a balanced wiring.
 図13は各画素10の等価回路を示す模式図である。各画素10において、スイッチング素子12は、例えば、TFT12aにより表すことができ、表示素子11は、画素電極111と対向電極131との間の液晶容量11aとして表すことができる。 FIG. 13 is a schematic diagram showing an equivalent circuit of each pixel 10. In each pixel 10, the switching element 12 can be represented by, for example, a TFT 12a, and the display element 11 can be represented as a liquid crystal capacitor 11a between the pixel electrode 111 and the counter electrode 131.
 TFT12aのゲート端子は、ゲート主配線20に接続され、TFT12aのソース端子はソース配線30に接続されている。TFT12aのドレイン端子は、液晶容量11aの一端側(画素電極111)に接続されている。また、本実施の形態では、液晶容量11aの他端側(対向電極131)は接地されている。 The gate terminal of the TFT 12 a is connected to the gate main wiring 20, and the source terminal of the TFT 12 a is connected to the source wiring 30. The drain terminal of the TFT 12a is connected to one end side (pixel electrode 111) of the liquid crystal capacitor 11a. In the present embodiment, the other end side (counter electrode 131) of the liquid crystal capacitor 11a is grounded.
 TFT12aは、ゲートドライバ2からライン順次に供給される制御電圧Vgがゲート主配線20を介して印加されることによってオン/オフ制御される。TFT12aのオン期間には、ソースドライバ3から各ソース配線30を通じて供給される信号電圧Vsが液晶容量11aに印加される。この信号電圧Vsの大きさを制御することにより、各画素10における液晶層120の光透過率(各画素10の表示輝度)を制御することができる。 The TFT 12a is ON / OFF controlled by applying a control voltage Vg supplied line-sequentially from the gate driver 2 through the gate main wiring 20. During the on period of the TFT 12a, the signal voltage Vs supplied from the source driver 3 through each source line 30 is applied to the liquid crystal capacitor 11a. By controlling the magnitude of the signal voltage Vs, the light transmittance of the liquid crystal layer 120 in each pixel 10 (display luminance of each pixel 10) can be controlled.
 また、図13では、ゲート主配線20と第1ゲート副配線21aとの静電結合、及びゲート主配線20と第2ゲート副配線21bとの静電結合を容量結合により示している。第1及び第2ゲート副配線21a,21bには、それぞれゲート主配線20が供給する制御電圧Vgとは逆極性の電圧-Vgを印加することにより、ゲート主配線20には、容量25a,25bを介して第1及び第2ゲート副配線21a,21bからの電荷が流れ込み、ゲート主配線20の電位(電圧波形)を保持することができる。
 なお、図13では、ゲート主配線20と第1及び第2ゲート副配線21a,21bとの静電結合を容量結合により示したが、容量及び抵抗により結合されるものであってもよい。
In FIG. 13, electrostatic coupling between the gate main wiring 20 and the first gate sub-wiring 21a and electrostatic coupling between the gate main wiring 20 and the second gate sub-wiring 21b are shown by capacitive coupling. A voltage −Vg having a polarity opposite to the control voltage Vg supplied from the gate main wiring 20 is applied to the first and second gate sub-wirings 21 a and 21 b, respectively, so that the capacitors 25 a and 25 b are connected to the gate main wiring 20. Thus, charges from the first and second gate sub-wirings 21a and 21b flow in, and the potential (voltage waveform) of the gate main wiring 20 can be held.
In FIG. 13, the electrostatic coupling between the gate main wiring 20 and the first and second gate subwirings 21a and 21b is shown by capacitive coupling, but may be coupled by capacitance and resistance.
 図14は実施の形態3の液晶表示パネル1で用いる制御電圧の電圧波形を示す波形図である。実施の形態3に係る液晶表示パネル1は、各行につき静電結合したゲート主配線20及び第1及び第2ゲート副配線21a,21bを備え、ゲート主配線20には、スイッチング素子12をオン/オフ制御するための制御電圧Vgを印加し、第1及び第2ゲート副配線21a,21bには、制御電圧Vgとは逆極性の電圧-Vgを印加することを特徴の1つとしている。 FIG. 14 is a waveform diagram showing a voltage waveform of a control voltage used in the liquid crystal display panel 1 of the third embodiment. The liquid crystal display panel 1 according to Embodiment 3 includes a gate main wiring 20 and first and second gate sub-wirings 21a and 21b that are electrostatically coupled to each row, and the switching element 12 is turned on / off in the gate main wiring 20. One of the features is that a control voltage Vg for off control is applied, and a voltage −Vg having a polarity opposite to that of the control voltage Vg is applied to the first and second gate sub-wirings 21a and 21b.
 ゲートドライバ2がゲート主配線20に供給する制御電圧の電圧波形を図14(a)の下段に示すような矩形波とした場合、第1及び第2ゲート副配線21a,21bには、例えば、図14(a)の上段及び中断に示す如く、ゲート主配線20に供給する制御電圧の電圧波形の正負を反転させた電圧波形を印加する。 When the voltage waveform of the control voltage supplied to the gate main wiring 20 by the gate driver 2 is a rectangular wave as shown in the lower part of FIG. 14A, the first and second gate sub-wirings 21a and 21b include, for example, As shown in the upper part and interruption of FIG. 14A, a voltage waveform obtained by inverting the positive / negative of the voltage waveform of the control voltage supplied to the gate main wiring 20 is applied.
 これらの電圧波形を有する制御電圧をそれぞれゲート主配線20及び第1及び第2ゲート副配線21a,21bに印加した場合、ゲート主配線20には、静電結合を介して第1及び第2ゲート副配線21a,21bからの電荷が流れ込み、それぞれの電圧波形を維持する作用が得られる。この結果、ゲートドライバ2から離隔した箇所においても、図14(b)に示すように、ゲート主配線20並びに第1及び第2ゲート副配線21a,21bにおける電圧波形の歪みは小さく、信号強度の低下も抑制される。 When control voltages having these voltage waveforms are respectively applied to the gate main wiring 20 and the first and second gate subwirings 21a and 21b, the gate main wiring 20 is connected to the first and second gates via electrostatic coupling. Charges from the sub-wirings 21a and 21b flow in, and the operation of maintaining the respective voltage waveforms is obtained. As a result, even at a location separated from the gate driver 2, as shown in FIG. 14B, the distortion of the voltage waveform in the gate main wiring 20 and the first and second gate sub wirings 21a and 21b is small, and the signal strength is reduced. The decrease is also suppressed.
 実施の形態3では、ゲート主配線20に供給する制御電圧の電圧波形の正負を反転させた制御電圧を第1及び第2ゲート副配線21a,21bに印加する構成とした。しかしながら、ゲート主配線20に供給する制御電圧とは逆極性の電圧を第1及び第2ゲート副配線21a,21bに印加することにより、ゲート主配線20には、静電結合を介して第1及び第2ソース副配線31a,31bから電荷が流れ込むという作用が得られる。このため、位相及び振幅強度を含めて電圧波形を完全に反転させる必要はない。例えば、図14(a)の下段に示す矩形波の電圧波形を有する制御電圧をゲート主配線20に印加し、位相及び信号振幅が少しだけ相違し、逆極性の信号電圧を第1及び第2ゲート副配線21a,21bに印加する構成としてもよい。 In the third embodiment, the control voltage obtained by inverting the positive / negative of the voltage waveform of the control voltage supplied to the gate main wiring 20 is applied to the first and second gate sub-wirings 21a and 21b. However, by applying a voltage having a polarity opposite to the control voltage supplied to the gate main wiring 20 to the first and second gate sub-wirings 21a and 21b, the gate main wiring 20 is connected to the first via the electrostatic coupling. In addition, an effect that charges flow from the second source sub-wirings 31a and 31b is obtained. For this reason, it is not necessary to completely invert the voltage waveform including the phase and amplitude intensity. For example, a control voltage having a rectangular wave voltage waveform shown in the lower part of FIG. 14A is applied to the gate main wiring 20, and the signal voltages having slightly different phases and signal amplitudes and having opposite polarities are applied to the first and second signal voltages. It may be configured to be applied to the gate sub-wirings 21a and 21b.
 今回開示された実施の形態は、全ての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は、上述した意味ではなく、請求の範囲によって示され、請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。また、各実施の形態で記載されている技術的特徴は、お互いに組み合わせることが可能である。 The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the meanings described above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims. In addition, the technical features described in each embodiment can be combined with each other.
 1 液晶表示パネル
 2 ゲートドライバ
 3 ソースドライバ
 4 電源回路
 5 画像メモリ
 6 制御回路
 10 画素
 11 表示素子
 12 スイッチング素子
 20 ゲート主配線
 21 ゲート副配線
 30 ソース主配線
 31 ソース副配線
DESCRIPTION OF SYMBOLS 1 Liquid crystal display panel 2 Gate driver 3 Source driver 4 Power supply circuit 5 Image memory 6 Control circuit 10 Pixel 11 Display element 12 Switching element 20 Gate main wiring 21 Gate sub wiring 30 Source main wiring 31 Source sub wiring

Claims (4)

  1.  複数の表示素子、該表示素子へ印加すべき信号電圧を供給する信号線、前記表示素子の夫々に対応して設けられ、開閉により前記表示素子と前記信号線との間の導通/非導通を制御するスイッチング素子、及び該スイッチング素子の開閉を制御するための制御電圧を供給する走査線を備えた表示装置において、
     前記走査線に静電結合された1又は複数の補助走査線と、
     前記制御電圧とは逆極性の電圧を前記1又は複数の補助走査線へ印加する手段と
     を備えることを特徴とする表示装置。
    A plurality of display elements, a signal line for supplying a signal voltage to be applied to the display element, and a display line are provided corresponding to each of the display elements, and conduction / non-conduction between the display element and the signal line is achieved by opening and closing. In a display device comprising a switching element to be controlled and a scanning line for supplying a control voltage for controlling opening and closing of the switching element,
    One or more auxiliary scan lines electrostatically coupled to the scan lines;
    And a means for applying a voltage having a polarity opposite to that of the control voltage to the one or more auxiliary scanning lines.
  2.  前記走査線を構成する第1配線層、及び前記補助走査線を構成する第2配線層を有し、前記第1及び第2配線層の間に絶縁層を設けてあることを特徴とする請求項1に記載の表示装置。 A first wiring layer constituting the scanning line and a second wiring layer constituting the auxiliary scanning line are provided, and an insulating layer is provided between the first and second wiring layers. Item 4. The display device according to Item 1.
  3.  複数の表示素子、該表示素子へ印加すべき信号電圧を供給する信号線、前記表示素子の夫々に対応して設けられ、開閉により前記表示素子と前記信号線との間の導通/非導通を制御するスイッチング素子、及び該スイッチング素子の開閉を制御するための制御電圧を供給する走査線を備えた表示装置において、
     前記信号線に静電結合された1又は複数の補助信号線と、
     前記信号電圧とは逆極性の電圧を前記1又は複数の補助信号線へ印加する手段と
     を備えることを特徴とする表示装置。
    A plurality of display elements, a signal line for supplying a signal voltage to be applied to the display element, and a display line are provided corresponding to each of the display elements, and conduction / non-conduction between the display element and the signal line is achieved by opening and closing. In a display device comprising a switching element to be controlled and a scanning line for supplying a control voltage for controlling opening and closing of the switching element,
    One or more auxiliary signal lines electrostatically coupled to the signal lines;
    And a means for applying a voltage having a polarity opposite to that of the signal voltage to the one or more auxiliary signal lines.
  4.  前記信号線を構成する第1配線層、及び前記補助信号線を構成する第2配線層を有し、前記第1及び第2配線層の間に絶縁層を設けてあることを特徴とする請求項3に記載の表示装置。 A first wiring layer constituting the signal line and a second wiring layer constituting the auxiliary signal line are provided, and an insulating layer is provided between the first and second wiring layers. Item 4. The display device according to Item 3.
PCT/JP2014/064008 2013-05-29 2014-05-27 Display device WO2014192762A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-113368 2013-05-29
JP2013113368 2013-05-29

Publications (1)

Publication Number Publication Date
WO2014192762A1 true WO2014192762A1 (en) 2014-12-04

Family

ID=51988790

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/064008 WO2014192762A1 (en) 2013-05-29 2014-05-27 Display device

Country Status (1)

Country Link
WO (1) WO2014192762A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS625296A (en) * 1985-07-01 1987-01-12 日本電気株式会社 Method and circuit for driving active matrix display unit
JPH08166599A (en) * 1994-12-13 1996-06-25 Fujitsu Ltd Liquid crystal display device
JPH10213808A (en) * 1997-01-31 1998-08-11 Sharp Corp Liquid crystal display device
JP2003323152A (en) * 2002-04-26 2003-11-14 Toshiba Matsushita Display Technology Co Ltd Driver circuit and el (electroluminescence) display device
JP2003322865A (en) * 2002-04-30 2003-11-14 Alps Electric Co Ltd Liquid crystal display
JP2009288375A (en) * 2008-05-28 2009-12-10 Seiko Epson Corp Ocb mode liquid crystal device and electronic equipment

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS625296A (en) * 1985-07-01 1987-01-12 日本電気株式会社 Method and circuit for driving active matrix display unit
JPH08166599A (en) * 1994-12-13 1996-06-25 Fujitsu Ltd Liquid crystal display device
JPH10213808A (en) * 1997-01-31 1998-08-11 Sharp Corp Liquid crystal display device
JP2003323152A (en) * 2002-04-26 2003-11-14 Toshiba Matsushita Display Technology Co Ltd Driver circuit and el (electroluminescence) display device
JP2003322865A (en) * 2002-04-30 2003-11-14 Alps Electric Co Ltd Liquid crystal display
JP2009288375A (en) * 2008-05-28 2009-12-10 Seiko Epson Corp Ocb mode liquid crystal device and electronic equipment

Similar Documents

Publication Publication Date Title
US7907106B2 (en) Liquid crystal display and driving method thereof
US9501994B2 (en) Liquid crystal display panel and driving method thereof
JP5290419B2 (en) Active matrix substrate, liquid crystal panel, liquid crystal display device, liquid crystal display unit, television receiver
US8441424B2 (en) Liquid crystal display device and method of driving the same
JP5179670B2 (en) Liquid crystal display
US20160247426A1 (en) Display panel, pixel structure and driving method thereof
US9508304B2 (en) Liquid crystal display panel and driving method thereof
JP5442754B2 (en) Active matrix substrate, liquid crystal panel, liquid crystal display device, liquid crystal display unit, television receiver
WO2016187909A1 (en) Liquid crystal display panel and drive method therefor
JP5717607B2 (en) Electro-optical device and display device
JP5484575B2 (en) Display device
WO2016106879A1 (en) Array substrate and display device
WO2011104947A1 (en) Liquid crystal display device, television receiver and display method employed in liquid crystal display device
JP5484576B2 (en) Display device
US9754547B2 (en) Display apparatus
US10324550B2 (en) Driving method, driver circuit and design method of driver circuit for in-cell touch display panel
WO2012002044A1 (en) Display apparatus, liquid crystal display apparatus and television receiver
WO2014187124A1 (en) Method and device for controlling voltage of electrode
JP6087956B2 (en) Thin film transistor array substrate and liquid crystal display device
US20080122775A1 (en) Display apparatus
WO2014192762A1 (en) Display device
US9558699B2 (en) Liquid crystal display and driving method of the same
KR102016566B1 (en) Liquid crystal display device
JP2011186239A (en) Liquid crystal display device
KR20160004852A (en) Display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14804078

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14804078

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP