WO2014191899A1 - Procede de fabrication d'un lingot de silicium par reprise sur germes en four de solidification dirigee - Google Patents

Procede de fabrication d'un lingot de silicium par reprise sur germes en four de solidification dirigee Download PDF

Info

Publication number
WO2014191899A1
WO2014191899A1 PCT/IB2014/061722 IB2014061722W WO2014191899A1 WO 2014191899 A1 WO2014191899 A1 WO 2014191899A1 IB 2014061722 W IB2014061722 W IB 2014061722W WO 2014191899 A1 WO2014191899 A1 WO 2014191899A1
Authority
WO
WIPO (PCT)
Prior art keywords
seeds
crucible
seed
ingot
silicon
Prior art date
Application number
PCT/IB2014/061722
Other languages
English (en)
Inventor
Etienne Pihan
Vanessa AMARAL DE OLIVEIRA
Denis Camel
Denis CHAVRIER
Gautier FORTIN
Anis Jouini
Benoit Marie
Nelly PLASSAT
Original Assignee
Commissariat A L'energie Atomique Et Aux Energies Alternatives
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat A L'energie Atomique Et Aux Energies Alternatives filed Critical Commissariat A L'energie Atomique Et Aux Energies Alternatives
Priority to CN201480038780.7A priority Critical patent/CN105358742B/zh
Priority to US14/894,385 priority patent/US10125430B2/en
Priority to ES14729450T priority patent/ES2702900T3/es
Priority to EP14729450.8A priority patent/EP3004430B1/fr
Publication of WO2014191899A1 publication Critical patent/WO2014191899A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B11/00Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
    • C30B11/14Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method characterised by the seed, e.g. its crystallographic orientation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28DWORKING STONE OR STONE-LIKE MATERIALS
    • B28D5/00Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28DWORKING STONE OR STONE-LIKE MATERIALS
    • B28D5/00Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor
    • B28D5/04Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor by tools other than rotary type, e.g. reciprocating tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28DWORKING STONE OR STONE-LIKE MATERIALS
    • B28D5/00Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor
    • B28D5/04Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor by tools other than rotary type, e.g. reciprocating tools
    • B28D5/045Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor by tools other than rotary type, e.g. reciprocating tools by cutting with wires or closed-loop blades
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B11/00Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
    • C30B11/002Crucibles or containers for supporting the melt
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B11/00Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
    • C30B11/02Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method without using solvents
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon

Definitions

  • the present invention relates to a novel method of manufacturing a silicon ingot, having an increased proportion of single crystal area, advantageously depleted in crystalline defects, especially twins.
  • Such a monocrystalline zone may be advantageously dedicated to giving, by cutting, monocrystalline silicon wafers of excellent crystalline quality.
  • Such platelets are particularly advantageous in the context of the development of photovoltaic cells and modules.
  • photovoltaic cells are mainly made from single or multi-crystalline silicon.
  • the most common crystalline silicon production line involves the solidification of ingots from a liquid silicon bath. These ingots are then cut into platelets that can be transformed into photovoltaic cells.
  • the multicrystalline silicon ingots are conventionally made by melting a silicon charge, followed by directed solidification. This technique advantageously makes it possible to crystallize large volumes of silicon; and the size of the machined ingots can be adjusted by varying the size of the crucibles.
  • this very productive process has a major disadvantage with regard to the crystalline structure of the silicon ingots thus produced.
  • this technique leads to ingots having a crystalline structure characterized by a very large number of grains and different crystalline orientations, but also by a high dislocation density, these dislocations being distributed inhomogeneously in the ingot. Therefore, this method is not effective to obtain a quasi-monocrystalline silicon ingot, said "mono-like", that is to say, constituted very predominantly (especially more than 90%) monocrystalline material.
  • the thermal of a directed solidification furnace is characterized by the shape of the advance of the melting and solidification front.
  • solidification front of the furnace, is meant to designate the interface solid silicon / liquid silicon (or molten) during the solidification directed silicon in the crucible.
  • furnaces with convex solidification front There are two main types of furnace thermics: furnaces with convex solidification front and furnaces with concave solidification front.
  • a convex solidification front, convex respectively, is such that the solid-liquid interface is located vertically at a higher elevation, lower respectively at the walls of the crucible than in the center of the crucible, during the directional solidification.
  • a concave solidification front even close to the flatness, allows to overcome the main disadvantages of a convex thermal.
  • Thermics with a solidification front, spatially or temporally, concave or close to the flatness are the most suitable for the production of ingots by germ recovery.
  • a solidification front close to the flatness is particularly preferred since it allows the use of germs in the crucible bottom of minimum thickness.
  • twins and germinations reduce the monocrystalline proportion of the ingot to produce bricks.
  • Figure 1 illustrates this consequence for the cutting of an ingot called "G5" in bricks. If the seeds deposited in the bottom of the crucible cover this surface of future bricks, the effectively monocrystalline surface at the top of the ingot is reduced to the internal zone of the tracing T, because of the edge effects developing over the entire height of the ingot at its solidification.
  • the present invention aims precisely to overcome the aforementioned drawbacks and to optimize the exploitable monocrystalline proportion of a silicon ingot obtained by resumption of germs furnace solidification front, spatially or temporally, concave or close to the flatness.
  • the present invention thus relates, according to a first of its aspects, to a process for manufacturing a silicon ingot by sprouting in a directed solidification furnace, comprising at least the steps consisting of:
  • step (i) characterized in that the paving in step (i) is formed:
  • said seed G p presenting, in a vertical sectional plane, a width (l p ) strictly less than the total width (l u ) of said central seed (s);
  • peripheral seeds G p being dimensioned so that:
  • spatially or temporally concave or close to the flatness is meant to mean that at a given instant of the progression of the solidification front, or at a given point of the solidification front, the solid / liquid interface is of concave shape or close to the flatness.
  • a seed and / or ingot and / or wafer are characterized for the orthogonal reference frame of axes (x), (y) and (z), corresponding to the three main directions, respectively of the germ, the ingot or the wafer.
  • the axis (z) of a seed and / or ingot is collinear with the longitudinal axis (Z) of the crucible.
  • the longitudinal axis (Z) of the crucible designates the line joining all the centroids of the cross sections of said crucible (walls of the crucible included).
  • the longitudinal axis may be more particularly an axis of symmetry for the crucible.
  • the seeds have vertical or substantially vertical side walls (deviation of ⁇ 5 °).
  • the seeds of the paving at the bottom of the crucible have approximately flat surfaces, with surface irregularities.
  • the term "germ base” is used to denote the generally flat surface of the germ facing the bottom of the crucible.
  • the base of the seeds can be of varied shape, in particular of square or rectangular shape or even parallelogram. Preferably, it is of square or rectangular shape, the seeds then being approximately right-angled.
  • the width "l p " of a peripheral seed corresponds, in a vertical section plane, to the distance between two successive walls of said peripheral seed.
  • the inventors have thus discovered that it is possible to maintain the growth of the monocrystalline zone originating from the seeds G c over the entire height of the shaped ingot, via the positioning of peripheral seeds G p appropriately sized as previously described. .
  • the multicrystalline zone germinating from the walls of the crucible does not interfere with the grain boundary propagating from the interface between germs G p and G c .
  • the twins, created from the multicrystalline zone are stopped at this grain boundary, and therefore can not propagate freely to the monocrystalline core of the ingot.
  • central ingot developing from the central seeds, is thus of excellent crystalline quality.
  • the present invention relates to a silicon ingot, obtained according to the method defined above, having a monocrystalline core separated by grain boundaries, preferably substantially vertical, a peripheral multicrystalline zone.
  • it also aims at a method of manufacturing a monocrystalline silicon ingot, comprising at least one step (iii) of cutting the ingot as defined above, along the planes P defined by the interface between two germs G p and G c contiguous, so as to eliminate the multicrystalline zones formed in line with the seeds G p .
  • FIG. 1 shows, schematically and in plan view, the monocrystalline surface, bounded externally by the T trace, at the top of the ingot, for conventional solidification by germs of a G5 ingot;
  • FIG. 2 shows, schematically and partially, a tiling in the crucible bottom according to the invention using the seeds G c and G p , in cross-section (FIG. 2a) and in plan view (FIG. 2b);
  • FIG. 3 schematically represents the determination of the solidification front by means of a crystallographic method (FIG. 3a) or by means of a resistivity mapping (FIG. 3b);
  • FIG. 4 is a schematic and partial cross-sectional representation of the positioning of a peripheral seed G p in the case of a right angle crucible (FIG. 4a) and of a chamfered crucible (FIG. 4b). ;
  • FIG. 5 represents, in a schematic and partial manner, in cross-section, the evolution of the multicrystalline zone 4 and the twins 5 in an ingot formed according to the invention, from seeds G c and G p having crystal lattices symmetrical;
  • FIG. 6 schematically represents, in a 3D view, the formation of contiguous germs by rotating an angle of 180 ° (or turning around) about the axis (y) or the axis;
  • FIG. 7 shows, in 3D view, the briquetting of a central ingot of monocrystalline silicon 7 according to the planes P c (P c 1 , P c 2 , P c 3 , ⁇ ⁇ ⁇ ) ⁇
  • FIG. 9 is a photographic image of a vertical slice of ingot of section 388 ⁇ 180 mm.
  • the obtaining conditions are those detailed in the example; and the structure of the seeds is revealed by the cutting and cleaning operation resulting in a varying optical contrast for each crystalline orientation;
  • FIG. 10 represents, in a schematic and partial manner, in cross-section, the evolution of the multicrystalline zone 4 and the twins 5 in an ingot formed by resumption on seeds, from seeds G c and G p not exhibiting symmetrical crystalline lattices.
  • the method of the invention implements a tiling, at the bottom of the crucible, with monocrystalline silicon seeds 2 of right prism shape.
  • the seedling of seeds 2 can be formed at the bottom of a conventional crucible. We can still consider crucibles whose bottom itself is formed by the paving of germs.
  • the seeds 2 are of square-shaped form, of square or rectangular base.
  • the tiling of seeds 2 is formed:
  • G c one or more central germs
  • peripheral seeds denoted G p , contiguous with the seed (s) G c .
  • d being such that d> H. tan 0 ma x, with 0 ma x the maximum value of the angle ⁇ of the solidification front of the furnace used and H the desired height for the ingot;
  • d represents more particularly the spacing, in a vertical sectional plane, between the interface 3 between a peripheral seed G p and a central seed G c contiguous, and the side wall of the nearest crucible.
  • the height H, measured along the Z axis of growth, of the ingot may be chosen greater than or equal to 100 mm, in particular between 180 and 800 mm.
  • the value Gmax may for example be determined after a directed solidification test, carried out in the same crucible 1, of a silicon ingot of height Hà similar to the height H of the desired ingot, obtained by germ recovery. .
  • the solidification test directed towards determining the angle 0 ma x may be for example realized by paving the bottom of the crucible Cz germs, ie germ from a silicon ingot produced according to a print technology of Czochralski (still called ingot "Cz"), or by paving the bottom of the crucible of germs "Fz", in other words of germs resulting from an ingot developed according to a method of flotation zone (or "float-zone” in language English), also known as the "Fz" process.
  • the value Gmax can be determined using a crystallographic method, by observing the change in structure between the monocrystalline zone 8 and the multicrystalline zone 4 at the top of the ingot formed of height H eS sai, which provides information on the deviation of the multicrystalline zone from bottom to top of the ingot.
  • the value Gmax can thus be calculated, after the controlled solidification test, by the following formula: tan d e ssai H e ssai, with d eS sai being the most away from the crucible edge where the multicrystalline zone is located for the ingot Hà height obtained during the test, as shown schematically in Figure 3a.
  • angle ⁇ max can be determined using a resistivity map during a directed solidification test of a silicon ingot with boron doping.
  • d is chosen equal to H. tan 0 max , so as to optimize the total width (l u ) of the central ingot obtained.
  • the said seed G p may have in a vertical plane of section, a width l p less than or equal to 157 mm, in particular between 5 and 40 mm.
  • the seed G p can be, in this case, attached to the side wall 1 of the crucible.
  • the crucible used may be a crucible with rounded edges, also called crucible with chamfers.
  • the seed G p may in this case be spaced from the side wall 1 of the crucible by a distance b equal to the size of the chamfer of the crucible Rinteme crucible (typically between 2 and 40 mm).
  • the peripheral seed G p thus dimensioned advantageously allows the multicrystalline zone 4, propagating from the wall of the crucible, has no interference with the grain boundary 6 created from the interface 3 between G p and G c .
  • peripheral seeds according to the invention germinations on the walls of the crucible do not induce a decrease in the proportion of monocrystalline zone from germs G c on the height of the ingot.
  • the dimensions other than the width l p of a peripheral seed can be chosen independently of the temperature of the oven.
  • a seed G p may have a thickness e along the Z axis, greater than or equal to 5 mm. For example, it may be about 20 mm.
  • the peripheral seeds have a thickness that is close to, or even identical to, that of the central nucleus (s).
  • the seeds G p are of right-pave shape, of width l p and of length L p chosen so that only one type of seed G p is necessary for paving along the side. crucible, as shown for example in Figure 2b.
  • the central pavement may be formed of one or more central germs G c .
  • the said seed (s) G c may thus have, in a vertical sectional plane, a width l c less than or equal to 1 u , in particular between 110 mm and 1 n / n with n the number of contiguous central germs, n being able to in particular be between 1 and 10.
  • the central seeds are preferably of square-shaped, square-based or rectangular form. Such seeds advantageously allow a central tiling at the bottom of the crucible in the form of a regular grid. As detailed in the rest of the text, such a tiling proves to be advantageous, in the context of the formation of symmetrical grain boundaries in the central ingot, in particular for the briquetting of the ingot formed at the end of the process of the invention.
  • the central paving is made using seeds G c with a square-shaped right-hand shape, as represented in FIG. 2b, for example on the side (l c ) of a square comprised between 110 mm. and l "/ n, with l u and n defined above, in particular on the side l c of a square greater than or equal to 95 mm.
  • FIG. 2b shows a central pavement in square form, called "G2", formed of 4 central germs of right-sided square-base form.
  • the central pavement is produced using seeds G c with a right-angled shape with a rectangular base, for example with a width of a rectangle between 110 mm and 1 ⁇ m, in particular with a width greater than or equal to 95 mm and greater than or equal to twice the width.
  • the seeds G c may have a thickness along the Z axis, greater than or equal to 5 mm. Preferably, all the seeds G c forming the bottom tiling crucible has the same thickness (e) along the Z axis.
  • the central and peripheral seeds have similar thicknesses, even identical.
  • the seeds G c and G p of monocrystalline silicon used for the paving according to the invention may be derived from a silicon ingot developed according to a Czochraslski drawing technique (also called ingot "Cz”), a technique in which which a silicon crystal is contacted with a molten silicon bath, in order to grow a monocrystalline ingot.
  • Czochraslski drawing technique also called ingot "Cz”
  • This method generally provides cylindrical bullion Cz. They can be machined, conventionally, and cut into slices perpendicular or parallel to the axis of the cylinder, to obtain sprouts shaped right.
  • the G c and G p monocrystalline silicon seeds come from the recycling of an ingot produced during a previous solidification directed according to the process of the invention, for example by taking a horizontal slice of the formed silicon ingot.
  • a seed G c advantageously has a symmetrical crystal lattice of the crystal lattice of the G p seed which is contiguous to it, with respect to the plane P defined by the seed seal 3 between said seeds G p and G c .
  • Such symmetry of the crystal lattices of the seeds G c and G p allows, during the step (ii) of directed silicon solidification, the propagation of symmetrical grain boundaries 6 from the seed seals 3, as shown diagrammatically in FIG. 5.
  • symmetrical grain boundary is meant a planar grain boundary present in the silicon ingot formed as a result of the directed solidification of silicon, and defining a crystalline plane of symmetry P for crystal lattices located on the ground. and other of this plan.
  • the grain boundary 6 advantageously makes it possible to block the propagation of the twins 5 created from the multi-crystalline zone at the edge of the crucible.
  • the central pavement may also be formed of seeds G c having crystal lattices symmetrical to each other; in other words, each seed G c has a symmetrical crystalline lattice of the crystal lattice of the seed G c which is contiguous with it, with respect to the plane defined by the boundary between the two contiguous germs G c .
  • This embodiment is particularly advantageous for controlling the propagation of the grain boundaries in the monocrystalline central ingot formed.
  • a peripheral seed G p may have orientations in the directions (x), (y) and (z), identical to the uncertainties of cutting and positioning near the bottom of the crucible, to those of the germ central G c which is contiguous to it.
  • the seeds G c and G p can be taken from the same ingot Cz, for example by cutting the ingot Cz perpendicularly to the direction of growth of the crystal used in the Czochralski process.
  • the peripheral seed G p and the central seed G c may have distinct crystallographic orientations.
  • the disorientation, as defined below, between the seeds G p and G c is carried out around a disorientation axis parallel to the axis (z).
  • the seeds G c and G p have distinct crystalline orientations along the (x) and (y) directions.
  • disorientation In general, the difference in orientation between the crystal lattices of two seeds 2 is called “disorientation”. This disorientation results in a rotation operation around a disorientation axis ⁇ u v w> and a 2 ⁇ disorientation angle. Subsequently, we will call “total disorientation” the disorientation angle 2 ⁇ the smallest of all the aforementioned rotation operations; and we will call “axis of disorientation", the axis associated with this angle.
  • the total disorientation 2 ⁇ between the symmetrical crystalline lattices of two contiguous germs (2) noted to differentiate between "germ A" and "seed B" (whether it be two contiguous germs G p and G c) in the aforementioned variant, two contiguous germs G c ) is greater than or equal to 4 °, in particular greater than or equal to 5 °, and more particularly between 6 ° and 45 °.
  • the crystal lattices of two contiguous symmetrical seeds 2 both have a collinear direction to the (Z) axis, preferably a ⁇ 100> direction or close to ⁇ 100> collinear to the (Z) axis. ), each of the nuclei being advantageously disoriented at the same angle ⁇ with respect to this direction according to (x) and / or (y).
  • the disorientation ⁇ of a seed can be determined by measurement methods known to those skilled in the art, for example by measuring angles with the Laue method, by X-ray diffraction or by diffraction of backscattered electrons (ESBD for "Electron BackScattered Diffraction” in English).
  • the tiling at the bottom of the crucible by contiguous seeds 2, denoted seeds A and seed B, of crystal lattices symmetrical to one another can be produced from identical silicon seeds.
  • the germ B being obtained from a seed A rotated at an angle of 180 ° around one of the vectors perpendicular to the lateral faces of the seed, that is to say in the context of a paving in the form of a grid, around the axis (x) or (y).
  • FIG. 6 represents the obtaining of the seeds A and B of right-hand type, the seed B being obtained by rotation of an angle of 180 ° around the x-axis and / or the axis (y).
  • the disorientation between the crystal lattices of two contiguous germs G c is carried out around an axis ⁇ 001>.
  • the axis ⁇ 001> is coincident with the axis (Z) of the crucible and / or with the axis (z) of the seed.
  • Such an embodiment is particularly advantageous, with regard to the wafers which will be formed by cutting the monocrystalline central ingot obtained from such a central tiling of germs.
  • the surfaces of the wafers resulting from the cutting of the bricks perpendicular to the surface of the central ingot, according to the vertical grain boundary planes, are with the irregularities of cut near substantially parallel to the planes (001).
  • the platelet surfaces thus formed have the characteristic of being effectively texturized by basic texturing (based on KOH or NaOH for example). This can result in a reflectivity gain of about 5 to 12% relative opposite, compared to basic textures on other orientations or acid textures on any orientation.
  • the crucible may advantageously be sized according to the width l p of the peripheral seeds G p , previously determined as described above, and the width l u of the desired central ingot.
  • the width of the crucible, the cr euset is chosen such that p + u 21 2 b, with b as defined above.
  • the directed solidification of silicon in the furnace is carried out by resumption on seeds in a direction of growth collinear with the axis (Z) and with a solidification front, spatially or temporally, concave or close to flatness.
  • the furnace used may be a conventional directed solidification furnace, such as for example a crystallization furnace of the type HEM (from the English name "Heat Exchange Method") or Bridgman type with a fixed heating from the top and the sides, which allows to crystallize the silicon charge with a controlled temperature gradient.
  • HEM Heat Exchange Method
  • Bridgman type with a fixed heating from the top and the sides, which allows to crystallize the silicon charge with a controlled temperature gradient.
  • the directed solidification is carried out by melting, at first, a silicon charge in the crucible prepared in step (i).
  • the molten silicon is solidified, in a directed manner, at low speed (typically 5 to 30 mm / h).
  • Directed solidification can be achieved by displacement of the heating system and / or controlled cooling, allowing a gradual movement of the solidification front (separation front between the solid phase and the liquid phase) to the top of the crucible.
  • the ingot, of height H, obtained at the end of the directed solidification can then be cooled, in particular to room temperature (20 ° C. ⁇ 5 ° C.).
  • the silicon ingot obtained according to the process of the invention has a monocrystalline core 7 separated from the multicrystalline peripheral zones 4, by grain boundaries 6, developing from the seed joints. 3 between peripheral G p germs and central germs G c . Formation of the monocrystalline ingot (step (iii))
  • the central monocrystalline ingot 7 can be isolated from the multicrystalline zones formed above the seeds G p , by cutting the ingot along the planes P defined by the interface between two germs G c and G p contiguous.
  • the cutting positions of the ingot are easily identifiable on the ingot, insofar as they are located at the boundaries between germs G p and G c lining the bottom of the crucible.
  • the cutting along the planes P can be performed by conventional means, known to those skilled in the art, for example using a cutting wire.
  • the monocrystalline ingot 7 thus obtained is of excellent crystalline quality.
  • it may have a multicrystalline share of less than 5% of its total volume.
  • the monocrystalline silicon ingot 7, obtained at the end of step (iii), can then be cut into bricks.
  • Silicon wafers can be prepared from these bricks, according to conventional techniques known to those skilled in the art, in particular by cutting bricks, grinding the faces, trimming the upper and lower ends to adjust the dimensions of the wafer, etc. ..
  • the central monocrystalline ingot advantageously has symmetrical grain boundaries along the (Pci, Pc 2, P C 3 - ⁇ ⁇ ) Defined by the boundaries between germs G c .
  • the cutting of the brick core ingot can be operated independently of the position of the grain boundary planes P cl , P C 2, P C 3
  • the resulting bricks thus contain symmetrical grain boundaries.
  • the cutting of the brick core ingot can be performed along the planes P c i, P c 2 , P c 3 , ⁇ ⁇ ⁇ , as shown schematically in FIG. 7. Cutting the silicon ingot along these planes thus eliminates symmetrical grain boundaries and advantageously obtain bricks without grain boundaries.
  • the cutting positions of the central ingot along the symmetrical grain boundaries are easily identifiable on the ingot to the extent that they are located at the boundaries between contiguous G germs c lining the crucible bottom.
  • the cut can for example be operated using a conventional machine type Squarer or band saw.
  • the platelets thus obtained can advantageously be used for the production of photovoltaic cells, for example for homojunction or heterojunction dies.
  • the method of the invention implements, in step (i), a tiling with seeds G c and G p not having symmetrical crystalline lattices with respect to one another.
  • the paving in step (i) at the bottom of the crucible can be formed:
  • the seeds G p2 have, in a vertical sectional plane, a width l p2 strictly less than the width l c of a central seed G c ; and being dimensioned so that:
  • the Gmax value may be more particularly determined by a prior directed solidification test, as previously described.
  • the grain boundaries 6 propagating during the step of directional solidification of the ingot, from the seed seals between peripheral seals G p2 and central seals G c are not symmetrical grain boundaries.
  • a monocrystalline ingot, of excellent crystalline quality can thus be obtained by cutting the ingot obtained at the end of the step (ii) directed solidification, along the planes P 2 parallel to the side walls of the crucible, at a distance d 2 of the crucible wall, as shown in FIG.
  • the grain boundary 6 propagating from the seed joints between G p and G c acquires a quasi-verticality at the top of the ingot.
  • the cutting of the heart ingot is easily identifiable, insofar as they are located at the boundaries between germs G p and central germs G c .
  • the crystallization furnace used for germ recovery tests is a "Gen 2" size furnace (60 to 80 kg load) with three heating zones controlled by temperature or power: a high heating zone, a heating zone or a heating zone. low heat and a lateral heating zone.
  • the crucible used for this test is a silica crucible coated with S13N4 of size G2 (390 x 390 mm 2 ).
  • a multicrystalline ingot is made in the crucible, following a specific thermal recipe developed to obtain a multicrystalline ingot complying with the standard brick quality criteria.
  • This type of crucible is surrounded by a counter-crucible made of graphite to limit the expansion of the silica which, during the rise in temperature during the cycle and the associated glass transition, becomes viscous.
  • the charge consists of a mass of electronic silicon (9N) or metallurgical (6N) more or less important depending on the size of the desired ingot, the amount of doping whether P type (boron) or N type (phosphorus ) is calculated according to the resistivity and the desired type.
  • the silicon ingot is cut in a vertical sectional plane, to determine the front of solidification of the furnace using a metallographic or resistivity study.
  • a tiling of the crucible bottom (crucible and counter-crucible identical to those used in the previous test) is carried out, as shown schematically in FIG. 2b, with:
  • peripheral seeds G p In the peripheral zone in the vicinity of the walls of the crucible and adjacent to the seeds G c , four peripheral seeds G p of dimensions 28 x 317 mm and 20 mm thick. These germs were taken from the same ingot Cz and have orientations, in three directions, similar to the central germs.
  • the observation of the upper surface of the ingot indicates the presence of a monocrystalline zone, first index on the monocrystalline growth from bottom to top of the ingot.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Silicon Compounds (AREA)

Abstract

La présente invention concerne un procédé de fabrication d'un lingot de silicium par reprise sur germes en four de solidification dirigée, comprenant au moins les étapes consistant en: (i) disposer d'un creuset (1) d'axe (Z) longitudinal, dont le fond comporte un pavage de germes (2) de silicium monocristallin de forme prisme droit; et (ii) procéder à la solidification dirigée de silicium par reprise sur germes, selon une direction de croissance colinéaire à l'axe (Z) et avec un front de solidification, spatialement ou temporellement, concave; caractérisé en ce que le pavage en étape (i) est formé: - d'un ou plusieurs germes centraux Gc; et - d'un ou plusieurs germes périphériques Gp, contigu(s) au(x) germe(s) Gc, les germes périphériques Gp étant dimensionnés de manière spécifique.

Description

Procédé de fabrication d'un lingot de silicium par reprise sur germes en four de solidification dirigée
La présente invention se rapporte à un nouveau procédé de fabrication d'un lingot de silicium, présentant une proportion de zone monocristalline accrue, avantageusement appauvrie en défauts cristallins, notamment en macles.
Une telle zone monocristalline peut être avantageusement dédiée à donner, par découpe, des plaquettes de silicium monocristallin d'excellente qualité cristalline. De telles plaquettes sont particulièrement avantageuses dans le cadre de l'élaboration de cellules et modules photovoltaïques.
Actuellement, les cellules photovoltaïques sont majoritairement fabriquées à partir de silicium mono ou multi-cristallin. La filière de production de silicium cristallin la plus courante met en jeu la solidification de lingots à partir d'un bain de silicium liquide. Ces lingots sont ensuite découpés en plaquettes qui peuvent être transformées en cellules photovoltaïques.
Les lingots de silicium multicristallin sont classiquement réalisés par fusion d'une charge de silicium, suivie d'une solidification dirigée. Cette technique permet avantageusement de cristalliser de grands volumes de silicium ; et la taille des lingots usinés peut être ajustée en variant la dimension des creusets.
Malheureusement, ce procédé très productif présente un inconvénient majeur au regard de la structure cristalline des lingots de silicium ainsi réalisés. De fait, cette technique conduit à des lingots présentant une structure cristalline caractérisée par un nombre très important de grains et d'orientations cristallines différentes, mais également par une densité de dislocations élevée, ces dislocations étant réparties de manière inhomogène dans le lingot. Par conséquent, ce procédé n'est pas efficace pour obtenir un lingot de silicium quasi-monocristallin, dit « mono-like », c'est-à-dire constitué très majoritairement (notamment à plus de 90 %) de matériau monocristallin.
Depuis quelques années, des techniques ont été développées pour élaborer des lingots de silicium mono-like par solidification dirigée dans un four avec des structures cristallines améliorées, notamment via un meilleur contrôle de la germination, comme décrit dans le document Fujiwara et al, Growth of structure-controlled polycrystalline silicion ingots for solar cells by casting, Acta Materialia, 54 (2006), 3191-3197, ou encore via l'utilisation de germes monocristallins pavant le fond du creuset (technique dite de reprise sur germes), comme proposé dans les documents WO 2007/084934, US 2010/0192838, US 2010/0193989, US 2010/0193664, WO 2009/014963, US 2010/0197070 et US 2013/0095028.
Malheureusement, la fabrication d'un lingot de silicium, par reprise sur germes en four de solidification dirigée, pose un problème de diminution de la proportion de cristaux issus des germes avec la hauteur du lingot. Cette diminution est préjudiciable à la qualité du lingot obtenu, étant donné que les cristaux issus des germinations en périphérie des zones de germes présentent une quantité de défauts cristallins inacceptable pour une utilisation en tant que cellules photovoltaïques. De fait, une zone multicristalline, se développant à partir des bords du creuset sur toute la hauteur du lingot, est susceptible de venir dégrader la qualité du lingot formé à partir des germes en fond de creuset.
Pour améliorer la qualité des lingots élaborés par reprise sur germe, il importe, par conséquent, d'augmenter la proportion des cristaux issus des germes.
Plusieurs facteurs peuvent être à l'origine de la diminution de la proportion des cristaux issus des germes avec la hauteur de lingot : ils peuvent être notamment liés à la thermique du four, ou à la croissance de défauts cristallins.
La thermique d'un four de solidification dirigée est caractérisée par la forme de l'avancée du front de fusion et de solidification.
Par « front de fusion et de solidification » du four, appelé plus simplement dans la suite du texte, « front de solidification » du four, on entend désigner l'interface silicium solide/ silicium liquide (ou fondu) au cours de la solidification dirigée du silicium dans le creuset.
Deux grands types de thermiques de four existent : les fours à front de solidification convexe et les fours à front de solidification concave.
Un front de solidification concave, convexe respectivement, est tel que l'interface solide-liquide est située verticalement à une altitude plus élevée, moins élevée respectivement, au niveau des parois du creuset qu'au centre du creuset, lors de la solidification dirigée.
Dans le cas d'une thermique convexe, voire très convexe, les temps de cycles sont longs, car la solidification des coins en fin de cycle est lente (typiquement de 8 à 9 heures). Un front de solidification concave, voire proche de la planéité, permet de s'affranchir des principaux inconvénients liés à une thermique convexe. Les thermiques avec un front de solidification, spatialement ou temporellement, concave ou proche de la planéité sont les plus adaptés pour la production de lingots par reprise sur germes. Un front de solidification proche de la planéité est particulièrement préféré puisqu'il permet d'utiliser des germes en fond de creuset d'épaisseur minimale.
Malheureusement, la portion monocristalline au niveau du silicium solidifié au bord des parois du creuset diminue drastiquement avec la hauteur du lingot. Ce phénomène résulte, d'une part, de la propagation de grains parasites venant de la germination en paroi latérale du creuset ou sur des zones périphériques ne présentant pas de germes, et d'autre part, de la propagation de macles vers le cœur du lingot.
Ainsi, les macles et germinations réduisent la proportion monocristalline du lingot exploitable pour produire des briques. La figure 1 illustre cette conséquence pour la découpe d'un lingot dit « G5 » en 25 briques. Si les germes déposés en fond de creuset couvrent cette surface de futures briques, la surface effectivement monocristalline en haut de lingot est réduite à la zone interne du tracé T, du fait des effets de bord se développant sur toute la hauteur de lingot lors de sa solidification.
La présente invention vise précisément à palier les inconvénients précités et à optimiser la proportion monocristalline exploitable d'un lingot de silicium obtenu par reprise sur germes en four à front de solidification, spatialement ou temporellement, concave ou proche de la planéité.
La présente invention concerne ainsi, selon un premier de ses aspects, un procédé de fabrication d'un lingot de silicium par reprise sur germes en four de solidification dirigée, comprenant au moins les étapes consistant en :
(i) disposer d'un creuset (1) d'axe (Z) longitudinal, dont le fond comporte un pavage de germes (2) de silicium monocristallin de forme prisme droit ; et
(ii) procéder à la solidification dirigée de silicium par reprise sur germes, selon une direction de croissance colinéaire à l'axe (Z) et avec un front de solidification, spatialement ou temporellement, concave ou proche de la planéité ;
caractérisé en ce que le pavage en étape (i) est formé :
- d'un ou plusieurs germes centraux Gc ; et - d'un ou plusieurs germes périphériques Gp, contigu(s) au(x) germe(s) Gc, un germe Gp présentant un réseau cristallin symétrique du réseau cristallin du germe Gc contigu, par rapport au plan P défini par la frontière (3) entre lesdits germes Gp et Gc ;
le ou lesdits germes Gp présentant, dans un plan vertical de coupe, une largeur (lp) strictement inférieure à la largeur totale (lu) du ou desdits germes centraux ; et
les germes périphériques Gp étant dimensionnés de manière à ce que :
lP = d - b
avec :
- d vérifiant : d > H.tan Gmax avec 0max la valeur maximale de l'angle Θ du front de solidification du four utilisé ; et H la hauteur, mesurée selon l'axe (Z), du lingot de silicium souhaitée ; et
- b=0 pour un creuset à angles droits, et
Figure imgf000006_0001
creuset, avec Rinteme creuset la taille du chanfrein pour un creuset à arrêtes arrondies.
Par « spatialement ou temporellement » concave ou proche de la planéité, on entend signifier qu'à un instant donné de la progression du front de solidification, ou en un point donné du front de solidification, l'interface solide/liquide est de forme concave ou proche de la planéité.
Dans la suite du texte, et sauf indication contraire, un germe et/ou lingot et/ou plaquette, définis par la suite, sont caractérisés pour le référentiel orthogonal d'axes (x), (y) et (z), correspondant aux trois directions principales, respectivement du germe, du lingot ou de la plaquette. De préférence, l'axe (z) d'un germe et/ou d'un lingot est colinéaire à l'axe (Z) longitudinal du creuset.
L'axe (Z) longitudinal du creuset désigne la ligne joignant l'ensemble des barycentres des sections transversales dudit creuset (parois du creuset inclus). L'axe longitudinal peut être plus particulièrement un axe de symétrie pour le creuset.
On entend bien entendu par « forme prisme droit », une forme approximativement de type prisme de droit. En particulier, les germes présentent des parois latérales verticales ou sensiblement verticales (déviation de ± 5°). Par ailleurs, les germes du pavage en fond de creuset présentent des surfaces approximativement planes, aux irrégularités de surface près. On désignera dans la suite du texte, comme étant la « base du germe », la surface globalement plane du germe en regard du fond du creuset.
Comme détaillé par la suite, la base des germes peut être de forme variée, notamment de forme carrée ou rectangulaire ou encore parallélogramme. De préférence, elle est de forme carré ou rectangulaire, les germes étant alors approximativement de forme pavé droit.
La largeur « lp » d'un germe périphérique correspond, dans un plan vertical de coupe, à la distance entre deux parois successives dudit germe périphérique.
De manière avantageuse, les inventeurs ont ainsi découvert qu'il est possible de maintenir la croissance de la zone monocristalline issue des germes Gc sur toute la hauteur du lingot formé, via le positionnement de germes périphériques Gp dimensionnés de manière appropriée comme décrit précédemment.
En effet, avec un pavage de germes conforme à l'invention, comme développé plus précisément dans la suite du texte, la zone multicristalline germant à partir des parois du creuset n'interfère pas avec le joint de grains se propageant à partir de l'interface entre germes Gp et Gc. Qui plus est, les macles, crées à partir de la zone multicristalline, sont stoppées au niveau de ce joint de grains, et ne peuvent donc se propager librement vers le cœur monocristallin du lingot.
La zone monocristalline centrale du lingot, encore appelée dans la suite du texte « lingot central », se développant à partir des germes centraux, est ainsi d'excellente qualité cristalline.
Selon un autre de ses aspects, la présente invention concerne un lingot de silicium, obtenu selon le procédé défini précédemment, présentant un cœur monocristallin séparé par des joints de grains, de préférence sensiblement verticaux, d'une zone multicristalline périphérique.
Elle vise encore, selon un autre de ses aspects, un procédé de fabrication d'un lingot de silicium monocristallin, comprenant au moins une étape (iii), de découpe du lingot tel que défini précédemment, le long des plans P définis par l'interface entre deux germes Gp et Gc contigus, de manière à éliminer les zones multicristallines formées à l'aplomb des germes Gp. D'autres caractéristiques, avantages et modes d'application du procédé et du lingot de silicium obtenu selon l'invention, ressortiront mieux à la lecture de la description détaillée qui va suivre, de l'exemple de réalisation de l'invention et à l'examen des dessins annexés, sur lesquels :
- la figure 1 représente, de manière schématique et en vue de dessus, la surface monocristalline, délimitée extérieurement par le tracé T, en haut de lingot, pour une solidification classique par reprises sur germes d'un lingot G5 ;
- la fi ure 2 représente, de manière schématique et partielle, un pavage en fond de creuset conforme à l'invention à l'aide des germes Gc et Gp, en coupe transversale (figure 2a) et en vue de dessus (figure 2b) ;
- la figure 3 représente, de manière schématique, la détermination du front de solidification à l'aide d'une méthode cristallographique (figure 3a) ou à l'aide d'une cartographie de résistivité (figure 3b) ;
- la figure 4 représente, de manière schématique et partielle, en coupe transversale, le positionnement d'un germe périphérique Gp dans le cas d'un creuset à angles droits (figure 4a) et d'un creuset à chanfreins (figure 4b) ;
- la figure 5 représente, de manière schématique et partielle, en coupe transversale, l'évolution de la zone multicristalline 4 et des macles 5 dans un lingot formé selon l'invention, à partir de germes Gc et Gp présentant des réseaux cristallins symétriques ;
- la figure 6 représente schématiquement, en vue 3D, la formation des germes contigus par rotation d'un angle de 180° (ou retournement) autour de l'axe (y) ou de l'axe
(x) ;
- la fi ure 7 représente, en vue 3D, le briquetage d'un lingot central de silicium 7 monocristallin selon les plans Pc (Pcl, Pc2, Pc3, · · ·)·
- la fi ure 8 représente la détermination, à l'aide d'une étude cristallographique, de l'angle 0maX lors de l'essai de solidification dirigée effectué en exemple.
- la fi ure 9 est une image photographique d'une tranche verticale de lingot de section 388 x 180 mm. Les conditions d'obtention sont celles détaillées dans l'exemple ; et la structure des germes est révélée par l'opération de découpe et de nettoyage se traduisant par un contraste optique variant pour chaque orientation cristalline ; - la figure 10 représente, de manière schématique et partielle, en coupe transversale, l'évolution de la zone multicristalline 4 et des macles 5 dans un lingot formé par reprise sur germes, à partir de germes Gc et Gp ne présentant pas des réseaux cristallins symétriques.
Il convient de noter que, pour des raisons de clarté, les différents éléments sur les figures sont représentés en échelle libre, les dimensions réelles des différentes parties n'étant pas respectées.
Dans la suite du texte, les expressions « compris entre ... et ... », « allant de ... à ... » et « variant de ... à ... » sont équivalentes et entendent signifier que les bornes sont incluses, sauf mention contraire.
Sauf indication contraire, l'expression « comportant/comprenant un(e) » doit être comprise comme « comportant/comprenant au moins un(e) ».
Pavage en fond de creuset (étape (iïl
Comme précisé précédemment, le procédé de l'invention met en œuvre un pavage, en fond de creuset, par des germes 2 de silicium monocristallin de forme prisme droit.
Le pavage de germes 2 peut être formé au fond d'un creuset classique. On peut encore envisager des creusets dont le fond lui-même est formé du pavage de germes.
Selon un mode de réalisation particulièrement préféré, les germes 2 sont de forme pavé droit, de base carrée ou rectangulaire.
Selon une caractéristique essentielle de l'invention, le pavage de germes 2 est formé :
- d'un ou plusieurs germes centraux, notés Gc ; et
- d'un ou plusieurs germes périphériques, notés Gp, contigu(s) au(x) germe(s) Gc.
Dimensionnement des germes périphériques
Comme représenté en figure 2a, un germe Gp selon l'invention dimensionné de manière à ce que la largeur (noté lp) du germe périphérique dans un vertical de coupe, vérifie : avec :
- d étant tel que d > H. tan 0max, avec 0max la valeur maximale de l'angle Θ du front de solidification du four utilisé et H la hauteur souhaitée pour le lingot ; et
- b=0 pour un creuset à angles droits, et
Figure imgf000010_0001
creuset, avec Rinteme creuset la taille du chanfrein pour un creuset à arrêtes arrondies.
d représente plus particulièrement l'espacement, dans un plan vertical de coupe, entre l'interface 3 entre un germe périphérique Gp et un germe central Gc contigus, et la paroi latérale du creuset la plus proche.
Pour définir la largeur lp d'un germe périphérique Gp, il est nécessaire de déterminer dans un premier temps la distance d. Celle-ci est choisie telle que d > H. tan
De manière classique, la hauteur H, mesurée suivant l'axe Z de croissance, du lingot peut être choisie supérieure ou égale à 100 mm, en particulier comprise entre 180 et 800 mm.
La valeur Gmax peut être par exemple déterminée à l'issue d'un essai de solidification dirigée, effectué dans le même creuset 1, d'un lingot de silicium de hauteur Hessai similaire à la hauteur H du lingot souhaité, obtenu par reprise sur germes.
L'essai de solidification dirigée en vue de la détermination de l'angle 0max peut être par exemple réalisé en pavant le fond du creuset de germes Cz, autrement dit de germes issus d'un lingot de silicium élaboré selon une technique de tirage de Czochralski (encore appelé lingot « Cz »), ou en pavant le fond du creuset de germes « Fz », autrement dit de germes issus d'un lingot élaboré selon un procédé de zone de flottation (ou « float- zone » en langue anglaise), encore appelé procédé « Fz ».
Il appartient à l'homme du métier de déterminer, par des méthodes conventionnelles, la valeur Gmax à partir de l'essai de solidification réalisé.
Comme illustré sur la figure 3a, la valeur Gmax peut être déterminée à l'aide d'une méthode cristallographique, en observant le changement de structure entre la zone monocristalline 8 et la zone multicristalline 4 en haut du lingot formé de hauteur HeSsai, qui renseigne sur la déviation de la zone multicristalline de bas en haut du lingot.
La valeur Gmax peut être ainsi calculée, à l'issue de l'essai de solidification dirigée, par la formule suivante : tan dessai Hessai, avec deSsai étant la distance la plus éloignée du bord de creuset où se situe la zone multicristalline pour le lingot de hauteur Hessai obtenu lors de l'essai, comme représenté schématique en figure 3a.
D'autres méthodes de détermination de l'angle 0max peuvent être utilisées. A titre d'exemple, il peut être déterminé à l'aide d'une cartographie de résistivité lors d'un essai de solidification dirigée d'un lingot de silicium avec un dopage en bore.
De fait, le bore, présentant un coefficient de ségrégation k=0,8 ségrégue de manière homogène dans le volume du lingot au cours de la solidification. Il en résulte une variation locale de la résistivité du lingot, qui suit l'évolution de l'interface solide-liquide pendant la cristallisation du silicium. Une ligne d'isorésistivité 9 observée sur la cartographie de résistivité correspond ainsi au front de solidification à un instant donné. L'angle du front de solidification 0maX peut donc être directement mesuré sur les courbes d'isorésistivité définies sur la cartographie de résistivité, comme représenté schématiquement en figure 3b.
Selon un mode de réalisation préféré, d est choisi égal à H. tan 0max, de manière à optimiser la largeur totale (lu) du lingot central obtenu.
Le ou lesdits germes Gp peuvent présenter dans un plan vertical de coupe, une largeur lp inférieure ou égale à 157 mm, en particulier comprise entre 5 et 40 mm.
Dans une première variante de réalisation, le creuset utilisé peut être un creuset à angles droits (autrement dit, b=0). Comme représenté en figure 4a, le germe Gp peut être, dans ce cas, accolé à la paroi latérale 1 du creuset.
Dans le cadre de cette variante, un germe Gp est de largeur lp = d, d étant tel que défini précédemment, de préférence d = H. tan 0max.
Dans une seconde variante de réalisation, le creuset utilisé peut être un creuset à arrêtes arrondies, encore appelé creuset avec chanfreins. Comme représenté en figure 4b, le germe Gp peut être, dans ce cas, espacé de la paroi latérale 1 du creuset d'une distance b égale à la taille du chanfrein du creuset Rinteme creuset (typiquement comprise entre 2 et 40 mm).
Dans le cadre de cette variante, un germe Gp est de largeur lp = d-b, avec d étant tel que défini précédemment, de préférence d = H. tan 0max.
Comme représenté en figure 5, le germe périphérique Gp ainsi dimensionné permet avantageusement que la zone multicristalline 4, se propageant à partir de la paroi du creuset, n'ait aucune interférence avec le joint de grains 6 crée à partir de l'interface 3 entre Gp et Gc.
Ainsi, grâce à la mise en œuvre de germes périphériques selon l'invention, les germinations sur les parois du creuset n'induisent pas de diminution de la proportion de zone monocristalline issue des germes Gc sur la hauteur du lingot.
Les dimensions autres que la largeur lp d'un germe périphérique peuvent être choisies indépendamment de la thermique du four.
Selon un mode de réalisation particulier, un germe Gp peut présenter une épaisseur e suivant l'axe Z, supérieure ou égale à 5 mm. A titre d'exemple, elle peut être d'environ 20 mm.
De préférence, les germes périphériques présentent une épaisseur proche, voire identique, à celle du ou des germes centraux.
Selon un mode de réalisation particulièrement préféré, les germes Gp sont de forme pavé droit, de largeur lp et de longueur Lp choisie de manière à ce qu'un seul type de germe Gp soit nécessaire pour le pavage le long du côté du creuset, comme représenté par exemple en figure 2b.
Le pavage central peut être formé d'un ou plusieurs germes centraux Gc.
On désignera par « lu » (pour « largeur utile ») la largeur totale, dans un plan vertical de coupe, des germes centraux. lu vérifie plus particulièrement lu = lcreuset - 2d, avec lcreuset la largeur du creuset, dans le plan de coupe, et d tel que défini précédemment.
Le ou lesdits germes Gc peuvent ainsi présenter, dans un plan vertical de coupe, une largeur lc inférieure ou égale à lu, en particulier comprise entre 110 mm et l„/n avec n le nombre de germes centraux accolés, n pouvant notamment être compris entre 1 et 10.
Les germes centraux sont de préférence de forme pavé droit, de base carrée ou rectangulaire. De tels germes permettent avantageusement un pavage central en fond du creuset sous la forme d'un quadrillage régulier. Comme détaillé dans la suite du texte, un tel pavage s'avère avantageux, dans le cadre de la formation de joints de grains symétriques dans le lingot central, notamment pour le briquetage du lingot formé à l'issue du procédé de l'invention. Selon une première variante de réalisation, le pavage central est réalisé à l'aide de germes Gc de forme pavé droit à base carrée, comme représenté en figure 2b, par exemple de côté (lc) d'un carré compris entre 110 mm et l„/n, avec lu et n définis précédemment, en particulier de côté lc d'un carré supérieur ou égal à 95 mm.
A titre d'exemple, la figure 2b représente un pavage central sous forme carrée, dit « G2 », formé de 4 germes centraux de forme pavé droit à base carrée.
Selon une seconde variante de réalisation, le pavage central est réalisé à l'aide de germes Gc de forme pavé droit à base rectangulaire, par exemple de largeur d'un rectangle comprise entre 110 mm et l„/n, en particulier de largeur supérieure ou égale à 95 mm et de longueur supérieure ou égale à deux fois la largeur.
Les germes Gc peuvent présenter une épaisseur suivant l'axe Z, supérieure ou égale à 5 mm. De préférence, l'ensemble des germes Gc formant le pavage en fond de creuset présente la même épaisseur (e) suivant l'axe Z.
Comme évoqué précédemment, dans un mode de réalisation particulièrement préféré, les germes centraux et périphériques présentent des épaisseurs similaires, voire identiques.
Les germes Gc et Gp de silicium mono-cristallin mis en œuvre pour le pavage selon l'invention, peuvent être issus d'un lingot de silicium élaboré selon une technique de tirage Czochraslski (encore appelé lingot « Cz »), technique dans laquelle un cristal de silicium est mis en contact avec un bain de silicium en fusion, afin de faire croître un lingot monocristallin.
Cette méthode fournit généralement des lingots Cz de forme cylindrique. Ils peuvent être usinés, de manière conventionnelle, et découpés en tranches perpendiculaires ou parallèlement à l'axe du cylindre, pour obtenir des germes de forme pavé droit.
Selon une autre variante de réalisation, les germes Gc et Gp de silicium monocristallin proviennent du recyclage d'un lingot élaboré lors d'une précédente solidification dirigée selon le procédé de l'invention, par exemple par prélèvement d'une tranche horizontale du lingot de silicium formé. Comme indiqué précédemment, un germe Gc présente avantageusement un réseau cristallin symétrique du réseau cristallin du germe Gp qui lui est contigu, par rapport au plan P défini par le joint de germe 3 entre lesdits germes Gp et Gc.
Une telle symétrie des réseaux cristallins des germes Gc et Gp permet, lors de l'étape (ii) de solidification dirigée de silicium, la propagation de joints de grain symétriques 6 à partir des joints de germes 3, comme représenté schématiquement en figure 5.
Par « joint de grains symétrique », on entend désigner un joint de grains plan, présent dans le lingot de silicium formé à l'issue de la solidification dirigée de silicium, et définissant un plan de symétrie cristalline P pour les réseaux cristallins situés de part et d'autre de ce plan.
Comme représenté schématiquement en figure 5 et illustré dans l'exemple 1 (figure 10), le joint de grains 6 permet avantageusement de bloquer la propagation des macles 5 créées à partir de la zone multi cristalline en bordure du creuset.
Selon une variante de réalisation particulière, le pavage central peut être également formé de germes Gc présentant des réseaux cristallins symétriques les uns des autres ; autrement dit chaque germe Gc présente un réseau cristallin symétrique du réseau cristallin du germe Gc qui lui est contigu, par rapport au plan défini par la frontière entre les deux germes Gc contigus.
Ce mode de réalisation s'avère particulièrement avantageux pour maîtriser la propagation des joints de grains dans le lingot central monocristallin formé.
Dans un premier mode de réalisation, un germe périphérique Gp peut posséder des orientations suivant les directions (x), (y) et (z), identiques, aux incertitudes de découpe et de positionnement près au fond du creuset, à celles du germe central Gc qui lui est contigu.
A titre d'exemple, les germes Gc et Gp peuvent être prélevés dans un même lingot Cz, par exemple par découpe du lingot Cz perpendiculairement à la direction de croissance du cristal mis en œuvre dans le procédé de Czochralski. Dans un second mode de réalisation, le germe périphérique Gp et le germe central Gc peuvent présenter des orientations cristallographiques distinctes. De préférence, la désorientation, telle que définie ci-après, entre les germes Gp et Gc s'effectue autour d'un axe de désorientation parallèle à l'axe (z). Autrement dit, les germes Gc et Gp présentent des orientations cristallines distinctes suivant les directions (x) et (y).
D'une manière générale, la différence d'orientation entre les réseaux cristallins de deux germes 2 est appelée « désorientation ». Cette désorientation se traduit par une opération de rotation autour d'un axe de désorientation <u v w> et d'un angle de désorientation 2φ. Par la suite, on nommera « désorientation totale », l'angle de désorientation 2φ le plus petit parmi toutes les opérations de rotation précitées ; et on nommera « axe de désorientation », l'axe associé à cet angle.
De préférence, la désorientation totale 2φ entre les réseaux cristallins symétriques de deux germes (2) contigus, notés pour les différencier « germe A » et « germe B » (qu'il s'agisse de deux germes Gp et Gc contigus ou, dans la variante précitée, de deux germes Gc contigus) est supérieure ou égale à 4°, en particulier supérieure ou égale à 5°, et plus particulièrement comprise entre 6° et 45°.
Selon un mode de réalisation particulier, les réseaux cristallins de deux germes symétriques 2 contigus présentent tous deux une direction colinéaire à l'axe (Z), de préférence une direction <100> ou proche de <100> colinéaire à l'axe (Z), chacun des germes étant avantageusement désorienté selon un même angle Θ par rapport à cette direction selon (x) et/ou (y).
La désorientation Θ d'un germe peut être déterminée par des méthodes de mesure connues de l'homme du métier, par exemple par mesure des angles avec la méthode de Laue, par diffraction de rayon X ou encore par diffraction des électrons rétrodiffusés (ESBD pour « Electron BackScattered Diffraction » en langue anglaise).
Cependant, de manière avantageuse, il est possible de s'affranchir de la mesure des angles de désorientation Θ de chacun des germes mis en œuvre, en réalisant le pavage de germes contigus de réseaux cristallins symétriques l'un par l'autre, à partir d'un seul type de germes.
Ainsi, selon un mode de réalisation particulier, le pavage en fond de creuset par des germes 2 contigus, notés germe A et germe B, de réseaux cristallins symétriques l'un de l'autre, peut être réalisé à partir de germes de silicium identiques, le germe B étant obtenu à partir d'un germe A ayant subi une rotation d'un angle de 180° autour de l'un des vecteurs perpendiculaires aux faces latérales du germe, c'est-à-dire dans le cadre d'un pavage sous forme d'un quadrillage, autour de l'axe (x) ou (y).
A titre d'exemple, la figure 6 représente l'obtention des germes A et B de type pavé droit, le germe B étant obtenu par rotation d'un angle de 180° autour de l'axe x et/ou de l'axe (y).
Selon un mode de réalisation préféré, dans le cas de la mise en œuvre de germes Gc de réseaux cristallins symétriques l'un par rapport à l'autre, la désorientation entre les réseaux cristallins de deux germes Gc contigus s'effectue autour d'un axe <001>. De préférence, l'axe <001> est confondu avec l'axe (Z) du creuset et/ou avec l'axe (z) du germe.
Un tel mode de réalisation s'avère particulièrement avantageux, au regard des plaquettes qui seront formées par découpe du lingot central monocristallin obtenu à partir d'un tel pavage central de germes.
De fait, les surfaces des plaquettes issues de la découpe des briques perpendiculairement à la surface du lingot central, suivant les plans de joints de grains verticaux, sont, aux irrégularités de découpe près sensiblement parallèles aux plans (001). Etant d'orientation (001), les surfaces des plaquettes ainsi formés présentent la caractéristique d'être efficacement texturisées par une texturation basique (à base de KOH ou NaOH par exemple). Il peut en résulter un gain de réflectivité d'environ 5 à 12 % relatif en face, comparativement à des texturations basiques sur d'autres orientations ou à des texturations acides sur une orientation quelconque.
Selon un mode de réalisation particulier, le creuset peut être avantageusement dimensionné en fonction de la largeur lp des germes périphériques Gp, préalablement déterminée comme décrit précédemment, et de la largeur lu du lingot central souhaitée.
Autrement dit, la largeur du creuset, lcreuset, est choisie telle que lu +21p +2b, avec b tel que défini précédemment. Solidification dirigée par reprise sur germes (étape (ii))
Dans une seconde étape du procédé de l'invention, on procède à la solidification dirigée de silicium dans le four par reprise sur germes selon une direction de croissance colinéaire à l'axe (Z) et avec un front de solidification, spatialement ou temporellement, concave ou proche de la planéité.
L'homme du métier est à même d'ajuster les conditions opératoires pour l'élaboration du lingot de silicium par solidification dirigée.
Le four utilisé peut être un four conventionnel de solidification dirigée, comme par exemple un four de cristallisation de type HEM (provenant du nom anglais « Heat Exchange Method ») ou de type Bridgman avec un chauffage fixe par le haut et les côtés, qui permet de cristalliser la charge de silicium avec un gradient de température contrôlé.
D'une manière générale, la solidification dirigée est effectuée en faisant fondre, dans un premier temps, une charge de silicium dans le creuset préparé en étape (i). Lorsque le silicium est complètement en fusion, et que les germes commencent à fondre, le silicium en fusion est solidifié, de façon dirigée, à faible vitesse (typiquement de 5 à 30 mm/h).
La solidification dirigée peut être réalisée par déplacement du système de chauffage et/ou par refroidissement contrôlé, permettant un déplacement progressif du front de solidification (front de séparation entre la phase solide et la phase liquide) vers le haut du creuset.
Le lingot, de hauteur H, obtenu à l'issue de la solidification dirigé peut être ensuite refroidi, notamment jusqu'à température ambiante (20°C ± 5°C).
Comme représenté de manière schématique et partielle en figure 5, le lingot de silicium obtenu selon le procédé de l'invention présente un cœur monocristallin 7 séparé des zones multicristallines périphériques 4, par des joints de grains 6, se développant à partir des joints de germes 3 entre germes périphériques Gp et germes centraux Gc. Formation du lingot monocristallin (étape (iii))
Le lingot central monocristallin 7 peut être isolé des zones multicristallines formées à l'aplomb des germes Gp, par découpe du lingot le long des plans P définis par l'interface entre deux germes Gc et Gp contigus.
Les positions de découpe du lingot sont aisément identifiables sur le lingot, dans la mesure où elles se situent au niveau des frontières entre germes Gp et Gc tapissant le fond du creuset.
La découpe le long des plans P peut être opérée par des moyens conventionnels, connus de l'homme du métier, par exemple à l'aide d'un fil de découpe.
Le lingot monocristallin 7 ainsi obtenu est d'excellente qualité cristalline.
En particulier, il peut présenter une part multicristalline inférieure à 5 % de son volume total.
Plaquettes de silicium
Le lingot de silicium 7 monocristallin, obtenu à l'issue de l'étape (iii), peut ensuite être découpé en briques.
Des plaquettes de silicium peuvent être élaborées à partir de ces briques, selon des techniques classiques connues de l'homme du métier, notamment par découpe des briques, rectification des faces, éboutages des extrémités hautes et basses pour ajuster les dimensions de la plaquette, etc..
Dans le cadre de la variante de réalisation où les germes Gc mis en œuvre présentent des réseaux cristallins symétriques les uns des autres, le lingot central monocristallin présente avantageusement des joints de grains symétriques suivant les plans (Pci, Pc2, PC3 - · ·) définis par les frontières entre les germes Gc.
Selon une première variante de réalisation, la découpe du lingot de cœur en briques peut être opérée indépendamment de la position des plans de joints de grains Pcl, PC2, PC3 Les briques résultantes contiennent ainsi des joints de grains symétriques.
Selon une seconde variante de réalisation, la découpe du lingot de cœur en briques peut être opérée le long des plans Pci, Pc2, Pc3, · · · , comme représenté schématiquement en figure 7. La découpe du lingot de silicium le long de ces plans, permet ainsi d'éliminer les joints de grains symétriques et d'obtenir avantageusement des briques dénuées de joints de grains. Les positions de découpe du lingot central le long des joints de grains symétriques sont aisément identifiables sur le lingot dans la mesure où elles se situent au niveau des frontières entre les germes Gc contigus tapissant le fond du creuset.
Pour un pavage de germes Gc de type quadrillage comme représenté schématiquement en figure 2b, la découpe peut par exemple être opérée à l'aide d'une machine conventionnelle de type Squarer ou scie à bande.
Il appartient à l'homme du métier d'adapter le pas du guide-fils, au regard de la dimension des germes Gc de pavage mis en œuvre et du diamètre des fils de découpe utilisés, de manière à ce que la découpe à l'aide du Squarer se fasse le long de chacun des plans Pci, Pc2, ... et permette d'éliminer les joints de grains symétriques du lingot central.
Les plaquettes ainsi obtenues peuvent être avantageusement utilisées pour l'élaboration de cellules photovoltaïques, par exemple pour les filières homojonction ou hétéroj onction.
D'autres variantes de réalisation du pavage en fond de creuset par des germes centraux et périphériques peuvent être envisagées, sans se départir de l'esprit de l'invention.
Ainsi, selon une autre variante de réalisation, le procédé de l'invention met en œuvre en étape (i) un pavage avec des germes Gc et Gp ne présentant pas de réseaux cristallins symétriques l'un par rapport à l'autre.
Dans le cadre de cette variante, le pavage en étape (i) en fond de creuset peut être formé :
- d'un ou plusieurs germes centraux Gc ; et
- d'un ou plusieurs germes périphériques Gp2, contigu(s) aux germe(s) Gc ; les germes Gp2 présentent, dans un plan vertical de coupe, une largeur lp2 strictement inférieure à la largeur lc d'un germe central Gc ; et étant dimensionnés de manière à ce que :
0 < lpz < d2-b,
avec : - d2, représentant la distance séparant la paroi du creuset de l'interface zone multicristalline/monocristalline en haut du lingot de hauteur H, vérifiant : d2 = H.tan 0max, avec Gmax la valeur maximale de l'angle Θ du front de solidification du four utilisé ; et H étant la hauteur, mesurée selon l'axe (Z), du lingot de silicium souhaitée ; et
- b=0 pour un creuset à angles droits, et
Figure imgf000020_0001
creuset, avec Rinteme creuset la taille du chanfrein pour un creuset à arrêtes arrondies.
La valeur Gmax peut être plus particulièrement déterminée par un essai préalable de solidification dirigée, comme décrit précédemment.
Dans une telle variante de réalisation, comme représenté schématiquement en figure 10, les joints de grains 6 se propageant au cours de l'étape de solidification dirigée du lingot, à partir des joints de germes entre joints périphériques Gp2 et joints centraux Gc ne sont pas des joints de grains symétriques.
Néanmoins, ils permettent de stopper efficacement la propagation des macles 5 créées à partir de la zone multicristalline 4.
Un lingot monocristallin, d'excellente qualité cristalline, peut ainsi être obtenu par découpe du lingot obtenu à l'issue de l'étape (ii) de solidification dirigée, le long des plans P2 parallèles aux parois latérales du creuset, à une distance d2 de la paroi du creuset, comme représenté en figure 10.
Dans le cas d'un front de solidification proche de la planéité en fin de solidification du lingot, le joint de grains 6 se propageant à partir des joints de germes entre Gp et Gc acquiert une quasi-verticalité en haut du lingot. La découpe du lingot de cœur est aisément identifiable, dans la mesure où elles se situent au niveau des frontières entre germes Gp et germes centraux Gc.
L'invention va maintenant être décrite au moyen de l'exemple suivant donné bien entendu à titre illustratif et non limitatif de l'invention. EXEMPLES
1. Détermination de la valeur maximale de l'angle Θ du front de solidification du four
Le four de cristallisation utilisé pour les essais de reprise sur germes est un four de taille « Gen 2 » (60 à 80 kg de charge) possédant trois zones de chauffe pilotées en température ou en puissance : une zone de chauffe haute, une zone de chauffe basse et une zone de chauffe latérale.
Le creuset utilisé pour cet essai est un creuset en silice revêtu de S13N4 de taille G2 (390 x 390 mm2).
Un lingot multicristallin est réalisé dans le creuset, suivant une recette thermique spécifique développée pour obtenir un lingot multicristallin respectant les critères qualité de briques standards.
Ce type de creuset est entouré d'un contre-creuset en graphite servant à limiter la dilatation de la silice qui, lors de la montée en température au cours du cycle et la transition vitreuse associée, devient visqueux.
La charge est constituée d'une masse de silicium électronique (9N) ou métallurgique (6N) plus ou moins importante suivant la taille de lingot voulu, la quantité en dopant qu'il soit de type P (bore) ou de type N (phosphore) est calculée en fonction de la résistivité et du type désirée.
Après expérience, le lingot de silicium est découpé suivant un plan vertical de coupe, pour déterminer le front de solidification du four à l'aide d'une étude métallographique ou de résistivité.
A l'aide d'une étude cristallographique (comme représenté schématiquement en figure 8), il est possible de déterminer facilement les différentes dimensions nécessaires :
HeSsai = 180 mm
Figure imgf000021_0001
Et . dessai Hessai .tan 6max
dessai = 34 mm Au vu de l'angle 6maX (10,7o) du front de solidification du four utilisé, et de la taille du chanfrein présent pour ce creuset (b=14 mm), les germes périphériques doivent présenter une largeur minimale de 20 mm.
2. Fabrication du lingot de silicium
2.i. Réalisation du pavage de germes G_r et GE
On réalise un pavage du fond du creuset (creuset et contre-creuset identiques à ceux utilisés dans l'essai précédent), comme représenté schématiquement en figure 2b, avec :
- dans la zone centrale, quatre germes Gc de type Cz de dimensions 144 x 144 mm et d'épaisseur 20 mm. Ces lingots sont découpés dans un lingot de diamètre 8 pouces (202 mm) perpendiculairement à la direction de croissance du cristal. La reprise sur germe aura donc une croissance identique à la direction de croissance du germe Cz : proche de <100> ; et
- dans la zone périphérique au voisinage des parois du creuset et adjacents aux germes Gc, quatre germes périphériques Gp de dimensions 28 x 317 mm et d'épaisseur 20 mm. Ces germes ont été prélevés dans un même lingot Cz et possèdent des orientations, suivant les trois directions, semblables aux germes centraux.
Ces germes ont été nettoyés par ultrasons dans un bac d'acétone et un bac d'éthanol pendant une durée de 30 minutes et ensuite attaqués dans une solution de soude à 10 % massique.
Les caractéristiques des germes utilisés sont présentées dans le tableau 1 ci- après.
Figure imgf000023_0001
TABLEAU 1 : Caractérisation des germes Gc et Gp
2. ii. Solidi fication dirigée de silicium par reprise sur germes dans le four On effectue la solidification dirigée d'une charge de silicium, identique à celle utilisée pour la détermination de la valeur maximale de l'angle Θ du front de solidification du four (point 1.).
Résultats
En sortie de four, l'observation de la face supérieure du lingot indique la présence d'une zone monocristalline, premier indice sur la croissance monocristalline de bas en haut du lingot.
L'observation de la structure cristalline post découpe (photographie (180 mm x 388 mm) présentée en figure 9) démontre que la croissance de la zone monocristalline issue des germes centraux est maintenue sur toute la hauteur du lingot. Il peut être observé que les macles 5, créées à partir de la zone multicristalline, sont bloquées sur les extérieurs du lingot à l'aide des joints de grains 6 créés par les interfaces entre germes périphériques et germes centraux.

Claims

REVENDICATIONS
1. Procédé de fabrication d'un lingot de silicium par reprise sur germes en four de solidification dirigée, comprenant au moins les étapes consistant en :
(i) disposer d'un creuset (1) d'axe (Z) longitudinal, dont le fond comporte un pavage de germes (2) de silicium monocristallin de forme prisme droit ; et
(ii) procéder à la solidification dirigée de silicium par reprise sur germes, selon une direction de croissance colinéaire à l'axe (Z) et avec un front de solidification, spatialement ou temporellement, concave;
caractérisé en ce que le pavage en étape (i) est formé :
- d'un ou plusieurs germes centraux Gc ; et
- d'un ou plusieurs germes périphériques Gp, contigu(s) au(x) germe(s) Gc, un germe Gp présentant un réseau cristallin symétrique du réseau cristallin du germe Gc contigu, par rapport au plan P défini par la frontière (3) entre lesdits germes Gp et Gc ;
le ou lesdits germes Gp présentant, dans un plan vertical de coupe, une largeur (lp) strictement inférieure à la largeur totale (lu) du ou desdits germes centraux ; et
les germes périphériques Gp étant dimensionnés de manière à ce que :
Figure imgf000024_0001
avec :
- d vérifiant : d > H.tan 0maX, avec 0max la valeur maximale de l'angle Θ du front de solidification du four utilisé, et H la hauteur, mesurée selon l'axe (Z), du lingot de silicium souhaitée ; et
- b=0 pour un creuset à angles droits, et
Figure imgf000024_0002
creuset, avec Rinteme creuset la taille du chanfrein pour un creuset à arrêtes arrondies.
2. Procédé selon la revendication 1, la valeur Gmax étant déterminée à l'issue d'un essai de solidification dirigée, dans le même creuset (1), d'un lingot de silicium de hauteur HesSai similaire à la hauteur H du lingot souhaité, obtenu par reprise sur germes, en particulier sur des germes Cz ou des germes Fz.
3. Procédé selon la revendication 2, la valeur 0max étant calculée, à l'issue de l'essai de solidification dirigée, par la formule suivante : tan
Figure imgf000024_0003
dessai HeSsai, avec desSai étant la distance la plus éloignée du bord de creuset où se situe la zone multicristalline pour le lingot de hauteur HesSai obtenu lors de l'essai.
4. Procédé selon l'une quelconque des revendications précédentes, dans lequel les germes Gc et Gp sont issus d'un lingot Cz de silicium ; ou du recyclage d'un lingot élaboré lors d'une précédente solidification dirigée selon le procédé tel que défini en revendication 1, par prélèvement d'une tranche horizontale du lingot formé.
5. Procédé selon l'une quelconque des revendications précédentes, dans lequel les germes Gc et Gp présentent une épaisseur (e) suivant l'axe (Z), supérieure ou égale à 5 mm.
6. Procédé selon l'une quelconque des revendications précédentes, dans lequel le ou lesdits germes Gp présentent, dans un plan vertical de coupe, une largeur (lp) inférieure ou égale à 157 mm, en particulier comprise entre 5 et 40 mm.
7. Procédé selon l'une quelconque des revendications précédentes, dans lequel le ou lesdits germes Gc présentent, dans un plan vertical de coupe, une largeur (lc) comprise entre 110 mm et l„/n avec n le nombre de germes centraux accolés, n étant en particulier compris entre 1 et 10.
8. Procédé selon l'une quelconque des revendications précédentes, dans lequel les germes Gc présentent la forme d'un pavé droit de base carrée ou rectangulaire.
9. Procédé selon l'une quelconque des revendications précédentes, dans lequel le creuset est à angles droits, le germe Gp étant accolé à la paroi latérale (1) du creuset.
10. Procédé selon l'une quelconque des revendications 1 à 8, dans lequel le creuset est à arrêtes arrondies, le germe Gp étant espacé de la paroi latérale (1) du creuset d'une distance (b) égale à la taille du chanfrein du creuset Rinteme creuset, en particulier allant de 2 à 40 mm.
11. Procédé selon l'une quelconque des revendications précédentes, le creuset étant dimensionné en fonction de la largeur (lp) des germes périphériques préalablement déterminée et de la largeur (lu) souhaitée.
12. Procédé selon l'une quelconque des revendications précédentes, dans lequel chaque germe Gc présente un réseau cristallin symétrique du réseau cristallin du germe Gc qui lui est contigu, par rapport au plan défini par la frontière entre les deux germes Gc contigus.
13. Procédé selon l'une quelconque des revendications précédentes, dans lequel un germe périphérique Gp présente une orientation cristallographique distincte du germe central Gc contigu.
14. Procédé selon l'une quelconque des revendications précédentes, la désorientation totale 2φ entre les réseaux cristallins symétriques d'un germe Gp et d'un germe Gc contigus étant supérieure ou égale à 4°, en particulier supérieure ou égale à 5°, et plus particulièrement comprise entre 6° et 45°.
15. Lingot de silicium, présentant un cœur monocristallin séparé par des joints de grains, sensiblement verticaux, d'une zone multicristalline périphérique, obtenu selon le procédé de l'une quelconque des revendications 1 à 14.
16. Procédé de fabrication d'un lingot de silicium monocristallin, comprenant au moins une étape (iii) de découpe du lingot tel que défini en revendication 15, le long des plans P définis par l'interface entre deux germes Gc et Gp contigus, de manière à éliminer les zones multicristallines formées à l'aplomb des germes Gp.
17. Procédé selon la revendication précédente, dans lequel le lingot de silicium monocristallin isolé à l'issue de l'étape (iii) présente une part multicristalline inférieure à 5 % de son volume total.
PCT/IB2014/061722 2013-05-27 2014-05-26 Procede de fabrication d'un lingot de silicium par reprise sur germes en four de solidification dirigee WO2014191899A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201480038780.7A CN105358742B (zh) 2013-05-27 2014-05-26 在定向凝固炉中通过在晶种上的生长制造硅柱体的方法
US14/894,385 US10125430B2 (en) 2013-05-27 2014-05-26 Method for manufacturing a silicon cylinder by growth on seeds in a directed solidification furnace
ES14729450T ES2702900T3 (es) 2013-05-27 2014-05-26 Procedimiento de fabricación de un lingote de silicio mediante la recuperación de semillas en un horno de solidificación dirigida
EP14729450.8A EP3004430B1 (fr) 2013-05-27 2014-05-26 Procede de fabrication d'un lingot de silicium par reprise sur germes en four de solidification dirigee

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1354759 2013-05-27
FR1354759A FR3005966B1 (fr) 2013-05-27 2013-05-27 Procede de fabrication d'un lingot de silicium par reprise sur germes en four de solidification dirigee

Publications (1)

Publication Number Publication Date
WO2014191899A1 true WO2014191899A1 (fr) 2014-12-04

Family

ID=49151071

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2014/061722 WO2014191899A1 (fr) 2013-05-27 2014-05-26 Procede de fabrication d'un lingot de silicium par reprise sur germes en four de solidification dirigee

Country Status (6)

Country Link
US (1) US10125430B2 (fr)
EP (1) EP3004430B1 (fr)
CN (1) CN105358742B (fr)
ES (1) ES2702900T3 (fr)
FR (1) FR3005966B1 (fr)
WO (1) WO2014191899A1 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104911691A (zh) * 2015-04-15 2015-09-16 江西赛维Ldk太阳能高科技有限公司 一种籽晶的铺设方法、准单晶硅片的制备方法及准单晶硅片
CN105063742A (zh) * 2015-07-21 2015-11-18 李剑 一种类单晶晶体生长方法、类单晶硅锭以及类单晶电池
FR3111360A1 (fr) 2020-06-15 2021-12-17 Commissariat A L'energie Atomique Et Aux Energies Alternatives Procédé de fabrication d’une pièce par solidification d’un matériau semi-conducteur
WO2023036958A1 (fr) 2021-09-10 2023-03-16 Commissariat A L'energie Atomique Et Aux Energies Alternatives Procédé de fabrication d'un lingot de silicium à partir de germes oxydés en surface

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105755537B (zh) * 2016-04-14 2018-04-17 江西赛维Ldk太阳能高科技有限公司 一种多晶硅锭及其制备方法
TWI593838B (zh) * 2016-08-04 2017-08-01 中美矽晶製品股份有限公司 晶種的鋪設方法及類單晶晶錠之製作方法
DE102018207759A1 (de) * 2018-05-17 2019-11-21 Carl Zeiss Smt Gmbh Verfahren zum Herstellen eines Substrats für ein optisches Element und reflektierendes optisches Element
CN109176929B (zh) * 2018-09-14 2020-08-07 中国航空工业集团公司北京长城航空测控技术研究所 一种利用金刚石线切割机微型化分割晶片的方法
CN113293434A (zh) * 2021-05-27 2021-08-24 江苏协鑫硅材料科技发展有限公司 籽晶铺设方法和单晶硅铸造方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007084934A2 (fr) 2006-01-20 2007-07-26 Bp Corporation North America Inc. Procédés et appareils destinés à fabriquer du silicium coulé monocristallin et des corps de silicium coulé monocristallin pour des applications photovoltaïques
WO2009014957A2 (fr) * 2007-07-20 2009-01-29 Bp Corporation North America Inc. Procédés et appareils pour fabriquer du silicium coulé à partir de cristaux d'ensemencement
WO2009014963A1 (fr) 2007-07-20 2009-01-29 Bp Corporation North America Inc. Procédés et appareils destinés à fabriquer du silicium coulé à partir de germes cristallins
US20100192838A1 (en) 2007-07-25 2010-08-05 Bp Corporation North America Inc. Methods for Manufacturing Monocrystalline or Near-Monocrystalline Cast Materials
US20100193664A1 (en) 2009-01-30 2010-08-05 Bp Corporation North America Inc. Seed Layers and Process of Manufacturing Seed Layers
US20100193989A1 (en) 2007-07-25 2010-08-05 Bp Corporation North America Inc. Methods Apparatus for Manufacturing Geometric Multi-Crystalline Cast Materials
CN102268724A (zh) * 2011-07-28 2011-12-07 英利能源(中国)有限公司 多晶硅锭及其制造方法、太阳能电池
DE102011075093A1 (de) * 2011-05-02 2012-11-08 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zur Herstellung eines Silizium-Ingots
US20130095028A1 (en) 2011-10-14 2013-04-18 Sino-American Silicon Products Inc. Crystalline silicon ingot and method of fabricating the same
DE102011086669A1 (de) * 2011-11-18 2013-05-23 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zur Herstellung von Silizium-Blöcken
DE102012102597A1 (de) * 2012-03-26 2013-09-26 Schott Solar Ag Verfahren zur Herstellung eines gerichtet erstarrten Materialkörpers, insbesondere eines Metall- oder Halbmetallkörpers, sowie Verwendungen hiervon

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69831618T2 (de) * 1997-04-09 2006-06-29 Memc Electronic Materials, Inc. Freistellenbeherrschendes Silizium mit niedriger Fehlerdichte
DE102007038851A1 (de) * 2007-08-16 2009-02-19 Schott Ag Verfahren zur Herstellung von monokristallinen Metall- oder Halbmetallkörpern
DE102012203524B4 (de) * 2012-03-06 2016-10-27 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zur Herstellung von Silizium-Ingots

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007084934A2 (fr) 2006-01-20 2007-07-26 Bp Corporation North America Inc. Procédés et appareils destinés à fabriquer du silicium coulé monocristallin et des corps de silicium coulé monocristallin pour des applications photovoltaïques
WO2009014957A2 (fr) * 2007-07-20 2009-01-29 Bp Corporation North America Inc. Procédés et appareils pour fabriquer du silicium coulé à partir de cristaux d'ensemencement
WO2009014963A1 (fr) 2007-07-20 2009-01-29 Bp Corporation North America Inc. Procédés et appareils destinés à fabriquer du silicium coulé à partir de germes cristallins
US20100197070A1 (en) 2007-07-20 2010-08-05 BP Corproation North America Inc. Methods and Apparatuses for Manufacturing Cast Silicon From Seed Crystals
US20100192838A1 (en) 2007-07-25 2010-08-05 Bp Corporation North America Inc. Methods for Manufacturing Monocrystalline or Near-Monocrystalline Cast Materials
US20100193989A1 (en) 2007-07-25 2010-08-05 Bp Corporation North America Inc. Methods Apparatus for Manufacturing Geometric Multi-Crystalline Cast Materials
US20100193664A1 (en) 2009-01-30 2010-08-05 Bp Corporation North America Inc. Seed Layers and Process of Manufacturing Seed Layers
DE102011075093A1 (de) * 2011-05-02 2012-11-08 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zur Herstellung eines Silizium-Ingots
CN102268724A (zh) * 2011-07-28 2011-12-07 英利能源(中国)有限公司 多晶硅锭及其制造方法、太阳能电池
US20130095028A1 (en) 2011-10-14 2013-04-18 Sino-American Silicon Products Inc. Crystalline silicon ingot and method of fabricating the same
DE102011086669A1 (de) * 2011-11-18 2013-05-23 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zur Herstellung von Silizium-Blöcken
DE102012102597A1 (de) * 2012-03-26 2013-09-26 Schott Solar Ag Verfahren zur Herstellung eines gerichtet erstarrten Materialkörpers, insbesondere eines Metall- oder Halbmetallkörpers, sowie Verwendungen hiervon

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
FUJIWARA ET AL.: "Growth of structure-controlled polycrystalline silicion ingots for solar cells by casting", ACTA MATERIALIA, vol. 54, 2006, pages 3191 - 3197
K. KUTSUKAKE, N. USAMI, Y. OHNO, Y. TOKUMOTO, I. YONENAGA: "Control of grain boundary propagation in mono-like Si: utilization of functional grain bondaries", APPLIED PHYSICS EXPRESS, vol. 6, 025505, 31 January 2013 (2013-01-31), pages 025505-1 - 025505-3, XP002716236, DOI: 10.7567/APEX.6.025505 *
KUTSUKAKE KENTARO ET AL: "Influence of structural imperfection of[Sigma]5 grain boundaries in bulk multicrystalline Si on their electrical activities", JOURNAL OF APPLIED PHYSICS, AMERICAN INSTITUTE OF PHYSICS. NEW YORK, US, vol. 101, no. 6, 19 March 2007 (2007-03-19), pages 63509 - 063509, XP012098025, ISSN: 0021-8979, DOI: 10.1063/1.2710348 *
TAKAHASHI I ET AL: "Generation mechanism of dislocations during directional solidification of multicrystalline silicon using artificially designed seed", JOURNAL OF CRYSTAL GROWTH, ELSEVIER, AMSTERDAM, NL, vol. 312, no. 7, 15 March 2010 (2010-03-15), pages 897 - 901, XP026929260, ISSN: 0022-0248, [retrieved on 20100118], DOI: 10.1016/J.JCRYSGRO.2010.01.011 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104911691A (zh) * 2015-04-15 2015-09-16 江西赛维Ldk太阳能高科技有限公司 一种籽晶的铺设方法、准单晶硅片的制备方法及准单晶硅片
CN105063742A (zh) * 2015-07-21 2015-11-18 李剑 一种类单晶晶体生长方法、类单晶硅锭以及类单晶电池
FR3111360A1 (fr) 2020-06-15 2021-12-17 Commissariat A L'energie Atomique Et Aux Energies Alternatives Procédé de fabrication d’une pièce par solidification d’un matériau semi-conducteur
EP3926078A1 (fr) 2020-06-15 2021-12-22 Commissariat à l'Energie Atomique et aux Energies Alternatives Procédé de fabrication d'un cristal semi-conducteur
WO2023036958A1 (fr) 2021-09-10 2023-03-16 Commissariat A L'energie Atomique Et Aux Energies Alternatives Procédé de fabrication d'un lingot de silicium à partir de germes oxydés en surface
FR3126999A1 (fr) 2021-09-10 2023-03-17 Commissariat A L'energie Atomique Et Aux Energies Alternatives Procédé de fabrication d’un lingot de silicium à partir de germes oxydés en surface

Also Published As

Publication number Publication date
US10125430B2 (en) 2018-11-13
EP3004430B1 (fr) 2018-09-26
CN105358742A (zh) 2016-02-24
EP3004430A1 (fr) 2016-04-13
ES2702900T3 (es) 2019-03-06
FR3005966A1 (fr) 2014-11-28
CN105358742B (zh) 2019-01-11
FR3005966B1 (fr) 2016-12-30
US20160108548A1 (en) 2016-04-21

Similar Documents

Publication Publication Date Title
EP3004430B1 (fr) Procede de fabrication d&#39;un lingot de silicium par reprise sur germes en four de solidification dirigee
EP3004431B1 (fr) Procede de fabrication d&#39;un lingot de silicium dote de joints de grains symetriques
CN104790026B (zh) 一种铸造类单晶用籽晶的重复利用方法
US8940095B2 (en) Apparatus for growth of single crystals including a solute feeder
EP3775328B1 (fr) Dispositif de fabrication de cristaux aiii-bv et tranches de substrat fabriquées à partir de ceux-ci exemptes de contrainte résiduelle et de dislocations
JP5630665B2 (ja) 結晶シリコンインゴット及びその製造方法
FR2918080A1 (fr) Dispositif et procede d&#39;elaboration de plaquettes en materiau semi-conducteur par moulage et cristallisation dirigee
WO2020238646A1 (fr) Tranche de monocristal de germanium, procédé de préparation de tranche de monocristal de germanium, procédé de préparation de barre de cristal et utilisation de tranche de monocristal
EP3198061B1 (fr) Creuset pour la solidification directionnelle de silicium multi-cristallin ou quasi-monocristallin par reprise sur germe.
TWI481750B (zh) 利用彈性與浮力從熔化物表面移離片材
WO2013122667A1 (fr) Procédé d&#39;obtention d&#39;une croissance cristalline anisotrope entretenue sur la surface d&#39;une masse fondue
de Oliveira et al. Sub-grain boundaries sources and effects in large mono-like silicon ingots for PV
EP3230497B1 (fr) Pavage de germes utilisés dans un creuset pour la solidification dirigée de silicium comportant des germes désorientés vis à vis du germe adjacent
JP4923253B2 (ja) Siバルク多結晶の作製方法
Riberi-Béridot In situ characterization by X-ray synchrotron imaging of the solidification of silicon for the photovoltaic applications: control of the grain structure and interaction with the defects and the impurities
JP2004250248A (ja) Iii−v族化合物半導体ウェーハの製造方法
JP6487675B2 (ja) 多結晶シリコンインゴット製造方法、多結晶シリコンインゴットの用途の製造方法及び多結晶シリコンインゴット
WO2023036958A1 (fr) Procédé de fabrication d&#39;un lingot de silicium à partir de germes oxydés en surface
Schillinger et al. Investigation on crystal quality of thin silicon films prepared by zmr on different intermediate layers and cost effective substrates
JP5688654B2 (ja) シリコン結晶、シリコン結晶の製造方法およびシリコン多結晶インゴットの製造方法
Lee et al. The current status in the silicon crystal growth technology for solar cells
Saghir et al. Experiments and modeling of Te segregation in Te-doped GaSb in terrestrial and microgravity conditions using the Bridgman technique
JP2010269943A (ja) シリコン多結晶インゴットおよびシリコン多結晶ウェハー

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480038780.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14729450

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2014729450

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14894385

Country of ref document: US