WO2014192039A1 - 電池保護装置、蓄電システム - Google Patents

電池保護装置、蓄電システム Download PDF

Info

Publication number
WO2014192039A1
WO2014192039A1 PCT/JP2013/003368 JP2013003368W WO2014192039A1 WO 2014192039 A1 WO2014192039 A1 WO 2014192039A1 JP 2013003368 W JP2013003368 W JP 2013003368W WO 2014192039 A1 WO2014192039 A1 WO 2014192039A1
Authority
WO
WIPO (PCT)
Prior art keywords
parameter
unit
storage battery
custom
custom parameter
Prior art date
Application number
PCT/JP2013/003368
Other languages
English (en)
French (fr)
Inventor
恭一 高埜
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Priority to JP2015519496A priority Critical patent/JP5958874B2/ja
Priority to PCT/JP2013/003368 priority patent/WO2014192039A1/ja
Publication of WO2014192039A1 publication Critical patent/WO2014192039A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/18Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for batteries; for accumulators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/006Calibration or setting of parameters

Definitions

  • the present invention relates to a battery protection device for protecting a storage battery, and a power storage system including the battery protection device.
  • the present inventor developed a battery protection device having a function (for example, a breaker) for cutting off a power line connecting the storage battery and the charging / discharging device as needed while monitoring the state of the storage battery and notifying the charging / discharging device.
  • a function for example, a breaker
  • Parameters that give setting values to various functions of the battery protection device are basically defined in the firmware. However, in order to cope with various storage battery modules having different numbers of connected batteries, different specifications, etc., it is desirable that the firmware and parameters can be separated and the parameters can be changed from the outside. However, if the user sets an incorrect parameter, the safety of the power storage system may be impaired.
  • the present invention has been made in view of such a situation, and an object thereof is to provide a battery protection device having both safety and versatility, and a power storage system using the same.
  • a battery protection device is the above-described battery storage device including: a storage battery; a charge / discharge device that charges and discharges the storage battery; and a blocking unit that blocks a power line connecting the storage battery and the charge / discharge device.
  • a battery protection device for protecting a storage battery which determines whether or not a custom parameter set by a user can be used, and if the custom parameter can be used, the custom parameter is used and cannot be used.
  • a parameter selection unit that uses a preset internal parameter for executing the minimum necessary operation, a processing unit that executes a protection process based on the selected parameter, and the custom parameter cannot be used.
  • a setting assistant that outputs a message prompting the user to input a custom parameter to the user interface; and Comprising the message is notified, the cutoff controller for blocking the blocking portion and the set period without being inputted custom parameter has elapsed, the.
  • the power storage system includes a storage battery, a charge / discharge device that charges and discharges the storage battery, a blocking unit that blocks a power line connecting the storage battery, and a battery protection device that protects the storage battery.
  • the battery protection device uses a determination unit that determines whether or not a custom parameter set by a user can be used, and uses the custom parameter when the custom parameter can be used.
  • a parameter selection unit that uses a preset internal parameter for executing the operation, a processing unit that executes a protection process based on the selected parameter, and input of the custom parameter when the custom parameter cannot be used.
  • a setting auxiliary unit that outputs a prompting message to a user interface; and a blocking control unit that blocks the blocking unit when a set period elapses without a custom parameter being input after the message is made.
  • a battery protection device having both safety and versatility can be realized.
  • FIG. 1 is a diagram showing a configuration of a power storage system 100 according to an embodiment of the present invention.
  • the power storage system 100 includes a storage battery unit 10, a breaker 20, a battery protection device 30, and a charge / discharge device 40.
  • the charging / discharging device 40 includes a bidirectional inverter 41 and a control unit 42.
  • the storage battery unit 10 is formed by connecting a plurality of storage battery modules. In FIG. 1, three storage battery modules of a first storage battery module 11, a second storage battery module 12, and a third storage battery module 13 are connected in parallel.
  • Each storage battery module includes a plurality of storage battery cells connected in series and a monitoring unit that monitors the state of the plurality of storage battery cells.
  • the 1st storage battery module 11 is provided with the 1st monitoring part 11a
  • the 2nd storage battery module 12 is provided with the 2nd monitoring part 12a
  • the 3rd storage battery module 13 is provided with the 3rd monitoring part 13a.
  • the monitoring unit includes a current sensor, a voltage sensor, and a temperature sensor (not shown), and monitors the current, voltage, and temperature of each storage battery cell.
  • the monitoring unit transmits monitoring data to the battery protection device 30 in response to a data acquisition request from the battery protection device 30.
  • the plurality of storage battery cells in the storage battery module are not limited to series connection, and may be connected in parallel or in multiple-parallel connection.
  • Breaker 20 is inserted into the power line between storage battery unit 10 and charging / discharging device 40.
  • the breaker 20 has a first contact 21 and a second contact 22.
  • the first contact 21 is inserted between the plus terminal of the bidirectional inverter 41 and the plus terminal of the storage battery unit 10.
  • the second contact 22 is inserted between the negative terminal of the bidirectional inverter 41 and the negative terminal of the storage battery unit 10.
  • the circuit breaker 20 uses a general circuit breaker. Any of a thermal type, a thermal-electromagnetic type, a complete electromagnetic type, and an electronic type may be used.
  • the structure for example, FET which can interrupt
  • the electronic breaker 20 includes a trip coil and an ammeter (not shown) in addition to the first contact 21 and the second contact 22.
  • the ammeter measures the value of the current flowing through the power line and outputs it to the battery protection device 30.
  • the battery protection device 30 controls energization of the trip coil based on the current value acquired from the ammeter.
  • the battery protection device 30 energizes the trip coil to excite the trip coil.
  • the first contact 21 and the second contact 22 are opened to interrupt the circuit. Further, even when the battery protection device 30 receives an interruption command from the storage battery unit 10 or the control unit 42 of the charge / discharge device 40, the battery protection device 30 energizes the trip coil to interrupt the circuit.
  • the charging / discharging device 40 is a device that causes the storage battery unit 10 to be charged from the outside or discharged from the storage battery unit 10 to the outside.
  • the bidirectional inverter 41 of the charging / discharging device 40 performs AC-DC conversion on AC power supplied from an external power source (for example, a system) according to control by the control unit 42 and supplies the AC power to the storage battery unit 10.
  • the control unit 42 When charging the storage battery unit 10 in which a lithium ion battery is used, the control unit 42 performs a constant current charge (CC charge) up to a predetermined set voltage, and bidirectionally performs a constant voltage charge (CV charge) when the set voltage is reached.
  • the inverter 41 is controlled. Specifically, the duty ratio of the switching element (for example, IGBT) included in the bidirectional inverter 41 is adjusted so that the output current value or the output voltage value of the bidirectional inverter 41 is kept constant.
  • the bidirectional inverter 41 performs DC-AC conversion on the direct-current power supplied from the storage battery unit 10 according to control by the control unit 42 and supplies it to the load. If legally permitted, the converted AC power may be reversely flowed into the system.
  • the battery protection device 30 is a device for protecting the storage battery unit 10 and its peripheral circuits.
  • the battery protection device 30 is connected to the monitoring units 11a to 13a in each of the storage battery modules 11 to 13 and the control unit 42 in the charge / discharge device 40 by a communication line.
  • An RS-485 cable, an RS-422 cable, or the like can be used for the communication line.
  • the battery protection device 30 is a device specialized in a basic protection function among the functions of battery management in general at a low cost requirement.
  • FIG. 2 is a diagram illustrating a configuration example of the battery protection device 30 according to the embodiment.
  • the battery protection device 30 includes a processing unit 31, a volatile storage unit 32, and a nonvolatile storage unit 33.
  • the processing unit 31 includes a monitoring data acquisition unit 311, a parameter determination unit 312, a parameter selection unit 313, a main processing unit 314, a notification unit 315, a breaker control unit 316, and a setting auxiliary unit 317.
  • the configuration of the processing unit 31 is depicted as a functional block realized by software processing, hardware processing, or their linkage processing.
  • the monitoring data acquisition unit 311 acquires monitoring data (for example, voltage value, current value, temperature value) indicating the state of the storage battery cell from the monitoring units 11a to 13a of the storage battery modules 11 to 13 via the communication line.
  • the monitoring data acquisition unit 311 periodically transmits a data acquisition request to the monitoring units 11a to 13a of the power storage modules 11 to 13.
  • the monitoring units 11 a to 13 a return the monitoring data to the monitoring data acquisition unit 311 of the battery protection device 30.
  • the monitoring data acquisition unit 311 temporarily stores the received monitoring data in the buffer area in the volatile storage unit 32.
  • the notification unit 315 transmits the state of the storage battery unit 10 and each storage battery cell to the control unit 42 of the charging / discharging device 40 based on the acquired monitoring data via a communication line.
  • the control unit 42 transmits a monitoring data acquisition request to the notification unit 315 of the battery protection device 30.
  • the notification unit 315 returns the monitoring data stored in the buffer area in the volatile storage unit 32.
  • the main processing unit 314 determines normality / abnormality of the storage battery unit 10 based on the monitoring data acquired from each of the storage battery modules 11 to 13, and the notification unit 315 charges only normality / abnormality, not the monitoring data itself. You may notify to the control part 42 of the discharge device 40.
  • the main processing unit 314 reads the firmware and parameters from the nonvolatile storage unit 33, and executes the protection process defined in the firmware with the volatile storage unit 32 as a work area. Details of the protection process will be described later.
  • the parameter determination unit 312 determines whether the custom parameter set by the user can be used.
  • Custom parameters include variable parameters and backup parameters, which will be described later.
  • the parameter determination unit 312 confirms whether or not a custom parameter exists and confirms whether or not the custom parameter is valid.
  • the parameter selection unit 313 uses the custom parameter when the custom parameter can be used, and uses the internal parameter when the custom parameter cannot be used. That is, the custom parameter is used when the custom parameter exists and the custom parameter is valid, and the internal parameter is used otherwise.
  • the internal parameter is a parameter set in advance in the program for executing the minimum necessary operation.
  • the main processing unit 314 executes protection processing based on the selected parameter.
  • Breaker control unit 316 shuts off breaker 20 based on an instruction from main processing unit 314.
  • the setting assisting unit 317 assists a user operation when setting a program or parameters from the external setting device 50 to the battery protection device 30.
  • the setting device 50 corresponds to a computer such as a notebook PC or tablet PC, and the computer and the battery protection device 30 are connected by a communication means such as a USB cable.
  • a manufacturer worker or a user of the power storage system 100 inputs a program or a parameter from the setting device 50 to the battery protection device 30.
  • the charging / discharging device 40 may be responsible for the function of the setting device 50 as long as the charging / discharging device 40 has a user interface necessary and sufficient for performing the setting operation. In the following description, an example in which the charging / discharging device 40 and another setting device 50 are connected to the battery protection device 30 will be described.
  • FIG. 3 is a diagram for explaining the correlation of parameters.
  • the nonvolatile storage unit 33 includes a flash memory 33a and an EEPROM 33b.
  • the volatile storage unit 32 is configured by a RAM.
  • the internal parameters are stored in the flash memory 33a together with the program and parameter check data. Internal parameters and parameter check data are set in the program, and are written into the flash memory 33a when the program is loaded from the setting device 50 to the battery protection device 30. After that, it is not changed except program change and update. In this way, the internal parameters can be set and changed by the design side, and in principle cannot be set, changed or deleted by the user side.
  • Variable parameters are stored in the EEPROM 33b.
  • the variable parameters are written into the EEPROM 33b by the user's command operation from the setting device 50. Thereafter, the variable parameters can be updated and deleted by the same command operation. Note that a manufacturer's operator may set a variable parameter for a user to be shipped to the EEPROM 33b as an initial value when the board is manufactured or shipped.
  • the backup parameters are also saved in the EEPROM 33b.
  • the backup parameter is generated by copying the variable parameter that was used normally last time.
  • the backup parameter is generated after the parameter check is completed.
  • the parameter table exists on the RAM 32a, and a specified parameter group is expanded when the program is started. Any of the internal parameters, variable parameters, and backup parameters is selected and copied to the parameter table.
  • the program operates using the parameter group developed in the parameter table.
  • FIG. 4 is a diagram showing an example of internal parameters and parameter check data.
  • the upper limit of the number of parallel connection of storage battery modules, overdischarge detection voltage, overdischarge detection time, overdischarge release voltage, and overdischarge release time are listed as parameter items.
  • the maximum number of parallel connections is 5 units, the default value of overdischarge detection voltage is 30V, the default value of overdischarge detection time is 1 second, the default value of overdischarge release voltage is 30V, and the default value of overdischarge release time is Each is set to 1 second.
  • ⁇ Data for checking parameter value range is added to each parameter item.
  • the lower limit value of the upper limit of the number of parallel connections is defined as 1 unit, and the upper limit value is defined as 11 units. This example shows that the power storage system 100 supports only up to 11 parallel connections of storage battery modules. Therefore, if the user sets, for example, 12 units as variable parameters, an error occurs.
  • the lower limit of overdischarge detection voltage is specified at 30V.
  • the upper limit of the overdischarge detection time is defined as 2 seconds.
  • the lower limit of overdischarge release voltage is specified at 30V.
  • the lower limit value of the overdischarge release time is defined as 1 second, and the upper limit value is defined as 10 seconds. That is, the user can set an arbitrary number of seconds between 1 and 10 seconds.
  • the overdischarge is determined to be canceled if a voltage of 30 V or higher is continuously detected for a set number of seconds.
  • parameter items shown in FIG. 4 are a part of all the parameter items, and various parameters related to overcharge protection, overcurrent protection, temperature protection, etc. are defined. Further, the default value and the check data are drawn in one table, but they may be defined in separate tables.
  • FIG. 5 and 6 are flowcharts for explaining the operation of the battery protection device 30 according to the embodiment of the present invention.
  • the processing unit 31 of the battery protection device 30 activates software (S10).
  • the parameter selection unit 313 checks ON / OFF of the custom parameter use flag (S11).
  • the custom parameter use flag is a flag that is OFF by default and is updated to ON when the variable parameter setting is completed. When the custom parameter use flag is OFF, for example, when the custom parameter is not set or when the content of the custom parameter is not normal.
  • the parameter selection unit 313 sets internal parameters in the parameter table of the volatile storage unit 32 (S28), and updates the custom parameter status flag to NG (S29). .
  • Step S11 When the custom parameter use flag is ON (Step S11 is ON), the parameter selection unit 313 checks ON / OFF of the backup parameter use flag (S12).
  • the backup parameter use flag is updated to ON when there is no abnormality in the parameter check of the variable parameter that was input at the previous startup and is stored as a backup parameter, and OFF when there is an abnormality or the variable parameter is updated. The flag to be updated.
  • Step S12 When the backup parameter use flag is ON (Step S12 is ON), the parameter selection unit 313 checks ON / OFF of the backup parameter writing completion flag (S13).
  • the backup parameter writing completion flag is updated to OFF at the start of the update operation when updating the backup parameter, and is updated to ON at the end of the update operation. By providing this flag, it is possible to prevent the backup parameter from being loaded during the backup parameter update operation.
  • the parameter selection unit 313 updates the custom parameter use flag to OFF (S14), and sets the internal parameter in the parameter table of the volatile storage unit 32 ( S15).
  • the backup parameter writing completion flag is ON (step S13 ON)
  • the parameter selection unit 313 loads the backup parameter into the work area of the volatile storage unit 32 (S16).
  • step S12 when the backup parameter use flag is OFF (OFF in step S12), the parameter selection unit 313 loads the variable parameter into the work area of the volatile storage unit 32 (S17).
  • the parameter determination unit 312 checks the loaded parameters (S17).
  • the parameter to be checked is a variable parameter or a backup parameter. If the parameter loading is invalid (Y in S18), the parameter selection unit 313 updates the custom parameter use flag to OFF (S14), and sets the internal parameter in the parameter table (S15). If there is no fraud in the parameter loading (N in S18), the process proceeds to the parameter check in step S19.
  • FIG. 7 is a flowchart showing a subroutine of parameter check processing in step S19 of FIG.
  • the parameter determination unit 312 checks whether or not the range of the set value of the loaded parameter is normal (S191). In the example of FIG. 4, it is determined whether or not the set upper limit value of the parallel connection number of storage battery modules is in the range of 1 to 11 units. If it is within the range, it is determined as normal, and if it is out of the range, it is determined as abnormal. This range check is performed for all parameter items.
  • the parameter determination unit 312 checks consistency between the loaded parameters (S192). In the example of FIG. 4, it is determined whether or not the overdischarge detection voltage value is equal to or less than the overdischarge release voltage value. For example, when the former is set to 30V and the latter is set to 25V, there is a problem that it is determined that overdischarge is detected immediately after overdischarge is released between 25 and 30V.
  • the parameter determination unit 312 executes all of the plurality of specified consistency check items, and determines that a combination of parameters that do not satisfy the consistency check condition is abnormal.
  • the parameter selection unit 313 updates the custom parameter use flag to OFF (S14), and sets the internal parameters in the parameter table of the volatile storage unit 32 (S15). If all the loaded parameters are normal (Y in S20), the parameter selection unit 313 updates the custom parameter status flag to OK (S21), and sets the loaded parameters in the parameter table of the volatile storage unit 32. (S22).
  • the parameter selection unit 313 checks ON / OFF of the backup parameter use flag (S23). That is, it is checked whether the loaded parameter is a backup parameter or a variable parameter. When the backup parameter use flag is OFF (S23 OFF), the parameter selection unit 313 updates the backup parameter write completion flag to OFF (S24). The parameter selection unit 313 overwrites the backup parameter with the variable parameter loaded this time, and updates the backup parameter (S25). Transition to FIG. The parameter selection unit 313 updates the backup parameter write completion flag to ON (S26), and updates the backup parameter use flag to ON (S27). If the backup parameter use flag is ON (S23 is ON), steps S24 to S27 are skipped.
  • the parameter selection unit 313 updates the custom parameter status flag to NG (S30), and updates the backup parameter use flag to OFF (S31).
  • the custom parameter status flag is OK by default and is updated to NG when the parameter is invalid.
  • the main processing unit 314 activates the task (S32).
  • the custom parameter status flag is OK (N in S33), that is, when the parameter is normal, the normal mode protection operation is executed.
  • the monitoring data acquisition unit 311 acquires monitoring data from each of the power storage modules 11 to 13 (S34).
  • the notification unit 315 notifies the monitoring data to the charging / discharging device 40 (S35).
  • the breaker control unit 316 shuts off the breaker 20 when the charge / discharge device 40 or the monitoring units 11a to 13a of the power storage modules 11 to 13 receives a shut-off instruction.
  • the power storage system 100 is turned off and an end instruction is received from the charging / discharging device 40 (Y in S36), the operation ends.
  • step S33 if the custom parameter status flag is NG (Y in S33), that is, if the parameter is invalid, the process proceeds to parameter NG processing (S37).
  • FIG. 8 is a flowchart showing a subroutine of parameter NG processing in step S37 of FIG.
  • the main processing unit 314 transmits a charge / discharge prohibition command for the storage battery unit 10 to the charge / discharge device 40 (S371).
  • the setting assistant 317 outputs a message for prompting resetting of the variable parameter to the user interface (S372).
  • a message is displayed on the display of setting device 50.
  • a voice message may be used, and a display message and a voice message may be used in combination.
  • the setting assistant unit 317 outputs a message, and then starts a countdown for detecting the elapse of the setting period (S373).
  • the breaker 20 is shut off and shut down when a set period (for example, 1 minute) elapses after the user can reset the variable parameter.
  • the monitoring data acquisition unit 311 acquires monitoring data from each of the power storage modules 11 to 13 (S374).
  • the notification unit 315 notifies the monitoring data to the charging / discharging device 40 (S375).
  • the notification unit 315 notifies the charge / discharge device 40 of the state of the storage battery unit 10 regardless of which of the variable parameter, the backup parameter, and the internal parameter is used. Therefore, even in the parameter NG mode, the charging / discharging device 40 can recognize the normality / abnormality of the storage battery unit 10 and the basic protection function is executed.
  • the main processing unit 314 When the main processing unit 314 detects charging / discharging of the storage battery unit 10 from the monitoring data value (Y in S376), the main processing unit 314 instructs the breaker control unit 316 to shut off the breaker 20. When receiving the instruction, the breaker control unit 316 shuts off the breaker 20 even before the set period has elapsed (S379).
  • the power supply of the battery protection device 30 is designed to be supplied from the storage battery unit 10, but in the process of detecting the charge / discharge of the storage battery module from the value of the monitoring data described above, the power consumption in the battery protection device 30 The amount is subtracted and determined.
  • the parameter selection unit 313 updates the custom parameter use flag to ON (S380). ), The backup parameter use flag is updated to OFF (S381). Thereafter, the process proceeds to step S11 in FIG. 5, and the custom parameter use flag is checked.
  • the breaker control unit 316 breaks the breaker 20 Is blocked (S379). Until the set period elapses (N in S378), the process returns to step S373 and the countdown continues (S373).
  • the countdown does not stop if the variable parameter is set and checked, but stops after confirming that the parameter is normal. If the reset variable parameter is also invalid, the countdown does not stop. That is, it is set to shut down unless a normal variable parameter is set within a set period after the message is output.
  • FIG. 9 is a diagram showing an example of a message for prompting resetting of the variable parameter.
  • FIG. 9 shows a message when the overdischarge detection voltage illustrated in FIG. 4 is lower than the lower limit value.
  • a message indicating that the time until shutdown, the overdischarge detection voltage value is below the lower limit, and an input window for the overdischarge detection voltage value are displayed. The time until shutdown is counted down over time. The user can reset the variable parameter by inputting and confirming a voltage value of 30 V or more.
  • a safe and highly versatile battery protection device 30 can be realized by providing a variable parameter whose setting can be changed by the user and a parameter NG mode. That is, the battery protection device 30 having high versatility can be constructed by providing a variable parameter whose setting can be changed by the user. This enables mass production and reduces manufacturing costs.
  • the user when the user mistakenly sets a parameter value that impairs the safety of the power storage system 100, the user can safely set the parameter by prompting the user to reset it while ensuring the minimum operation using the internal parameter. Can be set.
  • the charging / discharging device 40 can grasp the state of the storage battery modules 11 to 13 and the state of the breaker 20, and can grasp the basic state of the power storage system 100. Further, by prohibiting charging / discharging of the storage battery unit 10 during parameter setting by the user, the parameter can be set more safely. In a normal configuration in which the power of the battery protection device 30 is supplied from the storage battery unit 10, the power of the storage battery unit 10 cannot be turned off during parameter setting by the user, but safety can be ensured by controlling charging / discharging to be prohibited.
  • the breaker 20 is shut off when the charge / discharge prohibition command is notified to the charge / discharge device 40 and charge / discharge is detected based on the monitoring data of the storage battery modules 11 to 13. Doing a double safety process. This point may be omitted either for simplification of processing.
  • the former may be omitted and a message such as “Stop charging / discharging during parameter setting” may be added to a message prompting the user to reset the variable parameter.
  • the parameter selection unit 313 sets the internal parameter and sets the custom parameter status flag to NG.
  • the custom parameter status flag may be set to OK, and the processing of steps S34 to S36 may be performed.
  • 100 storage system 10 storage battery unit, 11 first storage battery module, 11a first monitoring unit, 12 second storage battery module, 12a second monitoring unit, 13 third storage battery module, 13a third monitoring unit, 20 breaker, 21 first Contact point, 22nd contact point, 30 battery protection device, 31 processing unit, 311 monitoring data acquisition unit, 312 parameter determination unit, 313 parameter selection unit, 314 main processing unit, 315 notification unit, 316 breaker control unit, 317 setting auxiliary unit , 32 volatile storage unit, 32a RAM, 33 non-volatile storage unit, 33a flash memory, 33b EEPROM, 40 charge / discharge device, 41 bidirectional inverter, 42 control unit, 50 setting device, 51 Surface.

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Protection Of Static Devices (AREA)

Abstract

 蓄電システムの電池保護装置30において、パラメータ判定部312は、ユーザにより設定されたカスタムパラメータを使用できるか否か判定する。パラメータ選択部313は、カスタムパラメータを使用可能な場合は当該カスタムパラメータを使用し、使用不可の場合は、必要最小限の動作を実行させるための予め設定された内部パラメータを使用する。主処理部314は、選択されたパラメータに基づき保護処理を実行する。設定補助部317は、カスタムパラメータが使用不可の場合、カスタムパラメータの入力を促すメッセージをユーザインタフェースに出力する。ブレーカ制御部316は、メッセージが通知されてから、カスタムパラメータが入力されずに設定期間が経過するとブレーカ20を遮断する。

Description

電池保護装置、蓄電システム
 本発明は、蓄電池を保護するための電池保護装置、電池保護装置を備える蓄電システムに関する。
 近年、リチウムイオン電池やニッケル水素電池を用いた蓄電システムが普及してきている。蓄電システムでは過電流を抑制することはもちろんのこと、電池劣化の原因となる過放電や過充電の抑制も求められる。特にリチウムイオン電池は他の電池より原理的に発熱リスクが高いため、十分な保護が求められている。
 本発明者は、蓄電池の状態を監視して充放電装置に通知するとともに、必要に応じて蓄電池と充放電装置とを接続する電力線を遮断する機能(例えばブレーカ)を有する電池保護装置を開発している。この電池保護装置の各種機能に設定値を与えるパラメータは、ファームウェア内に規定するのが基本である。しかしながら、電池の接続数、仕様などが異なる様々な蓄電池モジュールに対応するには、ファームウェアとパラメータを切り離し、パラメータを外部から事後的に設定変更できることが望まれる。ただし、ユーザが誤ったパラメータを設定した場合、蓄電システムの安全性が損なわれる可能性がある。
 本発明はこうした状況に鑑みなされたものであり、その目的は、安全性と汎用性を両立した電池保護装置、及びそれを用いた蓄電システムを提供することにある。
 本発明のある態様の電池保護装置は、蓄電池と、前記蓄電池を充放電する充放電装置と、前記蓄電池と前記充放電装置とを接続する電力線を遮断する遮断部と、を備える蓄電システムにおける前記蓄電池を保護するための電池保護装置であって、ユーザにより設定されたカスタムパラメータを使用できるか否か判定する判定部と、前記カスタムパラメータを使用可能な場合は当該カスタムパラメータを使用し、使用不可の場合は、必要最小限の動作を実行させるための予め設定された内部パラメータを使用するパラメータ選択部と、選択されたパラメータに基づき保護処理を実行する処理部と、前記カスタムパラメータが使用不可の場合、カスタムパラメータの入力を促すメッセージをユーザインタフェースに出力する設定補助部と、前記メッセージが通知されてから、カスタムパラメータが入力されずに設定期間が経過すると前記遮断部を遮断する遮断制御部と、を備える。
 本発明の別の態様は、蓄電システムである。この蓄電システムは、蓄電池と、前記蓄電池を充放電する充放電装置と、前記蓄電池とを接続する電力線を遮断する遮断部と、前記蓄電池を保護するための電池保護装置と、を備える。前記電池保護装置は、ユーザにより設定されたカスタムパラメータを使用できるか否か判定する判定部と、前記カスタムパラメータを使用可能な場合は当該カスタムパラメータを使用し、使用不可の場合は、必要最小限の動作を実行させるための予め設定された内部パラメータを使用するパラメータ選択部と、選択されたパラメータに基づき保護処理を実行する処理部と、前記カスタムパラメータが使用不可の場合、カスタムパラメータの入力を促すメッセージをユーザインタフェースに出力する設定補助部と、前記メッセージがなされてから、カスタムパラメータが入力されずに設定期間が経過すると前記遮断部を遮断する遮断制御部と、有する。
 本発明によれば、安全性と汎用性を両立した電池保護装置を実現できる。
本発明の実施の形態に係る蓄電システムの構成を示す図である。 実施の形態に係る電池保護装置の構成例を示す図である。 パラメータの相関関係を説明するための図である。 内部パラメータ及びパラメータチェック用データの一例を示す図である。 本発明の実施の形態に係る電池保護装置の動作を説明するためのフローチャートである(その1)。 本発明の実施の形態に係る電池保護装置の動作を説明するためのフローチャートである(その2)。 図5のステップS19におけるパラメータチェック処理のサブルーチンを示すフローチャートである。 図6のステップS37におけるパラメータNG処理のサブルーチンを示すフローチャートである。 可変パラメータの再設定を促すメッセージの一例を示す図である。
 図1は、本発明の実施の形態に係る蓄電システム100の構成を示す図である。蓄電システム100は、蓄電池ユニット10、ブレーカ20、電池保護装置30及び充放電装置40を備える。充放電装置40は双方向インバータ41及び制御部42を含む。蓄電池ユニット10は複数の蓄電池モジュールが接続されて形成される。図1では第1蓄電池モジュール11、第2蓄電池モジュール12及び第3蓄電池モジュール13の三つの蓄電池モジュールが並列接続されて形成される。
 各蓄電池モジュールは、直列接続された複数の蓄電池セルと、当該複数の蓄電池セルの状態を監視する監視部を備える。図1では第1蓄電池モジュール11は第1監視部11aを備え、第2蓄電池モジュール12は第2監視部12aを備え、第3蓄電池モジュール13は第3監視部13aを備える。
 以下本明細書では蓄電池セルとしてリチウムイオン電池を使用することを想定する。監視部は図示しない電流センサ、電圧センサ及び温度センサを含み、各蓄電池セルの電流、電圧、温度を監視する。監視部は、電池保護装置30からのデータ取得要求に応じて監視データを電池保護装置30に送信する。なお蓄電池モジュール内の複数の蓄電池セルは直列接続に限らず、並列接続または多直多並接続であってもよい。
 ブレーカ20は、蓄電池ユニット10と充放電装置40の間の電力線に挿入される。ブレーカ20は第1接点21、第2接点22を有する。第1接点21は、双方向インバータ41のプラス端子と蓄電池ユニット10のプラス端子の間に挿入される。第2接点22は、双方向インバータ41のマイナス端子と、蓄電池ユニット10のマイナス端子の間に挿入される。ブレーカ20は、一般的なサーキットブレーカを使用する。熱動式、熱動-電磁式、完全電磁式、電子式のいずれを用いてもよい。また、ブレーカ20に限らず、蓄電池ユニット10と充放電装置40との電力線を遮断できる構成(例えばFET)であれば好適に用いられる。
 本実施の形態では電子式のブレーカ20を用いる例を想定する。電子式のブレーカ20は第1接点21、第2接点22の他に、図示しないトリップコイル、電流計を備える。電流計は電力線を流れる電流の値を計測し、電池保護装置30に出力する。電池保護装置30は電流計から取得される電流値にもとづきトリップコイルを通電制御する。電池保護装置30は電力線に過電流が流れるとトリップコイルに通電し、トリップコイルを励磁させる。第1接点21、第2接点22は、トリップコイルが励磁されるとオープンし、回路を遮断する。また電池保護装置30は蓄電池ユニット10、または充放電装置40の制御部42から遮断命令を受信した場合も、トリップコイルに通電して回路を遮断する。
 充放電装置40は蓄電池ユニット10に外部から充電または蓄電池ユニット10から外部へ放電させる装置である。充電時、充放電装置40の双方向インバータ41は、外部電源(例えば、系統)から供給される交流電力を制御部42による制御にしたがいAC-DC変換して蓄電池ユニット10に供給する。
 リチウムイオン電池が使用される蓄電池ユニット10に充電する場合、制御部42は所定の設定電圧まで定電流充電(CC充電)し、当該設定電圧に到達すると定電圧充電(CV充電)するよう双方向インバータ41を制御する。具体的には、双方向インバータ41の出力電流値または出力電圧値が一定値を保つよう、双方向インバータ41に含まれるスイッチング素子(例えば、IGBT)のデューティ比を調整する。
 放電時、双方向インバータ41は、蓄電池ユニット10から供給される直流電力を制御部42による制御にしたがいDC-AC変換し、負荷に供給する。なお法律的に許容されていれば、変換された交流電力を系統に逆潮流してもよい。
 電池保護装置30は、蓄電池ユニット10及びその周辺回路を保護するための装置である。電池保護装置30は、各蓄電池モジュール11~13内の監視部11a~13a、充放電装置40内の制御部42と通信線により接続される。当該通信線にはRS-485ケーブル、RS-422ケーブル等を使用できる。電池保護装置30は低コストの要請の下、電池管理全般の機能の内、基本的な保護機能に特化した装置である。
 図2は、実施の形態に係る電池保護装置30の構成例を示す図である。電池保護装置30は、処理部31、揮発記憶部32、不揮発記憶部33を備える。処理部31は、監視データ取得部311、パラメータ判定部312、パラメータ選択部313、主処理部314、通知部315、ブレーカ制御部316、設定補助部317を含む。処理部31の構成は、ソフトウェア処理、ハードウェア処理またはそれらの連携処理で実現される機能ブロックで描いている。
 監視データ取得部311は、各蓄電池モジュール11~13の監視部11a~13aから蓄電池セルの状態を示す監視データ(例えば、電圧値、電流値、温度値)を、通信線を介して取得する。監視データ取得部311は、定期的にデータ取得要求を各蓄電モジュール11~13の監視部11a~13aに送信する。データ取得要求を受けた監視部11a~13aは、監視データを電池保護装置30の監視データ取得部311に返信する。監視データ取得部311は、受信した監視データを揮発記憶部32内のバッファ領域に一時格納する。
 通知部315は、取得された監視データをもとに蓄電池ユニット10及び各蓄電池セルの状態を充放電装置40の制御部42に、通信線を介して送信する。制御部42は、監視データの取得要求を電池保護装置30の通知部315に送信する。通知部315は、揮発記憶部32内のバッファ領域に格納された監視データを返信する。なお主処理部314が、各蓄電池モジュール11~13から取得された監視データをもとに蓄電池ユニット10の正常/異常を判定し、通知部315は監視データそのものではなく、正常/異常のみを充放電装置40の制御部42に通知してもよい。
 主処理部314は、不揮発記憶部33からファームウェア及びパラメータを読み込み、揮発記憶部32を作業領域として当該ファームウェアに規定された保護処理を実行する。保護処理の詳細は後述する。
 パラメータ判定部312は、ユーザにより設定されたカスタムパラメータを使用できるか否か判定する。カスタムパラメータには後述する可変パラメータとバックアップパラメータがある。パラメータ判定部312は、カスタムパラメータが存在するか否かの確認およびカスタムパラメータが正当であるか不正であるかの確認を行う。
 パラメータ選択部313は、カスタムパラメータを使用可能な場合は当該カスタムパラメータを使用し、使用不可の場合は内部パラメータを使用する。即ち、カスタムパラメータが存在し、かつカスタムパラメータが正当であるときカスタムパラメータを使用し、それ以外のとき内部パラメータを使用する。内部パラメータは、必要最小限の動作を実行させるための予めプログラムに設定されたパラメータである。主処理部314は、選択されたパラメータに基づき保護処理を実行する。
 ブレーカ制御部316は、主処理部314からの指示にもとづきブレーカ20を遮断する。設定補助部317は、外部の設定装置50から電池保護装置30にプログラムまたはパラメータ設定する際のユーザ操作を補助する。設定装置50はノート型PC、タブレット型PCなどのコンピュータが該当し、当該コンピュータと電池保護装置30はUSBケーブルなどの通信手段で接続される。メーカの作業者または蓄電システム100のユーザは、設定装置50から電池保護装置30にプログラムまたはパラメータを入力する。なお充放電装置40が、設定操作を行うに必要十分なユーザインタフェースを備えていれば、設定装置50の機能を充放電装置40が担ってもよい。以下の説明では充放電装置40と別の設定装置50が電池保護装置30に接続される例を挙げる。
 図3は、パラメータの相関関係を説明するための図である。図3の例では不揮発記憶部33は、フラッシュメモリ33a及びEEPROM33bにより構成される。揮発記憶部32はRAMにより構成される。内部パラメータは、プログラム及びパラメータチェック用データとともにフラッシュメモリ33aに保存される。内部パラメータ及びパラメータチェック用データはプラグラム内に設定され、設定装置50から電池保護装置30にプログラムロードされる際にフラッシュメモリ33aに書き込まれる。以降、プログラムの変更、更新以外では変更されない。このように内部パラメータは設計側が設定、変更でき、原則的にユーザ側では設定、変更、削除できない。
 可変パラメータはEEPROM33bに保存される。可変パラメータは、設定装置50からユーザのコマンド操作によりEEPROM33bに書き込まれる。以降、同様のコマンド操作により可変パラメータを更新、削除できる。なお基板製造時または出荷時に、メーカの作業者が、出荷するユーザ向けの可変パラメータを初期値としてEEPROM33bに設定してもよい。
 バックアップパラメータもEEPROM33bに保存される。バックアップパラメータは、前回正常に使用された可変パラメータがコピーされて生成される。バックアップパラメータはパラメータチェック完了後に生成される。
 パラメータテーブルはRAM32a上に存在し、プログラム起動時に指定のパラメータ群が展開される。内部パラメータ、可変パラメータ、バックアップパラメータのいずれかが選択されてパラメータテーブルにコピーされる。パラメータテーブルに展開されたパラメータ群を用いてプログラムは動作する。
 図4は、内部パラメータ及びパラメータチェック用データの一例を示す図である。図4の例では、パラメータ項目として蓄電池モジュールの並列接続数上限、過放電検出電圧、過放電検出時間、過放電解除電圧、過放電解除時間を挙げている。並列接続数上限のデフォルト値は5台、過放電検出電圧のデフォルト値は30V、過放電検出時間のデフォルト値は1秒、過放電解除電圧のデフォルト値は30V、過放電解除時間のデフォルト値は1秒にそれぞれ設定されている。
 各パラメータ項目には、パラメータ値の範囲チェック用のデータが付加されている。並列接続数上限の下限値は1台、上限値は11台と規定されている。この例では蓄電システム100が、蓄電池モジュールの11並列接続までしかサポートしていないことを示している。従ってユーザが可変パラメータとして例えば12台を設定した場合はエラーとなる。
 過放電検出電圧の下限値は30Vに規定されている。過放電検出時間の上限値は2秒に規定されている。これにより過放電検出の判定条件が緩和されすぎないように制限を設けている。従ってユーザが過放電検出電圧の可変パラメータとして例えば、25Vを設定した場合はエラーとなる。また過放電検出時間の可変パラメータとして例えば、3秒を設定した場合もエラーとなる。
 過放電解除電圧の下限値は30Vに規定されている。過放電解除時間の下限値は1秒、上限値は10秒に規定されている。すなわち、ユーザは1~10秒の間で任意の秒数に設定することが可能である。この例では、上述の条件により過放電と判定された状態において、30V以上の電圧を設定した秒数継続して検出したら過放電解除と判定する。
 なお図4に示すパラメータ項目は全パラメータ項目の一部を示すものであり、その他に過充電保護、過電流保護、温度保護などに関連する各種のパラメータが規定される。またデフォルト値とチェック用データを一つのテーブルで描いているが、別々のテーブルに規定されてもよい。
 図5、図6は、本発明の実施の形態に係る電池保護装置30の動作を説明するためのフローチャートである。蓄電システム100の電源がオンされると、電池保護装置30の処理部31はソフトウェアを起動する(S10)。パラメータ選択部313はカスタムパラメータ使用フラグのON/OFFをチェックする(S11)。カスタムパラメータ使用フラグはデフォルトがOFFで、可変パラメータ設定完了時にONに更新されるフラグである。カスタムパラメータ使用フラグがOFFのときとは、例えば、カスタムパラメータが未設定のときや、カスタムパラメータの内容が正常ではなかったときである。
 カスタムパラメータ使用フラグがOFFの場合(ステップS11のOFF)、パラメータ選択部313は内部パラメータを、揮発記憶部32のパラメータテーブルに設定し(S28)、カスタムパラメータ状態フラグをNGに更新する(S29)。
 カスタムパラメータ使用フラグがONの場合(ステップS11のON)、パラメータ選択部313はバックアップパラメータ使用フラグのON/OFFをチェックする(S12)。バックアップパラメータ使用フラグは、前回起動時に入力された可変パラメータのパラメータチェックで異常がなく、バックアップパラメータとして記憶された場合にONに更新され、異常がある場合または可変パラメータが更新された場合にOFFに更新されるフラグである。
 バックアップパラメータ使用フラグがONの場合(ステップS12のON)、パラメータ選択部313はバックアップパラメータ書込完了フラグのON/OFFをチェックする(S13)。バックアップパラメータ書込完了フラグは、バックアップパラメータの更新作業時において更新作業開始時にOFFに更新され、更新作業終了時にONに更新される。このフラグを設けることにより、バックアップパラメータの更新作業中にバックアップパラメータがロードされることを防止できる。
 バックアップパラメータ書込完了フラグがOFFの場合(ステップS13のOFF)、パラメータ選択部313は、カスタムパラメータ使用フラグをOFFに更新し(S14)、内部パラメータを揮発記憶部32のパラメータテーブルに設定する(S15)。バックアップパラメータ書込完了フラグがONの場合(ステップS13のON)、パラメータ選択部313はバックアップパラメータを揮発記憶部32のワークエリアにロードする(S16)。
 ステップS12に戻り、バックアップパラメータ使用フラグがOFFの場合(ステップS12のOFF)、パラメータ選択部313は可変パラメータを揮発記憶部32のワークエリアにロードする(S17)
 パラメータ判定部312は、ロードされたパラメータをチェックする(S17)。チェック対象のパラメータは可変パラメータかバックアップパラメータである。パラメータのロードに不正があった場合(S18のY)、パラメータ選択部313はカスタムパラメータ使用フラグをOFFに更新し(S14)、内部パラメータをパラメータテーブルに設定する(S15)。パラメータのロードに不正がなかった場合(S18のN)、ステップS19のパラメータチェックに遷移する。
 図7は、図5のステップS19におけるパラメータチェック処理のサブルーチンを示すフローチャートである。パラメータ判定部312は、ロードされたパラメータの設定値の範囲が正常か否かチェックする(S191)。図4の例では、設定された蓄電池モジュールの並列接続数上限の値が、1~11台の範囲にあるか否か判定する。範囲内の場合は正常と判定し、範囲外の場合は異常と判定する。この範囲チェックを全てのパラメータ項目について実施する。
 次にパラメータ判定部312は、ロードされた複数のパラメータ間の整合性をチェックする(S192)。図4の例では、過放電検出電圧値が過放電解除電圧値以下であるか否か判定する。例えば前者が30V、後者が25Vに設定されている場合、25~30Vの間では過放電解除後すぐに過放電検出と判定されてしまう不具合が発生する。パラメータ判定部312は、規定された複数の整合性チェック項目を全て実施し、整合性チェック条件を満たさないパラメータの組み合わせを異常と判定する。
 図5に戻る。ロードされたパラメータの少なくとも一つに異常があった場合(S20のN)、パラメータ選択部313はカスタムパラメータ使用フラグをOFFに更新し(S14)、内部パラメータを揮発記憶部32のパラメータテーブルに設定する(S15)。ロードされたパラメータが全て正常であった場合(S20のY)、パラメータ選択部313はカスタムパラメータ状態フラグをOKに更新し(S21)、ロードされたパラメータを揮発記憶部32のパラメータテーブルに設定する(S22)。
 パラメータ選択部313はバックアップパラメータ使用フラグのON/OFFをチェックする(S23)。すなわち、ロードされたパラメータがバックアップパラメータか可変パラメータのいずれであるかをチェックする。バックアップパラメータ使用フラグがOFFの場合(S23のOFF)、パラメータ選択部313はバックアップパラメータ書込完了フラグをOFFに更新する(S24)。パラメータ選択部313は、今回ロードされた可変パラメータをバックアップパラメータに上書きして、バックアップパラメータを更新する(S25)。図6に遷移する。パラメータ選択部313はバックアップパラメータ書込完了フラグをONに更新し(S26)、バックアップパラメータ使用フラグをONに更新する(S27)。バックアップパラメータ使用フラグがONの場合(S23のON)、ステップS24~S27をスキップする。
 図5のステップS15において内部パラメータが設定された後、パラメータ選択部313はカスタムパラメータ状態フラグをNGに更新し(S30)、バックアップパラメータ使用フラグをOFFに更新する(S31)。カスタムパラメータ状態フラグはデフォルトがOKで、パラメータに不正がある場合にNGに更新される。
 パラメータテーブルに可変パラメータ、バックアップパラメータ、内部パラメータのいずれかのパラメータが設定された後、主処理部314はタスクを起動する(S32)。カスタムパラメータ状態フラグがOKの場合(S33のN)、すなわちパラメータが正常だった場合に通常モードの保護動作を実行する。監視データ取得部311は各蓄電モジュール11~13から監視データを取得する(S34)。通知部315は監視データを充放電装置40に通知する(S35)。なお図示しないがブレーカ制御部316は、充放電装置40または各蓄電モジュール11~13の監視部11a~13aから遮断指示があった場合、ブレーカ20を遮断する。蓄電システム100の電源がオフされ、充放電装置40から終了指示を受信すると(S36のY)、動作を終了する。
 ステップS33に戻り、カスタムパラメータ状態フラグがNGの場合(S33のY)、すなわちパラメータに不正がある場合にパラメータNG処理に移行する(S37)。
 図8は、図6のステップS37におけるパラメータNG処理のサブルーチンを示すフローチャートである。主処理部314は充放電装置40に、蓄電池ユニット10の充放電禁止命令を充放電装置40に送信する(S371)。設定補助部317は可変パラメータの再設定を促すメッセージをユーザインタフェースに出力する(S372)。本実施の形態では設定装置50のディスプレイにメッセージを表示させる。なお音声メッセージを用いてもよいし、表示メッセージと音声メッセージを併用してもよい。
 設定補助部317はメッセージを出力した後、設定期間経過を検出するためのカウントダウンを開始する(S373)。パラメータNGモードでは、ユーザが可変パラメータの再設定が可能になってから設定期間(例えば、1分)が経過するとブレーカ20を遮断して、シャットダウンするよう設定されている。
 パラメータNGモードでも通常モードと同様に、監視データ取得部311は各蓄電モジュール11~13から監視データを取得する(S374)。通知部315は監視データを充放電装置40に通知する(S375)。このように通知部315は、可変パラメータ、バックアップパラメータ、内部パラメータのいずれが使用されている場合でも、蓄電池ユニット10の状態を充放電装置40に通知する。従ってパラメータNGモードでも充放電装置40は、蓄電池ユニット10の正常/異常を認識でき、基本となる保護機能は実行される。
 主処理部314は監視データの値から蓄電池ユニット10の充放電を検出すると(S376のY)、ブレーカ制御部316にブレーカ20の遮断を指示する。ブレーカ制御部316は当該指示を受けると、上記設定期間の経過前であってもブレーカ20を遮断する(S379)。なお通常、電池保護装置30の電源は蓄電池ユニット10から供給されるように設計されるが、上述の監視データの値から蓄電池モジュールの充放電を検出する処理において、電池保護装置30での消費電力量は差し引かれて判定される。
 蓄電池ユニット10の充放電が検出されない状態にて(S376のN)、ユーザが可変パラメータの設定を終了した場合(S377のY)、パラメータ選択部313はカスタムパラメータ使用フラグをONに更新し(S380)、バックアップパラメータ使用フラグをOFFに更新する(S381)。その後、図5のステップS11に遷移し、カスタムパラメータ使用フラグのチェックが実行される。蓄電池ユニット10の充放電も検出されず、ユーザの設定終了操作もない状態で(S376のN、S377のN)、メッセージ出力から設定期間経過すると(S378のY)、ブレーカ制御部316はブレーカ20を遮断する(S379)。設定期間が経過するまでは(S378のN)、ステップS373に戻りカウントダウンが継続する(S373)。
 なお可変パラメータが設定され、チェックされただけではカウントダウンは停止せず、パラメータが正常であることが確認されて停止する。再設定された可変パラメータも不正であった場合、カウントダウンは停止しない。即ち、メッセージが出力されてから設定期間内に正常な可変パラメータを設定しない限り、シャットダウンするよう設定されている。
 図9は、可変パラメータの再設定を促すメッセージの一例を示す図である。図9では図4に例示した過放電検出電圧が下限値を下回っていた場合のメッセージを示している。設定装置50の画面51には、シャットダウンまでの時間、過放電検出電圧値が下限値を下回っている旨のメッセージ、過放電検出電圧値の入力ウインドウが表示される。シャットダウンまでの時間は時間経過とともにカウントダウンされる。ユーザは30V以上の電圧値を入力し、確定させることにより可変パラメータの再設定ができる。
 以上説明したように本実施の形態によれば、ユーザにより設定変更可能な可変パラメータと、パラメータNGモードを設けたことにより、安全で汎用性が高い電池保護装置30を実現できる。即ち、ユーザが設定変更可能な可変パラメータを設けたことにより、汎用性が高い電池保護装置30を構築できる。これにより量産化が可能となり製造コストも削減できる。
 またユーザが誤って、蓄電システム100の安全性を損なうパラメータ値を設定した場合、内部パラメータを用いて最低限の動作を保障しつつ、ユーザに再設定を促すことにより、ユーザは安全にパラメータを設定できる。ユーザによるパラメータの設定中も、充放電装置40は蓄電池モジュール11~13の状態やブレーカ20の状態を把握でき、蓄電システム100の基本的な状態を把握できる。またユーザによるパラメータの設定中、蓄電池ユニット10の充放電を禁止することにより、より安全にパラメータを設定できる。電池保護装置30の電源が蓄電池ユニット10から供給される通常の構成では、ユーザによるパラメータ設定中、蓄電池ユニット10の電源をオフできないが、充放電禁止に制御することにより、安全性を確保できる。
 またユーザによるパラメータ設定に時間制限を設けることにより、安全性を確保するとともに、電池保護装置30の電力消費による蓄電池ユニット10の過放電を防止できる。例えば、ユーザがパラメータ設定中に、そのままその場所を離れてしまった場合における無駄な電力消費および過放電を防止できる。
 以上、本発明を実施の形態をもとに説明した。この実施の形態は例示であり、それらの各構成要素や各処理プロセスの組み合わせにいろいろな変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に理解されるところである。
 例えば図8のフローチャートのパラメータNG処理では、充放電禁止命令を充放電装置40に通知しつつ、蓄電池モジュール11~13の監視データをもとに充放電検出がされるとブレーカ20を遮断するという二重の安全処理を実行している。この点、処理の簡素化のためどちらか一方を省略してもよい。例えば、前者を省略し、可変パラメータの再設定を促すメッセージに、「パラメータ設定中、充放電を停止して下さい。」といったメッセージを加えてもよい。
 また、図5、6では、ステップS11でカスタムパラメータ使用フラグがOFFであった場合、パラメータ選択部313は内部パラメータを設定し、カスタムパラメータ状態フラグをNGに設定するが、電池保護装置30の最初の起動時にはカスタムパラメータ状態フラグをOKに設定し、ステップS34~36の処理を行ってもよい。
 100 蓄電システム、 10 蓄電池ユニット、 11 第1蓄電池モジュール、 11a 第1監視部、 12 第2蓄電池モジュール、 12a 第2監視部、 13 第3蓄電池モジュール、 13a 第3監視部、 20 ブレーカ、 21 第1接点、 22 第2接点、 30 電池保護装置、 31 処理部、 311 監視データ取得部、 312 パラメータ判定部、 313 パラメータ選択部、 314 主処理部、 315 通知部、 316 ブレーカ制御部、 317 設定補助部、 32 揮発記憶部、 32a RAM、 33 不揮発記憶部、 33a フラッシュメモリ、 33b EEPROM、 40 充放電装置、 41 双方向インバータ、 42 制御部、 50 設定装置、 51 画面。

Claims (5)

  1.  蓄電池と、前記蓄電池を充放電する充放電装置と、前記蓄電池と前記充放電装置とを接続する電力線を遮断する遮断部と、を備える蓄電システムにおける前記蓄電池を保護するための電池保護装置であって、
     ユーザにより設定されたカスタムパラメータを使用できるか否か判定する判定部と、
     前記カスタムパラメータを使用可能な場合は当該カスタムパラメータを使用し、使用不可の場合は、必要最小限の動作を実行させるための予め設定された内部パラメータを使用するパラメータ選択部と、
     選択されたパラメータに基づき保護処理を実行する処理部と、
     前記カスタムパラメータが使用不可の場合、カスタムパラメータの入力を促すメッセージをユーザインタフェースに出力する設定補助部と、
     前記メッセージが通知されてから、カスタムパラメータが入力されずに設定期間が経過すると前記遮断部を遮断する遮断制御部と、
     を備えることを特徴とする電池保護装置。
  2.  前記蓄電池から前記蓄電池の状態を示す監視データを取得する監視データ取得部と、
     取得された監視データをもとに前記蓄電池の状態を前記充放電装置に通知する通知部と、
     をさらに備え、
     前記通知部は、前記カスタムパラメータ及び前記内部パラメータのいずれが使用されている場合でも、前記蓄電池の状態を通知することを特徴とする請求項1に記載の電池保護装置。
  3.  前記カスタムパラメータが使用不可の場合にて、前記監視データの値から前記蓄電池の充放電が検出された場合、前記遮断制御部は、前記設定期間の経過前であっても前記遮断部を遮断することを特徴とする請求項2に記載の電池保護装置。
  4.  前記カスタムパラメータが使用不可の場合、前記処理部は、前記蓄電池の充放電禁止を前記充放電装置に指示することを特徴とする請求項1から3のいずれかに記載の電池保護装置。
  5.  蓄電池と、
     前記蓄電池を充放電する充放電装置と、前記蓄電池とを接続する電力線を遮断する遮断部と、
     前記蓄電池を保護するための電池保護装置と、を備え、
     前記電池保護装置は、
     ユーザにより設定されたカスタムパラメータを使用できるか否か判定する判定部と、
     前記カスタムパラメータを使用可能な場合は当該カスタムパラメータを使用し、使用不可の場合は、必要最小限の動作を実行させるための予め設定された内部パラメータを使用するパラメータ選択部と、
     選択されたパラメータに基づき保護処理を実行する処理部と、
     前記カスタムパラメータが使用不可の場合、カスタムパラメータの入力を促すメッセージをユーザインタフェースに出力する設定補助部と、
     前記メッセージがなされてから、カスタムパラメータが入力されずに設定期間が経過すると前記遮断部を遮断する遮断制御部と、
     有することを特徴とする蓄電システム。
PCT/JP2013/003368 2013-05-28 2013-05-28 電池保護装置、蓄電システム WO2014192039A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015519496A JP5958874B2 (ja) 2013-05-28 2013-05-28 電池保護装置、蓄電システム
PCT/JP2013/003368 WO2014192039A1 (ja) 2013-05-28 2013-05-28 電池保護装置、蓄電システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/003368 WO2014192039A1 (ja) 2013-05-28 2013-05-28 電池保護装置、蓄電システム

Publications (1)

Publication Number Publication Date
WO2014192039A1 true WO2014192039A1 (ja) 2014-12-04

Family

ID=51988125

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/003368 WO2014192039A1 (ja) 2013-05-28 2013-05-28 電池保護装置、蓄電システム

Country Status (2)

Country Link
JP (1) JP5958874B2 (ja)
WO (1) WO2014192039A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109994787A (zh) * 2017-12-29 2019-07-09 睿能创意公司 基于使用状态维护储能装置的系统和方法
WO2024132261A1 (de) * 2022-12-23 2024-06-27 Schleswig-Holstein Netz AG Verfahren zum betreiben eines schutzsystems

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005151697A (ja) * 2003-11-14 2005-06-09 Sony Corp バッテリパック、バッテリ保護処理装置、およびバッテリ保護処理装置の起動制御方法
JP2005160169A (ja) * 2003-11-21 2005-06-16 Texas Instr Japan Ltd バッテリ保護回路
JP2006320183A (ja) * 2005-05-16 2006-11-24 Texas Instr Japan Ltd バッテリ保護回路

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005151697A (ja) * 2003-11-14 2005-06-09 Sony Corp バッテリパック、バッテリ保護処理装置、およびバッテリ保護処理装置の起動制御方法
JP2005160169A (ja) * 2003-11-21 2005-06-16 Texas Instr Japan Ltd バッテリ保護回路
JP2006320183A (ja) * 2005-05-16 2006-11-24 Texas Instr Japan Ltd バッテリ保護回路

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109994787A (zh) * 2017-12-29 2019-07-09 睿能创意公司 基于使用状态维护储能装置的系统和方法
WO2024132261A1 (de) * 2022-12-23 2024-06-27 Schleswig-Holstein Netz AG Verfahren zum betreiben eines schutzsystems

Also Published As

Publication number Publication date
JPWO2014192039A1 (ja) 2017-02-23
JP5958874B2 (ja) 2016-08-02

Similar Documents

Publication Publication Date Title
JP5289616B2 (ja) 電子モジュール形態の無停電電源装置のための回路および方法
US9806547B2 (en) Circuits, devices, methods and systems to secure power-up for battery operating devices even with low current chargers and to execute other performances
CN104037835B (zh) 信息处理装置以及信息处理装置的电池充电方法
US8421414B2 (en) Mobile electronic device and power management method of battery module thereof
JP2002517153A (ja) 電源を制御するための方法および装置
US20190324086A1 (en) Battery Leakage Current Check Method, Apparatus, And Circuit
JP2010166752A (ja) 電池パックおよび充放電制御方法
CN103823542A (zh) 电子设备及其控制方法
TW201807924A (zh) 電池並聯搭接的控制方法
JP5958874B2 (ja) 電池保護装置、蓄電システム
JP2008275323A (ja) 電池パック、及び電池駆動機器
US10099567B2 (en) Vehicle auxiliary battery charging system
JP5378893B2 (ja) 電気自動車用充電システム
JP2010230371A (ja) 二次電池容量試験システム及び二次電池容量試験方法
JP2017200252A (ja) 連系運転制御装置およびこれを用いた分散型電源の運転システム並びに連系運転制御方法
JP5533608B2 (ja) 電池監視装置
KR20090027506A (ko) 전자기기의 전원제어장치 및 방법
JPWO2015141003A1 (ja) 二次電池充電システムおよび二次電池充電方法
CA3125919C (en) Electrical apparatus, power supply system and method of manufacturing the electrical apparatus
JP2012133903A (ja) 電池パック
KR101405001B1 (ko) 배터리 노화도를 반영한 양방향 컨버터 제어 시스템 및 그 방법
KR20170049196A (ko) 사용자 설정 배터리 관리 장치 및 방법
JP2008148369A (ja) 簡易過充電保護機能付二次電池パック
JP2016095771A (ja) 機器駆動バッテリーのバックアップ回路
JP2001333545A (ja) 電源装置、電子機器及びその停止復旧方法並びに記録媒体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13885475

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015519496

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13885475

Country of ref document: EP

Kind code of ref document: A1