WO2014192423A1 - Control structure for adjusting temperature of battery - Google Patents

Control structure for adjusting temperature of battery Download PDF

Info

Publication number
WO2014192423A1
WO2014192423A1 PCT/JP2014/060103 JP2014060103W WO2014192423A1 WO 2014192423 A1 WO2014192423 A1 WO 2014192423A1 JP 2014060103 W JP2014060103 W JP 2014060103W WO 2014192423 A1 WO2014192423 A1 WO 2014192423A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
engine
control
temperature
power
Prior art date
Application number
PCT/JP2014/060103
Other languages
French (fr)
Japanese (ja)
Inventor
横山 亘
圭二 三宅
Original Assignee
株式会社豊田自動織機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社豊田自動織機 filed Critical 株式会社豊田自動織機
Publication of WO2014192423A1 publication Critical patent/WO2014192423A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • B60R16/03Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for supply of electrical power to vehicle subsystems or for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/12Speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/06Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving electric generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N2200/00Parameters used for control of starting apparatus
    • F02N2200/04Parameters used for control of starting apparatus said parameters being related to the starter motor
    • F02N2200/046Energy or power necessary for starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N2200/00Parameters used for control of starting apparatus
    • F02N2200/06Parameters used for control of starting apparatus said parameters being related to the power supply or driving circuits for the starter
    • F02N2200/061Battery state of charge [SOC]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N2200/00Parameters used for control of starting apparatus
    • F02N2200/06Parameters used for control of starting apparatus said parameters being related to the power supply or driving circuits for the starter
    • F02N2200/062Battery current
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N2200/00Parameters used for control of starting apparatus
    • F02N2200/06Parameters used for control of starting apparatus said parameters being related to the power supply or driving circuits for the starter
    • F02N2200/063Battery voltage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N2200/00Parameters used for control of starting apparatus
    • F02N2200/06Parameters used for control of starting apparatus said parameters being related to the power supply or driving circuits for the starter
    • F02N2200/064Battery temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N2200/00Parameters used for control of starting apparatus
    • F02N2200/08Parameters used for control of starting apparatus said parameters being related to the vehicle or its components
    • F02N2200/0801Vehicle speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N2200/00Parameters used for control of starting apparatus
    • F02N2200/08Parameters used for control of starting apparatus said parameters being related to the vehicle or its components
    • F02N2200/0809Electrical loads

Definitions

  • the present invention relates to a control structure for adjusting the temperature of a battery.
  • the present invention has been made to solve such a problem, and it is an object of the present invention to provide a control structure for adjusting the temperature of a battery, which can further improve the fuel consumption.
  • a control structure for adjusting the temperature of the battery is a control structure for adjusting the temperature of the battery mounted on the vehicle, and accommodates the internal combustion engine and the battery
  • the control device includes an engine room and a control device that controls the operation of the internal combustion engine, and the control device has a battery temperature lower than a predetermined temperature threshold, an acceptable power of the battery lower than the predetermined power threshold, and a vehicle speed When the vehicle speed is smaller than a predetermined vehicle speed threshold value, efficiency reduction control is performed to reduce the efficiency of the internal combustion engine.
  • control structure for adjusting the temperature of the battery of the present invention when the temperature of the battery is low, control is performed to reduce the efficiency of the internal combustion engine. It will be accepted. For this reason, fuel consumption improves in the long run.
  • FIG. 1 shows an example of the configuration of a control structure 10 according to the first embodiment of the present invention.
  • Control structure 10 is a control structure for adjusting the temperature of battery 33 mounted on a vehicle, for example.
  • the control structure 10 comprises an engine compartment 20. Further, the control structure 10 includes an engine 30 which is an internal combustion engine, a generator 31 which rotates in conjunction with the engine 30 to generate electric power, a rectifier 32 which is connected to the generator 31 to convert alternating current to direct current, and rectifier 32 , And a temperature sensor 34 for detecting the temperature of the battery 33.
  • the generator 31 may be a motor generator having a function of supplying power to the engine 30 to drive it.
  • the battery 33 is, for example, a lithium ion battery, a nickel hydrogen battery, a lead battery, a capacitor or the like.
  • the control structure 10 includes an engine controller 40, a power generation controller 41, an SOC meter 42, a vehicle speed sensor 43, and an ECU 50.
  • the ECU 50 is a control device, and transmits commands to the engine controller 40 and the power generation controller 41 to control the overall operation of the control structure 10.
  • Engine controller 40 controls the operation of engine 30 in accordance with a command from ECU 50, and controls, for example, the torque and rotational speed of engine 30.
  • the power generation controller 41 detects the number of revolutions of the engine 30, and the current value and the voltage value of the rectifier 32, and controls the operation of the generator 31 in accordance with the command from the ECU 50 based on these values. For example, the field current of the generator 31 is controlled.
  • the SOC meter 42 detects the terminal voltage of the battery 33, and the current value and voltage value of the rectifier 32, measures the state of charge of the battery 33 based on these values, and transmits it to the ECU 50.
  • the vehicle speed sensor 43 detects the vehicle speed of the vehicle and transmits it to the ECU 50.
  • the above-described temperature sensor 34 detects the temperature of the battery 33 and transmits it to the ECU 50.
  • the ECU 50 controls the engine controller 40 and the power generation controller 41 based on the information. Further, the ECU 50 transmits an instruction to the engine controller 40 as described above, and transmits a starter signal to the engine 30 to control the operation of the engine 30.
  • the engine 30, the generator 31, the rectifier 32, the battery 33 and the temperature sensor 34 are housed in the engine room 20.
  • the heat radiation from the engine 30 reaches the entire engine compartment 20, but otherwise, at least the battery 33 is disposed in the area where the heat radiation of the engine 30 can reach.
  • the engine controller 40, the power generation controller 41, and the SOC meter 42 are accommodated in the engine room 20 in the present embodiment, they may not be accommodated in the engine room 20. Further, although the ECU 50 and the vehicle speed sensor 43 are not accommodated in the engine room 20 in the present embodiment, they may be accommodated in the engine room 20.
  • FIG. 2 is a flowchart showing the flow of processing of the ECU 50. Although the flowchart of FIG. 2 ends at the “end” terminal, the process of FIG. 2 is repeatedly executed in practice.
  • the ECU 50 acquires the battery temperature t from the temperature sensor 34 (step S1).
  • the ECU 50 determines whether the acquired battery temperature t is smaller than a predetermined temperature threshold value t1 (step S2).
  • the value representing the temperature threshold value t1 can be stored in advance in the storage means of the ECU 50, for example.
  • the temperature threshold value t1 can be set to, for example, 10 ° C. If the battery temperature t is equal to or higher than the temperature threshold t1, the ECU 50 ends the process. This corresponds to a situation where the acceptable power is sufficiently large, for example due to the battery temperature being high enough. In this case, since the power generation in the following step S6 and the efficiency reduction control in the following step S9 are not executed, the fuel consumption can be maintained higher.
  • the ECU 50 acquires the battery acceptable power Win based on the information from the temperature sensor 34 and the SOC meter 42 (step S3).
  • the battery acceptable power Win may, for example, be predefined as a function of the battery temperature t and the state of charge.
  • the ECU 50 determines whether the acquired battery acceptable power Win is larger than a predetermined power threshold W1 (step S4).
  • the value representing the power threshold value W1 can be stored, for example, in advance in the storage means of the ECU 50.
  • the battery acceptable power Win may be represented by a negative value, in which case the absolute value of the battery acceptable power Win is used for the determination.
  • the ECU 50 instructs the engine controller 40 to increase the output of the engine 30 by an amount corresponding to the battery acceptable power Win (step S5).
  • the controller 31 instructs the power generation controller 41 to generate the battery acceptable power Win (step S6).
  • the radiant heat of the engine 30 is increased.
  • maximum regeneration regeneration of battery acceptable electric power Win
  • I 2 R internal resistance
  • step S4 when the battery acceptable power Win is equal to or less than the power threshold W1 (or smaller than the power threshold W1), the ECU 50 acquires the vehicle speed v from the vehicle speed sensor 43 (step S7). Then, the ECU 50 determines whether the acquired vehicle speed v is larger than a predetermined vehicle speed threshold v1 (step S8).
  • the value representing the vehicle speed threshold v1 can be stored in advance in the storage means of the ECU 50, for example.
  • the ECU 50 executes efficiency reduction control to reduce the efficiency of the engine 30 (step S9). That is, for example, when the battery temperature t is smaller than the temperature threshold t1, the battery acceptable power Win is smaller than the power threshold W1, and the vehicle speed v is smaller than the vehicle speed threshold v1, the ECU 50 executes the efficiency reduction control.
  • efficiency refers to, for example, the conversion efficiency when converting fuel to power, and for example, control to increase the amount of heat generation while maintaining the power (product of torque and rotational speed) output from the engine 30 It corresponds to efficiency reduction control.
  • the efficiency reduction control may be executed in any way, a specific example of the operation control of the engine 30 in the present embodiment will be described next.
  • the efficiency reduction control is control that increases the rotational speed of the engine 30 while maintaining the power of the engine 30.
  • FIG. 3 shows a graph in which the rotational speed of the engine 30 is taken on the horizontal axis and the torque is taken on the vertical axis.
  • the equal power lines P shown by solid lines are all a set of operating points corresponding to a constant power. Different equal power lines P respectively correspond to different powers, and the power is larger at the upper right.
  • the equal efficiency lines E indicated by broken lines are a set of operating points each corresponding to a certain efficiency. Different equal efficiency lines E correspond to different efficiencies, with the inner one being more efficient.
  • the control F for moving this operating point to the point X2 corresponds to the efficiency reduction control. That is, since the points X1 and X2 are on the same equal power line P, the output power is the same, but the points X1 and X2 are on different equal efficiency lines E, so the efficiencies are different (point X1 Is more efficient).
  • the efficiency reduction control is limited to control for increasing the rotational speed of the engine 30 while maintaining the power of the engine 30. That is, by increasing the rotational speed of engine 30, control is performed on the assumption that the efficiency necessarily decreases (though it may theoretically be the case where the efficiency increases as a result, but such a case Included in control).
  • This control focuses on the fact that the operating point of the engine 30 is always on the side where the rotational speed is higher (or more likely) than the point of optimizing the efficiency. It is possible to omit the process of determining whether the efficiency is reduced by controlling the increase or decrease.
  • the ECU 50 ends the process. This corresponds to, for example, a situation in which the heat escapes to the outside of the vehicle even if the warm-up is performed because the vehicle speed is large and the traveling wind is strong, and the effect of the warm-up process is reduced. In this case, since the ECU 50 does not execute the efficiency reduction control, it is possible to avoid the small effect warm-up processing and maintain the fuel consumption higher.
  • the expression "maintaining the power of engine 30" means that points X1 and X2 are located on exactly the same equal power line, but this is not strict. However, they may be located on substantially the same equal power line. Or what is necessary is to keep the power of the engine 30 as identical as possible within the range of practical control.
  • the efficiency reduction control is control for increasing the rotational speed of the engine 30 while maintaining the power of the engine 30, but the efficiency reduction control may have other contents.
  • control may be performed to move the operating point of the engine 30 in the direction of reducing the efficiency while maintaining the power of the engine 30. If this control is represented in FIG. 3, control is made to move the operating point toward the outside of the equal efficiency line E along a certain equal power line P (this control depends on the position of the operating point of the first embodiment). Consistent with control).
  • control for reducing the efficiency of the engine 30 is not limited to the control for moving the operating point along the same equal power line P, as long as it is control for increasing the amount of heat generated in the engine 30.
  • control may be made to change both the power and the efficiency, and consequently to increase the amount of heat generated in the engine 30.
  • the movement of a specific operating point that produces such a result can be appropriately designed by those skilled in the art.
  • steps S7 and S8 may be omitted. That is, when the battery acceptable power Win is larger than the power threshold W1 in step S4, the ECU 50 may execute step S9 (efficiency reduction control to reduce the efficiency of the engine 30) regardless of the vehicle speed.

Abstract

The purpose of the present invention is to provide a control structure for adjusting the temperature of a battery mounted in a vehicle, the control structure achieving further improvement in fuel economy. A control structure (10) for adjusting the temperature of a battery (33) mounted in a vehicle is provided with an engine room (20) that houses an engine (30) and the battery (33). An ECU (50) executes efficiency decrease control for decreasing the efficiency of the engine (30) when the temperature (t) of the battery (33) is lower than a predetermined temperature threshold (t1), the battery acceptable electric power (Win) is smaller than a predetermined electric power threshold (W1), and the vehicle speed (v) is lower than a predetermined vehicle speed threshold (v1).

Description

バッテリの温度を調整するための制御構造Control structure for adjusting battery temperature
 本発明は、バッテリの温度を調整するための制御構造に関する。 The present invention relates to a control structure for adjusting the temperature of a battery.
 バッテリを搭載した車両において、バッテリの温度が低いとバッテリの受入れ可能電力(回生電力)が小さくなり、燃費が悪化する。したがって、燃費向上のためにはバッテリの温度制御が重要である。 In a vehicle equipped with a battery, if the temperature of the battery is low, the acceptable power (regenerative power) of the battery will be small, and the fuel efficiency will deteriorate. Therefore, temperature control of the battery is important to improve fuel consumption.
 エンジン始動時において、バッテリに対する充放電を制御し、これによってバッテリの温度を制御する技術が知られている。このような技術の例は、特許文献1に記載される。 At the time of engine start, there is known a technique for controlling charging / discharging of the battery to thereby control the temperature of the battery. An example of such a technique is described in US Pat.
特開2000-92614号公報JP 2000-92614 A
 しかしながら、従来の技術では、必ずしも十分な温度制御を実現できないという問題がある。たとえば、特許文献1の技術では、バッテリ温度が低い場合には、受入れ可能電力が小さいため充放電の発熱量も小さくなるので、十分にバッテリを暖めることができない。この結果として燃費が悪化するおそれがある。 However, in the prior art, there is a problem that sufficient temperature control can not always be realized. For example, in the technique of Patent Document 1, when the battery temperature is low, the amount of heat generated by charging and discharging is small because the acceptable power is small, so the battery can not be sufficiently warmed. As a result, fuel consumption may be deteriorated.
 本発明は、このような問題を解決するためになされたものであり、バッテリの温度を調整するための制御構造において、燃費をより向上させることができるものを提供することを目的とする。 The present invention has been made to solve such a problem, and it is an object of the present invention to provide a control structure for adjusting the temperature of a battery, which can further improve the fuel consumption.
 上述の問題を解決するため、この発明に係るバッテリの温度を調整するための制御構造は、車両に搭載されるバッテリの温度を調整するための制御構造であって、内燃機関およびバッテリを収容するエンジンルームと、内燃機関の動作を制御する制御装置とを備え、制御装置は、バッテリの温度が所定の温度閾値よりも小さく、バッテリの受入れ可能電力が所定の電力閾値よりも小さく、かつ車速が所定の車速閾値よりも小さい場合に、内燃機関の効率を低下させる効率低下制御を実行する。 In order to solve the above-mentioned problems, a control structure for adjusting the temperature of the battery according to the present invention is a control structure for adjusting the temperature of the battery mounted on the vehicle, and accommodates the internal combustion engine and the battery The control device includes an engine room and a control device that controls the operation of the internal combustion engine, and the control device has a battery temperature lower than a predetermined temperature threshold, an acceptable power of the battery lower than the predetermined power threshold, and a vehicle speed When the vehicle speed is smaller than a predetermined vehicle speed threshold value, efficiency reduction control is performed to reduce the efficiency of the internal combustion engine.
 効率低下制御により、効率が低下して発熱量が増加し、エンジンルーム内のバッテリの温度が上昇することになる。 Due to the efficiency reduction control, the efficiency is reduced and the heat generation amount is increased, and the temperature of the battery in the engine room is increased.
 本発明のバッテリの温度を調整するための制御構造によれば、バッテリの温度が低い場合に、内燃機関の効率を低下させる制御を行うので、バッテリ温度が早急に上昇し、より大きい回生電力を受け入れられるようになる。このため、長期的に見て燃費が向上する。 According to the control structure for adjusting the temperature of the battery of the present invention, when the temperature of the battery is low, control is performed to reduce the efficiency of the internal combustion engine. It will be accepted. For this reason, fuel consumption improves in the long run.
本発明の実施の形態1に係る制御構造の構成の例を示す図である。It is a figure which shows the example of a structure of the control structure which concerns on Embodiment 1 of this invention. 図1のECUの処理の流れの例を示すフローチャートである。It is a flowchart which shows the example of the flow of a process of ECU of FIG. 図1のECUによるエンジンの動作制御の例を示す図である。It is a figure which shows the example of operation control of the engine by ECU of FIG.
 以下、この発明の実施の形態を添付図面に基づいて説明する。
実施の形態1.
 図1に、本発明の実施の形態1に係る制御構造10の構成の例を示す。制御構造10は、たとえば車両に搭載されるバッテリ33の温度を調整するための制御構造である。
Hereinafter, an embodiment of the present invention will be described based on the attached drawings.
Embodiment 1
FIG. 1 shows an example of the configuration of a control structure 10 according to the first embodiment of the present invention. Control structure 10 is a control structure for adjusting the temperature of battery 33 mounted on a vehicle, for example.
 制御構造10はエンジンルーム20を備える。また、制御構造10は、内燃機関であるエンジン30と、エンジン30に連動して回転し発電を行う発電機31と、発電機31に接続されて交流を直流に変換する整流器32と、整流器32から電力を受け取って充電するバッテリ33と、バッテリ33の温度を検出する温度センサ34とを備える。発電機31は、エンジン30に電力を供給して駆動する機能を有するモータジェネレータであってもよい。バッテリ33は、たとえば、リチウムイオンバッテリやニッケル水素バッテリや鉛バッテリ、キャパシタなどである。 The control structure 10 comprises an engine compartment 20. Further, the control structure 10 includes an engine 30 which is an internal combustion engine, a generator 31 which rotates in conjunction with the engine 30 to generate electric power, a rectifier 32 which is connected to the generator 31 to convert alternating current to direct current, and rectifier 32 , And a temperature sensor 34 for detecting the temperature of the battery 33. The generator 31 may be a motor generator having a function of supplying power to the engine 30 to drive it. The battery 33 is, for example, a lithium ion battery, a nickel hydrogen battery, a lead battery, a capacitor or the like.
 制御構造10は、エンジンコントローラ40、発電制御コントローラ41、SOCメータ42、車速センサ43およびECU50を備える。
 ECU50は制御装置であり、エンジンコントローラ40および発電制御コントローラ41に指令を送信することにより、制御構造10の全体の動作を制御する。エンジンコントローラ40は、ECU50からの指令に応じてエンジン30の動作を制御し、たとえばエンジン30のトルクおよび回転数を制御する。発電制御コントローラ41は、エンジン30の回転数と、整流器32の電流値および電圧値とを検出し、これらの値に基づき、ECU50からの指令に応じて発電機31の動作を制御する。たとえば発電機31の界磁電流を制御する。
The control structure 10 includes an engine controller 40, a power generation controller 41, an SOC meter 42, a vehicle speed sensor 43, and an ECU 50.
The ECU 50 is a control device, and transmits commands to the engine controller 40 and the power generation controller 41 to control the overall operation of the control structure 10. Engine controller 40 controls the operation of engine 30 in accordance with a command from ECU 50, and controls, for example, the torque and rotational speed of engine 30. The power generation controller 41 detects the number of revolutions of the engine 30, and the current value and the voltage value of the rectifier 32, and controls the operation of the generator 31 in accordance with the command from the ECU 50 based on these values. For example, the field current of the generator 31 is controlled.
 SOCメータ42は、バッテリ33の端子電圧と、整流器32の電流値および電圧値とを検出し、これらの値に基づき、バッテリ33の充電状態を測定してECU50に送信する。車速センサ43は、車両の車速を検出してECU50に送信する。また、上述の温度センサ34は、バッテリ33の温度を検出してECU50に送信する。ECU50は、これらの情報に基づいてエンジンコントローラ40および発電制御コントローラ41を制御する。また、ECU50は、上述のようにエンジンコントローラ40に指令を送信するとともに、エンジン30にスタータ信号を送信することにより、エンジン30の動作を制御する。 The SOC meter 42 detects the terminal voltage of the battery 33, and the current value and voltage value of the rectifier 32, measures the state of charge of the battery 33 based on these values, and transmits it to the ECU 50. The vehicle speed sensor 43 detects the vehicle speed of the vehicle and transmits it to the ECU 50. Further, the above-described temperature sensor 34 detects the temperature of the battery 33 and transmits it to the ECU 50. The ECU 50 controls the engine controller 40 and the power generation controller 41 based on the information. Further, the ECU 50 transmits an instruction to the engine controller 40 as described above, and transmits a starter signal to the engine 30 to control the operation of the engine 30.
 エンジン30、発電機31、整流器32、バッテリ33および温度センサ34は、エンジンルーム20に収容されている。本実施形態では、エンジンルーム20の全体にエンジン30からの熱放射が届くものとするが、そうでない場合には、少なくともバッテリ33は、エンジン30の熱放射が届く領域に配置される。 The engine 30, the generator 31, the rectifier 32, the battery 33 and the temperature sensor 34 are housed in the engine room 20. In the present embodiment, the heat radiation from the engine 30 reaches the entire engine compartment 20, but otherwise, at least the battery 33 is disposed in the area where the heat radiation of the engine 30 can reach.
 エンジンコントローラ40、発電制御コントローラ41、SOCメータ42は、本実施形態ではエンジンルーム20に収容されているが、エンジンルーム20に収容されない配置であってもよい。また、ECU50および車速センサ43は、本実施形態ではエンジンルーム20には収容されないが、エンジンルーム20に収容されてもよい。 Although the engine controller 40, the power generation controller 41, and the SOC meter 42 are accommodated in the engine room 20 in the present embodiment, they may not be accommodated in the engine room 20. Further, although the ECU 50 and the vehicle speed sensor 43 are not accommodated in the engine room 20 in the present embodiment, they may be accommodated in the engine room 20.
 以上のように構成される制御構造10の動作を、以下に説明する。
 図2は、ECU50の処理の流れを表すフローチャートである。なお図2のフローチャートは「終了」端子において終了しているが、実際には図2の処理が繰り返し実行される。
 まずECU50は、温度センサ34からバッテリ温度tを取得する(ステップS1)。
The operation of the control structure 10 configured as described above will be described below.
FIG. 2 is a flowchart showing the flow of processing of the ECU 50. Although the flowchart of FIG. 2 ends at the “end” terminal, the process of FIG. 2 is repeatedly executed in practice.
First, the ECU 50 acquires the battery temperature t from the temperature sensor 34 (step S1).
 次に、ECU50は、取得したバッテリ温度tが、所定の温度閾値t1よりも小さいか否かを判定する(ステップS2)。温度閾値t1を表す値は、たとえばあらかじめECU50の記憶手段に記憶させておくことができる。また、温度閾値t1は、たとえば10℃とすることができる。バッテリ温度tが温度閾値t1以上であれば、ECU50は処理を終了する。これは、たとえばバッテリ温度が十分に高いことにより、受入れ可能電力が十分に大きくなっている状態に対応する。この場合、下記ステップS6の発電や、下記ステップS9の効率低下制御を実行しないので、燃費をより高く維持することができる。 Next, the ECU 50 determines whether the acquired battery temperature t is smaller than a predetermined temperature threshold value t1 (step S2). The value representing the temperature threshold value t1 can be stored in advance in the storage means of the ECU 50, for example. The temperature threshold value t1 can be set to, for example, 10 ° C. If the battery temperature t is equal to or higher than the temperature threshold t1, the ECU 50 ends the process. This corresponds to a situation where the acceptable power is sufficiently large, for example due to the battery temperature being high enough. In this case, since the power generation in the following step S6 and the efficiency reduction control in the following step S9 are not executed, the fuel consumption can be maintained higher.
 バッテリ温度tが温度閾値t1よりも小さい場合、ECU50は、温度センサ34およびSOCメータ42からの情報に基づき、バッテリ受入れ可能電力Winを取得する(ステップS3)。バッテリ受入れ可能電力Winは、たとえば、バッテリ温度tおよび充電状態の関数としてあらかじめ定義しておくことができる。 If the battery temperature t is smaller than the temperature threshold value t1, the ECU 50 acquires the battery acceptable power Win based on the information from the temperature sensor 34 and the SOC meter 42 (step S3). The battery acceptable power Win may, for example, be predefined as a function of the battery temperature t and the state of charge.
 次に、ECU50は、取得したバッテリ受入れ可能電力Winが、所定の電力閾値W1よりも大きいか否かを判定する(ステップS4)。電力閾値W1を表す値は、たとえばあらかじめECU50の記憶手段に記憶させておくことができる。なお、バッテリ受入れ可能電力Winは負の値によって表される場合があるが、その場合にはバッテリ受入れ可能電力Winの絶対値を判定に用いる。 Next, the ECU 50 determines whether the acquired battery acceptable power Win is larger than a predetermined power threshold W1 (step S4). The value representing the power threshold value W1 can be stored, for example, in advance in the storage means of the ECU 50. The battery acceptable power Win may be represented by a negative value, in which case the absolute value of the battery acceptable power Win is used for the determination.
 バッテリ受入れ可能電力Winが電力閾値W1よりも大きい場合、ECU50は、エンジン30の出力をバッテリ受入れ可能電力Winに相当する量だけ増加させるよう、エンジンコントローラ40に指令する(ステップS5)とともに、発電機31がバッテリ受入れ可能電力Winの発電を行うよう、発電制御コントローラ41に指令する(ステップS6)。この結果、たとえばエンジン30の放射熱が増加する。また、たとえばバッテリ33の状態に応じた最大限の回生(バッテリ受入れ可能電力Winの回生)が行われるので、バッテリ33の内部抵抗(I2R)による発熱が大きくなる。このようにしてバッテリ33の暖機が行われる。ここでECU50は図2の処理を終了する。 If the battery acceptable power Win is larger than the power threshold W1, the ECU 50 instructs the engine controller 40 to increase the output of the engine 30 by an amount corresponding to the battery acceptable power Win (step S5). The controller 31 instructs the power generation controller 41 to generate the battery acceptable power Win (step S6). As a result, for example, the radiant heat of the engine 30 is increased. Further, for example, maximum regeneration (regeneration of battery acceptable electric power Win) is performed according to the state of battery 33, so heat generation by the internal resistance (I 2 R) of battery 33 is increased. Thus, the battery 33 is warmed up. Here, the ECU 50 ends the process of FIG.
 ステップS4において、バッテリ受入れ可能電力Winが電力閾値W1以下である場合(または、電力閾値W1よりも小さい場合)、ECU50は、車速センサ43から車速vを取得する(ステップS7)。そして、ECU50は、取得した車速vが、所定の車速閾値v1よりも大きいか否かを判定する(ステップS8)。車速閾値v1を表す値は、たとえばあらかじめECU50の記憶手段に記憶させておくことができる。 In step S4, when the battery acceptable power Win is equal to or less than the power threshold W1 (or smaller than the power threshold W1), the ECU 50 acquires the vehicle speed v from the vehicle speed sensor 43 (step S7). Then, the ECU 50 determines whether the acquired vehicle speed v is larger than a predetermined vehicle speed threshold v1 (step S8). The value representing the vehicle speed threshold v1 can be stored in advance in the storage means of the ECU 50, for example.
 車速vが車速閾値v1以下である場合(または、車速閾値v1よりも小さい場合)、ECU50は、エンジン30の効率を低下させる効率低下制御を実行する(ステップS9)。すなわち、ECU50は、たとえば、バッテリ温度tが温度閾値t1よりも小さく、バッテリ受入れ可能電力Winが電力閾値W1よりも小さく、かつ、車速vが車速閾値v1よりも小さい場合に、効率低下制御を実行する。ここで、「効率」とは、たとえば燃料を動力に変換する際の変換効率をいい、たとえばエンジン30から出力されるパワー(トルクおよび回転数の積)を維持したまま発熱量を増加させる制御が効率低下制御に相当する。 When the vehicle speed v is equal to or less than the vehicle speed threshold v1 (or smaller than the vehicle speed threshold v1), the ECU 50 executes efficiency reduction control to reduce the efficiency of the engine 30 (step S9). That is, for example, when the battery temperature t is smaller than the temperature threshold t1, the battery acceptable power Win is smaller than the power threshold W1, and the vehicle speed v is smaller than the vehicle speed threshold v1, the ECU 50 executes the efficiency reduction control. Do. Here, “efficiency” refers to, for example, the conversion efficiency when converting fuel to power, and for example, control to increase the amount of heat generation while maintaining the power (product of torque and rotational speed) output from the engine 30 It corresponds to efficiency reduction control.
 効率低下制御はどのように実行されてもよいが、本実施形態におけるエンジン30の動作制御の具体例を次に説明する。本実施形態では、効率低下制御は、エンジン30のパワーを維持しつつエンジン30の回転数を増加させる制御である。 Although the efficiency reduction control may be executed in any way, a specific example of the operation control of the engine 30 in the present embodiment will be described next. In the present embodiment, the efficiency reduction control is control that increases the rotational speed of the engine 30 while maintaining the power of the engine 30.
 図3に、エンジン30の回転数を横軸に、トルクを縦軸にとったグラフを示す。実線で示す等パワーラインPは、いずれも一定のパワーに相当する動作点の集合である。異なる等パワーラインPはそれぞれ異なるパワーに対応し、右上のものほどパワーが大きい。また、破線で示す等効率ラインEは、いずれも一定の効率に相当する動作点の集合である。異なる等効率ラインEはそれぞれ異なる効率に対応し、内側のものほど効率が高い。 FIG. 3 shows a graph in which the rotational speed of the engine 30 is taken on the horizontal axis and the torque is taken on the vertical axis. The equal power lines P shown by solid lines are all a set of operating points corresponding to a constant power. Different equal power lines P respectively correspond to different powers, and the power is larger at the upper right. Further, the equal efficiency lines E indicated by broken lines are a set of operating points each corresponding to a certain efficiency. Different equal efficiency lines E correspond to different efficiencies, with the inner one being more efficient.
 いまエンジン30の動作点が点X1にあるとする。この動作点を点X2に移動させる制御Fは、効率低下制御に相当する。すなわち、点X1および点X2は同じ等パワーラインP上にあるので、出力されるパワーは同じであるが、点X1および点X2は互いに異なる等効率ラインE上にあるので効率が異なる(点X1のほうが効率が高い)。 Now, it is assumed that the operating point of the engine 30 is at point X1. The control F for moving this operating point to the point X2 corresponds to the efficiency reduction control. That is, since the points X1 and X2 are on the same equal power line P, the output power is the same, but the points X1 and X2 are on different equal efficiency lines E, so the efficiencies are different (point X1 Is more efficient).
 このような効率低下制御の結果、エンジン30の効率が低下するのでエンジン30の発熱量が増加し、エンジンルーム20内の温度が上昇する。バッテリ33はエンジンルーム20内に配置されているので、これに伴ってバッテリ33の温度も上昇する。この結果、より早い段階で、より大きい回生電力を受け入れられるようになる。したがって回生が効率的に行えるようになり、長期的に見て燃費が向上する。また、この結果、暖機運転の時間を減少することができ、トータルとしての有毒ガス(二酸化炭素等)発生量を減少することができる。 As a result of such efficiency reduction control, the efficiency of the engine 30 decreases, so the calorific value of the engine 30 increases and the temperature in the engine room 20 rises. Since the battery 33 is disposed in the engine compartment 20, the temperature of the battery 33 also rises accordingly. As a result, larger regenerative power can be accepted earlier. Therefore, the regeneration can be efficiently performed, and the fuel consumption is improved in the long run. Moreover, as a result, the time for warm-up operation can be reduced, and the total amount of toxic gas (carbon dioxide etc.) generated can be reduced.
 本実施形態では、効率低下制御を、エンジン30のパワーを維持しつつエンジン30の回転数を増加させる制御に限定する。すなわち、エンジン30の回転数を増加させることによって、必ず効率が低下すると仮定して制御が行われる(結果として効率が上昇する場合も理論的にはあり得るが、そのような場合も本発明の制御に含まれる)。この制御は、エンジン30の動作点が、効率を最適とする点よりも常に回転数が高い側にある(またはその可能性が高い)という事実に着目したものであり、エンジン30の回転数を増減どちらに制御すれば効率が低下するかという判定処理を省略することができる。 In the present embodiment, the efficiency reduction control is limited to control for increasing the rotational speed of the engine 30 while maintaining the power of the engine 30. That is, by increasing the rotational speed of engine 30, control is performed on the assumption that the efficiency necessarily decreases (though it may theoretically be the case where the efficiency increases as a result, but such a case Included in control). This control focuses on the fact that the operating point of the engine 30 is always on the side where the rotational speed is higher (or more likely) than the point of optimizing the efficiency. It is possible to omit the process of determining whether the efficiency is reduced by controlling the increase or decrease.
 図2のステップS8において、車速vが車速閾値v1よりも大きい場合、ECU50は処理を終了する。これは、たとえば、車速が大きく走行風が強いため、暖機を行っても熱が車外に逃げてしまい暖機処理の効果が小さくなる状況に対応する。この場合には、ECU50は効率低下制御を実行しないので、効果の小さい暖機処理を回避して燃費をより高く維持することができる。 When the vehicle speed v is larger than the vehicle speed threshold v1 in step S8 of FIG. 2, the ECU 50 ends the process. This corresponds to, for example, a situation in which the heat escapes to the outside of the vehicle even if the warm-up is performed because the vehicle speed is large and the traveling wind is strong, and the effect of the warm-up process is reduced. In this case, since the ECU 50 does not execute the efficiency reduction control, it is possible to avoid the small effect warm-up processing and maintain the fuel consumption higher.
 上述の実施の形態1において、「エンジン30のパワーを維持する」という表現は、点X1および点X2が厳密に同一の等パワーライン上に位置するという状態を意味するが、これは厳密でなくともよく、実質的に同じ等パワーライン上に位置するものであればよい。または、エンジン30のパワーを、実用的な制御の範囲内で可能な限り同一に保つものであればよい。 In the above-described first embodiment, the expression "maintaining the power of engine 30" means that points X1 and X2 are located on exactly the same equal power line, but this is not strict. However, they may be located on substantially the same equal power line. Or what is necessary is to keep the power of the engine 30 as identical as possible within the range of practical control.
 上述の実施の形態1では、効率低下制御は、エンジン30のパワーを維持しつつエンジン30の回転数を増加させる制御であるが、効率低下制御は他の内容であってもよい。たとえば、エンジン30のパワーを維持しつつ、効率を低下させる方向にエンジン30の動作点を移動させる制御であってもよい。この制御を図3で表すと、ある等パワーラインPに沿って、等効率ラインEの外側に向けて動作点を移動させる制御となる(この制御は、動作点の位置によって実施の形態1の制御と一致する)。 In the first embodiment described above, the efficiency reduction control is control for increasing the rotational speed of the engine 30 while maintaining the power of the engine 30, but the efficiency reduction control may have other contents. For example, control may be performed to move the operating point of the engine 30 in the direction of reducing the efficiency while maintaining the power of the engine 30. If this control is represented in FIG. 3, control is made to move the operating point toward the outside of the equal efficiency line E along a certain equal power line P (this control depends on the position of the operating point of the first embodiment). Consistent with control).
 また、エンジン30の効率を低下させる制御は、エンジン30において発生する熱量を増加させる制御であれば、動作点を同一の等パワーラインPに沿って移動させる制御に限らない。たとえば、パワーおよび効率の双方を変更し、結果としてエンジン30において発生する熱量を増加させる制御であってもよい。このような結果をもたらす具体的な動作点の移動は、当業者であれば適宜設計可能である。 Further, the control for reducing the efficiency of the engine 30 is not limited to the control for moving the operating point along the same equal power line P, as long as it is control for increasing the amount of heat generated in the engine 30. For example, control may be made to change both the power and the efficiency, and consequently to increase the amount of heat generated in the engine 30. The movement of a specific operating point that produces such a result can be appropriately designed by those skilled in the art.
 実施の形態1において、ステップS7およびS8を省略してもよい。すなわち、ステップS4においてバッテリ受入れ可能電力Winが電力閾値W1よりも大きい場合、ECU50は、車速に関わらずステップS9(エンジン30の効率を低下させる効率低下制御)を実行してもよい。 In the first embodiment, steps S7 and S8 may be omitted. That is, when the battery acceptable power Win is larger than the power threshold W1 in step S4, the ECU 50 may execute step S9 (efficiency reduction control to reduce the efficiency of the engine 30) regardless of the vehicle speed.

Claims (3)

  1.  車両に搭載されるバッテリの温度を調整するための制御構造であって、
     内燃機関およびバッテリを収容するエンジンルームと、
     前記内燃機関の動作を制御する制御装置と
    を備え、
     前記制御装置は、
     前記バッテリの温度が所定の温度閾値よりも小さく、
     前記バッテリの受入れ可能電力が所定の電力閾値よりも小さく、かつ
     車速が所定の車速閾値よりも小さい
    場合に、前記内燃機関の効率を低下させる効率低下制御を実行する、制御構造。
    A control structure for adjusting the temperature of a battery mounted on a vehicle,
    An engine room housing an internal combustion engine and a battery;
    A controller for controlling the operation of the internal combustion engine;
    The controller is
    The temperature of the battery is less than a predetermined temperature threshold,
    A control structure for executing efficiency reduction control that reduces the efficiency of the internal combustion engine when the acceptable power of the battery is smaller than a predetermined power threshold and the vehicle speed is smaller than a predetermined vehicle speed threshold.
  2.  前記効率低下制御は、前記内燃機関のパワーを維持しつつ前記内燃機関の回転数を増加させる制御である、請求項1に記載の制御構造。 The control structure according to claim 1, wherein the efficiency reduction control is control for increasing the rotational speed of the internal combustion engine while maintaining the power of the internal combustion engine.
  3.  前記制御装置は、前記車速が前記車速閾値より大きい場合には、前記効率低下制御を実行しない、請求項1に記載の制御構造。 The control structure according to claim 1, wherein the control device does not execute the efficiency reduction control when the vehicle speed is larger than the vehicle speed threshold.
PCT/JP2014/060103 2013-05-29 2014-04-07 Control structure for adjusting temperature of battery WO2014192423A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-112882 2013-05-29
JP2013112882A JP2014231786A (en) 2013-05-29 2013-05-29 Control structure for adjusting battery temperature

Publications (1)

Publication Number Publication Date
WO2014192423A1 true WO2014192423A1 (en) 2014-12-04

Family

ID=51988463

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/060103 WO2014192423A1 (en) 2013-05-29 2014-04-07 Control structure for adjusting temperature of battery

Country Status (2)

Country Link
JP (1) JP2014231786A (en)
WO (1) WO2014192423A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001268715A (en) * 2000-03-22 2001-09-28 Hitachi Ltd Method for controlling hybrid electric vehicle and warming-up thereof
JP2002291106A (en) * 2001-03-29 2002-10-04 Mitsubishi Motors Corp Battery charger for electric vehicle
JP2003009305A (en) * 2001-06-25 2003-01-10 Nissan Motor Co Ltd Controller for hybrid vehicle
JP2009078807A (en) * 2008-11-10 2009-04-16 Toyota Motor Corp Battery control device and charge/discharge control method for battery
JP2012057553A (en) * 2010-09-09 2012-03-22 Mitsubishi Motors Corp Control device of vehicle
JP2013067203A (en) * 2011-09-20 2013-04-18 Toyota Motor Corp Control device of hybrid vehicle

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001268715A (en) * 2000-03-22 2001-09-28 Hitachi Ltd Method for controlling hybrid electric vehicle and warming-up thereof
JP2002291106A (en) * 2001-03-29 2002-10-04 Mitsubishi Motors Corp Battery charger for electric vehicle
JP2003009305A (en) * 2001-06-25 2003-01-10 Nissan Motor Co Ltd Controller for hybrid vehicle
JP2009078807A (en) * 2008-11-10 2009-04-16 Toyota Motor Corp Battery control device and charge/discharge control method for battery
JP2012057553A (en) * 2010-09-09 2012-03-22 Mitsubishi Motors Corp Control device of vehicle
JP2013067203A (en) * 2011-09-20 2013-04-18 Toyota Motor Corp Control device of hybrid vehicle

Also Published As

Publication number Publication date
JP2014231786A (en) 2014-12-11

Similar Documents

Publication Publication Date Title
US9174629B2 (en) Vehicle
US9676383B2 (en) Vehicle control device and vehicle
JP7072424B2 (en) Vehicle power system
JP5872298B2 (en) Power supply system and automobile control device capable of supplying power to outside
US9834200B2 (en) Vehicle and method of controlling vehicle
JP5836068B2 (en) Vehicle power supply device, electric vehicle
US9895994B2 (en) Vehicle control system
JP2008046751A (en) Photovoltaic power generation system, vehicle, control method for photovoltaic power generation system, and computer readable recording medium with program for making computer perform its control method reocrded
JP6620520B2 (en) Charger
JP2015033154A (en) Battery charge/discharge control device
JP6768813B2 (en) vehicle
JPWO2014073632A1 (en) Power supply
JP5924702B2 (en) Power generation control device for hybrid vehicle and power generation control method for hybrid vehicle
KR20130068411A (en) Control method charging and discharging to battery for hybrid-vehicles
JP2011229305A (en) Vehicular charger
JP2015149818A (en) Electric power control device for vehicle
JP5375036B2 (en) Power generation system
US9909486B2 (en) Vehicle
JP2012249455A (en) Electric system in vehicle
JP2011160530A (en) Battery charging system
JP2017192170A (en) vehicle
WO2014192423A1 (en) Control structure for adjusting temperature of battery
JP2006341708A (en) Controller for hybrid vehicle
JP6719353B2 (en) Power supply control device and power supply control system
JP6224302B2 (en) Fuel cell railway vehicle and power control method for fuel cell railway vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14804342

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14804342

Country of ref document: EP

Kind code of ref document: A1