WO2014190946A1 - 联合通道校正方法及装置 - Google Patents

联合通道校正方法及装置 Download PDF

Info

Publication number
WO2014190946A1
WO2014190946A1 PCT/CN2014/079033 CN2014079033W WO2014190946A1 WO 2014190946 A1 WO2014190946 A1 WO 2014190946A1 CN 2014079033 W CN2014079033 W CN 2014079033W WO 2014190946 A1 WO2014190946 A1 WO 2014190946A1
Authority
WO
WIPO (PCT)
Prior art keywords
corrected
interpolation
full
band
sequence
Prior art date
Application number
PCT/CN2014/079033
Other languages
English (en)
French (fr)
Inventor
胡召宇
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2014190946A1 publication Critical patent/WO2014190946A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0204Channel estimation of multiple channels

Definitions

  • the present invention claims the priority of the Chinese patent application filed on May 31, 2013, filed by the Chinese Patent Office, Application No. 201310213446.8, entitled “Joint Channel Correction Method and Apparatus", the entire contents of which are incorporated by reference.
  • the present invention relates to the field of communications technologies, and in particular, to a joint channel calibration method and apparatus.
  • JT joint transmission
  • the transmit channel correction specifically includes: a baseband unit (BBU) located at the base station side generates a corrected full-band test sequence, which is to be corrected.
  • the number of transmission channels N is divided into N non-full-band test sequences by interpolation, and N non-full-band test sequences are sent to the antenna coupling disk through multiple remote radio units (RRUs), and After being synthesized by the antenna coupling disc, it is returned to the BBU, so that the BBU obtains the channel response test result of all the transmission channels to be corrected according to the corrected full-band test sequence after the coupling, and calculates the channel response test result of all the transmission channels to be corrected.
  • the compensation coefficients of all the transmission channels to be corrected thereby completing the correction process for all the transmission channels to be corrected.
  • the joint channel correction process according to the number N of transmission channels to be corrected, it is divided into N non-full-band test sequences by interpolation, so that the value points of the corrected full-band test sequence in the frequency domain become sparse. , increased interpolation interval and interpolation error, which increases the antenna coupling After the combination of the discs, the error of the full-band test sequence is corrected, so that the compensation coefficients of all the transmission channels to be corrected calculated by the subsequent BBU are incorrect, resulting in inaccurate joint channel correction.
  • the present invention provides a joint channel correction method and apparatus for solving the problem of inaccurate joint channel correction in the prior art.
  • a joint channel correction method including:
  • the corrected full-band test sequence is subjected to M-time interpolation of the first stage, and the sequence values of the corrected full-band test sequence after M-interpolation are respectively obtained at J interpolation points of each transmission channel to be corrected, l ⁇ M ⁇ Log 2 N + l , N is the number of transmission channels to be corrected;
  • sequence values of the corrected full-band test sequences obtained after M-time interpolation are respectively combined at the J interpolation points of each of the to-be-corrected transmission channels to obtain a partial test sequence of all the transmission channels to be corrected after M-time interpolation;
  • the full-band channel response test result of all the to-be-corrected transmission channels after the M-time interpolation is greater than or equal to the preset full-band channel response threshold, the total band of all the to-be-corrected transmission channels after the M-time interpolation is performed.
  • the channel response test result calculates the compensation coefficient of each of the transmission channels to be corrected.
  • the corrected full-band test sequence is subjected to the M-th interpolation of the first stage, and the corrected full-band test sequence after M-time interpolation is obtained in each of the to-be-corrected
  • N the number of the transmission channels to be corrected
  • M represents the number of interpolations in the first stage, l ⁇ M ⁇ log 2 N + l;
  • the interpolated sequence value of the corrected full-band test sequence after the Mth interpolation on the kth subcarrier of the ith to-be-corrected transmission channel includes the corrected full-band test sequence in the ith to-be-corrected transmission channel
  • the sequence value of the interpolation point on the kth subcarrier or the zero value of the interpolation point includes the corrected full-band test sequence in the ith to-be-corrected transmission channel.
  • the method further includes:
  • the corrected full-band test sequence is performed in the second stage of the M'th Interpolating, respectively obtaining the sequence values of the corrected full-band test sequence after M' times interpolation on each of the J interpolation points of the transmission channel to be corrected, N ⁇ M+M' ⁇ log 2 N + l, ' ⁇ l ;
  • the corrected full-band test sequence is subjected to the second-stage M′-time interpolation, and the M′-time interpolation is respectively obtained.
  • the sequence value of the corrected full-band test sequence on each of the J interpolation points of the transmission channel to be corrected includes: calculating the formula according to the interpolation: SW, obtaining the ⁇ + ⁇ ' sub-interpolated
  • L ⁇ NJ + j, represents the subcarrier number corresponding to the jth interpolation point on the ith to be corrected transmission channel
  • N the number of the transmission channels to be corrected
  • W represents the number of interpolations in the second stage, N ⁇ M + M' ⁇ log 2 N + ⁇ .
  • a joint channel calibration apparatus including:
  • a first interpolation module configured to perform M-time interpolation of the first-stage calibration of the corrected full-band test sequence, and obtain the corrected full-band test sequence after M interpolations respectively at J interpolation points of each transmission channel to be corrected
  • the sequence value, l ⁇ M ⁇ log 2 N + l , N is the number of transmission channels to be corrected;
  • the merging module is configured to respectively perform the corrected full-band test sequence obtained by interpolating the first interpolation module M times
  • the sequence values on the J interpolation points of each of the to-be-corrected transmission channels are combined to obtain a partial test sequence of all the transmission channels to be corrected after M interpolation;
  • a first determining module configured to determine, according to the partial test sequence of all the to-be-corrected transmission channels after the M-time interpolation, a full-band channel response test result of all the to-be-corrected transmission channels after M-time interpolation; and a second determining module, configured to The full-band channel response test result of all the to-be-corrected transmission channels after the M-time interpolation determined by the first determining module, if the M-th interpolation is performed, the total-band channel response test result of all the to-be-corrected transmission channels is greater than or equal to the preset
  • the full-band channel response threshold is calculated, and the compensation coefficient of each to-be-corrected transmission channel is calculated according to the full-band channel response test result of all the to-corrected transmission channels after the M-time interpolation.
  • k ⁇ , 2 ⁇ , Len, represents the number of the subcarrier
  • L ⁇ NJ + j, represents the subcarrier number corresponding to the jth interpolation point on the ith to be corrected transmission channel
  • N the number of the transmission channels to be corrected
  • M represents the number of interpolations in the first stage, l ⁇ M ⁇ log 2 N + l;
  • the interpolated sequence value of the corrected full-band test sequence after the Mth interpolation on the kth subcarrier of the ith to-be-corrected transmission channel includes the corrected full-band test sequence in the ith to-be-corrected transmission channel
  • the sequence value of the interpolation point on the kth subcarrier or the zero value of the interpolation point includes the corrected full-band test sequence in the ith to-be-corrected transmission channel.
  • the device further includes:
  • a second interpolation module configured to perform the second-stage M'-interpolation of the corrected full-band test sequence, to obtain the corrected full-band test sequence after the M'-interpolation, respectively, in each of the J channels to be corrected
  • the sequence value at the interpolation point N ⁇ M+M' ⁇ log 2 N + l, M' ⁇ l;
  • a compensation module configured to replace, by the first interpolation module, the sequence value of the interpolation-free point on the corresponding to-correction transmission channel in the partial test sequence of all the transmission channels to be corrected after the M-th interpolation is replaced by the second interpolation module M′ Interpolating the sequence value of the interpolation point on the corresponding transmission channel to be corrected in the corrected full-band test sequence, and obtaining a corrected full-band test sequence of all the transmission channels to be corrected after the M+M'sub-interpolation; a third determining module, configured to determine, according to the M+M′ sub-interpolation obtained by the compensation module, a corrected full-band test sequence of all the to-be-corrected transmission channels, and determine a full-band channel of all the to-be-corrected transmission channels after the M+M′ sub-interpolation Responding to the test result, if the full-band channel response test result of all the to-be-corrected transmission channels after the M+M'-time interpolation is greater
  • the second interpolation module is specifically configured to: calculate, according to the interpolation formula: SW, obtain the third ⁇ ⁇ ⁇ sub-interpolation Said
  • L ⁇ NJ + j, represents the subcarrier number corresponding to the jth interpolation point on the ith to be corrected transmission channel
  • N the number of the transmission channels to be corrected
  • W represents the number of interpolations in the second stage, N ⁇ M + M' ⁇ log 2 N + ⁇ .
  • the present invention obtains the sequence values of the corrected full-band test sequence of the M-time interpolation in the J interpolation points of each of the to-be-corrected transmission channels by performing M-time interpolation of the first-stage test sequence of the corrected full-band test sequence, respectively.
  • N is the number of transmission channels to be corrected; the sequence values of the corrected full-band test sequences obtained after M interpolation are respectively at J interpolation points of each transmission channel to be corrected Performing a combination to obtain a partial test sequence of all the transmission channels to be corrected after M interpolation; determining a full-band channel response of all the transmission channels to be corrected after M interpolation according to the partial test sequences of all the transmission channels to be corrected after the M interpolation
  • the test result if the full-band channel response test result of all the to-be-corrected transmission channels after the M-time interpolation is greater than or equal to the preset full-band channel response threshold, all the to-corrected transmission channels after the M-time interpolation
  • the full-band channel response test result calculates the compensation coefficient of each of the transmission channels to be corrected.
  • the secondary interpolation can increase the interpolation density of the corrected full-band test sequence by M times, reduce the interpolation interval and the interpolation error, and can improve the compensation coefficient of the subsequently calculated transmission channel to be corrected, and therefore, the accuracy of the joint channel correction can be improved.
  • FIG. 1 is a schematic flowchart of a joint channel correction method according to an embodiment of the present invention
  • FIG. 2 is an effect diagram of a partial test sequence after the first interpolation in the first phase
  • Figure 3 is an effect diagram of a partial test sequence after the second interpolation in the first stage
  • FIG. 4 is a diagram showing the effect of the test sequence after the partial test sequence shown in FIG. 2 and the partial test sequence shown in FIG. 3 are combined;
  • FIG. 5 is an effect diagram of a corrected full-band test sequence after linear interpolation or DFT interpolation processing of the test sequence shown in FIG. 4;
  • Figure 6 is an effect diagram of a partial test sequence after the first interpolation of the second stage
  • Figure 7 is a diagram showing the effect of compensating part of the test sequence shown in Figure 6 into the partial test sequence shown in Figure 4;
  • Figure 9 is a diagram showing the effect of compensating part of the test sequence shown in Figure 8 into the partial test sequence shown in Figure 7;
  • FIG. 10 is a schematic structural diagram of a joint channel calibration apparatus according to another embodiment of the present invention
  • FIG. 11 is a schematic structural diagram of a joint channel calibration apparatus according to another embodiment of the present invention.
  • FIG. 1 is a schematic flowchart of a joint channel calibration method according to an embodiment of the present invention. As shown in FIG. 1 , the joint channel calibration method in this embodiment may include:
  • the corrected full-band test sequence is subjected to the M-th interpolation of the first stage, and the sequence values of the corrected full-band test sequence after the M-time interpolation are respectively obtained at the J interpolation points of each of the to-be-corrected transmission channels.
  • the baseband unit on the base station side generates a corrected full-band test sequence, and the corrected full-band test sequence is subjected to the M-th interpolation of the first stage, and the corrected full-band test sequence after M-time interpolation can be obtained respectively. Corrects the sequence values at the J interpolation points of the transmit channel.
  • the M-th interpolation of the first stage is the average interpolation value, and the interpolation of this embodiment is the interpolation test.
  • Step 101 is specifically implemented: According to the interpolation calculation formula: SW, the school after the third interpolation is obtained.
  • sequence value of the positive full-band test sequence on the kth subcarrier of the i-th to be corrected transmission channel when k ⁇ L ⁇ , indicating that there is no interpolation point on the kth subcarrier of the i thth to be corrected transmission channel, 0; ⁇ two L" means that there is an interpolation point on the kth subcarrier of the i-th to be corrected transmission channel, then ⁇ );
  • k ⁇ ,2 together ,Lm, represents the number of the subcarrier
  • L ⁇ NJ + j, represents the subcarrier number corresponding to the jth interpolation point on the ith to be corrected transmission channel
  • N the number of the transmission channels to be corrected
  • the interpolated sequence value of the corrected full-band test sequence after the Mth interpolation on the kth subcarrier of the ith to-be-corrected transmission channel includes the corrected full-band test sequence in the ith to-be-corrected transmission channel The sequence value of the interpolation point on the kth subcarrier or the zero value of the interpolation point.
  • the sequence value of the interpolation point of the corrected full-band test sequence on the k-th subcarrier of the i-th to-be-corrected transmission channel is specifically the channel of the corrected k-subcarrier of the i-th to-correction transmission channel of the all-band test sequence.
  • Amplitude and phase response value, the zero value of the uninterpolated point on the kth subcarrier of the i-th corrected transmission channel of the corrected full-band test sequence indicates the k-th sub-correction of the i-th to-correction transmission channel of the corrected full-band test sequence
  • the channel amplitude and phase response values on the carrier are both zero.
  • Figure 2 is the effect diagram of the partial test sequence after the first interpolation in the first stage. As shown in Fig. 2, the black part indicates that there is an interpolation point, and the blank part indicates that there is no interpolation point. That is, after the first interpolation of the first stage, the channel 1 has a sequence value of the interpolation point.
  • Figure 3 shows the effect of part of the test sequence after the second interpolation in the first stage. As shown in Figure 3, after the second interpolation of the first stage, channel 3 A sequence value with an interpolation point.
  • step 102 Combine the sequence values of the corrected full-band test sequence obtained after M interpolations at each of the J interpolation points of the to-be-corrected transmission channel, and obtain a partial test sequence of all the transmission channels to be corrected after M-time interpolation. . Specifically, the sequence value of the corrected full-band test sequence of the M-time interpolation obtained after the first interpolation of the first stage to the M-th interpolation is performed on each of the J interpolation points of the transmission channel to be corrected. Merging, obtaining a partial test sequence of all the transmission channels to be corrected after M interpolation.
  • the following description will be made in the following manner: For example, the first full-stage test sequence shown in FIG.
  • FIG. 4 is FIG.
  • the test sequence effect diagram of the partial test sequence shown in FIG. 3 and the partial test sequence shown in FIG. 3 is the effect diagram of part of the test sequence of all the transmission channels to be corrected after the second stage interpolation in the first stage, as shown in FIG.
  • FIG. 4 is an effect diagram of the corrected full-band test sequence after linear interpolation or DFT interpolation processing of the test sequence shown in FIG. 4, the black part indicates the sequence value of the interpolation points of the channels 1 and 3, and the gray part indicates 2, 4 Sequence estimates for the number of channels without interpolation.
  • the sequence estimation value of the test sequence at each interpolation-free point of the transmission channel to be corrected is obtained by the Least Square (LS) channel estimation algorithm to obtain the full-band channel response test result of all the transmission channels to be corrected.
  • the full-band channel response test result includes a carrier to interference plus noise ratio (CINR) and a signal to interference plus noise ratio (SINR); wherein the LS channel estimation algorithm can be present
  • step 104 Determine whether the full-band channel response test result of all the to-be-corrected transmission channels after the M-time interpolation is greater than or equal to the preset full-band channel response threshold. If it is determined that the full-band channel response test result of all the to-be-corrected transmission channels after the M-th interpolation is greater than or equal to the preset full-band channel response threshold, step 105 is performed. If it is determined that the M-time interpolated full-band channel response test result is less than the preset full-band channel response threshold, step 106 is performed.
  • the full-band channel response threshold may be specifically set according to the channel quality requirement of the transmission channel to be corrected.
  • step 105 Calculate a compensation coefficient of each of the to-be-corrected transmission channels according to the full-band channel response test result of all the to-be-corrected transmission channels after the M-time interpolation.
  • step 105 can be implemented by using existing technologies. For example, the amplitude and phase response values on all subcarriers of each to-be-corrected transmission channel can be obtained according to the full-band channel response test result, and The amplitude and phase response values are conjugated and then reciprocated to obtain the compensation coefficients on all subcarriers of each of the transmission channels to be corrected.
  • the interpolation of the second stage is the compensation interpolation.
  • the interpolation calculation formula: get the first ⁇ + ⁇ ' times
  • k ⁇ ,2 together ,Lm, represents the number of the subcarrier
  • N the number of the transmission channels to be corrected
  • M' represents the number of interpolations in the second stage, N ⁇ M+M' ⁇ log 2 N + ⁇ .
  • the black part indicates that there is an interpolation point
  • the blank part Indicates that there is no interpolation point, that is, after the first interpolation of the second stage, channel 2 has a sequence value of the interpolation point.
  • the partial test sequence shown in FIG. 4 is The sequence estimate of the interpolation-free point of channel 2 is replaced with the sequence value of the interpolation point of channel 2 in the partial test sequence shown in FIG. 6.
  • FIG. 7 is an effect diagram of compensating part of the test sequence shown in FIG. 6 to the partial test sequence shown in FIG.
  • Fig. 8 is the effect diagram of the partial test sequence after the second interpolation of the second stage.
  • the black part indicates that there is an interpolation point.
  • the blank part indicates that there is no interpolation point, that is, after the second interpolation of the second stage, the channel No. 4 has a sequence value of the interpolation point.
  • FIG. 9 is an effect diagram of compensating the partial test sequence shown in FIG. 8 to the partial test sequence shown in FIG. 7, as shown in FIG.
  • the sequence values of the interpolation points on the channels 1, 2, 3 and 4 can increase the interpolation density of the corrected full-band test sequence by 4. Times.
  • the corrected full-band test sequence of all the transmission channels to be corrected after the secondary interpolation determine the full-band channel response test result of all the to-corrected transmission channels after the M+M and the secondary interpolation.
  • the full-band channel response test result of all the to-be-corrected transmission channels after the secondary interpolation is greater than or equal to the preset full-band channel response threshold, according to the M+M, after the secondary interpolation
  • the full-band channel response test result of all the transmission channels to be corrected calculates the compensation coefficient of each of the transmission channels to be corrected.
  • the calibration is ended.
  • the M-time interpolation of the first stage of the corrected full-band test sequence is performed, and the sequence values of the corrected full-band test sequence after M times of interpolation are respectively obtained at J interpolation points of each transmission channel to be corrected.
  • N is the number of transmission channels to be corrected; the corrected full-band test sequence obtained after M interpolation is respectively at the J interpolation points of each transmission channel to be corrected
  • the sequence values are combined to obtain a partial test sequence of all the transmission channels to be corrected after the M-time interpolation; according to the partial test sequences of all the transmission channels to be corrected after the M-time interpolation, the total bands of all the transmission channels to be corrected after the M-time interpolation are determined.
  • the full-band channel response test result of the transmission channel calculates the compensation coefficient of each transmission channel to be corrected. Since the interpolation value of the corrected full-band test sequence can be increased by M times by the M-time interpolation, the interpolation interval and the interpolation error are reduced, and the compensation coefficient of the subsequently-corrected transmission channel can be improved, thereby improving the accuracy of the joint channel correction. Sex.
  • FIG. 10 is a schematic structural diagram of a joint channel calibration apparatus according to another embodiment of the present invention. As shown in FIG. 10, the method includes: a first interpolation module 11 configured to perform M-time interpolation of the first stage of the corrected full-band test sequence.
  • the merging module 12 is configured to combine the sequence values of the corrected full-band test sequence respectively obtained by interpolating the first interpolation module M times in each of the J interpolation points of the to-be-corrected transmission channel to obtain M times.
  • the first determining module 13 is configured to determine, according to the M test samples of all the to-be-corrected transmission channels after the M-time interpolation obtained by the merging module, all the to-be-corrected transmissions after M-time interpolation a full-band channel response test result of the channel; a second determining module 14 configured to perform a full-band channel response test result of all the to-be-corrected transmit channels after the M-time interpolation determined by the first determining module, if After the M-th interpolation, the total-band channel response test result of all the to-be-corrected transmission channels is greater than or equal to the preset full-band channel response threshold value, and then the all-band channel of all the to-be-corrected transmission channels after the M-time interpolation
  • the compensation coefficient of each transmission channel to be corrected is calculated in response to the test result.
  • the first interpolation module 11 is specifically configured to: calculate the formula according to
  • L ⁇ NJ + j, represents the subcarrier number corresponding to the jth interpolation point on the ith to be corrected transmission channel
  • N the number of the transmission channels to be corrected
  • the sequence value includes a sequence value of the interpolation point of the corrected full-band test sequence on the k-th subcarrier of the i-th to-be-corrected transmission channel or a zero value of the interpolation-free point. For example, if the full-band channel response test result of all the to-be-corrected transmission channels after the M-th interpolation determined by the first determining module 13 is less than the preset full-band channel response threshold, the apparatus further includes :
  • the second interpolation module 15 is configured to perform the second-stage M'-time interpolation on the corrected full-band test sequence, and obtain the corrected full-band test sequence after the M'-interpolation in each of the to-corrected transmission channels.
  • the sequence value of the corresponding interpolation channel to be corrected in the sequence is replaced by the sequence value of the interpolation point on the corresponding transmission channel to be corrected in the corrected full-band test sequence after the second interpolation module M' is interpolated. Obtaining a corrected full-band test sequence of all the transmission channels to be corrected after M + M 'sub-interpolation;
  • a third determining module 17 is configured to determine, according to the M+M′ sub-interpolation obtained by the compensation module, a corrected full-band test sequence of all the to-be-corrected transmission channels, and determine the total band of all the to-be-corrected transmission channels after the M+M′ sub-interpolation Channel response test result, if the full-band channel response test result of all the to-be-corrected transmission channels after the M+M'-time interpolation is greater than or equal to the preset full-band channel response threshold, according to the M+M'
  • the full-band channel response test result of all the transmission channels to be corrected after the secondary interpolation calculates the compensation coefficient of each of the transmission channels to be corrected.
  • the second interpolation module 15 is specifically configured to: calculate the formula according to the interpolation: SW, and obtain the first ⁇ + ⁇ ′ sub-interpolated
  • N the number of the transmission channels to be corrected
  • M' represents the number of interpolations in the second phase, N ⁇ M + M' ⁇ log 2 N + ⁇ .
  • the M-time interpolation of the first stage of the corrected full-band test sequence is performed, and the sequence values of the corrected full-band test sequence after M times of interpolation are respectively obtained at J interpolation points of each transmission channel to be corrected.
  • N is the number of transmission channels to be corrected; the corrected full-band test sequence obtained after M interpolation is respectively at the J interpolation points of each transmission channel to be corrected
  • the sequence values are combined to obtain a partial test sequence of all the transmission channels to be corrected after the M-time interpolation; according to the partial test sequences of all the transmission channels to be corrected after the M-time interpolation, the total bands of all the transmission channels to be corrected after the M-time interpolation are determined.
  • the full-band channel response test result of the transmission channel calculates the compensation coefficient of each transmission channel to be corrected. Since the interpolation value of the corrected full-band test sequence can be increased by M times by the M-time interpolation, the interpolation interval and the interpolation error are reduced, and the compensation coefficient of the subsequently-corrected transmission channel can be improved, thereby improving the accuracy of the joint channel correction. Sex.
  • FIG. 11 is a schematic structural diagram of a joint channel calibration apparatus according to another embodiment of the present invention.
  • the processor includes a processor, a memory, and a communication bus.
  • the processor is connected to the memory through a communication bus, and the memory is saved in the joint channel.
  • the instruction of the correction method When the processor retrieves the instruction in the memory, the following steps may be performed: the corrected full-band test sequence is subjected to the M-th interpolation of the first stage, and the corrected full-band test sequence after the M-time interpolation is respectively obtained in each of the to-be-corrected
  • the sequence value on the J interpolation points of the transmission channel, l ⁇ M ⁇ log 2 N + l , N is the number of transmission channels to be corrected; the corrected full-band test sequence obtained after M interpolation is used in each
  • the sequence values of the J interpolation points of the transmission channel to be corrected are combined to obtain a partial test sequence of all the transmission channels to be corrected after M interpolation; and according to the partial test sequences of all the transmission channels to be corrected after the M interpolation, M is determined.
  • the compensation coefficient of each of the to-be-corrected transmission channels is calculated according to the full-band channel response test result of all the transmission channels to be corrected after the M-time interpolation.
  • the corrected full-band test sequence is subjected to the M-th interpolation of the first stage, and the sequence values of the corrected full-band test sequence after M interpolations at the J interpolation points of each of the to-be-corrected transmission channels are respectively obtained. , including: Calculating the formula according to the interpolation: , obtaining the school after the Mth interpolation
  • k ⁇ , 2 ⁇ , Len , represents the number of the subcarrier
  • L ⁇ NJ + j ⁇ represents the subcarrier number corresponding to the jth interpolation point on the ith to be corrected transmission channel
  • N the number of the transmission channels to be corrected
  • the sequence value includes a sequence value of the interpolation point of the corrected full-band test sequence on the k-th subcarrier of the i-th to-be-corrected transmission channel or a zero value of the interpolation-free point.
  • the method further includes:
  • the corrected full-band test sequence is performed in the second stage of the M'th Interpolating, respectively obtaining the sequence values of the corrected full-band test sequence after M' times interpolation on each of the J interpolation points of the transmission channel to be corrected, N ⁇ M+M' ⁇ log 2 N + l, ' ⁇ l And replacing, in the part of the test sequence of the to-be-corrected transmission channel, the sequence value of the non-interpolation point on the corresponding to-be-corrected transmission channel after the M-time interpolation into the corrected full-band test sequence after the M′-interpolation The sequence value of the interpolation point on the transmission channel to be corrected, and the corrected full-band test sequence of all the transmission channels to be corrected after M+M' sub-interpolation is obtained;
  • the corrected full-band test sequence is subjected to the M′-time interpolation of the second stage, and the corrected full-band test sequence after the M′-time interpolation is respectively obtained at the J interpolation points of each of the to-be-corrected transmission channels.
  • the sequence value includes: Calculating the formula according to the interpolation: SW, obtaining the first ⁇ + ⁇ ' subinterpolation
  • L ⁇ NJ + j, represents the subcarrier number corresponding to the jth interpolation point on the ith to be corrected transmission channel
  • N the number of the transmission channels to be corrected
  • W represents the number of interpolations in the second stage, N ⁇ M + M' ⁇ log 2 N + ⁇ .
  • the M-time interpolation of the first stage of the corrected full-band test sequence is performed, and the sequence values of the corrected full-band test sequence after M times of interpolation are respectively obtained at J interpolation points of each transmission channel to be corrected.
  • N is the number of transmission channels to be corrected; the corrected full-band test sequence obtained by interpolating M times is respectively at J interpolation points of each transmission channel to be corrected
  • the sequence values are combined to obtain a partial test sequence of all the transmission channels to be corrected after the M-time interpolation; according to the partial test sequences of all the transmission channels to be corrected after the M-time interpolation, the total bands of all the transmission channels to be corrected after the M-time interpolation are determined.
  • the full-band channel response test result of the transmission channel calculates the compensation coefficient of each transmission channel to be corrected. Since the interpolation value of the corrected full-band test sequence can be increased by M times by the M-time interpolation, the interpolation interval and the interpolation error are reduced, and the compensation coefficient of the subsequently-corrected transmission channel can be improved, thereby improving the accuracy of the joint channel correction. Sex.
  • the embodiment of the present invention can also perform the second stage of the compensation interpolation.
  • the interpolation interpolation can further improve the interpolation density of the corrected full-band test sequence, and the interpolation interval and the interpolation error are reduced. Therefore, the embodiment of the present invention can solve the present problem. There is a problem of inaccurate joint channel correction in the technology.
  • the disclosed system, apparatus, and method may be implemented in other manners.
  • the device embodiments described above are only for example, the division of the unit is only a logical function division, and the actual implementation may have another division manner, for example, multiple units or components may be combined or may be integrated into another system, or some features. Can be ignored, or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the components displayed as units may or may not be physical units, i.e., may be located in one place, or may be distributed over multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a hardware plus software functional unit.
  • the above-described integrated unit implemented in the form of a software functional unit may be stored in the form of code in a computer readable storage medium.
  • the above code is stored in a computer readable storage medium and includes instructions for causing a processor or hardware circuit to perform some or all of the steps of the methods of various embodiments of the present invention.
  • the foregoing storage medium includes: a universal serial bus interface, a micro high-capacity mobile storage disk without a physical drive, a mobile hard disk, and a read-only memory (English:
  • ROM Read-Only Memory
  • RAM Random Access Memory
  • disk or optical disk and other media that can store program code.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Complex Calculations (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Abstract

本发明公开一种联合通道校正方法及装置,通过将校正全带测试序列进行第一阶段的M次插值,分别得到M次插值后的校正全带测试序列在每一个待校正发送通道的J个插值点上的序列值,将M次插值后分别得到的校正全带测试序列在每一个待校正发送通道的J个插值点上的序列值进行合并,得到M次插值后所有待校正发送通道的部分测试序列;根据M次插值后所有待校正发送通道的部分测试序列,确定M次插值后所有待校正发送通道的全带信道响应测试结果,若M次插值后所有待校正发送通道的全带信道响应测试结果大于等于预设的全带信道响应门限值,则根据M次插值后的全带信道响应测试结果计算每一个待校正发送通道的补偿系数,提高了联合通道校正的准确性。

Description

联合通道校正方法及装置 本申请要求 2013 年 05 月 31 日提交中国专利局、 申请号为 201310213446.8, 发明名称为《联合通道校正方法及装置》的中国专利申请 的优先权, 其全部内容通过引用结合在本申请中。 技术领域 本发明实施例涉及通信技术领域, 尤其涉及一种联合通道校正方法及 装置。
背景技术 为了改善小区边缘覆盖、 提高吞吐量, 可以釆用联合传输 (Joint Transmission, JT)技术, 对多个小区的天线进行联合波束赋形, 因此, 需要 对多个小区进行联合通道校正。
目前, 联合通道校正分为接收通道校正和发送通道校正两部分, 其中, 发送通道校正具体包括: 位于基站侧的基带单元(Base Band Unit, BBU ) 产生一个校正全带测试序列, 按待校正的发送通道数目 N, 通过插值的方 式, 均分成 N个非全带的测试序列, 将 N个非全带的测试序列通过多个远 程射频单元( Remote Radio Unit, RRU )发送到天线耦合盘, 并通过天线耦 合盘合成后返回给 BBU, 以使 BBU根据耦合后的校正全带测试序列,得到 所有待校正的发送通道的信道响应测试结果, 根据所有待校正的发送通道 的信道响应测试结果, 计算所有待校正的发送通道的补偿系数, 从而完成 对所有待校正的发射通道的校正过程。
上述在联合通道校正过程中, 需要根据待校正的发送通道数目 N, 通 过插值的方式, 均分成 N个非全带的测试序列, 使得校正全带测试序列在 频域上的值点变的稀疏, 增加了插值区间和插值误差, 进而增加了天线耦 合盘耦合后的校正全带测试序列的误差, 使得后续 BBU计算的所有待校正 的发送通道的补偿系数不正确, 导致联合通道校正不准确。 发明内容 本发明提供一种联合通道校正方法及装置, 用以解决现有技术中存在 联合通道校正不准确的问题。
第一方面, 提供一种联合通道校正方法, 包括:
将校正全带测试序列进行第一阶段的 M次插值,分别得到 M次插值后 的所述校正全带测试序列在每一个待校正发送通道的 J个插值点上的序列 值, l≤M <log2 N + l , N为待校正发送通道的个数;
将 M次插值后分别得到的所述校正全带测试序列在每一个待校正发送 通道的 J个插值点上的序列值进行合并, 得到 M次插值后所有待校正发送 通道的部分测试序列;
根据所述 M次插值后所有待校正发送通道的部分测试序列,确定 M次 插值后所有待校正发送通道的全带信道响应测试结果;
若所述 M次插值后所有待校正发送通道的全带信道响应测试结果大于 等于预设的所述全带信道响应门限值, 则根据所述 M次插值后所有待校正 发送通道的全带信道响应测试结果计算每一个待校正发送通道的补偿系 数。
基于第一方面, 在第一种可能的实现方式中, 将校正全带测试序列进 行第一阶段的第 M次插值,分别得到 M次插值后的所述校正全带测试序列 在每一个待校正发送通道的 J个插值点上的序列值, 包括: 根据插值计算公式: SW = Λ Γ , 得到第 Μ次插值后的所述校 正全带测试序列在第 i个待校正发送通道的第 k个子载波上的插值序列值; ^ k≠L 表示在第 i个待校正发送通道的第 k个子载波上无插值点,则 为 0; L , 表示在第 i个待校正发送通道的第 k个子载波上有插值点, 则 为 W^) ; 其中, k 1, 2― ,L , 表示子载波的编号; L^NJ + , 表示第 i个待校正发送通道上第 j个插值点对应的子载波 编号;
N表示所述待校正发送通道的个数;
/ = 1,2...... ,Ν , 表示所述待校正发送通道的编号;
J = l,2..... ,(Len/N),表示每一个待校正发送通道的插值点的个数, j≤J; j, =(N/ 2M- 1 + i), (N 12M- 1 +1 + 0, ...... (N + i), i, (1 + /), (2 + /)....(N 12M- 1 +/-1) , 表示 偏移值;
M表示第一阶段的插值次数, l≤M<log2N + l;
所述第 M次插值后的所述校正全带测试序列在第 i个待校正发送通道 的第 k个子载波上的插值序列值包括所述校正全带测试序列在第 i个待校正 发送通道的第 k个子载波上的插值点的序列值或无插值点的零值。
基于第一方面或第一方面的第一种可能的实现方式, 在第二种可能的 实现方式中, 根据所述 M次插值后所有待校正发送通道的部分测试序列, 确定 M次插值后所有待校正发送通道的全带信道响应测试结果之后, 还包 括:
若所述 M次插值后所有待校正发送通道的全带信道响应测试结果小于 预设的所述全带信道响应门限值, 则将所述校正全带测试序列进行第二阶 段的 M'次插值,分别得到 M'次插值后的所述校正全带测试序列在每一个待 校正发送通道的 J个插值点上的序列值, N≥M+M'≥log2N + l, '≥l;
将所述 M次插值后所有待校正发送通道的部分测试序列中对应的待校 正发送通道上无插值点的序列值替换为所述 M'次插值后的所述校正全带测 试序列中对应的待校正发送通道上插值点的序列值, 得到 M+M'次插值后 所有待校正发送通道的校正全带测试序列;
根据所述 M+M'次插值后所有待校正发送通道的校正全带测试序列, 确定 M+M'次插值后所有待校正发送通道的全带信道响应测试结果, 若所 述 M+M'次插值后所有待校正发送通道的全带信道响应测试结果大于等于 预设的所述全带信道响应门限值, 则根据所述 M+M'次插值后所有待校正 发送通道的全带信道响应测试结果计算每一个待校正发送通道的补偿系 数。
基于第一方面的第二种可能的实现方式, 在第三种可能的实现方式中, 将所述校正全带测试序列进行第二阶段的 M'次插值,分别得到 M'次插值后 的所述校正全带测试序列在每一个待校正发送通道的 J个插值点上的序列 值, 包括: 根据插值计算公式: SW , 得到第 Μ +Μ'次插值后的所述
Figure imgf000006_0001
校正全带测试序列在第 i个待校正发送通道的第 k个子载波上的序列值; 其中, k = \, 2..... ,Lm , 表示子载波的编号;
L^ NJ + j, , 表示第 i个待校正发送通道上第 j个插值点对应的子载波 编号;
N表示所述待校正发送通道的个数;
/ = 1, 2...... ,Ν , 表示所述待校正发送通道的编号;
J = l,2.....人 L l N ,表示每一个待校正发送通道的插值点的个数, j≤J。 jt = (Μ +Μ' - 1 + /), (Μ +Μ' + /),…… (N + /), /, (1 + ), (2 + ).… (Μ + M'— 2 + ) ,表示偏 移量;
W表示第二阶段的插值次数 , N≥M +M'≥ log2 N + \。
第二方面, 提供一种联合通道校正装置, 包括:
第一插值模块, 用于将校正全带测试序列进行第一阶段的 M次插值, 分别得到 M次插值后的所述校正全带测试序列在每一个待校正发送通道的 J个插值点上的序列值, l≤M < log2 N + l , N为待校正发送通道的个数; 合并模块, 用于将所述第一插值模块 M次插值后分别得到的所述校正 全带测试序列在每一个待校正发送通道的 J个插值点上的序列值进行合并, 得到 M次插值后所有待校正发送通道的部分测试序列;
第一确定模块, 用于根据所述 M次插值后所有待校正发送通道的部分 测试序列,确定 M次插值后所有待校正发送通道的全带信道响应测试结果; 第二确定模块, 用于根据所述第一确定模块确定的 M次插值后所有待 校正发送通道的全带信道响应测试结果, 若所述 M次插值后所有待校正发 送通道的全带信道响应测试结果大于等于预设的所述全带信道响应门限 值, 则根据所述 M次插值后所有待校正发送通道的全带信道响应测试结果 计算每一个待校正发送通道的补偿系数。
基于第二方面, 在第一种可能的实现方式中, 所述第一插值模块具体 用于: 根据插值计算公式: SW= Λ Γ 1 , 得到第 Μ次插值后的所述校 正全带测试序列在第 i个待校正发送通道的第 k个子载波上的插值序列值; ^k≠L 表示在第 i个待校正发送通道的第 k个子载波上无插值点,则 为 0; ^二 L〗, 表示在第 i个待校正发送通道的第 k个子载波上有插值点, 则 为 ^ );
其中, k = \,2― ,Len, 表示子载波的编号;
L^NJ + j, , 表示第 i个待校正发送通道上第 j个插值点对应的子载波 编号;
N表示所述待校正发送通道的个数;
= 1,2...... ,Ν , 表示所述待校正发送通道的编号;
= .....人 L lN ,表示每一个待校正发送通道的插值点的个数, j≤J j, =(N/ 2M- 1 + i), (N 12M- 1 +1 + 0, ...... (N + i), i, (1 + /), (2 + /)....(N 12M- 1 +/-1) , 表示 偏移值;
M表示第一阶段的插值次数, l≤M<log2N + l;
所述第 M次插值后的所述校正全带测试序列在第 i个待校正发送通道 的第 k个子载波上的插值序列值包括所述校正全带测试序列在第 i个待校正 发送通道的第 k个子载波上的插值点的序列值或无插值点的零值。
基于第二方面或第二方面的第一种可能的实现方式, 在第二种可能的 实现方式中, 若所述第一确定模块确定的 M次插值后所有待校正发送通道 的全带信道响应测试结果小于预设的所述全带信道响应门限值; 则所述装 置还包括:
第二插值模块, 用于将所述校正全带测试序列进行第二阶段的 M'次插 值, 分别得到 M'次插值后的所述校正全带测试序列在每一个待校正发送通 道的 J个插值点上的序列值, N≥M+M'≥log2N + l, M'≥l;
补偿模块, 用于将所述第一插值模块 M次插值后所有待校正发送通道 的部分测试序列中对应的待校正发送通道上无插值点的序列值替换为所述 第二插值模块 M'次插值后的所述校正全带测试序列中对应的待校正发送通 道上插值点的序列值, 得到 M +M'次插值后所有待校正发送通道的校正全 带测试序列; 第三确定模块, 用于根据所述补偿模块得到的 M +M'次插值后所有待 校正发送通道的校正全带测试序列, 确定 M +M'次插值后所有待校正发送 通道的全带信道响应测试结果, 若所述 M +M'次插值后所有待校正发送通 道的全带信道响应测试结果大于等于预设的所述全带信道响应门限值, 则 根据所述 M +M'次插值后所有待校正发送通道的全带信道响应测试结果计 算每一个待校正发送通道的补偿系数。
基于第二方面的第二种可能的实现方式, 在第三种可能的实现方式中, 所述第二插值模块具体用于: 根据插值计算公式: SW , 得到第 Μ +Μ'次插值后的所述
Figure imgf000008_0001
校正全带测试序列在第 i个待校正发送通道的第 k个子载波上的序列值; 其中, k = \, 2..... ,Lm , 表示子载波的编号;
L^ NJ + j, , 表示第 i个待校正发送通道上第 j个插值点对应的子载波 编号;
N表示所述待校正发送通道的个数;
/ = 1, 2...... ,Ν , 表示所述待校正发送通道的编号;
J = l,2.....人 L l N ,表示每一个待校正发送通道的插值点的个数, j≤J。 jt = (Μ +Μ' - 1 + /), (Μ +Μ' + /),…… (N + /), /, (1 + ), (2 + ).… (Μ + M'— 2 + ) ,表示偏 移量;
W表示第二阶段的插值次数 , N≥M +M'≥ log2 N + \。
本发明通过将校正全带测试序列进行第一阶段的 M次插值, 分别得到 M次插值后的所述校正全带测试序列在每一个待校正发送通道的 J个插值 点上的序列值, l≤M <log2 N + l , N为待校正发送通道的个数; 将 M次插值 后分别得到的所述校正全带测试序列在每一个待校正发送通道的 J个插值 点上的序列值进行合并, 得到 M次插值后所有待校正发送通道的部分测试 序列; 根据所述 M次插值后所有待校正发送通道的部分测试序列, 确定 M 次插值后所有待校正发送通道的全带信道响应测试结果, 若所述 M次插值 后所有待校正发送通道的全带信道响应测试结果大于等于预设的所述全带 信道响应门限值, 则根据所述 M次插值后所有待校正发送通道的全带信道 响应测试结果计算每一个待校正发送通道的补偿系数。 由于本发明通过 M 次插值可以将校正全带测试序列的插值密度提高 M倍, 减小了插值区间和 插值误差, 可以提高后续计算的待校正发送通道的补偿系数, 因此, 可以 提高联合通道校正的准确性。
附图说明 为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对 实施例或现有技术描述中所需要使用的附图作一简单地介绍, 显而易见地, 下面描述中的附图是本发明的一些实施例, 对于本领域普通技术人员来讲, 在不付出创造性劳动性的前提下, 还可以根据这些附图获得其他的附图。
图 1为本发明一实施例提供的联合通道校正方法的流程示意图; 图 2为第一阶段第 1次插值后的部分测试序列的效果图;
图 3为第一阶段第 2次插值后的部分测试序列的效果图;
图 4为图 2所示部分测试序列和图 3所示部分测试序列合并后的测试 序列效果图;
图 5为将图 4所示的测试序列经过线性插值或 DFT插值处理后的校正 全带测试序列的效果图;
图 6为第二阶段第 1次插值后的部分测试序列的效果图;
图 7为将图 6所示部分测试序列补偿到图 4所示部分测试序列中的效 果图;
图 8为第二阶段第 2次插值后的部分测试序列的效果图;
图 9为将图 8所示部分测试序列补偿到图 7所示部分测试序列中的效 果图;
图 10为本发明另一实施例提供的联合通道校正装置的结构示意图; 图 11为本发明另一实施例提供的联合通道校正装置的结构示意图。
具体实施方式 为使本发明实施例的目的、 技术方案和优点更加清楚, 下面将结合本 发明实施例中的附图, 对本发明实施例中的技术方案进行清楚、 完整地描 述, 显然, 所描述的实施例是本发明一部分实施例, 而不是全部的实施例。 基于本发明中的实施例, 本领域普通技术人员在没有作出创造性劳动前提 下所获得的所有其他实施例, 都属于本发明保护的范围。 图 1为本发明一实施例提供的联合通道校正方法的流程示意图;如图 1 所示, 本实施例的联合通道校正方法可以包括:
101、 将校正全带测试序列进行第一阶段的 M次插值, 分别得到 M次 插值后的所述校正全带测试序列在每一个待校正发送通道的 J个插值点上 的序列值。
例如, 在基站侧的基带单元产生一个校正全带测试序列, 将校正全带 测试序列进行第一阶段的 M次插值,分别可以得到 M次插值后的所述校正 全带测试序列在每一个待校正发送通道的 J个插值点上的序列值。其中,第 一阶段的 M次插值都为均勾插值, 本实施例的插值均为插值测试。
步骤 101在具体实现时: 根据插值计算公式: SW , 得到第 Μ次插值后的所述校
Figure imgf000010_0001
正全带测试序列在第 i个待校正发送通道的第 k个子载波上的序列值; 当 k≠L} ,表示在第 i个待校正发送通道的第 k个子载波上无插值点,则 为 0; ^二 L" 表示在第 i个待校正发送通道的第 k个子载波上有插值点, 则 为 ^);
其中, k = \,2..... ,Lm, 表示子载波的编号;
L^NJ + j, , 表示第 i个待校正发送通道上第 j个插值点对应的子载波 编号;
N表示所述待校正发送通道的个数;
= 1,2...... ,Ν , 表示所述待校正发送通道的编号; = .....人 L lN ,表示每一个待校正发送通道的插值点的个数, j≤J j, =(N/ 2M- 1 + i), (N 12M- 1 +1 + 0, ...... (N + i), i, (1 + /), (2 + /)....(N 12M- 1 +/-1) , 表示 偏移值;
M表示第一阶段的插值次数, l≤M<log2N + l; 所述第 M次插值后的所述校正全带测试序列在第 i个待校正发送通道 的第 k个子载波上的插值序列值包括所述校正全带测试序列在第 i个待校正 发送通道的第 k个子载波上的插值点的序列值或无插值点的零值。 其中, 校正全带测试序列在第 i个待校正发送通道的第 k个子载波上的插值点的序 列值具体为校正全带测试序列在第 i个待校正发送通道的第 k个子载波上的 信道幅度和相位响应值, 校正全带测试序列在第 i个待校正发送通道的第 k 个子载波上的无插值点的零值表示校正全带测试序列在第 i 个待校正发送 通道的第 k个子载波上的信道幅度和相位响应值均为零。 为了清楚的说明步骤 101 中的均匀插值过程, 下面以图示的方式进行 说明:
假设待校正发送通道的个数 N为 4个, 分别编号为通道 1、 2、 3、 4; 校正全带测试序列的总长度 Len为 32 , 根据 l≤M < log2 N + l , 即 i≤M < 3 , 可以得到第一阶段的 M次插值的次数为: M=l , M=2。 当 M=l时为第 1次插值, 图 2为第一阶段第 1次插值后的部分测试序 列的效果图, 如图 2所示, 黑色部分表示有插值点, 空白部分表示无插值 点, 即经过第一阶段的第 1次插值后, 1号通道有插值点的序列值。
当 M=2时为第 2次插值, 图 3为第一阶段第 2次插值后的部分测试序 列的效果图, 如图 3所示, 经过第一阶段的第 2次插值后, 3号通道有插值 点的序列值。
102、将 M次插值后分别得到的所述校正全带测试序列在每一个待校正 发送通道的 J个插值点上的序列值进行合并, 得到 M次插值后所有待校正 发送通道的部分测试序列。 具体地,将第一阶段的第 1次插值到第 M次插值后分别得到的 M次插 值后的所述校正全带测试序列在每一个待校正发送通道的 J个插值点上的 序列值进行合并, 得到 M次插值后所有待校正发送通道的部分测试序列。 为了清楚的说明步骤 102中的合并过程, 下面以图示的方式进行说明: 例如将图 2所示的第一阶段第 1次插值后所述校正全带测试序列在每 一个待校正发送通道的 J个插值点上的序列值与图 3所示的第一阶段第 2 次插值后所述校正全带测试序列在每一个待校正发送通道的 J个插值点上 的序列值进行合并, 可以得到 2次插值后所有待校正发送通道的部分测试 序列, 图 4为图 2所示部分测试序列和图 3所示部分测试序列合并后的测 试序列效果图, 即为第一阶段 2次插值后所有待校正发送通道的部分测试 序列的效果图, 如图 4所示, 将第 1次插值后的部分测试序列和第 2次插 值后的部分测试序列进行合并,可以将校正全带测试序列的插值密度提高 2 倍, 如图 4所示, 1、 3号通道均有插值点的序列值。 其中, 2、 4号通道无插值点, 本实施例中, 无插值点的序列值可以通 过线性插值或者非线性插值得到该无插值点的序列估计值, 关于线性插值 或 DFT插值为现有技术, 不再赘述。 图 5为将图 4所示的测试序列经过线 性插值或 DFT插值处理后的校正全带测试序列的效果图,黑色部分表示 1、 3号通道的插值点的序列值, 灰色部分表示 2、 4号通道的无插值点的序列 估计值。
103、根据所述 M次插值后所有待校正发送通道的部分测试序列,确定 M次插值后所有待校正发送通道的全带信道响应测试结果。 具体地, 可以根据 M次插值后所有待校正发送通道的部分测试序列在 每一个待校正发送通道的 J个插值点上的序列值,以及根据线性插值或 DFT 插值后所有待校正发送通道的部分测试序列在每一个待校正发送通道的无 插值点上的序列估计值, 通过最小二乘法 (Least Square, LS)信道估计算法 得到所有待校正发送通道的全带信道响应测试结果。 其中, 全带信道响应 测试结果包括载波干扰噪声比 (Carrier to Interference plus Noise Ratio, CINR) 和信号与干扰加噪声比 ( Signal to Interference plus Noise Ratio, SINR ); 其 中, LS信道估计算法可以为现有技术中的算法, 在此不再赘述。
104、确定所述 M次插值后所有待校正发送通道的全带信道响应测试结 果是否大于等于预设的所述全带信道响应门限值。 若确定所述 M次插值后所有待校正发送通道的全带信道响应测试结果 大于等于预设的所述全带信道响应门限值,则执行步骤 105。若确定所述 M 次插值后的全带信道响应测试结果小于预设的所述全带信道响应门限值, 则执行步骤 106。 其中, 全带信道响应门限值可以根据待校正发送通道的信道质量要求 进行具体设定。
105、根据所述 M次插值后所有待校正发送通道的全带信道响应测试结 果计算每一个待校正发送通道的补偿系数。 具体地, 步骤 105 可以釆用现有技术来实现, 例如, 可以根据全带信 道响应测试结果, 得到每一个待校正发送通道的所有子载波上的幅度和相 位响应值, 将每个子载波上的幅度和相位响应值取共轭然后求倒数, 得到 每个每一个待校正发送通道的所有子载波上的 卜偿系数。
106、 将所述校正全带测试序列进行第二阶段的 M,次插值, 分别得到 M,次插值后的所述校正全带测试序列在每一个待校正发送通道的 J个插值 点上的序列值。
其中, M'≥l, 且 ≥ + '≥10§2 + 1, 第二阶段的插值为补偿插值。 具体实现时, 根据插值计算公式: , 得到第 Μ+Μ'次
Figure imgf000013_0001
插值后的所述校正全带测试序列在第 i个待校正发送通道的第 k个子载波上 的序列值; 当 ≠ , 表示在第 i个待校正发送通道的第 k个子载波上无插 值点, 则 为 0; ^二 L〗, 表示在第 i个待校正发送通道的第 k个子载波 上有插值点, 则 ( 为 ^);
其中, k = \,2..... ,Lm, 表示子载波的编号;
L^NJ + j,, 表示第 i个待校正发送通道上第 j个插值点对应的子载波 编号;
N表示所述待校正发送通道的个数;
/ = 1,2...... ,Ν , 表示所述待校正发送通道的编号; = .....人 L lN ,表示每一个待校正发送通道的插值点的个数, j≤J。 jt = (Μ +Μ' - 1 + /), (Μ+Μ' + /),…… (N + /), /, (1 + ), (2 + ).… (Μ + M'— 2 +) ,表示偏 移量;
M'表示第二阶段的插值次数 , N≥M+M'≥ log2 N + \。
107、将所述 M次插值后所有待校正发送通道的部分测试序列中对应的 待校正发送通道上无插值点的序列值替换为所述 M'次插值后的所述校正全 带测试序列中对应的待校正发送通道上插值点的序列值, 得到 M+M'次插 值后所有待校正发送通道的校正全带测试序列。
为了清楚的说明步骤 106和步骤 107中的补偿插值过程, 下面以图示 的方式进行说明:
假设待校正发送通道的个数 N为 4个, 分别编号为通道 1、 2、 3、 4; 校正全带测试序列的总长度 Len 为 32 , 根据 N≥M +M'≥log2 N + l , 即 M +M'=3 , M +M' =4 , 可以得到第二阶段的 M'次插值的次数为: M' =l , M' =2。 当 M' =l时为第二阶段的第 1次插值, 图 6为第二阶段第 1次插值后的 部分测试序列的效果图, 如图 6所示, 黑色部分表示有插值点, 空白部分 表示无插值点, 即经过第二阶段的第 1次插值后, 2号通道有插值点的序列 值。 经过第二阶段第 1次插值后, 在第一阶段的 2次插值后的部分测试序 列基础上, 即在图 4所示的部分测试序列的基础上, 将图 4所示的部分测 试序列中的 2号通道的无插值点的序列估计值替换为图 6所示的部分测试 序列中的 2号通道的插值点的序列值。 图 7为将图 6所示部分测试序列补 偿到图 4所示部分测试序列中的效果图, 即将第二阶段第 1次插值后的部 分测试序列补偿到第一阶段 2次插值后的部分测试序列中的效果图,如图 7 所示, 经过第一阶段的 2次插值和第二阶段的 1次插值(共 3次插值)后, 1、 2、 3号通道上都有插值点的序列值, 可以将校正全带测试序列的插值密 度提高 3倍。
同理, 当 M' =2时为第二阶段的第 2次插值, 图 8为第二阶段第 2次插 值后的部分测试序列的效果图, 如图 8所示, 黑色部分表示有插值点, 空 白部分表示无插值点, 即经过第二阶段的第 2次插值后, 4号通道有插值点 的序列值。
经过第二阶段第 2次插值后, 在第一阶段的 2次插值和第二阶段的 1 次插值的基础上, 即在图 7所示的部分测试序列的基础上, 将图 7所示的 部分测试序列中的 4号通道的无插值点的序列估计值替换为图 8所示的部 分测试序列中的 4号通道的插值点的序列值; 图 9为将图 8所示部分测试 序列补偿到图 7所示部分测试序列中的效果图, 如图 9所示, 经过第一阶 段的 2次插值和第二阶段的 2次插值 (共 4次插值)后, 1、 2、 3、 4号通 道上都有插值点的序列值, 可以将校正全带测试序列的插值密度提高 4倍。
108、 根据所述 M+M,次插值后所有待校正发送通道的校正全带测试序 列, 确定 M+M,次插值后所有待校正发送通道的全带信道响应测试结果。
109、 若所述 M+M,次插值后所有待校正发送通道的全带信道响应测试 结果大于等于预设的所述全带信道响应门限值, 则根据所述 M+M,次插值 后所有待校正发送通道的全带信道响应测试结果计算每一个待校正发送通 道的补偿系数。
若所述 M +M'次插值后的全带信道响应测试结果小于预设的所述全带 信道响应门限值, 则结束校正。 本发明实施例通过将校正全带测试序列进行第一阶段的 M次插值, 分 别得到 M次插值后的所述校正全带测试序列在每一个待校正发送通道的 J 个插值点上的序列值, l≤M < log2 N+l , N为待校正发送通道的个数; 将 M 次插值后分别得到的所述校正全带测试序列在每一个待校正发送通道的 J 个插值点上的序列值进行合并, 得到 M次插值后所有待校正发送通道的部 分测试序列; 根据所述 M次插值后所有待校正发送通道的部分测试序列, 确定 M次插值后所有待校正发送通道的全带信道响应测试结果, 若所述 M 次插值后所有待校正发送通道的全带信道响应测试结果大于等于预设的所 述全带信道响应门限值, 则根据所述 M次插值后所有待校正发送通道的全 带信道响应测试结果计算每一个待校正发送通道的补偿系数。 由于本发明 通过 M次插值可以将校正全带测试序列的插值密度提高 M倍,减小了插值 区间和插值误差, 可以提高后续计算的待校正发送通道的补偿系数, 从而 提高联合通道校正的准确性。
进一步地, 本发明实施例还可以进行第二阶段的补偿插值, 通过补偿 插值进一步可以提高校正全带测试序列的插值密度, 减小了插值区间和插 值误差, 因此, 本发明实施例可以解决现有技术中存在的联合通道校正不 准确的问题。 图 10为本发明另一实施例提供的联合通道校正装置的结构示意图, 如 图 10所示, 包括: 第一插值模块 11 ,用于将校正全带测试序列进行第一阶段的 M次插值, 分别得到 M次插值后的所述校正全带测试序列在每一个待校正发送通道的 J个插值点上的序列值, l≤M <log2 N+l , N为待校正发送通道的个数; 合并模块 12,用于将所述第一插值模块 M次插值后分别得到的所述校 正全带测试序列在每一个待校正发送通道的 J个插值点上的序列值进行合 并, 得到 M次插值后所有待校正发送通道的部分测试序列; 第一确定模块 13 ,用于根据所述合并模块得到的 M次插值后所有待校 正发送通道的部分测试序列, 确定 M次插值后所有待校正发送通道的全带 信道响应测试结果; 第二确定模块 14,用于根据所述第一确定模块确定的 M次插值后所有 待校正发送通道的全带信道响应测试结果, 若所述 M次插值后所有待校正 发送通道的全带信道响应测试结果大于等于预设的所述全带信道响应门限 值, 则根据所述 M次插值后所有待校正发送通道的全带信道响应测试结果 计算每一个待校正发送通道的补偿系数。 举例来说, 所述第一插值模块 11具体用于: 根据插值计算公式: SW , 得到第 Μ次插值后的所述校
Figure imgf000016_0001
正全带测试序列在第 i个待校正发送通道的第 k个子载波上的插值序列值; L ,表示在第 i个待校正发送通道的第 k个子载波上无插值点,则 为 0; L , 表示在第 i个待校正发送通道的第 k个子载波上有插值点, 则 为 W^) ;
其中, k = \, 2..... ,Len , 表示子载波的编号;
L^ NJ + j, , 表示第 i个待校正发送通道上第 j个插值点对应的子载波 编号;
N表示所述待校正发送通道的个数;
/ = 1, 2...... ,Ν , 表示所述待校正发送通道的编号; = .....人 L l N ,表示每一个待校正发送通道的插值点的个数, j≤J jt ={NI 2M- 1 + i), (N 12M- 1 +1 + 0, ...... (N + i\ i, (1 + i), (2 + /)....{N 12M- 1 +/-1) , 表示 偏移值;
M表示第一阶段的插值次数, l≤M<log2N + l; 所述第 M次插值后的所述校正全带测试序列在第 i个待校正发送通道 的第 k个子载波上的插值序列值包括所述校正全带测试序列在第 i个待校正 发送通道的第 k个子载波上的插值点的序列值或无插值点的零值。 举例来说,若所述第一确定模块 13确定的 M次插值后所有待校正发送 通道的全带信道响应测试结果小于预设的所述全带信道响应门限值; 则所 述装置还包括:
第二插值模块 15,用于将所述校正全带测试序列进行第二阶段的 M'次 插值, 分别得到 M'次插值后的所述校正全带测试序列在每一个待校正发送 通道的 J个插值点上的序列值, N≥M+M'≥log2N + l, '≥l; 补偿模块 16,用于将所述第一插值模块 M次插值后所有待校正发送通 道的部分测试序列中对应的待校正发送通道上无插值点的序列值替换为所 述第二插值模块 M'次插值后的所述校正全带测试序列中对应的待校正发送 通道上插值点的序列值, 得到 M +M'次插值后所有待校正发送通道的校正 全带测试序列;
第三确定模块 17, 用于根据所述补偿模块得到的 M+M'次插值后所有 待校正发送通道的校正全带测试序列, 确定 M+M'次插值后所有待校正发 送通道的全带信道响应测试结果, 若所述 M+M'次插值后所有待校正发送 通道的全带信道响应测试结果大于等于预设的所述全带信道响应门限值, 则根据所述 M+M'次插值后所有待校正发送通道的全带信道响应测试结果 计算每一个待校正发送通道的补偿系数。 举例来说, 所述第二插值模块 15具体用于: 根据插值计算公式: SW , 得到第 Μ+Μ'次插值后的所述
Figure imgf000017_0001
校正全带测试序列在第 i个待校正发送通道的第 k个子载波上的序列值; 其中, k 1,2― ,L , 表示子载波的编号; L^ NJ + , 表示第 i个待校正发送通道上第 j个插值点对应的子载波 编号;
N表示所述待校正发送通道的个数;
/ = 1, 2...... ,Ν , 表示所述待校正发送通道的编号;
J = l, 2..... , (Len/ N) ,表示每一个待校正发送通道的插值点的个数, j≤J。 jt = (Μ +Μ' - 1 + /), (Μ +Μ' + /),…… (N + /), /, (1 + ), (2 + ).… (Μ + M'— 2 + ) ,表示偏 移量;
M'表示第二阶段的插值次数, N≥M +M'≥ log2 N + \。 本发明实施例通过将校正全带测试序列进行第一阶段的 M次插值, 分 别得到 M次插值后的所述校正全带测试序列在每一个待校正发送通道的 J 个插值点上的序列值, l≤M < log2 N + l , N为待校正发送通道的个数; 将 M 次插值后分别得到的所述校正全带测试序列在每一个待校正发送通道的 J 个插值点上的序列值进行合并, 得到 M次插值后所有待校正发送通道的部 分测试序列; 根据所述 M次插值后所有待校正发送通道的部分测试序列, 确定 M次插值后所有待校正发送通道的全带信道响应测试结果, 若所述 M 次插值后所有待校正发送通道的全带信道响应测试结果大于等于预设的所 述全带信道响应门限值, 则根据所述 M次插值后所有待校正发送通道的全 带信道响应测试结果计算每一个待校正发送通道的补偿系数。 由于本发明 通过 M次插值可以将校正全带测试序列的插值密度提高 M倍,减小了插值 区间和插值误差, 可以提高后续计算的待校正发送通道的补偿系数, 从而 提高联合通道校正的准确性。
进一步地, 本发明实施例还可以进行第二阶段的补偿插值, 通过补偿 插值进一步可以提高校正全带测试序列的插值密度, 减小了插值区间和插 值误差, 因此, 本发明实施例可以解决现有技术中存在的联合通道校正不 准确的问题。 图 11为本发明另一实施例提供的联合通道校正装置的结构示意图, 如 图 11所示, 包括处理器、 存储器和通信总线, 处理器通过通信总线与存储 器连接, 存储器中保存有实现联合通道校正方法的指令; 当处理器调取存储器中的指令时, 可以执行如下步骤: 将校正全带测试序列进行第一阶段的 M次插值,分别得到 M次插值后 的所述校正全带测试序列在每一个待校正发送通道的 J个插值点上的序列 值, l≤M <log2 N + l , N为待校正发送通道的个数; 将 M次插值后分别得到的所述校正全带测试序列在每一个待校正发送 通道的 J个插值点上的序列值进行合并, 得到 M次插值后所有待校正发送 通道的部分测试序列; 根据所述 M次插值后所有待校正发送通道的部分测试序列,确定 M次 插值后所有待校正发送通道的全带信道响应测试结果; 若所述 M次插值后所有待校正发送通道的全带信道响应测试结果大于 等于预设的所述全带信道响应门限值, 则根据所述 M次插值后所有待校正 发送通道的全带信道响应测试结果计算每一个待校正发送通道的补偿系 数。 举例来说, 将校正全带测试序列进行第一阶段的第 M次插值, 分别得 到 M次插值后的所述校正全带测试序列在每一个待校正发送通道的 J个插 值点上的序列值, 包括: 根据插值计算公式: , 得到第 M次插值后的所述校
Figure imgf000019_0001
正全带测试序列在第 i个待校正发送通道的第 k个子载波上的插值序列值; ^ k≠L"表示在第 i个待校正发送通道的第 k个子载波上无插值点,则 为 0; L" 表示在第 i个待校正发送通道的第 k个子载波上有插值点, 则 为 W^) ;
其中, k = \, 2― , Len , 表示子载波的编号;
L^ NJ + j^ 表示第 i个待校正发送通道上第 j个插值点对应的子载波 编号;
N表示所述待校正发送通道的个数;
/ = 1, 2...... , Ν , 表示所述待校正发送通道的编号;
J = l,2..... , (Len / N) ,表示每一个待校正发送通道的插值点的个数, j≤J ; jt ={NI 2M- 1 + i), (N 12M- 1 +1 + 0, ...... (N + i\ i, (1 + i), (2 + /)....{N 12M- 1 +/-1) , 表示 偏移值;
M表示第一阶段的插值次数, l≤M<log2N + l; 所述第 M次插值后的所述校正全带测试序列在第 i个待校正发送通道 的第 k个子载波上的插值序列值包括所述校正全带测试序列在第 i个待校正 发送通道的第 k个子载波上的插值点的序列值或无插值点的零值。 举例来说,根据所述 M次插值后所有待校正发送通道的部分测试序列 , 确定 M次插值后所有待校正发送通道的全带信道响应测试结果之后, 还包 括:
若所述 M次插值后所有待校正发送通道的全带信道响应测试结果小于 预设的所述全带信道响应门限值, 则将所述校正全带测试序列进行第二阶 段的 M'次插值,分别得到 M'次插值后的所述校正全带测试序列在每一个待 校正发送通道的 J个插值点上的序列值, N≥M+M'≥log2N + l, '≥l; 将所述 M次插值后所有待校正发送通道的部分测试序列中对应的待校 正发送通道上无插值点的序列值替换为所述 M'次插值后的所述校正全带测 试序列中对应的待校正发送通道上插值点的序列值, 得到 M+M'次插值后 所有待校正发送通道的校正全带测试序列;
根据所述 M+M'次插值后所有待校正发送通道的校正全带测试序列, 确定 M+M'次插值后所有待校正发送通道的全带信道响应测试结果, 若所 述 M+M'次插值后所有待校正发送通道的全带信道响应测试结果大于等于 预设的所述全带信道响应门限值, 则根据所述 M+M'次插值后所有待校正 发送通道的全带信道响应测试结果计算每一个待校正发送通道的补偿系 数。
举例来说, 将所述校正全带测试序列进行第二阶段的 M'次插值, 分别 得到 M'次插值后的所述校正全带测试序列在每一个待校正发送通道的 J个 插值点上的序列值, 包括: 根据插值计算公式: SW , 得到第 Μ+Μ'次插值后的所述
Figure imgf000020_0001
校正全带测试序列在第 i个待校正发送通道的第 k个子载波上的序列值; 其中, k = \, 2..... ,L , 表示子载波的编号;
L^ NJ + j, , 表示第 i个待校正发送通道上第 j个插值点对应的子载波 编号;
N表示所述待校正发送通道的个数;
/ = 1, 2...... ,Ν , 表示所述待校正发送通道的编号; = .....人 L l N ,表示每一个待校正发送通道的插值点的个数, j≤J。 jt = (Μ +Μ' - 1 + /), (Μ +Μ' + /),…… (N + /), /, (1 + ), (2 + ).… (Μ + M'— 2 + ) ,表示偏 移量;
W表示第二阶段的插值次数 , N≥M +M'≥ log2 N + \。 本发明实施例通过将校正全带测试序列进行第一阶段的 M次插值, 分 别得到 M次插值后的所述校正全带测试序列在每一个待校正发送通道的 J 个插值点上的序列值, l≤M <log2 N + l , N为待校正发送通道的个数; 将 M 次插值后分别得到的所述校正全带测试序列在每一个待校正发送通道的 J 个插值点上的序列值进行合并, 得到 M次插值后所有待校正发送通道的部 分测试序列; 根据所述 M次插值后所有待校正发送通道的部分测试序列, 确定 M次插值后所有待校正发送通道的全带信道响应测试结果, 若所述 M 次插值后所有待校正发送通道的全带信道响应测试结果大于等于预设的所 述全带信道响应门限值, 则根据所述 M次插值后所有待校正发送通道的全 带信道响应测试结果计算每一个待校正发送通道的补偿系数。 由于本发明 通过 M次插值可以将校正全带测试序列的插值密度提高 M倍,减小了插值 区间和插值误差, 可以提高后续计算的待校正发送通道的补偿系数, 从而 提高联合通道校正的准确性。
进一步地, 本发明实施例还可以进行第二阶段的补偿插值, 通过补偿 插值进一步可以提高校正全带测试序列的插值密度, 减小了插值区间和插 值误差, 因此, 本发明实施例可以解决现有技术中存在的联合通道校正不 准确的问题。
在本申请所提供的几个实施例中, 应该理解到, 所揭露的系统, 装置 和方法, 可以通过其它的方式实现。 例如, 以上所描述的装置实施例仅仅 是示意性的, 例如, 所述单元的划分, 仅仅为一种逻辑功能划分, 实际实 现时可以有另外的划分方式, 例如多个单元或组件可以结合或者可以集成 到另一个系统, 或一些特征可以忽略, 或不执行。 另一点, 所显示或讨论 的相互之间的耦合或直接耦合或通信连接可以是通过一些接口, 装置或单 元的间接耦合或通信连接, 可以是电性, 机械或其它的形式。
作为单元显示的部件可以是或者也可以不是物理单元, 即可以位于一个地 方, 或者也可以分布到多个网络单元上。 可以根据实际的需要选择其中的 部分或者全部单元来实现本实施例方案的目的。
另外, 在本发明各个实施例中的各功能单元可以集成在一个处理单元 中, 也可以是各个单元单独物理存在, 也可以两个或两个以上单元集成在 一个单元中。 上述集成的单元既可以釆用硬件的形式实现, 也可以釆用硬 件加软件功能单元的形式实现。
上述以软件功能单元的形式实现的集成的单元, 可以以代码的形式存 储在一个计算机可读取存储介质中。 上述代码存储在一个计算机可读存储 介质中, 包括若干指令用以使处理器或硬件电路执行本发明各个实施例所 述方法的部分或全部步骤。 而前述的存储介质包括: 通用串行总线接口的 无需物理驱动器的微型高容量移动存储盘、 移动硬盘、 只读存储器(英文:
Read-Only Memory, 简称 ROM )、 随机存取存储器(英文: Random Access Memory, 简称 RAM )、 磁碟或者光盘等各种可以存储程序代码的介质。
最后应说明的是: 以上实施例仅用以说明本发明的技术方案, 而非对 其限制; 尽管参照前述实施例对本发明进行了详细的说明, 本领域的普通 技术人员应当理解: 其依然可以对前述各实施例所记载的技术方案进行修 改, 或者对其中部分技术特征进行等同替换; 而这些修改或者替换, 并不 使相应技术方案的本质脱离本发明各实施例技术方案的保护范围。

Claims

权利要求
1、 一种联合通道校正方法, 其特征在于, 包括:
将校正全带测试序列进行第一阶段的 M次插值,分别得到 M次插值后 的所述校正全带测试序列在每一个待校正发送通道的 J个插值点上的序列 值, l≤M <log2 N + l , N为待校正发送通道的个数;
将 M次插值后分别得到的所述校正全带测试序列在每一个待校正发送 通道的 J个插值点上的序列值进行合并, 得到 M次插值后所有待校正发送 通道的部分测试序列;
根据所述 M次插值后所有待校正发送通道的部分测试序列,确定 M次 插值后所有待校正发送通道的全带信道响应测试结果;
若所述 M次插值后所有待校正发送通道的全带信道响应测试结果大于 等于预设的所述全带信道响应门限值, 则根据所述 M次插值后所有待校正 发送通道的全带信道响应测试结果计算每一个待校正发送通道的补偿系 数。
2、 根据权利要求 1所述的方法, 其特征在于, 将校正全带测试序列进 行第一阶段的第 M次插值,分别得到 M次插值后的所述校正全带测试序列 在每一个待校正发送通道的 J个插值点上的序列值, 包括: 根据插值计算公式: SW , 得到第 Μ次插值后的所述校
Figure imgf000023_0001
正全带测试序列在第 i个待校正发送通道的第 k个子载波上的插值序列值;
^ k≠L"表示在第 i个待校正发送通道的第 k个子载波上无插值点,则 为 0; L , 表示在第 i个待校正发送通道的第 k个子载波上有插值点, 则 为 W^) ;
其中, k = \, 2..... ,Lm , 表示子载波的编号;
L^ NJ + j, , 表示第 i个待校正发送通道上第 j个插值点对应的子载波 编号;
N表示所述待校正发送通道的个数;
/ = 1, 2...... ,Ν , 表示所述待校正发送通道的编号; J = 2..... ,(Len/N),表示每一个待校正发送通道的插值点的个数, j≤J j, =(N/ 2M- 1 + i), (N 12M- 1 +1 + 0, ...... (N + i), i, (1 + /), (2 + /)....(N 12M- 1 +/-1) , 表示 偏移值;
M表示第一阶段的插值次数, l≤M<log2N + l;
所述第 M次插值后的所述校正全带测试序列在第 i个待校正发送通道 的第 k个子载波上的插值序列值包括所述校正全带测试序列在第 i个待校正 发送通道的第 k个子载波上的插值点的序列值或无插值点的零值。
3、根据权利要求 1或 2所述的方法, 其特征在于, 根据所述 M次插值 后所有待校正发送通道的部分测试序列, 确定 M次插值后所有待校正发送 通道的全带信道响应测试结果之后, 还包括:
若所述 M次插值后所有待校正发送通道的全带信道响应测试结果小于 预设的所述全带信道响应门限值, 则将所述校正全带测试序列进行第二阶 段的 M'次插值,分别得到 M'次插值后的所述校正全带测试序列在每一个待 校正发送通道的 J个插值点上的序列值, N≥M+M'≥log2N + l, '≥l;
将所述 M次插值后所有待校正发送通道的部分测试序列中对应的待校 正发送通道上无插值点的序列值替换为所述 M'次插值后的所述校正全带测 试序列中对应的待校正发送通道上插值点的序列值, 得到 M+M'次插值后 所有待校正发送通道的校正全带测试序列;
根据所述 M+M'次插值后所有待校正发送通道的校正全带测试序列, 确定 M+M'次插值后所有待校正发送通道的全带信道响应测试结果, 若所 述 M+M'次插值后所有待校正发送通道的全带信道响应测试结果大于等于 预设的所述全带信道响应门限值, 则根据所述 M+M'次插值后所有待校正 发送通道的全带信道响应测试结果计算每一个待校正发送通道的补偿系 数。
4、 根据权利要求 3所述的方法, 其特征在于, 将所述校正全带测试序 列进行第二阶段的 M'次插值 ,分别得到 M'次插值后的所述校正全带测试序 列在每一个待校正发送通道的 J个插值点上的序列值, 包括: 根据插值计算公式: , 得到第 M+M'次插值后的所述
Figure imgf000024_0001
校正全带测试序列在第 i个待校正发送通道的第 k个子载波上的序列值; 其中, k = \, 2..... ,L , 表示子载波的编号;
L^ NJ + j, , 表示第 i个待校正发送通道上第 j个插值点对应的子载波 编号;
N表示所述待校正发送通道的个数;
/ = 1, 2...... ,Ν , 表示所述待校正发送通道的编号;
= .....人 L l N ,表示每一个待校正发送通道的插值点的个数, j≤J 。 jt = (Μ +Μ' - 1 + /), (Μ +Μ' + /),…… (N + /), /, (1 + ), (2 + ).… (Μ + M'— 2 + ) ,表示偏 移量;
W表示第二阶段的插值次数 , N≥M +M'≥ log2 N + \ 。
5、 一种联合通道校正装置, 其特征在于, 包括:
第一插值模块, 用于将校正全带测试序列进行第一阶段的 M次插值, 分别得到 M次插值后的所述校正全带测试序列在每一个待校正发送通道的 J个插值点上的序列值, l≤M < log2 N + l , N为待校正发送通道的个数; 合并模块, 用于将所述第一插值模块 M次插值后分别得到的所述校正 全带测试序列在每一个待校正发送通道的 J个插值点上的序列值进行合并, 得到 M次插值后所有待校正发送通道的部分测试序列;
第一确定模块, 用于根据所述 M次插值后所有待校正发送通道的部分 测试序列,确定 M次插值后所有待校正发送通道的全带信道响应测试结果; 第二确定模块, 用于根据所述第一确定模块确定的 M次插值后所有待 校正发送通道的全带信道响应测试结果, 若所述 M次插值后所有待校正发 送通道的全带信道响应测试结果大于等于预设的所述全带信道响应门限 值, 则根据所述 M次插值后所有待校正发送通道的全带信道响应测试结果 计算每一个待校正发送通道的补偿系数。
6、 根据权利要求 5所述的装置, 其特征在于, 所述第一插值模块具体 用于: 根据插值计算公式: SW , 得到第 Μ次插值后的所述校
Figure imgf000025_0001
正全带测试序列在第 i个待校正发送通道的第 k个子载波上的插值序列值;
^ k≠L"表示在第 i个待校正发送通道的第 k个子载波上无插值点,则 为 0; k二 L" 表示在第 i个待校正发送通道的第 k个子载波上有插值点, 则 为 W^);
其中, k = \,2..... ,Lm, 表示子载波的编号;
L^NJ + j^ 表示第 i个待校正发送通道上第 j个插值点对应的子载波 编号;
N表示所述待校正发送通道的个数;
/ = 1,2...... ,Ν , 表示所述待校正发送通道的编号;
J = l,2..... ,(Len/N),表示每一个待校正发送通道的插值点的个数, j≤J; j, =(N/ 2M- 1 + i), (N 12M- 1 +1 + 0, ...... (N + i), i, (1 + /), (2 + /)....(N 12M- 1 +/-1) , 表示 偏移值;
M表示第一阶段的插值次数, l≤M<log2N + l;
所述第 M次插值后的所述校正全带测试序列在第 i个待校正发送通道 的第 k个子载波上的插值序列值包括所述校正全带测试序列在第 i个待校正 发送通道的第 k个子载波上的插值点的序列值或无插值点的零值。
7、 根据权利要求 5或 6所述的装置, 其特征在于, 若所述第一确定模 块确定的 M次插值后所有待校正发送通道的全带信道响应测试结果小于预 设的所述全带信道响应门限值; 则所述装置还包括:
第二插值模块, 用于将所述校正全带测试序列进行第二阶段的 M'次插 值, 分别得到 M'次插值后的所述校正全带测试序列在每一个待校正发送通 道的 J个插值点上的序列值, N≥M+M'≥log2N + l, M'≥l;
补偿模块, 用于将所述第一插值模块 M次插值后所有待校正发送通道 的部分测试序列中对应的待校正发送通道上无插值点的序列值替换为所述 第二插值模块 M'次插值后的所述校正全带测试序列中对应的待校正发送通 道上插值点的序列值, 得到 M +M'次插值后所有待校正发送通道的校正全 带测试序列;
第三确定模块 , 用于根据所述补偿模块得到的 M +M'次插值后所有待 校正发送通道的校正全带测试序列, 确定 M+M'次插值后所有待校正发送 通道的全带信道响应测试结果, 若所述 M+M'次插值后所有待校正发送通 道的全带信道响应测试结果大于等于预设的所述全带信道响应门限值, 则 根据所述 M+M'次插值后所有待校正发送通道的全带信道响应测试结果计 算每一个待校正发送通道的补偿系数。
8、 根据权利要求 7所述的装置, 其特征在于, 所述第二插值模块具体 用于: 根据插值计算公式: SW , 得到第 Μ+Μ'次插值后的所述
Figure imgf000027_0001
校正全带测试序列在第 i个待校正发送通道的第 k个子载波上的序列值; 其中, k = \,2..... ,Lm, 表示子载波的编号;
L^NJ + j,, 表示第 i个待校正发送通道上第 j个插值点对应的子载波 编号;
N表示所述待校正发送通道的个数;
/ = 1,2...... ,Ν , 表示所述待校正发送通道的编号;
= .....人 L lN ,表示每一个待校正发送通道的插值点的个数, j≤J。 jt = (Μ +Μ' - 1 + /), (Μ+Μ' + /),…… (N + /), /, (1 + ), (2 + ).… (Μ + M'— 2 +) ,表示偏
M'表示第二阶段的插值次数, N≥M+M'≥ log2 N + 1
PCT/CN2014/079033 2013-05-31 2014-05-31 联合通道校正方法及装置 WO2014190946A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310213446.8A CN104218983B (zh) 2013-05-31 2013-05-31 联合通道校正方法及装置
CN201310213446.8 2013-05-31

Publications (1)

Publication Number Publication Date
WO2014190946A1 true WO2014190946A1 (zh) 2014-12-04

Family

ID=51988034

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/079033 WO2014190946A1 (zh) 2013-05-31 2014-05-31 联合通道校正方法及装置

Country Status (2)

Country Link
CN (1) CN104218983B (zh)
WO (1) WO2014190946A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017206080A1 (zh) * 2016-05-31 2017-12-07 华为技术有限公司 射频拉远单元rru间通道校正方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1859031A (zh) * 2006-02-10 2006-11-08 华为技术有限公司 一种在多输入多输出系统中发射通道校正方法
CN101304276A (zh) * 2008-06-30 2008-11-12 华为技术有限公司 一种发射通道校正的方法及系统
CN102136860A (zh) * 2011-03-10 2011-07-27 西安电子科技大学 用于发射数字波束形成技术的通道校正系统及方法
CN102340338A (zh) * 2011-10-21 2012-02-01 西安交通大学 一种tdd模式下的基站阵列天线通道校正方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6032028A (en) * 1996-04-12 2000-02-29 Continentral Electronics Corporation Radio transmitter apparatus and method
US6570527B1 (en) * 2001-09-28 2003-05-27 Arraycomm, Inc. Calibration of differential frequency-dependent characteristics of a radio communications system
JP4515155B2 (ja) * 2004-05-25 2010-07-28 株式会社エヌ・ティ・ティ・ドコモ 送信装置
CN101080031B (zh) * 2006-05-26 2011-02-02 大唐移动通信设备有限公司 基带拉远技术的智能天线校准系统及其方法
WO2008042874A2 (en) * 2006-10-03 2008-04-10 Qualcomm Incorporated Method and apparatus for processing primary and secondary synchronization signals for wireless communication

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1859031A (zh) * 2006-02-10 2006-11-08 华为技术有限公司 一种在多输入多输出系统中发射通道校正方法
CN101304276A (zh) * 2008-06-30 2008-11-12 华为技术有限公司 一种发射通道校正的方法及系统
CN102136860A (zh) * 2011-03-10 2011-07-27 西安电子科技大学 用于发射数字波束形成技术的通道校正系统及方法
CN102340338A (zh) * 2011-10-21 2012-02-01 西安交通大学 一种tdd模式下的基站阵列天线通道校正方法

Also Published As

Publication number Publication date
CN104218983A (zh) 2014-12-17
CN104218983B (zh) 2017-11-24

Similar Documents

Publication Publication Date Title
CN103190087B (zh) 用于波束成形的隐式和显式信道探测
CN103069759B (zh) Mimo信道状态信息估计的方法和接收器
US11901979B2 (en) Channel reciprocity-based precoding matrix configuration method and apparatus
US9118111B2 (en) Antenna array calibration for wireless communication systems
WO2016074585A1 (zh) 一种射频通道的校正方法及装置
JP5497966B2 (ja) 無線ネットワークの基地局内でアンテナ相互関係を較正する方法およびそのデバイス
US10924170B2 (en) Smoothing beamforming matrices across sub-carriers
US9825716B2 (en) Methods and apparatus for antenna calibration
CN102783102B (zh) 在基站上对频偏进行补偿
EP2533360A1 (en) Method and device for antenna calibration
EP3029900B1 (en) Communication device, baseband unit and communication method
CN107733817B (zh) 一种到达角估计的方法、装置、终端及基站
US20060284725A1 (en) Antenna array calibration for wireless communication systems
US9762307B2 (en) Communication system and communication control method using interference channel matrix
WO2018228356A1 (zh) 通道校正的方法和网络设备
JP5935262B2 (ja) 無線装置及び通信制御プログラム
CN102546483B (zh) 一种宽带同频干扰噪声估计和干扰抑制的方法及相应系统
WO2016154923A1 (zh) 波束信息获取方法、装置以及通信系统
CN104378775B (zh) Rru间通道校准的方法
JP2011019101A (ja) 送信指向性制御装置及び送信指向性制御方法
CN107395533B (zh) 一种通道校正方法以及校正装置
WO2015165070A1 (zh) 信道测量方法、信道测量装置、用户设备及系统
JP2002330112A (ja) Ofdmデジタル信号中継装置
WO2014190946A1 (zh) 联合通道校正方法及装置
WO2020010915A1 (zh) 一种天线连接检测方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14803966

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14803966

Country of ref document: EP

Kind code of ref document: A1