WO2014189107A1 - 信号処理方法、検波方法および検波装置 - Google Patents
信号処理方法、検波方法および検波装置 Download PDFInfo
- Publication number
- WO2014189107A1 WO2014189107A1 PCT/JP2014/063588 JP2014063588W WO2014189107A1 WO 2014189107 A1 WO2014189107 A1 WO 2014189107A1 JP 2014063588 W JP2014063588 W JP 2014063588W WO 2014189107 A1 WO2014189107 A1 WO 2014189107A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- signal
- polarization
- constellation diagram
- processing method
- psk
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/60—Receivers
- H04B10/61—Coherent receivers
- H04B10/612—Coherent receivers for optical signals modulated with a format different from binary or higher-order PSK [X-PSK], e.g. QAM, DPSK, FSK, MSK, ASK
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/07—Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
- H04B10/075—Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
- H04B10/079—Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using measurements of the data signal
- H04B10/0795—Performance monitoring; Measurement of transmission parameters
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/60—Receivers
- H04B10/61—Coherent receivers
- H04B10/613—Coherent receivers including phase diversity, e.g., having in-phase and quadrature branches, as in QPSK coherent receivers
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/60—Receivers
- H04B10/61—Coherent receivers
- H04B10/614—Coherent receivers comprising one or more polarization beam splitters, e.g. polarization multiplexed [PolMux] X-PSK coherent receivers, polarization diversity heterodyne coherent receivers
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/60—Receivers
- H04B10/61—Coherent receivers
- H04B10/616—Details of the electronic signal processing in coherent optical receivers
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/60—Receivers
- H04B10/61—Coherent receivers
- H04B10/616—Details of the electronic signal processing in coherent optical receivers
- H04B10/6165—Estimation of the phase of the received optical signal, phase error estimation or phase error correction
Definitions
- the present invention relates to a signal processing method, a detection method, and a detection apparatus.
- Non-Patent Document 1 proposes a linear sampling system as an optical sampling system.
- Non-Patent Document 1 describes that a constellation diagram is generated using interference with a sampling pulse.
- Non-Patent Document 2 describes dual channel linear optical sampling. In Non-Patent Document 2, dual channel linear optical sampling delayed by one symbol is used. In Non-Patent Document 2, differential phase shift keying (DPSK: Differential Phase Shift Keying) is observed by this system.
- DPSK Differential Phase Shift Keying
- Patent Document 1 describes a digital coherent receiver.
- the polarization state of a polarization multiplexed optical signal is optimized.
- Patent Document 1 describes that this optimization can reduce the load and stability of digital signal processing by a digital signal processor.
- a constellation diagram may be used to measure a dual-polarization phase-shift keying (DP-PSK) signal.
- DP-PSK dual-polarization phase-shift keying
- it may be required to enable reception of the DP-PSK signal even if the receiver operates at a low speed.
- the present inventors examined obtaining a constellation diagram of a DP-PSK signal even for a receiver operating at a low speed.
- the present invention Obtaining a plurality of Stokes parameters relating to a polarization defined as an X component and a Y component, respectively, of an X polarization and a Y polarization included in a dual polarization phase shift keying (DP-PSK) signal;
- the coordinates defined by the Stokes parameters are coordinates (0, 1, 0), (0, 0, 1), (0, -1, 0) and (0, 0, -1).
- Obtaining a two-dimensional constellation diagram by orthogonally projecting onto a plane containing A signal processing method is provided.
- a Stokes parameter acquisition unit that acquires a plurality of Stokes parameters relating to polarizations that are respectively defined as an x component and a y component included in the DP-PSK signal;
- the coordinates defined by the Stokes parameters are coordinates (0, 1, 0), (0, 0, 1), (0, -1, 0) and (0, 0, -1).
- a constellation diagram of a DP-PSK signal can be obtained even when a receiver operating at a low speed is used.
- FIG. 1 is a schematic diagram of a detection device 100 according to the embodiment.
- FIG. 1 is a schematic diagram showing the detection device 100, and the configuration of the detection device 100 is not limited to that shown in FIG.
- the detection device 100 includes a Stokes parameter acquisition unit 104 and a constellation diagram acquisition unit 116.
- the Stokes parameter acquisition unit 104 acquires a plurality of Stokes parameters related to polarization.
- the polarization is defined with an X polarization and a Y polarization included in a dual polarization phase shift keying (DP-PSK) signal as an x component and a y component, respectively.
- the constellation diagram acquisition unit 116 acquires a two-dimensional constellation diagram.
- the constellation diagram according to the present embodiment has coordinates (0, 1, 0), (0, 0, 1), (0, -1, 0) defined in the Poincare sphere coordinate system. ) And (0, 0, ⁇ 1).
- the detection device 100 includes a Stokes parameter acquisition unit 104 and a constellation diagram acquisition unit 116.
- the Stokes parameter acquisition unit 104 includes a coherent receiver 106, a sampling pulse generator 108, an analog / digital converter (ADC) 110, and a Stokes vector conversion unit 114.
- the Stokes vector conversion unit 114 and the constellation diagram acquisition unit 116 are included in a digital signal processor (DSP) 112.
- DSP digital signal processor
- the detector 100 further includes an optical filter 102.
- a dual-polarization phase-shift keying (DP-PSK) signal is input to the coherent receiver 106 and the sampling pulse generator 108 via the optical filter 102.
- the DP-PSK signal includes X polarization and Y polarization. These X polarization and Y polarization are orthogonal to each other.
- the phase is modulated in each of the X polarization and the Y polarization. In this case, the phase is modulated independently for the X polarization and the Y polarization.
- the X polarization and the Y polarization of the DP-PSK signal have the same intensity.
- the X polarization and Y polarization of the DP-PSK signal are emitted from the same light source (for example, a laser light source).
- the phase of the DP-PSK signal in the X polarization and the Y polarization can be applied to 2 N phases (N ⁇ 1).
- binary data can be placed on each of the X polarization and the Y polarization of the DP-PSK signal.
- DP-PSK signals include dual-polarization quadrature phase-shift keying (DP-QPSK) signals, dual-polarization phase-shift keying (DP-BPSK) signals, and dual-polarization phase-shift keying (DP-BPSK).
- DP-QPSK dual-polarization quadrature phase-shift keying
- DP-BPSK dual-polarization phase-shift keying
- DP-BPSK dual-polarization phase-shift keying
- DP-A Polarization Binary Phase-Shift Keying (Dual-Polarization 8 Phase-Shift Keying) signal or a dual-polarization 8-phase shift keying (DP-8PSK) signal is included.
- the DP-QPSK signal may have a transmission rate of 100 Gbit / sec or more.
- the phase in the X polarization is modulated to take two states of “0” and “1” in binary on the IQ plane, and the phase in the Y polarization is also Modulation is performed so that two states of “0” and “1” are binary in the IQ plane.
- the phase in the X-polarized wave is modulated to take four states of “00”, “01”, “10”, and “11” in the IQ plane, The phase of the wave is also modulated to take four states of “00”, “01”, “10”, and “11” in binary on the IQ plane.
- phase in the X polarization is binary on the IQ plane “000”, “001”, “010”, “011”, “100”, “101”, “110”, and “111”.
- the phase in the Y polarization is also binary in the IQ plane as “000”, “001”, “010”, “011”, “100”, “101”, Modulation is performed so as to take eight states of “110” and “111”.
- the DP-PSK signal passes through the optical filter 102 as described above.
- the optical filter 102 functions as a filter that removes noise from the DP-PSK signal.
- the CNR Carrier-to-noise ratio
- the Stokes parameter acquisition unit 104 acquires the Stokes parameters related to the input DP-PSK signal.
- Stokes parameters are obtained from the DP-PSK signal by linear sampling.
- the details of linear sampling are as follows. First, a part of the DP-PSK signal that has passed through the optical filter 102 is input to the sampling pulse generator 108.
- the sampling pulse generator 108 extracts the symbol rate T of the DP-PSK signal.
- the sampling pulse generator 108 divides the symbol rate T by n (where n is a sufficiently large positive integer) to generate a sampling light pulse having a sampling frequency 1 / (nT).
- the generated sampling light pulse is output to the coherent receiver 106.
- the coherent receiver 106 has a built-in polarization beam splitter (PBS).
- PBS polarization beam splitter
- the coherent receiver 106 separates the X polarization and the Y polarization of the DP-PSK signal using PBS.
- the coherent receiver 106 linearly detects each of the X-polarized wave and the Y-polarized wave of the DP-PSK signal by using the sampling light pulse from the sampling light pulse generator 108 as a local oscillation (LO). .
- the coherent receiver 106 then outputs electrical signals I x and Q x for the X-polarized I channel and Y channel and electrical signals I y and Q y for the Y-polarized I channel and Y channel.
- the electrical signals I x , Q x , I y and Q y output from the coherent receiver 106 are input to the ADC 110.
- the ADC 110 performs analog-to-digital conversion on the electrical signals I x , Q x , I y and Q y .
- the signal analog-digital converted in the ADC 110 is output to the DSP 112.
- the Stokes vector conversion unit 114 converts the X-polarized component E x (k) and the Y polarization in the DP-PSK signal from the electric signals I x , Q x , I y, and Q y analog-digital converted in the ADC 110.
- a wave component E y (k) is obtained (where k represents the number of samples).
- the Stokes vector conversion unit 114 calculates the Stokes parameters S 1 , S 2, and S 3 from E x (k) and E y (k) using the following equations (1) to (3).
- ⁇ (k) arg (E x (k) / E y (k)).
- Stokes parameters S 1 , S 2, and S 3 indicate the polarization state (SOP: State of Polarization) of the DP-PSK signal input to the detector 100.
- SOP State of Polarization
- the SOP indicated by the Stokes parameters S 1 , S 2 and S 3 is displayed in the Poincare sphere coordinate system.
- the SOP displayed in the Poincare sphere coordinate system will be described with reference to FIG.
- FIG. 2A is a diagram for explaining the SOP displayed on the Poincare sphere coordinate system in DP-BPSK.
- the axes S 1 , S 2 and S 3 are orthogonal to each other.
- the Poincare sphere PS is schematically shown by a broken line.
- the plane S indicated by hatching in FIG. 2A has coordinates (0, 1, 0), (0, 0, 1), (0, -1, 0) and (0, 0, -1). ).
- the phase differences that can be taken by X-polarized light and Y-polarized light in DP-BPSK are 0 and ⁇ . When the phase difference is 0, the center a is taken in the Poincare sphere PS as shown in FIG.
- the SOP at the center a is + 45 ° linearly polarized light.
- the center b is taken in the Poincare sphere PS as shown in FIG.
- the SOP at the center b is ⁇ 45 ° linearly polarized light.
- FIG. 2B is a diagram for explaining the SOP displayed on the Poincare sphere coordinate system in DP-QPSK.
- the axes S 1 , S 2 and S 3 are orthogonal to each other.
- Poincare sphere PS is typically shown with the broken line.
- the plane S indicated by hatching in FIG. 2B has coordinates (0, 1, 0), (0, 0, 1), (0, -1, 0) and (0, 0, -1). ).
- the phase differences that can be taken by the X polarization and the Y polarization in DP-QPSK are 0, ⁇ / 2, ⁇ , and 3 ⁇ / 2.
- the center a is taken in the Poincare sphere PS as shown in FIG.
- the SOP at the center a is + 45 ° linearly polarized light.
- the center b is taken in the Poincare sphere PS as shown in FIG.
- the SOP at the center b is clockwise circularly polarized light.
- the center c is taken in the Poincare sphere PS as shown in FIG.
- the SOP at the center c is ⁇ 45 ° linearly polarized light.
- the center d is taken in the Poincare sphere PS as shown in FIG.
- the SOP at the center d is counterclockwise circularly polarized light.
- FIG. 3 is a diagram for explaining the SOP displayed in the Poincare sphere coordinate system in DP-8PSK.
- the axes S 1 , S 2 and S 3 are orthogonal to each other.
- the Poincare sphere PS is schematically shown by a broken line.
- the plane S indicated by hatching in FIG. 3 includes coordinates (0, 1, 0), (0, 0, 1), (0, -1, 0) and (0, 0, -1). It is a plane.
- the phase differences that can be taken by X polarization and Y polarization in DP-8PSK are 0, ⁇ / 4, ⁇ / 2, 3 ⁇ / 4, ⁇ , 5 ⁇ / 4, 3 ⁇ / 2, and 7 ⁇ / 4.
- the center a is taken in the Poincare sphere PS as shown in FIG.
- the SOP at the center a is + 45 ° linearly polarized light.
- the center b is taken in the Poincare sphere PS as shown in FIG.
- the SOP at the center b is elliptically polarized light.
- the center c is taken in the Poincare sphere PS as shown in FIG.
- the SOP at the center c is clockwise circularly polarized light.
- the center d is taken in the Poincare sphere PS as shown in FIG.
- the SOP at the center d is elliptically polarized light.
- the center e is taken in the Poincare sphere PS as shown in FIG.
- the SOP at the center e is ⁇ 45 ° linearly polarized light.
- the center f is taken in the Poincare sphere PS as shown in FIG.
- the SOP at the center f is elliptically polarized light.
- the center g is taken in the Poincare sphere PS as shown in FIG.
- the SOP at the center g is counterclockwise circularly polarized light.
- the center h is taken in the Poincare sphere PS as shown in FIG.
- the SOP at the center h is elliptically polarized light.
- the SOP relating to the DP-PSK signal is calculated by equations (1) to (3) and displayed as coordinates in the Poincare sphere coordinate system.
- the constellation diagram acquisition unit 116 orthogonally projects the coordinates on the plane S. Thereby, a constellation diagram displayed two-dimensionally with respect to the DP-PSK signal is obtained.
- the detection device 100 may further include a signal quality calculation unit 118 and a display unit 120, as shown in FIG.
- the signal quality calculation unit 118 acquires the Q value of the two-dimensional constellation diagram acquired by the constellation diagram acquisition unit 116.
- the constellation diagram acquisition unit 116 outputs a signal including information on the two-dimensional constellation diagram to the signal quality calculation unit 118.
- the signal quality calculation unit 118 analyzes the signal output from the constellation diagram acquisition unit 116 and acquires the Q value of the two-dimensional constellation diagram.
- the signal quality calculation unit 118 outputs a signal including the Q value to the display unit 120.
- the display unit 120 displays the Q value output from the signal quality calculation unit 118.
- the display unit 120 may be a liquid crystal display, for example. Thereby, the user of the detection apparatus 100 can confirm the Q value of the DP-PSK signal detected by the detection apparatus 100.
- the Q value is a value indicating the quality of the signal. For example, when Q> 6 is satisfied, the signal error rate of the signal is 10 ⁇ 9 or less.
- the signal quality calculation unit 118 may calculate the code error rate from the Q value. In this case, the signal quality calculation unit 118 may output a signal including a code error rate to the display unit 120 together with a signal including a Q value. The display unit 120 may display the code error rate together with the Q value.
- the two-dimensional constellation diagram obtained in this embodiment is obtained from the Stokes parameters related to the X polarization and Y polarization of the DP-PSK signal.
- the Stokes parameter can be calculated without being affected by the noise of the phase of the DP-PSK signal. For this reason, the detector 100 can acquire a two-dimensional constellation diagram without being affected by the noise of the DP-PSK signal.
- the constellation parameter is calculated via the Stokes parameter, a two-dimensional constellation diagram can be acquired regardless of the symbol rate and the sampling rate.
- the detection apparatus 100 uses the DP-PSK signal.
- the QPSK signal can be detected.
- FIG. 4 shows simulation results for the DP-QPSK signal.
- the DP-PSK signal is a DP-QPSK signal.
- the CNR of light output from the optical filter 102 was assumed to be 15 dB.
- the number of samples was 2 16.
- the diagrams on the left side of FIGS. 4A to 4C show the simulation results of the constellation diagram.
- the right diagrams in FIGS. 4A to 4C show histograms of constellation points in the x direction of the constellation diagram.
- FIG. 4A shows a simulation result regarding the constellation diagram obtained by the signal processing method according to the present embodiment.
- the histogram of constellation points is distributed substantially in a Gaussian shape as shown in the right diagram of FIG.
- FIG. 4B shows a simulation result related to a constellation diagram obtained by linear sampling without calculating the DP-QPSK Stokes parameter. Comparing FIGS. 4A and 4B, in the constellation diagram in FIG. 4B, the diffusion of the phase of the constellation points appears remarkably (the left diagram in FIG. 4B). This is based on the phase noise of the DP-QPSK signal. Further, the spread of the histogram of the constellation diagram in FIG. 4B is larger than the spread of the histogram of the constellation diagram in FIG. 4A (right diagrams in FIGS. 4A and 4B). From this, it can be said that the signal processing method in FIG. 4A can reduce the influence of the DP-QPSK signal due to the phase noise as compared with the signal processing method in FIG.
- FIG. 4 (c) shows a simulation result related to a constellation diagram obtained by linear sampling without calculating the DP-QPSK Stokes parameters.
- the constellation diagram is acquired under ideal conditions where there is no DP-QPSK phase noise.
- the dispersion of the constellation diagram in FIG. 4A is 3 dB or more with respect to the constellation diagram in FIG.
- FIG. 4 (c) shows the result under ideal conditions where DP-QPSK phase noise does not exist
- FIG. 4 (a) shows that DP-QPSK phase noise exists. It is the result in the condition. Therefore, it can be said that the signal processing method in FIG. 4A can obtain a result similar to the constellation diagram under ideal conditions even under the condition where DP-QPSK phase noise exists. .
- Example 2 The signal processing method according to the present embodiment was experimented with an actual optical system. Specifically, the optical system shown in FIG. 1 was assembled. More specifically, a 100 Gbit / sec DP-QPSK signal was used as the DP-PSK signal.
- the coherent receiver 106 an Optical Hybrid Dual Polarization (DP) -25Gbaud was used.
- the ADC 110 8-ch A / D 50 MS / s (Mega Samples Per Second) was used. Between the coherent receiver 106 and the ADC 110, a BPD (Balanced Photo Diode) is provided for each of the signals I x , Q x , I y , and Q y .
- As the sampling pulse generator 108 a 50 MHz MLFL (Mode-locked Fiber Laser) was used. The sampling pulse generator 108 not only sends sampling light pulses to the coherent receiver, but also sends a clock to the ADC 110.
- FIG. 5 shows the experimental results regarding the constellation diagram obtained by the above-described optical system according to this example.
- the left side of the figure shows the raw data of the experiment results.
- data of a predetermined value (threshold value) or more is extracted from the raw data.
- the signal rate used for the DP-QPSK signal in this embodiment is 100 Gbit / sec. Such a high rate signal could be clearly observed according to the present embodiment.
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Optical Communication System (AREA)
- Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
Abstract
Description
二重偏波位相偏移変調(DP-PSK)信号に含まれるX偏波およびY偏波をそれぞれx成分およびy成分として規定される偏波に関する複数のストークスパラメータを取得する工程と、
ポアンカレ球座標系において、前記各ストークスパラメータが規定する座標を、座標(0,1,0)、(0,0,1)、(0,-1,0)および(0,0,-1)を含む平面に正射影することで2次元コンステレーションダイアグラムを取得する工程と、
を含む信号処理方法が提供される。
DP-PSK信号に含まれるX偏波およびY偏波をそれぞれx成分およびy成分として規定される偏波に関する複数のストークスパラメータを取得するストークスパラメータ取得部と、
ポアンカレ球座標系において、前記各ストークスパラメータが規定する座標を、座標(0,1,0)、(0,0,1)、(0,-1,0)および(0,0,-1)を含む平面に正射影することで2次元コンステレーションダイアグラムを取得するコンステレーションダイアグラム取得部と、
を備える検波装置が提供される。
本実施形態における信号処理方法について、シミュレーションにより解析した。図4は、DP―QPSK信号に関するシミュレーション結果を示す。シミュレーションでは、DP―PSK信号は、DP―QPSK信号とした。光フィルタ102から出力される光のCNRは、15dBと仮定した。サンプルの数は、216とした。図4(a)から(c)における左側の図は、コンステレーションダイアグラムのシミュレーション結果を示す。一方図4(a)から(c)における右側の図は、コンステレーションダイアグラムのx方向におけるコンステレーションポイントのヒストグラムを示す。
本実施形態に係る信号処理方法を実際の光学系を組んで実験した。具体的には、図1に示した光学系を組んだ。より詳細には、DP-PSK信号として、100Gbit/secのDP-QPSK信号を用いた。コヒーレント受信器106として、Optical Hybrid Dual Polarization(DP)-25Gbaudを用いた。ADC110として、8-ch A/D 50MS/s(Mega Samples Per Second)を用いた。そしてコヒーレント受信器106とADC110の間には、信号Ix,Qx,Iy,Qyそれぞれに対してBPD(Balanced Photo Diode)を設けた。サンプリングパルス発生器108として、50MHzのMLFL(Mode-locked Fiber Laser)を用いた。サンプリングパルス発生器108は、サンプリング光パルスをコヒーレント受信器に送るだけでなく、ADC110にクロックを送る。
Claims (13)
- 二重偏波位相偏移変調(DP-PSK)信号に含まれるX偏波およびY偏波をそれぞれx成分およびy成分として規定される偏波に関する複数のストークスパラメータを取得する工程と、
ポアンカレ球座標系において、前記各ストークスパラメータが規定する座標を、座標(0,1,0)、(0,0,1)、(0,-1,0)および(0,0,-1)を含む平面に正射影することで2次元コンステレーションダイアグラムを取得する工程と、
を含む信号処理方法。 - 請求項1に記載の信号処理方法であって、
前記DP-PSK信号は、二重偏波四位相偏移変調(DP-QPSK)信号である信号処理方法。 - 請求項1に記載の信号処理方法であって、
前記DP-PSK信号は、二重偏波二位相偏移変調(DP-BPSK)信号である信号処理方法。 - 請求項1に記載の信号処理方法であって、
前記DP-PSK信号は、二重偏波八位相偏移変調(DP-8PSK)信号である信号処理方法。 - 請求項2に記載の信号処理方法であって、
前記DP-QPSK信号は、100Gbit/sec以上の伝送レートを有する信号処理方法。 - 請求項1から5までのいずれか一項に記載の信号処理方法により取得された前記2次元コンステレーションダイアグラムのQ値(ただし、Q=s/2σである。sは、前記2次元コンステレーションダイアグラムにおいて隣接するコンステレーションポイント間の距離である。σは、前記2次元コンステレーションダイアグラムのコンステレーションポイントにおける信号強度のガウス分布の標準偏差である。)を取得する検波方法。
- DP-PSK信号に含まれるX偏波およびY偏波をそれぞれx成分およびy成分として規定される偏波に関する複数のストークスパラメータを取得するストークスパラメータ取得部と、
ポアンカレ球座標系において、前記各ストークスパラメータが規定する座標を、座標(0,1,0)、(0,0,1)、(0,-1,0)および(0,0,-1)を含む平面に正射影することで2次元コンステレーションダイアグラムを取得するコンステレーションダイアグラム取得部と、
を備える検波装置。 - 請求項7に記載の検波装置であって、
前記ストークスパラメータ取得部は、
前記DP-PSK信号に含まれる前記X偏波および前記Y偏波を分離して、前記X偏波および前記Y偏波に対応する電気信号を出力するコヒーレント受信器と、
前記コヒーレント受信器が出力した前記電気信号をアナログ-デジタル変換して出力するアナログデジタルコンバータと、
前記アナログデジタルコンバータが出力した前記電気信号から前記ストークスパラメータを算出するデジタルシグナルプロセッサと、
を含む検波装置。 - 請求項7または8に記載の検波装置であって、
前記DP-PSK信号は、DP-QPSK信号である検波装置。 - 請求項7または8に記載の検波装置であって、
前記DP-PSK信号は、DP-BPSK信号である検波装置。 - 請求項7または8に記載の検波装置であって、
前記DP-PSK信号は、DP-8PSK信号である検波装置。 - 請求項9に記載の検波装置であって、
前記DP-QPSK信号は、100Gbit/sec以上の伝送レートを有する検波装置。 - 請求項7から12までのいずれか一項に記載の検波装置であって、
コンステレーションダイアグラム取得部が取得した前記2次元コンステレーションダイアグラムのQ値(ただし、Q=s/2σである。sは、前記2次元コンステレーションダイアグラムにおいて隣接するコンステレーションポイント間の距離である。σは、前記2次元コンステレーションダイアグラムのコンステレーションポイントにおける信号強度のガウス分布の標準偏差である。)を取得する信号品質演算部をさらに有する検波装置。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/890,416 US20160127048A1 (en) | 2013-05-24 | 2014-05-22 | Signal processing method, detection method, and detection device |
JP2015518289A JP5834163B2 (ja) | 2013-05-24 | 2014-05-22 | 信号処理方法、検波方法および検波装置 |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013110361 | 2013-05-24 | ||
JP2013-110361 | 2013-05-24 | ||
JP2013-111219 | 2013-05-27 | ||
JP2013111219 | 2013-05-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014189107A1 true WO2014189107A1 (ja) | 2014-11-27 |
Family
ID=51933658
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/063588 WO2014189107A1 (ja) | 2013-05-24 | 2014-05-22 | 信号処理方法、検波方法および検波装置 |
Country Status (3)
Country | Link |
---|---|
US (1) | US20160127048A1 (ja) |
JP (1) | JP5834163B2 (ja) |
WO (1) | WO2014189107A1 (ja) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015008457A (ja) * | 2013-06-24 | 2015-01-15 | 富士通株式会社 | インバンドの管理信号を使用して二重偏波信号を監視するシステム及びその方法 |
JP2016082485A (ja) * | 2014-10-20 | 2016-05-16 | 日本電気株式会社 | 受信信号処理装置及び受信信号処理方法 |
WO2016202085A1 (zh) * | 2015-06-18 | 2016-12-22 | 中兴通讯股份有限公司 | 绘制光模块星座图的方法、装置及虚拟矢量分析仪 |
JP2018046550A (ja) * | 2016-09-13 | 2018-03-22 | 富士通株式会社 | 残留直流成分の測定方法、測定装置及びシステム |
JP2019028082A (ja) * | 2017-07-25 | 2019-02-21 | Kddi株式会社 | 光受信機及びコヒーレント光受信方法 |
WO2023157600A1 (ja) * | 2022-02-21 | 2023-08-24 | 浜松ホトニクス株式会社 | 偏光分離素子及び光受信装置 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9716564B2 (en) * | 2014-12-23 | 2017-07-25 | Infinera Corporation | Polarization tracking using signal tone information while keeping least mean squares frequency domain equalization |
US10812183B2 (en) * | 2019-02-15 | 2020-10-20 | Viavi Solutions Inc. | Mitigating polarization dependent loss (PDL) by transforming frequency components to a ball |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011188044A (ja) * | 2010-03-05 | 2011-09-22 | Fujitsu Telecom Networks Ltd | 光伝送システム |
JP2011234325A (ja) * | 2010-04-30 | 2011-11-17 | Fujitsu Ltd | 光伝送システム,光送信装置,光受信装置及び光伝送方法 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020077071A1 (en) * | 2000-07-14 | 2002-06-20 | Williams Lawrence I. | Spin polarized wave division |
JP5476697B2 (ja) * | 2008-09-26 | 2014-04-23 | 富士通株式会社 | 光信号送信装置 |
US8463121B2 (en) * | 2009-10-09 | 2013-06-11 | Nec Laboratories America, Inc. | Ultra wide-range frequency offset estimation for digital coherent optical receivers |
EP2385637B1 (en) * | 2010-05-07 | 2013-12-25 | Telefonaktiebolaget LM Ericsson (Publ) | Methods and devices for modulating a signal |
JP5793854B2 (ja) * | 2010-11-24 | 2015-10-14 | 富士通株式会社 | 通信システム、測定装置、測定方法および制御方法 |
US9544051B2 (en) * | 2011-05-06 | 2017-01-10 | Ofs Fitel, Llc | Methods and systems for bulk dispersion monitoring |
JP2014013965A (ja) * | 2012-07-03 | 2014-01-23 | Hitachi Ltd | 偏波多値信号光受信装置、偏波多値信号光送信装置および偏波多値信号光伝送装置 |
US8761600B2 (en) * | 2012-09-14 | 2014-06-24 | Fujitsu Limited | In-band supervisory data modulation |
-
2014
- 2014-05-22 WO PCT/JP2014/063588 patent/WO2014189107A1/ja active Application Filing
- 2014-05-22 JP JP2015518289A patent/JP5834163B2/ja not_active Expired - Fee Related
- 2014-05-22 US US14/890,416 patent/US20160127048A1/en not_active Abandoned
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011188044A (ja) * | 2010-03-05 | 2011-09-22 | Fujitsu Telecom Networks Ltd | 光伝送システム |
JP2011234325A (ja) * | 2010-04-30 | 2011-11-17 | Fujitsu Ltd | 光伝送システム,光送信装置,光受信装置及び光伝送方法 |
Non-Patent Citations (1)
Title |
---|
T.OKAMOTO ET AL.: "Simultaneous Dense Differential Phase-Shift Keying Wavelength Division Multiplexing Signal Quality Observation Based on Sequential Ultrafast Field Sampling, Quantum Electronics", IEEE JOURNAL, vol. 49, no. 4, April 2013 (2013-04-01), pages 402 - 407 * |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015008457A (ja) * | 2013-06-24 | 2015-01-15 | 富士通株式会社 | インバンドの管理信号を使用して二重偏波信号を監視するシステム及びその方法 |
JP2016082485A (ja) * | 2014-10-20 | 2016-05-16 | 日本電気株式会社 | 受信信号処理装置及び受信信号処理方法 |
WO2016202085A1 (zh) * | 2015-06-18 | 2016-12-22 | 中兴通讯股份有限公司 | 绘制光模块星座图的方法、装置及虚拟矢量分析仪 |
CN106257257A (zh) * | 2015-06-18 | 2016-12-28 | 中兴通讯股份有限公司 | 一种检测光模块星座图的方法、装置及虚拟矢量分析仪 |
CN106257257B (zh) * | 2015-06-18 | 2019-11-29 | 中兴通讯股份有限公司 | 一种检测光模块星座图的方法、装置及虚拟矢量分析仪 |
JP2018046550A (ja) * | 2016-09-13 | 2018-03-22 | 富士通株式会社 | 残留直流成分の測定方法、測定装置及びシステム |
JP7069585B2 (ja) | 2016-09-13 | 2022-05-18 | 富士通株式会社 | 残留直流成分の測定方法、測定装置及びシステム |
JP2019028082A (ja) * | 2017-07-25 | 2019-02-21 | Kddi株式会社 | 光受信機及びコヒーレント光受信方法 |
WO2023157600A1 (ja) * | 2022-02-21 | 2023-08-24 | 浜松ホトニクス株式会社 | 偏光分離素子及び光受信装置 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2014189107A1 (ja) | 2017-02-23 |
JP5834163B2 (ja) | 2015-12-16 |
US20160127048A1 (en) | 2016-05-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5834163B2 (ja) | 信号処理方法、検波方法および検波装置 | |
US8761600B2 (en) | In-band supervisory data modulation | |
JP5029794B1 (ja) | コヒーレント光受信器、コヒーレント光受信器におけるチャネル間スキュー検出装置および検出方法 | |
US8121480B2 (en) | Methods and apparatus for recovering first and second transmitted optical waves from a polarization multiplexed optical wave | |
KR102234847B1 (ko) | 편광-독립적 코히어런트 광 수신기 | |
CN107005310B (zh) | 用于偏分复用光传输的频谱反转检测 | |
US7676162B2 (en) | Phase monitor used in optical receiver | |
US20130259487A1 (en) | Digital optical coherent transmission device | |
US20170264372A1 (en) | Coherent optical receiver, device and method for detecting inter-lane skew in coherent optical receiver | |
JP2013102506A (ja) | コヒーレント光受信器、コヒーレント光受信方法、コヒーレント光受信器におけるチャネル間スキュー検出装置および検出方法 | |
US10090933B2 (en) | Polarization insensitive self-homodyne detection receiver | |
Fischer et al. | High-speed digital coherent receiver based on parallel optical sampling | |
JP5598958B2 (ja) | 分周型光位相追尾型復調器 | |
KR20140027500A (ko) | 위상 변조된 광 신호를 복조하는 방법 | |
Li et al. | A self-coherent receiver for detection of PolMUX coherent signals | |
Sakamoto et al. | Digital optical phase locked loop for real-time coherent demodulation of multilevel PSK/QAM | |
Chen et al. | A coherent microwave photonic link with digital phase noise cancellation | |
Li et al. | Self-coherent receiver for PolMUX coherent signals | |
Kashi et al. | High resolution characterization of the spectral broadening due to fiber nonlinearities | |
Wen et al. | Asynchronous linear optical sampling for monitoring impairments in multilevel signal modulation format generation | |
Kikuchi et al. | Proposal of optical-sampling-based constellation monitor for DP-QPSK signals | |
CN115733558A (zh) | 激光通信方法、激光通信接收端、发射端和激光通信系统 | |
Wang et al. | Characterization of coherent receiver using polarization-multiplexed source generated from coherent transmitter | |
Sakamoto et al. | Digital optical Costas loop for coherent demodulation of 10-Gb/s BPSK | |
EP2608426A1 (en) | Method and device for determining the polarization split in a heterodyne coherent receiver |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14801856 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2015518289 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14890416 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14801856 Country of ref document: EP Kind code of ref document: A1 |