WO2014190648A1 - 显示基板及其制造方法和液晶显示面板 - Google Patents

显示基板及其制造方法和液晶显示面板 Download PDF

Info

Publication number
WO2014190648A1
WO2014190648A1 PCT/CN2013/084458 CN2013084458W WO2014190648A1 WO 2014190648 A1 WO2014190648 A1 WO 2014190648A1 CN 2013084458 W CN2013084458 W CN 2013084458W WO 2014190648 A1 WO2014190648 A1 WO 2014190648A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
alignment
liquid crystal
region
layer
Prior art date
Application number
PCT/CN2013/084458
Other languages
English (en)
French (fr)
Inventor
谢畅
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US14/235,947 priority Critical patent/US9354471B2/en
Publication of WO2014190648A1 publication Critical patent/WO2014190648A1/zh
Priority to US15/138,556 priority patent/US10168576B2/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133553Reflecting elements
    • G02F1/133555Transflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133753Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers with different alignment orientations or pretilt angles on a same surface, e.g. for grey scale or improved viewing angle
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/13378Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation
    • G02F1/133784Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation by rubbing
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/13378Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation
    • G02F1/133788Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation by light irradiation, e.g. linearly polarised light photo-polymerisation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/139Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent
    • G02F1/1393Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent the birefringence of the liquid crystal being electrically controlled, e.g. ECB-, DAP-, HAN-, PI-LC cells
    • G02F1/1395Optically compensated birefringence [OCB]- cells or PI- cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133753Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers with different alignment orientations or pretilt angles on a same surface, e.g. for grey scale or improved viewing angle
    • G02F1/133757Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers with different alignment orientations or pretilt angles on a same surface, e.g. for grey scale or improved viewing angle with different alignment orientations
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133753Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers with different alignment orientations or pretilt angles on a same surface, e.g. for grey scale or improved viewing angle
    • G02F1/133761Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers with different alignment orientations or pretilt angles on a same surface, e.g. for grey scale or improved viewing angle with different pretilt angles
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133773Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers the alignment material or treatment being different for the two opposite substrates
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0439Pixel structures
    • G09G2300/0456Pixel structures with a reflective area and a transmissive area combined in one pixel, such as in transflectance pixels

Definitions

  • Embodiments of the present invention relate to a display substrate, a method of fabricating the same, and a liquid crystal display panel. Background technique
  • the liquid crystal display panel is generally formed by a color film substrate and an array substrate, and a liquid crystal layer is encapsulated in a space between the color filter substrate and the array substrate; since the liquid crystal molecules do not emit light themselves, the display panel requires a light source to display an image, according to the light source.
  • the liquid crystal display panel can be divided into a transmissive liquid crystal display panel, a reflective liquid crystal display panel, and a transflective liquid crystal display panel. Among them, the transflective liquid crystal display panel is also called a transflective liquid crystal display panel.
  • the transflective liquid crystal display panel is mainly formed by a color film substrate and an array substrate, and a liquid crystal cell is formed by filling a liquid crystal between the color filter substrate and the array substrate.
  • the transflective liquid crystal display panel has a plurality of pixel regions, each of the pixel regions including a plurality of sub-pixel regions, each of the sub-pixel regions including a transmissive region and a reflective region.
  • the transflective liquid crystal display panel When the transflective liquid crystal display panel is in the reflective working mode, the light entering the reflective area passes through the reflective area twice, and when the transflective liquid crystal display is in the transmissive working mode, the light entering the transmissive area passes through the transmissive area only once, thus,
  • the light path emitted by the different light sources in the transflective liquid crystal display panel in different working modes is different in the optical path of the reflective region and the transmissive region, so that the color difference between the transmissive region and the reflective region is larger in different working modes, resulting in transflect The images displayed on the LCD display are inconsistent in color.
  • the transflective liquid crystal display panel usually adopts a double-box thick pitch design, that is, the cell thickness of the liquid crystal cell in the reflective area is half of the cell thickness of the liquid crystal cell corresponding to the transmissive area, so as to ensure the passage.
  • the amount of phase retardation of the light of the transmissive region and the reflective region can be matched to ensure a small chromatic aberration and color coordination of the transmissive region and the reflective region.
  • the liquid crystal display panel of such a structure has a difference in the thickness of the liquid crystal cell, which results in a complicated manufacturing process of the liquid crystal display panel, and the uniformity of the cell thickness is difficult to control, and the junction of the reflective region and the transmissive region may be different due to the thickness of the liquid crystal cell.
  • the liquid crystal molecules are deformed, resulting in a low contrast at the junction and poor color saturation.
  • an embodiment of the present invention provides a display substrate for forming a transflective liquid crystal display panel including a transmissive region and a reflective region, the display substrate comprising: an alignment layer, the alignment layer comprising: An orientation structure and a second orientation structure, the first orientation structure is located in the transmission region, the second orientation structure is located in the reflection region, the first orientation structure is an oblique orientation structure, and the second orientation structure is a vertical orientation structure.
  • the display substrate is an array substrate
  • the array substrate includes: a first substrate substrate, an array substrate structure, and the alignment layer, wherein the array substrate structure is formed on the first substrate substrate, The alignment layer is formed over the array substrate structure.
  • the display substrate is a color film substrate
  • the color film substrate comprises: a second substrate substrate, a color film substrate structure and the alignment layer, wherein the color film substrate structure is formed on the first substrate On the substrate, the alignment layer is formed on the color filter substrate structure.
  • Another embodiment of the present invention provides a method of manufacturing a display substrate for forming a transflective liquid crystal display panel including a transmissive region and a reflective region, the method comprising: forming a display substrate structure on a substrate substrate; Forming an alignment layer base layer on the display substrate structure; orienting the alignment layer base layer, forming a first alignment structure in the transmission region and forming a second alignment structure in the reflection region, the first The orientation structure is an oblique orientation structure, and the second orientation structure is a vertical orientation structure.
  • the step of orienting the alignment layer base layer, forming the first orientation structure in the transmission region and forming the second alignment structure in the reflection region comprises: The alignment layer base layer is subjected to a rubbing alignment treatment such that the first alignment structure and the second alignment structure form an oblique alignment structure; and the second alignment structure is subjected to photo-alignment treatment such that the second alignment structure forms a vertical orientation structure.
  • the step of orienting the alignment layer base layer, forming the first orientation structure in the transmission region and forming the second alignment structure in the reflection region comprises: The alignment layer base layer is subjected to photo-alignment treatment such that the first alignment structure and the second alignment structure form an oblique alignment structure; and the second alignment structure is subjected to photo-alignment treatment such that the second alignment structure forms a vertical orientation structure.
  • the forming the display substrate structure on the substrate of the substrate comprises: forming an array substrate structure on the substrate substrate, or forming a color film substrate structure on the village substrate.
  • a further embodiment of the present invention provides a transflective liquid crystal display panel including a transmissive region and a reflective region, the liquid crystal display panel comprising: an array substrate and a color filter substrate, wherein the array substrate and the color filter substrate are oppositely disposed, A liquid crystal layer is filled between the array substrate and the color filter substrate, a first alignment film is formed on the array substrate, and a second alignment film is formed on the color filter substrate, the first alignment film and the The orientation structure of the second alignment film is set such that the amount of phase retardation of the light passing through the transmission region and the reflection region is substantially equal in a state where the display panel is not pressed.
  • an orientation structure of the first alignment film and the second alignment film is set such that an effective refractive index of light rays passing through a liquid crystal layer in the transmission region under a condition that the display panel is not pressed It is substantially equal to twice the effective refractive index of the liquid crystal layer in the reflective region to light.
  • the thickness of the liquid crystal layer of the transmissive region is substantially equal to the thickness of the liquid crystal layer of the reflective region.
  • the first alignment film has an oblique alignment structure in the transmissive region and a vertical alignment structure in the reflective region
  • the second alignment film has a tilt in both the transmissive region and the reflective region Orientation structure.
  • the second alignment film has an oblique alignment structure in the transmissive region and a vertical alignment structure in the reflective region, and the first alignment film has a tilt in both the transmissive region and the reflective region Orientation structure.
  • the liquid crystal layer is a positive liquid crystal layer.
  • FIG. 1 is a partial cross-sectional view showing an example of a structure of a display substrate according to a first embodiment of the present invention
  • FIG. 2 is a partial cross-sectional view showing another example of the structure of a display substrate according to the first embodiment of the present invention
  • FIG. 3 is a schematic view showing a partial cross-sectional structure of a liquid crystal display panel according to a third embodiment of the present invention.
  • Fig. 4 is a view showing the arrangement of liquid crystal molecules in the case where a voltage is applied to the liquid crystal display panel of Fig. 3. detailed description
  • the display substrate and the manufacturing method thereof and the liquid crystal display panel provided by the embodiments of the present invention can achieve the matching of the phase delay amount of the light passing through the transmissive area and the reflective area by designing the orientation structure of the alignment layer of the display substrate, so that it is not necessary Changing the thickness of the liquid crystal display panel, thereby improving the contrast and color saturation at the junction of the reflective area and the transmissive area, thereby improving the display quality of the liquid crystal display panel, and at the same time, the single-thickness structure design can be used for the liquid crystal display.
  • the manufacturing process of the panel First embodiment
  • a first embodiment of the present invention provides a display substrate for forming a transflective liquid crystal display panel, the liquid crystal display panel having a transmissive area and a reflective area, the display substrate comprising: an alignment layer, the orientation layer comprising: a first alignment structure And a second orientation structure, the first orientation structure is located in the transmission region, the second orientation structure is located in the reflection region, the first orientation structure is an oblique orientation structure, and the second orientation structure is a vertical orientation structure.
  • the term “inclined orientation structure” means that liquid crystal molecules adjacent thereto can be formed to be greater than 0 degrees between the plane of the alignment film and no other external force.
  • An orientation structure of less than 90 degrees of pretilt angle (preferably forming a pretilt angle greater than 0 degrees and less than 60 degrees).
  • the term “vertical alignment structure” means an alignment structure capable of forming a pretilt angle of about 90 degrees between a liquid crystal molecule adjacent thereto and a plane of the alignment film without any external force.
  • the term “display substrate” may refer to a substrate for constituting a liquid crystal display panel, such as an array substrate or a color filter substrate. In a liquid crystal display panel using COA (Color Filter on Array) technology, a “display substrate” can also be used to indicate a counter substrate which is opposed to the array color filter substrate to form a liquid crystal cell.
  • the array substrate 10 includes: a first substrate substrate 1.
  • the array substrate structure 2 and the alignment layer 3, the array substrate structure 2 is formed on the first substrate substrate On the board 1, the alignment layer 3 is formed on the array substrate structure 2.
  • the alignment layer 3 includes: a first orientation structure and a second orientation structure, the first orientation structure is located in the transmission area, and the second orientation structure is located in the reflection area, the first orientation The structure is an oblique orientation structure, and the second orientation structure is a vertical orientation structure.
  • the reflective substrate 201 is formed in the array substrate structure 2, and the reflective layer 201 is located in the reflective region.
  • the array substrate structure 2 may further include: a gate line and a data line, the gate line and the data line defining a pixel unit, a thin film transistor (TFT) formed in the pixel unit, and a pixel electrode electrically connected to the thin film transistor, formed in the pixel A passivation layer between the electrode and the thin film transistor.
  • TFT thin film transistor
  • the specific structure of the array substrate structure 2 described in this embodiment is only an example, and other specific structures may be employed in other examples.
  • the gate lines, data lines, pixel units, thin film transistors, pixel electrodes, and passivation layers included in the array substrate described in the present embodiment are not shown in the drawings.
  • the reflective layer 201 may be formed in the reflective region and between the passivation layer and the first substrate substrate 1.
  • an array polarizing layer 4 is further formed on the back surface of the first substrate substrate 1.
  • the phase retardation amount of the light passing through the transmission region and the reflection region can be matched without changing the cell thickness of the liquid crystal display panel, thereby The contrast and color saturation at the junction of the reflective area and the transmissive area are improved, thereby improving the display quality of the liquid crystal display panel.
  • the color filter substrate 20 includes: a second substrate substrate 5, a color filter substrate structure 6 and an alignment layer 3.
  • the color filter substrate structure 6 is formed on the second substrate substrate 5, and the alignment layer 3 is formed on Above the color film substrate structure 6, the alignment layer 3 comprises: a first orientation structure and a second orientation structure, the first orientation structure is located in the transmission region, the second orientation structure is located in the reflection region, and the first orientation structure is an oblique orientation structure, the second The orientation structure is a vertical orientation structure.
  • the color film substrate structure 6 may include: a color matrix pattern, a black matrix pattern, and a common electrode layer, and the common electrode layer is formed above the color matrix pattern and the black matrix pattern.
  • the specific structure of the color filter substrate structure 6 described in this embodiment is only an example, and other specific structures may be employed in other examples. Further, the color matrix pattern, the black matrix pattern, and the common electrode layer included in the color filter substrate described in the embodiment are not shown in the drawings.
  • a color film polarizing layer 8 is formed on the back surface of the second substrate substrate 5.
  • the matching of the phase retardation amount of the light passing through the transmission region and the reflection region can be realized without changing the cell thickness of the liquid crystal display panel, Thereby increasing the contrast and color saturation at the junction of the reflective and transmissive areas And the degree, which further improves the display quality of the liquid crystal display panel.
  • the alignment structure of the alignment layer of the display substrate by designing the alignment structure of the alignment layer of the display substrate, the matching of the phase retardation amount of the light passing through the transmission region and the reflection region is achieved, so that it is not necessary to change the cell thickness of the liquid crystal display panel, thereby The contrast and color saturation at the junction of the reflective area and the transmissive area are improved, thereby improving the display quality of the liquid crystal display panel.
  • a single box-thick structural design can enclose the manufacturing process of the liquid crystal display panel.
  • a second embodiment of the present invention provides a method for manufacturing a display substrate for a transflective liquid crystal display panel, the method comprising:
  • Step 1001 Form a display substrate structure on the substrate of the village.
  • Step 1002 forming an alignment layer base layer on the display substrate structure.
  • Step 1003 performing an alignment treatment on the alignment layer base layer such that a first alignment structure is formed in the first region and a second alignment structure is formed in the second region, the first alignment structure being an oblique alignment structure, and the second orientation
  • the structure is a vertically oriented structure.
  • step 1003 includes:
  • Step 1013 Performing a rubbing orientation treatment on the alignment layer base layer such that the first alignment structure and the second alignment structure form an oblique alignment structure.
  • Step 1023 The second alignment structure is photo-aligned such that the second alignment structure forms a vertical alignment structure.
  • step 1003 includes:
  • Step 1033 The alignment layer base layer is subjected to photo-alignment treatment such that the first alignment structure and the second alignment structure form an oblique alignment structure.
  • Step 1043 An additional photo-alignment treatment is performed on the second alignment structure such that the second alignment structure forms a vertical alignment structure.
  • step 1001 includes:
  • Step 1011 Form an array substrate structure on the substrate of the village.
  • step 1021 forming a color filter substrate structure on the substrate of the village.
  • the manufacturing method provided by the second embodiment of the present invention by designing the manufacturing method of the alignment layer of the display substrate, the matching of the phase retardation amount of the light passing through the transmissive region and the reflective region can be realized, so that the cartridge of the liquid crystal display panel does not need to be changed. Thick, thereby increasing the contrast at the junction of the reflective and transmissive areas And color saturation, thereby improving the display quality of the liquid crystal display panel, and at the same time, the single-cassette structure design can cylindricalize the manufacturing process of the liquid crystal display panel.
  • FIG. 3 is a partial cross-sectional structural diagram of a liquid crystal display panel according to a third embodiment of the present invention.
  • the liquid crystal display panel comprises: an array substrate and a color filter substrate.
  • the array substrate and the color filter substrate are oppositely disposed, and the liquid crystal layer 9 is filled between the array substrate and the color filter substrate.
  • Fig. 3 is the arrangement of liquid crystal molecules in the liquid crystal layer when the liquid crystal display panel is in an unpressurized state.
  • Fig. 4 is a view showing the arrangement of liquid crystal molecules in the liquid crystal layer when a voltage is applied to the liquid crystal display panel of Fig. 3.
  • the array substrate may be the array substrate 10 provided in the first embodiment, and the color filter substrate may be a color film substrate in which the alignment layer is entirely in an oblique alignment structure;
  • the color filter substrate may be the display substrate 20 provided in the first embodiment described above, and the array substrate may be an array substrate in which the alignment layers are entirely in an oblique alignment structure.
  • the color film substrate is the color film substrate according to the first embodiment, and the array substrate is an array substrate in which the alignment layer as a whole has an oblique alignment structure.
  • the color filter substrate comprises: a second substrate substrate 5, a color filter substrate structure 6 and an alignment layer 3, wherein the alignment layer 3 of the color filter substrate comprises: a first orientation structure and a second orientation structure, the first orientation structure is located in transmission a second alignment structure is located in the reflective region, the first alignment structure is an oblique alignment structure, and the second orientation structure is a vertical alignment structure.
  • the color film substrate structure 6 may include: a color matrix pattern, a black matrix pattern, and a common electrode layer, the common electrode layer being formed over the color matrix pattern and the black matrix pattern.
  • the array substrate includes: a first substrate substrate 1, an array substrate structure 2, and an alignment layer 7.
  • the array substrate structure 2 may include: a gate line and a data line, the gate line and the data line defining a pixel unit formed in the pixel unit a thin film transistor (TFT) and a pixel electrode electrically connected to the thin film transistor, a passivation layer formed between the pixel electrode and the thin film transistor, and an internal reflection layer formed between the passivation layer and the first substrate 201.
  • TFT thin film transistor
  • the alignment layer 7 of the array substrate is entirely of an oblique alignment structure.
  • the specific structure of the array substrate structure 2 and the color filter substrate structure 6 described in this embodiment is only an example, and other specific structures may be employed in other examples.
  • the array substrate the array provided by the above-mentioned first embodiment is used, and the orientation layer of the color filter substrate is a tilt-oriented structure as a whole.
  • the specific description of the array substrate can be referred to the first embodiment, and the color film is not described herein again.
  • the substrate comprises: a second substrate substrate, a color film substrate structure and an orientation layer,
  • the alignment layer of the film substrate is an overall oblique alignment structure. The corresponding drawings are not given in this case.
  • the liquid crystal layer 9 is a positive liquid crystal layer.
  • an array polarizing layer 4 may be formed on the back surface of the first substrate substrate 1, and a color film polarizing layer 8 may be formed on the back surface of the second substrate substrate 5.
  • the principle of the embodiment of the present invention will be described in detail with reference to FIGS. 3 and 4.
  • the portion of the alignment layer 7 on the array substrate located in the transmissive region is provided with a certain inclination angle, and the alignment layer 3 on the color filter substrate is located.
  • the portion of the transmissive region is provided with a certain inclination angle, so that the liquid crystal adjacent to the alignment layer 7 on the array substrate and the alignment layer 3 on the color filter substrate in the transmissive region will have a certain deflection, and will drive adjacent liquid crystal generation.
  • the deflection for example, the transmission zone is an optically compensated bending ⁇ 'J (Optically Compensated Birefringence, OCB) mode.
  • the alignment layer 7 on the array substrate is located at a portion of the reflective region with a certain inclination angle, and the portion of the alignment layer 3 on the color filter substrate located at the reflective region is provided with a vertical alignment structure, so The liquid crystal molecules of the direct orientation have substantially no deflection, so that the liquid crystal of the alignment layer 3 on the color film substrate in the reflection region is not deflected, and the liquid crystal of the alignment layer 7 on the array substrate is deflected.
  • the light of the liquid crystal layer per unit thickness passing through the transmissive region When light passes through the transmissive region and the reflective region, the light of the liquid crystal layer per unit thickness passing through the transmissive region generates a large amount of phase retardation with respect to the light of the liquid crystal layer per unit thickness passing through the reflective region. Moreover, by setting different tilt angles of the alignment layers on the color filter substrate of the transmissive region and the reflective region as described above, the effective refractive index of the light passing through the liquid crystal layer pair in the transmissive region is larger than that in the reflective region. The effective refractive index of the light through which the molecules pass through the layer.
  • phase retardation amount the effective refractive index X actual distance
  • ⁇ 3 ⁇ 4 ⁇ ⁇ 3 ⁇ 4 ⁇
  • the liquid crystal layer 9 located in the transmissive region and the reflective region is vertically aligned by the vertical electric field, and the transmissive region and the reflective region are vertically arranged.
  • the vertically aligned liquid crystal layer 9 does not generate a phase retardation amount. Since the polarization direction of the emitted light does not change, the emitted light is completely blocked by the color film polarizing layer 8. The display of the dark state.
  • the phase delay amount of the light passing through the transmission region and the reflection region is matched, thereby There is no need to change the thickness of the liquid crystal display panel, thereby improving the contrast and color saturation of the boundary between the reflective area and the transmissive area, thereby improving the display quality of the liquid crystal display panel.
  • the single-thickness structure design can be used to liquidize the liquid crystal. The manufacturing process of the display panel.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Liquid Crystal (AREA)

Abstract

提供了一种显示基板及制造方法和液晶显示面板。显示基板用于构成包括透射区和反射区的透反式液晶显示面板,显示基板包括取向层(3),取向层(3)包括:第一取向结构和第二取向结构,第一取向结构位于透射区,第二取向结构位于反射区,第一取向结构为倾斜取向结构,第二取向结构为竖直取向结构。通过对显示基板的取向层(3)的取向结构的设计,实现了通过透射区和反射区的光线的相位延迟量的匹配,无需改变液晶显示面板的盒厚,从而提高了反射区和透射区的交界处对比度和彩色饱和度,进而提高了液晶显示面板的显示质量。同时,此种单盒厚的结构设计能简化液晶显示面板的制造工艺。

Description

显示基板及其制造方法和液晶显示面板 技术领域
本发明实施例涉及显示基板及制造方法和液晶显示面板。 背景技术
液晶显示面板一般由彩膜基板和阵列基板对盒形成, 彩膜基板和阵列基 板之间的空间中封装有液晶层; 由于液晶分子自身不发光, 所以显示面板需 要光源以便显示图像, 根据采用光源类型的不同, 液晶显示面板可分为透射 式 ( Transmissive )液晶显示面板、 反射式(Reflective )液晶显示面板和透反 式(Transflective )液晶显示面板。 其中, 透反式液晶显示面板也称半透半反 式液晶显示面板。
透反式液晶显示面板主要由彩膜基板和阵列基板对盒而成, 彩膜基板和 阵列基板之间填充液晶而构成液晶盒。 透反式液晶显示面板具有多个像素区 域, 所述每个像素区域包括多个子像素区域, 每个子像素区域包括透射区和 反射区。 当透反式液晶显示面板处于反射工作模式时, 进入反射区的光线两 次经过反射区, 而当透反式液晶显示器处于透射工作模式时, 进入透射区的 光线只一次经过透射区, 这样, 就造成不同工作模式下透反式液晶显示面板 中不同的光源发出的光线在反射区与透射区的行进的光程不同, 使得不同工 作模式下透射区与反射区的色差较大, 导致透反式液晶显示器中显示的影像 出现色彩不协调的情况。
上述问题产生的原因在于光线在反射区与透射区中的行进的光程不同, 进而使得通过透射区和反射区的光线的相位延迟量不匹配。 为了改善色彩不 协调的现象, 目前, 透反式液晶显示面板通常采用双盒厚间距设计方式, 即 反射区的液晶盒的盒厚为对应透射区的液晶盒的盒厚的一半, 以保证通过透 射区和反射区的光线的相位延迟量能够匹配, 从而保证透射区和反射区的色 差较小以及色彩协调。 但是这种结构的液晶显示面板由于液晶盒存在盒厚差 异, 导致液晶显示面板的制作工艺复杂, 盒厚均匀性不易控制, 而且在反射 区和透射区的交界处可能因液晶盒盒厚的不同而使液晶分子产生畸形, 从而 造成交界处的对比度不高,彩色饱和度不好。 发明内容
为实现上述目的, 本发明的一实施例提供一种显示基板, 用于构成包括 透射区和反射区的透反式液晶显示面板, 该显示基板包括: 取向层, 所述取 向层包括: 第一取向结构和第二取向结构, 所述第一取向结构位于透射区, 所述第二取向结构位于反射区, 所述第一取向结构为倾斜取向结构, 第二取 向结构为竖直取向结构。
可选地, 所述显示基板为阵列基板, 所述阵列基板包括: 第一村底基板、 阵列基板结构和所述取向层,所述阵列基板结构形成于所述第一村底基板上, 所述取向层形成于所述阵列基板结构之上。
可选地, 所述显示基板为彩膜基板, 所述彩膜基板包括: 第二村底基板、 彩膜基板结构和所述取向层,所述彩膜基板结构形成于所述第一村底基板上, 所述取向层形成于所述彩膜基板结构之上。
本发明的另一实施例提供一种显示基板的制造方法, 该显示基板用于构 成包括透射区和反射区的透反式液晶显示面板, 该方法包括: 在村底基板上 形成显示基板结构; 在所述显示基板结构上形成取向层基层; 对所述取向层 基层进行取向处理, 在所述透射区内形成第一取向结构且在所述反射区内形 成第二取向结构, 所述第一取向结构为倾斜取向结构, 第二取向结构为竖直 取向结构。
可选地, 所述对所述取向层基层进行取向处理, 在所述透射区内形成所 述第一取向结构且在所述反射区内形成所述第二取向结构的步骤包括: 对所 述取向层基层进行摩擦取向处理, 使得所述第一取向结构和所述第二取向结 构形成倾斜取向结构; 对所述第二取向结构进行光取向处理, 使得所述第二 取向结构形成竖直取向结构。
可选地, 所述对所述取向层基层进行取向处理, 在所述透射区内形成所 述第一取向结构且在所述反射区内形成所述第二取向结构的步骤包括: 对所 述取向层基层进行光取向处理 , 使得所述第一取向结构和所述第二取向结构 形成倾斜取向结构; 对所述第二取向结构进行光取向处理, 使得所述第二取 向结构形成竖直取向结构。
可选地, 所述在村底基板上形成显示基板结构具体包括: 在村底基板上 形成阵列基板结构, 或者在村底基板上形成彩膜基板结构。 本发明的又一实施例提供一种包括透射区和反射区的透反式液晶显示面 板, 该液晶显示面板包括: 阵列基板和彩膜基板, 所述阵列基板和所述彩膜 基板相对设置, 所述阵列基板和所述彩膜基板之间填充有液晶层, 所述阵列 基板上形成有第一取向膜, 所述彩膜基板上形成有第二取向膜, 所述第一取 向膜和所述第二取向膜的取向结构设置为使得在所述显示面板未施压的状况 下, 通过所述透射区和所述反射区的光线的相位延迟量的基本相等。
可选地, 所述第一取向膜和所述第二取向膜的取向结构设置为使得在所 述显示面板未施压的状况下, 通过所述透射区内的液晶层对光线的有效折射 率基本上等于所述反射区内的液晶层对光线的有效折射率的两倍。
可选地, 所述透射区的液晶层的厚度与所述反射区的液晶层的厚度基本 相等。
可选地, 所述第一取向膜在所述透射区具有倾斜取向结构而在所述反射 区具有竖直取向结构, 所述第二取向膜在所述透射区和所述反射区均具有倾 斜取向结构。
可选地, 所述第二取向膜在所述透射区具有倾斜取向结构而在所述反射 区具有竖直取向结构, 所述第一取向膜在所述透射区和所述反射区均具有倾 斜取向结构。
可选地, 所述液晶层为正性液晶层。 附图说明
为了更清楚地说明本发明实施例的技术方案, 下面将对实施例描述中所 需要使用的附图作筒单地介绍, 显而易见地, 下面描述中的附图仅仅涉及本 发明的一些实施例, 并非对本发明的限制。
图 1为本发明实施例第一实施例提供的显示基板的结构一个示例的局部 截面示意图;
图 2为本发明实施例第一实施例提供的显示基板的结构另一示例的局部 截面示意图;
图 3 为本发明第三实施例提供的液晶显示面板的局部截面结构的示意 图;
图 4为对图 3中液晶显示面板施加电压时其中的液晶分子排布情况的示 意图。 具体实施方式
为使本领域的技术人员更好地理解本发明实施例的技术方案, 下面结合 附图对本发明实施例提供的显示基板、 液晶显示面板及制造方法进行详细描 述。 显然, 所描述的实施例仅仅是本发明一部分实施例, 而不是全部的实施 例。 基于本发明给出的实施例, 本领域普通技术人员在没有做出创造性劳动 前提下所获得的所有其他实施例, 都属于本发明保护的范围。
本发明实施例提供的一种显示基板及制造方法和液晶显示面板, 通过对 显示基板的取向层的取向结构的设计, 可实现通过透射区和反射区的光线的 相位延迟量的匹配, 因此无需改变液晶显示面板的盒厚, 从而提高了反射区 和透射区的交界处对比度和彩色饱和度, 进而提高了液晶显示面板的显示质 量, 同时, 此种单一盒厚的结构设计能筒化液晶显示面板的制造工艺。 第一实施例
本发明的第一实施例提供一种显示基板,用于形成透反式液晶显示面板, 该液晶显示面板具有透射区和反射区, 该显示基板包括: 取向层, 取向层包 括: 第一取向结构和第二取向结构, 第一取向结构位于透射区, 第二取向结 构位于反射区, 第一取向结构为倾斜取向结构, 第二取向结构为竖直取向结 构。
应理解, 在本实施例以及后面要描述的其他实施例中, 术语 "倾斜取向 结构" 是指可实现与其邻接的液晶分子在无其他外力作用下与取向膜所在平 面之间形成大于 0度且小于 90度的预倾角 (优选形成大于 0度且小于 60度 的预倾角 ) 的取向结构。 术语 "竖直取向结构" 是指可实现与其邻接的液晶 分子在无其他外力作用下与取向膜所在平面之间形成约 90度的预倾角的取 向结构。 此外, 术语 "显示基板" 可以是指用于构成液晶显示面板的基板, 例如阵列基板、 彩膜基板。 在采用 COA ( Color Filter on Array )技术的液晶 显示面板中, "显示基板" 也可用于指示与此阵列彩膜基板对置以形成液晶 盒的对向基板。
图 1为本发明的第一实施例提供的显示基板为液晶显示面板的阵列基板 时所具有的局部截面结构的示意图,如图 1所示, 该阵列基板 10包括: 第一 村底基板 1、阵列基板结构 2和取向层 3,阵列基板结构 2形成于第一村底基 板 1上, 取向层 3形成于阵列基板结构 2之上, 取向层 3包括: 第一取向结 构和第二取向结构, 第一取向结构位于透射区, 第二取向结构位于反射区, 第一取向结构为倾斜取向结构, 第二取向结构为竖直取向结构。 其中, 阵列 基板结构 2中形成有反射层 201 , 反射层 201位于反射区。 例如, 阵列基板 结构 2还可包括: 栅线和数据线, 栅线和数据线限定出像素单元, 形成在像 素单元内的薄膜晶体管 (TFT )和与薄膜晶体管电连接的像素电极, 形成在 像素电极和薄膜晶体管之间的钝化层。 本实施例中所描述的阵列基板结构 2 的具体结构仅为一种示例, 在其他示例中还可以采用其它具体结构。 此外, 本实施例中描述的阵列基板中包括的栅线、数据线、像素单元、 薄膜晶体管、 像素电极和钝化层在图示中没有表示出来。 反射层 201可形成在反射区且位 于钝化层与第一村底基板 1之间。
可选择地, 第一村底基板 1的背面还形成有阵列偏光层 4。
在上述示例中, 通过对作为显示基板的阵列基板上的取向层的取向结构 的设计, 无需改变液晶显示面板的盒厚而可实现通过透射区和反射区的光线 的相位延迟量的匹配, 从而提高了反射区和透射区的交界处对比度和彩色饱 和度, 进而提高了液晶显示面板的显示质量。
图 2为本发明第一实施例提供的显示基板的为液晶显示面板的彩膜基板 时所具有的局部截面结构示意图。如图 2所示, 该彩膜基板 20包括: 第二村 底基板 5、彩膜基板结构 6和取向层 3 ,彩膜基板结构 6形成于第二村底基板 5上, 取向层 3形成于彩膜基板结构 6之上, 取向层 3包括: 第一取向结构 和第二取向结构, 第一取向结构位于透射区, 第二取向结构位于反射区, 第 一取向结构为倾斜取向结构, 第二取向结构为竖直取向结构。 其中, 彩膜基 板结构 6可包括: 彩色矩阵图形、 黑矩阵图形和公共电极层, 公共电极层形 成于彩色矩阵图形和黑矩阵图形的上方。 本实施例中所描述的彩膜基板结构 6的具体结构仅为一种示例, 在其他示例中还可以采用其它具体结构。 此外, 本实施例中描述的彩膜基板中包括的彩色矩阵图形、 黑矩阵图形和公共电极 层在图示中没有表示出来。
可选择地, 第二村底基板 5的背面还形成有彩膜偏光层 8。
在上述示例中, 通过对作为显示基板的彩膜基板上的取向层的取向结构 的设计, 无需改变液晶显示面板的盒厚而可实现通过透射区和反射区的光线 的相位延迟量的匹配, 从而提高了反射区和透射区的交界处对比度和彩色饱 和度, 进而提高了液晶显示面板的显示质量。
在本发明第一实施例中, 通过对显示基板的取向层的取向结构的设计, 实现了通过透射区和反射区的光线的相位延迟量的匹配, 因此无需改变液晶 显示面板的盒厚,从而提高了反射区和透射区的交界处对比度和彩色饱和度, 进而提高了液晶显示面板的显示质量。 同时, 此种单一盒厚的结构设计能筒 化液晶显示面板的制造工艺。 第二实施例
本发明第二实施例提供一种用于透反式液晶显示面板的显示基板的制造 方法, 该方法包括:
步骤 1001: 在村底基板上形成显示基板结构。
步骤 1002: 在所述显示基板结构上形成取向层基层。
步骤 1003: 对所述取向层基层进行取向处理, 使得在第一区域中形成第 一取向结构而在第二区域中形成第二取向结构, 所述第一取向结构为倾斜取 向结构, 第二取向结构为竖直取向结构。
可选地, 步骤 1003包括:
步骤 1013: 对取向层基层进行摩擦(Rubbing )取向处理, 使得第一取 向结构和第二取向结构形成倾斜取向结构。
步骤 1023: 对第二取向结构进行光取向处理, 使得第二取向结构形成竖 直取向结构。
可选地, 步骤 1003包括:
步骤 1033: 对取向层基层进行光取向处理, 使得第一取向结构和第二取 向结构形成倾斜取向结构。
步骤 1043: 对第二取向结构进行附加的光取向处理, 使得第二取向结构 形成竖直取向结构。
可选地, 步骤 1001包括:
步骤 1011: 在村底基板上形成阵列基板结构。
或者, 步骤 1021 : 村底基板上形成彩膜基板结构。
本发明第二实施例提供的制造方法中, 通过对显示基板的取向层的制造 方法的设计, 可实现通过透射区和反射区的光线的相位延迟量的匹配, 因此 无需改变液晶显示面板的盒厚, 从而提高了反射区和透射区的交界处对比度 和彩色饱和度, 进而提高了液晶显示面板的显示质量, 同时, 此种单盒厚的 结构设计能筒化液晶显示面板的制造工艺。 第三实施例
图 3为本发明第三实施例提供的液晶显示面板的部分截面结构示意图。 如图 3和图 4所示, 该液晶显示面板包括: 阵列基板和彩膜基板, 阵列基板 和彩膜基板相对设置, 阵列基板和彩膜基板之间填充有液晶层 9。 图 3中还 示出了该液晶显示面板处于未施压状态时液晶层中的液晶分子的排布情况。 图 4为对图 3中的液晶显示面板施加电压时液晶层中的液晶分子的排布情况 的示意图。
在一个示例中, 阵列基板可采用上述第一实施例提供的阵列基板 10, 彩 膜基板可采用其中取向层整体为倾斜取向结构的彩膜基板;
在另一示例中, 彩膜基板可采用上述第一实施例提供的显示基板 20, 阵 列基板可采用其中取向层整体为倾斜取向结构的阵列基板。
下面, 参照图 3对彩膜基板采用上述第一实施例提供的彩膜基板, 阵列 基板为其中取向层整体为倾斜取向结构的阵列基板的情况进行详细描述。 该 彩膜基板包括: 第二村底基板 5、 彩膜基板结构 6和取向层 3 , 其中, 彩膜基 板的取向层 3包括: 第一取向结构和第二取向结构, 第一取向结构位于透射 区, 第二取向结构位于反射区, 第一取向结构为倾斜取向结构, 第二取向结 构为竖直取向结构。 彩膜基板结构 6可包括: 彩色矩阵图形、 黑矩阵图形和 公共电极层, 公共电极层形成于彩色矩阵图形和黑矩阵图形的上方。 该阵列 基板包括: 第一村底基板 1、 阵列基板结构 2和取向层 7, 阵列基板结构 2 可包括: 栅线和数据线, 栅线和数据线限定出像素单元, 形成在像素单元内 的薄膜晶体管 (TFT )和与薄膜晶体管电连接的像素电极, 形成在像素电极 和薄膜晶体管之间的钝化层, 形成在反射区且位于钝化层和第一村底基板之 间的内部反射层 201。 阵列基板的取向层 7整体为倾斜取向结构。 本实施例 中所描述的阵列基板结构 2和彩膜基板结构 6的具体结构仅为一种示例, 在 其他示例中还可以采用其它具体结构。
对于阵列基板采用上述第一实施例提供的阵列, 且彩膜基板的取向层整 体为倾斜取向结构的情况, 其中阵列基板的具体描述可参照第一实施例, 此 处不再赘述, 该彩膜基板包括: 第二村底基板、 彩膜基板结构和取向层, 彩 膜基板的取向层为整体倾斜取向结构。 此种情况没有给出相应的附图。
可选地, 液晶层 9为正性液晶层。
在一个示例中, 第一村底基板 1的背面还可形成有阵列偏光层 4, 第二 村底基板 5的背面还可形成有彩膜偏光层 8。
结合图 3和图 4对本发明实施例的原理进行详细的说明。 如图 3所示, 当该液晶显示面板没有被施加电压时, 在透射区内, 阵列基板上的取向层 7 位于透射区的部分设有一定的倾斜角, 彩膜基板上的取向层 3位于透射区的 部分设有一定的倾斜角, 因此在透射区内靠近阵列基板上的取向层 7和彩膜 基板上的取向层 3的液晶均会产生一定的偏转, 而且会带动相邻的液晶产生 偏转, 例如, 透射区采用光学补偿弯曲排歹 'J ( Optically Compensated Birefringence, 筒称 OCB )模式。 在反射区内, 阵列基板上的取向层 7位于 反射区的部分设有一定的倾斜角, 而彩膜基板上的取向层 3位于反射区的部 分由于设置有竖直取向结构, 故对于同样竖直取向的液晶分子基本无偏转作 用, 因此在反射区中靠近彩膜基板上的取向层 3的液晶不会偏转, 而靠近阵 列基板上的取向层 7的液晶会产生一定的偏转。 当有光线经过透射区和反射 区时, 经过透射区的单位厚度的液晶层的光线相对于经过反射区的单位厚度 的液晶层的光线会产生较大的相位延迟量。 而且, 通过如上所述在透射区与 反射区的彩膜基板上的取向层设定不同的倾斜角, 使得透射区内的液晶层对 的通过其的光线的有效折射率大于反射区内的液晶分子对层通过其的光线的 有效折射率。 例如, 使得透射区中液晶层的有效折射率 Δ η透 ( Δη¾ )为反射 区中液晶层的有效折射率 Δη反 ( A nRe )的 2倍, 即, Δι½ = 2 χ Δη反 ; 而反射 区的光线因为被反射层 201反射的缘故相当于两次经过液晶层 9, 也就是实 际路程 dfi =2 x d , 即反射区的光线的实际路程为透射区的光线的实际路程的 约 2 倍。 由于相位延迟量 (光程差) = 有效折射率 X实际路程, 且 Δ¾ Χ =Δ¾ Χ ,因此使得透射区和反射区的液晶层对于通过其的光线产生 的相位延迟量基本相等, 也就实现了透射区和反射区的相位延迟量的匹配, 并最终达到良好的半透半反的显示效果。
如图 4所示, 当该液晶显示面板被施加电压时, 位于透射区和反射区内 的液晶层 9在竖直电场的作用下, 液晶分子呈竖直排列, 此时透射区和反射 区竖直入射的经过竖直排列的液晶层 9均不会产生相位延迟量, 由于出射光 线的偏振方向没有发生变化, 所以出射光线会被彩膜偏光层 8完全挡住, 实 现暗态的显示。
本发明第三实施例提供的液晶显示面板中, 通过对阵列基板的取向层和 彩膜基板的取向层取向结构的设计, 实现了通过透射区和反射区的光线的相 位延迟量的匹配, 因此无需改变液晶显示面板的盒厚, 从而提高了反射区和 透射区的交界处对比度和彩色饱和度,进而提高了液晶显示面板的显示质量, 同时, 此种单一盒厚的结构设计能筒化液晶显示面板的制造工艺。
虽然上文中已经用一般性说明及具体实施方式, 对本发明作了详尽的描 述, 但在本发明基础上, 可以对之作一些修改或改进, 这对本领域技术人员 而言是显而易见的。 因此, 在不偏离本发明精神的基础上所做的这些修改或 改进, 均属于本发明要求保护的范围。

Claims

权利要求书
1.一种显示基板,用于构成包括透射区和反射区的透反式液晶显示面板, 该显示基板包括取向层, 所述取向层包括: 第一取向结构和第二取向结构, 所述第一取向结构位于透射区, 所述第二取向结构位于反射区, 所述第一取 向结构为倾斜取向结构, 第二取向结构为竖直取向结构。
2.如权利要求 1所述的显示基板, 其中, 所述显示基板为阵列基板, 所 述阵列基板包括: 第一村底基板、 阵列基板结构和所述取向层, 所述阵列基 板结构形成于所述第一村底基板上, 所述取向层形成于所述阵列基板结构之 上。
3.如权利要求 1所述的显示基板, 其中, 所述显示基板为彩膜基板, 所 述彩膜基板包括: 第二村底基板、 彩膜基板结构和所述取向层, 所述彩膜基 板结构形成于所述第一村底基板上, 所述取向层形成于所述彩膜基板结构之 上。
4.一种显示基板的制造方法, 该显示基板用于构成包括透射区和反射区 的透反式液晶显示面板, 该方法包括:
在村底基板上形成显示基板结构;
在所述显示基板结构上形成取向层基层;
对所述取向层基层进行取向处理, 在所述透射区内形成第一取向结构并 在所述反射区内形成第二取向结构, 所述第一取向结构为倾斜取向结构, 第 二取向结构为竖直取向结构。
5.如权利要求 4所述的显示基板的制造方法, 其中, 所述对所述取向层 基层进行取向处理, 在所述透射区内形成所述第一取向结构并在所述反射区 内形成所述第二取向结构包括:
对所述取向层基层进行摩擦取向处理, 使得所述第一取向结构和所述第 二取向结构形成倾斜取向结构;
对所述第二取向结构进行光取向处理 , 使得所述第二取向结构形成竖直 取向结构。
6.如权利要求 4所述的显示基板的制造方法, 其中, 所述对所述取向层 基层进行取向处理, 在所述透射区内形成所述第一取向结构并在所述反射区 内形成所述第二取向结构包括: 对所述取向层基层进行光取向处理, 使得所述第一取向结构和所述第二 取向结构形成倾斜取向结构;
对所述第二取向结构进行光取向处理 , 使得所述第二取向结构形成竖直 取向结构。
7.如权利要求 4所述的显示基板的制造方法, 其中, 所述在村底基板上 形成显示基板结构包括: 在村底基板上形成阵列基板结构;
或在村底基板上形成彩膜基板结构。
8.—种包括透射区和反射区的透反式液晶显示面板, 包括: 第一显示基 板和第二显示基板, 所述第一显示基板和所述第二显示基板相对设置, 所述 第一显示基板和所述第二显示基板之间填充有液晶层;
所述第一显示基板上形成有第一取向膜, 所述第二显示基板上形成有第 二取向膜, 所述第一取向膜和所述第二取向膜的取向结构设置为使得在所述 显示面板未施压的状况下, 通过所述透射区和所述反射区的光线的相位延迟 量匹配。
9.如权利要求 8所述的液晶显示面板, 其中, 所述第一显示基板为阵列 基板, 并且所述第二显示基板为所述彩膜基板。
10.如权利要求 8或 9所述的液晶显示面板, 其中, 所述第一取向膜和所 述第二取向膜的取向结构设置为使得在所述显示面板未施压的状况下, 通过 所述透射区内的液晶层对光线的有效折射率基本上等于所述反射区内的液晶 层对光线的有效折射率的两倍。
11.如权利要求 8至 10中任一项所述的液晶显示面板, 其中, 所述透射 区的液晶层的厚度与所述反射区的液晶层的厚度基本相等。
12.如权利要求 8至 11中任一项所述的液晶显示面板, 其中, 所述第一 取向膜在所述透射区具有倾斜取向结构而在所述反射区具有竖直取向结构, 所述第二取向膜在所述透射区和所述反射区均具有倾斜取向结构。
13.如权利要求 8至 11中任一项所述的液晶显示面板, 其中, 所述第二 取向膜在所述透射区具有倾斜取向结构而在所述反射区具有竖直取向结构, 所述第一取向膜在所述透射区和所述反射区均具有倾斜取向结构。
14.如权利要求 8至 13中任一项所述的液晶显示面板, 其中, 所述液晶 层为正性液晶层。
PCT/CN2013/084458 2013-05-31 2013-09-27 显示基板及其制造方法和液晶显示面板 WO2014190648A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/235,947 US9354471B2 (en) 2013-05-31 2013-09-27 Display substrate, method for fabricating the same and liquid crystal display panel
US15/138,556 US10168576B2 (en) 2013-05-31 2016-04-26 Display substrate, method for fabricating the same and liquid crystal display panel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310211853.5 2013-05-31
CN201310211853.5A CN103293770B (zh) 2013-05-31 2013-05-31 显示基板及制造方法和液晶显示面板

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/235,947 A-371-Of-International US9354471B2 (en) 2013-05-31 2013-09-27 Display substrate, method for fabricating the same and liquid crystal display panel
US15/138,556 Division US10168576B2 (en) 2013-05-31 2016-04-26 Display substrate, method for fabricating the same and liquid crystal display panel

Publications (1)

Publication Number Publication Date
WO2014190648A1 true WO2014190648A1 (zh) 2014-12-04

Family

ID=49094918

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/084458 WO2014190648A1 (zh) 2013-05-31 2013-09-27 显示基板及其制造方法和液晶显示面板

Country Status (3)

Country Link
US (2) US9354471B2 (zh)
CN (1) CN103293770B (zh)
WO (1) WO2014190648A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107505775A (zh) * 2017-09-07 2017-12-22 昆山龙腾光电有限公司 半透半反液晶显示面板、显示面板的制作方法及显示装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103792721B (zh) 2014-01-22 2016-06-29 京东方科技集团股份有限公司 一种半透半反液晶显示面板及其制作方法、显示装置
KR102131117B1 (ko) * 2014-02-07 2020-07-08 삼성디스플레이 주식회사 편광자, 편광자를 갖는 표시 장치, 및 편광자 제조 방법
DE112016003418B4 (de) * 2015-07-28 2023-01-19 Alps Alpine Co., Ltd. Mehrlagenstruktur und Verfahren zum Herstellen einer Mehrlagenstruktur
CN106444134B (zh) * 2016-09-26 2019-08-30 京东方科技集团股份有限公司 显示面板和显示装置
CN106814497B (zh) * 2017-01-19 2020-02-28 京东方科技集团股份有限公司 一种半透半反显示面板及其制作方法、显示装置
GB201803948D0 (en) * 2018-03-12 2018-04-25 Mbda Uk Ltd An imaging device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030038909A1 (en) * 2001-08-22 2003-02-27 Nec Corporation Transflective liquid crystal display device
CN1916703A (zh) * 2005-04-20 2007-02-21 统宝光电股份有限公司 半透射反射式液晶显示器装置及其制造方法
US20090103026A1 (en) * 2007-10-19 2009-04-23 Au Optronics Corp. Transflective liquid crystal display panel
CN102981300A (zh) * 2012-11-21 2013-03-20 京东方科技集团股份有限公司 液晶显示面板及其制作方法、显示装置
CN103033990A (zh) * 2012-12-13 2013-04-10 京东方科技集团股份有限公司 液晶面板以及透反式液晶显示器

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100191787B1 (ko) * 1996-09-20 1999-06-15 구자홍 광시야각을 가지는 액정셀의 제조방법
US6097463A (en) * 1997-10-06 2000-08-01 Alps Electric Co., Ltd. Liquid crystal display device
JP4580188B2 (ja) * 2004-05-27 2010-11-10 富士通株式会社 液晶表示装置及びその製造方法
TWM269469U (en) * 2004-11-26 2005-07-01 Innolux Display Corp Transflective liquid crystal display device
TWI329215B (en) * 2005-12-29 2010-08-21 Ind Tech Res Inst Transflective liquid crystal displays and fabrication methods thereof
US20100110351A1 (en) * 2008-11-03 2010-05-06 Hyang-Yul Kim Transflective liquid crystal displays
CN103087726B (zh) * 2013-01-25 2015-03-18 北京京东方光电科技有限公司 液晶取向层组合物、半透反射式液晶面板及其制造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030038909A1 (en) * 2001-08-22 2003-02-27 Nec Corporation Transflective liquid crystal display device
CN1916703A (zh) * 2005-04-20 2007-02-21 统宝光电股份有限公司 半透射反射式液晶显示器装置及其制造方法
US20090103026A1 (en) * 2007-10-19 2009-04-23 Au Optronics Corp. Transflective liquid crystal display panel
CN102981300A (zh) * 2012-11-21 2013-03-20 京东方科技集团股份有限公司 液晶显示面板及其制作方法、显示装置
CN103033990A (zh) * 2012-12-13 2013-04-10 京东方科技集团股份有限公司 液晶面板以及透反式液晶显示器

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107505775A (zh) * 2017-09-07 2017-12-22 昆山龙腾光电有限公司 半透半反液晶显示面板、显示面板的制作方法及显示装置
CN107505775B (zh) * 2017-09-07 2020-03-24 昆山龙腾光电股份有限公司 半透半反液晶显示面板、显示面板的制作方法及显示装置

Also Published As

Publication number Publication date
US10168576B2 (en) 2019-01-01
US20150029454A1 (en) 2015-01-29
US20160238864A1 (en) 2016-08-18
US9354471B2 (en) 2016-05-31
CN103293770B (zh) 2015-12-23
CN103293770A (zh) 2013-09-11

Similar Documents

Publication Publication Date Title
WO2014190648A1 (zh) 显示基板及其制造方法和液晶显示面板
TWI507799B (zh) Display devices and electronic machines
US11119360B2 (en) Liquid crystal display apparatus
KR102271626B1 (ko) 액정 표시 장치
US10747016B2 (en) 3D display device
US9235083B2 (en) Liquid crystal display device
US10324332B2 (en) Display panel and manufacturing method thereof, and display device
JP2008020753A (ja) 半透過型液晶表示装置
US20190011784A1 (en) Pixel structure and display panel applying the same
JP2015179164A (ja) 液晶表示装置及びその製造方法
WO2014034471A1 (ja) 液晶表示装置
JP2013231745A (ja) 立体表示装置
JP2008076502A (ja) 液晶表示装置
WO2017128779A1 (zh) 显示基板及其制作方法、显示装置
JP4541815B2 (ja) 半透過型液晶表示装置及びその製造方法
US9835916B2 (en) Liquid crystal display device having increased response speed and method for manufacturing liquid crystal display device
WO2017152497A1 (zh) 液晶配向方法、像素结构、显示面板及显示装置
US9411196B2 (en) Liquid crystal display device
JP2009294320A (ja) 液晶表示装置
JP2013076918A (ja) 画像表示装置
US20090015733A1 (en) Retardation Film and Projection Display Apparatus
JP6859703B2 (ja) 液晶表示装置
JP2008076503A (ja) 液晶表示装置
KR102395574B1 (ko) 액정표시장치
JP5041436B2 (ja) 液晶表示装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14235947

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13885960

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 19.04.2016)

122 Ep: pct application non-entry in european phase

Ref document number: 13885960

Country of ref document: EP

Kind code of ref document: A1