WO2014190763A1 - 具有提高的药物生物活性的低分子量聚乙二醇药物结合物 - Google Patents

具有提高的药物生物活性的低分子量聚乙二醇药物结合物 Download PDF

Info

Publication number
WO2014190763A1
WO2014190763A1 PCT/CN2014/000550 CN2014000550W WO2014190763A1 WO 2014190763 A1 WO2014190763 A1 WO 2014190763A1 CN 2014000550 W CN2014000550 W CN 2014000550W WO 2014190763 A1 WO2014190763 A1 WO 2014190763A1
Authority
WO
WIPO (PCT)
Prior art keywords
conjugate
drug
polyethylene glycol
group
same
Prior art date
Application number
PCT/CN2014/000550
Other languages
English (en)
French (fr)
Inventor
徐立华
赵宣
冯泽旺
汪进良
王振国
Original Assignee
天津键凯科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 天津键凯科技有限公司 filed Critical 天津键凯科技有限公司
Priority to EP14804880.4A priority Critical patent/EP3006050B1/en
Publication of WO2014190763A1 publication Critical patent/WO2014190763A1/zh
Priority to US14/954,785 priority patent/US9789198B2/en
Priority to US15/700,065 priority patent/US10052392B2/en
Priority to US15/700,063 priority patent/US10052391B2/en
Priority to US15/700,057 priority patent/US10034948B2/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/38Heterocyclic compounds having sulfur as a ring hetero atom
    • A61K31/382Heterocyclic compounds having sulfur as a ring hetero atom having six-membered rings, e.g. thioxanthenes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/40Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil
    • A61K31/403Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil condensed with carbocyclic rings, e.g. carbazole
    • A61K31/404Indoles, e.g. pindolol
    • A61K31/4045Indole-alkylamines; Amides thereof, e.g. serotonin, melatonin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/506Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim not condensed and containing further heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/56Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule
    • A61K47/59Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes
    • A61K47/60Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes the organic macromolecular compound being a polyoxyalkylene oligomer, polymer or dendrimer, e.g. PEG, PPG, PEO or polyglycerol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/06Antimigraine agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/02Ophthalmic agents
    • A61P27/06Antiglaucoma agents or miotics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/02Antineoplastic agents specific for leukemia

Definitions

  • the present invention relates to a low molecular weight polyethylene glycol drug conjugate and use.
  • it relates to a combination formed by linking a low molecular weight polyethylene glycol to two or more drug molecules and uses thereof.
  • BBB blood-brain barrier
  • the blood-brain barrier (BBB) is an important structure composed of brain microvascular endothelial cells and their tightly connected basement membranes and perivascular astrocyte foot processes. Its main role is to maintain the stability of the environment in the central nervous system and the normal function of neurons. There are some differences in the genetic composition and morphological structure between the brain microvascular endothelial cells and the endothelial cells of other blood vessels in the body.
  • BBB a protein and transporters that maintain their special selective permeability
  • the ability of a drug to pass through a BBB is usually related to the relative molecular mass of the drug itself, fat solubility, chargeability, ability to bind to plasma proteins, and specific carrier or receptor transport systems.
  • drugs that can pass through BBB are transported into the brain through carrier-mediated mechanisms, including: facilitation Diffusion, active transport, and pinocytosis.
  • Hydrophilic, macromolecular drugs themselves are difficult to pass through the BBB, while some lipophilic, molecularly-weighted drugs can pass through the blood-brain barrier, but are easily effluxed by P-gp (P-gp) on the blood-brain barrier.
  • P-gp P-gp
  • the pump is transported out, resulting in low effective drug concentration in the brain and short duration of action.
  • the blood-brain barrier has a high transmission rate, which leads to a large central toxic side effect.
  • the main consideration is to reduce the blood-brain barrier permeability while maintaining or improving the efficacy. There are many ways to reduce the permeability of the blood-brain barrier.
  • This patent is mainly modified by polyethylene glycol to introduce low molecular weight polyethylene glycol into the structure of the compound to increase its hydrophilicity, thereby reducing the blood-brain barrier permeability. It achieves the effect of reducing toxic side effects and maintaining activity.
  • Polyethylene glycol (PEG) modification technology is a new drug delivery technology that has been rapidly developed in recent years. It is a technology that activates polyethylene glycol to link to drug molecules or surfaces. After linking with polyethylene glycol, the pharmacokinetics of the drug changed, which in turn changed the pharmacodynamics and increased the activity of the drug in vivo.
  • PEG polyethylene glycol
  • PEG polyethylene glycol
  • the in vitro activity of polyethylene glycol (PEG) modified drugs is greatly reduced.
  • the in vitro activity of PEGasys® is only about 2% of interferon.
  • Advantages of using polyethylene glycol (PEG) modification such as increasing water solubility, lowering blood-brain barrier permeability, etc.
  • maintaining or improving the in vitro biological activity of the drug is a problem that has long been urgently solved by the polyethylene glycol (PEG) modification technology.
  • most drugs interact in the body by interacting with specific receptors, altering the physiological and biochemical functions of the cells.
  • GPCR G protein coupled receptor
  • Dimers include homodimers and heterodimers, as shown in Figure 1, which are three-dimensional structures of the Mu-delta opioid receptor heterodimer.
  • Figure 1 are three-dimensional structures of the Mu-delta opioid receptor heterodimer.
  • a compound having a novel structure which is characterized in that: the end of the small molecule polyethylene glycol links two or more drug molecules by a chemical bond form to form an antibody-like double group or multigroup structure.
  • the hydrophilicity of the oxygen atom in the polyethylene glycol fragment and the spatial flexibility of the linear alkoxy group increase the possibility of binding of the new compound to the receptor dimer or multimer, and improve the activity of the drug.
  • the hydrophilicity increases, the distribution in the body changes, the blood-brain barrier permeability of the drug decreases, and the side effects of the central system decrease.
  • the oil-water partition coefficient of the new compound is changed, and the water solubility is increased, and some drugs that cannot be used for oral administration can be made into an oral drug.
  • the present invention provides a novel polyethylene glycol modified drug which is a low molecular weight polyethylene having two or more terminal groups. After the derivatization of the end group of the alcohol, it is linked with the drug molecule to obtain a polyethylene glycol-linked drug dimer or multimer.
  • the new compound has an increased drug activity in vitro, and the solubility increases, and the oil-water partition coefficient changes. The distribution changes, and the blood-brain barrier permeability decreases, eventually leading to an increase in drug performance in the body.
  • PEG is a polyethylene glycol residue having the following structure
  • n is an integer from 0 to 25;
  • X, X' are a linking group, which may be the same or different, and are selected from:
  • TA are target compounds, which may be the same or different, and are selected from sumatriptan, dorzolamide, INOTEC, and camptothecin , dasatinib, paclitaxel, docetaxel, cyclovirobuxine D, diethylstilbestrol, estradiol, prazosin, terazosin, metoclopramide, ursodeoxycholic acid, rapamycin, A group consisting of small molecule drugs containing a hydroxyl group, an amino group, a sulfonamide group, an amide group or a sulfhydryl group in the structure of scopolamine and procaine
  • a, b, and c may be the same or different and are an integer of 0-20;
  • X is a linking group, and is selected to be free:
  • i is an integer from 0 to 10; TA, TA', TA" are target compounds, which may be the same or different, and are selected from sumatriptan.
  • a, b, c are the same and are an integer from 0-10.
  • a, b, c are 0, 1, 2, 3,
  • X is - (CH 2 CH 2) 0- .
  • TA , TA', TA" are both dorzolamide.
  • the invention provides a polyethylene glycol-(drug) 4 binding of formula (III) , the combination will pass low
  • a, b', c, and d which may be the same or different, are integers from 0 to 20;
  • X is a linking group, and is selected from:
  • a', b', c', d are the same, an integer from 0-10.
  • a', b', c', d' is a range between 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or any two integers therebetween.
  • X is - (CH 2 CH 2) 0- .
  • ⁇ , ⁇ ', ⁇ ", ⁇ '" are both dorzolamide.
  • the present invention provides a pharmaceutical composition comprising a conjugate as described above and a pharmaceutically acceptable carrier or excipient.
  • the invention provides a pharmaceutical composition
  • a pharmaceutical composition comprising a conjugate as described above, or a pharmaceutically acceptable salt thereof, wherein the acceptable salt is selected from the group consisting of hydrochloride, hydrobromide, A group consisting of a sulfate, a nitrate, a phosphate, a citrate, a tartrate, a fumarate, a maleate, a lactate, a besylate, a pantothenate, an ascorbate or a combination thereof.
  • the pharmaceutical composition is in the form of a tablet, a suppository, a pill, a soft and hard gelatin capsule, a powder, a solution, a suspension or an aerosol.
  • the invention also provides the use of the above combination for the preparation of a medicament.
  • the present invention provides a polyethylene glycol (PEG) modification method for improving small molecule drug performance, lowering blood-brain barrier permeability, and maintaining or improving drug activity by using low molecular weight polyethylene glycol, and preparation method thereof And application.
  • PEG polyethylene glycol
  • This new structure of the compound can interact with the receptor dimer or multimer to produce an effect, improve the distribution of the drug in the body, change the oil-water partition coefficient, enhance the drug activity, reduce the blood-brain barrier permeability of the drug, and improve the drug. Bioavailability.
  • the present invention provides sumatriptan, dorzolamide, irinotecan, camptothecin, dasatinib, paclitaxel, docetaxel, cyclovirobuxine D, diethylstilbestrol, estradiol, piperazine Small molecules containing hydroxy, amino, sulfonamide, amide or sulfhydryl groups in the structures of oxazide, terazosin, metoclopramide, ursodeoxycholic acid, rapamycin, scopolamine, procaine, etc.
  • the ethylene glycol polymerized unit is used to represent oligoethylene glycol, which is generally represented by the number of ethylene glycol units contained therein. The number of ethylene glycol units ranges from 0 to 20, preferably from 3 to 10 .
  • the polyethylene glycol of the present invention also includes derivatives and analogs of polyethylene glycol, which may also be replaced by a hydrophilic polymer selected from the group consisting of polyethylene glycol and polyglutamic acid.
  • the combination of the present invention can be administered in the form of a pure compound or a suitable pharmaceutical composition, and can be carried out by any acceptable mode of administration or an agent for a similar use.
  • the mode of administration may be selected by oral, intranasal, parenteral, topical, transdermal or rectal administration in the form of a solid, semi-solid or liquid pharmaceutical form, for example, tablets, suppositories, pills, Soft and hard gelatin capsules, powders, solutions, suspensions or aerosols, and the like, are preferably employed in unit dosage forms for simple administration of precise dosages.
  • the composition may comprise a conventional pharmaceutical carrier or excipient and a combination of the invention as the active ingredient(s), and may further comprise other agents, carriers, adjuvants and the like.
  • a pharmaceutically acceptable composition will comprise from about 1 to about 99% by weight of a combination of the invention, and from 99 to 1% by weight of a suitable pharmaceutical excipient, depending on the mode of administration desired.
  • the compositions comprise from about 5 to 75% by weight of a combination of the invention, the balance being a suitable pharmaceutical excipient.
  • the pharmaceutical composition which can be administered in a liquid form can be, for example, dissolved or dispersed, and the conjugate of the present invention (about 0.5 to about 20%) and the selectively present pharmaceutical adjuvant can be dissolved and dispersed in a carrier. Examples are water, saline, aqueous dextrose, glycerol, ethanol, and the like to form a solution or suspension.
  • compositions of the present invention may also contain minor amounts of auxiliary substances such as wetting or emulsifying agents, pH buffering agents, antioxidants, and the like, for example: citric acid, sorbitan monolaurate, triethanolamine oleate , butylated hydroxytoluene and the like.
  • auxiliary substances such as wetting or emulsifying agents, pH buffering agents, antioxidants, and the like, for example: citric acid, sorbitan monolaurate, triethanolamine oleate , butylated hydroxytoluene and the like.
  • p-toluenesulfonyl chloride was purchased from Shandong Yilong Industrial Co., Ltd.
  • sodium hydride was purchased from TCI (Shanghai) Chemical Industry Development Co., Ltd.
  • H(OCH 2 CH 2 )4-OH, H(OCH 2 CH 2 ) 6- OH and H(OCH 2 CH 2 ) 12 -OH were purchased from Jiaxing Bomei Biotechnology Co., Ltd.
  • Other reagents used in the examples of the present invention are commercially available reagents.
  • Pentaethylene glycol disulfonate (3.94 g, 10 mmol) and tetrabutylammonium bromide 13.3 g were dissolved in 50 mL of acetonitrile, and the reaction was stirred at 50 ° C for 16 hours under nitrogen atmosphere. The solvent was evaporated, extracted with ethyl acetate and water, dried over anhydrous sodium sulfate, and evaporated. The yield was 75%.
  • Triethylene glycol (2.67 mL, 20 mmol) was dissolved in dichloromethane (50 mL), triethylamine (8.33 mL, 20 mmol) was added and methanesulfonyl chloride (3.44 mL, 44 mmol) was added dropwise under nitrogen The reaction was carried out for 16 hours at room temperature. After adding 1.2 ml of methanol and stirring for 15 minutes, the solid was removed by filtration and concentrated to give a product (yield: y. Used directly in the next step.
  • Triethylene glycol disulfonate (4.12 g, 13.46 mmol) and tetrabutylammonium bromide 17.3 g were dissolved in 50 mL of acetonitrile, and the mixture was stirred for 50 hours under nitrogen atmosphere for 16 hours. The solvent was evaporated, extracted with ethyl acetate and water, dried over anhydrous sodium sulfate and evaporated. The yield was 77%.
  • reaction solution was transferred to a 500 mL separatory funnel, and extracted with ethyl acetate twice (300 mL + 200 mL). The organic layers were combined, washed with water until neutral, dried over anhydrous sodium sulfate for two hours. The solvent was distilled off by a rotary evaporator. A total of 21.4 g of a viscous liquid was obtained, which was directly used for the next reaction. Dasatinib 487 mg, potassium carbonate 166 mg was added to a 100 mL three-necked flask containing 20 mL of acetonitrile, and stirred at room temperature for 2 hours.
  • reaction solution was transferred to a 1000 mL separatory funnel, and extracted with ethyl acetate twice (300 mL + 200 mL). The organic layers were combined, washed with water until neutral, dried over anhydrous sodium sulfate for two hours. The solvent was distilled off by a rotary evaporator. A total of 21.5 g of a viscous liquid was obtained, which was directly used for the next reaction. Dasatinib 253 mg, potassium carbonate 128 mg was added to a 100 mL three-necked flask containing 20 mL of acetonitrile, and stirred at room temperature for 2 hours.
  • reaction solution was transferred to a 1000 mL separatory funnel and extracted twice with ethyl acetate (300 mL + 200 mL). The organic layers were combined, washed with water until neutral, dried over anhydrous sodium sulfate for two hours. The solvent was distilled off by a rotary evaporator. A total of 28.7 g of a viscous liquid was obtained, which was directly used for the next reaction. Dissolve 412 mg of dasatinib in 6 ml of hydrazine, hydrazine-dimethylformamide, add 160 mg of NaH, and stir at room temperature for 1 hour.
  • Example 14 Inhibition of cell proliferation of cell proliferation by dasatinib series compounds and the purpose of IC50 assay
  • the cells were cultured in complete medium, and the cells were attached, and each tumor cell line was treated with different concentrations of drugs.
  • a positive control, a blank control, and a vehicle control were set up.
  • Caco-2 is a human colon cancer epithelial cell that can differentiate into a monolayer of epithelial cells with a structure and function similar to that of the small intestine, and expresses an active transporter and a part of metabolic enzymes. It is a good model for in vitro membrane permeability evaluation.
  • Cell monolayers were prepared on Transwell culture inserts according to the standard culture procedure of Caco-2 cells.
  • Transmembrane experiments were performed in culture wells with transmembrane resistance greater than 300 ⁇ ⁇ 2 , and the adductol was controlled in parallel.
  • Membrane) and methyltestosterone (impermeable membrane) provide the necessary quality control of the experimental system.
  • Caco-2 cells common evaluation criteria for the transmembrane transport permeability: Papp> 100 X 100 is easy to compound-permeable membrane; 100 X 10 "6> Papp > 10 X 10 ⁇ 6 is easy to moderate permeable membrane compound; the Papp ⁇ 10 X 10 ⁇ 6 permeant compound difficult.
  • bidirectional transport is to investigate the transmembrane transport of the analytes in the presence of efflux transporter-mediated initiative. Transshipment process. Add the positive control drug digoxin and the drug to be tested in the upper or lower pool of the culture insert, and add the 37'C pre-incubated Hank's solution to the side pool, incubate in the C0 2 incubator for 90 min, collect After the side pool solution is quantitatively treated and measured, the two-way apparent permeability coefficient (PappA-B and PappB-A) and the ratio of the two are calculated according to the above formula. When the ratio is >2, the transmembrane transport of the compound may be involved. Active transport by mediated transporters (eg, P- g p, MRP2). Transmembrane transport experiments are as follows:
  • the rat model was used to achieve steady state of the drug in a uniform rate, and the ratio of the drug concentration in the plasma to the concentration of the drug in the brain tissue (Kp value) was investigated to indicate the distribution of the drug in the brain tissue. ability. It is characterized by reliable data, direct delivery of the blood/brain ratio of the compound, and saving of animals and doses.
  • the transmittance is 1/34 of dorzolamide
  • the blood-brain barrier permeability of DZA-03 compound is 1/65 of dorzolamide
  • the blood-brain barrier permeability of DZA-04 compound is 1/% of dorzolamide.
  • the blood-brain barrier permeability of DZA-05 compound is 1/28 of dorzolamide
  • the blood-brain barrier permeability of DZA-06 compound is 1/8 of dorzolamide.
  • the blood-brain barrier permeability of DZA-07 compounds is 1/27 of dorzolamide.
  • Mode of administration tail vein injection, intragastric administration

Landscapes

  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medicinal Chemistry (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Ophthalmology & Optometry (AREA)
  • Oncology (AREA)
  • Biomedical Technology (AREA)
  • Neurology (AREA)
  • Neurosurgery (AREA)
  • Hematology (AREA)
  • Pain & Pain Management (AREA)
  • Medicinal Preparation (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

提供通式(I)、(II)或(III)的聚乙二醇药物结合物,以及药物组合物和应用。所述结合物通过将低分子量聚乙二醇与2-4个药物分子连接形成。所述结合物可以与受体二聚体或多聚体相互作用,从而改善药物体内分布,改变油水分配系数,增强药物活性,减少药物的血脑屏障透过率,改善药物的生物利用度。

Description

具有提髙的药物生物活性的低分子量聚乙二醇药物结合物 技术领域 本发明涉及一种低分子量聚乙二醇药物结合物和应用。具体地, 涉及由低分子量聚乙 二醇与两个或多个药物分子连接形成的结合物及其应用。 发明背景 血脑屏障(BBB )是由脑微血管内皮细胞及其紧密连接的基膜和血管周围星形胶质细 胞足突组成的重要结构。它的主要作用是维持中枢神经系统内环境的稳定和神经元的正常 功能。脑微血管内皮细胞与机体其他血管的内皮细胞在基因组成、形态结构上都存在着一 定的差异, 其细胞膜上广泛分布着各种维持其特殊选择性通透作用的蛋白以及转运体。 药物透过 BBB的能力通常与药物本身的相对分子质量、 脂溶性、 荷电性、 同血浆蛋 白的结合能力以及特定的载体或受体转运系统有关。 除水、 电解质以及部分大分子物质可 自由通过外, 大多数能够透过 BBB的药物 (如左旋多巴、 可待因等) 则是通过载体介导 转运入脑的, 其机制包括: 易化扩散、 主动转运以及胞饮作用。 亲水性、 大分子的药物本 身难以透过 BBB, 而一些亲脂性、分子量适宜的药物虽能透过血脑屏障,但易被血脑屏障 上的 P糖蛋白 (P-gp) 等外排泵转运出来, 导致脑内有效药物浓度低且作用时间短。 很多药物虽然药效很好, 但是血脑屏障透过率高, 导致中枢毒副作用大。 在对这些药 物进行研究时, 主要考虑降低血脑屏障透过率, 同时还能保持或提高药效。 降低血脑屏障 透过率的方法有很多, 本专利主要通过聚乙二醇修饰, 在化合物结构中引入低分子量的聚 乙二醇, 增加其亲水性, 从而降低血脑屏障透过率, 达到降低毒副作用、 还能保持活性的 效果。 聚乙二醇(PEG)修饰技术是近年来迅速发展起来的一项新型给药技术, 是一种将聚 乙二醇活化后链接到药物分子或表面的技术。与聚乙二醇链接后, 药物的药代动力学发生 了改变, 进而改变药效学, 提高药物体内活性。 目前, 聚乙二醇 (PEG)技术已经广泛应 用于蛋白质药物的修饰上, 成为改善蛋白质药物临床效果的重要手段。 目前, 在国际市场 上有 11个聚乙二醇化的药物产品,其中四个年销售额过亿美元: PEG-intron®, PEGasys®, Neulasta®和 Macugen®, 其中 PEGasys®和 Neulasta®201 1年销售额分别是 18亿和 36亿 美元。 近来, 聚乙二醇 (PEG)修饰技术的应用已经从蛋白质药物扩展到小分子药物。 药 物小分子经过聚乙二醇修饰后, 主要具有以下优点: 1、 增加药物的水溶性; 2、 改变油水 分配系数; 3、 延长药物循环半衰期, 减少用药次数, 提高病人依从性, 提高生活质量, 降低治疗费用; 4、减少酶降解作用, 提高生物利用度。但是, 总体来说, 聚乙二醇(PEG) 修饰后的药物体外活性都大幅降低。 例如, PEGasys®的体外活性只是干扰素的百分之二 左右。 在利用聚乙二醇 (PEG) 修饰的优点 (如增加水溶性、 降低血脑屏障透过率等) 的 同时, 保持或提高药物的体外生物学活性, 是聚乙二醇 (PEG)修饰技术长期以来急需解 决的问题。 同时, 大多数药物在体内都是通过和特异性受体相互作用, 改变细胞的生理生化功能 而产生效应。目前已确定的受体有数十种,其中绝大部分机体细胞的功能均为膜受体识别, 其中主要的膜受体属于 G蛋白偶联受体 (GPCR)家族。 通常认为, G蛋白偶联受体主要 以单体形式存在, 与 G蛋白偶联而产生对配体的识别及介导一系列信号的传导。 近年来, 对于 GPCR的研究表明 GPCR能以二聚体及多聚体形式存在。 例如阿片受体、 p2AR、 多 巴胺受体、 趋化因子受体、 mGluR5、 胞外 Ca2+敏感受体等都能形成二聚体或多聚体。 二 聚体包括同源二聚体和异源二聚体,如图 1所示,是 Mu-delta阿片肽受体异源二聚体的三 维结构图。 考虑到降低血脑屏障透过率, 并受到受体二聚体或多聚体的启发, 参考生物体内天然 抗体的双基团结构, 我们利用小分子聚乙二醇的性质, 设计了一类具有新结构的化合物, 其结构特点是: 小分子聚乙二醇的末端通过化学键形式链接两个或多个药物分子, 形成类 似抗体的双基团或多基团结构。聚乙二醇片段中的氧原子的亲水性、及直链烷氧基的空间 柔韧性, 增加了该新化合物与受体二聚体或多聚体结合的可能性, 改善了药物的活性; 同 时, 由于分子量增加, 亲水性增加, 体内分布发生变化, 药物血脑屏障透过率降低, 中枢 系统副作用减少。 再者, 由于小分子聚乙二醇的引入, 使新化合物的油水分配系数发生变 化, 水溶性增加, 可以将某些不能用于口服的药物做成口服药物。 在本实验室前期的实验研究中,本申请的发明人采用低分子量的聚乙二醇与坦索罗辛 进行化学键结合 (尚未公开的专利申请, 申请号为 201110393196.1 ) 。 US2005136031A1 中报道了一端封端的聚乙二醇与纳洛酮链接的方法,而本申请的发明人找到了将纳洛酮与 低分子量聚乙二醇键合的方法 (尚未公开的发明专利申请, 专利申请号为 201210040133.2) 。 药理结果证实, 聚乙二醇双端链接纳洛酮的产物活性要高于单端取代 产物。 但上面这些工作均未针对该系列化合物的血脑屏障透过率做充分研究。 结合本实验室前期的工作, 本发明提供了一种新的聚乙二醇修饰的药物, 所述聚乙二 醇修饰的药物是将具有两个或两个以上端基的低分子量聚乙二醇的端基经衍生化后,与药 物分子链接,得到聚乙二醇连接的药物二聚体或多聚体,这种新化合物体外药物活性增加, 同时溶解度增大, 油水分配系数改变, 体内分布随之发生变化, 血脑屏障透过率降低, 最 终导致体内药物性能的提升。 发明内容 根据本发明的一个方面, 提供了一种如通式(I) 的药物 -聚乙二醇-药物结合物, 所述 结合物通过将低分子量聚乙二醇与两个药物分子连接形成, TA-X-PEG-X'-TA"
( I )
其中, PEG为具有如下结构的聚乙二醇残基,
其中, n是 0-25的整数; X, X'为连接基团, 可以相同或不同, 选自由:
-(CH2)i- ; -(CH2)i-NH-; -(CH2)i-0-; -(CH2)i-S-;
0 0 0 0 0
II II II II II
-(CH2)i-C- ; -(CH2)i-C-0-; -(CH2)i-0-C-0-;-(CH2)i-C-NH-;-(CH2)i-0-C-NH-;组成的组; i为 0-10的整数; TA、 TA'是目标化合物, 可以相同或不同, 选自由舒马曲坦、 多佐 胺、 伊诺替康、 喜树碱、 达沙替尼、 紫杉醇、 多西紫杉醇、 环维黄杨星 D、 己烯雌酚、 雌 二醇、 哌唑嗪、 特拉唑嗪、 甲氧氯普胺、 熊去氧胆酸、 雷帕霉素、 东莨菪碱、 普鲁卡因等 结构中含有羟基、 氨基、 磺酰胺基、 酰胺或巯基的小分子药物组成的组。 在一个实施方案中, n为 0-10的整数。优选地, n为 0、 1、 2、 3、 4、 5、 6、 7、 8、 9、
10或其间任何两个整数之间的范围。 在另一个实施方案中, i=2, X与 X'相同, 均为 -(CH2CH2)0-。 在另外的实施方案中, TA与 TA'相同, 选自由舒马曲坦、 多佐胺和达沙替尼组成的 组。 根据本发明的另一方面, 本发明提供一种如通式(Π)的聚乙二醇- (药物 )3结合物, 所 述结合物通过将低分子
Figure imgf000005_0001
( II )
其中, a、 b、 c可以相同或不同, 为 0-20的整数; X为连接基团, 选自由:
-(CH2)i-; -(CH2)i-NH-; -(CH2)i-0-; -(CH2)i-S-;
0 0 0 0 0
II II II II II
-(CH2)i-C-; -(CH2)i-C-0-; -(CH2)i-0-C-0-;-(CH2)i-C-NH-;-(CH2)i-0-C-NH-;组成的组; i为 0-10的整数; TA、 TA'、 TA"是目标化合物, 可以相同或不同, 选自由舒马曲坦、 多佐胺、伊诺替康、喜树碱、 达沙替尼、紫杉醇、 多西紫杉醇、 环维黄杨星 D、 己烯雌酚、 雌二醇、 哌唑嗪、 特拉唑嗪、 甲氧氯普胺、 熊去氧胆酸、 雷帕霉素、 东莨菪碱、 普鲁卡因 等结构中含有羟基、 氨基、 磺酰胺基、 酰胺或巯基的小分子药物组成的组。 在一个实施方案中, a、 b、 c相同, 为 0-10的整数。 优选地, a、 b、 c为 0、 1、 2、 3、
4、 5、 6、 7、 8、 9、 10或其间任何两个整数之间的范围。 在另一实施方案中, X为 -(CH2CH2)0-。 在另外的实施方案中, TA、 TA'、 TA"均为多佐胺。 根据本发明的又一方面, 本发明提供一种如通式 (III) 的聚乙二醇- (药物 )4结合物, 所述结合物通过将低
Figure imgf000006_0001
其中, a,、 b'、 c,、 d,可以相同或不同, 为 0-20的整数; X为连接基团, 选自由:
-(CH2)i- ; -(CH2)i-NH-; -(CH2)i-0-; -(CH2)i-S-;
-(CH2)i-C- ; -(CH2)i-C-0-; -(CH2)i-0-C-0-;-(CH2)i-C-NH-;-(CH2)i-0-C-NH_;组成的组; i为 0-10的整数; ΤΑ、 ΤΑ'、 ΤΑ"、 ΤΑ'"是目标化合物, 可以相同或不同, 选自由舒 马曲坦, 多佐胺, 伊诺替康、 喜树碱、 达沙替尼、 紫杉醇、 多西紫杉醇、 环维黄杨星 D、 己烯雌酚、 雌二醇、 哌唑嗪、特拉唑嗪、 甲氧氯普胺、 熊去氧胆酸、 雷帕霉素、 东莨菪碱、 普鲁卡因等结构中含有羟基、 氨基、 磺酰胺基、 酰胺或巯基的小分子药物组成的组。 其中, 在一个实施方案中, a'、 b'、 c'、 d,相同, 为 0-10的整数。 优选地, a'、 b'、 c'、 d'为 0、 1、 2、 3、 4、 5、 6、 7、 8、 9、 10或其间任何两个整数之间的范围。 在另一个实施方案中, X为 -(CH2CH2)0-。 在另外的实施方案中, ΤΑ、 ΤΑ'、 ΤΑ"、 ΤΑ'"均为多佐胺。 根据本发明的再另一个方面,本发明提供包括如上文所述的结合物以及药学上可接受 的载体或赋形剂的药物组合物。 根据本发明的另外的方面,本发明提供包含如上文所述的结合物或其药学上可接受的 盐的药物组合物, 其中所述可接受的盐选自由盐酸盐、 氢溴酸盐、 硫酸盐、 硝酸盐、 磷酸 盐、 枸橼酸盐、 酒石酸盐、 富马酸盐、 马来酸盐、 乳酸盐、 苯磺酸盐、 泛酸盐、 抗坏血酸 盐或其组合组成的组。 其中, 药物组合物为片剂、 栓剂、 丸剂、 软和硬明胶胶囊剂、 散剂、 溶液剂、 混悬剂或气雾剂的剂型。 根据本发明的另外的方面, 本发明还提供上述结合物在制备药物中的应用。 根据其他的方面, 本发明提供一种通过低分子量聚乙二醇改善小分子药物性能, 降低 血脑屏障透过率, 保持或提高药物活性的聚乙二醇(PEG)修饰方法, 其制备方法和应用。 这种新结构的化合物可以与受体二聚体或多聚体相互作用而产生效应,可以改善药物体内 分布, 改变油水分配系数, 增强药物活性, 减少药物的血脑屏障透过率, 改善药物的生物 利用度。 根据其他的方面, 本发明提供舒马曲坦、 多佐胺、 伊诺替康、 喜树碱、 达沙替尼、 紫 杉醇、 多西紫杉醇、 环维黄杨星 D、 己烯雌酚、 雌二醇、 哌唑嗪、 特拉唑嗪、 甲氧氯普胺、 熊去氧胆酸、 雷帕霉素、 东莨菪碱、 普鲁卡因等结构中含有羟基、 氨基、 磺酰胺基、 酰胺 基或巯基的小分子药物与低分子聚乙二醇结合的结合物的制备方法。 附图说明 图 1为 Mu-delta阿片肽受体异源二聚体的三维结构图。 具体实施方式 采用乙二醇聚合单元表示低聚乙二醇, 一般采用所含有的乙二醇单元的数目来表示, 乙二醇单元数目范围为 0-20的整数, 优选为 3-10的整数。 本发明的聚乙二醇也包括聚乙二醇的衍生物和类似物,也可以被下述亲水性聚合物替 换, 所述亲水性聚合物选自由聚乙二醇、 聚谷氨酸、 聚天门冬氨酸、 聚丙二醇、聚乙烯醇、 聚丙烯吗啉、 聚噁唑啉及其共聚物组成的组。 本发明的结合物可以纯化合物形式或适宜的药物组合物形式进行给药,可采用任何可 接受的给药方式或用于类似的用途的试剂进行。 因此, 采用的给药方式可选择通过口、 鼻 内、非肠道、局部、透皮或直肠方式, 其形式为固体、 半固体或液体药剂形式给药, 例如, 片剂、 栓剂、 丸剂、 软和硬明胶胶囊剂、 散剂、 溶液剂、 混悬剂或气雾剂等, 优选采用适 用于精确剂量的简单给药的单元剂量形式。组合物可包含常规药用载体或赋形剂和作为活 性成分 (一种或多种) 的本发明的结合物, 此外, 还可包含其它药剂、 载体、 辅剂等。 通常, 根据所需给药方式,·药学上可接受的组合物将包含约 1至约 99重量%的本发 明结合物、 以及 99至 1重量%的适宜的药用赋形剂。优选组合物包含约 5至 75重量%的 本发明结合物, 其余为适宜的药用赋形剂。 可采用液体形式给药的药物组合物例如可通过溶解、 分散等手段将本发明的结合物 (约 0.5至约 20% )和选择性存在的药用辅剂溶解、 分散于载体中, 载体的实例为水、 盐 水、 含水葡萄糖、 甘油、 乙醇等, 从而形成溶液剂或混悬剂。 如果需要, 本发明的药物组合物还可包含少量辅助物质, 如润湿剂或乳化剂、 pH缓 冲剂、 抗氧化剂等, 例如: 柠檬酸、 脱水山梨醇单月桂酸酯、 三乙醇胺油酸酯、 丁基化羟 基甲苯等。 以下实施例用来说明本发明, 但不用来限制本发明。 实施例中所用的舒马曲坦由江苏澳新生物工程有限公司提供,达沙替尼由南京安格医 药化工有限公司提供, 甲氧基乙氧基甲基氯(MEMCL)从 alfa Aesar购得, 对甲苯磺酰氯 从山东亿龙实业有限公司购得, 氢化钠从梯希爱 (上海) 化成工业发展有限公司购得, H(OCH2CH2)4-OH、 H(OCH2CH2)6-OH以及 H(OCH2CH2)12-OH从嘉兴博美生物技术有限公 司购得。 本发明实施例中所用的其他试剂均为市售试剂。 实施例
实施例 1 双端取代的六乙二醇-舒马曲坦(SMQT-01 ) 的合成
Figure imgf000009_0001
将六乙二醇(1 ) (2.5 mL, 10 mmol)溶于二氯甲烷 50 mL中, 加入三乙胺(4.17 mL, 10 mmol) , 滴加甲磺酰氯 (1.72 mL, 22 mmol) , 氮气保护下室温反应 16小时。 加入 1.2毫升甲醇搅拌 15分钟, 过滤除去固体后浓缩得到产品 (2) 3.85 g, 收率 99%。 直接用 于下一步反应。 将六乙二醇二磺酸酯(2 ) ( 3.85 g, 10 mmol)和四丁基溴化铵 13.3 g溶于乙腈 50 mL 中, 氮气保护下 50Ό搅拌反应 16小时。 蒸出溶剂, 加入乙酸乙酯和水进行萃取, 无水硫 酸钠干燥, 浓缩, 柱分离得到产品 (3 ) 2.85 g。 收率 80%。 ^-NMR CDC ): 3.82(t, 4H), 3.67(s, 16H), 3.48(t, 4H)。 将舒马曲坦 (236 mg, 0.8 mmol) 溶于 2 mL干燥 DMF中, 加入 60%NaH (32 mg, 0.8 mmol) , 搅拌反应 15分钟后, 加入化合物 (3 ) ( 163.2 mg, 0.4 mmol) , 氮气保护 下室温反应过夜。 将上述反应液中加入水猝灭反应, 用乙酸乙酯萃取三次, 有机相用无水 硫酸钠干燥,浓缩液进行柱分离得到产品 204 mg,收率 61%。 1H-NMR (CDC13): 2.34(s, 12H), 2.63(t, 4H), 2.77(s, 6H), 2.93(t, 4H), 3.13(t, 4H), 3.44(t, 4H), 3.51(s, 16H), 4.34(s, 4H), 6.98(s, 2H), 7.14 (d, 2H), 7.26(d, 2H), 7.57(s, 2H), 8.91(s, 2H)。 实施例 2 双端取代的五乙二醇-舒马曲坦 (SMQT-02) 的合成
将五乙二醇 (2.38 g, 10 mmol) 溶于二氯甲垸 50 mL中, 加入三乙胺 (4.16 mL, 10 mmol) , 滴加甲磺酰氯 (1.77 mL, 22 mmol) , 氮气保护下室温反应 16小时。 加入 1.2 毫升甲醇搅拌 15分钟, 过滤除去固体后浓缩得到产品 3.94 g, 收率 99%。 直接用于下一 步反应。 将五乙二醇二磺酸酯 (3.94 g, 10 mmol) 和四丁基溴化铵 13.3 g溶于乙腈 50 mL中, 氮气保护下 50°C搅拌反应 16小时。 蒸出溶剂, 加入乙酸乙酯和水进行萃取, 无水硫酸钠 干燥,浓缩,柱分离得到产品 2.73 g。收率 75%。 iH-NMR iCDC ): 3.49(t, 4H), 3.69(s, 12H), 3.84(t, 4H)o 将舒马曲坦 (236 mg, 0.8 mmol) 溶于 2 mL干燥 DMF中, 加入 60%NaH (32 mg, 0.8 mmol) , 搅拌反应 15分钟后, 加入三乙二醇双乙基溴(145.6 mg, 0.4 mmol) , 氮气 保护下室温反应过夜。 将上述反应液中加入水猝灭反应, 用乙酸乙酯萃取三次, 有机相用 无水硫酸钠干燥,浓缩液进行柱分离得到产品 184 mg,收率 58%。 1H-NMR (CDC13): 2.34(s, 12H), 2.70(t, 4H), 2.72(s, 6H), 2.94(t, 4H), 3.06(t, 4H), 3.40(t, 4H), 3.49(s, 12H), 4.35(s, 4H), 6.98(s, 2H), 7.11 (d, 2H), 7.23(d, 2H), 7.60(s, 2H), 8.91(s, 2H)。 实施例 3 双端取代的三乙二醇-舒马曲坦 (SMQT-03) 的合成
将三乙二醇 (2.67 mL, 20 mmol) 溶于二氯甲垸 50 mL中, 加入三乙胺 (8.33 mL, 20 mmol) , 滴加甲磺酰氯 (3.44 mL, 44 mmol) , 氮气保护下室温反应 16小时。 加入 1.2毫升甲醇搅拌 15分钟, 过滤除去固体后浓缩得到产品 6.12 g, 收率 99%。 直接用于下 一步反应。 将三乙二醇二磺酸酯 (4.12 g, 13.46 mmol) 和四丁基溴化铵 17.3 g溶于乙腈 50 mL 中, 氮气保护下 50Ό搅拌反应 16小时。 蒸出溶剂, 加入乙酸乙酯和水进行萃取, 无水硫 酸钠干燥,浓縮,柱分离得到产品 2.84 g。收率 77%。 1H-NMR (CDC13): 3.49(t, 4H), 3.70(s, 4H), 3.84(t, 4H)。 将舒马曲坦 (236 mg, 0.8 mmol) 溶于 2 mL干燥 DMF中, 加入 60%NaH (32 mg, 0.8 mmol) , 搅拌反应 15分钟后, 加入乙二醇双乙基溴 (109.6 mg, 0.4 mmol) , 氮气保 护下室温反应过夜。将上述反应液中加入水猝灭反应, 用乙酸乙酯萃取三次, 有机相用无 水硫酸钠干燥, 浓缩液进行柱分离得到产品。 收率 61%。 1H-NMR (CDC13): 2.35(s, 12H), 2.66(t, 4H), 2.72(s, 6H), 2.94(t, 4H), 3.07(t, 4H), 3.40(t, 4H), 3.47(s, 4H), 4.34(s, 4H), 6.98(s, 2H), 7.12 (d, 2H), 7.23(d, 2H), 7.60(s, 2H), 8.91(s, 2H)。 实施
Figure imgf000010_0001
250 mL三口瓶中加入 19.1 g对甲苯磺酰氯、 40 mL吡啶, 冷却至 0°C。 将 9.7 g HO-PEG(n=4)-OH与 20 mL吡啶混匀, 滴加到三口瓶中, 控制温度为 0-10°C。 继续在此温 度下搅拌反应两小时。 TLC监测反应完全。向反应液中加入 300 mL冷水及 60 mL浓盐酸, 缓慢搅拌半小时, 将反应液转移入 500 mL 分液漏斗中, 加入乙酸乙酯萃取两次 (300 mL+200 mL ) 。 有机层合并, 用水洗至中性, 无水硫酸钠干燥两小时。 旋转蒸发仪蒸出溶 剂。 得到粘稠状液体共 21.4 g, 直接用于下一步反应。 将达沙替尼 487 mg, 碳酸钾 166 mg加入到盛有 20 mL乙腈的 100 mL三口瓶中, 室 温搅拌 2小时。将溶有 258 mg TsO-PEG(n=4)-OTs的 10 mL乙腈溶液加入到上述反应瓶中, 回流反应过夜。 TLC 监测反应完全。 柱分离得到白色固体 308 mg, 收率为 54.5%。 m/z [MH]+1133 o 1H-NMR (DMSO-d6): 2.23(s, 6H), 2.49(s, 6H), 2.51(m, 8H), 3.53(m, 32H), 6.04(s, 2H), 7.27(m, 4H), 7.40(m, 2H), 8.22(s, 2H), 9.88(s, 2H), 11.48(s, 2H)。 实施例 5 甲氧基五甘醇-达沙替尼 (DSTN-51 ) 的合成
Figure imgf000011_0001
250 mL三口瓶中加入 9.6 g对甲苯磺酰氯, 40 mL 吡啶, 冷却至 0°C。 将 12.6 g mPEG(n=5)-OH与 20 mL吡啶混匀, 滴加到三口瓶中, 控制温度为 0-10Ό。继续在此温度 下搅拌反应两小时。 TLC监测反应完全。 向反应液中加入 300 mL冷水及 60 mL浓盐酸, 缓慢搅拌半小时, 将反应液转移入 1000 mL分液漏斗中, 加入乙酸乙酯萃取两次 (300 mL+200 mL ) 。 有机层合并, 用水洗至中性, 无水硫酸钠干燥两小时。 旋转蒸发仪蒸出溶 剂。 得到粘稠状液体共 21.5 g, 直接用于下一步反应。 将达沙替尼 253 mg, 碳酸钾 128 mg加入到盛有 20 mL乙腈的 100 mL三口瓶中, 室 温搅拌 2小时。 将溶有 205 mg mPEG(n=5)OTs的 10 mL乙腈溶液加入到上述反应瓶中, 回流反应过夜。 TLC 监测反应完全。 柱分离得到白色固体 205 mg, 收率为 56.8%。 m/z [MH]+722。 'H-NMR (DMSO-d6): 2.24(s, 3H), 2.43(s, 3H), 2.5 l(m, 8H), 3.22(s, 3H), 3.61 (m, 20H), 6.05(s, 1H), 7.27(m, 2H), 7.4 l(m, 1H), 8.22(s, 1H), 9.88(s, 1H), 1 1.48(s, 1H)。 实施例 6 双端六甘醇-达沙替尼 (DSTN-62 ) 的合成
Figure imgf000012_0001
500 mL三口瓶中加入 19.1 g对甲苯磺酰氯, 40 mL吡啶, 冷却至 0°C。 将 14.1 g HO-PEG(n=6)-OH与 20mL吡啶混匀, 滴加到三口瓶中, 控制温度为 0-10°C。继续在此温 度下搅拌反应两小时。 TLC监测反应完全。向反应液中加入 300 mL冷水及 60 mL浓盐酸, 缓慢搅拌半小时, 将反应液转移入 1000 mL分液漏斗中, 加入乙酸乙酯萃取两次 (300 mL+200mL) 。 有机层合并, 用水洗至中性, 无水硫酸钠干燥两小时。 旋转蒸发仪蒸出溶 剂。 得到粘稠状液体共 28.7 g, 直接用于下一步反应。 将达沙替尼 506 mg溶于 6 ml Ν,Ν-二甲基甲酰胺中, 加入 160 mg NaH, 室温搅拌 1 小时。 加入 302mgTsO-PEG(n=6)-OTs, 室温反应 20 h。 TLC监测反应完全。 柱分离得到 白色固体 316 mg,收率为 51.8%。 m/z [MH]+1221。 1H-NMR (DMSO-d6): 2.19(s, 6H), 2.28(s, 6H), 2.49(m, 8H), 3.61(m, 40H), 6.04(s, 2H), 7.20(m, 4H), 7.4 l(m, 2H), 8.18(s, 2H), 9.87(s, 2H), 11.46(s, 2H)。 (DZA-01) 的合成
Figure imgf000012_0002
将九乙二醇单甲醚(4.28 g, lOmmol)溶于二氯甲垸 50mL中,加入三乙胺(4.16 mL, lOmmol) , 递加甲磺酰氯 (0.9mL, 11 mmol) , 氮气保护下室温反应 16小时。 加入 1.2 毫升甲醇搅拌 15分钟, 过滤除去固体后浓缩得到产品, 直接用于下一步反应。 将上步所得产品和四丁基溴化铵 6.80 g溶于乙腈 50 mL中, 氮气保护下 50°C搅拌反 应 16小时。 蒸出溶剂, 加入乙酸乙酯和水进行萃取, 无水硫酸钠干燥, 浓缩, 柱分离得 到产品 3.38 g。 收率 68%。 将多佐胺(324 mg, 1 mmol)溶于 2 mL干燥 DMF中,加入 60%NaH(40 mg, 1 mmol), 搅拌反应 15分钟后, 加入上述中间体 (491 mg, 1 mmol) , 氮气保护下室温反应过夜。 将上述反应液中加入水猝灭反应, 用乙酸乙酯萃取三次, 有机相用无水硫酸钠干燥, 浓缩 液进行柱分离得到产品 352 mg, 收率 48%。 m/z [MH]+735 <
Figure imgf000013_0001
合成方法参见实施例 6。 m/z [MH]+895。
实施例 9 双端取代的十二乙二醇-多佐胺 (DZA-03) 的合成
用 H(OCH2CH2)I 2-OH代替六乙二醇, 合成方法参见实施例 6。 m/z [MH]+1 159。
实施例 10 三分支的乙二醇-多佐胺结合物 (DZA-04) 的合成
三分支乙二醇 (H ) 的合成: 参考 US2006/0047167。
Figure imgf000013_0002
实施例 11 三分支的乙二醇-多佐胺结合物 (DZA-05) 的合成
Figure imgf000013_0003
化合物 L的合成: 参考文献: J Org. C/ze . 2006, 71 , 9884-9886. 合成方法参见实施例 6。 m/z [ΜΗ]+1818 ο
实施例 12 四分支乙二醇与多佐胺结合物 (DZA-06) 的合成
四分支乙二醇的合成: 参考 Bulletin of Academy of Sciences of the USSR, Division of Chemical Science (English Translation); vol. 38; nb. 10; (1989); p. 2207。
Figure imgf000014_0001
合成方法参见实施例 6。 m/z [MH]+1538 o
实施例 13 四分支乙二醇与多佐胺结合物 (DZA-07) 的合成
化合物 R 的合成: 参考文献: J Org. C/?e . 2006, 71 , 9884-9886.
Figure imgf000014_0002
合成方法参见实施例 6。 m/z [MH]+2490。 实施例 14 达沙替尼系列化合物对细胞增值的细胞增殖的抑制作用及 IC50测定 研究目的
检测三种待测药物对肿瘤细胞 K562、 KU812、 SUP-B15和 PC-3的增殖作用, 确定其 50%抑制浓度 (IC50 ) 。 研究方案
完全培养基下培养细胞, 待细胞贴壁, 每种肿瘤细胞系中加入不同浓度的药物处理, 并设定一个阳性对照、 一个空白对照和一个溶媒对照。 孵育 72小时后用 CTG方法检
IC50 ( μΜ) 结果
Figure imgf000015_0001
实施例 15 聚乙二醇修饰的系列化合物跨膜转运作用
Caco-2是人结肠癌上皮细胞,可自行分化生长成结构和功能类似于小肠的上皮细胞单 层, 并表达有主动转运体和部分代谢酶, 是体外透膜性评价的良好模型。 按照 Caco-2细 胞的标准培养程序在 Transwell培养插件上制备细胞单层, 选择跨膜电阻大于 300 Ω ·αη2 的培养孔进行跨膜实验, 并平行选用阳性质控药物阿替洛尔 (难透膜)和甲基睾酮(易透 膜)对实验体系进行必要的质量控制。 1. 单向转运实验
在培养插件上池各孔分别加入 400 阳性质控药 (阿替洛尔或甲基睾酮) 或待测药 物, 下池加入 500 经 37°C预孵的 Hank's液, 在 C02培养箱中孵育 90 min, 收集下池溶 液, 经定量处理并测定后计算其表观渗透系数 (Papp) :
Papp=(dQ/dt)/(A-C0)
其中, dQ为受药池累计渗透量, 单位 μιηοΐ; dt为孵育时间, 单位 min; A为扩散面 积, 单位 cm2; Co为给药池初始给药浓度, 单位 μιηοΗ/1 ; Papp单位 cm/s。
Caco-2细胞跨膜转运通透性的通用评价标准为: Papp> 100 X 10—0为易透膜化合物; 100 X 10"6> Papp > 10 X 10·6为中等易透膜化合物; Papp < 10 X 10·6为难透膜化合物。
2. 双向转运实验
双向转运的评价目的是初歩考察待测物的跨膜转运是否存在外排转运体介导的主动 转运过程。于培养插件的上池或下池各孔中分别加入阳性质控药地高辛及待测药物, 对侧 池加入经 37'C预孵的 Hank's液, 在 C02培养箱中孵育 90 min, 收集对侧池溶液, 经定量 处理并测定后, 按上述公式计算其双向表观渗透系数(PappA-B和 PappB-A) 以及二者比 值, 当比值 >2时提示化合物的跨膜转运可能涉及外排转运体(如 P-gp、 MRP2)介导的主 动转运。 跨膜转运实验结果如下:
Figure imgf000016_0001
实施例 16 血脑屏障透过率
采用大鼠模型以匀速推注的方式使血浆中的药物达到稳态,考察稳态时血浆中药物浓 度与脑组织中药物浓度之比值 (Kp值) , 以此表示药物在脑组织中的分布能力。 其特点 是数据可靠、 直接提供化合物的血 /脑分布比值、 且节省动物和药量。 舒马曲坦系列:
研究结果显示, 三个化合物的血脑屏障透过率均低于舒马曲坦, 其中 SMQT-01化合 物的血脑屏障透过率为舒马曲坦的 1/50, SMQT-02化合物的血脑屏障透过率为舒马曲坦 的 1/37, SMQT-03化合物的血脑屏障透过率为舒马曲坦的 1/13。 达沙替尼系列- 研究结果显示, 三个化合物的血脑屏障透过率均低于达沙替尼, 其中 DSTN-42化合 物的血脑屏障透过率为达沙替尼的 1/18,DSTN-51化合物的血脑屏障透过率为达沙替尼的 1/23, DSTN-62化合物的血脑屏障透过率为达沙替尼的 1/33。 多佐胺系列:
研究结果显示, 七个化合物的血脑屏障透过率均低于多佐胺, 其中 DZA-01化合物的 血脑屏障透过率为多佐胺的 1/55, DZA-02化合物的血脑屏障透过率为多佐胺的 1/34, DZA-03化合物的血脑屏障透过率为多佐胺的 1/65, DZA-04化合物的血脑屏障透过率为 多佐胺的 1/12, DZA-05化合物的血脑屏障透过率为多佐胺的 1/28, DZA-06化合物的血 脑屏障透过率为多佐胺的 1/8。 DZA-07化合物的血脑屏障透过率为多佐胺的 1/27。 实施例 17 聚乙二醇-舒马曲坦结合物绝对生物利用度实验
动物: 雄性 SD大鼠
实验分组: 静注和口服组, 每组 5只大鼠
剂量: 由预实验确定
给药方式: 尾静脉注射, 灌胃
采血点: 由预实验确定
数据处理: 应用梯形法计算静注和口服的曲线下面积, 由下式计算口服生物利用度:
A UCn n x Dose, v
F = p— ― X 100%
AUC, V x Dose 研究结果显示: SMQT-01化合物的绝对生物利用度为 17%, SMQT-02化合物的绝对 生物利用度为 23%, SMQT-03化合物的绝对生物利用度为 25%。

Claims

权利要求
1、 一种如通式 (I) 的药物 -聚乙二醇-药物结合物, 所述结合物通过将低分子量聚乙 醇与两个药物分子连接形成,
TA-X-PEG-X'-TA'
( I )
其中- 基,
Figure imgf000018_0001
其中, n是 0-25的整数;
X, X'为连接基团, 可以相同或不同, 选自由:
-(CH2)i- ; -(CH2)i-NH-; -(CH2)i-0-; -(CH2)i-S-;
-(CH2)i-
Figure imgf000018_0002
i为 0-10的整数;
TA、 TA'是目标化合物, 可以相同或不同, 选自由舒马曲坦、 多佐胺、 伊诺替康、 喜 树碱、 达沙替尼、 紫杉醇、 多西紫杉醇、 环维黄杨星 D、 己烯雌酚、 雌二醇、 哌唑嗪、 特 拉唑嗪、 甲氧氯普胺、 熊去氧胆酸、 雷帕霉素、 东莨菪碱、 普鲁卡因等结构中含有羟基、 氨基、 磺酰胺基、 酰胺或巯基的小分子药物组成的组。
2、 如权利要求 1所述的结合物, 其中 n为 0-10的整数。
3、 如权利要求 1所述的结合物, 其中 i=2, X与 X'相同, 均为 -(CH2CH2)0-。
4、如权利要求 1所述的结合物, 其中 TA与 TA,相同, 选自由舒马曲坦、 多佐胺和达 沙替尼组成的组。
5、 一种如通式 (II) 的聚乙二醇- (药物 )3结合物, 所述结合物通过将低分子量聚乙二 醇与三个药物分子连接形成,
Figure imgf000018_0003
II 其中, a、 b、 c可以相同或不同, 为 0-20的整数;
X为连接基团, 选自由:
-(CH2)i-; -(CH2)i-NH-; -(CH2)i-0-; -(CH2)i-S-;
-(CH2)i-C-; -(CH2)i-C-0-; -(CH2)i-0-C-0-;-(CH2)i-C-NH-;-(CH2)i-0-C-NH-;组成的组; i为 0-10的整数;
TA、 TA\ TA"是目标化合物, 可以相同或不同, 选自由舒马曲坦、 多佐胺、 伊诺替 康、 喜树碱、 达沙替尼、 紫杉醇、 多西紫杉醇、 环维黄杨星 D、 己烯雌酚、 雌二醇、 哌唑 嗪、 特拉唑嗪、 甲氧氯普胺、 熊去氧胆酸、 雷帕霉素、 东莨菪碱、 普鲁卡因等结构中含有 羟基、 氨基、 磺酰胺基、 酰胺或巯基的小分子药物组成的组。
6、 如权利要求 5所述的结合物, 其中 a、 b、 c相同, 为 0-10的整数。
' 7、 如权利要求 5所述的结合物, 其中 X为 -(CH2CH2)0-。
8、 如权利要求 5所述的结合物, 其中 TA、 TA'、 TA"均为多佐胺。
9、 一种如通式(III) 的聚乙二醇- (药物 )4结合物, 所述结合物通过将低分子量聚乙二 醇与四个药物分子连
Figure imgf000019_0001
其中- a'、 b'、 c'、 d'可以相同或不同, 为 0-20的整数;
X为连接基团, 选自由: -(CH2)i- ; -(CH2)i-NH-; -(CH2)i-0-; -(CH2)i-S-;
-(CH2)i-
Figure imgf000020_0001
组成的组; i为 0-10的整数;
TA、 TA,、 TA,'、 ΤΑ'"是目标化合物, 可以相同或不同, 选自由舒马曲坦, 多佐胺, 伊诺替康、 喜树碱、达沙替尼、 紫杉醇、 多西紫杉醇、 环维黄杨星 D、 己烯雌酚、 雌二醇、 哌唑嗪、 特拉唑嗪、 甲氧氯普胺、 熊去氧胆酸、 雷帕霉素、 东莨菪碱、 普鲁卡因等结构中 含有羟基、 氨基、 磺酰胺基、 酰胺或巯基的小分子药物组成的组。
10、 如权利要求 9所述的结合物, 其中 a'、 b'、 c\ d'相同, 为 0-10的整数。
11、 如权利要求 9所述的结合物, 其中 X为 -(CH2CH2)0-。
12、 如权利要求 9所述的结合物, 其中 ΤΑ、 ΤΑ'、 ΤΑ"、 ΤΑ'"均为多佐胺。
13、 包含如权利要求 1-12之任一项所述的结合物以及药学上可接受的载体或赋形剂 的药物组合物。
14、 包含如权利要求 1-12之任一项所述的结合物或其药学上可接受的盐的药物组合 物, 其中所述可接受的盐选自由盐酸盐、氢溴酸盐、硫酸盐、硝酸盐、磷酸盐、枸橼酸盐、 酒石酸盐、 富马酸盐、 马来酸盐、 乳酸盐、 苯磺酸盐、 泛酸盐、 抗坏血酸盐或其组合组成 的组。
15、 如权利要求 13和 14所述的药物组合物, 其中所述药物组合物为片剂、 栓剂、 丸 剂、 软和硬明胶胶囊剂、 散剂、 溶液剂、 混悬剂或气雾剂的剂型。 、
16、 如权利要求 1-12之任一项所述的结合物在制备药物中的应用。
PCT/CN2014/000550 2013-05-31 2014-06-03 具有提高的药物生物活性的低分子量聚乙二醇药物结合物 WO2014190763A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP14804880.4A EP3006050B1 (en) 2013-05-31 2014-06-03 Low molecular weight polyethylene glycol drug conjugates having improved drug biological activity
US14/954,785 US9789198B2 (en) 2013-05-31 2015-11-30 Low molecular weight polyethylene glycol drug conjugates having improved drug biological activity
US15/700,065 US10052392B2 (en) 2013-05-31 2017-09-08 Low molecular weight polyethylene glycol drug conjugates having improved drug biological activity
US15/700,063 US10052391B2 (en) 2013-05-31 2017-09-08 Low molecular weight polyethylene glycol drug conjugates having improved drug biological activity
US15/700,057 US10034948B2 (en) 2013-05-31 2017-09-08 Low molecular weight polyethylene glycol drug conjugates having improved drug biological activity

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310215297.9A CN104208715B (zh) 2013-05-31 2013-05-31 具有提高的药物生物活性的低分子量聚乙二醇药物结合物
CN201310215297.9 2013-05-31

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/954,785 Continuation US9789198B2 (en) 2013-05-31 2015-11-30 Low molecular weight polyethylene glycol drug conjugates having improved drug biological activity

Publications (1)

Publication Number Publication Date
WO2014190763A1 true WO2014190763A1 (zh) 2014-12-04

Family

ID=51987951

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/000550 WO2014190763A1 (zh) 2013-05-31 2014-06-03 具有提高的药物生物活性的低分子量聚乙二醇药物结合物

Country Status (3)

Country Link
EP (1) EP3006050B1 (zh)
CN (1) CN104208715B (zh)
WO (1) WO2014190763A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016100392A1 (en) 2014-12-15 2016-06-23 The Johns Hopkins University Sunitinib formulations and methods for use thereof in treatment of ocular disorders
CN106310289B (zh) * 2015-06-24 2020-10-13 天津键凯科技有限公司 一种聚乙二醇和麻醉药的结合物及其制备方法
JP2018536017A (ja) 2015-09-22 2018-12-06 グレイバグ ビジョン インコーポレイテッド 眼障害の治療のための化合物及び組成物
CA3004886A1 (en) 2015-11-12 2017-05-18 Graybug Vision, Inc. Aggregating microparticles for medical therapy
CN107019803B (zh) * 2016-01-29 2020-09-15 北京键凯科技股份有限公司 具有低成瘾作用的聚乙二醇化阿片样物质
AU2018240462C1 (en) 2017-03-23 2022-12-08 Graybug Vision, Inc. Drugs and compositions for the treatment of ocular disorders
US11160870B2 (en) 2017-05-10 2021-11-02 Graybug Vision, Inc. Extended release microparticles and suspensions thereof for medical therapy
CN108641075B (zh) * 2018-03-05 2019-12-06 江苏千之康生物医药科技有限公司 一类雷帕霉素及其衍生物的双短链聚乙二醇前药及其应用

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001062299A2 (en) * 2000-02-28 2001-08-30 Shearwater Corporation Water-soluble polymer conjugates of artelinic acid
US20050136031A1 (en) 2003-12-16 2005-06-23 Bentley Michael D. Chemically modified small molecules
US20060047167A1 (en) 2004-09-02 2006-03-02 Andreas Hirsch Method of synthesis of water soluble fullerene polyacids using a malonate reactant
WO2009132153A2 (en) * 2008-04-22 2009-10-29 Angiotech Pharmaceuticals, Inc. Biocompatible crosslinked hydrogels, drug-loaded hydrogels and methods of using the same
CN101583380A (zh) * 2006-11-30 2009-11-18 尼克塔治疗亚拉巴马公司 用于制备聚合物轭合物的方法
CN102108119A (zh) * 2009-12-25 2011-06-29 天津键凯科技有限公司 多臂聚乙二醇衍生物及其与药物的结合物和凝胶
US20120071492A1 (en) * 2009-04-17 2012-03-22 Nektar Therapeutics Oligomer-Protein Tyrosine Kinase Inhibitor Conjugates
CN103127520A (zh) * 2011-12-01 2013-06-05 天津键凯科技有限公司 聚乙二醇与坦索罗辛的结合物及其药物组合物
CN103289075A (zh) * 2012-02-22 2013-09-11 天津键凯科技有限公司 聚乙二醇与纳洛酮的结合物及其药物组合物和应用

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6011042A (en) * 1997-10-10 2000-01-04 Enzon, Inc. Acyl polymeric derivatives of aromatic hydroxyl-containing compounds
KR20090040265A (ko) * 2006-05-24 2009-04-23 닥터 레디스 레보러터리즈 리미티드 5(s)-(2'-히드록시에톡시)-20(s)-캄프토테신의 결정질 형태
US8026285B2 (en) * 2007-09-04 2011-09-27 Bezwada Biomedical, Llc Control release of biologically active compounds from multi-armed oligomers
WO2009054916A2 (en) * 2007-10-19 2009-04-30 Nektar Therapeutics Al, Corporation Oligomer conjugates of lidocaine and its derivatives

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001062299A2 (en) * 2000-02-28 2001-08-30 Shearwater Corporation Water-soluble polymer conjugates of artelinic acid
US20050136031A1 (en) 2003-12-16 2005-06-23 Bentley Michael D. Chemically modified small molecules
CN1925875A (zh) * 2003-12-16 2007-03-07 尼克塔治疗亚拉巴马公司 化学改性的小分子
US20060047167A1 (en) 2004-09-02 2006-03-02 Andreas Hirsch Method of synthesis of water soluble fullerene polyacids using a malonate reactant
CN101583380A (zh) * 2006-11-30 2009-11-18 尼克塔治疗亚拉巴马公司 用于制备聚合物轭合物的方法
WO2009132153A2 (en) * 2008-04-22 2009-10-29 Angiotech Pharmaceuticals, Inc. Biocompatible crosslinked hydrogels, drug-loaded hydrogels and methods of using the same
US20120071492A1 (en) * 2009-04-17 2012-03-22 Nektar Therapeutics Oligomer-Protein Tyrosine Kinase Inhibitor Conjugates
CN102108119A (zh) * 2009-12-25 2011-06-29 天津键凯科技有限公司 多臂聚乙二醇衍生物及其与药物的结合物和凝胶
CN103127520A (zh) * 2011-12-01 2013-06-05 天津键凯科技有限公司 聚乙二醇与坦索罗辛的结合物及其药物组合物
CN103289075A (zh) * 2012-02-22 2013-09-11 天津键凯科技有限公司 聚乙二醇与纳洛酮的结合物及其药物组合物和应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BULLETIN OF ACADEMY OF SCIENCES OF THE USSR, vol. 38, no. 10, 1989, pages 2207
JORG.CHEM, vol. 71, 2006, pages 9884 - 9886

Also Published As

Publication number Publication date
EP3006050A1 (en) 2016-04-13
CN104208715B (zh) 2016-12-28
EP3006050B1 (en) 2018-02-21
CN104208715A (zh) 2014-12-17
EP3006050A4 (en) 2017-04-05

Similar Documents

Publication Publication Date Title
WO2014190763A1 (zh) 具有提高的药物生物活性的低分子量聚乙二醇药物结合物
US8962647B1 (en) Conjugate of polyethylene gylcol and naloxone and pharmaceutical composition and use thereof
CN107970209B (zh) 亲脂性药剂的改进的胃肠外制剂以及制备和使用其的方法
CN105338983B (zh) 用于治疗病毒感染的大环脱氮-嘌呤酮
US11273142B2 (en) Treatment for tumors driven by metabolic dysfunction
WO2017162108A1 (zh) 一种柱芳烃类复合物、其制备方法、药物组合物和用途
US8722698B2 (en) Berbamine derivatives
US10052391B2 (en) Low molecular weight polyethylene glycol drug conjugates having improved drug biological activity
US8748482B2 (en) Lubiprostone crystal, the use and the method for the preparation thereof
JP2010526091A5 (zh)
WO2013177978A1 (zh) 青蒿琥酯聚乙二醇化衍生物、其药物组合物及其用途
WO2013007172A1 (zh) 一类治疗细胞增殖性疾病的铂化合物、其制备方法和应用
CN113577299B (zh) 一种ros响应性的单抗类药物口服纳米粒及其制备方法
US20100069443A1 (en) Compound with benzamide skeleton having cyclooxygenase-1 (cox-1)-selective inhibitory activity
TW200826944A (en) Pharmacokinetically improved compounds
CN103127520B (zh) 聚乙二醇与坦索罗辛的结合物及其药物组合物
CN114163479A (zh) 一类治疗癌症用的铂类化合物及其制备方法
Lu et al. Oral ionic liquid for transdermal delivery and obesity treatment
CN116162077B (zh) 一种黄芩素衍生物及其制备方法和应用
CN116139164B (zh) 一种源于麻杏石甘汤具有解热抗炎作用的超分子水凝胶
WO2022242488A1 (zh) 聚乙二醇偶联药物及其用途
WO2022087763A1 (zh) 含有索拉非尼游离碱和5-氟尿嘧啶的共晶体、药物组合物及其用途
CN110833558A (zh) 吡唑并嘧啶衍生物在治疗糖尿病肾病的用途
CN117903141A (zh) 一种化合物及其盐、在制备治疗癌症药物和激酶抑制剂中的用途、治疗癌症的药物
JPH0565487B2 (zh)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14804880

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2014804880

Country of ref document: EP