WO2014189160A1 - Polysilicon manufacturing apparatus using single crystal silicon button - Google Patents

Polysilicon manufacturing apparatus using single crystal silicon button Download PDF

Info

Publication number
WO2014189160A1
WO2014189160A1 PCT/KR2013/004524 KR2013004524W WO2014189160A1 WO 2014189160 A1 WO2014189160 A1 WO 2014189160A1 KR 2013004524 W KR2013004524 W KR 2013004524W WO 2014189160 A1 WO2014189160 A1 WO 2014189160A1
Authority
WO
WIPO (PCT)
Prior art keywords
single crystal
crystal silicon
silicon
button
electron beam
Prior art date
Application number
PCT/KR2013/004524
Other languages
French (fr)
Korean (ko)
Inventor
이진석
안영수
장보윤
김준수
Original Assignee
한국에너지기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국에너지기술연구원 filed Critical 한국에너지기술연구원
Priority to PCT/KR2013/004524 priority Critical patent/WO2014189160A1/en
Publication of WO2014189160A1 publication Critical patent/WO2014189160A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B11/00Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
    • C30B11/005Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method by irradiation or electric discharge
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B11/00Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
    • C30B11/002Crucibles or containers for supporting the melt
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon

Definitions

  • the present invention relates to an apparatus for producing polysilicon through unidirectional solidification, wherein a start block used for unidirectional solidification is formed by using a single crystal silicon button to prevent contamination of the solidified silicon melt. It is about.
  • a carbon reducing agent such as silica (SiO 2) and coke in a natural state is obtained by a thermal carbon reduction method of reacting at high temperature using an arc or the like.
  • the silicon obtained at this time contains a large amount of impurities and has a purity of about 99%, the semiconductor wafer (purity of 99.99999999% (10N) or higher) or the solar cell wafer (purity of 99.9999% (6N) must be further refined. It becomes more than)).
  • the purity of silicon is usually expressed as 2N, 3N, 6N, 11N or the like.
  • the number before 'N' means the number of 9, the purity of 99% for 2N, 99.9999% for 6N, and 99.999999999% for 11N.
  • Semiconductor grade silicon is manufactured through a chemical gasification process.
  • the silicon manufacturing process is known to generate a large amount of contaminants, low production efficiency, and high production cost.
  • the silicon used as a raw material of the solar cell is difficult to apply the semiconductor-grade silicon manufacturing process, and the metallurgical refining process that can mass-produce high purity silicon at low manufacturing cost has been actively developed.
  • Metallurgical refining of high-purity silicon for photovoltaic power generation has been developed such as vacuum refining, wet refining, oxidation, unidirectional solidification refining, and some of them are commercially available.
  • silicon manufacturing technology by metal melting method such as vacuum refining method and unidirectional coagulation refining method is easy to control characteristics, and active research is being conducted because there is little contamination by impurities during operation.
  • vacuum refining generally refers to a refining process of melting a metal raw material and removing impurities having a lower boiling point and vapor pressure from the molten metal than silicon. It is a refining process that moves (segregates) impurities to a liquid along the liquid interface.
  • a start block used to transfer and solidify silicon is formed in a form in which a dummy bar and a silicon button are in contact with each other.
  • FIG. 1 is a view showing a process of manufacturing a start block of a polysilicon manufacturing apparatus used in the prior art.
  • the silicon raw material P is introduced into an upper portion of the dummy bar 12 configured to be movable up and down inside the one-way solidification part 10.
  • the shape or size of the silicon raw material (P) does not matter much, but in general, the junk (Chunk) form or small grain form is preferable.
  • the electron beam is irradiated using an electron gun separately provided in the silicon raw material P injected as shown in FIG.
  • the silicon raw material P in a junk form is melted.
  • the molten silicon raw material P solidifies on the dummy bar 12 to become the silicon button 14.
  • the silicon button 14 is provided inside the one-way solidification part 10 together with the dummy bar 12 to be used as a start block in manufacturing polysilicon.
  • the silicon button 14 in which the impurities are introduced and the purity thereof is lowered is brought into contact with the molten silicon introduced into the one-way solidification part 10.
  • the silicon button 14 into which impurities are introduced comes into contact with the molten silicon, the molten silicon is also contaminated, resulting in many problems in manufacturing high-purity polysilicon.
  • the silicon button does not easily adhere to the dummy bar.
  • An object of the present invention is to solve the problem of the start block used in the prior art, to prevent the contamination of the molten silicon by using a start block made by bonding a single crystal silicon button and a graphite pile bar when manufacturing silicon through unidirectional solidification.
  • the present invention provides a polysilicon manufacturing apparatus using a single crystal silicon button.
  • the present invention provides a vacuum chamber for maintaining a vacuum atmosphere, an electron beam irradiation unit provided in the vacuum chamber for irradiating an electron beam, a silicon raw material in the form of particles, and a region in which the electron beam is irradiated from the electron beam irradiation unit.
  • the single crystal silicon button may be formed to have a predetermined pattern on the lower surface, and the graphite dummy bar may be formed to have a pattern corresponding to the lower surface of the single crystal silicon button to be bonded to each other.
  • the pattern may be characterized in that the contact area between the single crystal silicon button and the graphite dummy bar is formed larger than the cross section of the graphite dummy bar or the single crystal silicon button.
  • the single crystal silicon button may have a bottom surface formed in a pyramid shape
  • the graphite dummy bar may have a top surface formed in a shape corresponding to the single crystal silicon button.
  • the single crystal silicon button may have a plurality of holes or a plurality of protrusions formed on a lower surface thereof, and the graphite dummy bar may have an upper surface formed in a shape corresponding to the single crystal silicon button.
  • start block may be characterized in that the single crystal silicon button and the graphite pile bar are bonded through induction heating and resistance heating.
  • the silicon melt portion may be composed of a plurality.
  • the electron beam irradiation unit may be characterized in that for irradiating the electron beam on the one-way solidification unit.
  • the electron beam irradiator may be configured of a plurality of electron beam irradiators to irradiate the electron beam with the silicon melting portion and the one-way solidification portion.
  • the silicon molten portion may be characterized in that it comprises a casting vessel made of a copper material formed with a cooling channel in the lower portion.
  • the one-way solidification unit may be characterized in that it comprises a casting vessel made of copper formed with a cooling channel in the lower portion.
  • the single crystal silicon button may be formed of single crystal silicon only on an upper surface thereof.
  • the single crystal silicon button manufactured separately without melting using an electron beam is graphite. Bonding with the dummy bar has an effect of preventing contamination of the molten silicon supplied to the upper portion of the single crystal silicon button.
  • the contact surface of the single crystal silicon button and the graphite dummy bar is formed to have a constant pattern, not a general linear shape, so that the contact area is increased, so that the graphite dummy bar and the single crystal silicon button are moved when the start block moves downward along the one-way solidification part. There is an effect that can prevent the separation.
  • the liquefied silicon molten metal is introduced into the one-way solidification unit and in contact with the single crystal silicon button, thereby producing a silicon ingot having a large particle size when the molten silicon is solidified. Therefore, since the particle size of the solidified silicon ingot decreases and the grain boundary decreases, the area to be segregated for the removal of impurities is reduced, and thus, since the segregated impurities are easily moved, the refining efficiency is increased.
  • FIG. 1 is a view showing a process of manufacturing a start block of a conventional polysilicon manufacturing apparatus
  • FIG. 2 is a view showing the configuration of a polysilicon manufacturing apparatus according to an embodiment of the present invention
  • FIG. 3 is an exploded perspective view showing that the bonding surface of the graphite pile and the single crystal silicon button is formed in a pyramid shape in the start block of FIG.
  • FIG. 4 is an exploded perspective view showing that the bonding surface of the graphite dummy bar and the single crystal silicon button is formed of a plurality of holes and protrusions in the start block of FIG. 2;
  • FIG. 5 is a view illustrating a bonding process of the single crystal silicon button and the graphite pile of FIG. 2;
  • FIG. 6 is a view illustrating a process of manufacturing polysilicon by the polysilicon manufacturing apparatus of FIG. 2.
  • FIG. 2 is a view showing the configuration of a polysilicon manufacturing apparatus according to an embodiment of the present invention.
  • the configuration of the polysilicon manufacturing apparatus is largely composed of the vacuum chamber 100, the electron beam irradiation unit 200, the silicon melting portion 300 and the one-way solidification portion 400.
  • the vacuum chamber 100 is formed to surround the whole and has a separate vacuum pump (not shown) to adjust the vacuum state inside the vacuum pump.
  • the raw material input unit 120 for introducing the silicon raw material (P1) on one side is provided.
  • the electron beam irradiation unit 200 may be provided in the vacuum chamber 100 and may be provided in plural.
  • the electron beam irradiator 200 includes a first electron gun 210 and a second electron gun 220.
  • the first electron gun 210 and the second electron gun 220 are disposed on an upper end of the vacuum chamber 100 so that an electron beam is irradiated into the vacuum chamber 100.
  • the silicon melt part 300 is disposed in a region where the electron beam is irradiated by the first electron gun 210.
  • the silicon raw material P1 in the form of particles is introduced from the raw material input part 120, and the injected silicon raw material P1 is accelerated and integrated by the first electron gun 210.
  • molten silicon P2 is produced.
  • the silicon raw material P1 introduced from the raw material input part 120 is a junk type raw material, and generally has a size of about 1 mm-4 mm.
  • the first electron gun 210 preferably accelerates and integrates the first electron beam such that the electron beam has an output energy of 500-700 kw / m 2.
  • the output energy of the electron beam irradiated from the first electron gun is too high, there may be a problem that the behavior of the silicon melt P2 is unstable, such as the silicon melt P2 splashes outward by the electron beam.
  • the silicon melt part 300 is preferably provided with a water-cooled crucible that can block the inflow of impurities that may occur during the operation, and can easily control the cooling efficiency.
  • the water-freezing crucible is a crucible manufactured so that the cooling channel C is provided so that the crucible can withstand high temperatures using a coolant outside the crucible made of copper (Cu).
  • the silicon melt part 300 is configured as one, but this is not limited to a specific form, but is merely an example selected to help more clearly understood.
  • the core of the present invention does not change even if the silicon melt part 300 is composed of a plurality, the user can selectively adjust the number of the silicon melt part 300.
  • the one-way solidification unit 400 serves to continuously cast the molten silicon (P2) and at the same time to induce segregation of metal impurities to improve silicon refining and high-purity polysilicon production efficiency.
  • the one-way solidification unit 400 is disposed in a region where the electron beam by the second electron gun 220 is irradiated, and is connected to the silicon melting unit 300.
  • a start block 410 driven in a downward direction is mounted inside the 400.
  • the start block 410 is driven downward in the one-way solidification unit 400 and serves to physically transfer the molten silicon (P2) downward while growing a mold for silicon casting.
  • the start block 410 is composed of a single crystal silicon button 412 and a graphite pile bar 414.
  • the molten silicon P2 melted from the molten silicon 300 is introduced through an upper portion of the one-way solidification unit 400 to be in contact with the molten silicon P2.
  • Single crystal silicon button 412 having high purity is used to manufacture polysilicon of higher purity using the silicon molten metal P2.
  • the graphite dummy bar 414 may be formed of a graphite material.
  • low density graphite is most preferred as the material of the graphite pile bar 414.
  • a sudden temperature deviation occurs between the cooling channel C provided below the one-way solidification part 400 and the initially formed silicon melt P2. Function to prevent it.
  • the single crystal silicon button 412 is bonded to the start block 410 instead of using only the graphite dummy bar 414.
  • the graphite pile bar 414 since the contamination problem such as graphite contamination of the polysilicon being cast may occur, the single crystal silicon button 412 having high purity is introduced into the silicon melt part 300. By making contact with the molten silicon (P2), it is possible to prevent contamination.
  • the single crystal silicon is higher in purity than the general polycrystalline silicon, the purity of the molten silicon P2 in contact with the single crystal silicon button 412 may be increased.
  • the silicon molten metal P2 is introduced into the one-way solidification unit 400 and contacts the single crystal silicon button 412 to produce a silicon ingot having a large particle size when the molten silicon P2 solidifies. can do. Therefore, since the particle size of the solidified silicon ingot decreases and the grain boundary is reduced, the area to be segregated for the removal of impurities is reduced, and thus the refining efficiency is increased because the segregated impurities are easily moved.
  • the single crystal silicon button 412 prevents contamination from graphite by preventing the graphite dummy bar 414 from directly contacting the molten silicon P2 or cast silicon.
  • the single crystal silicon button 412 is not composed of a single crystal as a whole, only the upper surface portion that does not contact with the graphite dummy bar may be formed of single crystal silicon. That is, the upper surface portion of the single crystal silicon button 412 is made of single crystal silicon and the lower portion is made of polycrystalline silicon, and the lower surface is bonded to the graphite dummy bar 414.
  • the start block 410 is manufactured by separately administering the silicon raw material P1 to the graphite dummy bar 414 without forming a silicon button through melting using an electron beam.
  • the single crystal silicon button 412 is manufactured and bonded to the graphite dummy bar 414.
  • the graphite dummy bar 414 and the single crystal silicon button 412 bond the single crystal silicon button 412 and the graphite dummy bar 414 through induction heating and resistance heating.
  • a bonding process of the graphite dummy bar 414 and the single crystal silicon button 412 will be described later with reference to FIG. 5.
  • the one-way solidification unit 400 having the start block 410 configured as described above receives the silicon melt P2 overflowed from the silicon melt 300.
  • the one-way solidification unit 400 supplied with the molten silicon P2 maintains the molten state of the molten silicon P2 supplied by the irradiation of the electron beam from the second electron gun 220, and the start block 410. After driving the lower to transfer the molten silicon (P2) in the lower direction, and cooling the lower portion of the molten silicon (P2) to be solidified simultaneously with the solidification from the lower portion of the molten silicon (P2) to the upper direction.
  • the electron beam irradiated from the second electron gun 220 to the upper portion of the one-way solidification unit 400 has an output energy of 1300 ⁇ 2300 kW / m 2 , the silicon molten metal supplied from the silicon melting part 300 It is possible to maintain the state of (P2).
  • the silicon raw material (P1) is introduced into the silicon melt portion 300 from the raw material input portion 120 and the silicon raw material (P1) is injected into the irradiation unit By the molten silicon (P2).
  • the silicon raw material P1 is continuously introduced into the silicon melt part 300, the amount of the silicon melt P2 formed in the silicon melt part 300 increases. Accordingly, the silicon melt P2 overflowed from the silicon melt part 300 is supplied to the one-way solidification part 400.
  • the molten silicon P2 supplied from the silicon molten unit 300 is maintained in a molten state by an electron beam accelerated and integrated by the second electron gun 220.
  • the molten state of the silicon molten metal P2 is maintained while being transferred downward by the start block 410 and then solidified and cast upward through the cooling channel C to form polysilicon.
  • the one-way solidification unit 400 may include a casting container made of copper, in which the cooling channel C is formed, similarly to a water cooling crucible.
  • FIG. 3 is an exploded perspective view showing that the bonding surface of the graphite dummy bar and the single crystal silicon button is formed in a pyramid shape in the start block of FIG. 2, and FIG. 4 is a plurality of bonding surfaces of the graphite dummy bar and the single crystal silicon button in the start block of FIG. 2. It is an exploded perspective view which shows what was formed of four holes and protrusions.
  • the start block 410 composed of the single crystal silicon button 412 and the graphite dummy bar 414 overflows from the silicon melting part 300 and is supplied to the one-way solidification part 400. ) Is transferred to the lower portion of the one-way solidification unit 400 in which the cooling channel C is formed to segregate and solidify the impurities contained in the molten silicon P2 and to prepare polysilicon.
  • the graphite pile bar 414 and the single crystal silicon button 412 may be separated from each other.
  • a predetermined pattern may be formed on the bonding surface of the single crystal silicon button 412 and the graphite dummy bar 414 to increase the bonding area of the bonding surface.
  • the graphite pile bar 414 has a top surface formed in a pyramid shape along a lateral direction, and the single crystal silicon button 412 is formed so that the bottom surface thereof is joined to the bottom surface of the graphite pile bar 414. do.
  • the bonding surface of the graphite dummy bar 414 and the single crystal silicon button 412 is formed in a pyramid shape and bonded to each other to form the start block 410.
  • the single crystal silicon button 412 is not bonded to the graphite dummy bar 414 by injecting and melting the silicon raw material P1 on the graphite dummy bar 414, and separately from the outside.
  • the single crystal silicon button 412 is manufactured and bonded to the upper portion of the graphite pile bar 414.
  • the single crystal silicon button 412 and the graphite dummy bar 414 are bonded through induction heating and resistance heating.
  • the bonding surface of the graphite dummy bar 414 and the single crystal silicon button 412 is formed in a pyramid shape to have a predetermined pattern, thereby bonding the graphite dummy bar 414 to the single crystal silicon button 412. Since the area becomes larger, the bonding quality of the graphite pile bar 414 and the single crystal silicon button 412 can be improved.
  • a form in which the bonding surface of the single crystal silicon button 412 and the graphite dummy bar 414 is modified is as follows.
  • the single crystal silicon button 412 has a plurality of holes 412a formed on a lower surface thereof, and a plurality of holes provided in the single crystal silicon button 412 formed on an upper surface of the graphite pile bar 414.
  • a plurality of protrusions 414a are formed to be joined to the holes 412a.
  • the single crystal silicon button 412 and the graphite dummy bar 414 formed as described above are joined to the bottom surface of the single crystal silicon button 412 and the bottom surface of the graphite dummy bar 414 to form the start block.
  • the plurality of holes 412a are formed in the single crystal silicon button 412 and the plurality of protrusions 414a are formed in the graphite dummy bar 414, this is not limited thereto.
  • a plurality of protrusions may be formed in the single crystal silicon button 412 and a plurality of holes may be formed in the graphite dummy bar 414.
  • start block 410 formed on the bonding surface of the single crystal silicon button 412 and the graphite dummy bar 414 to increase the bonding area has been described with reference to FIGS. 3 and 4. .
  • the shape of the graphite pile bar 414 and the single crystal silicon button 412 is not limited, but is selected to help a clear understanding of the present embodiment.
  • An upper surface of the graphite dummy bar 414 and a lower surface of the single crystal silicon button 412 are formed to have a pattern so that the junction area of the graphite dummy bar 414 and the single crystal silicon button 412 may increase. If possible, any form may be applicable.
  • the process of bonding the single crystal silicon button 412 and the graphite dummy bar 414 is as follows.
  • FIG. 5 is a view illustrating a bonding process of the single crystal silicon button and the graphite dummy bar of FIG. 2.
  • the upper surface of the graphite pile bar 414 is patterned in the form described with reference to FIGS. 3 and 4, and then the upper portion of the graphite pile bar 414 is formed.
  • the single crystal silicon button 412 is mounted.
  • the graphite dummy bar 414 located at the lower part is subjected to induction heating and resistance heating to transfer heat to the lower surface of the single crystal silicon button 412.
  • the bottom surface of the single crystal silicon button 412 is melted in a form corresponding to the top surface of the graphite pile bar 414.
  • the heating is stopped.
  • the bottom surface of the single crystal silicon button 412 is melted and then solidified again to bond the bottom surface of the single crystal silicon button 412 in a shape corresponding to the top surface of the graphite dummy bar 414.
  • the single crystal silicon button 412 is bonded by heating the graphite dummy bar 414 and bonding the graphite dummy bar 414 through melting of a lower surface of the single crystal silicon button 412 mounted on the upper portion. To prevent contamination from the graphite pile bar 414 that may occur in.
  • FIG. 6 is a view illustrating a process of manufacturing polysilicon by the polysilicon manufacturing apparatus of FIG. 2.
  • the silicon raw material P1 is introduced into the silicon melting part 300 from the raw material input part 120, and then the electron beam is irradiated through the electron beam irradiation part 200. do.
  • the inside of the vacuum chamber 100 should be in a high vacuum state of a predetermined level or more.
  • the silicon raw material P1 injected into the silicon melting part 300 may use the silicon raw material P1 in the form of particles having a purity of 2N and an average particle diameter of 1 to 2 mm.
  • the silicon raw material P1 is melted by the electron beam in the vacuum chamber 100 in a high vacuum state.
  • the electron beam irradiation unit 200 irradiates an electron beam to the upper portion of the one-way solidification unit 400 to heat the silicon melt P2 moved from the silicon melting unit 300 so as not to be cooled.
  • the first electron gun 210 irradiates the first electron beam to the silicon melt part 300 from the silicon melt part 300, and the second electron gun 220 emits a second electron beam to the one-way solidification part. Irradiate to the top of 400.
  • the silicon raw material P1 is melted by the electron beam irradiated from the electron beam irradiating part 200 inside the silicon melting part 300 to be formed as the silicon melt, and the silicon raw material as the temperature increases.
  • the impurities contained in (P1) are volatilized and removed.
  • silicon raw material P1 While the silicon raw material P1 is melted by the electron beam irradiated from the first electron gun 210, aluminum (Al), calcium (Ca), phosphorus (P), magnesium (Mg), and manganese (Mg) included in the silicon raw material ( Volatile impurities such as Mn) are vacuum volatilized.
  • Volatile impurities with a lower boiling point and vapor pressure than silicon are volatilized by high vacuum and high heating temperature by electron beam.
  • refining efficiency may be improved.
  • the silicon melt P2 is generated in the silicon melt part 300 through the electron beam irradiation part 200, and the silicon is volatilized. Impurities in the molten metal P2 are removed.
  • the molten silicon P2 from which impurities are removed is overflowed from the molten silicon 300 to the unidirectional solidifying part 400 as shown in FIG. 6A.
  • the one-way solidification unit 400 supplied with the molten silicon P2 from the molten silicon 300 transfers the start block 410 downward as shown in FIG.
  • the second electron gun 220 is irradiated with an electron beam on the upper portion of the one-way solidification unit 400 so that the molten silicon (P2) is not immediately solidified at the upper portion of the one-way solidification unit 400.
  • the cooling channel (C) is formed in the lower portion of the one-way solidification unit 400 to cool the lower portion of the one-way solidification unit 400.
  • the molten silicon P2 transferred along the start block 410 is solidified by the cooling channel C at the lower portion of the one-way solidification unit 400.
  • start block 410 may be driven to descend at a speed corresponding to the speed at which the silicon raw material P1 is injected from the raw material input part 120.
  • start block 410 falls at a too slow speed, the level of the molten silicon P2 is continuously raised so that process control is impossible. If the start block 410 falls at a too fast speed, the silicon melt is dropped. There is a problem that the water level of (P2) is continuously lowered, the silicon molten metal (P2) leaks to the one-way solidification unit 400 lower.
  • metal impurities such as iron (Fe), nickel (Ni), titanium (Ti), chromium (Cr), and copper (Cu) included in the molten silicon are moved upward along the solid-liquid interface.
  • the segregation effect of such impurities can be sufficiently exhibited when the temperature difference between the solid and the liquid is large while the interface between the solid state and the liquid state is perpendicular to the growth direction during the silicon solidification process.
  • the one-way solidification part 400 grows the silicon melt P2 supplied from the silicon melt part 300 in the vertical direction through the falling of the start block 410 to manufacture polysilicon having high purity. Done.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Silicon Compounds (AREA)

Abstract

The present invention relates to a polysilicon manufacturing apparatus using a single crystal silicon button, comprising: a vacuum chamber for maintaining a vacuum atmosphere; an electron beam irradiation part, equipped in the vacuum chamber, for irradiating an electron beam; a silicon melting part, which is arranged in a region where the electron beam is irradiated by the electron beam irradiation part, and into which silicon raw materials, in the form of particles, are inserted, such that the silicon materials are melted by the electron beam, thereby producing a silicon melt; a unidirectional coagulation part having a cooling channel in the lower part thereof so as to coagulate the silicon melt supplied from the silicon melting part; and a start block, wherein the start block comprises: a single crystal silicon button which is manufactured separately and equipped inside the unidirectional coagulation part so as to transport the silicon melt supplied from the silicon melting part to the lower part of the unidirectional coagulation part; and a graphite dummy bar which is bonded to the lower surface of the single crystal silicon button so as to enable the single crystal silicon button to move.

Description

단결정 실리콘버튼을 이용한 폴리실리콘 제조장치Polysilicon Manufacturing Equipment Using Single Crystal Silicon Button
본 발명은 일방향응고를 통해 폴리실리콘을 제조하는 장치에 관한 것으로서 일방향응고에 사용되는 스타트블럭은 단결정 실리콘버튼을 이용하여 형성됨으로써 응고되는 실리콘용탕의 오염을 방지하는 단결정 실리콘버튼을 이용한 폴리실리콘 제조장치에 관한 것이다.The present invention relates to an apparatus for producing polysilicon through unidirectional solidification, wherein a start block used for unidirectional solidification is formed by using a single crystal silicon button to prevent contamination of the solidified silicon melt. It is about.
일반적으로, 반도체용이나 태양전지용 웨이퍼로 사용되는 실리콘의 경우, 자연상태의 규석(SiO2)과 코크스 등의 탄소환원제를 아크(arc) 등을 이용하여 고온에서 반응시키는 열탄소환원법에 의해 얻어지게 된다. 그러나, 이때 얻어진 실리콘은 다량의 불순물들을 함유하고 있고 약 99% 정도의 순도를 갖게 되므로, 추가적인 정련과정을 거쳐야만 반도체용 웨이퍼(순도 99.99999999%(10N) 이상)나 태양전지용 웨이퍼(순도 99.9999%(6N) 이상)로 사용할 수 있게 된다.In general, in the case of silicon used as a wafer for semiconductors or solar cells, a carbon reducing agent such as silica (SiO 2) and coke in a natural state is obtained by a thermal carbon reduction method of reacting at high temperature using an arc or the like. . However, since the silicon obtained at this time contains a large amount of impurities and has a purity of about 99%, the semiconductor wafer (purity of 99.99999999% (10N) or higher) or the solar cell wafer (purity of 99.9999% (6N) must be further refined. It becomes more than)).
실리콘의 순도는 통상 2N, 3N, 6N, 11N 등과 같이 표시된다. 여기서 'N' 앞의 숫자는 중량% 단위에서 9의 개수를 의미하며, 2N의 경우 99%의 순도를, 6N의 경우 99.9999% 순도를, 11N의 경우 99.999999999%의 순도를 의미한다.The purity of silicon is usually expressed as 2N, 3N, 6N, 11N or the like. In this case, the number before 'N' means the number of 9, the purity of 99% for 2N, 99.9999% for 6N, and 99.999999999% for 11N.
초고순도를 요구하는 반도체급 실리콘의 경우 순도가 11N에 이른다. 그러나, 태양광 발전 전지의 원료물질로 이용되는 실리콘은 반도체급 실리콘의 순도인 11N 에 비해 상대적으로 낮은 5N ~ 7N의 순도에도 순도 11N의 실리콘을 적용한 경우와 비슷한 광 전환효율을 얻는 것으로 알려져 있다.In the case of semiconductor grade silicon requiring ultra high purity, the purity reaches 11N. However, silicon used as a raw material of the photovoltaic cell is known to obtain a light conversion efficiency similar to that of applying 11N silicon even at a purity of 5N to 7N, which is relatively lower than that of semiconductor grade silicon 11N.
반도체급 실리콘은 화학적 가스화 공정을 통해 제조되고 있다. 그러나 이러한 실리콘 제조 공정은 오염물질이 대량으로 발생하고, 생산효율이 떨어지며, 또한 생산 단가가 높은 것으로 알려져 있다.Semiconductor grade silicon is manufactured through a chemical gasification process. However, the silicon manufacturing process is known to generate a large amount of contaminants, low production efficiency, and high production cost.
이에 따라, 태양광 발전 전지의 원료물질로 이용되는 실리콘은 상기의 반도체급 실리콘 제조 공정을 적용하기 어려우며, 낮은 제조 비용으로 고순도의 실리콘을 대량 생산할 수 있는 야금학적 정련공정이 활발히 개발되고 있다.Accordingly, the silicon used as a raw material of the solar cell is difficult to apply the semiconductor-grade silicon manufacturing process, and the metallurgical refining process that can mass-produce high purity silicon at low manufacturing cost has been actively developed.
고순도의 태양광 발전용 실리콘의 야금학적 정련법은 진공 정련법, 습식 정련법, 산화 처리법, 일방향응고 정련법 등의 대표적인 공정이 개발되었으며, 일부는 상용화되고 있다.Metallurgical refining of high-purity silicon for photovoltaic power generation has been developed such as vacuum refining, wet refining, oxidation, unidirectional solidification refining, and some of them are commercially available.
이들 야금학적 정련법들 중에서 진공 정련법과 일방향응고 정련법 등과 같은 금속 용융법에 의한 실리콘제조 기술이 특성제어가 용이하고, 조업중 불순물에 의한 오염이 적어 활발한 연구가 진행되고 있다.Among these metallurgical refining methods, silicon manufacturing technology by metal melting method such as vacuum refining method and unidirectional coagulation refining method is easy to control characteristics, and active research is being conducted because there is little contamination by impurities during operation.
여기서, 진공 정련법이란 통상 금속원료를 용융시킨 후 용융된 금속으로부터 실리콘에 비해 끓는점과 증기압이 낮은 불순물을 제거하는 정련공정을 말하며, 일방향응고 정련법은 실리콘이 액체에서 고체로 상변이 중에 고체-액체 계면을 따라 불순물을 액체로 이동(편석)시키는 정련공정이다.Here, vacuum refining generally refers to a refining process of melting a metal raw material and removing impurities having a lower boiling point and vapor pressure from the molten metal than silicon. It is a refining process that moves (segregates) impurities to a liquid along the liquid interface.
일반적으로 일방향응고를 통해 정련을 함에 있어서, 실리콘을 이송시켜 응고되도록 하는데 사용되는 스타트블럭은 더미바와 실리콘버튼이 접촉된 형태로 구성된다.In general, in refining through unidirectional solidification, a start block used to transfer and solidify silicon is formed in a form in which a dummy bar and a silicon button are in contact with each other.
도 1을 참조하여 종래에 사용되던 폴리실리콘 제조장치의 스타트블럭에 대해서 살펴보면 다음과 같다.Looking at the start block of the polysilicon manufacturing apparatus used in the prior art with reference to Figure 1 as follows.
도 1은 종래에 사용되던 폴리실리콘 제조장치의 스타트블럭을 제조하는 과정을 나타낸 도면이다.1 is a view showing a process of manufacturing a start block of a polysilicon manufacturing apparatus used in the prior art.
먼저, 도 1의 (a)에 도시된 바와 같이 일방향응고부(10) 내부에 상하로 이동 가능하게 구성된 더미바(12)의 상부에 실리콘원료(P)가 투입된다.First, as shown in FIG. 1A, the silicon raw material P is introduced into an upper portion of the dummy bar 12 configured to be movable up and down inside the one-way solidification part 10.
이때, 상기 실리콘원료(P)의 형태나 크기는 크게 상관이 없지만 일반적으로 정크(Chunk)형태나 작은 알갱이 형태가 바람직하다.At this time, the shape or size of the silicon raw material (P) does not matter much, but in general, the junk (Chunk) form or small grain form is preferable.
그리고 도 1의 (b)와 같이 투입된 상기 실리콘원료(P)에 별도로 구비된 전자총을 사용하여 전자빔이 조사된다. Then, the electron beam is irradiated using an electron gun separately provided in the silicon raw material P injected as shown in FIG.
이와 같이, 상기 실리콘원료(P)에 고에너지의 전자빔이 조사되면, 정크형태의 상기 실리콘원료(P)는 용융된다. 그리고 조사되는 고에너지의 전자빔 조사를 중지하면 용융된 상기 실리콘원료(P)는 상기 더미바(12)의 상부에서 응고되어 실리콘버튼(14)이 된다.As such, when the high energy electron beam is irradiated onto the silicon raw material P, the silicon raw material P in a junk form is melted. When the irradiation of the high energy electron beam is irradiated, the molten silicon raw material P solidifies on the dummy bar 12 to become the silicon button 14.
상기 실리콘버튼(14)은 상기 더미바(12)와 함께 상기 일방향응고부(10) 내측에 구비되어 폴리실리콘을 제조하는데 있어서 스타트블럭으로 사용된다.The silicon button 14 is provided inside the one-way solidification part 10 together with the dummy bar 12 to be used as a start block in manufacturing polysilicon.
하지만, 상기 실리콘버튼(14)이 상기 더미바(12)의 상부에서 생성되는 과정에서 상기 실리콘원료(P)가 용융되기 때문에 상기 더미바(12)로부터 불순물이 유입된다.However, since the silicon raw material P is melted while the silicon button 14 is formed on the dummy bar 12, impurities are introduced from the dummy bar 12.
이와 같이, 불순물이 유입되어 순도가 낮아진 상기 실리콘버튼(14)은 상기 일방향응고부(10)로 투입되는 실리콘용탕과 접촉하게 된다.As described above, the silicon button 14 in which the impurities are introduced and the purity thereof is lowered is brought into contact with the molten silicon introduced into the one-way solidification part 10.
불순물이 유입된 상기 실리콘버튼(14)이 상기 실리콘용탕과 접촉하게 되면 실리콘용탕도 함께 오염되기 때문에 순도가 높은 폴리실리콘 제조에 있어서 많은 문제점이 발생하였다.When the silicon button 14 into which impurities are introduced comes into contact with the molten silicon, the molten silicon is also contaminated, resulting in many problems in manufacturing high-purity polysilicon.
또한, 상기 더미바의 상부에 상기 실리콘버튼을 생성시키는 과정에서 상기 실리콘버튼이 상기 더미바와 접착이 잘 일어나지 않는 문제점이 발생하였다.In addition, in the process of generating the silicon button on the dummy bar, the silicon button does not easily adhere to the dummy bar.
본 발명의 목적은 종래에 사용되던 스타트블럭의 문제점을 해결하기 위한 것으로서, 일방향응고를 통해 실리콘을 제조할 때 단결정 실리콘버튼과 흑연더미바를 접착시켜 만든 스타트블럭을 사용함으로써 실리콘용탕이 오염되는 것을 방지하는 단결정 실리콘버튼을 이용한 폴리실리콘 제조장치를 제공함에 있다.An object of the present invention is to solve the problem of the start block used in the prior art, to prevent the contamination of the molten silicon by using a start block made by bonding a single crystal silicon button and a graphite pile bar when manufacturing silicon through unidirectional solidification. The present invention provides a polysilicon manufacturing apparatus using a single crystal silicon button.
상기한 과제를 해결하기 위하여 본 발명은, 진공 분위기를 유지하는 진공챔버, 상기 진공챔버에 구비되어 전자빔을 조사하는 전자빔조사부, 입자형태의 실리콘원료가 투입되며, 상기 전자빔조사부로부터 전자빔이 조사되는 영역 내에 배치되어 전자빔에 의해 실리콘원료가 용융되어 실리콘용탕이 만들어지는 실리콘용융부, 하부에 냉각채널이 형성되어 상기 실리콘용융부로부터 공급되는 실리콘용탕을 응고시키는 일방향응고부 및 상기 일방향응고부 내부에 구비되며 별도로 제조되어 상기 실리콘용융부로부터 공급되는 실리콘용탕을 상기 일방향응고부 하부로 이송시키는 단결정 실리콘버튼 및 상기 단결정 실리콘버튼 하면에 접합되며 상기 단결정 실리콘버튼이 이동되도록 하는 흑연더미바를 을 포함하는 스타트블럭을 포함한다.In order to solve the above problems, the present invention provides a vacuum chamber for maintaining a vacuum atmosphere, an electron beam irradiation unit provided in the vacuum chamber for irradiating an electron beam, a silicon raw material in the form of particles, and a region in which the electron beam is irradiated from the electron beam irradiation unit. A silicon melting part disposed in the silicon raw material by melting the silicon raw material by an electron beam, a cooling channel formed at a lower portion thereof, and a one-way solidifying part for solidifying the silicon melt supplied from the silicon melting part and inside the one-way solidifying part; And a separately manufactured start block including a single crystal silicon button for transferring the silicon melt supplied from the silicon melting part to the lower portion of the one-way solidification part and a graphite dummy bar bonded to a lower surface of the single crystal silicon button and allowing the single crystal silicon button to be moved. It includes.
상기 단결정 실리콘버튼은 하면에 일정한 패턴을 가지도록 형성되며, 상기 흑연더미바는 상면이 상기 단결정 실리콘버튼의 하면에 대응되는 패턴을 가지도록 형성되어 서로 주합되도록 접합되는 것을 특징으로 할 수 있다.The single crystal silicon button may be formed to have a predetermined pattern on the lower surface, and the graphite dummy bar may be formed to have a pattern corresponding to the lower surface of the single crystal silicon button to be bonded to each other.
또한, 상기 패턴은 상기 단결정 실리콘버튼 및 상기 흑연더미바의 접촉면적이 상기 흑연더미바 또는 상기 단결정 실리콘버튼의 횡단면보다 크게 형성되는 것을 특징으로 할 수 있다.In addition, the pattern may be characterized in that the contact area between the single crystal silicon button and the graphite dummy bar is formed larger than the cross section of the graphite dummy bar or the single crystal silicon button.
또한, 상기 단결정 실리콘버튼은 하면이 피라미드형태로 형성되고 상기 흑연더미바는 상면이 상기 단결정 실리콘버튼에 대응되는 형태로 형성되는 것을 특징으로 할 수 있다.In addition, the single crystal silicon button may have a bottom surface formed in a pyramid shape, and the graphite dummy bar may have a top surface formed in a shape corresponding to the single crystal silicon button.
또한, 상기 단결정 실리콘버튼은 하면에 복수 개의 홀 또는 복수 개의 돌출부가 형성되고 상기 흑연더미바는 상면이 상기 단결정 실리콘버튼에 대응되는 형태로 형성되는 것을 특징으로 할 수 있다.In addition, the single crystal silicon button may have a plurality of holes or a plurality of protrusions formed on a lower surface thereof, and the graphite dummy bar may have an upper surface formed in a shape corresponding to the single crystal silicon button.
또한, 상기 스타트블럭은 유도가열 및 저항가열을 통해서 상기 단결정 실리콘버튼 및 상기 흑연더미바가 접합되는 것을 특징으로 할 수 있다.In addition, the start block may be characterized in that the single crystal silicon button and the graphite pile bar are bonded through induction heating and resistance heating.
또한, 상기 실리콘용융부는 복수 개로 구성될 수 있다.In addition, the silicon melt portion may be composed of a plurality.
또한, 상기 전자빔조사부는 상기 일방향응고부의 상부에 전자빔을 조사하는 것을 특징으로 할 수 있다.In addition, the electron beam irradiation unit may be characterized in that for irradiating the electron beam on the one-way solidification unit.
또한, 상기 전자빔조사부는 복수 개로 구성되어 상기 실리콘용융부 및 상기 일방향응고부에 전자빔을 조사하는 것을 특징으로 할 수 있다.The electron beam irradiator may be configured of a plurality of electron beam irradiators to irradiate the electron beam with the silicon melting portion and the one-way solidification portion.
또한, 상기 실리콘용융부는 하부에 냉각 채널이 형성된 구리 재질의 주조 용기를 구비하는 것을 특징으로 할 수 있다.In addition, the silicon molten portion may be characterized in that it comprises a casting vessel made of a copper material formed with a cooling channel in the lower portion.
또한, 상기 일방향응고부는 하부에 냉각 채널이 형성된 구리 재질의 주조 용기를 구비하는 것을 특징으로 할 수 있다.In addition, the one-way solidification unit may be characterized in that it comprises a casting vessel made of copper formed with a cooling channel in the lower portion.
그리고 상기 단결정 실리콘버튼은 상면만 단결정 실리콘으로 형성되는 것을 특징으로 할 수 있다.The single crystal silicon button may be formed of single crystal silicon only on an upper surface thereof.
상기 문제점을 해결하기 위해 본 발명에 따르면 다음과 같은 효과가 있다.According to the present invention to solve the above problems has the following effects.
첫째, 일방향응고부를 이용하여 폴리실리콘을 제조함에 있어서, 흑연더미바 및 단결정 실리콘버튼을 포함한 스타트블럭을 이용하여 폴리실리콘을 제조할 때, 전자빔을 이용하여 용융시키지 않고 별도로 제조된 단결정 실리콘버튼을 흑연더미바와 접합시킴으로써 단결정 실리콘버튼 상부에 공급되는 실리콘용탕의 오염을 방지할 수 있는 효과가 있다.First, in manufacturing polysilicon using a unidirectional solidification part, when manufacturing polysilicon using a start block including a graphite dummy bar and a single crystal silicon button, the single crystal silicon button manufactured separately without melting using an electron beam is graphite. Bonding with the dummy bar has an effect of preventing contamination of the molten silicon supplied to the upper portion of the single crystal silicon button.
둘째, 단결정 실리콘버튼과 흑연더미바의 접합면이 일반적인 일자형태가 아니라 일정한 패턴을 가지도록 형성하여 접촉면적이 증가하도록 함으로써, 스타트블럭이 일방향응고부를 따라 하부로 이동할 때 흑연더미바와 단결정 실리콘버튼이 분리되는 것을 방지할 수 있는 효과가 있다.Second, the contact surface of the single crystal silicon button and the graphite dummy bar is formed to have a constant pattern, not a general linear shape, so that the contact area is increased, so that the graphite dummy bar and the single crystal silicon button are moved when the start block moves downward along the one-way solidification part. There is an effect that can prevent the separation.
셋째, 액화된 실리콘용탕이 일방향응고부로 투입되어 단결정 실리콘버튼과 접촉함으로써, 실리콘용탕이 응고될 때 입자의 크기가 큰 실리콘잉곳을 제조할 수 있다. 그래서 응고되는 실리콘잉곳의 입자 크기가 증가하여 입자경계가 줄어들기 때문에 불순물의 제거를 위해서 편석될 영역이 줄어들고, 이에 따라서 편석되는 불순물이 쉽게 이동되기 때문에 정련효율이 증가하는 효과가 있다.Third, the liquefied silicon molten metal is introduced into the one-way solidification unit and in contact with the single crystal silicon button, thereby producing a silicon ingot having a large particle size when the molten silicon is solidified. Therefore, since the particle size of the solidified silicon ingot decreases and the grain boundary decreases, the area to be segregated for the removal of impurities is reduced, and thus, since the segregated impurities are easily moved, the refining efficiency is increased.
도 1은 종래에 사용되던 폴리실리콘 제조장치의 스타트블럭을 제조하는 과정을 나타낸 도면;1 is a view showing a process of manufacturing a start block of a conventional polysilicon manufacturing apparatus;
도 2는 본 발명의 실시예에 따른 폴리실리콘 제조장치의 구성을 나타낸 도면;2 is a view showing the configuration of a polysilicon manufacturing apparatus according to an embodiment of the present invention;
도 3은 도2의 스타트블럭에서 흑연더미바 및 단결정 실리콘버튼의 접합면이 피라미드형태로 형성된 것을 나타내는 분해사시도;3 is an exploded perspective view showing that the bonding surface of the graphite pile and the single crystal silicon button is formed in a pyramid shape in the start block of FIG.
도 4는 도 2의 스타트블럭에서 흑연더미바 및 단결정 실리콘버튼의 접합면이 복수 개의 홀 및 돌출부로 형성된 것을 나타내는 분해사시도;4 is an exploded perspective view showing that the bonding surface of the graphite dummy bar and the single crystal silicon button is formed of a plurality of holes and protrusions in the start block of FIG. 2;
도 5는 도 2의 단결정 실리콘버튼 및 흑연더미바의 접합과정을 나타낸 도면; 및 5 is a view illustrating a bonding process of the single crystal silicon button and the graphite pile of FIG. 2; And
도 6은 도 2의 폴리실리콘 제조장치에 의해서 폴리실리콘이 제조되는 과정을 나타낸 도면이다.FIG. 6 is a view illustrating a process of manufacturing polysilicon by the polysilicon manufacturing apparatus of FIG. 2.
이하 본 발명의 목적이 구체적으로 실현될 수 있는 본 발명의 바람직한 실시예를 첨부된 도면을 참조하여 설명한다. 그러나, 이는 본 발명을 특정형태로 한정하려는 것이 아니라 본 실시예를 통해서 좀더 명확한 이해를 돕기 위함이다.DETAILED DESCRIPTION Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. However, this is not intended to limit the present invention to a specific form, but to help a more clear understanding through the present embodiment.
또한, 본 실시예를 설명함에 있어서, 동일 구성에 대해서는 동일 명칭 및 동일 부호가 사용되며 이에 따른 부가적인 설명은 생략하기로 한다.In addition, in describing the present embodiment, the same name and the same reference numerals are used for the same configuration and additional description thereof will be omitted.
먼저, 도 2를 참조하여 본 발명의 실시예에 따른 구성을 개략적으로 설명하면 다음과 같다.First, a configuration according to an embodiment of the present invention will be described with reference to FIG. 2 as follows.
도 2는 본 발명의 실시예에 따른 폴리실리콘 제조장치의 구성을 나타낸 도면이다.2 is a view showing the configuration of a polysilicon manufacturing apparatus according to an embodiment of the present invention.
도시된 바와 같이, 폴리실리콘 제조장치의 구성은 크게 진공챔버(100), 전자빔조사부(200), 실리콘용융부(300) 및 일방향응고부(400)로 구성된다.As shown, the configuration of the polysilicon manufacturing apparatus is largely composed of the vacuum chamber 100, the electron beam irradiation unit 200, the silicon melting portion 300 and the one-way solidification portion 400.
상기 진공챔버(100)는 전체를 감싸도록 형성되며 별도의 진공펌프(미도시)를 구비하고 상기 진공펌프를 통해서 내부의 진공상태를 조절한다. 또한, 일측에 실리콘원료(P1)를 투입하는 원료투입부(120)가 구비된다.The vacuum chamber 100 is formed to surround the whole and has a separate vacuum pump (not shown) to adjust the vacuum state inside the vacuum pump. In addition, the raw material input unit 120 for introducing the silicon raw material (P1) on one side is provided.
상기 전자빔조사부(200)는 상기 진공챔버(100) 내부에 구비되며 복수 개로 구성될 수 있다. 본 실시예에서 상기 전자빔조사부(200)는 제 1전자총(210) 및 제 2전자총(220)으로 구성된다.The electron beam irradiation unit 200 may be provided in the vacuum chamber 100 and may be provided in plural. In the present embodiment, the electron beam irradiator 200 includes a first electron gun 210 and a second electron gun 220.
상기 제 1전자총(210) 및 상기 제 2전자총(220)은 전자빔이 상기 진공챔버(100) 내부로 조사되도록 상기 진공챔버(100)의 상단에 배치된다.The first electron gun 210 and the second electron gun 220 are disposed on an upper end of the vacuum chamber 100 so that an electron beam is irradiated into the vacuum chamber 100.
상기 실리콘용융부(300)는 상기 제 1전자총(210)에 의한 전자빔이 조사되는 영역에 배치된다. 상기 실리콘용융부(300)에서는 상기 원료투입부(120)로부터 입자 형태의 실리콘원료(P1)가 투입되고, 투입된 상기 실리콘원료(P1)는 상기 제 1전자총(210)에 의하여 가속, 집적된 전자빔에 의해 용융되어 실리콘용탕(P2)이 만들어진다. 상기 원료투입부(120)으로부터 투입되는 상기 실리콘원료(P1)는 정크형태의 원료가 사용되며 약 1mm-4mm의 크기를 가지는 것이 일반적이다.The silicon melt part 300 is disposed in a region where the electron beam is irradiated by the first electron gun 210. In the silicon melting part 300, the silicon raw material P1 in the form of particles is introduced from the raw material input part 120, and the injected silicon raw material P1 is accelerated and integrated by the first electron gun 210. By melting, molten silicon P2 is produced. The silicon raw material P1 introduced from the raw material input part 120 is a junk type raw material, and generally has a size of about 1 mm-4 mm.
이때, 상기 제 1전자총(210)은 전자빔이 500-700kw/m2의 출력 에너지를 갖도록 제 1전자빔을 가속 및 집적하는 것이 바람직하다. 상기 제 1전자총으로부터 조사되는 전자빔의 출력 에너지가 너무 높은 경우, 전자빔에 의해 상기 실리콘용탕(P2)이 외부로 튀는 등 상기 실리콘용탕(P2)의 거동이 불안정해지는 문제점이 발생할 수 있다.In this case, the first electron gun 210 preferably accelerates and integrates the first electron beam such that the electron beam has an output energy of 500-700 kw / m 2. When the output energy of the electron beam irradiated from the first electron gun is too high, there may be a problem that the behavior of the silicon melt P2 is unstable, such as the silicon melt P2 splashes outward by the electron beam.
또한, 상기 실리콘용융부(300)는 작업 중에 발생할 수 있는 불순물의 유입을 차단하고, 냉각 효율을 용이하게 제어할 수 있는 수냉동 도가니를 구비하는 것이 바람직하다. 여기서, 수냉동 도가니라 함은 구리(Cu)로 만들어진 도가니 외부에 냉각수를 이용하여 도가니가 고온에서도 버틸 수 있도록 냉각채널(C)이 구비되도록 제조된 도가니이다.In addition, the silicon melt part 300 is preferably provided with a water-cooled crucible that can block the inflow of impurities that may occur during the operation, and can easily control the cooling efficiency. Here, the water-freezing crucible is a crucible manufactured so that the cooling channel C is provided so that the crucible can withstand high temperatures using a coolant outside the crucible made of copper (Cu).
본 실시예에서는 상기 실리콘용융부(300)가 하나로 구성되어 있지만 이는 특정형태로 한정하는 것이 아니라 보다 명확한 이해를 돕기 위해서 선택한 일 예일 뿐이다. 상기 실리콘용융부(300)가 복수 개로 구성되어도 본 발명의 핵심은 변하지 않으므로 사용자가 선택적으로 상기 실리콘용융부(300)의 숫자를 조절할 수 있다. In the present embodiment, the silicon melt part 300 is configured as one, but this is not limited to a specific form, but is merely an example selected to help more clearly understood. Although the core of the present invention does not change even if the silicon melt part 300 is composed of a plurality, the user can selectively adjust the number of the silicon melt part 300.
상기 일방향응고부(400)는 상기 실리콘용탕(P2)을 연속적으로 주조함과 동시에 금속 불순물의 편석을 유도하여 실리콘 정련 및 고순도 폴리실리콘 생산 효율을 향상시키는 역할을 한다.The one-way solidification unit 400 serves to continuously cast the molten silicon (P2) and at the same time to induce segregation of metal impurities to improve silicon refining and high-purity polysilicon production efficiency.
이러한 상기 일방향응고부(400)는 상기 제 2전자총(220)에 의한 전자빔이 조사되는 영역에 배치되며, 상기 실리콘용융부(300)와 연결된다.The one-way solidification unit 400 is disposed in a region where the electron beam by the second electron gun 220 is irradiated, and is connected to the silicon melting unit 300.
또한, 상기 일방향응고부(400)의 하부에는 상기 실리콘용융부(300)와 마찬가지로 상기 실리콘용탕(P2)을 냉각하기 위한 냉각수 등이 공급되는 상기 냉각채널(C)이 형성되며, 상기 일방향응고부(400)의 내부에는 하부 방향으로 구동되는 스타트블럭(410: start block)이 장착된다.In addition, the cooling channel (C) through which the cooling water for cooling the molten silicon (P2) and the like is formed in the lower portion of the one-way solidification unit 400, and the one-way solidification unit 400 is formed. Inside the 400, a start block 410 driven in a downward direction is mounted.
상기 스타트블럭(410)은 상기 일방향응고부(400) 내부에서 하부로 구동되며 실리콘 주조를 위한 주형을 성장시키면서 물리적으로 상기 실리콘용탕(P2)을 하부로 이송시키는 역할을 한다.The start block 410 is driven downward in the one-way solidification unit 400 and serves to physically transfer the molten silicon (P2) downward while growing a mold for silicon casting.
상기 스타트블럭(410)은 단결정 실리콘버튼(412) 및 흑연더미바(414)로 구성된다.The start block 410 is composed of a single crystal silicon button 412 and a graphite pile bar 414.
상기 단결정 실리콘버튼(412)는 상기 실리콘용융부(300)로부터 용융된 상기 실리콘용탕(P2)이 상기 일방향응고부(400)의 상부를 통해서 투입되어 상기 실리콘용탕(P2)과 접촉된다.In the single crystal silicon button 412, the molten silicon P2 melted from the molten silicon 300 is introduced through an upper portion of the one-way solidification unit 400 to be in contact with the molten silicon P2.
상기 실리콘용탕(P2)를 이용하여 보다 높은 순도의 폴리실리콘을 제조하기 위해 순도가 높은 단결정 실리콘버튼(412)을 사용한다.Single crystal silicon button 412 having high purity is used to manufacture polysilicon of higher purity using the silicon molten metal P2.
상기 흑연더미바(414)는 그라파이트(graphite) 재질로 이루어진 것을 이용할 수 있다. 특히, 흑연더미바(414)의 재질로는 저밀도 그라파이트가 가장 바람직하다. 상기 흑연더미바(414)의 재질로 저밀도 그라파이트를 사용할 경우, 상기 일방향응고부(400)의 하부 구비된 상기 냉각채널(C)과 초기 형성된 상기 실리콘용탕(P2) 사이의 급격한 온도편차가 발생하는 것을 방지하는 기능을 할 수 있다.The graphite dummy bar 414 may be formed of a graphite material. In particular, low density graphite is most preferred as the material of the graphite pile bar 414. When low density graphite is used as the material of the graphite dummy bar 414, a sudden temperature deviation occurs between the cooling channel C provided below the one-way solidification part 400 and the initially formed silicon melt P2. Function to prevent it.
여기서, 상기 스타트블럭(410)으로 흑연더미바(414)만을 사용하는 것이 아니라 상기 단결정 실리콘버튼(412)을 접합하여 사용한다. 상기 흑연더미바(414)을 적용할 경우, 주조되는 폴리실리콘의 흑연 오염 등의 오염 문제가 발생할 수 있기 때문에 순도가 높은 상기 단결정 실리콘버튼(412)를 구비하여 상기 실리콘용융부(300)로부터 투입되는 상기 실리콘용탕(P2)과 접촉하게 함으로써, 오염을 방지할 수 있다.Here, the single crystal silicon button 412 is bonded to the start block 410 instead of using only the graphite dummy bar 414. When the graphite pile bar 414 is applied, since the contamination problem such as graphite contamination of the polysilicon being cast may occur, the single crystal silicon button 412 having high purity is introduced into the silicon melt part 300. By making contact with the molten silicon (P2), it is possible to prevent contamination.
또한, 일반적인 다결정 실리콘보다 단결정 실리콘이 순도 면에서 앞서기 때문에 상기 단결정 실리콘버튼(412)와 접촉되는 상기 실리콘용탕(P2)의 순도가 올라갈 수 있다.In addition, since the single crystal silicon is higher in purity than the general polycrystalline silicon, the purity of the molten silicon P2 in contact with the single crystal silicon button 412 may be increased.
이와 같이, 상기 실리콘용탕(P2)이 상기 일방향응고부(400)로 투입되어 상기 단결정 실리콘버튼(412)과 접촉함으로써, 상기 실리콘용탕(P2)이 응고될 때 입자의 크기가 큰 실리콘잉곳을 제조할 수 있다. 그래서 응고되는 실리콘잉곳의 입자 크기가 증가하여 입자경계가 줄어들기 때문에 불순물의 제거를 위해서 편석될 영역이 줄어들고, 이에 따라서 편석되는 불순물이 쉽게 이동되기 때문에 정련효율이 증가한다. As such, the silicon molten metal P2 is introduced into the one-way solidification unit 400 and contacts the single crystal silicon button 412 to produce a silicon ingot having a large particle size when the molten silicon P2 solidifies. can do. Therefore, since the particle size of the solidified silicon ingot decreases and the grain boundary is reduced, the area to be segregated for the removal of impurities is reduced, and thus the refining efficiency is increased because the segregated impurities are easily moved.
따라서, 상기 단결정 실리콘버튼(412)은 상기 흑연더미바(414)가 상기 실리콘용탕(P2) 혹은 주조된 실리콘과 직접 접촉하지 않도록 함으로써 그라파이트로부터의 오염을 방지하는 역할을 한다.Accordingly, the single crystal silicon button 412 prevents contamination from graphite by preventing the graphite dummy bar 414 from directly contacting the molten silicon P2 or cast silicon.
한편, 상기 단결정 실리콘버튼(412)는 전체가 단결정으로 구성되지 않고 상기 흑연더미바와 접하지 않는 상면부만 단결정 실리콘으로 형성될 수 있다. 즉, 단결정 실리콘버튼(412) 상면부는 단결정 실리콘으로 구성되고 하부는 다결정 실리콘으로 구성되어 하면이 상기 흑연더미바(414)와 접합된다..On the other hand, the single crystal silicon button 412 is not composed of a single crystal as a whole, only the upper surface portion that does not contact with the graphite dummy bar may be formed of single crystal silicon. That is, the upper surface portion of the single crystal silicon button 412 is made of single crystal silicon and the lower portion is made of polycrystalline silicon, and the lower surface is bonded to the graphite dummy bar 414.
이와 같이 구성된 폴리실리콘 제조장치에 있어서, 상기 스타트블럭(410)은 상기 흑연더미바(414)에 직접 상기 실리콘원료(P1)을 투여하여 전자빔을 이용한 용융을 통해 실리콘버튼을 형성하지 않고, 별도로 제조된 상기 단결정 실리콘버튼(412)을 제조하여 상기 흑연더미바(414)와 접합시켜 제조된다.In the polysilicon manufacturing apparatus configured as described above, the start block 410 is manufactured by separately administering the silicon raw material P1 to the graphite dummy bar 414 without forming a silicon button through melting using an electron beam. The single crystal silicon button 412 is manufactured and bonded to the graphite dummy bar 414.
이때, 상기 흑연더미바(414)와 상기 단결정 실리콘버튼(412)은 유도가열 및 저항가열을 통해서 상기 단결정 실리콘버튼(412)과 상기 흑연더미바(414)를 접합시킨다. 상기 흑연더미바(414)및 상기 단결정 실리콘버튼(412)의 접합과정은 도 5를 참조하여 후술하기로 한다.In this case, the graphite dummy bar 414 and the single crystal silicon button 412 bond the single crystal silicon button 412 and the graphite dummy bar 414 through induction heating and resistance heating. A bonding process of the graphite dummy bar 414 and the single crystal silicon button 412 will be described later with reference to FIG. 5.
이와 같이 구성된 상기 스타트블럭(410)을 구비한 상기 일방향응고부(400)는 상기 실리콘용융부(300)로부터 오버플로우되는 상기 실리콘용탕(P2)을 공급받게 된다. The one-way solidification unit 400 having the start block 410 configured as described above receives the silicon melt P2 overflowed from the silicon melt 300.
그리고 상기 실리콘용탕(P2)를 공급받은 상기 일방향응고부(400)는 상기 제2 전자총(220)으로부터 전자빔을 조사받아 공급된 상기 실리콘용탕(P2)의 용융상태를 유지하면서 상기 스타트블럭(410)을 하부로 구동하여 상기 실리콘용탕(P2)을 하부 방향으로 이송한 후, 상기 실리콘용탕(P2)의 하부를 냉각하여 상기 실리콘용탕(P2)의 하부에서 상부 방향으로 응고와 동시에 정련되도록 한다.In addition, the one-way solidification unit 400 supplied with the molten silicon P2 maintains the molten state of the molten silicon P2 supplied by the irradiation of the electron beam from the second electron gun 220, and the start block 410. After driving the lower to transfer the molten silicon (P2) in the lower direction, and cooling the lower portion of the molten silicon (P2) to be solidified simultaneously with the solidification from the lower portion of the molten silicon (P2) to the upper direction.
여기서, 상기 제 2전자총(220)으로부터 상기 일방향응고부(400)의 상부로 조사되는 전자빔이 1300 ~ 2300 kW/m2의 출력 에너지를 가지며, 상기 실리콘용융부(300)로부터 공급된 상기 실리콘용탕(P2)의 상태를 유지할 수 있도록 한다.Here, the electron beam irradiated from the second electron gun 220 to the upper portion of the one-way solidification unit 400 has an output energy of 1300 ~ 2300 kW / m 2 , the silicon molten metal supplied from the silicon melting part 300 It is possible to maintain the state of (P2).
이와 같이 구성된 폴리실리콘 제조장치의 전체적인 동작에 대해서 살펴보면, 상기 원료투입부(120)로부터 상기 실리콘원료(P1)가 상기 실리콘용융부(300)에 투입되고 투입된 상기 실리콘원료(P1)는 상기 조사부에 의해서 상기 실리콘용탕(P2)으로 변형된다. Looking at the overall operation of the polysilicon manufacturing apparatus configured as described above, the silicon raw material (P1) is introduced into the silicon melt portion 300 from the raw material input portion 120 and the silicon raw material (P1) is injected into the irradiation unit By the molten silicon (P2).
상기 실리콘용융부(300)에 상기 실리콘원료(P1) 투입이 연속적으로 이루어지면서 상기 실리콘용융부(300)에 형성되는 상기 실리콘용탕(P2)의 양이 증가한다. 이에 따라 상기 실리콘용융부(300)에서 오버플로우(overflow)된 상기 실리콘용탕(P2)이 상기 일방향응고부(400)로 공급된다.While the silicon raw material P1 is continuously introduced into the silicon melt part 300, the amount of the silicon melt P2 formed in the silicon melt part 300 increases. Accordingly, the silicon melt P2 overflowed from the silicon melt part 300 is supplied to the one-way solidification part 400.
상기 일방향응고부(400)에서는 상기 실리콘용융부(300)에서 공급되는 상기 실리콘용탕(P2)이 상기 제 2전자총(220)에 의하여 가속, 집적된 전자빔에 의해 용융상태를 유지한다. 상기 실리콘용탕(P2)의 용융상태가 유지되면서 상기 스타트블럭(410)에 의하여 하부 방향으로 이송된 후 상기 냉각채널(C)을 통하여 상부방향으로 응고 및 주조되어 폴리실리콘이 형성된다.In the one-way solidification unit 400, the molten silicon P2 supplied from the silicon molten unit 300 is maintained in a molten state by an electron beam accelerated and integrated by the second electron gun 220. The molten state of the silicon molten metal P2 is maintained while being transferred downward by the start block 410 and then solidified and cast upward through the cooling channel C to form polysilicon.
상기 일방향응고부(400)는 수냉동 도가니와 마찬가지로 하부에 상기 냉각채널(C)이 형성된 구리 재질의 주조 용기를 구비할 수 있다.The one-way solidification unit 400 may include a casting container made of copper, in which the cooling channel C is formed, similarly to a water cooling crucible.
다음으로, 도 3 및 도 4를 참조하여 상기 흑연더미바 및 상기 실리콘버튼의 접합에 대해서 살펴보면 다음과 같다.Next, the bonding of the graphite dummy bar and the silicon button will be described with reference to FIGS. 3 and 4.
도 3은 도2의 스타트블럭에서 흑연더미바 및 단결정 실리콘버튼의 접합면이 피라미드형태로 형성된 것을 나타내는 분해사시도이고 도 4는 도 2의 스타트블럭에서 흑연더미바 및 단결정 실리콘버튼의 접합면이 복수 개의 홀 및 돌출부로 형성된 것을 나타내는 분해사시도이다.3 is an exploded perspective view showing that the bonding surface of the graphite dummy bar and the single crystal silicon button is formed in a pyramid shape in the start block of FIG. 2, and FIG. 4 is a plurality of bonding surfaces of the graphite dummy bar and the single crystal silicon button in the start block of FIG. 2. It is an exploded perspective view which shows what was formed of four holes and protrusions.
상기 단결정 실리콘버튼(412)와 상기 흑연더미바(414)로 구성된 상기 스타트블럭(410)은 상기 실리콘용융부(300)로부터 오버플로우 되어서 상기 일방향응고부(400)에 공급되는 상기 실리콘용탕(P2)을 상기 냉각채널(C)이 형성된 상기 일방향응고부(400)의 하부로 이송시킴으로써 상기 실리콘용탕(P2)에 포함된 불순물을 편석 시킴과 동시에 응고시켜 폴리실리콘을 제조한다.The start block 410 composed of the single crystal silicon button 412 and the graphite dummy bar 414 overflows from the silicon melting part 300 and is supplied to the one-way solidification part 400. ) Is transferred to the lower portion of the one-way solidification unit 400 in which the cooling channel C is formed to segregate and solidify the impurities contained in the molten silicon P2 and to prepare polysilicon.
여기서, 상기 스타트블럭(410)이 상기 일방향응고부(400)의 하부로 이동할 때, 상기 흑연더미바(414) 및 상기 단결정 실리콘버튼(412)가 서로 분리되는 경우가 발생한다. 이를 방지하기 위해서 상기 단결정 실리콘버튼(412) 및 상기 흑연더미바(414)의 접합면에 일정한 패턴을 형성하여 접합면의 접합면적을 크게 해줄 수 있다.Here, when the start block 410 moves to the lower portion of the one-way solidification unit 400, the graphite pile bar 414 and the single crystal silicon button 412 may be separated from each other. In order to prevent this, a predetermined pattern may be formed on the bonding surface of the single crystal silicon button 412 and the graphite dummy bar 414 to increase the bonding area of the bonding surface.
도 3에 도시된 바와 같이, 상기 흑연더미바(414)는 횡방향을 따라 상면이 피라미드형태로 형성되며 상기 단결정 실리콘버튼(412)은 하면이 상기 흑연더미바(414)의 하면에 주합되도록 형성된다.As shown in FIG. 3, the graphite pile bar 414 has a top surface formed in a pyramid shape along a lateral direction, and the single crystal silicon button 412 is formed so that the bottom surface thereof is joined to the bottom surface of the graphite pile bar 414. do.
이와 같이, 상기 흑연더미바(414)와 상기 단결정 실리콘버튼(412)의 접합면이 피라미드형태로 형성되어 서로 접합됨으로써 상기 스타트블럭(410)을 구성하게 된다.As such, the bonding surface of the graphite dummy bar 414 and the single crystal silicon button 412 is formed in a pyramid shape and bonded to each other to form the start block 410.
여기서, 상기 단결정 실리콘버튼(412)은 상기 흑연더미바(414)의 상부에 상기 실리콘원료(P1)을 투입하여 용융시키는 방법으로 상기 흑연더미바(414)와 접합되는 것이 아니라, 별도로 외부에서 상기 단결정 실리콘버튼(412)를 제조하여 상기 흑연더미바(414)의 상부에 접합시킨다. 이때, 상기 단결정 실리콘버튼(412)와 상기 흑연더미바(414)는 유도가열 및 저항가열을 통해서 접합된다.Here, the single crystal silicon button 412 is not bonded to the graphite dummy bar 414 by injecting and melting the silicon raw material P1 on the graphite dummy bar 414, and separately from the outside. The single crystal silicon button 412 is manufactured and bonded to the upper portion of the graphite pile bar 414. In this case, the single crystal silicon button 412 and the graphite dummy bar 414 are bonded through induction heating and resistance heating.
이와 같이, 상기 흑연더미바(414)와 상기 단결정 실리콘버튼(412)의 접합면이 일정한 패턴을 가지도록 피라미드 형태로 형성됨으로써, 상기 흑연더미바(414)와 상기 단결정 실리콘버튼(412)의 접합면적이 커지게 되므로 상기 흑연더미바(414) 및 상기 단결정 실리콘버튼(412)의 접합품질을 향상시킬 수 있다.As such, the bonding surface of the graphite dummy bar 414 and the single crystal silicon button 412 is formed in a pyramid shape to have a predetermined pattern, thereby bonding the graphite dummy bar 414 to the single crystal silicon button 412. Since the area becomes larger, the bonding quality of the graphite pile bar 414 and the single crystal silicon button 412 can be improved.
이어서, 도 4를 참조하여 상기 단결정 실리콘버튼(412)와 상기 흑연더미바(414)의 접합면이 변형된 형태에 대해서 살펴보면 다음과 같다.Next, referring to FIG. 4, a form in which the bonding surface of the single crystal silicon button 412 and the graphite dummy bar 414 is modified is as follows.
도 4에 도시된 바와 같이, 상기 단결정 실리콘버튼(412)은 하면에 복수 개의 홀(412a)이 형성되며, 상기 흑연더미바(414)의 상면에는 상기 단결정 실리콘버튼(412)에 구비된 복수 개의 상기 홀(412a)에 주합되도록 복수 개의 돌출부(414a)가 형성된다.As shown in FIG. 4, the single crystal silicon button 412 has a plurality of holes 412a formed on a lower surface thereof, and a plurality of holes provided in the single crystal silicon button 412 formed on an upper surface of the graphite pile bar 414. A plurality of protrusions 414a are formed to be joined to the holes 412a.
이와 같이 형성된 상기 단결정 실리콘버튼(412)과 상기 흑연더미바(414)는 상기 단결정 실리콘버튼(412)의 하면과 상기 흑연더미바(414)의 하면이 접합되어 상기 스타트블럭이 구성된다.The single crystal silicon button 412 and the graphite dummy bar 414 formed as described above are joined to the bottom surface of the single crystal silicon button 412 and the bottom surface of the graphite dummy bar 414 to form the start block.
상기 단결정 실리콘버튼(412)과 상기 흑연더미바(414)의 상기 홀(412a)및 상기 돌출부(414)가 서로 주합되면서 접합면의 접합면적이 증가하며 이를 통해서 상기 단결정 실리콘버튼(412)과 상기 흑연더미바(414)의 접합품질이 증가할 뿐만 아니라 상기 단결정 실리콘버튼(412)가 상기 흑연더미바(414)에 의해서 오염되는 것을 방지할 수 있다.As the holes 412a and the protrusions 414 of the single crystal silicon button 412 and the graphite dummy bar 414 are joined to each other, a bonding area of a bonding surface increases, whereby the single crystal silicon button 412 and the In addition to increasing the bonding quality of the graphite pile bar 414, it is possible to prevent the single crystal silicon button 412 from being contaminated by the graphite pile bar 414.
여기서, 상기 단결정 실리콘버튼(412)에 복수 개의 상기 홀(412a)가 형성되고 상기 흑연더미바(414)에 복수 개의 돌출부(414a)가 형성되어 있지만 이는 특별한 형태로 한정하는 것이 아니다. 상기 단결정 실리콘버튼(412)에 복수 개의 돌출부가 형성되고 상기 흑연더미바(414)에 복수 개의 홀이 형성될 수도 있다.Here, although the plurality of holes 412a are formed in the single crystal silicon button 412 and the plurality of protrusions 414a are formed in the graphite dummy bar 414, this is not limited thereto. A plurality of protrusions may be formed in the single crystal silicon button 412 and a plurality of holes may be formed in the graphite dummy bar 414.
뿐만 아니라 도면에 도시되지는 않았지만, 상기 흑연더미바(414)의 상면에 분말형태의 흑연가루를 뿌려 표면의 거칠기를 증가시킴으로써, 상기 단결정 실리콘버튼(412)과 상기 흑연더미바(414)의 접합품질을 향상시킬 수 있다.In addition, although not shown in the drawing, by spraying powdered graphite powder on the upper surface of the graphite dummy bar 414 to increase the roughness of the surface, the bonding of the single crystal silicon button 412 and the graphite dummy bar 414 Can improve the quality.
이상으로, 도 3및 도4를 참조하여 상기 단결정 실리콘버튼(412)과 상기 흑연더미바(414)의 접합면에 형성되어 접합면적을 증가시킨 상기 스타트블럭(410)의 실시예에 대해서 살펴보았다. As described above, the embodiment of the start block 410 formed on the bonding surface of the single crystal silicon button 412 and the graphite dummy bar 414 to increase the bonding area has been described with reference to FIGS. 3 and 4. .
하지만, 상기 흑연더미바(414) 및 상기 단결정 실리콘버튼(412)의 형상을 한정하는 것이 아니라 본 실시예의 명확한 이해를 돕기 위해서 선택한 것이다. 상기 흑연더미바(414)의 상면과 이에 대응되도록 상기 단결정 실리콘버튼(412)의 하면이 패턴을 가지도록 형성되어 상기 흑연더미바(414)와 상기 단결정 실리콘버튼(412)의 접합면적이 증가할 수 있다면 어떠한 형태도 적용이 가능할 것이다.However, the shape of the graphite pile bar 414 and the single crystal silicon button 412 is not limited, but is selected to help a clear understanding of the present embodiment. An upper surface of the graphite dummy bar 414 and a lower surface of the single crystal silicon button 412 are formed to have a pattern so that the junction area of the graphite dummy bar 414 and the single crystal silicon button 412 may increase. If possible, any form may be applicable.
다음으로, 도 5를 참조하여 상기 단결정 실리콘버튼(412) 및 상기 흑연더미바(414)가 접합되는 과정을 살펴보면 다음과 같다.Next, referring to FIG. 5, the process of bonding the single crystal silicon button 412 and the graphite dummy bar 414 is as follows.
도 5는 도 2의 단결정 실리콘버튼 및 흑연더미바의 접합과정을 나타낸 도면이다.FIG. 5 is a view illustrating a bonding process of the single crystal silicon button and the graphite dummy bar of FIG. 2.
먼저, 도 5의 (a)에 도시된 바와 같이 상기 흑연더미바(414)의 상면을 앞서 도 3및 도 4를 참조하여 설명한 형태로 패터닝을 한 후, 상기 흑연더미바(414)의 상부에 상기 단결정 실리콘버튼(412)이 거치시킨다. 그리고 하부에 위치한 상기 흑연더미바(414)를 유도가열 및 저항가열을 하여 상기 단결정 실리콘버튼(412)의 하부면에 열을 전달한다..First, as shown in FIG. 5A, the upper surface of the graphite pile bar 414 is patterned in the form described with reference to FIGS. 3 and 4, and then the upper portion of the graphite pile bar 414 is formed. The single crystal silicon button 412 is mounted. In addition, the graphite dummy bar 414 located at the lower part is subjected to induction heating and resistance heating to transfer heat to the lower surface of the single crystal silicon button 412.
도 5의 (b)에 도시된 바와 같이, 상기 흑연더미바(414)를 가열하면, 상기 흑연더미바(414)의 상면에 대응되는 형태로 상기 단결정 실리콘버튼(412)의 하면이 용융되며, 상기 단결정 실리콘버튼(412)의 하면이 충분히 용융되면 가열을 중지한다. 이와 같이 상기 단결정 실리콘버튼(412)의 하면이 용융된 후 다시 응고되는 과정을 통해서 상기 단결정 실리콘버튼(412)의 하면이 상기 흑연더미바(414)의 상면에 대응되는 형태로 접합된다.As shown in FIG. 5B, when the graphite pile bar 414 is heated, the bottom surface of the single crystal silicon button 412 is melted in a form corresponding to the top surface of the graphite pile bar 414. When the lower surface of the single crystal silicon button 412 is sufficiently melted, the heating is stopped. As such, the bottom surface of the single crystal silicon button 412 is melted and then solidified again to bond the bottom surface of the single crystal silicon button 412 in a shape corresponding to the top surface of the graphite dummy bar 414.
이와 같이 상기 흑연더미바(414)를 가열하여 상부에 거치된 상기 단결정 실리콘버튼(412)의 하면의 용융을 통해 상기 흑연더미바(414)와 접합시킴으로써, 상기 단결정 실리콘버튼(412)이 접합과정에서 발생할 수 있는 상기 흑연더미바(414)로부터의 오염을 방지할 수 있다.As such, the single crystal silicon button 412 is bonded by heating the graphite dummy bar 414 and bonding the graphite dummy bar 414 through melting of a lower surface of the single crystal silicon button 412 mounted on the upper portion. To prevent contamination from the graphite pile bar 414 that may occur in.
이와 같은 방법을 통해 상기 단결정 실리콘버튼(412) 및 상기 흑연더미바(414)의 접합에 있어서, 상기 흑연더미바(414)와 상기 단결정 실리콘버튼(412)의 접합면적이 증가하여 보다 높은 접착강도를 가지게 된다.In this manner, in the bonding of the single crystal silicon button 412 and the graphite dummy bar 414, the bonding area of the graphite dummy bar 414 and the single crystal silicon button 412 is increased, thereby increasing the adhesive strength. Will have
다음으로, 도 6을 참조하여 본 발명에 따른 폴리실리콘이 제조되는 전체적인 과정에 대해서 살펴보면 다음과 같다.Next, referring to Figure 6 with reference to the overall process for producing a polysilicon according to the present invention.
도 6은 도 2의 폴리실리콘 제조장치에 의해서 폴리실리콘이 제조되는 과정을 나타낸 도면이다.FIG. 6 is a view illustrating a process of manufacturing polysilicon by the polysilicon manufacturing apparatus of FIG. 2.
먼저, 도 6의 (a)에 도시된 바와 같이 상기 실리콘용융부(300)에 상기 원료투입부(120)로부터 상기 실리콘원료(P1)가 투입된 후 상기 전자빔조사부(200)를 통해 전자빔을 조사하게 된다. 이때, 상기 전자빔조사부(200)에서 전자빔을 이용해 상기 실리콘원료(P1)를 용융시키기 위해서는 상기 진공챔버(100)내부가 일정수준 이상의 고진공 상태가 되어야 한다. 여기서, 상기 실리콘용융부(300)에 투입되는 상기 실리콘원료(P1)는 순도 2N, 평균입경 1 ~ 2mm인 입자 형태의 상기 실리콘원료(P1)를 이용할 수 있다.First, as shown in (a) of FIG. 6, the silicon raw material P1 is introduced into the silicon melting part 300 from the raw material input part 120, and then the electron beam is irradiated through the electron beam irradiation part 200. do. In this case, in order to melt the silicon raw material P1 using the electron beam in the electron beam irradiation unit 200, the inside of the vacuum chamber 100 should be in a high vacuum state of a predetermined level or more. Here, the silicon raw material P1 injected into the silicon melting part 300 may use the silicon raw material P1 in the form of particles having a purity of 2N and an average particle diameter of 1 to 2 mm.
이와 같이, 고진공 상태의 상기 진공챔버(100)에서 전자빔에 의해 상기 실리콘원료(P1)가 용융된다. As such, the silicon raw material P1 is melted by the electron beam in the vacuum chamber 100 in a high vacuum state.
이와 함께, 상기 전자빔조사부(200)는 상기 일방향응고부(400)의 상부에도 전자빔을 조사하여 상기 실리콘용융부(300)로부터 이동된 상기 실리콘용탕(P2)을 냉각되지 않도록 가열해준다.In addition, the electron beam irradiation unit 200 irradiates an electron beam to the upper portion of the one-way solidification unit 400 to heat the silicon melt P2 moved from the silicon melting unit 300 so as not to be cooled.
여기서, 상기 제 1전자총(210)은 상기 실리콘용융부(300) 상부에서 제 1전자빔을 상기 실리콘용융부(300)로 조사하며, 상기 제 2전자총(220)은 제 2전자빔을 상기 일방향응고부(400)의 상부에 조사한다. The first electron gun 210 irradiates the first electron beam to the silicon melt part 300 from the silicon melt part 300, and the second electron gun 220 emits a second electron beam to the one-way solidification part. Irradiate to the top of 400.
이와 같이, 상기 실리콘원료(P1)는 상기 실리콘용융부(300) 내부에서 상기 전자빔조사부(200)로부터 조사되는 전자빔에 의해서 용융되어 상기 실리콘용탕으로 형성될 뿐만 아니라, 온도가 증가됨에 따라서 상기 실리콘원료(P1)에 포함되어 있던 불순물이 휘발되어 제거된다. As such, the silicon raw material P1 is melted by the electron beam irradiated from the electron beam irradiating part 200 inside the silicon melting part 300 to be formed as the silicon melt, and the silicon raw material as the temperature increases. The impurities contained in (P1) are volatilized and removed.
상기 제 1전자총(210)으로부터 조사되는 전자빔에 의하여 상기 실리콘원료(P1)가 용융되면서, 실리콘원료에 포함된 알루미늄(Al), 칼슘(Ca), 인(P), 마그네슘(Mg), 망간(Mn) 등과 같은 휘발성 불순물이 진공 휘발된다.While the silicon raw material P1 is melted by the electron beam irradiated from the first electron gun 210, aluminum (Al), calcium (Ca), phosphorus (P), magnesium (Mg), and manganese (Mg) included in the silicon raw material ( Volatile impurities such as Mn) are vacuum volatilized.
실리콘에 비하여 끓는점과 증기압이 상대적으로 낮은 휘발성 불순물은 높은 진공도와 전자빔에 의한 높은 가열온도에 의해 휘발하게 된다. 이때, 상기 제 1전자총(210)에서 조사되는 전자빔 출력 에너지를 상승시키고 전자빔 조사 시간을 증가시킬 경우 정련 효율을 향상시킬 수 있다.Volatile impurities with a lower boiling point and vapor pressure than silicon are volatilized by high vacuum and high heating temperature by electron beam. In this case, when the electron beam output energy irradiated from the first electron gun 210 is increased and the electron beam irradiation time is increased, refining efficiency may be improved.
상술한 바와 같이, 상기 진공챔버(100) 내부가 고진공 상태로 유지되면서 상기 전자빔조사부(200)를 통해 상기 실리콘용융부(300)에서 상기 실리콘용탕(P2)을 생성하며, 휘발정련을 통해서 상기 실리콘용탕(P2)의 불순물을 제거하게 된다. As described above, while the inside of the vacuum chamber 100 is maintained in a high vacuum state, the silicon melt P2 is generated in the silicon melt part 300 through the electron beam irradiation part 200, and the silicon is volatilized. Impurities in the molten metal P2 are removed.
이와 같이, 불순물이 제거된 상기 실리콘용탕(P2)은 도 6의 (a)와 같이 상기 실리콘용융부(300)로부터 상기 일방향응고부(400)로 오버플로우 되어 투입된다.As such, the molten silicon P2 from which impurities are removed is overflowed from the molten silicon 300 to the unidirectional solidifying part 400 as shown in FIG. 6A.
상기 실리콘용융부(300)으로부터 상기 실리콘용탕(P2)를 공급받은 상기 일방향응고부(400)는 도 6의 (b)에 도시된 바와 같이 상기 스타트블럭(410)을 하부방향으로 이송시키게 된다. 이때, 상기 일방향응고부(400)의 상부에서 상기 실리콘용탕(P2)가 바로 응고되지 않도록 상기 제 2전자총(220)이 상기 일방향응고부(400)의 상부에 전자빔을 조사하게 된다.The one-way solidification unit 400 supplied with the molten silicon P2 from the molten silicon 300 transfers the start block 410 downward as shown in FIG. At this time, the second electron gun 220 is irradiated with an electron beam on the upper portion of the one-way solidification unit 400 so that the molten silicon (P2) is not immediately solidified at the upper portion of the one-way solidification unit 400.
상기 스타트블럭(410)이 상기 일방향응고부(400)의 하부방향으로 이동됨으로써 상기 단결정 실리콘버튼(412)에 접촉한 상기 실리콘용탕(P2)은 상기 단결정 실리콘버튼(412)을 따라서 하부방향으로 이송된다.As the start block 410 is moved downward in the one-way solidification unit 400, the molten silicon P2 in contact with the single crystal silicon button 412 is transferred downward along the single crystal silicon button 412. do.
여기서, 상기 일방향응고부(400)의 하부에는 상기 냉각채널(C)이 형성되어 상기 일방향응고부(400)의 하부를 냉각시키게 된다.Here, the cooling channel (C) is formed in the lower portion of the one-way solidification unit 400 to cool the lower portion of the one-way solidification unit 400.
그래서 상기 스타트블럭(410)을 따라서 이송되는 상기 실리콘용탕(P2)이 상기 일방향응고부(400)의 하부에서 상기 냉각채널(C)에 의해서 응고된다.Thus, the molten silicon P2 transferred along the start block 410 is solidified by the cooling channel C at the lower portion of the one-way solidification unit 400.
한편, 상기 스타트블럭(410)은 상기 원료투입부(120)로부터 상기 실리콘원료(P1)이 투입되는 속도에 대응하는 속도로 하강하도록 구동될 수 있다. Meanwhile, the start block 410 may be driven to descend at a speed corresponding to the speed at which the silicon raw material P1 is injected from the raw material input part 120.
상기 스타트블럭(410)이 너무 느린 속도로 하강할 경우 상기 실리콘용탕(P2)의 수위가 지속적으로 상승하여 공정제어가 불가능하며, 상기 스타트블럭(410)이 너무 빠른 속도로 하강할 경우 상기 실리콘용탕(P2)의 수위가 지속적으로 낮아져, 상기 일방향응고부(400) 하부로 상기 실리콘용탕(P2)이 새어나가는 문제점이 있다.If the start block 410 falls at a too slow speed, the level of the molten silicon P2 is continuously raised so that process control is impossible. If the start block 410 falls at a too fast speed, the silicon melt is dropped. There is a problem that the water level of (P2) is continuously lowered, the silicon molten metal (P2) leaks to the one-way solidification unit 400 lower.
이 과정에서 용융 실리콘에 포함된 철(Fe), 니켈(Ni), 티타늄(Ti), 크롬(Cr), 구리(Cu) 등의 금속 불순물이 고액 계면을 따라 상부로 이동된다. 이러한 불순물의 편석 효과는, 실리콘 응고 과정에서 고체상태와 액체상태의 계면이 성장방향과 수직하게 유지되면서, 고체와 액체간의 온도차가 클 때 충분히 발휘될 수 있다.In this process, metal impurities such as iron (Fe), nickel (Ni), titanium (Ti), chromium (Cr), and copper (Cu) included in the molten silicon are moved upward along the solid-liquid interface. The segregation effect of such impurities can be sufficiently exhibited when the temperature difference between the solid and the liquid is large while the interface between the solid state and the liquid state is perpendicular to the growth direction during the silicon solidification process.
이와 같이, 상기 스타트블럭(410)의 하강을 통해서 상기 일방향응고부(400)는 상기 실리콘용융부(300)로부터 공급받은 상기 실리콘용탕(P2)을 수직 방향으로 성장시킴으로써 순도가 높은 폴리실리콘을 제조하게 된다.As described above, the one-way solidification part 400 grows the silicon melt P2 supplied from the silicon melt part 300 in the vertical direction through the falling of the start block 410 to manufacture polysilicon having high purity. Done.
이상과 같이 본 발명에 대한 바람직한 실시예를 살펴보았으며, 앞서 설명한 실시예 외에도 본 발명의 취지나 범주에서 벗어남이 없이 다른 형태로 구체화될 수 있다. 그러므로 본 실시예는 특정형태로 제한적인 것이 아니라 예시적인 것으로 여겨져야 하고, 이에 따라 본 발명은 상술한 설명에 한정되지 않고 첨부된 청구항의 범주 및 그 동등 범위 내에서 변경될 수도 있다.As described above, a preferred embodiment of the present invention has been described, and in addition to the above-described embodiments, it may be embodied in other forms without departing from the spirit or scope of the present invention. Therefore, the present embodiments are to be considered as illustrative and not restrictive, and the invention is not to be limited to the foregoing description, and may be modified within the scope of the appended claims and their equivalents.

Claims (12)

  1. 진공 분위기를 유지하는 진공챔버;A vacuum chamber for maintaining a vacuum atmosphere;
    상기 진공챔버에 구비되어 전자빔을 조사하는 전자빔조사부;An electron beam irradiator provided in the vacuum chamber to irradiate an electron beam;
    입자형태의 실리콘원료가 투입되며, 상기 전자빔조사부로부터 전자빔이 조사되는 영역 내에 배치되어 전자빔에 의해 실리콘원료가 용융되어 실리콘용탕이 만들어지는 실리콘용융부;A silicon molten part in which a silicon raw material in a particle form is input and disposed in a region where the electron beam is irradiated from the electron beam irradiating part so that the silicon raw material is melted by the electron beam to form a silicon melt;
    하부에 냉각채널이 형성되어 상기 실리콘용융부로부터 공급되는 실리콘용탕을 응고시키는 일방향응고부; 및A one-way solidification unit formed at a lower portion thereof to solidify the molten silicon supplied from the silicon melt portion; And
    상기 일방향응고부 내부에 구비되며 별도로 제조되어 상기 실리콘용융부로부터 공급되는 실리콘용탕을 상기 일방향응고부 하부로 이송시키는 단결정 실리콘버튼 및 상기 단결정 실리콘버튼 하면에 접합되며 상기 단결정 실리콘버튼이 이동되도록 하는 흑연더미바를 을 포함하는 스타트블럭;The single crystal silicon button is provided inside the one-way solidification part and manufactured separately, and is bonded to a single crystal silicon button for transferring the silicon melt supplied from the silicon melting part to the lower portion of the one-way solidification part and the lower surface of the single crystal silicon button, and the single crystal silicon button is moved. A start block including a dummy bar;
    을 포함하여 구성되는 단결정 실리콘버튼을 이용한 폴리실리콘 제조장치.Polysilicon manufacturing apparatus using a single crystal silicon button comprising a.
  2. 제 1항에 있어서,The method of claim 1,
    상기 단결정 실리콘버튼은 하면에 일정한 패턴을 가지도록 형성되며, 상기 흑연더미바는 상면이 상기 단결정 실리콘버튼의 하면에 대응되는 패턴을 가지도록 형성되어 서로 주합되도록 접합되는 것을 특징으로 하는 단결정 실리콘버튼을 이용한 폴리실리콘 제조장치.The single crystal silicon button is formed to have a predetermined pattern on the lower surface, and the graphite dummy bar is formed so that the upper surface has a pattern corresponding to the lower surface of the single crystal silicon button is bonded so as to join each other. Polysilicon production apparatus used.
  3. 제 2항에 있어서,The method of claim 2,
    상기 패턴은,The pattern is,
    상기 단결정 실리콘버튼 및 상기 흑연더미바의 접촉면적이 상기 흑연더미바 또는 상기 단결정 실리콘버튼의 횡단면보다 크게 형성되는 것을 특징으로 하는 단결정 실리콘버튼을 이용한 폴리실리콘 제조장치.Apparatus for producing polysilicon using a single crystal silicon button, characterized in that the contact area between the single crystal silicon button and the graphite pile bar is larger than the cross section of the graphite pile bar or the single crystal silicon button.
  4. 제 3항에 있어서,The method of claim 3, wherein
    상기 단결정 실리콘버튼은 하면이 피라미드형태로 형성되고 상기 흑연더미바는 상면이 상기 단결정 실리콘버튼에 대응되는 형태로 형성되는 것을 특징으로 하는 단결정 실리콘버튼을 이용한 폴리실리콘 제조장치.The single crystal silicon button is a polysilicon manufacturing apparatus using a single crystal silicon button, characterized in that the bottom surface is formed in a pyramid shape and the graphite dummy bar is formed in a shape corresponding to the single crystal silicon button.
  5. 제 3항에 있어서,The method of claim 3, wherein
    상기 단결정 실리콘버튼은 하면에 복수 개의 홀 또는 복수 개의 돌출부가 형성되고, 상기 흑연더미바는 상면이 상기 단결정 실리콘버튼에 대응되는 형태로 형성되는 것을 특징으로 하는 단결정 실리콘버튼을 이용한 폴리실리콘 제조장치.The single crystal silicon button has a plurality of holes or a plurality of protrusions are formed on the lower surface, the graphite dummy bar is a polysilicon manufacturing apparatus using a single crystal silicon button, characterized in that the upper surface is formed in a form corresponding to the single crystal silicon button.
  6. 제 1항에 있어서,The method of claim 1,
    상기 스타트블럭은,The start block is,
    유도가열 또는 저항가열을 통해서 상기 단결정 실리콘버튼 및 상기 흑연더미바가 접합되는 것을 특징으로 하는 단결정 실리콘버튼을 이용한 폴리실리콘 제조장치.Apparatus for producing polysilicon using a single crystal silicon button characterized in that the single crystal silicon button and the graphite pile bar is bonded through induction heating or resistance heating.
  7. 제 1항에 있어서,The method of claim 1,
    상기 실리콘용융부는,The silicon melt portion,
    복수 개로 구성되는 단결정 실리콘버튼을 이용한 폴리실리콘 제조장치.Polysilicon manufacturing apparatus using a single crystal silicon button composed of a plurality.
  8. 제 1항에 있어서,The method of claim 1,
    상기 전자빔조사부는,The electron beam irradiation unit,
    상기 일방향응고부의 상부에 전자빔을 조사하는 것을 특징으로 하는 단결정 실리콘버튼을 이용한 폴리실리콘 제조장치.Apparatus for producing polysilicon using a single crystal silicon button, characterized in that for irradiating the electron beam on the one-way solidification portion.
  9. 제 1항에 있어서,The method of claim 1,
    상기 전자빔조사부는,The electron beam irradiation unit,
    복수 개로 구성되어 상기 실리콘용융부 및 상기 일방향응고부에 전자빔을 조사하는 것을 특징으로 하는 단결정 실리콘버튼을 이용한 폴리실리콘 제조장치.Apparatus for manufacturing polysilicon using a single crystal silicon button, characterized in that the plurality of pieces to irradiate the electron beam to the silicon melt portion and the one-way solidification portion.
  10. 제 1항에 있어서,The method of claim 1,
    상기 실리콘용융부는,The silicon melt portion,
    하부에 냉각 채널이 형성된 구리 재질의 주조 용기를 구비하는 것을 특징으로 단결정 실리콘버튼을 이용한 폴리실리콘 제조 장치.An apparatus for producing polysilicon using a single crystal silicon button, characterized in that it comprises a casting vessel made of copper formed with a cooling channel in the lower portion.
  11. 제 1항에 있어서,The method of claim 1,
    상기 일방향응고부는The one-way solidification unit
    하부에 냉각 채널이 형성된 구리 재질의 주조 용기를 구비하는 것을 특징으로 하는 단결정 실리콘버튼을 이용한 폴리실리콘 제조 장치.Apparatus for producing polysilicon using a single crystal silicon button characterized in that it comprises a casting vessel made of a copper material formed with a cooling channel in the lower portion.
  12. 제 1항 내지 제 11항 중 어느 한 항에 있어서,The method according to any one of claims 1 to 11,
    상기 단결정 실리콘버튼은,The single crystal silicon button,
    상면이 단결정 실리콘으로 형성되는 것을 특징으로 하는 단결정 실리콘버튼을 이용한 폴리실리콘 제조장치.Polysilicon manufacturing apparatus using a single crystal silicon button, the upper surface is formed of single crystal silicon.
PCT/KR2013/004524 2013-05-23 2013-05-23 Polysilicon manufacturing apparatus using single crystal silicon button WO2014189160A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2013/004524 WO2014189160A1 (en) 2013-05-23 2013-05-23 Polysilicon manufacturing apparatus using single crystal silicon button

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2013/004524 WO2014189160A1 (en) 2013-05-23 2013-05-23 Polysilicon manufacturing apparatus using single crystal silicon button

Publications (1)

Publication Number Publication Date
WO2014189160A1 true WO2014189160A1 (en) 2014-11-27

Family

ID=51933704

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/004524 WO2014189160A1 (en) 2013-05-23 2013-05-23 Polysilicon manufacturing apparatus using single crystal silicon button

Country Status (1)

Country Link
WO (1) WO2014189160A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH081287A (en) * 1994-06-13 1996-01-09 Daido Steel Co Ltd Continuous casting method and dummy bar cutting off device
JPH10251008A (en) * 1997-03-14 1998-09-22 Kawasaki Steel Corp Method for solidifying and refining metal silicon
KR20110026005A (en) * 2008-08-01 2011-03-14 가부시키가이샤 아루박 Method for refining metal
KR20120041654A (en) * 2010-10-21 2012-05-02 가부시키가이샤 사무코 Method of manufacturing polycrystalline silicon
KR20120058330A (en) * 2010-11-29 2012-06-07 한국에너지기술연구원 Apparatus for manufacturing polysilicon based electron-beam melting using dummy bar and method of manufacturing polysilicon using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH081287A (en) * 1994-06-13 1996-01-09 Daido Steel Co Ltd Continuous casting method and dummy bar cutting off device
JPH10251008A (en) * 1997-03-14 1998-09-22 Kawasaki Steel Corp Method for solidifying and refining metal silicon
KR20110026005A (en) * 2008-08-01 2011-03-14 가부시키가이샤 아루박 Method for refining metal
KR20120041654A (en) * 2010-10-21 2012-05-02 가부시키가이샤 사무코 Method of manufacturing polycrystalline silicon
KR20120058330A (en) * 2010-11-29 2012-06-07 한국에너지기술연구원 Apparatus for manufacturing polysilicon based electron-beam melting using dummy bar and method of manufacturing polysilicon using the same

Similar Documents

Publication Publication Date Title
JP3000109B2 (en) Manufacturing method of high purity silicon ingot
JP5039696B2 (en) Method and apparatus for refining molten material
WO2014126272A1 (en) Device for manufacturing siox nanopowder which is equipped with silicon melting crucible having sliding-type discharge structure, and method for manufacturing siox nanopowder using same
US8409319B2 (en) Silicon purification method
JP2012502879A (en) Unidirectional solidification furnace to reduce molten and wafer contaminants
US20110104036A1 (en) Method and apparatus for purifying metallurgical grade silicon by directional solidification and for obtaining silicon ingots for photovoltaic use
WO2014126273A1 (en) Device for manufacturing high-purity mox nanostructure and manufacturing method therefor
WO2013111314A1 (en) Silicon purification method
CN101850975A (en) Method for purifying silicon by removing phosphorus and metal impurities
KR101574247B1 (en) Continuous casting equipment and method for high purity silicon
WO2014189160A1 (en) Polysilicon manufacturing apparatus using single crystal silicon button
WO2012055127A1 (en) Environment servo type clean metal casting mold
JP2005255417A (en) Method for purifying silicon
JP5572296B2 (en) Water-cooled crucible and electron beam melting furnace
KR101381153B1 (en) Poly Silicon Manufacturing Apparatus Using Single Crystal Silicon Button
US8997524B2 (en) Apparatus for manufacturing polysilicon based electron-beam melting using dummy bar and method of manufacturing polysilicon using the same
WO2014148683A1 (en) Silicon ingot manufacturing device
KR20110004129A (en) Manufacturing method for silicon
KR100981134B1 (en) A high-purity silicon ingot with solar cell grade, a system and method for manufacturing the same by refining a low-purity scrap silicon
WO2013125756A1 (en) Method for producing silicon for solar cells by metallurgical refining process
KR101356442B1 (en) Method of manufacturing polysilicon using apparatus for manufacturing polysilicon based electron-beam melting using dummy bar
JP3811310B2 (en) Graphite crucible
WO2017160121A9 (en) Ultra-high temperature precipitation process for manufacturing polysilicon
JP2005059015A (en) Device for melting and casting metal
KR101396478B1 (en) Poly Silicon Manufacturing Apparatus Using Sloped One-Way Coagulation Part

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13884999

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13884999

Country of ref document: EP

Kind code of ref document: A1