WO2014190696A1 - 主观验光仪和验光方法 - Google Patents

主观验光仪和验光方法 Download PDF

Info

Publication number
WO2014190696A1
WO2014190696A1 PCT/CN2013/087906 CN2013087906W WO2014190696A1 WO 2014190696 A1 WO2014190696 A1 WO 2014190696A1 CN 2013087906 W CN2013087906 W CN 2013087906W WO 2014190696 A1 WO2014190696 A1 WO 2014190696A1
Authority
WO
WIPO (PCT)
Prior art keywords
marker
human eye
degree
imaging lens
lens
Prior art date
Application number
PCT/CN2013/087906
Other languages
English (en)
French (fr)
Inventor
郭曙光
王辉
李鹏
朱晓湘
吴蕾
张德兴
Original Assignee
深圳市莫延影像技术有限公司
深圳市斯尔顿科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市莫延影像技术有限公司, 深圳市斯尔顿科技有限公司 filed Critical 深圳市莫延影像技术有限公司
Priority to US14/366,668 priority Critical patent/US20150245764A1/en
Publication of WO2014190696A1 publication Critical patent/WO2014190696A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/02Subjective types, i.e. testing apparatus requiring the active assistance of the patient
    • A61B3/028Subjective types, i.e. testing apparatus requiring the active assistance of the patient for testing visual acuity; for determination of refraction, e.g. phoropters
    • A61B3/032Devices for presenting test symbols or characters, e.g. test chart projectors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/02Subjective types, i.e. testing apparatus requiring the active assistance of the patient
    • A61B3/028Subjective types, i.e. testing apparatus requiring the active assistance of the patient for testing visual acuity; for determination of refraction, e.g. phoropters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/0075Apparatus for testing the eyes; Instruments for examining the eyes provided with adjusting devices, e.g. operated by control lever

Definitions

  • the invention relates to human eye optometry technology, in particular to a subjective refractometer and a optometry method. Background technique
  • the optometry is the refractive state of the eye. Although these two different tests have certain relevance, the purpose of the two tests is different and cannot be replaced.
  • the traditional eye chart test device for eyesight vision is easy to operate and has been popularized in ordinary families.
  • Traditional optometry equipment is complex in structure, requires doctors to operate, is expensive, is difficult to spread in the home and community, and cannot be used as a tool for self-examination. Summary of the invention
  • the object of the present invention is to overcome the deficiencies of the prior art and to provide a subjective refractometer having a structural unit, an operating cylinder and a low cost.
  • Another object is to provide a convenient and low cost subjective optometry method.
  • the present invention adopts the following technical solutions:
  • a subjective refractometer comprising an imaging lens and a marker, a anterior surface of the cornea of the subject being measured at a focus of the imaging lens, the marker and the human eye being measured along an optical axis of the imaging lens Located on both sides of the imaging lens, and the marker can move back and forth along the optical axis of the imaging lens, the spherical degree D : and the moving position X satisfy the following formula:
  • the moving position X is the object distance of the marker minus the imaging lens focal length f.
  • the spherical mirror degree of the human eye to be tested is the spherical mirror A corresponding to the moving position X where the marker is located when the human eye can see the identifier.
  • a subjective refractometer comprising an imaging lens and a marker, wherein a front surface of the cornea of the human eye is located at a focus of the imaging lens, and an observed plane of the marker is provided with an identifier extending in a plurality of directions, the identifier And the human eye to be tested are respectively located on both sides of the imaging lens along an optical axis of the imaging lens, and the marker is movable back and forth along an optical axis of the imaging lens, the subjective refractometer along the identifier
  • the moving direction of the object is correspondingly marked with a value for recognizing the spherical degree, and the spherical mirror and the moving position X satisfy the following formula:
  • the moving position X is the object distance of the marker minus the focal length f. ;
  • the spherical degree of the human eye is the corresponding spherical degree of the moving position X where the marker is located, and the cylindrical degree of the human eye is 0;
  • the axis position is the clearly marked orientation corresponding to x 3
  • D 3 is the spherical degree
  • the cylinder degree D. - D 3
  • the axis position is the clearly marked orientation corresponding to X.
  • the shape of the identifier on the identifier may be a plurality of divergent lines whose end points are gathered at the same center point and diverged in various directions around. More specifically, the form can be:
  • It has a plurality of divergent lines uniformly diverging from one center point to the periphery, and the plurality of divergent lines are evenly arranged within a 360 degree circumference; or
  • the utility model has a plurality of divergent lines which are uniformly diverged from a central point to the periphery.
  • the plurality of divergent lines are arranged in a 360-degree circumference, and an end of each of the emission lines is marked with an angle, wherein one or more emission lines are included.
  • the reference angle is marked as 0 degree or 180 degrees, and the angle marked by the other emission lines is the angle with respect to the reference emission line.
  • a subjective refractometer including an imaging lens, a cylindrical lens, and a marker, the anterior corneal surface of the human eye to be tested Located at a focus of the imaging lens, the focal length of the cylindrical lens is f 2 , the observed plane of the marker is provided with a marker extending in a plurality of directions, the marker, the cylindrical lens, the imaging lens And the human eye to be tested is sequentially disposed along an optical axis of the imaging lens, and the marker and the cylindrical lens are movable back and forth along an optical axis of the imaging lens, the subjective refractometer being along the identifier
  • the moving path is marked with a value for recognizing the spherical degree, and a value along the moving path of the cylindrical lens is used to identify the cylindrical degree;
  • the spherical mirror A and the moving position X satisfy the following formula:
  • the moving position X is the object distance of the marker relative to the imaging lens minus the focal length f. If the human eye can see all the signs when the cylindrical lens and the marker move together, the spherical degree of the human eye to be tested is the corresponding spherical degree A at the moving position X where the marker is located, and The cylinder of the human eye is 0;
  • the spherical degree and the cylindrical degree D c of the human eye are measured as follows:
  • the spherical degree at a small value and adjust the orientation of the cylindrical lens at the smaller value so that the axis of the cylindrical lens coincides with the direction of the clearly identified, and then moves the cylindrical lens distance y until all The logo is clear; the cylinder degree D of the human eye being tested. And the moving distance y satisfies the following formula:
  • the axial direction of the cylindrical lens is the axial position of the cylindrical mirror.
  • a subjective 3-light method including:
  • the front surface of the cornea of the human eye is located at a focus of the imaging lens, and the marker and the human eye to be tested are respectively located along the optical axis of the imaging lens.
  • the marker and the human eye to be tested are respectively located along the optical axis of the imaging lens.
  • the moving position X is the object distance of the marker minus the focal length f. .
  • a subjective approach to light including:
  • the front surface of the cornea of the human eye is located at a focus of the imaging lens, and the observed plane of the marker has an identifier extending in a plurality of directions, the identifier and The human eye to be tested is located on both sides of the imaging lens along the optical axis of the imaging lens, respectively.
  • the marker is moved back and forth along the optical axis of the imaging lens. If the marker is visible to the human eye at the moving position X, the spherical degree of the human eye is calculated according to the following formula:
  • the moving position X is the object distance of the marker minus the focal length f. ,
  • the following methods measure: The spherical degree of the first moving position X of a marker that can be seen by a human eye in a certain direction is ,
  • the axis position is the clearly marked orientation corresponding to x 3
  • D 3 is the spherical degree
  • the cylinder degree D. - D 3
  • the axis position is the clearly marked orientation corresponding to X.
  • a subjective approach to light including:
  • An imaging lens, a cylindrical lens and a marker are disposed, the front surface of the cornea of the human eye is located at a focus of the imaging lens, the focal length of the cylindrical lens is f 2 , and the observed plane of the marker has an identifier extending in multiple directions
  • the identifier, the cylindrical lens, the imaging lens, and the human eye to be tested are sequentially disposed along an optical axis of the imaging lens;
  • the moving position X is the object distance of the marker relative to the imaging lens minus the focal length f. , and the cylinder of the human eye is 0;
  • the spherical degree and the cylindrical degree D c of the human eye are measured as follows:
  • the spherical angle of the first moving position of a mark that can be seen by a human eye in a direction extending is
  • the spherical degree of the human eye to be tested is taken as the first moving position and the second The spherical degree at a larger value in the moving position, and adjusts the orientation of the cylindrical lens at the larger value such that the axis of the cylindrical lens coincides with the clearly identified orientation, and then moves the cylindrical lens distance y until all
  • the logo is clear;
  • the cylindrical lens is a positive cylindrical lens, the spherical degree of the human eye to be measured is taken as the spherical degree at the smaller of the first moving position and the second moving position, and in the comparison Adjust the orientation of the cylindrical lens at a small value so that the axis of the cylindrical lens coincides with the orientation of the clear mark, and then move the cylindrical lens distance y until all
  • the axial direction of the cylindrical lens is the axial position of the cylindrical mirror.
  • the present invention is similar to the conventional refractive eye-adjusting microscope eyepiece in that: 1. Both have refractive adjustment (or refractive compensation) functions, and are designed to see the markers.
  • the marker is the detail on the imaging surface of the objective lens.
  • the marker is a pattern that can be on a certain plane.
  • the plane to be seen is the imaging surface of the objective lens.
  • the plane is immovable. Therefore, it is necessary to realize the refractive compensation by moving the lens of the eyepiece, and accordingly, the position of the human eye. It is also necessary to follow the movement; the refractometer of the present invention is not, the human eye and the lens are not moving, and the marker needs to be moved.
  • the above plane is the imaging surface of the objective lens, which is a concept, and there is no physical object corresponding thereto; the refractometer of the present invention is not, the marker is a physical object, for example, designed with fine A plane of the scribed radial line.
  • the eyepiece has only the requirement of refractive compensation, and there is no need to indicate the degree of refractive compensation. Therefore, there is no requirement for the distance between the human eye and the lens, and the eye is generally close to the lens as much as possible; For optometry, and in order to achieve a linear scale of spherical reflectance (diopter), the design concept of the human eye surface at the lens focus is adopted. 4.
  • the eyepiece has no astigmatism compensation design, and the present invention can further realize the cylindrical mirror (astigmatism) measurement.
  • the subjective refractometer of the invention has a compact structure and low cost compared with the conventional optometry apparatus, and the subjective refractometer and the subjective optometry method of the invention are very convenient to operate, and can be used by ordinary users.
  • the optometry self-optometry is especially suitable for easy optometry in homes, communities and other occasions.
  • FIG. 1 is a schematic structural view of an embodiment of a subjective refractometer according to the present invention
  • FIG. 2 is a schematic structural view of a preferred embodiment of a subjective refractometer according to the present invention
  • FIG. 3a is a schematic view of a marker in an embodiment of the present invention
  • a subjective refractometer includes an imaging lens 103 and a marker 101.
  • the front surface of the cornea of the subject's human eye 104 is located at the focus of the imaging lens 103, and the marker 101 and the subject are tested.
  • the human eye 104 is located on both sides of the imaging lens 103 along the optical axis of the imaging lens 103, respectively, and the marker 101 is disposed to be movable back and forth along the optical axis of the imaging lens 103, the subjective refractometer along the
  • the moving position X of the marker 101 is correspondingly marked with a value (not shown) for recognizing the spherical degree A.
  • a subjective refractometer includes an imaging lens 103, a cylindrical lens 102, and a marker 101.
  • the front surface of the cornea of the subject's human eye 104 is located at the focus of the imaging lens 103.
  • the focal length of the lens 102 is f 2
  • the observed plane of the marker 101 has a plurality of directions a marker (not shown)
  • the marker 101, the cylindrical lens 102, the imaging lens 103, and the human eye to be tested are sequentially disposed along the optical axis of the imaging lens 103, and the marker and the
  • the cylindrical lens 102 is movable back and forth along the optical axis of the imaging lens 103
  • the subjective refractometer is correspondingly marked with a value for identifying the spherical degree A (not shown) along the moving path of the marker 101
  • the value of the subjective optometry may be a pre-calculated value of the spherical or cylindrical degree at the corresponding position, or may be an intermediate value that can be used to calculate the spherical degree or the cylindrical degree.
  • cylindrical lens herein is not limited to being a single cylindrical lens, but may also be a combination of lenses of a plurality of lenses to obtain a cylindrical lens function.
  • a subjective refractometer includes an imaging lens 103, a cylindrical lens 102, a marker 101, a first sleeve 111, a second sleeve 112, and a third sleeve 113, Measuring the human eye 104
  • the anterior surface of the cornea is located at the focus of the imaging lens 103, the focal length of the cylindrical lens 102 is f 2 , and the observed object surface of the marker 101 has an identifier extending in a plurality of directions, the marker 101
  • the cylindrical lens 102, the imaging lens 103 and the human eye 104 to be tested are sequentially disposed along the optical axis of the imaging lens 103, the imaging lens 103 is fixed on the first sleeve 111, and the marker 101 is fixed in the second sleeve.
  • the second sleeve 112 can slide on the first sleeve 111, the second sleeve 112 can be adjusted to change the distance to the imaging lens 103, and the cylindrical lens 102 is fixed to the third sleeve 113, in the second sleeve.
  • the third sleeve 113 slides along the second sleeve 112 on the first sleeve 111, and the third sleeve 113 can slide on the second sleeve 112 and the sleeve shaft can be the rotating shaft.
  • Illumination can be provided from behind the lens barrel, natural light can be used or a light source (not shown) can be placed behind the lens barrel.
  • a value indicating the degree of spherical mirror can be indicated on the first sleeve 111.
  • the second sleeve 112 can be labeled to indicate a value for the number of cylinders.
  • cylindrical lens 102 and the first embodiment of the subjective refractometer of the previous embodiment may also be omitted.
  • the focal length of the imaging lens 103 is f.
  • the human eye of the subject is at the focal length position of the imaging lens 103, and the object distance of the identifier 101 with respect to the imaging lens 103 is f. + x , X is the moving distance of the marker, that is, the marker moves to the position, and the human eye can clearly see the marker.
  • V the image distance
  • the distance of the movement of the marker can be obtained by knowing the distance moved by the marker, and the distance by which the marker moves is linear with the mirror sphericality.
  • the object distance of the marker 101 relative to the cylindrical lens 102 is y (ie, the moving distance of the cylindrical lens relative to the marker 101), and the image distance of the image of the marker 101 is 1 ⁇ 4 , and the object relationship is:
  • the image side of the marker 101 with respect to the cylindrical lens 102 is the object side of the imaging lens 103, and the object side thereof
  • the image distance is v 2 and the object relationship is
  • D 9 is perpendicular to the cylindrical lens axis
  • D is the cylinder degree, that is, the cylinder degree
  • the y-column can also be measured by an embodiment that eliminates the cylindrical lens.
  • the marker 101 may be a picture having stripe lines of different orientations or radiation similar to a conventional astigmatism.
  • radiation marked on the marker, radioactive is taken as an example.
  • the calculated spherical degree is In the case of spherical mirror, D 3 is the cylindrical degree, and the axial position is the orientation of the radiation corresponding to x 3 ; if 13 ⁇ 4 is the spherical degree, then 13 ⁇ 4 - 0 3 is the cylindrical degree, and the axial position is the radiation corresponding to X. Orientation.
  • This embodiment achieves measurement of sphericality and cylindricality without the need for a cylindrical lens.
  • the shape of the identifier on the identifier may be a plurality of divergent lines whose end points are gathered at the same center point and diverged in all directions. More specifically, as shown in FIG.
  • the identifier may be in the form of a plurality of divergent lines that are uniformly diverged from a central point to the periphery, and the plurality of divergent lines are evenly arranged within a 360-degree circumference.
  • one end of each emission line is also marked with an angle, wherein one or more emission lines are used as a reference, having a reference angle, as shown in FIG. 3b.
  • the two emission lines in the horizontal direction are marked as 0 degrees and 180 degrees, respectively, and the angles marked by other emission lines are their angles with respect to the two reference emission lines.
  • the number of the emission lines is 12, and the angle between each adjacent two emission lines is 30 degrees, and the angle marked by the emission line also changes with a gradient of 30 degrees.
  • the advantage of the standard angle is: When the eye astigmatism is examined, the rotating drum of the subjective refractometer is turned. When the eye can see which emission line can be seen clearly, the corresponding angle can be found, which is convenient. Determine the degree of astigmatism.
  • the number of the emission lines of the identifier is not limited, and the angle corresponding thereto may also be various.
  • the angle corresponding thereto may also be various.
  • it may be: 0. , 45,90,135,180, or
  • the marker 101 may be a picture, a stripe line having a different orientation or a radiation similar to a conventional astigmatism table or the like.
  • radiation the marker is marked with a '" symbol, a radiation pattern
  • This embodiment utilizes the cylindrical lens 102, the cylindrical lens 102 and the marker 101 are overlapped and moved back and forth, and there are also two cases:
  • the spherical degree of the subject can be calculated according to the calculation method of the spherical degree above, and It can be seen that there is no astigmatism in the human eye.
  • the subject When moving to a certain two positions, the subject can clearly see the marker "Qin : When one of the vertical lines in the symbol is clear, the two can be calculated according to the calculation method of the spherical degree above. The spherical degree of the sphere. It can be seen that the measured human eye has astigmatism, and then the cylindrical degree measurement can be performed:
  • a negative cylindrical lens adjust to a larger value of X to make the radiation one clearest, take the spherical degree of the position as the spherical degree of the subject, and then adjust the orientation of the cylindrical lens to make the cylindrical lens
  • the axis is in the same direction as the line with the clearest radiation, and then the cylindrical lens is moved until all the radiation is clear, and the distance of the cylindrical lens is y, and the cylindrical degree can be obtained according to the above formula;
  • a positive cylindrical lens adjusts to a value of X to make the radiation one clearest.
  • the spherical degree is taken as the spherical degree of the subject, and then the orientation of the cylindrical lens is adjusted so that the axis of the cylindrical lens is aligned with the line of the line with the clearest radiation, and then the cylindrical lens is moved until all the radiation is clear.
  • the distance moved by the cylindrical lens is y, and the cylindrical mirror degree can be obtained according to the above formula;
  • the axial direction of the cylindrical lens is the axial position of the cylindrical mirror.
  • the design of the cylindrical lens (column degree) of the cylindrical lens is remarkable, that is, the direct labeling of the cylindrical mirror can be realized, and the measurement result can be easily read.
  • the advantage is that the device is more compact and the cost is lower.
  • the marker may be in the form of a marker as shown in Figs. 3a and 3b.
  • the lens 103 is fixed in the first sleeve 111, and the front surface of the cornea of the subject's human eye 104 is located at the focus of the lens 103.
  • the marker 101 can also be a picture, a stripe line of different orientations, or a radiation similar to a conventional astigmatism meter. Radiation is taken as an example in the following description.
  • the marker 101 is secured to the second sleeve 112 and the second sleeve 112 is slidable within the first sleeve 111. Adjusting the second sleeve 112 changes the distance of the marker from the lens.
  • the cylindrical lens is fixed on the third sleeve 113.
  • the third sleeve 113 can slide in the second sleeve 112 and rotate with the sleeve shaft as a rotating shaft. Adjusting the third sleeve 113 can change the orientation of the cylindrical lens and the cylindrical lens. The distance to the marker. When the second sleeve 112 is adjusted, the third sleeve 113 slides along the second sleeve 112 in the first sleeve 111.
  • the human cornea of the subject needs to be in the focus position of the imaging lens 103. At this time, the number of degrees (spherical degree) indicated on the sleeve is linear with the distance moved by the marker 101.
  • the movement of the marker 101 can be achieved by rotating the sleeve on the mirror body. After the subject can clearly see the marker 101, the sleeve is stopped, and the spherical degree indicated on the sleeve is the degree of myopia of the subject.
  • the third sleeve 113 is first adjusted so that the cylindrical lens is attached to the marker, that is, the distance from the cylindrical lens to the marker is zero. At this point, the cylindrical lens does not contribute to the imaging of the marker.
  • the initial distance of the marker to the lens is the focal length f of the lens. .
  • the marker is imaged at infinity, and if the subject is an emmetropic eye, the subject will see clear radiation. That is, when the subject's spherical degree is 0 (normal vision) and the marker is at the focus position of the imaging lens, the subject can clearly see the marker 101 during the radiometric measurement process by adjusting the second sleeve 112.
  • the spherical degree and the cylindrical degree can be obtained by looking at the pre-calculated values.
  • the difference from the embodiment shown in Fig. 2 is that the cylindrical lens 102 and the third sleeve 113 of the subjective refractometer are omitted.
  • the spherical degree and the cylindrical degree can be measured by the method of the first embodiment.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Ophthalmology & Optometry (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Eye Examination Apparatus (AREA)

Abstract

一种主观验光仪及主观验光方法,该主观验光仪包括成像透镜(103)和标识物(101),受测人眼(104)角膜前表面位于所述成像透镜(103)的焦点处,该标识物(101)和受测人眼(104)分别沿所述成像透镜(103)的光轴位于该成像透镜(103)的两侧,且该标识物(101)经设置可沿该成像透镜(103)的光轴前后移动,该主观验光仪沿该标识物(101)的移动路径标记有用于辨识球镜度的值D1,移动位置x为该标识物(101)的物距减去焦距f0,受测人眼(104)能看清楚该标识物(101)时,受测人眼(104)应配眼镜的球镜度为该标识物(101)所在的移动位置x处对应的球镜度D1。与传统方案需要移动目镜镜头和人眼位置来实现屈光补偿不同,该验光仪和验光方法不需要人眼和镜头移动,需要移动的只有标识物,简单方便且成本低廉。

Description

主观验光仪和验光方法
技术领域
本发明涉及人眼验光技术, 特别是涉及一种主观验光仪和验光方法。 背景技术
用视力表查视力,检查的是眼睛的分辨能力。验光检查的是眼睛的屈光状 态。 虽说这两种不同的检查具有一定的关联性, 但两种检查的目的不同, 不能 互相取代。 传统的视力表测试人眼视力的设备筒单, 容易操作, 已经普及到普 通家庭。 而传统的验光设备结构复杂, 需要医生操作, 且价格昂贵, 很难在家 庭和社区普及, 更不能作为自行检查的工具。 发明内容
本发明的目的就是为了克服现有技术的不足,提供一种结构筒单、操作筒 便且成本低的主观验光仪。
另一目的是, 提供一种筒单方便、 低成本的主观验光方法。
为实现上述目的, 本发明采用以下技术方案:
一种主观验光仪, 包括成像透镜和标识物, 受测人眼角膜前表面位于所述 成像透镜的焦点处,所述标识物和和所述受测人眼分别沿所述成像透镜的光轴 位于所述成像透镜的两侧, 且所述标识物可沿所述成像透镜的光轴前后移动, 所述球镜度 D:与移动位置 X满足下式:
Figure imgf000003_0001
所述移动位置 X为所述标识物的物距减去所述成像透镜焦距 f。, 受测人眼的球镜度为受测人眼能看清楚所述标识物时, 所述标识物所在的 移动位置 X处对应的所述球镜度 A。 一种主观验光仪, 包括成像透镜和标识物, 受测人眼角膜前表面位于所述 成像透镜的焦点处, 所述标识物的被观测平面设置有向多个方向延伸的标识, 所述标识物和受测人眼分别沿所述成像透镜的光轴位于所述成像透镜的两侧 , 且所述标识物可沿所述成像透镜的光轴前后移动,所述主观验光仪沿所述标识 物的移动方向对应地标记有用于辨识球镜度的值,球镜度 与移动位置 X满足 下式:
Figure imgf000004_0001
所述移动位置 X为所述标识物的物距减去焦距 f。;
若受测人眼能看清楚全部标识,受测人眼的球镜度为所述标识物所在的移 动位置 X处对应的球镜度1^ , 且受测人眼的柱镜度为 0;
若受测人眼不能看清楚全部标识, 则受测人眼的球镜度和柱镜度 D。按照 以下方式测量:
受测人眼在能看清某一个方向延伸的一个标识的第一个移动位置的球镜 度为: D1 =
Figure imgf000004_0002
受测人眼在能看清与前一个标识相垂直的另一个标识的第二个移动位置
Figure imgf000004_0003
若 A为球镜度, 则柱镜度 D。 = D3 - , 轴位为 x3对应的清晰标识的方位, 若 D3为球镜度, 则柱镜度 D。 = - D3 , 轴位为 X对应的清晰标识的方位。 所述标识物上的标识的形状可以是端点聚集在同一个中心点、并向四周各 个方向发散的多条发散线。 更具体来说, 形式可以为:
其具有从一个中心点向四周均匀发散的多条发散线, 多条发散线在 360 度圆周内均匀布置; 或者
其具有从一个中心点向四周均匀发散的多条发散线, 多条发散线在 360 度圆周内均勾布置,且每条发射线向外发射的一端标有角度, 其中一条或多条 发射线作为基准,标有基准角度如 0度或 180度, 其他发射线所标的角度是其 相对于基准发射线的夹角。
一种主观验光仪, 包括成像透镜、柱透镜和标识物, 受测人眼角膜前表面 位于所述成像透镜的焦点处,柱透镜的焦距为 f2 , 所述标识物的被观测平面设 置有向多个方向延伸的标识物, 所述标识物、 所述柱透镜、 所述成像透镜和受 测人眼依次沿所述成像透镜的光轴安置 ,且所述标识物和所述柱透镜可沿所述 成像透镜的光轴前后移动,所述主观验光仪上沿所述标识物的移动路径标记有 用于辨识球镜度的值, 且沿所述柱透镜的移动路径标记有用于辨识柱镜度的 值;
球镜度 A与移动位置 X满足下式:
/ ½
移动位置 X为所述标识物相对成像透镜的物距减去焦距 f。, 若受测人眼在柱透镜和标识物叠在一起移动时能看清楚全部标识,受测人 眼的球镜度为所述标识物所在的移动位置 X处对应的球镜度 A ,且受测人眼的 柱镜度为 0;
若受测人眼在柱透镜和标识物叠在一起移动时不能看清楚全部标识时,则 受测人眼的球镜度和柱镜度 Dc按照以下方式测量:
受测人眼在能看清某一个方向延伸的一个标识的第一个移动位置的球镜 度为: D1 =
/
受测人眼在能看清与前一个标识相垂直的另一个标识的第二个移动位置 的球镜度为: D3 = X 2 , 如果柱透镜是负柱透镜,受测人眼的球镜度取为在第一个移动位置和第二 个移动位置中的较大值处的球镜度, 并在所述较大值处调节柱透镜的方位, 以 使得柱透镜的轴与清晰标识的方位一致, 然后移动柱透镜距离 y , 直至所有的 标识都清晰; 如果柱透镜是正柱透镜,受测人眼的球镜度取为在第一个移动位置和第二 个移动位置中的较小值处的球镜度, 并在所述较小值处调节柱透镜的方位, 以 使得柱透镜的轴与清晰标识的方位一致, 然后移动柱透镜距离 y , 直至所有的 标识都清晰; 受测人眼的柱镜度 D。与移动距离 y满足下式:
Figure imgf000006_0001
柱透镜的轴向为柱镜度的轴位。
一种主观 3 光方法, 包括:
安置成像透镜、标识物和受测人眼, 受测人眼角膜前表面位于所述成像透 镜的焦点处,所述标识物和受测人眼分别沿所述成像透镜的光轴位于所述成像 透镜的两侧,
沿所述成像透镜的光轴前后移动所述标识物, 若所述标识物在移动位置 X 处受测人眼能看清楚所述标识物, 受测人眼的球镜度按照下式计算: 所述移动位置 X为所述标识物的物距减去焦距 f。。
一种主观险光方法, 包括:
安置成像透镜、标识物和受测人眼, 受测人眼角膜前表面位于所述成像透 镜的焦点处, 所述标识物的被观测平面具有向多个方向延伸的标识, 所述标识 物和受测人眼分别沿所述成像透镜的光轴位于所述成像透镜的两侧,
沿所述成像透镜的光轴前后移动所述标识物, 若所述标识物在移动位置 X 处受测人眼能看清楚全部标识, 受测人眼的球镜度按照下式计算:
Figure imgf000006_0003
所述移动位置 X为所述标识物的物距减去焦距 f。,
以下方式测量: 受测人眼在能看清某一个方向延伸的一个标识的第一个移动位置 X的球 镜度为 = ,
Figure imgf000007_0001
受测人眼在能看清与前一个标识相垂直的另一个标识的第二个移动位置^
Figure imgf000007_0002
若 为球镜度, 则柱镜度 D。 = D3 - , 轴位为 x3对应的清晰标识的方位, 若 D3为球镜度, 则柱镜度 D。 = - D3 , 轴位为 X对应的清晰标识的方位。 一种主观险光方法, 包括:
安置成像透镜、柱透镜和标识物, 受测人眼角膜前表面位于所述成像透镜 的焦点处,柱透镜的焦距为 f2 , 所述标识物的被观测平面具有向多个方向延伸 的标识, 所述标识物、 所述柱透镜、 所述成像透镜和受测人眼依次沿所述成像 透镜的光轴安置;
将所述柱透镜和所述标识物叠在一起沿所述成像透镜的光轴移动,若标识 物在在移动位置 X处受测人眼能看清楚全部标识, 受测人眼的球镜度按照下式
Figure imgf000007_0003
所述移动位置 X为所述标识物相对成像透镜的物距减去焦距 f。, 且受测人眼的柱镜度为 0;
若受测人眼在柱透镜和标识物叠在一起移动时不能看清楚全部标识时,则 受测人眼的球镜度和柱镜度 Dc按照以下方式测量:
受测人眼在能看清某一个方向延伸的一个标识的第一个移动位置的球镜 度为
Figure imgf000007_0004
受测人眼在能看清与前一个标识相垂直的另一个标识的第二个移动位置
Figure imgf000007_0005
如果柱透镜是负柱透镜,受测人眼的球镜度取为在第一个移动位置和第二 个移动位置中的较大值处的球镜度, 并在所述较大值处调节柱透镜的方位, 以 使得柱透镜的轴与清晰标识的方位一致, 然后移动柱透镜距离 y , 直至所有的 标识都清晰; 如果柱透镜是正柱透镜,受测人眼的球镜度取为在第一个移动位置和第二 个移动位置中的较小值处的球镜度, 并在所述较小值处调节柱透镜的方位, 以 使得柱透镜的轴与清晰标识的方位一致, 然后移动柱透镜距离 y , 直至所有的
Figure imgf000008_0001
柱透镜的轴向为柱镜度的轴位。 本发明与传统的带屈光调节的显微镜目镜的相同之处在于: 1、 都具有屈 光调节 (或屈光补偿) 功能, 2、 都是为看清标识物而设计, 对于目镜来说, 标识物即物镜成像面上的细节,对于本发明来说, 标识物为可以是某一平面上 的图样。
本发明与传统的带屈光调节的显微镜目镜的不同之处以及相应的优势在 于:
1、 对于带屈光调节的目镜来说, 需要看清的平面是物镜的成像面, 该平 面是不能动的, 因此, 需要通过移动目镜的镜头来实现屈光补偿, 相应地, 人 目艮位置也要跟随移动; 本发明的验光仪则不然, 人眼和镜头都是不动的, 需要 移动的是标识物。
2、 对于目镜来说, 上述平面是物镜的成像面, 该平面是一个概念, 不存 在一个实物与之对应; 本发明的验光仪则不然, 标识物是一个实物, 例如经过 设计的带有精细刻划的放射状线的一个平面。
3、 目镜只有屈光补偿的需求, 无须标示屈光补偿的度数, 因此, 对于人 眼与镜片之间的距离也没有要求, 一般尽可能地让人眼与镜片靠近; 本发明要 求对人眼进行验光, 并为了实现球镜度(屈光度)的线性标度, 采用人眼表面 位于镜头焦点的设计理念。 4、 目镜没有散光补偿的设计, 本发明则可以进一步实现柱镜度(散光度) 测量。
本发明的主观验光仪相对于传统的验光设备结构筒单,小型化,且成本低, 而且本发明的主观验光仪和主观验光方法操作起来十分筒便, 易于使用,普通 用户均可使用该主观验光仪自行验光,特别适用于家庭、社区等场合的筒易验 光。 附图说明
图 1为本发明主观验光仪一个实施例的结构原理示意图; 图 2为本发明主观验光仪一个优选实施例的结构示意图; 图 3a为本发明一个实施例中的标识物的示意图; 图 3b为本发明另一个实施例中的标识物的示意图。 具体实施方式
以下通过实施例结合附图对本发明进行进一步的详细说明。 参见图 1 , 在一个实施例里, 一种主观验光仪包括成像透镜 103和 标识物 101 , 受测人眼 104角膜前表面位于所述成像透镜 103的焦点处, 所述 标识物 101和受测人眼 104分别沿所述成像透镜 103的光轴位于所述成像透镜 103的两侧, 且所述标识物 101设置可沿所述成像透镜 103的光轴前后移动, 所述主观验光仪沿所述标识物 101的移动位置 X对应地标记有用于辨识球镜度 A的值(未图示)。 应理解, 本文中的成像透镜不限于是单个透镜,也可以是多个透镜的透镜 组合。 如图 1所示, 在另一实施例里, 一种主观验光仪包括成像透镜 103、 柱透 镜 102和标识物 101 , 受测人眼 104角膜前表面位于所述成像透镜 103的焦点 处, 柱透镜 102的焦距为 f2 , 所述标识物 101的被观测平面具有向多个方向延 伸的标识(未图示), 所述标识物 101、 所述柱透镜 102、 所述成像透镜 103 和受测人眼依次沿所述成像透镜 103的光轴安置,且所述标识物和所述柱透镜 102可沿所述成像透镜 103的光轴前后移动,所述主观验光仪沿所述标识物 101 的移动路径对应地标记有用于辨识球镜度 A的值(未图示), 且所述主观验光 所述值可以是预先算好的相应位置上的球镜度或柱镜度的值,也可以是可用于 计算出球镜度或柱镜度的中间值。
应理解, 本文中的柱透镜也不限于是单个柱透镜,也可以是多个透镜的透 镜组合获得柱透镜功能。
如图 2所示, 在又一实施例里, 一种主观验光仪包括成像透镜 103、 柱透 镜 102、 标识物 101、 第一套筒 111、 第二套筒 112和第三套筒 113, 受测人眼 104角膜前表面位于所述成像透镜 103的焦点处, 柱透镜 102的焦距为 f2 , 所 述标识物 101的被观测物面具有向多个方向延伸的标识, 所述标识物 101、 所 述柱透镜 102、 所述成像透镜 103和受测人眼 104依次沿所述成像透镜 103的 光轴安置, 成像透镜 103固定在第一套筒 111上,标识物 101固定在第二套筒 112上, 第二套筒 112可以在第一套筒 111上滑动, 调节第二套筒 112可改变 标识到成像透镜 103的距离,柱透镜 102固定在第三套筒 113,在第二套筒 112 滑动时第三套筒 113随着第二套筒 112—起在第一套筒 111上滑动,且第三套 筒 113可在第二套筒 112上滑动并可以套筒轴为转动轴转动。可以从镜筒后方 提供照明, 可采用自然光或者在镜筒后方设置光源 (未图示)。 第一套筒 111 上可标示表示球镜度度数的值。 第二套筒 112可标示表示柱镜度度数的值。
在另一实施例里,也可以省去前一实施例主观验光仪的柱透镜 102以及第 三套筒 113。
测量原理
测球 :
成像透镜 103的焦距为 f。, 被测者人眼处于成像透镜 103的焦距位置, 标 识物 101相对于成像透镜 103的物距为 f。 + x , X为标识物的移动距离, 即标 识物移动到该位置, 人眼可清晰得看见标识物, 像距为 V , 则根据物像关系式可以得到:
1 | 1 _ 1
f0 + x V f0 相对应的配镜的球镜度 D:
」^ = Di , 将其带入上式
V - f0
Figure imgf000011_0001
即, 通过上式, 知道标识物移动的距离即可求出配镜球镜度 , 且标识物 移动的距离与配镜球镜度成线性关系。
测柱 4½ (通 透镜 ):
对于柱透镜 102, 其焦距为 f2
标识物 101相对于柱透镜 102的物距为 y (即柱透镜相对于标识物 101 的移动距离), 标识物 101的像的像距为 ¼ , 其物像关系式为:
丄+丄_丄
y vi f 2
标识物 101相对于柱透镜 102的像方为成像透镜 103的物方, 则其物方 其像方距离为 v2 , 物像关系式为
1 1 1
+ v2 f0
D9垂直于柱透镜轴方位的球镜度
D,
V2 " f2 结合上述公式, 得到
Figure imgf000012_0001
D为柱镜度度数, 即柱镜度
D = D, - D y+
Figure imgf000012_0002
y- 柱镜度也可以通过省去柱透镜的实施例来进行测量。
实施例一
标识物 101可以是一幅图片,其上有不同方位的条纹线或者类似于传统散 光表的放射线等。 在下文的描述中以放射线(标识物上标有 符号, 放射 线状) 为例。
当标识物移动至某一位置 X , 标识物 " "所有方向的线同时清晰时, 则 此时被测者无散光或者散光很 d、可忽略
Figure imgf000012_0003
当标识物 ,所有方向的线不同时清晰时,则有两个位置使得互相垂直 的两条放射线清晰; 参阅图 1 , 测量时, 标识物 101前后移动, 如果出现两个位置可以清晰的 看见放射线某一方向的线, 且该两个方向的放射线互相垂直, 则 对第一个位置, 算出的球镜度为: D1 :
/ it .
对第二个位置, 算出的球镜度为
Figure imgf000013_0001
若 为球镜度, 则 D3 为柱镜度, 轴位为 x3对应的放射线的方位; 若1¾为球镜度, 则1¾ - 03为柱镜度, 轴位为 X对应的放射线的方位。 该实施例不需要柱透镜即可实现球镜度和柱镜度的测量。 参见图 3a和图 3b, 所述标识物上的标识的形状可以是端点聚集在同一个 中心点、 并向四周各个方向发散的多条发散线。 更具体来说, 如图 3a所示, 所述标识物的形式可以是, 具有从一个中心 点向四周均匀发散的多条发散线, 多条发散线在 360度圆周内均匀布置。 如图 3b所示, 在图 3a所示标识物的基础上,每条发射线向外发射的一端 还标有角度, 其中一条或多条发射线作为基准, 具有基准角度, 如图 3b中处 于水平方向的两条发射线, 分别标为 0度和 180度, 其他发射线所标的角度是 其相对于这两条基准发射线的夹角。
如, 在图 3b所示的标识物中, 发射线的条数是 12条, 则每相邻两发射线的夹 角为 30度, 发射线所标的角度也以 30度为梯度而变化。 标角度的优点在于: 在验人眼散光度的时候, 转动主观验光仪的转筒, 当 眼睛看清能看清楚哪一条发射线的时候, 就可以找到相对应的角度,从而方便 确定散光度数。
标识物的发射线的条数是非限制性的, 与之对应的角度也可以是多种的 比如, 除图 3b所示的发射线角度 0, 30,60,90,120,150,180之外, 还可以是: 0, 45,90,135,180, 或者
0,15,30,45,60,75,90,105,120,135,150,165,180等等。 实施例二
同样, 标识物 101可以是一幅图片, 具有不同方位的条纹线或者类似于传 统散光表的放射线等。 在下文的描述中以放射线(标识物上标有' "符号, 放射线状)为例。 本实施例利用到柱透镜 102, 柱透镜 102和标识物 101重叠 在一起前后移动, 也有两种情况:
当被测者在某一位置 X能够很清晰地看见标识物 "';秦'"符号中的所有线, 则可根据上文中球镜度的计算方法算出被测者的球镜度度数,且可知被测人眼 没有散光。
当移动到某两个位置, 被测者可清晰地看见标识物 "秦: 符号中的相垂直 两条线中的某一条线清晰时,可根据上文中球镜度的计算方法算出这两处的球 镜度度数。 且可知被测人眼具有散光, 接下来可进行柱镜度数测量:
如果采用的是负柱透镜, 调节至 X较大值使放射线某一条最清晰, 将该处 的球镜度度数取为被测者的球镜度,接着调节柱透镜的方位,使柱透镜的轴与 放射线最清晰的那条线的方位一致, 然后移动柱透镜, 直至所有的放射线都清 晰, 柱透镜移动的距离为 y , 根据上述公式即可求出柱镜度数;
如果采用的是正柱透镜, 调节至 X较小值使放射线某一条最清晰, 将该处 的球镜度度数取为被测者的球镜度,接着调节柱透镜的方位,使柱透镜的轴与 放射线最清晰的那条线的方位一致, 然后移动柱透镜, 直至所有的放射线都清 晰, 柱透镜移动的距离为 y , 根据上述公式即可求出柱镜度数;
其中柱透镜的轴向为柱镜度的轴位。
实施例二相比于实施例一, 采用柱透镜测柱镜度(柱镜度)的设计, 显著 的优点在于可以实现柱镜度的直接标注, 便于读取测量结果。
实施例一相比于实施例二, 优势在于设备更筒单, 成本更低。
同样, 在实施例二中, 标识物也可以采用如图 3a和图 3b所示的标识物的 形式。
实施例三
参阅图 2, 所示为一个具体实施例。
透镜 103被固定在第一套筒 111中, 受测人眼 104角膜前表面位于透镜 103的焦点处。 标识物 101同样可以是一幅图片、 不同方位的条纹线、 或者类 似于传统散光表的放射线等。在下文的描述中以放射线为例。标识物 101固定 在第二套筒 112上, 第二套筒 112可以在第一套筒 111内滑动, 调节第二套筒 112可改变标识物到透镜的距离。柱透镜固定在第三套筒 113上,第三套筒 113 可以在第二套筒 112内滑动且以套筒轴为转动轴转动,调节第三套筒 113可改 变柱透镜的方位以及柱透镜到标识物的距离。调节第二套筒 112时, 第三套筒 113随着第二套筒 112—起在第一套筒 111起滑动。
被测者人眼角膜需处于成像透镜 103的焦点位置, 此时,套筒上有标示的 度数(球镜度)与标识物 101移动的距离成线性关系。
当被测者近视或远视时, 可通过旋转镜身上的套筒实现标识物 101的移 动, 直到被测者能够清晰的看见标识物 101 , 则停止旋转套筒, 此时套筒上标 示的球镜度数即为被测者的近视度数。
测量时, 首先调节第三套筒 113, 使得柱透镜与标识物贴在一起, 即柱透 镜到标识物的距离为零。 此时, 柱透镜对标识物的成像没有贡献。 标识物到透 镜的初始距离为透镜的焦距 f。。 此时, 标识物成像在无穷远处, 如果受测者是 正视眼,受测者就会看到清晰的放射线。即, 当被测者球镜度为 0 (正常视力), 标识物处于成像透镜的焦点位置时,被测者即可清晰得看见标识物 101的放射 测量过程中, 通过调节第二套筒 112改变标识物到透镜的距离, 直至放射 线清晰或者放射线其中一个方向清晰。如果第二套筒 112在某一个位置所有方 向的放射线都同等清晰,说明受测者没有散光或者散光很小可以忽略; 如果发 现第二套筒 112在某一个位置只能有一个方向的放射线清晰,则通过调节第二 套筒 112, —定能够找到另一个位置, 在该位置受测者会发现只有与刚才清晰 的放射线相垂直的放射线变得清晰。
通过记录套筒相应的移动位置,可通过查看预先计算好的数值获取球镜度 和柱镜度。
实施例四
与图 2所示的具体实施例不同之处在于, 省去主观验光仪的柱透镜 102 以及第三套筒 113。 球镜度和柱镜度可按实施例一里的方法予以测量。
以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明,不 能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通 技术人员来说,在不脱离本发明构思的前提下,还可以做出若干筒单推演或替 换, 都应当视为属于本发明的保护范围。

Claims

权 利 要 求
1. 一种主观验光仪, 其特征在于,包括至少一个成像透镜和标识物, 受 测人眼角膜前表面位于所述成像透镜的焦点处,所述标识物和所述受测人眼分 别沿所述成像透镜的光轴位于所述成像透镜的两侧,且所述标识物经设置可沿 所述成像透镜的光轴前后移动,所述主观验光仪沿所述标识物的移动路径标记 有用于辨识球镜度的值, 所述球镜度 位置 X满足下式:
Figure imgf000018_0001
所述移动位置 X为所述标识物的物距减去所述成像透镜焦距 f。, 受测人眼的球镜度为受测人眼能看清楚所述标识物时, 所述标识物所在的 移动位置 X处对应的所述球镜度 D,。
2. 一种主观验光仪, 其特征在于,包括成像透镜和标识物, 受测人眼角 膜前表面位于所述成像透镜的焦点处,所述标识物的被观测平面设置有向多个 方向延伸的标识 ,所述标识物和所述受测人眼分别沿所述成像透镜的光轴位于 所述成像透镜的两侧, 且所述标识物经设置可沿所述成像透镜的光轴前后移 动, 所述主观验光仪沿所述标识物的移动路径标记有用于辨识球镜度的值,球 镜度 与移动位置 X满足下式:
Figure imgf000018_0002
所述移动位置 X为所述标识物的物距减去焦距 f。; 若受测人眼能看清楚全部标识,受测人眼的球镜度为所述标识物所在的移 动位置 X处对应的球镜度1^ , 且受测人眼的柱镜度为 0; 若受测人眼不能看清楚全部标识, 则受测人眼的球镜度和柱镜度 D。按照 以下方式测量: 受测人眼在能看清某一个方向延伸的一个标识的第一个移动位置的球镜 度为: D1 =
Figure imgf000019_0001
受测人眼在能看清与前一个标识相垂直的另一个标识的第二个移动位置 的球镜度为: D3 = X 2 , 若 为球镜度, 则柱镜度 D。 = D3 - , 轴位为 x3对应的清晰标识的方位, 若 D3为球镜度, 则柱镜度 D。 = - D3 , 轴位为 X对应的清晰标识的方位。
3. 如权利要求 2所述的主观验光仪, 其特征在于,还包括第一套筒和第 二套筒, 所述成像透镜固定在所述第一套筒上,所述标识物固定在所述第二套 筒上, 经设置所述第二套筒可以在第一套筒上滑动,调节第二套筒可改变标识 到成像透镜的距离,用于辨识球镜度的值沿套筒轴标示在所述第一套筒或所述 第二套筒上。
4. 如权利要求 2所述的主观验光仪, 其特征在于,所述标识物的形式为: 其具有从一个中心点向四周均匀发散的多条发散线, 多条发散线在 360 度圆周内均匀布置; 或者
其具有从一个中心点向四周均匀发散的多条发散线, 多条发散线在 360 度圆周内均匀布置,且每条发射线向外发射的一端标有角度, 其中一条或多条 发射线为基准,标有基准角度如 0度或 180度,其他发射线所标的角度是其相 对于基准发射线的夹角。
5. 一种主观验光仪, 其特征在于,包括成像透镜、 柱透镜和标识物, 受 测人眼角膜前表面位于所述成像透镜的焦点处,柱透镜的焦距为 f2 , 所述标识 物的被观测平面设置有向多个方向延伸的标识, 所述标识物、 所述柱透镜、 所 述成像透镜和受测人眼依次沿所述成像透镜的光轴安置 ,且所述标识物和所述 柱透镜可沿所述成像透镜的光轴前后移动,所述主观验光仪上沿所述标识物的 移动路径标记有用于辨识球镜度的值,且沿所述柱透镜的移动路径标记有用于 辨识柱镜度的值;
球镜度 D:与移动位置 X满足下式:
Figure imgf000020_0001
移动位置 x为所述标识物对于成像透镜的物距减去焦距 f。 , 若受测人眼在柱透镜和标识物叠在一起移动时能看清楚全部标识,受测人 眼的球镜度为所述标识物所在的移动位置 X处对应的球镜度 A ,且受测人眼的 柱镜度为 0;
若受测人眼在柱透镜和标识物叠在一起移动时不能看清楚全部标识时,则 受测人眼的球镜度和柱镜度 Dc按照以下方式测量:
测出能看清某一个方向延伸的一个标识的第一个移动位置的球镜度为:
Figure imgf000020_0002
测出能看清与前一个标识相垂直的另一个标识的第二个移动位置的球镜
Figure imgf000020_0003
如果柱透镜是负柱透镜,受测人眼的球镜度取为在第一个移动位置和第二 个移动位置中的较大值处的球镜度, 并在所述较大值处调节所述柱透镜的方 位, 以使得所述柱透镜的轴与清晰标识的方位一致, 然后移动所述柱透镜距离 y , 直至所有的标识都清晰; 如果所述柱透镜是正柱透镜,受测人眼的球镜度取为在第一个移动位置和 第二个移动位置中的较小值处的球镜度, 并在所述较小值处调节柱透镜的方 位, 以使得柱透镜的轴与清晰标识的方位一致, 然后移动柱透镜距离 y , 直至 所有的标识都清晰; 受测人眼的柱镜度 D。与移动距离 y满足下式:
Figure imgf000020_0004
柱透镜的轴向为柱镜度的轴位。
6. 如权利要求 5所述的主观验光仪, 其特征在于,还包括第一套筒、 第 二套筒和第三套筒, 所述成像透镜固定在所述第一套筒上,所述标识物固定在 第二套筒上, 经设置所述第二套筒可以在所述第一套筒上滑动,调节所述第二 套筒可改变所述标识物到所述成像透镜的距离,所述柱透镜固定于所述第三套 筒,在所述第二套筒滑动时第三套筒随着第二套筒起在第一套筒上滑动,且第 三套筒可在第二套筒上滑动并可以第二套筒轴为转动轴转动,用于辨识球镜度 的值沿套筒轴向标示在所述第一套筒上,用于辨识柱镜度的值沿套筒轴标示在 所述第二套筒上。
7. 一种主观验光方法, 其特征在于,包括:
安置成像透镜、标识物和受测人眼, 受测人眼角膜前表面位于所述成像透 镜的焦点处,所述标识物和受测人眼分别沿所述成像透镜的光轴位于所述成像 透镜的两侧,
沿所述成像透镜的光轴前后移动所述标识物, 若所述标识物在移动位置 X 处受测人眼能看清楚所述标识物, 受测人眼的球镜度按照下式计算:
Figure imgf000021_0001
移动位置 X为所述标识物的物距减去焦距 f。
8. 如权利要求 7所述的主观验光方法, 其特征在于,所述标识物为平面 上的图样。
9. 一种主观验光方法, 其特征在于,包括:
安置成像透镜、标识物和受测人眼, 受测人眼角膜前表面位于所述成像透 镜的焦点处,所述标识物的被观测平面具有向多个方向延伸的标识, 所述标识 物和受测人眼分别沿所述成像透镜的光轴位于所述成像透镜的两侧,
沿所述成像透镜的光轴前后移动所述标识物, 若所述标识物在移动位置 X 处受测人眼能看清楚全部标识, 受测人眼的球镜度按照下式计算:
Figure imgf000022_0001
所述移动位置 x为所述标识物的物距减去焦距 f。, 且受测人眼的柱镜度为 0; 若受测人眼不能看清楚全部标识, 则受测人眼的球镜度和柱镜度 D。按照 以下方式测量: 受测人眼在能看清某一个方向延伸的一个标识的第一个移动位置 X的球
Figure imgf000022_0002
受测人眼在能看清与前一个标识相垂直的另一个标识的第二个移动位置 x3 的球镜度为 D3 = X 2 ,
/ r。
若1^为球镜度, 则柱镜度 = 03 - 01 , 轴位为 x3对应的清晰标识的方位, 若 D3为球镜度, 则柱镜度 D。 = - D3 , 轴位为 X对应的清晰标识的方位。
10. 一种主观验方法, 其特征在于, 包括:
安置成像透镜、柱透镜和标识物, 受测人眼角膜前表面位于所述成像透镜 的焦点处,柱透镜的焦距为 f2 , 所述标识物的被观测平面具有向多个方向延伸 的标识, 所述标识物、 所述柱透镜、 所述成像透镜和受测人眼依次沿所述成像 透镜的光轴安置;
将所述柱透镜和所述标识物叠在一起沿所述成像透镜的光轴移动,若标识 物在在移动位置 X处受测人眼能看清楚全部标识, 受测人眼的球镜度按照下式 计算:
Figure imgf000022_0003
所述移动位置 X为所述标识物相对成像透镜的物距减去焦距 f。, 且受测人眼的柱镜度为 0; 若受测人眼在柱透镜和标识物叠在一起移动时不能看清楚全部标识时,则 受测人眼的球镜度和柱镜度 Dc按照以下方式测量:
测出能看清某一个方向延伸的一个标识的第一个移动位置的球镜度为
Figure imgf000023_0001
测出能看清与前一个标识相垂直的另一个标识的第二个移动位置的球镜
Figure imgf000023_0002
如果柱透镜是负柱透镜,受测人眼的球镜度取为在第一个移动位置和第二 个移动位置中的较大值处的球镜度, 并在所述较大值处调节柱透镜的方位, 以 使得柱透镜的轴与清晰标识的方位一致, 然后移动柱透镜距离 y , 直至所有的 标识都清晰;
如果柱透镜是正柱透镜,受测人眼的球镜度取为在第一个移动位置和第二 个移动位置中的较小值处的球镜度, 并在所述较小值处调节柱透镜的方位, 以 使得柱透镜的轴与清晰标识的方位一致, 然后移动柱透镜距离 y , 直至所有的
Figure imgf000023_0003
柱透镜的轴向为柱镜度的轴位。
PCT/CN2013/087906 2013-05-29 2013-11-27 主观验光仪和验光方法 WO2014190696A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/366,668 US20150245764A1 (en) 2013-05-29 2013-11-27 Subjective eye refractometer and refractometry method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310207478.7A CN103300813B (zh) 2013-05-29 2013-05-29 主观验光仪
CN201310207478.7 2013-05-29

Publications (1)

Publication Number Publication Date
WO2014190696A1 true WO2014190696A1 (zh) 2014-12-04

Family

ID=49126857

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/087906 WO2014190696A1 (zh) 2013-05-29 2013-11-27 主观验光仪和验光方法

Country Status (3)

Country Link
US (1) US20150245764A1 (zh)
CN (1) CN103300813B (zh)
WO (1) WO2014190696A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103300813B (zh) * 2013-05-29 2014-12-24 深圳市莫廷影像技术有限公司 主观验光仪
CN103654708B (zh) * 2013-11-14 2015-10-21 深圳市斯尔顿科技有限公司 一种手持视力检测装置
CN105662329B (zh) * 2016-02-19 2017-10-13 深圳市斯尔顿科技有限公司 一种主观验光装置及主观验光方法
CN106137116B (zh) * 2016-08-26 2018-05-25 四川远瞻智汇科技有限公司 一种视力检测方法及装置
US11389057B2 (en) * 2017-09-28 2022-07-19 Essilor International Vision measurement device and method of measuring vision using the same
CN110833388A (zh) * 2018-08-15 2020-02-25 碁音数码(厦门)电子科技有限公司 一种主观验光系统
CN111938568B (zh) * 2020-08-07 2024-10-11 温州医科大学附属眼视光医院 一种验光仪用周边屈光检测辅助装置
CN113693549A (zh) * 2021-08-31 2021-11-26 广东艾檬电子科技有限公司 一种视力检测方法、装置及可穿戴设备
CN115590459B (zh) * 2022-10-25 2023-07-07 江苏鸿晨集团有限公司 一种高精度的散光板

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4408846A (en) * 1981-02-02 1983-10-11 Andrew M. Clay Method and apparatus for increasing visual acuity
US5483305A (en) * 1993-01-25 1996-01-09 Canon Kabushiki Kaisha Eye examining apparatus
US5675399A (en) * 1994-04-30 1997-10-07 Canon Kabushiki Kaisha Ophthalmic apparatus
WO2008047385A1 (en) * 2006-10-16 2008-04-24 Karan Aggarwala Apparatus and method for subjective determination of the refractive error of the eye
CN103300813A (zh) * 2013-05-29 2013-09-18 深圳市莫廷影像技术有限公司 主观验光仪和验光方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3009164A1 (de) * 1980-03-10 1981-09-24 Josef Priv.-Doz. Dr. 5000 Köln Reiner Geraet zur subjektiven refraktionsbestimmung
US5455645A (en) * 1994-04-11 1995-10-03 Lacrimedics, Inc. Refractometer for measuring spherical refractive errors
DE10017298A1 (de) * 2000-04-07 2001-10-11 Optik Jaudes Gmbh Vorrichtung und Verfahren zur Bestimmung eines Augenastigmatismus nach der Kreuzzylinder-Methode
US20030053027A1 (en) * 2001-04-16 2003-03-20 Sarver Edwin J. Subjective refraction by meridional power matching
JP4014438B2 (ja) * 2001-06-20 2007-11-28 株式会社ビジョンメガネ 眼鏡・コンタクトレンズ度数決定システムおよびその方法
EP1485749A4 (en) * 2002-03-13 2006-02-08 E Vision Llc ELECTRO-OPTICAL LENS WITH INTEGRATED COMPONENTS
AUPS196802A0 (en) * 2002-04-26 2002-06-06 Queensland University Of Technology Optometry measurement device
US7338165B2 (en) * 2003-06-20 2008-03-04 Visx, Incorporated Systems and methods for prediction of objective visual acuity based on wavefront measurements
JP4699069B2 (ja) * 2005-03-31 2011-06-08 株式会社ニデック 検眼装置
US8226238B2 (en) * 2010-02-10 2012-07-24 Carl Zeiss Vision Inc. Method and apparatus for subjective refraction

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4408846A (en) * 1981-02-02 1983-10-11 Andrew M. Clay Method and apparatus for increasing visual acuity
US5483305A (en) * 1993-01-25 1996-01-09 Canon Kabushiki Kaisha Eye examining apparatus
US5675399A (en) * 1994-04-30 1997-10-07 Canon Kabushiki Kaisha Ophthalmic apparatus
WO2008047385A1 (en) * 2006-10-16 2008-04-24 Karan Aggarwala Apparatus and method for subjective determination of the refractive error of the eye
CN103300813A (zh) * 2013-05-29 2013-09-18 深圳市莫廷影像技术有限公司 主观验光仪和验光方法

Also Published As

Publication number Publication date
CN103300813B (zh) 2014-12-24
US20150245764A1 (en) 2015-09-03
CN103300813A (zh) 2013-09-18

Similar Documents

Publication Publication Date Title
WO2014190696A1 (zh) 主观验光仪和验光方法
Kaschke et al. Optical devices in ophthalmology and optometry: technology, design principles and clinical applications
US20080018855A1 (en) Aberrometer Provided with a Visual Acuity Testing System
US5455645A (en) Refractometer for measuring spherical refractive errors
JP7261240B2 (ja) モバイル通信デバイスベースの角膜形状解析システム
US3664631A (en) Cylindrical lens systems for simultaneous bimeridional measurement in a lens measuring instrument
WO2015070672A1 (zh) 一种手持视力检测装置及视力检测方法
AU2006231140A1 (en) Method and device for determining the eye's rotation center
ES2910013T3 (es) Lente oftálmica y procedimiento para diseñar lentes oftálmicas
ES2767599T3 (es) Reglaje de una presentación de información de orientación en un dispositivo de visualización
JP2008113820A (ja) 眼底実距離取得方法
WO2012130818A1 (en) Apparatus for modelling ocular structures
JPH11249085A (ja) 疑似視覚装置
CN100427024C (zh) 单筒视力测试镜
WO2000032086A1 (fr) Instrument et procede de mesure de l'aberration d'un oeil humain
JP2021167978A (ja) カメラアダプタ
CN103417187A (zh) 数码检影验光系统
Oshima Choices of wide-angle viewing systems for modern vitreoretinal surgery
US1942850A (en) Eye-testing device
US1946925A (en) Clinical optical mensuration instrument
US3947186A (en) Eye-test lens and method
JPS60249931A (ja) 検眼装置
TW202015613A (zh) 眼底相機以及自行拍攝眼底之方法
CN205234446U (zh) 主观验光仪
US1613658A (en) Apparatus for the objective measurement of the refractive value of the principal point of the eye

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14366668

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13886113

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 13886113

Country of ref document: EP

Kind code of ref document: A1