WO2014189051A1 - 電力パケット生成装置、電力ルータおよび電力ネットワーク - Google Patents

電力パケット生成装置、電力ルータおよび電力ネットワーク Download PDF

Info

Publication number
WO2014189051A1
WO2014189051A1 PCT/JP2014/063363 JP2014063363W WO2014189051A1 WO 2014189051 A1 WO2014189051 A1 WO 2014189051A1 JP 2014063363 W JP2014063363 W JP 2014063363W WO 2014189051 A1 WO2014189051 A1 WO 2014189051A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
voltage
packet
switch
state
Prior art date
Application number
PCT/JP2014/063363
Other languages
English (en)
French (fr)
Inventor
隆士 引原
俊一 東
高橋 亮
圭司 田代
Original Assignee
国立大学法人京都大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人京都大学 filed Critical 国立大学法人京都大学
Priority to US14/892,159 priority Critical patent/US9787090B2/en
Priority to JP2015518260A priority patent/JP6322835B2/ja
Priority to CN201480028755.0A priority patent/CN105264732B/zh
Priority to EP14801363.4A priority patent/EP3001526B1/en
Publication of WO2014189051A1 publication Critical patent/WO2014189051A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/10Parallel operation of dc sources
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/10Parallel operation of dc sources
    • H02J1/108Parallel operation of dc sources using diodes blocking reverse current flow
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00006Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment
    • H02J13/00007Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment using the power network as support for the transmission
    • H02J13/00009Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment using the power network as support for the transmission using pulsed signals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S40/00Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them
    • Y04S40/12Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment
    • Y04S40/121Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment using the power network as support for the transmission

Definitions

  • the present invention relates to a power packet generator, a power router, and a power network.
  • a power packet used in this type of system is generally configured to include a payload portion that carries transmitted power and a header that indicates a transmission destination of the power packet.
  • the present invention has been made in view of the above-described reasons, and can prevent a waveform from collapsing due to collision between power packets, while having a configuration in which a plurality of power packets are transmitted to one transmission line.
  • An object of the present invention is to provide a power packet generator.
  • the power packet generation device generates a power packet to be supplied to a plurality of loads from power supplied from at least one DC power source, and the generated power is applied so that a target voltage is applied to each of the plurality of loads.
  • a power packet generation device for sending a packet to a main transmission line, a plurality of switches inserted in each of a plurality of sub-transmission lines that couple the DC power supply and the main transmission line, and each of the plurality of loads The switch is turned on and off based on the voltage estimated to be applied in each of the first state where the power packet is supplied and the second state where the power packet is not supplied and the target voltage.
  • a plurality of packet generators for generating the power packet, and the packet generator turns the switch on and off Comprising a state in which, and a switch for switching between the state in which the packet generator to maintain off the switch.
  • the switching unit switches between a state in which the packet generator performs on / off control of the switch and a state in which the packet generator does not perform on / off control of the switch.
  • the power packet generation device can take a state in which the power packet is sent to the main transmission path and a state in which the power packet is not sent to the main transmission path. Therefore, when the packet generator is operating on / off any one of the plurality of switches, the other switches can be kept off.
  • the power packets can be prevented from colliding with each other and the waveform of each power packet can be prevented from collapsing while being configured to transmit a plurality of power packets to one main transmission path.
  • the plurality of packet generators are provided corresponding to the plurality of switches, respectively, and the switching unit switches any one of the plurality of packet generators to the switch. May be in a generation state in which power packets are generated by turning on and off, and all other packet generators may be in a non-generation state in which power packets are not generated by keeping the switch off.
  • the switch sets one of the plurality of packet generators to a generation state in which the switch is turned on / off to generate a power packet, and all other packet generators are maintained with the switch off. By doing so, a non-generated state in which no power packet is generated is set.
  • the power packet generation device has a plurality of loads when the switch generates a differential voltage between the voltage estimated to be applied and the target voltage in each of the plurality of loads.
  • Each packet generator may be set to either the generation state or the non-generation state based on a differential voltage between a voltage estimated to be applied and a target voltage.
  • each packet generator is configured such that the power packet is supplied to the larger of the differential voltage between the voltage estimated to be applied and the target voltage for each of the plurality of loads. Is in a generated state or a non-generated state. Thereby, the voltage applied to each of the two loads can be changed at a voltage relatively close to the target voltage.
  • the power packet generator includes a control signal generator that generates a control signal for turning on and off the switch based on a current target voltage and a target voltage acquired in the past by the packet generator. May be provided. According to this configuration, when the target voltage changes with time, the voltage that is actually applied to the load can easily follow the change in the target voltage.
  • a power network includes the power packet generator.
  • the power router generates at least one power storage unit that stores the power of the received power packet, and generates power packets to be supplied to a plurality of loads from the power supplied by the at least one power storage unit.
  • a power packet generation unit configured to send the generated power packet to the main transmission line so that the target voltage is applied to each load.
  • the power packet generator includes a plurality of switches, a plurality of packet generators, and a switch. The plurality of switches are inserted in each of a plurality of sub-transmission paths that couple the power storage unit and the main transmission path.
  • the plurality of packet generators for each of a plurality of loads, a voltage estimated to be applied in each of a first state where a power packet is supplied and a second state where a power packet is not supplied, a target voltage, Based on the above, the switch is turned on and off. As a result, the plurality of packet generators generate power packets.
  • the switching device may include a switching device that switches between a state in which the packet generator operates the switch on and off and a state in which the packet generator maintains the switch in the off state.
  • the plurality of packet generators exist for each of the plurality of switches, and the switching unit switches any one of the plurality of packet generators to the switch. May be set to a generation state in which the power packet is generated by turning on and off, and all other packet generators may be set to a non-generation state in which the power packet is not generated by keeping the switch off.
  • the power router according to the present invention is configured such that, when a differential voltage between the voltage estimated to be applied to the switch and the target voltage is generated in each of the plurality of loads, the switch in each of the plurality of loads. Based on the differential voltage between the voltage estimated to be applied and the target voltage, each packet generator may be placed in either the generated state or the non-generated state.
  • the power router according to the present invention further includes a control signal generation unit that generates a control signal for turning on and off the switch based on a current target voltage and a target voltage acquired in the past. It may be a thing.
  • the power network according to the present invention may include the power router.
  • the switch switches between a state in which the packet generator performs switch on / off control and a state in which the packet generator does not perform switch on / off control.
  • the packet generator when the packet generator is in the state of performing on / off control of any one of the plurality of switches, it can be in a state of not performing on / off control of other switches. Therefore, it is possible to prevent the waveform of each power packet from collapsing while having a configuration in which a plurality of power packets are sent to one main transmission path.
  • FIG. 1 is a configuration diagram of a power network according to Embodiment 1.
  • FIG. 1 is a block diagram of a part of a power network according to Embodiment 1.
  • FIG. The power packet which concerns on Embodiment 1 is shown, (a) is a wave form diagram, (b) is a block diagram of a header.
  • 3 is a block diagram of a control unit according to Embodiment 1.
  • FIG. 3 is a block diagram of a quantizer according to Embodiment 1.
  • FIG. 3 is a block diagram of a selector according to Embodiment 1.
  • FIG. 6 is an operation explanatory diagram of a control unit according to Embodiment 1.
  • FIG. 6 is an operation explanatory diagram of a control unit according to Embodiment 1.
  • FIG. 6 is an operation explanatory diagram of a control unit according to Embodiment 1.
  • FIG. 6 is an operation explanatory diagram of a control unit according to Embodiment 1.
  • FIG. 6 is a configuration diagram of a power network according to Embodiment 2.
  • FIG. 6 is a block diagram of a part of a power network according to Embodiment 2.
  • FIG. It is a graph which shows a time-dependent change of the voltage in each said load when an electric power packet is supplied to each load by computer simulation, (a) is a graph of the 1st condition, (b) is a graph of the 2nd condition.
  • FIG. 1 shows a configuration diagram of a power network according to the present embodiment.
  • the power network includes power supplies 1A and 1B, a mixer 2, power routers 3A, 3B, and 3C, loads 4A and 4B, and a load voltage command unit 5.
  • the power supplies 1A and 1B (hereinafter also referred to as “first power supply 1A” and “second power supply 1B” in some cases) output DC power.
  • the power supplies 1A and 1B are composed of, for example, power generation equipment and batteries. Examples of the power generation facility include a thermal power plant. Examples of the battery include a battery and an electric double layer capacitor.
  • the mixer 2 generates power packets for the loads 4A and 4B based on the DC power supplied from the power supplies 1A and 1B, and transmits the power packets to the power router 3A.
  • the mixer 2 has two reception ports In1 and In2, and the output of the power source 1 is input separately to the two reception ports In1 and In2.
  • the transmission destination of the power packet generated by the mixer 2 is set to the address of each of the loads 4A and 4B. Details of the configuration of the mixer 2 and the configuration of the power packet will be described later.
  • the power router 3A, 3B, or 3C When the power router 3A, 3B, or 3C receives a power packet at any of the reception ports In1 and In2, the power router 3A, 3B, and 3C performs routing according to the transmission destination of the received power packet. And power router 3A, 3B, 3C transmits a power packet from transmission port Out1, Out2 according to a routing result.
  • the power routers 3A, 3B, and 3C are provided with a power storage unit (not shown), and once charge the received power packet to the power storage unit, and then send the power packet based on the power charged in the power storage unit. Reconfigure and send.
  • the power routers 3 ⁇ / b> A, 3 ⁇ / b> B, and 3 ⁇ / b> C can be considered to have the same function as the mixer 2 when attention is paid to the characteristics of reconfiguring the power packet. In this sense, it can be said that the power storage unit is in the same position as the power sources 1A and 1B in the mixer 2.
  • Examples of the loads 4A and 4B include home appliances, computers, and lighting devices.
  • the load voltage command unit 5 outputs a voltage (target voltage) to be applied to each of the loads 4A and 4B.
  • the load voltage command unit 5 is composed of, for example, a personal computer.
  • the target voltage output from the load voltage command unit 5 is input to the mixer 2.
  • FIG. 2 is a block diagram of a part of the power network according to the present embodiment.
  • the mixer 2 includes switches 21A and 21B, drivers 23A and 23B, a control unit 25, and diodes 27A and 27B.
  • the switch 21A has one end connected to the first power supply 1A and the other end connected to the transmission port Out via the diode 27A.
  • the switch 21A is interposed in the sub-transmission path L2 that couples the power source 1A and the main transmission path L1 passing through the transmission port Out.
  • the switch 21B has one end connected to the second power source 1B and the other end connected to the transmission port Out via the diode 27B.
  • the switch 21B is interposed in the sub-transmission path L3 that couples the second power source 1B and the main transmission path L1 passing through the transmission port Out.
  • the switches 21A and 21B are configured by normally-on type SiC-JFETs or the like.
  • the switches 21A and 21B are turned on when the gate voltage is equal to or lower than the turn-on voltage, and are turned off when the gate voltage is higher than the turn-on voltage.
  • the diode 27A is connected so that the switch 21A side becomes an anode and the transmission port Out side becomes a cathode.
  • the diode 27B is connected so that the switch 21B side becomes an anode and the transmission port Out side becomes a cathode.
  • These diodes 27A and 27B are for preventing current from flowing from the transmission port OUT toward the reception ports In1 and In2.
  • the drivers 23A and 23B change the gate voltages of the switches 21A and 21B in accordance with a control signal input from the control unit 25.
  • the control signal is composed of two kinds of voltages of “High” level and “Low” level.
  • the drivers 23A and 23B set the gate voltages of the switches 21A and 21B below the turn-on voltage when the control signal is at the “High” level, and set the gate voltage higher than the turn-on voltage when the control signal is at the “Low” level.
  • the control unit 25 includes packet generators 28A and 28B and a selector 29.
  • the packet generators 28A and 28B and the selector 29 are realized by combining, for example, a timer, an FPGA (Field Programmable Gate Array), a memory, and the like. Details of the configuration of the control unit 25 will be described later.
  • the control unit 25 inputs a control signal to the drivers 23A and 23B based on a command value (target voltage) input from the load voltage command unit 5 to the input terminals De1 and De2. As a result, the switches 21A and 21B operate to generate a power packet based on the power supplied from the first power supply 1A or the second power supply 1B.
  • FIG. 3A shows a waveform diagram of the power packet according to the present embodiment
  • FIG. 3B shows a configuration diagram of the header of the power packet.
  • the power packet is composed of a payload portion that carries transmitted power, a header added before the payload portion, and a footer added after the payload portion.
  • the header and footer are fields indicating control information in the power packet.
  • the header includes, as control information, for example, a start signal indicating the start of a power packet, transmission source information, and a transmission destination address.
  • the footer includes an end signal indicating the end of the power packet as control information.
  • the transmission source information is information indicating the type of power supply that is the transmission source (power supply 1A, 1B) of the power packet.
  • the type of power source is a type based on the difference between commercial power source or private power source.
  • the classification based on the difference in power generation forms, such as thermal power generation may be sufficient, for example.
  • identification information (address) that can uniquely identify the power supplies 1A and 1B may be adopted.
  • FIG. 4 shows a block diagram of the control unit 25.
  • the control unit 25 includes the packet generators 28A and 28B and the selector 29. Details of the configuration of the selector 29 will be described later.
  • the packet generators 28A and 28B generate control signals to be given to the drivers 23A and 23B based on the target voltage given from the load voltage command unit 5.
  • This control signal is configured to determine a pattern of on / off operation of the switches 21A and 21B. That is, the packet generators 28A and 28B can control the operations of the drivers 23A and 23B and the switches 21A and 21B by the control signal, and can intermittently control the supply of DC power from the two power sources 1A and 1B to the main transmission line L1. .
  • the packet generators 28A and 28B generate a control signal for generating a power packet as shown in FIG. 3 and give it to the drivers 23A and 23B.
  • the drivers 23A and 23B and the switches 21A and 21B generate power packets by operating according to the control signal.
  • the packet generators 28A and 28B have a function of generating a power packet by giving the control signals for generating the power packet to the drivers 23A and 23B.
  • the packet generator 28A includes a quantizer 51A, a comparator 53A, a header / footer adding unit 55A, and an amplifier 57A.
  • the packet generator 28B includes a quantizer 51B, a comparator 53B, a header / footer adding unit 55B, and an amplifier 57B.
  • the quantizer 51A (51B) constitutes a control signal generation unit that generates a control signal for turning on and off the switch 21A (21B).
  • the quantizer 51A (51B) is a so-called dynamic quantizer.
  • a dynamic quantizer determines the current quantized output using past input information and is distinguished from the so-called static quantizer that determines the current quantized output value from the current input value. Is.
  • the quantizer 51A (51B) generates a control signal based on the target voltage acquired in the past. Thereby, when the target voltage changes with time, the voltage actually applied to the loads 4A and 4B can follow the change of the target voltage.
  • the quantizer 51A (51B) includes a Dem1 (Dem2) terminal, a Pac1 (Pac2) terminal, a PacE1 (PacE2) terminal, a StaE1 (STAE2) terminal, and an Act1 (Act2) terminal.
  • a target voltage is input to the Dem1 (Dem2) terminal from the load voltage command unit 5 through the input terminal De1 (De2).
  • the Pac1 (Pac2) terminal is connected to the output terminal Out1 (Out2) via the header / footer adding unit 55A (55B) and the amplifier 57A (57B), and the quantizers 51A and 51B receive the generated control signals. Output from the Pac1 (Pac2) terminal.
  • the PacE1 (PacE2) terminal and the StaE1 (STAE2) terminal are connected to the selector 29.
  • the quantizer 51A (51B) outputs, from the PacE1 (PacE2) terminal and the StaE1 (STAE2) terminal, signals for determining which of the quantizers 51A and 51B the selector 29 outputs the control signal.
  • a comparator 53A (53B) is connected to the Act1 (Act2) terminal, and a voltage equal to or higher than a predetermined threshold (hereinafter referred to as “H level voltage”) is input from the comparator 53A (53B).
  • the quantizer 51A (51B) outputs a control signal.
  • the quantizers 51A and 51B are controlled so that one of the quantizers 51A and 51B outputs the control signal based on the selection by the selector 29, and the load voltage command unit 5 Based on the given target voltage, a control signal is output from the Pac1 (Pac2) terminal.
  • FIG. 5 shows a block diagram of the quantizer 51A (51B).
  • the quantizer 51A includes discretizers 511A (511B) and 517A (517B), a differentiator 512A (512B), and amplifiers 5131A (5131B), 5132A (5132B), and 518A (518B). Further, the quantizer 51A (51B) includes switches 514A (514B), 516A (516B), 521A (521B), an adder 519A (519B), a binarizer 520A (520B), and an L level voltage output. 522A (522B) and delay units 523A (523B) and 524A (524B).
  • the discretizer 511A (511B) outputs a voltage obtained by discretizing the target voltage applied from the Dem1 (Dem2) terminal.
  • the discretizer 517A (517B) receives a control signal output from the switches 521A and 521B toward the Pac1 (Pac2) terminal or a voltage output from the amplifier 518A (518B), and discretizes them. Is output.
  • the difference unit 512A (512B) is a difference voltage x obtained by subtracting the output voltage of the discretizer 511A (511B) from the output voltage of the discretizer 517A (517B) (for example, “x1”, “x2” in FIG. 9 described later). Is output).
  • the amplifiers 5131A (5131B) and 5132A (5132B) amplify and output the output voltage of the difference unit 512A (512B).
  • the amplifiers 5131A (5131B) and 5132A (5132B) have different amplification factors.
  • the amplifier 518A (518B) amplifies the output voltage from the discretizer 517A (517B) and inputs the amplified output voltage to the switch 516A (516B).
  • the switches 514A (514B), 516A (516B), and 521A (521B) have two input terminals and one drive terminal.
  • the uppermost terminal and the lowermost terminal are input terminals, and the center terminal is a drive terminal.
  • the switches 514A (514B), 516A (516B), and 521A (521B) the upper input terminal in the drawing is referred to as an upper input terminal, and the lower input terminal is referred to as a lower input terminal.
  • the switches 514A (514B), 516A (516B), and 521A (521B) switch the connection destination of the output terminal to the upper input terminal or the lower input terminal according to the voltage of the drive terminal.
  • the output terminal is switched to the upper input terminal, and the voltage of the drive terminal is about 0 V (hereinafter referred to as “L level voltage”). If so, the connection destination of the output terminal is switched to the lower input terminal.
  • the upper input terminal of the switch 514A (514B) is connected to the output terminal of the amplifier 5131A (5131B), and the lower input terminal is connected to the output terminal of the amplifier 5132A (5132B).
  • the drive terminal of the switch 514A (514B) is connected to the output terminal of the switch 521A (521B) via the delay device 523A (523B).
  • the output terminal of the switch 514A (514B) is connected to the StaE1 (STAE2) terminal.
  • the signal output from the switch 514A (514B) corresponds to a voltage reflecting a difference voltage ⁇ V between the voltage estimated to be applied to the load 4A (4B) and the target voltage.
  • the quantizer 51A (51B) outputs a signal having an absolute value from the signal output from the switch 514A (514B) from the StaE1 (STAE2) terminal. That is, the differential voltage ⁇ V is a signal having an absolute value of a signal output from the switch 514A (514B).
  • the “voltage estimated to be applied” and the “differential voltage ⁇ V” will be described in detail later.
  • the upper input terminal of the switch 516A (516B) is connected to the output terminal of the switch 521A (521B) via the delay device 524A (524B), and the lower input terminal is connected to the output terminal of the amplifier 518A (518B). Yes.
  • the drive terminal is also connected to the output terminal of the switch 521A (521B) via the delay device 524A (524B).
  • the delay devices 523A (523B) and 524A (524B) are for adjusting the switching timing of the input terminals of the switches 514A (514B) and 516A (516B).
  • the delay units 523A (523B) and 524A (524B) correspond to one power packet with respect to the control signal output from the switches 521A and 521B toward the Pac1 (Pac2) terminal (and the switches 516A and 516B). Give the time delay by the time you want. That is, the switches 514A (514B) and 516A (516B) are configured to switch to the upper input terminal or the lower terminal at the same timing.
  • the upper input terminal of the switch 521A (521B) is connected to the output terminal of the binarizer 520A (520B), and the lower input terminal is connected to the L level voltage output unit 522 that outputs the L level voltage.
  • the L level voltage output unit 522 can be realized, for example, by grounding the lower input terminal.
  • the output terminal of the switch 521A (521B) is connected to the Pac1 (Pac2) terminal.
  • the drive terminal of the switch 521A (521B) is connected to the Act1 (Act2) terminal.
  • the quantizer 51A (51B) outputs a control signal from the Pac1 (Pac2) terminal when the switch 521A (521B) is switched to the upper input terminal.
  • the Act1 (Act2) terminal is supplied with the H level voltage or the L level voltage output from the comparator 53A (53B), as will be described later.
  • the switch 512A is controlled by the H level voltage or L level voltage from the comparator 53A (53B).
  • the adder 519A (519B) outputs a voltage obtained by adding the target voltage input from the Dem1 (Dem2) terminal and the output voltage of the switch 514A (514B).
  • the binarizer 520A (520B) binarizes the output voltage of the adder 519A (519B) and outputs it.
  • the output terminal of the binarizer 520A (520B) is connected to the PacE1 (PacE2) terminal.
  • the quantizers 51A and 51B generate a control signal based on the target voltage value when a target voltage is applied from the Dem1 (Dem2) terminal. Also, the quantizers 51A and 51B output the generated control signal from the Pac1 (Pac2) terminal or stop outputting the control signal according to the determination of the selector 29.
  • the comparators 53 ⁇ / b> A and 53 ⁇ / b> B change the voltage applied to the Act ⁇ b> 1 and Act ⁇ b> 2 terminals of the quantizers 51 ⁇ / b> A and 51 ⁇ / b> B according to the voltage input from the selector 29.
  • the comparator 53A is connected to the Act1 terminal of the quantizer 51A. Then, the comparator 53A determines whether or not the voltage input from the selector 29 is the voltage V1. If the voltage is equal to the voltage V1, the comparator 53A inputs the H level voltage to the Act1 terminal. The voltage is input to the Act1 terminal.
  • “equal to voltage V1” does not require strictly equality, and the voltage input from the selector 29 is within a predetermined voltage range including the voltage V1 (for example, with respect to the voltage V1). Within the range of ⁇ 25%).
  • the comparator 53B is connected to the Act2 terminal of the quantizer 51B. Then, the comparator 53B determines whether or not the voltage input from the selector 29 is the voltage 2 * V1. If the voltage is equal to the voltage 2 * V1, the comparator 53B outputs the H level voltage to the Act2 terminal, and the voltage 2 * V1. If they are not equal, an L level voltage is output to the Act2 terminal.
  • “equal to voltage 2 * V1” does not require strictly equality, and the voltage input from the selector 29 is within a predetermined voltage range including the voltage 2 * V1 (eg, voltage 2 * V1 within a range of ⁇ 25%). “*” Indicates multiplication.
  • the quantizers 51A and 51B (packet generators 28A and 28B) output a control signal when an H level voltage is applied, and stop outputting the control signal when an L level voltage is applied.
  • the selector 29 applies the voltage to the comparators 53A and 53B, so that one of the quantizers 51A and 51B (packet generators 28A and 28B) outputs a control signal, and the other outputs an L level voltage. So that it is controlled.
  • the header / footer adding units 55A and 55B add a header and a footer to the control signals output from the quantizers 51A and 51B.
  • the header / footer adding unit 55A adds a header including transmission source information indicating the type of the first power supply 1A and a transmission destination address indicating the first load 4A.
  • the header / footer adding unit 55B adds, for example, a header including transmission source information indicating the type of the second power supply 1B and a transmission destination address indicating the second load 4B.
  • the packet generators 28A and 28B generate a control signal that can generate a power packet as shown in FIG.
  • the amplifiers 57A and 57B raise the control signal to the drive voltages of the drivers 23A and 23B.
  • the amplifiers 57A and 57B amplify the control signals input from the header / footer adding units 55A and 55B, respectively, and output them to the output terminals Out1 and Out2.
  • the selector 29 switches between a state in which the packet generator 28A (28B) turns on and off the switch 21A (21B) and a state in which the packet generator 28A (28B) keeps the switch 21A (21B) off.
  • the selector 29 outputs a control signal to the packet generator 28A (28B) to turn on and off the switch 21A, thereby generating a power packet (generation state), or to the packet generator 28A (28B).
  • the level voltage is output and the switch 21B is kept off, so that the power packet is not generated (non-generated state).
  • the selector 29 switches so that the packet generator 28B is in a non-generated state when the packet generator 28A is in a generated state, and the packet generator 28B is in a generated state when the packet generator 28A is in a non-generated state.
  • Switch as follows.
  • the selector 29 includes a PacE1 terminal, a StaE1 terminal, a PacE2 terminal, a StaE2 terminal, and an Act terminal.
  • the PacE1 terminal and the StaE1 terminal are connected to the PacE1 terminal and the StaE1 terminal of the quantizer 51A, respectively.
  • the PacE2 terminal and the StaE2 terminal are connected to the PacE2 terminal and the StaE2 terminal of the quantizer 51B, respectively.
  • the Act terminal is connected to the comparators 53A and 53B.
  • FIG. 6 shows a block diagram of the selector 29.
  • the selector 29 includes comparators 291, 293A, 293B, and 296, a switch 292, an AND circuit 294, a difference unit 295, an adder 297, and a constant voltage source 298.
  • the comparator 291 has one of two input terminals connected to the StaE1 terminal and the other connected to the StaE2 terminal.
  • the voltage at the StaE1 terminal reflects the difference voltage ⁇ V1 between the voltage estimated to be applied to the load 4A and the target voltage.
  • the voltage at the StaE2 terminal reflects a differential voltage ⁇ V2 between the voltage estimated to be applied to the load 4B and the target voltage.
  • the differential voltage ⁇ V applied to the StaE1 terminal by the quantizer 51A is expressed as a differential voltage ⁇ V1
  • the differential voltage ⁇ applied from the quantizer 51B to the StaE2 terminal is expressed as a differential voltage ⁇ V2.
  • the comparator 291 outputs a low level voltage when the voltage at the StaE1 terminal is equal to or higher than the voltage at the StaE2 terminal, that is, when the differential voltage ⁇ V1 corresponding to the load 4A is equal to or higher than the differential voltage ⁇ V2 corresponding to the load 4B.
  • the comparator 291 is greater than the voltage value of the low level voltage.
  • a high level voltage with a high voltage value is output.
  • Each functional unit in the selector 29 is configured to exchange the high level voltage and the low level voltage with each other.
  • the comparators 293A and 293B are connected to the PacE1 terminal and the PacE2 terminal, respectively.
  • Each of the comparators 293A and 293B outputs a high level voltage when the voltages at the PacE1 terminal and the PacE2 terminal exceed a predetermined threshold voltage Vth.
  • the threshold voltage Vth corresponds to a voltage higher than the low level voltage and lower than the high level voltage.
  • the threshold voltage Vth is set to 0V.
  • the case where the voltage at the PacE1 terminal exceeds the threshold voltage Vth corresponds to the case where the quantizer 51A generates a control signal.
  • the case where the voltage at the PacE2 terminal exceeds the threshold voltage Vth corresponds to the case where the quantizer 51B generates a control signal. That is, the comparators 293A and 293B determine whether the quantizers 51A and 51B are generating control signals, respectively.
  • the AND circuit 294 has two input terminals connected to the output terminals of the comparators 293A and 293B, respectively.
  • the output voltage of the AND circuit 294 when the output voltage of the AND circuit 294 is at a high level voltage, it corresponds to that both output voltages of the comparators 293A and 293B are at a high level voltage. That is, the case where the output voltage of the AND circuit 294 is a high level voltage corresponds to the case where both the quantizer 51A and the quantizer 51B generate control signals.
  • the output voltage of the AND circuit 294 is at a low level voltage, this corresponds to the output voltage of at least one of the comparators 293A and 293B being at a low level voltage.
  • the AND circuit 294 determines whether or not both the quantizer 51A and the quantizer 51B are generating control signals.
  • the differencer 295 outputs a difference voltage (x1q ⁇ x2q) obtained by subtracting the voltage at the PacE2 terminal from the voltage at the PacE1 terminal.
  • the comparator 296 outputs a high level voltage if the output voltage of the differentiator 295 is 0 V or less, and outputs a low level voltage if it exceeds 0 V. That is, the comparator 296 outputs a high level voltage when the voltage at the PacE1 terminal is equal to or lower than the voltage at the PacE2 terminal. On the other hand, the comparator 296 outputs a low level voltage when the voltage at the PacE1 terminal exceeds the voltage at the PacE2 terminal.
  • the comparator 296 outputs a low level voltage when the quantizer 51A generates a control signal and the quantizer 51B does not generate a control signal.
  • the comparator 296 outputs a high level voltage when the quantizer 51A does not generate a control signal and the quantizer 51B generates a control signal.
  • the switch 292 has two input terminals and one drive terminal.
  • the uppermost terminal and the lowermost terminal are input terminals, and the center terminal is a drive terminal.
  • the switch 292 the upper input terminal in the drawing is referred to as an upper input terminal, and the lower input terminal is referred to as a lower input terminal.
  • the switch 292 switches the connection destination of the output terminal to the upper input terminal or the lower input terminal according to the voltage of the drive terminal. Specifically, if the drive terminal voltage is a high level voltage, the output terminal connection destination is switched to the upper input terminal, and if the drive terminal voltage is a low level voltage, the output terminal connection destination is the lower input. Switch to the terminal.
  • the upper input terminal of the switch 292 is connected to the output terminal of the comparator 291, and the lower input terminal is connected to the output terminal of the comparator 296.
  • the drive terminal of the switch 292 is connected to the output terminal of the AND circuit 294.
  • the output terminal of the switch 292 is connected to the adder 297.
  • the switch 292 switches the connection destination of the output terminal to the upper input terminal when the output voltage of the AND circuit 294 is a high level voltage, that is, when both the quantizers 51A and 51B generate control signals.
  • the switch 292 when the output voltage of the AND circuit 294 is a low level voltage, that is, when at least one of the quantizers 51A and 51B does not generate a control signal, the output terminal is connected to the lower input terminal. Switch.
  • the adder 297 outputs a voltage obtained by adding the output voltage of the switch 292 and the output voltage of the reference voltage source 298 to the Act terminal.
  • the output voltage of the reference voltage source 298 is the voltage V1.
  • the voltage V1 corresponds to a high level voltage output from the comparator 291.
  • the selector 29 outputs a voltage obtained by adding the voltage V1 to the voltage output from the comparator 291 from the Act terminal when both the quantizers 51A and 51B generate control signals. Is done.
  • the comparator 291 is low level if the voltage (difference voltage ⁇ V1) input from the STAE1 terminal of the quantizer 51A is equal to or higher than the voltage (difference voltage ⁇ V2) input from the STAE2 terminal of the quantizer 51B. Output voltage. Then, the voltage of the magnitude V1 is output from the Act terminal of the selector 29.
  • the comparator 291 is a high level voltage. Is output. Then, a voltage of magnitude 2 * V1 is output from the Act terminal of the selector 29.
  • the AND circuit 294 supplies a low level voltage to the switch 292, so that the switch 292 is switched to the lower input terminal. Therefore, the selector 29 outputs a voltage obtained by adding the voltage V1 to the voltage output from the comparator 296 from the Act terminal.
  • the comparator 296 outputs a low-level voltage when the quantizer 51A generates a control signal and the quantizer 51B does not generate a control signal. In this case, the selector 29 outputs a voltage having a magnitude V1 from the Act terminal.
  • the comparator 296 outputs a high level voltage when the quantizer 51A does not generate a control signal and the quantizer 51B generates a control signal. In this case, the selector 29 outputs a voltage of magnitude 2 * V1 from the Act terminal.
  • the selector 29 puts the packet generators 28A and 28B into either the above-described generation state or non-generation state. Specifically, the selector 29 puts the packet generator 28A into a generation state and puts the packet generator 28B into a non-generation state. Alternatively, the selector 29 puts the packet generator 28A into a non-generating state and puts the packet generator 28B into a generating state.
  • the selector 29 When at least one of the quantizers 51A and 51B does not generate a control signal, the power packets sent to the main transmission line L1 do not collide with each other, so that the selector 29 is connected to the quantizers 51A and 51B. Control is performed such that the control signal generated by either one is output as it is. On the other hand, when the target voltage is given to each of the packet generators 28A and 28B, when both the quantizers 51A and 51B generate the control signal, there is a possibility that the power packets collide with each other. In such a case, the selector 29 of the present embodiment performs control so that the control signal is output from either one of the quantizers 51A and 51B.
  • the comparator 53A if the voltage at the Act terminal is V1, the comparator 53A provides the H level voltage to the quantizer 51A, and therefore the quantizer 51A outputs a control signal. If the voltage at the Act terminal is V1, the comparator 53B provides the L level voltage to the quantizer 51B, and therefore the quantizer 51B does not output a control signal. On the other hand, if the voltage at the Act terminal is 2 * V1, the comparator 53A provides the L level voltage to the quantizer 51A, and therefore the quantizer 51A does not output a control signal. If the voltage at the Act terminal is 2 * V1, the comparator 53B provides the H level voltage to the quantizer 51B, so that the quantizer 51B outputs a control signal.
  • the selector 29 is large if the difference voltage ⁇ V1 of the quantizer 51A is equal to or higher than the difference voltage ⁇ V2 of the quantizer 51B.
  • the differential voltage ⁇ V1 of the quantizer 51A is smaller than the differential voltage ⁇ V2 of the quantizer 51B, a voltage of 2 * V1 is output from the Act terminal. Therefore, when the difference voltage ⁇ V1 of the quantizer 51A is equal to or higher than the difference voltage ⁇ V2 of the quantizer 51B, the selector 29 outputs the control signal to the quantizer 51A, and the difference voltage ⁇ V1 of the quantizer 51A is changed to the quantizer.
  • the difference voltage ⁇ V2 is smaller than 51B, the control signal is output to the quantizer 51B.
  • the selector 29 is the difference voltage ⁇ V1 between the voltage estimated to be applied and the target voltage among the quantizers 51A and 51B.
  • the voltage at the Act terminal is changed so that the control signal is output only from the quantizer 51A (51B) corresponding to the load 4A (4B) having the larger ( ⁇ V2).
  • the selector 29 generates the packet generators 28A and 28B in the generated state and the non-state based on the difference voltage ⁇ V1 ( ⁇ V2) between the voltage estimated to be applied and the target voltage in each of the loads 1A and 1B.
  • the selector 29 supplies the power packet to the larger one of the difference voltage ⁇ V1 ( ⁇ V2) between the voltage estimated to be applied and the target voltage for each of the two loads 4A and 4B.
  • each of the packet generators 28A and 28B is set to a generated state or a non-generated state. Thereby, the voltage applied to each of the two loads 4A and 4B can be changed at a voltage relatively close to the target voltage.
  • the selector 29 selects the quantizers 51A and 51B.
  • the quantizers 51A and 51B are controlled so that the control signal is output only from the quantizer 51A (51B) having the larger differential voltage ⁇ V1 ( ⁇ V2).
  • the selector 29 selects the quantizer that outputs the control signal between the quantizer 51A and the quantizer 51B even when both the quantizers 51A and 51B generate the control signal. You can switch between them properly.
  • the operation of the control unit 25 will be described below.
  • the control unit 25 loads the load 4A, 4B in a state where the power packet is supplied to the loads 4A, 4B (first state) and a state where the power packet is not supplied to the loads 4A, 4B (second state).
  • the voltage applied to is estimated.
  • the control unit 25 is applied to the loads 4A and 4B based on an equivalent circuit including, for example, the loads 4A and 4B, a buffer capacitor connected in parallel to the loads 4A and 4B, and a connection resistance. Estimate the voltage that is.
  • FIGS. 7A and 7B show an example of an equivalent circuit of the load 4A (4B) assumed by the control unit 25 according to the present embodiment.
  • the equivalent circuit includes, for example, a resistor RL, a capacitor C connected in parallel to the resistor RL, and a resistor R connected in series to the resistor RL.
  • the resistor RL corresponds to the loads 4A and 4B
  • the capacitor C corresponds to a buffer capacitor
  • the resistor R corresponds to a connection resistance.
  • FIG. 7A shows a state where power packets are supplied to the load 4A (4B).
  • the voltage V is applied between the input terminals of the equivalent circuit.
  • FIG. 7B shows a state in which no power packet is supplied to the load 4A (4B).
  • the input circuit of the equivalent circuit is shown open.
  • Each of the two states shown in FIGS. 7A and 7B is a state that can be taken depending on whether or not the power packet is supplied to the load 4A (4B).
  • the control unit 25 determines whether the state of the load 4A (4B) is the state illustrated in FIG. 7A based on the output of the switch 521A (512B) included in the control unit 25 or the state illustrated in FIG. It is determined whether it is. That is, the switch 521A (521B) outputs a control signal when the packet generator 28A (28B) is in the generation state. On the other hand, when the packet generator 28A (28B) is in a non-generated state, no control signal is output. Therefore, the control unit 25 can determine whether or not a power packet is given to the load 4A (4B) based on whether or not the switch 521A (512B) outputs a control signal. The control unit 25 switches processing to be described later depending on whether or not a power packet is given to the load 4A (4B).
  • FIG. 8 shows a time chart of operations of the two packet generators 28A and 28B.
  • the two packet generators 28A and 28B are operated by applying a target voltage to each of the two packet generators 28A and 28B.
  • the operation of the two packet generators 28A and 28B changes with the time interval K as a time unit.
  • This time interval K corresponds to one power packet.
  • the time interval K is referred to as “one packet time”.
  • This period INT1 starts when the selector 29 determines that the output value (differential voltage ⁇ V1) of the switch 514A is larger than the output value (differential voltage ⁇ V2) of the switch 514B. That is, it is determined that the difference voltage ⁇ V1 between the voltage estimated to be applied to the load 4A and the target voltage is larger than the difference voltage ⁇ V2 between the voltage estimated to be applied to the load 4B and the target voltage. Start when you are.
  • the period INT1 corresponds to a period in which both the packet generators 28A and 28B do not output a control signal one packet time before. That is, this corresponds to a period in which power packets are not supplied to both the loads 4A and 4B one packet time ago.
  • FIG. 9 is a block diagram illustrating a state of the control unit 25 in the period INT1 in FIG.
  • u1 and u2 indicate target voltages
  • x1R and x2R indicate signals output from the discretizers 511A and 511B.
  • x1Lq and x2Lq indicate signals output from the discretizers 517A and 517B
  • x1 and x2 indicate signals output from the differentiators 512A and 512B.
  • x1q and x2q indicate signals output from the binarizers 520A and 520B
  • y1 and y2 indicate signals output from the switches 521A and 521B.
  • K2 and K4 represent amplification factors of the amplifiers 5131A (5131B) and 5132A (5132B).
  • the comparators 53A and 53B, header / footer adding units 55A and 55B, and amplifiers 57A and 57B are not shown.
  • the delay units 523A (523B) and 524A (524B) in the quantizers 51A and 51B are not shown.
  • the voltage V1 is applied from the selector 29 to the comparators 53A and 53B of the packet generators 28A and 28B (FIG. 4). Further, the comparators 53A and 53B are supplied with voltages (H level voltages) corresponding to the voltage V1. (Or L level voltage) is applied to the Act1 terminal of the quantizer 51A and the Act2 terminal of the quantizer 51B, the switch 521A is connected to the output terminal of the output terminal, and the switch 521B The connection destination is set to the lower input terminal. Thereby, the packet generator 28A outputs a control signal, and the packet generator 28B stops outputting the control signal.
  • both the packet generators 28A and 28B do not output control signals, the drive terminals of the switches 514A and 514B and the switches 516A and 516B are maintained at the L level voltage. Therefore, both the switches 514A and 514B have the output terminal connected to the lower input terminal, and the switches 516A and 516B both have the output terminal connected to the lower input terminal.
  • the amplification factor of the amplifier 5131A (5131B) is K2
  • the amplification factor of the amplifier 5132A (5132B) is K4.
  • the relationship of K2 ⁇ (C1 ⁇ B1) ⁇ 1 ⁇ C1 ⁇ A1
  • K4 ⁇ (C1 ⁇ B1) ⁇ 1 ⁇ C1 ⁇ A2 is established.
  • “ ⁇ ” Indicates multiplication.
  • A1, B1, and C1 used to define the above K2 are assumed to be in a state where the power packet is supplied to the load 4A (4B) (the state of FIG. 7A). This is a derived parameter.
  • A2 used to define K4 is a parameter derived when it is assumed that the power packet is not supplied to the load 4A (4B) (the state shown in FIG. 7B). is there.
  • the parameters A1, B1, and C1 are represented by the following equation (1), where C is the capacity of the buffer capacitor, R is the connection resistance, and RL is the load 4A (4B) in FIG. ).
  • the parameter A2 is represented by the following equation (2), where C is the capacity of the buffer capacitor and RL is the load 4A (4B) in FIG.
  • the amplifier 5131A (5131B) is set to have an amplification factor of K2, and the amplifier 5132A (5132B) is set to have an amplification factor of K4.
  • K is a parameter that can take a value between 0 and S-1 (S is a positive integer).
  • S is set to 100, for example.
  • the value of the parameter k is incremented every time interval K / S.
  • the value of S is set to 100, for example. The same applies to formulas (5) to (12) described later.
  • the discretizer 511A executes the process shown in the above equation (3-3).
  • the signal x1R (k + 1) output from the discretizer 511A indicates the voltage of the load 4A when the target voltage is applied to the load 4A, and starts to apply power from the state where power is not applied to the load 4A.
  • the voltage including the transient state until the target voltage is reached is shown.
  • the discretizer 511A outputs a signal x1R (k + 1) based on the target voltage u1 (k) and x1R (k) (past value).
  • the amplifier 518A and the discretizer 517A execute the process shown in the above equation (3-2).
  • a signal x1Lq (k + 1) processed by the amplifier 518A and the discretizer 517A indicates a voltage estimated to be applied to the load 4A. That is, the signal x1Lq (k + 1) indicates a voltage estimated to be applied to the load 4A when the power packet is supplied.
  • the discretizer 517A executes processing shown in the following formula (3-6).
  • “P” is set to “1” when the quantizer 51A outputs a control signal in the period (INT unit) immediately before the current state, and is set to be “1”.
  • “0” is set.
  • “P” is set to “1” when the quantizer 51A was in a generation state in a period (INT unit) immediately before the current state, and “P” is When it is set to “0”, it indicates that the quantizer 51A was in a non-generated state in a period (INT unit) immediately before the current state.
  • the output of the control signal from the switch 521A is given to the switch 516A via the delay device 524A (FIG. 5).
  • delay device 524A delays by one INT unit period (one power packet) and provides the applied control signal to switch 516A. Therefore, when the quantizer 51A outputs the control signal in the period (INT unit) immediately before the current state, the switch 516A switches to the upper input terminal. Otherwise, switch 516A switches to the lower input terminal.
  • “P” in Expression (3-6) indicates the state of the switch 516A.
  • the quantizer 51A When the quantizer 51A is in the non-generated state in the period immediately before the current state (INT unit), the switch 516A switches to the lower input terminal, and thus connects the amplifier 518A and the discretizer 517A.
  • the discretizer 517A sets “P” to “0” when the switch 516A is switched to the lower input terminal.
  • the control signal (y (k)) just before one period is “0”.
  • the amplification factor of the amplifier 518A is set to (A2-A1) / B1 times.
  • the discretizer 517A multiplies the signal (x1Lq (k)) output until immediately before by (A2-A1) / B1, and executes the processing shown in the above equation (3-6). As a result, the discretizer 517A and the amplifier 518A execute the process shown in the above equation (3-2) and output the signal x1Lq (k + 1).
  • the switch 516A switches to the upper input terminal, and therefore, the subsequent stage of the switch 521A and the discretizer 517A are connected. Connecting.
  • the discretizer 517A sets “P” to “1” when the switch 516A is switched to the upper input terminal. Therefore, the discretizer 517A executes the processing shown in the above equation (3-6). As a result, the discretizer 517A executes a process shown in the following equation (5-2) and outputs a signal x1Lq (k + 1).
  • the case where the quantizer 51A is in the generation state in the period (INT unit) before the current state means that the power packet is given to the load 4A in the period (INT unit) immediately before the current state. It is shown that.
  • the quantizer 51A is in a non-generated state in the period (INT unit) immediately before the current state, the power packet is given to the load 4A in the period (INT unit) immediately before the current state. Indicates that it was not possible.
  • the discretizer 517A of this embodiment determines whether or not a power packet is being supplied to the load 4A based on whether or not the control signal is output from the switch 521A, and accordingly, the signal x1Lq ( The process for obtaining k + 1) is switched. That is, the discretizer 517A determines the supply state of the power packet in the load 4A, and according to the determination result, the state where the power packet is supplied (first state) and the state where the power packet is not supplied (first state) The signal x1Lq (k + 1) in each of the second states) is output.
  • FIG. 9 shows a case where the quantizer 51A is in a non-generated state in a period (INT unit) before the current state, and the quantizer 51A is in a period (INT) before the current state.
  • the quantizer 51A executes the processing shown in the above equation (3-2) and outputs a signal x1Lq (k + 1). That is, the expression (3-2) is an expression for obtaining a voltage estimated to be applied to the load 4A in a case where a power packet is not supplied to the load 4A (FIG. 7B). It is.
  • the signal x1 (x2) output from the difference unit 512A (512B) is amplified by the amplifier 5132A (5132B) and input to the adder 519A (519B).
  • the signal x1Lq (x2Lq) output from the discretizer 517A (517B) is input to the amplifier 518A (518B).
  • the signal x1Lq is amplified by (A2-A1) / B1 times and input to the subtractor 512A (512B).
  • the above equation (3-1) shows the processing executed in the difference unit 512A. That is, the differentiator 512A calculates the difference between the signal x1Lq (k) and the signal x1R (k) and outputs the signal x1 (k). That is, the signal x1 (k) is a difference between the signal x1Lq (k) and the signal x1R (k).
  • the signal x1R (k) indicates the voltage of the load 4A when the target voltage is applied to the load 4A as described above. Further, as described above, the signal x1Lq (k) indicates a voltage that is estimated to be applied to the load 4A when the power packet is supplied. That is, the signal x1R (k) indicates a voltage value in an ideal state when a target voltage is applied to the load 4A, and the signal x1Lq (k) fluctuates due to intermittent supply of power packets. An actual voltage value (estimated value) at a possible load 4A is shown. Therefore, the signal x1 (k) that is the difference between the signal x1Lq (k) and the signal x1R (k) indicates the difference between the actual voltage value at the load 4A and the voltage value in the ideal state.
  • the signal x1R (k) is a target voltage in the load 4A.
  • the target voltage in this specification includes the above-described target voltage u1 (k) and the signal x1R (k).
  • the signal x1 (k) can be said to be a differential voltage between the signal x1Lq (k) that is a voltage estimated to be applied to the load 4A and the signal x1R (k) that is a target voltage.
  • the signal x1 (k) is supplied to the amplifier 5131A or the amplifier 5132A.
  • the signal x1 (k) is supplied to the switch 514A after being multiplied by the above-described amplification factor K2 or K4 by the amplifier 5131A or the amplifier 5132A.
  • the switch 514A supplies the signal x1 (k) multiplied by K2 or K4 to the adder 519A and the selector 29 as the differential voltage ⁇ V1.
  • the switch 514A is switched to the lower input terminal. Therefore, the switch 514A supplies the signal x1 (k) multiplied by K4 to the adder 519A and the selector 29 as the differential voltage ⁇ V1.
  • the differential voltage ⁇ V1 is a voltage (signal) obtained by converting a signal x1 (k) indicating a difference between an actual voltage value in the load 4A and an ideal voltage value as a control signal on the quantizer 51A side. . That is, the differential voltage ⁇ V1 indicates the degree of difference between the actual voltage value at the load 4A and the ideal voltage value. Therefore, if the differential voltage ⁇ V1 is larger, it can be determined that the actual voltage value at the load 4A is far from the ideal voltage value. If the differential voltage ⁇ V1 is smaller, the actual voltage value at the load 4A is It can be determined that it is based on the voltage value in the ideal state.
  • the selector 29 selects the quantizers 51A and 51B so that the control signal is output only from the quantizer 51A (51B) having the larger differential voltage ⁇ V1 ( ⁇ V2) among the quantizers 51A and 51B. 51B is controlled. Therefore, the selector 29 outputs a control signal only from the quantizer 51A (51B) corresponding to the load 4A (4B) that can be determined that the actual voltage value is greatly deviated from the voltage value in the ideal state. Can be controlled. As a result, the control unit 25 can control the voltage applied to each of the two loads 4A and 4B to change at a voltage as close as possible to the target voltage.
  • the adder 519A gives a value (voltage) obtained by adding the target voltage u (k) to the differential voltage ⁇ V1 to the binarizer 520A.
  • the binarizer 520A in FIG. 9 outputs the signal x1q (k) by performing the processing shown in the above equation (3-4).
  • the binarizer 520A When the value (voltage) obtained by adding the target voltage u (k) to the differential voltage ⁇ V1 is smaller than a predetermined threshold, the binarizer 520A outputs the signal x1q (k) as an L level voltage.
  • the binarizer 520A sets the signal x1q (k) to a predetermined voltage value. Outputs the set signal.
  • the predetermined threshold is set to a target voltage or a voltage value slightly higher than the target voltage, for example. Further, the predetermined voltage value is set to a voltage value equal to or higher than the target voltage, for example.
  • the quantizer 51A converts the signal x1q (k) into the signal y1 (k) as shown in the above equation (3-5). Output.
  • This signal y1 (k) is output as a control signal and given to the header / footer adding unit 55A (FIG. 4) at the subsequent stage.
  • the packet generator 28A (quantizer 51A) in FIG. 9 outputs the control signal.
  • Each unit of the packet generator 28B (quantizer 51B) performs the same processing as the packet generator 28A (quantizer 51A).
  • the packet generator 28B (quantizer 51B) stops outputting the control signal because the switch 521B has the output terminal connected to the lower input terminal.
  • the settings of the switch 514B and the switch 516B are the same as those of the packet generator 28A except for the above points.
  • this period INT2 starts when the selector 29 determines that the output value (differential voltage ⁇ V1) of the switch 514A is equal to or higher than the output value (differential voltage ⁇ V2) of the switch 514B. That is, when it is determined that the difference voltage ⁇ V1 between the voltage estimated to be applied to the load 4A and the target voltage is equal to or higher than the difference voltage ⁇ V2 between the voltage estimated to be applied to the load 4B and the target voltage.
  • the period INT2 corresponds to a period in which the packet generator 28A outputs a control signal one packet time ago and the packet generator 28B does not output a control signal one packet time ago. That is, this corresponds to a period in which the power packet is supplied to the load 4A and the power packet is not supplied to the load 4B one packet time ago.
  • FIG. 10 is a block diagram showing a state of the control unit 25 in the period INT2 in FIG.
  • the comparators 53A and 53B, header / footer adding units 55A and 55B, and amplifiers 57A and 57B are not shown.
  • the delay units 523A (523B) and 524A (524B) in the quantizers 51A and 51B are not shown.
  • the voltage V1 is given from the selector 29 to the comparators 53A and 53B of the packet generators 28A and 28B (FIG. 4), and further, the comparators 53A and 53B receive a voltage (H level voltage) corresponding to the voltage V1. (Or L level voltage) is applied to the Act1 terminal of the quantizer 51A and the Act2 terminal of the quantizer 51B, the switch 521A is connected to the output terminal of the output terminal, and the switch 521B The connection destination is set to the lower input terminal. Thereby, the packet generator 28A outputs a control signal, and the packet generator 28B stops outputting the control signal.
  • the drive terminals of the switches 514A and 516A are set to the H level voltage.
  • the drive terminals of the switches 514B and 516B are maintained at the L level voltage. Accordingly, in both the switches 514A and 516A, the connection destination of the output terminal is set to the upper input terminal. On the other hand, in the switches 514B and 516B, the connection destination of the output terminal is set to the lower input terminal.
  • the signal x1 output from the difference unit 512A is amplified by the amplifier 5131A and input to the adder 519A.
  • the signal x2 output from the difference unit 512B is amplified by the amplifier 5132B and input to the adder 519B.
  • the discretizer 517A inputs a signal x1Lq obtained by discretizing the signal y1 output from the switch 521A to the differentiator 512A.
  • the signal x2Lq output from the discretizer 517B is input to the amplifier 518B.
  • the signal x2Lq is amplified by (A2-A1) / B1 times and input to the difference unit 512B.
  • the packet generator 28A in the period INT2 is different from the packet generator 28A in the period INT1 in the following points. That is, in the packet generator 28A in the period INT2, the switch 514A and the switch 516A are switched from the lower input terminal to the upper input terminal. When the switch 516A is switched to the upper input terminal, the subsequent stage of the switch 521A and the discretizer 517A are connected. For this reason, the discretizer 517A executes the processing shown in the above equation (3-6), and as a result, executes the processing shown in the above equation (5-2) and outputs the signal x1Lq (k + 1).
  • the above equation (5-2) is an equation for obtaining a voltage estimated to be applied to the load 4A when assuming a state in which a power packet is supplied to the load 4A (FIG. 7A). is there.
  • the binarizer 520A in FIG. 10 outputs the signal x1q (k) by performing the processing shown in the above equation (5-4).
  • the switch 514B is switched at the same timing as the switch 516A, so that the target to which the signal x1 (k) is given to either the amplifier 5131A or the amplifier 5132A according to the processing executed by the discretizer 517A. Switch.
  • the quantizer 51A can switch between the expressions (3-2) and (5-2) and the expressions (5-2) and (5-4) in the period INT1.
  • This period INT3 starts when the selector 29 determines that the output value (differential voltage ⁇ V1) of the switch 514A is smaller than the output value (differential voltage ⁇ V2) of the switch 514B. That is, it is determined that the difference voltage ⁇ V1 between the voltage estimated to be applied to the load 4A and the target voltage is smaller than the difference voltage ⁇ V2 between the voltage estimated to be applied to the load 4B and the target voltage. Start when you are.
  • the period INT3 corresponds to a period in which the packet generator 28A outputs a control signal one packet time ago and the packet generator 28B does not output a control signal one packet time ago. That is, this corresponds to a period in which the power packet is supplied to the load 4A and the power packet is not supplied to the load 4B one packet time ago.
  • FIG. 11 is a block diagram illustrating a state of the control unit 25 in the period INT3 in FIG.
  • the comparators 53A and 53B, header / footer adding units 55A and 55B, and amplifiers 57A and 57B are not shown.
  • the delay units 523A (523B) and 524A (524B) in the quantizers 51A and 51B are not shown.
  • a voltage 2 * V1 is applied from the selector 29 to the comparators 53A and 53B of the packet generators 28A and 28B (FIG. 4), and the comparators 53A and 53B further apply a voltage corresponding to the voltage 2 * V1.
  • the connection destination of the output terminal of the switch 521A is set to the lower input terminal, and the switch 521B The connection destination of the output terminal is set to the upper input terminal.
  • the drive terminals of the switches 514A and 516A are set to the H level voltage.
  • the drive terminals of the switches 514B and 516B are maintained at the L level voltage. Accordingly, in both the switches 514A and 516A, the connection destination of the output terminal is set to the upper input terminal. On the other hand, in the switches 514B and 516B, the connection destination of the output terminal is set to the lower input terminal. This state is maintained for the period INT3 by the action of the delay devices 523A (523B) and 524A (524B).
  • the signal x1 output from the difference unit 512A is amplified by the amplifier 5131A and input to the adder 519A.
  • the signal x2 output from the difference unit 512B is amplified by the amplifier 5132B and input to the adder 519B.
  • the signal input to the discretizer 517A becomes zero, and thereby the signal x1Lq input from the discretizer 517A to the differentiator 512A is attenuated.
  • the signal x2Lq output from the discretizer 517B is input to the amplifier 518B.
  • the signal x2Lq is amplified by (A2-A1) / B1 times and input to the difference unit 512B.
  • the packet generator 28A in the period INT3 is different from the packet generator 28A in the period INT2 in the following points. That is, in the packet generator 28A in the period INT3, the output of the control signal is stopped when the switch 521A is switched from the upper input terminal to the lower input terminal. Therefore, as shown in the above equation (7-5), the signal y1 (k) is “0”. Of the above formula 7 executed by the packet generator 28A in the period INT3, the formulas other than the formula (7-5) are the same as the formulas included in the formula (5).
  • each equation included in the above equation (8) executed by the packet generator 28B in the period INT3 is the same as each equation included in the above equation (3).
  • the period INT4 starts when the selector 29 determines that the output value (differential voltage ⁇ V1) of the switch 514A is smaller than the output value (differential voltage ⁇ V2) of the switch 514B. That is, it is determined that the difference voltage ⁇ V1 between the voltage estimated to be applied to the load 4A and the target voltage is smaller than the difference voltage ⁇ V2 between the voltage estimated to be applied to the load 4B and the target voltage. Start when you are.
  • the period INT4 corresponds to a period in which the packet generator 28A does not output a control signal one packet time ago and the packet generator 28B outputs a control signal one packet time ago. That is, this corresponds to a period in which a power packet is not supplied to the load 4A and a power packet is supplied to the load 4B one packet time ago.
  • FIG. 12 is a block diagram showing a state of the control unit 25 in the period INT4 in FIG.
  • the comparators 53A and 53B, header / footer adding units 55A and 55B, and amplifiers 57A and 57B are not shown.
  • the delay units 523A (523B) and 524A (524B) in the quantizers 51A and 51B are not shown.
  • the voltage 2 * V1 is applied from the selector 29 to the comparators 53A and 53B of the packet generators 28A and 28B (FIG. 4), and the comparators 53A and 53B further apply a voltage corresponding to the voltage 2 * V1.
  • the connection destination of the output terminal of the switch 521A is set to the lower input terminal, and the switch 521B The connection destination of the output terminal is set to the upper input terminal.
  • the packet generator 28A does not output the control signal and the packet generator 28B outputs the control signal, so that the drive terminals of the switch 514A and the switch 516A are set to the L level voltage.
  • the drive terminals of the switches 514B and 516B are maintained at the H level voltage. Accordingly, in both the switches 514A and 516A, the connection destination of the output terminal is set to the lower input terminal.
  • the switches 514B and 516B have the output terminals connected to the upper input terminals. This state is maintained for the period INT4 by the delay devices 523A (523B) and 524A (524B).
  • the signal x1 output from the difference unit 512A is amplified by the amplifier 5132A and input to the adder 519A.
  • the signal x2 output from the difference unit 512B is amplified by the amplifier 5131B and input to the adder 519B.
  • the signal x1Lq output from the discretizer 517A is input to the amplifier 518A.
  • the signal x1Lq is amplified by (A2-A1) / B1 times and input to the difference unit 512A.
  • the discretizer 517B inputs a signal x2Lq obtained by discretizing the signal y2 output from the switch 521B to the differentiator 512B.
  • the packet generator 28A in the period INT4 is different from the packet generator 28A in the period INT3 in the following points. That is, in the packet generator 28A in the period INT4, the switch 514A and the switch 516A are switched from the upper input terminal to the lower input terminal. The switch 516A is switched to the lower input terminal, whereby the amplifier 518A and the discretizer 517A are connected. For this reason, the discretizer 517A executes the processing shown in the above equation (3-6), and as a result, executes the processing shown in the above equation (9-2) and outputs the signal x1Lq (k + 1).
  • the above equation (9-2) is the same as the above equation (3-2), and is applied to the load 4A in the case where a power packet is not supplied to the load 4A (FIG. 7B). This is an equation for obtaining a voltage estimated to be present.
  • the binarizer 520A in FIG. 10 outputs the signal x1q (k) by performing the processing shown in the above equation (9-4).
  • the formula (9-4) is the same as the above formula (3-2).
  • the formulas (9-1), (9-3), (9) other than the formulas (9-2) and (9-4) 9-5) is the same as the above formulas (7-1), (7-3), and (7-5).
  • the settings of the switches 514B, 516B, and 521B are the same as those in the packet generator 28A in the period INT2. Therefore, each formula included in the formula (10) is the same as each formula included in the formula (5).
  • This period INT5 starts when the selector 29 determines that the output value (differential voltage ⁇ V1) of the switch 514A is equal to or greater than the output value (differential voltage ⁇ V2) of the switch 514B. That is, when it is determined that the difference voltage ⁇ V1 between the voltage estimated to be applied to the load 4A and the target voltage is equal to or higher than the difference voltage ⁇ V2 between the voltage estimated to be applied to the load 4B and the target voltage.
  • the period INT5 corresponds to a period in which the packet generator 28A does not output a control signal one packet time ago and the packet generator 28B outputs a control signal one packet time ago. That is, this corresponds to a period in which a power packet is not supplied to the load 4A and a power packet is supplied to the load 4B one packet time ago.
  • FIG. 13 is a block diagram showing a state of the control unit 25 in the period INT5 in FIG.
  • the comparators 53A and 53B, header / footer adding units 55A and 55B, and amplifiers 57A and 57B are not shown.
  • the delay units 523A (523B) and 524A (524B) in the quantizers 51A and 51B are not shown.
  • the voltage V1 is applied from the selector 29 to the comparators 53A and 53B of the packet generators 28A and 28B (FIG. 4), and the comparators 53A and 53B further apply a voltage (H level voltage) corresponding to the voltage V1.
  • H level voltage (Or L level voltage) is applied to the Act1 terminal of the quantizer 51A and the Act2 terminal of the quantizer 51B, the connection destination of the output terminal of the switch 521A is set as the upper input terminal, and the connection destination of the output terminal of the switch 521B Is set to the lower input terminal.
  • the packet generator 28A outputs a control signal, and the packet generator 28B stops outputting the control signal.
  • the drive terminals of the switches 514A and 516A are set to the L level voltage.
  • the drive terminals of the switches 514B and 516B are maintained at the H level voltage. Accordingly, in both the switches 514A and 516A, the connection destination of the output terminal is set to the lower input terminal.
  • the switches 514B and 516B have the output terminals connected to the upper input terminals. This state is maintained for the period INT4 by the action of the delay devices 523A (523B) and 524A (524B).
  • the signal x1 output from the difference unit 512A is amplified by the amplifier 5132A and input to the adder 519A.
  • the signal x2 output from the difference unit 512B is amplified by the amplifier 5131B and input to the adder 519B.
  • the signal x1Lq output from the discretizer 517A is input to the amplifier 518A.
  • the signal x1Lq is amplified by (A2-A1) / B1 times and input to the difference unit 512A.
  • the signal input to the discretizer 517B becomes zero, and thereby the signal x2Lq input from the discretizer 517B to the differentiator 512B is attenuated.
  • the packet generator 28A in the period INT5 is different from the packet generator 28A in the period INT4 in the following points. That is, the packet generator 28A in the period INT5 outputs the control signal when the switch 521A is switched from the lower input terminal to the upper input terminal. Therefore, in the packet generator 28A in the period INT5, the settings of the switches 514B, 516B, and 521B are the same as the settings of the packet generator 28A in the period INT1. Therefore, each expression included in the above expression (11) executed by the packet generator 28A in the period INT5 is the same as each expression included in the above expression (3).
  • each expression included in the above expression (12) executed by the packet generator 28B in the period INT5 is the same as each expression included in the above expression (7).
  • This period INT6 starts when the selector 29 determines that the output value (differential voltage ⁇ V1) of the switch 514A is smaller than the output value (differential voltage ⁇ V2) of the switch 514B. That is, it is determined that the difference voltage ⁇ V1 between the voltage estimated to be applied to the load 4A and the target voltage is smaller than the difference voltage ⁇ V2 between the voltage estimated to be applied to the load 4B and the target voltage.
  • the period INT6 corresponds to a period in which the packet generator 28A outputs a control signal one packet time ago and the packet generator 28B does not output a control signal one packet time ago.
  • this corresponds to a period in which the power packet is supplied to the load 4A and the power packet is not supplied to the load 4B one packet time ago.
  • the state is the same as that shown in FIG. That is, the control unit 25 performs the same operation as in the period INT3.
  • the selector 29 generates each packet in consideration of the behavior of the voltage estimated to be applied to the loads 4A and 4B before one packet time K.
  • the generators 28A and 28B are either in a generated state or a non-generated state. Specifically, the selector 29 puts the packet generator 28A into a generation state and puts the packet generator 28B into a non-generation state, puts the packet generator 28A into a non-generation state, and puts the packet generator 28B into a generation state. To do. Further, as shown in the equations (3) to (12), the quantizer 51A (51B) generates a control signal at a certain time (k + 1) based on a target voltage acquired in the past.
  • the selector 29 causes the packet generators 28A and 28B to turn on and off the switches 21A and 21B, and the packet generators 28A and 28B The state in which 21B is kept off is switched.
  • the packet generators 28A and 28B are operating any one of the two switches 21A and 21B on and off, the other switches can be kept off.
  • the configuration is such that a plurality of power packets are transmitted to one main transmission line L1
  • FIG. 14 shows a configuration diagram of a power network according to the present embodiment.
  • the power network includes power supplies 1A and 1B, a mixer 202, power routers 203A, 3B, and 3C, loads 4A and 4B, and a load voltage command unit 5.
  • symbol is attached
  • the operations of mixer 202 and power router 203A are different from those in the first embodiment. Specifically, the mixer 202 first transmits a power packet to the address of the power router 203A. Then, based on the command value (voltage target value) input from the load voltage command unit 5, the power router 203A sets the transmission destination of the power packet to one of the addresses of the loads 4A and 4B.
  • the power router 203A includes a plurality of power storage units.
  • power router 203A receives a power packet at any of reception ports In1 and In2
  • power router 203A distributes the power packets to a plurality of power storage units according to the transmission source of the received power packets and charges each power storage unit.
  • the power router 203 ⁇ / b> A transmits power packets from both the transmission ports Out ⁇ b> 1 and Out ⁇ b> 2 based on the command value (voltage target value) input from the load voltage command unit 5. Details of the configuration of the power router 203A will be described later.
  • the load voltage command unit 5 inputs a command value (voltage target value) of a voltage to be applied to each of the loads 4A and 4B to the power router 203A.
  • FIG. 15 is a block diagram of a part of the power network according to the present embodiment.
  • the power router 203A includes switches 221A to 221D, drivers 223A to 223D, power storage units 201A and 201B, a control unit 25, and diodes 227A and 227B. These configurations are configurations for generating a power packet from one of the two power storage units 201A and 201B, and correspond to a power packet generation unit.
  • the power router 203A further includes switches 231A to 231D, a driver 233, a control unit 235, a signal separator 239, and diodes 237A to 237D. These configurations are configurations for distributing and charging power packets received by both of the two reception ports In1 and In2 to the two power storage units 201A and 201B according to the transmission source of the power packets.
  • the switch 221A has one end connected to the power storage unit 201A via the diode D227A and the other end connected to the transmission port Out1.
  • the switch 221A is inserted in the sub-transmission path L12 that couples the power storage unit 201A and the main transmission path L11 that passes through the transmission port Out1.
  • the switch 221B has one end connected to the power storage unit 201A via the diode D227A and the other end connected to the transmission port Out2.
  • the switch 221B is interposed in the sub-transmission path L22 that couples the power storage unit 201A and the main transmission path L21 that passes through the transmission port Out2.
  • the switch 221C has one end connected to the power storage unit 201B via the diode D227B and the other end connected to the transmission port Out2. In other words, the switch 221C is interposed in the sub transmission line L23 that couples the power storage unit 201B and the main transmission line L21 passing through the transmission port Out2.
  • the switch 221D has one end connected to the power storage unit 201B via the diode D227B and the other end connected to the transmission port Out1. In other words, the switch 221D is interposed in the sub-transmission path L13 that couples the power storage unit 201B and the main transmission path L11 that passes through the transmission port Out1.
  • the diode 227A is connected such that the power storage unit 201A side is an anode and the switches 221A and 221B side are cathodes.
  • the diode 227B is connected such that the power storage unit 201B side is an anode and the switches 221C and 221D side are cathodes.
  • These diodes 227A and 227B are for preventing current from flowing from the transmission ports Out1 and Out2 toward the power storage units 201A and 201B.
  • or 223D changes the gate voltage of switch 221A thru
  • FIG. The same control signal is input to the driver 223A and the driver 223B.
  • the same control signal is also input to the driver 223C and the driver 223D. Thereby, the switch 221A and the switch 221B are interlocked, and the switch 221C and the switch 221D are interlocked.
  • the control unit 25 includes packet generators 28A and 28B and a selector 29.
  • the control unit 25 is the same as the control unit 25 of the first embodiment. Note that the details of the operation of the control unit 25 are the same as the contents described in ⁇ 2> of the first embodiment, and are omitted here.
  • the switch 231A has one end connected to the reception port In1 via the diode 237A and the other end connected to the power storage unit 201A via the diode 237B.
  • the switch 231B has one end connected to the reception port In1 via the diode 237A and the other end connected to the power storage unit 201B via the diode 237D.
  • the switch 231C has one end connected to the reception port In2 via the diode 237C and the other end connected to the power storage unit 201B via the diode 237D.
  • the switch 231D has one end connected to the reception port In2 via the diode 237C and the other end connected to the power storage unit 201A via the diode 237B.
  • the diode 237A is connected such that the reception port In1 side is an anode and the switches 231A and 231B side are cathodes.
  • the diode 237B is connected such that the switches 231A and 231D are the anode and the power storage unit 201A is the cathode.
  • the diode 237C is connected so that the reception port In2 side is an anode and the switches 231C and 231D are cathodes.
  • the diode 237D is connected such that the switches 231B and 231C side is an anode and the power storage unit 201B side is a cathode.
  • the diodes 237A and 237C are for preventing current from flowing from the switches 231A to 231D toward the reception ports In1 and In2.
  • the diodes 237B and 237D are for preventing current from flowing from the power storage units 201A and 201B toward the switches 231A to 231D.
  • the driver 233 individually changes the gate voltages of the switches 231A to 231D in accordance with the control signal input from the control unit 235.
  • the control unit 235 specifies the transmission source of the power packet received at the reception ports In1 and In2 from the signal waveform input from the signal separator 239. Then, the control unit 235 controls the driver 233 according to the identified transmission source of the power packet.
  • the control unit 235 inputs a control signal corresponding to each of the switches 231A to 231D to the driver 233.
  • the power storage unit 201A is charged with a power packet whose transmission source is commercial power generation equipment
  • the power storage unit 201B is charged with a power packet whose transmission source is private power generation equipment.
  • both reception ports In1 and In2 have received a power packet whose transmission source is commercial power generation equipment.
  • the control unit 235 controls the driver 233 so that the switches 231A and 231D are turned on and the switches 231B and 231C are turned off.
  • both reception ports In1 and In2 have received a power packet whose transmission source is a private power generation facility.
  • control unit 235 controls the driver 233 so that the switches 231B and 231C are turned on and the switches 231A and 231D are turned off. Therefore, the control unit 235 controls the driver 233 so that the power packet is distributed and charged to the two power storage units 201A and 201B according to the transmission source.
  • the signal separator 239 is configured using, for example, a photocoupler, and individually extracts a signal waveform for each power packet received at the reception ports In1 and In2. Then, the signal separator 239 inputs the extracted signal waveform to the control unit 235.
  • the present inventors conducted a verification test for confirming the effect of the power network.
  • the power network shown in the first embodiment is constructed on a computer, and the state when power packets are simultaneously supplied to the loads 4A and 4B by computer simulation is reproduced. The power in 4B was evaluated.
  • As test conditions as the first condition, the voltage of the first power source 1A is 15V, the voltage of the second power source 1B is 12V, and the power of the target voltage 8V is supplied from the first power source 1A to the first load 4A. The case where power of the target voltage 8V is supplied from the second power source 1B to the second load 4B is set.
  • the voltage of the first power supply 1A is 14V
  • the voltage of the second power supply 1B is 12V
  • the power of the target voltage 10V is supplied from the first power supply 1A to the first load 4A
  • the second power supply A case where power of target voltage 8V is supplied from 1B to the second load 4B is set.
  • the power packet was set to 2 ⁇ 10 ⁇ 4 seconds per one.
  • a change with time of voltage in each load 4A, 4B when power packet supply was simultaneously supplied to each load 4A, 4B was obtained, and evaluation was performed based on the state of change with time.
  • FIG. 16 is a graph showing a change with time of voltage in each of the loads 4A and 4B when a power packet is supplied to each of the loads 4A and 4B by computer simulation, (a) is a graph of the first condition, and (b) is a graph of the first condition. It is a graph of the 2nd condition.
  • the vertical axis indicates the voltage value (V) at each of the loads 4A and 4B.
  • the horizontal axis indicates the elapsed time (seconds).
  • FIG. 16 includes a transient state from when the voltage of each load 4A, 4B, which is a state in which no power packet is applied to each load 4A, 4B, is “0V”, until reaching the target voltage after starting to apply power. The change with time of voltage is shown.
  • both the loads 4A and 4B can be stably supplied near the target voltage. I can confirm that. Also in FIG. 16 (b), as a result of supplying power with the target voltage set to 10V for the load 4A and the target voltage set to 8V for the load 4B, as shown in each graph, both the loads 4A and 4B are It can be confirmed that stable supply is possible near the target voltage.
  • the power network including the power packet generation device According to the power network including the power packet generation device according to the embodiment, even when power packets for a plurality of loads are generated and supplied, the transmission timing of power packets with different destinations is appropriately set. As a result of the adjustment, it was confirmed that power packets were properly sent to each load.
  • the example in which the power network includes the two power sources 1A and 1B and the two loads 4A and 4B has been described.
  • the number of power sources and loads is not limited to this.
  • the structure provided with three or more power supplies and three or more loads may be sufficient.
  • the mixer may be configured to include three or more packet generators and a selector that generates power packets exclusively by these packet generators.
  • each packet generator determines, as a transmission destination, a load having the largest difference absolute value between a command value and a voltage value applied to the load among a plurality of loads. do it.
  • Embodiment 1 the example in which the mixer 2 sets the transmission destination of the power packet based on the command value input from the load voltage command unit 5 has been described.
  • the configuration of the mixer 2 is not necessarily limited to the configuration having the function of setting the transmission destination of the power packet.
  • the mixer 2 may have only the function of selecting the power supplies 1A and 1B used for generating the power packet, and may not have the function of setting the transmission destination of the power packet.
  • the following configurations are exemplified.
  • the mixer 2 includes two packet generators and a selector. Then, the two packet generators set the address of the load set as the transmission destination in advance as the transmission destination of the generated power packet.
  • the configuration of the power router 203A is not necessarily limited to the configuration having the function of setting the transmission destination of the power packet.
  • the power router may have only a function of selecting the power storage units 201A and 201B used for power packet reconfiguration, and may not have a function of setting the transmission destination of the power packet.
  • the power router comprises two packet generators and a selector. Then, the two packet generators set the destination addresses of the power packets received at the reception ports In1 and In2 as the destinations of the reconfigured power packets as they are.
  • the power packet generator, the power router, and the power network according to the present invention can be applied to a power transmission / distribution system and a home power distribution system.
  • power supply to a system including a plurality of sensors and a plurality of drive actuators power supply to a system including a plurality of lighting devices and a plurality of batteries, power to a system including a plurality of solar cells and a plurality of loads It is also suitable for supply.
  • it is also suitable for power management on a board with a built-in electric device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)
  • Direct Current Feeding And Distribution (AREA)

Abstract

 ミキサ(電力パケット生成装置)2は、スイッチ21A,21Bと、パケット生成手段28A,28Bと、セレクタ29とを備える。パケット生成器28A(28B)は、負荷4A(4B)について、電力パケットが供給されている状態および電力パケットが供給されていない状態それぞれにおいて印加されていると推定される電圧と、目標電圧とに基づいて、スイッチ21A(21B)をオンオフ動作させる。セレクタ29は、パケット生成器28A,28Bがスイッチ21A,21Bをオンオフ動作させる状態と、パケット生成器28A,28Bがスイッチ21A,21Bをオフで維持する状態とを切り替える。

Description

電力パケット生成装置、電力ルータおよび電力ネットワーク
 本発明は、電力パケット生成装置、電力ルータおよび電力ネットワークに関する。
 従来、電力をパケット化して送配電するシステムが提案されている(例えば、特許文献1参照)。
 この種のシステムで用いられる電力パケットは、伝送される電力を担うペイロード部と、電力パケットの送信先を示すヘッダとを含んで構成されるものが一般的である。
特開2011-142771号公報
 ところで、近年では、複数の負荷がある場合、負荷に応じて異なる電源から電力パケットの供給を受けるようにしたいとの要請がある。例えば、太陽光発電等の再生可能エネルギーによる発電を行う発電所からの電力供給を受けたい需要者と、比較的電力供給が安定している火力発電所からの電力供給を受けたい需要者とが混在するような場合である。
 一方、各需要者へ電力を供給するための送電線の数は限られており、複数の電源から1つの伝送路に対して電力パケットを供給せざるを得ない。
 この場合、複数の電源から同時に1つの伝送路に対して電力パケットが送出されると、電力パケット同士が干渉してしまい、電力パケットの送信先を示すヘッダの波形が崩れてしまう場合がある。この場合、電力パケットが所望の送信先に供給されない虞がある。
 本発明は、上記事由に鑑みてなされたものであり、1つの伝送路に対して複数の電力パケットが送出される構成としながらも、各電力パケット同士が衝突して波形が崩れるのを防止できる電力パケット生成装置を提供することを目的とする。
 本発明に係る電力パケット生成装置は、少なくとも1つの直流電源の供給する電力から複数の負荷に供給する電力パケットを生成し、前記複数の負荷それぞれに目標電圧が印加されるように、生成した電力パケットを主伝送路に送出する電力パケット生成装置であって、前記直流電源と前記主伝送路とを結合する複数の副伝送路それぞれに介挿された複数のスイッチと、前記複数の負荷それぞれについて、前記電力パケットが供給されている第1状態および前記電力パケットが供給されていない第2状態それぞれにおいて印加されていると推定される電圧と前記目標電圧とに基づいて、前記スイッチをオンオフ動作させることにより前記電力パケットを生成する複数のパケット生成器と、前記パケット生成器が前記スイッチをオンオフ動作させる状態と、前記パケット生成器が前記スイッチをオフで維持する状態とを切り替える切替器と、を備える。
 本構成によれば、切替器が、パケット生成器がスイッチのオンオフ制御を行う状態と、パケット生成器がスイッチのオンオフ制御を行わない状態とを切り替える。これにより、電力パケット生成装置は、電力パケットを主伝送路に送出している状態と、電力パケットを主伝送路に送出していない状態とをとりうる。従って、パケット生成器が、複数のスイッチのいずれか1つをオンオフ動作させているときに、他のスイッチをオフで維持させることができる。これにより、1つの主伝送路に対して複数の電力パケットが送出される構成としながらも、電力パケット同士が衝突するのを防ぎ、各電力パケットの波形が崩れるのを防止できる。
 また、本発明に係る電力パケット生成装置は、上記複数のパケット生成器が、上記複数のスイッチそれぞれに対応して設けられ、上記切替器が、複数のパケット生成器のいずれか1つを、スイッチをオンオフ動作させて電力パケットを生成する生成状態とし、他のパケット生成器全てを、スイッチをオフで維持することにより電力パケットを生成しない非生成状態とするものであってもよい。
 本構成によれば、切替器が、複数のパケット生成器のいずれか1つを、スイッチをオンオフ動作させて電力パケットを生成する生成状態とし、他のパケット生成器全てを、スイッチをオフで維持することにより電力パケットを生成しない非生成状態とする。これにより、各パケット生成器から送出された電力パケット同士が干渉し合うことがないので、電力パケットの送信先を示すヘッダの波形が崩れるのを防止できる。しかして、電力パケットが所望の負荷に送信されないという不具合を防止することができる。
 また、本発明に係る電力パケット生成装置は、上記切替器が、上記複数の負荷それぞれにおいて、印加されていると推定される電圧と上記目標電圧との差分電圧が生じている場合、複数の負荷それぞれにおける、印加されていると推定される電圧と目標電圧との差分電圧に基づいて、各パケット生成器を上記生成状態および上記非生成状態のいずれかにするものであってもよい。
 本構成によれば、切替器が、複数の負荷それぞれについて、印加されていると推定される電圧と目標電圧との差分電圧のより大きい方に電力パケットが供給されるように、各パケット生成器を生成状態および非生成状態のいずれかにする。これにより、2つの負荷それぞれに印加される電圧を、目標電圧に比較的近い電圧で推移させることができる。
 また、本発明に係る電力パケット生成装置は、上記パケット生成器が、現在の目標電圧と過去に取得した目標電圧とに基づいて上記スイッチをオンオフ動作させるための制御信号を生成する制御信号生成部を備えるものであってもよい。
 本構成によれば、目標電圧が経時的に変化する場合において、実際に負荷に印加される電圧を目標電圧の変化に追従させやすくできる。
 また、本発明に係る電力ネットワークは、上記電力パケット生成装置を含むものである。
 また、本発明に係る電力ルータは、受信した電力パケットの電力を蓄電する少なくとも1つの蓄電部と、少なくとも1つの蓄電部の供給する電力から複数の負荷に供給する電力パケットを生成し、複数の負荷それぞれに目標電圧が印加されるように、生成した電力パケットを主伝送路に送出する電力パケット生成部とを備える。電力パケット生成部は、複数のスイッチと、複数のパケット生成器と、切替器とを有する。複数のスイッチは、蓄電部と主伝送路とを結合する複数の副伝送路それぞれに介挿されている。複数のパケット生成器は、複数の負荷それぞれについて、電力パケットが供給されている第1状態および電力パケットが供給されていない第2状態それぞれにおいて印加されていると推定される電圧と、目標電圧とに基づいて、スイッチをオンオフ動作させる。これにより、複数のパケット生成器は、電力パケットを生成する。切替器は、パケット生成器がスイッチをオンオフ動作させる状態と、パケット生成器がスイッチをオフで維持する状態とを切り替える切替器と、を有するものであってもよい。
 また、本発明に係る電力ルータは、上記複数のパケット生成器が、上記複数のスイッチそれぞれに対して1個ずつ存在し、上記切替器が、複数のパケット生成器のいずれか1つを、スイッチをオンオフ動作させて上記電力パケットを生成する生成状態とし、他のパケット生成器全てを、スイッチをオフで維持することにより電力パケットを生成しない非生成状態とするものであってもよい。
 また、本発明に係る電力ルータは、上記切替器が、上記複数の負荷それぞれにおいて、印加されていると推定される電圧と上記目標電圧との差分電圧が生じている場合、複数の負荷それぞれにおける、印加されていると推定される電圧と目標電圧との差分電圧に基づいて、各パケット生成器を前記生成状態および前記非生成状態のいずれかにするものであってもよい。
 また、本発明に係る電力ルータは、上記パケット生成器が、現在の目標電圧と過去に取得した目標電圧とに基づいて前記スイッチをオンオフ動作させるための制御信号を生成する制御信号生成部を備えるものであってもよい。
 また、本発明に係る電力ネットワークは、上記電力ルータを含むものであってもよい。
 本発明によれば、切替器が、パケット生成器がスイッチのオンオフ制御を行う状態と、パケット生成器がスイッチのオンオフ制御を行わない状態とを切り替える。これにより、パケット生成器が、複数のスイッチのいずれか1つのオンオフ制御を行っている状態にあるときに、他のスイッチのオンオフ制御を行わない状態とすることができる。従って、1つの主伝送路に対して複数の電力パケットが送出される構成としながらも、各電力パケットの波形が崩れるのを防止できる。
実施の形態1に係る電力ネットワークの構成図である。 実施の形態1に係る電力ネットワークの一部のブロック図である。 実施の形態1に係る電力パケットを示し、(a)は波形図、(b)はヘッダの構成図である。 実施の形態1に係る制御部のブロック図である。 実施の形態1に係る量子化器のブロック図である。 実施の形態1に係るセレクタのブロック図である。 実施の形態1に係る負荷の回路図である。 実施の形態1に係るパケット生成器の動作を示すタイムチャートである。 実施の形態1に係る制御部の動作説明図である。 実施の形態1に係る制御部の動作説明図である。 実施の形態1に係る制御部の動作説明図である。 実施の形態1に係る制御部の動作説明図である。 実施の形態1に係る制御部の動作説明図である。 実施の形態2に係る電力ネットワークの構成図である。 実施の形態2に係る電力ネットワークの一部のブロック図である。 コンピュータシミュレーションによって各負荷に電力パケットを供給したときの当該各負荷における電圧の経時変化を示すグラフであり、(a)は第1条件のグラフ、(b)は第2条件のグラフである。
<実施の形態1>
<1>  構成
<1-1>全体構成
 図1に、本実施の形態に係る電力ネットワークの構成図を示す。
 電力ネットワークは、電源1A,1Bと、ミキサ2と、電力ルータ3A,3B,3Cと、負荷4A,4Bと、負荷電圧指令部5とを備える。
 電源1A,1B(以下、場合によって「第1電源1A」、「第2電源1B」とも称する。)は、直流電力を出力する。電源1A,1Bは、例えば、発電設備や電池等から構成される。発電設備としては、例えば、火力発電所等が挙げられる。電池としては、例えば、バッテリや電気二重層キャパシタ等が挙げられる。
 ミキサ2は、電源1A,1Bから供給される直流電力を基に、負荷4A,4B向けの電力パケットを生成して電力ルータ3Aに向けて送信する。ミキサ2は、2つの受信ポートIn1,In2を有しており、電源1の出力は当該2つの受信ポートIn1,In2に分離して入力される。ここで、ミキサ2で生成される電力パケットの送信先は、負荷4A,4Bそれぞれのアドレスに設定される。ミキサ2の構成や電力パケットの構成の詳細は後述する。
 電力ルータ3A,3B,3Cは、受信ポートIn1,In2のいずれかで電力パケットを受信すると、受信した電力パケットの送信先に応じてルーティングを行う。そして、電力ルータ3A,3B,3Cは、ルーティング結果に応じて送信ポートOut1,Out2から電力パケットを送信する。ここで、電力ルータ3A,3B,3Cは、蓄電部(図示せず)を備えており、受信した電力パケットを一旦蓄電部に充電し、その後、蓄電部に充電した電力を基に電力パケットを再構成して送信する。なお、電力ルータ3A,3B,3Cは、電力パケットを再構成する特性に注目すれば、内部にミキサ2と同様の機能を備えていると看做すことができる。この意味において、蓄電部は、ミキサ2における電源1A,1Bと同じ位置づけにあると言える。
 負荷4A,4B(以下、場合によって「第1負荷4A」、「第2負荷4B」とも称する。)は、例えば、家電製品やコンピュータ、照明機器等が挙げられる。
 負荷電圧指令部5は、各負荷4A,4Bに印加すべき電圧(目標電圧)を出力する。負荷電圧指令部5は、例えば、パーソナルコンピュータ等から構成される。負荷電圧指令部5から出力された目標電圧は、ミキサ2に入力される。
 図2は、本実施の形態に係る電力ネットワークの一部のブロック図である。
 ミキサ2は、スイッチ21A,21Bと、ドライバ23A,23Bと、制御部25と、ダイオード27A,27Bとを備える。
 スイッチ21Aは、一端が第1電源1Aに接続され、他端がダイオード27Aを介して送信ポートOutに接続されている。言い換えると、スイッチ21Aは、電源1Aと、送信ポートOutを通る主伝送路L1とを結合する、副伝送路L2中に介挿されている。
 スイッチ21Bは、一端が第2電源1Bに接続され、他端がダイオード27Bを介して送信ポートOutに接続されている。言い換えると、スイッチ21Bは、第2電源1Bと、送信ポートOutを通る主伝送路L1とを結合する、副伝送路L3中に介挿されている。
 ここで、スイッチ21A,21Bは、ノーマリオン型のSiC-JFET等から構成される。スイッチ21A,21Bは、ゲート電圧がターンオン電圧以下の場合、オン状態となり、ゲート電圧がターンオン電圧よりも大きい場合、オフ状態となる。
 ダイオード27Aは、スイッチ21A側がアノード、送信ポートOut側がカソードとなるように接続されている。ダイオード27Bは、スイッチ21B側がアノード、送信ポートOut側がカソードとなるように接続されている。
 これらのダイオード27A,27Bは、送信ポートOUTから受信ポートIn1,In2に向かって電流が流れるのを防止するためである。
 ドライバ23A,23Bは、制御部25から入力される制御信号に応じて、スイッチ21A,21Bのゲート電圧を変化させる。ここで、制御信号は、「High」レベルと「Low」レベルの2種類の電圧から構成される。そして、ドライバ23A,23Bは、制御信号が「High」レベルの場合、スイッチ21A,21Bのゲート電圧をターンオン電圧以下にし、「Low」レベルの場合、ゲート電圧をターンオン電圧よりも大きい電圧にする。
 制御部25は、パケット生成器28A,28Bと、セレクタ29と、を備える。パケット生成器28A,28Bおよびセレクタ29は、例えば、タイマ、FPGA(Field Programmable Gate Array)およびメモリ等を組み合わせて実現されている。この制御部25の構成の詳細は、後述する。
 制御部25は、負荷電圧指令部5から入力端子De1,De2に入力される指令値(目標電圧)に基づいて、ドライバ23A,23Bに制御信号を入力する。これにより、スイッチ21A,21Bが動作して、第1電源1Aまたは第2電源1Bから供給される電力を基にした電力パケットが生成される。
 図3(a)に、本実施の形態に係る電力パケットの波形図を示し、図3(b)に電力パケットのヘッダの構成図を示す。
 スイッチ21A,21Bが動作することにより、図3(a)に示す波形の電力パケットが生成される。電力パケットは、伝送される電力を担うペイロード部と、ペイロード部の前に付加されたヘッダと、ペイロード部の後に付加されたフッタとから構成される。
 ヘッダおよびフッタは、電力パケットにおける制御情報を示すフィールドである。図3(b)に示すように、ヘッダは、制御情報として、例えば、電力パケットの開始を示すスタート信号、送信元情報および送信先アドレスを含んで構成される。フッタは、制御情報として、電力パケットの終了を示すエンド信号を含んで構成される。
 ここで、送信元情報とは、電力パケットの送信元(電源1A,1B)である電源の種別を示す情報である。電源の種別は、商用電源か自家発電電源かの違いに基づく種別である。なお、電源の種別としては、例えば、火力発電等の発電形態の違いに基づく種別であってもよい。また、送信元情報として、例えば、電源1A,1Bをユニークに識別可能な識別情報(アドレス)を採用してもよい。
<1-2>制御部の構成
 次に、制御部25の構成の詳細について説明する。
 図4に、制御部25のブロック図を示す。
 制御部25は、前述のように、パケット生成器28A,28Bと、セレクタ29と、を備える。セレクタ29の構成の詳細は後述する。
 <パケット生成器>
 パケット生成器28A,28Bは、負荷電圧司令部5から与えられる目標電圧に基づいて、ドライバ23A,23Bに与える制御信号を生成する。この制御信号は、スイッチ21A,21Bのオンオフ動作のパターンを定めるように構成されている。
 つまり、パケット生成器28A,28Bは、制御信号によってドライバ23A,23B及びスイッチ21A,21Bの動作を制御し、主伝送路L1に対する両電源1A,1Bによる直流電力の供給を断続制御することができる。
 パケット生成器28A,28Bは、図3に示すような電力パケットを生成するための制御信号を生成し、ドライバ23A,23Bに与える。ドライバ23A,23B及びスイッチ21A,21Bは、制御信号に従って動作することで電力パケットを生成する。
 このように、パケット生成器28A,28Bは、電力パケットを生成するための制御信号をドライバ23A,23Bに与えることで、電力パケットを生成する機能を有している。
 パケット生成器28Aは、量子化器51Aと、比較器53Aと、ヘッダ/フッタ付加部55Aと、増幅器57Aとからなる。また、パケット生成器28Bは、量子化器51Bと、比較器53Bと、ヘッダ/フッタ付加部55Bと、増幅器57Bとからなる。
 量子化器51A(51B)は、スイッチ21A(21B)をオンオフ動作させるための制御信号を生成する制御信号生成部を構成している。この量子化器51A(51B)は、いわゆる動的量子化器である。動的量子化器とは、過去の入力情報を利用して現在の量子化出力を定めるものであり、現在の入力値から現在の量子化出力値が定まるいわゆる静的量子化器とは区別されるものである。この量子化器51A(51B)は、過去に取得した目標電圧に基づいて制御信号を生成する。これにより、目標電圧が経時的に変化する場合において、実際に負荷4A,4Bに印加される電圧を目標電圧の変化に追従させることができる。
 この量子化器51A(51B)は、Dem1(Dem2)端子と、Pac1(Pac2)端子と、PacE1(PacE2)端子と、StaE1(StaE2)端子と、Act1(Act2)端子とを備える。Dem1(Dem2)端子には、負荷電圧指令部5から入力端子De1(De2)を通じて目標電圧が入力される。Pac1(Pac2)端子は、ヘッダ/フッタ付加部55A(55B)および増幅器57A(57B)を介して出力端子Out1(Out2)に接続されており、量子化器51A,51Bは、生成した制御信号をPac1(Pac2)端子から出力する。PacE1(PacE2)端子,StaE1(StaE2)端子は、セレクタ29に接続されている。量子化器51A(51B)は、セレクタ29が量子化器51A,51Bの内のどちらに制御信号を出力させるのかを判定するための信号をPacE1(PacE2)端子,StaE1(StaE2)端子から出力する。Act1(Act2)端子には、比較器53A(53B)が接続されており、比較器53A(53B)から所定の閾値以上の電圧(以下、「Hレベル電圧」と称する。)が入力されると、量子化器51A(51B)は、制御信号を出力する。
 以上のように、量子化器51A,51Bは、セレクタ29による選択に基づいて、量子化器51A,51Bの内の一方が制御信号を出力するように制御されるとともに、負荷電圧指令部5から与えられる目標電圧に基づいて、制御信号をPac1(Pac2)端子から出力する。
 図5に、量子化器51A(51B)のブロック図を示す。
 量子化器51Aは、離散化器511A(511B),517A(517B)と、差分器512A(512B)と、増幅器5131A(5131B),5132A(5132B),518A(518B)とを備える。更に、量子化器51A(51B)は、スイッチ514A(514B),516A(516B),521A(521B)と、加算器519A(519B)と、2値化器520A(520B)と、Lレベル電圧出力部522A(522B)と、遅延器523A(523B),524A(524B)とを備える。
 離散化器511A(511B)は、Dem1(Dem2)端子から与えられる目標電圧を離散化してなる電圧を出力する。また、離散化器517A(517B)は、スイッチ521A,521BからPac1(Pac2)端子に向けて出力される制御信号または増幅器518A(518B)から出力される電圧を受け取り、これらを離散化してなる電圧を出力する。
 差分器512A(512B)は、離散化器517A(517B)の出力電圧から離散化器511A(511B)の出力電圧を差し引いて得られる差分電圧x(例えば、後述図9の「x1」、「x2」参照)を出力する。
 増幅器5131A(5131B),5132A(5132B)は、差分器512A(512B)の出力電圧を増幅して出力する。ここで、増幅器5131A(5131B),5132A(5132B)は、互いに増幅率が異なる。また、増幅器518A(518B)は、離散化器517A(517B)からの出力電圧を増幅してスイッチ516A(516B)に入力する。
 スイッチ514A(514B),516A(516B),521A(521B)は、2つの入力端子と1つの駆動端子とを有する。図5において、3つの端子のうち、最も上側の端子と最も下側の端子が入力端子であり、中央の端子が駆動端子である。以下、スイッチ514A(514B),516A(516B),521A(521B)について、図面における上側の入力端子を上側入力端子、下側の入力端子を下側入力端子と称する。スイッチ514A(514B),516A(516B),521A(521B)は、駆動端子の電圧に応じて、出力端子の接続先を上側入力端子または下側入力端子に切り替える。具体的には、駆動端子の電圧がHレベル電圧であれば、出力端子の接続先を上側入力端子に切り替え、駆動端子の電圧が約0Vの電圧(以下、「Lレベル電圧」と称する。)であれば、出力端子の接続先を下側入力端子に切り替える。
 スイッチ514A(514B)の上側入力端子は、増幅器5131A(5131B)の出力端子に接続され、下側入力端子は、増幅器5132A(5132B)の出力端子に接続されている。また、スイッチ514A(514B)の駆動端子は、遅延器523A(523B)を介してスイッチ521A(521B)の出力端子に接続されている。そして、スイッチ514A(514B)の出力端子は、StaE1(StaE2)端子に接続されている。このスイッチ514A(514B)から出力される信号は、負荷4A(4B)に印加されていると推定される電圧と、目標電圧との差分電圧ΔVを反映した電圧に相当する。
 なお、量子化器51A(51B)は、スイッチ514A(514B)から出力される信号を絶対値とした信号をStaE1(StaE2)端子から出力する。つまり、前記差分電圧ΔVは、スイッチ514A(514B)から出力される信号を絶対値とした信号である。
 「印加されていると推定される電圧」、及び「差分電圧ΔV」については、後に詳述する。
 スイッチ516A(516B)の上側入力端子は、遅延器524A(524B)を介してスイッチ521A(521B)の出力端子に接続され、下側入力端子は、増幅器518A(518B)の出力端子に接続されている。また、駆動端子も、遅延器524A(524B)を介してスイッチ521A(521B)の出力端子に接続されている。遅延器523A(523B),524A(524B)は、スイッチ514A(514B),516A(516B)の入力端子の切り替えタイミングを合わせるためのものである。そして、遅延器523A(523B),524A(524B)は、スイッチ521A,521BからPac1(Pac2)端子(及びスイッチ516A,516B)に向けて出力される制御信号に対して電力パケット1つ分に相当する時間だけ時間遅延を与える。
 つまり、スイッチ514A(514B),516A(516B)は、互いに一致したタイミングで上側入力端子又は下側端子に切り替わるように構成されている。
 スイッチ521A(521B)の上側入力端子は、2値化器520A(520B)の出力端子に接続され、下側入力端子は、Lレベル電圧を出力するLレベル電圧出力部522に接続されている。このLレベル電圧出力部522は、例えば、下側入力端子を接地することにより実現できる。そして、スイッチ521A(521B)の出力端子は、Pac1(Pac2)端子に接続されている。また、スイッチ521A(521B)の駆動端子は、Act1(Act2)端子に接続されている。
 量子化器51A(51B)は、スイッチ521A(521B)が上側入力端子に切り替えられている状態のときに、Pac1(Pac2)端子から制御信号を出力する。
 Act1(Act2)端子には、後述するように、比較器53A(53B)が出力するHレベル電圧又はLレベル電圧が与えられる。スイッチ512Aは、比較器53A(53B)からのHレベル電圧又はLレベル電圧によって制御される。
 加算器519A(519B)は、Dem1(Dem2)端子から入力される目標電圧と、スイッチ514A(514B)の出力電圧とを加算してなる電圧を出力する。
 2値化器520A(520B)は、加算器519A(519B)の出力電圧を2値化して出力する。そして、2値化器520A(520B)の出力端子は、PacE1(PacE2)端子に接続されている。
 以上の構成によって、量子化器51A,51Bは、Dem1(Dem2)端子から目標電圧が与えられるとこの目標電圧値に基づいて制御信号を生成する。また、量子化器51A,51Bは、セレクタ29の判定に応じて、生成した制御信号をPac1(Pac2)端子から出力し、又は制御信号の出力を停止する。
 図4に戻って、比較器53A,53Bは、セレクタ29から入力される電圧に応じて量子化器51A,51BのAct1,Act2端子に与える電圧を変化させる。
 比較器53Aは、量子化器51AのAct1端子に接続されている。そして、比較器53Aは、セレクタ29から入力される電圧が電圧V1であるか否かを判定し、電圧V1に等しければHレベル電圧をAct1端子に入力し、電圧V1に等しくなければLレベルの電圧をAct1端子に入力する。ここで、「電圧V1に等しい」とは、厳密に等しいことまでを要求するものではなく、セレクタ29から入力される電圧が、電圧V1を含む所定の電圧範囲内(例えば、電圧V1に対して±25%の範囲内)であればよいことを意味する。
 また、比較器53Bは、量子化器51BのAct2端子に接続されている。そして、比較器53Bは、セレクタ29から入力される電圧が電圧2*V1であるか否かを判定し、電圧2*V1に等しければHレベル電圧をAct2端子に出力し、電圧2*V1に等しくなければLレベルの電圧をAct2端子に出力する。ここで、「電圧2*V1に等しい」とは、厳密に等しいことまでを要求するものではなく、セレクタ29から入力される電圧が、電圧2*V1を含む所定の電圧範囲内(例えば、電圧2*V1に対して±25%の範囲内)であればよいことを意味する。また、「*」は乗算を示している。
 量子化器51A,51B(パケット生成器28A,28B)は、Hレベル電圧が与えられると制御信号を出力し、Lレベル電圧が与えられると制御信号の出力を停止する。
 セレクタ29は、比較器53A,53Bに上記電圧を与えることで、量子化器51A,51B(パケット生成器28A,28B)の内の一方が制御信号を出力し、他方がLレベル電圧を出力するように制御している。
 ヘッダ/フッタ付加部55A,55Bは、量子化器51A,51Bから出力される制御信号にヘッダおよびフッタを付加する。このヘッダ/フッタ付加部55Aは、ヘッダとして、例えば、第1電源1Aの種別を示す送信元情報と、第1負荷4Aを示す送信先アドレスとを含んで構成されたものを付加する。また、ヘッダ/フッタ付加部55Bは、ヘッダとして、例えば、第2電源1Bの種別を示す送信元情報と、第2負荷4Bを示す送信先アドレスとを含んで構成されたものを付加する。
 これによって、パケット生成器28A,28Bは、図3に示すような電力パケットを生成することができる制御信号を生成する。
 増幅器57A,57Bは、制御信号をドライバ23A,23Bの駆動電圧まで引き上げる。この増幅器57A,57Bは、それぞれヘッダ/フッタ付加部55A,55Bから入力される制御信号を増幅して出力端子Out1,Out2に出力する。
 <セレクタ>
 セレクタ29は、パケット生成器28A(28B)がスイッチ21A(21B)をオンオフ動作させる状態と、パケット生成器28A(28B)がスイッチ21A(21B)をオフで維持する状態とを切り替える。
 つまり、セレクタ29は、パケット生成器28A(28B)に制御信号を出力させてスイッチ21Aをオンオフ動作させることで電力パケットを生成する状態(生成状態)、又は、パケット生成器28A(28B)にLレベル電圧を出力させてスイッチ21Bをオフで維持することにより電力パケットを生成しない状態(非生成状態)のいずれかの状態となるように切り替える。
 セレクタ29は、パケット生成器28Aが生成状態のときは、パケット生成器28Bが非生成状態となるように切り替え、パケット生成器28Aが非生成状態のときは、パケット生成器28Bが生成状態となるように切り替える。
 このセレクタ29は、PacE1端子と、StaE1端子と、PacE2端子と、StaE2端子と、Act端子とを備える。PacE1端子,StaE1端子は、それぞれ量子化器51AのPacE1端子,StaE1端子に接続されている。PacE2端子,StaE2端子は、それぞれ量子化器51BのPacE2端子,StaE2端子に接続されている。Act端子は、比較器53A,53Bに接続されている。
 図6に、セレクタ29のブロック図を示す。
 セレクタ29は、比較器291,293A,293B,296と、スイッチ292と、AND回路294と、差分器295と、加算器297と、定電圧源298とを備える。
 比較器291は、2つの入力端子の一方がStaE1端子に接続され、他方がStaE2端子に接続されている。ここで、StaE1端子の電圧は、負荷4Aに印加されていると推定される電圧と目標電圧との差分電圧ΔV1を反映したものである。また、StaE2端子の電圧は、負荷4Bに印加されていると推定される電圧と、目標電圧との差分電圧ΔV2を反映したものである。以下、量子化器51AがStaE1端子に与える差分電圧ΔVを差分電圧ΔV1と、量子化器51BがStaE2端子に与える差分電圧Δを差分電圧ΔV2と表す。
 そして、比較器291は、StaE1端子の電圧がStaE2端子の電圧以上、即ち、負荷4Aに対応する差分電圧ΔV1が負荷4Bに対応する差分電圧ΔV2以上の場合、低レベル電圧を出力する。一方、比較器291は、StaE1端子の電圧がStaE2端子の電圧未満、即ち、負荷4Aに対応する差分電圧ΔV1が負荷4Bに対応する差分電圧ΔV2よりも小さい場合、低レベル電圧の電圧値よりも高い電圧値の高レベル電圧を出力する。なお、セレクタ29における各機能部は、互いに前記高レベル電圧及び低レベル電圧を授受するように構成されている。
 比較器293A,293Bは、それぞれPacE1端子、PacE2端子に接続されている。そして、各比較器293A,293Bは、PacE1端子、PacE2端子の電圧が所定の閾値電圧Vthを超える場合に高レベル電圧を出力する。ここで、閾値電圧Vthは、低レベル電圧よりも高く且つ高レベル電圧よりも低い電圧に相当する。例えば、閾値電圧Vthは、0Vに設定される。
 ここで、PacE1端子の電圧が閾値電圧Vthを超える場合は、量子化器51Aが制御信号を生成している場合に相当する。また、PacE2端子の電圧が閾値電圧Vthを超える場合は、量子化器51Bが制御信号を生成している場合に相当する。即ち、比較器293A,293Bは、それぞれ量子化器51A,51Bが制御信号を生成しているか否かを判定している。
 AND回路294は、2つの入力端子が比較器293A,293Bの出力端子にそれぞれ接続されている。ここで、AND回路294の出力電圧が高レベル電圧にある場合、比較器293A,293Bの両方の出力電圧が高レベル電圧にあることに相当する。即ち、AND回路294の出力電圧が高レベル電圧の場合、量子化器51Aおよび量子化器51Bの両方が制御信号を生成している場合に相当する。一方、AND回路294の出力電圧が低レベル電圧にある場合、比較器293A,293Bの少なくとも一方の出力電圧が低レベル電圧にあることに相当する。即ち、AND回路294の出力電圧が低レベル電圧の場合、量子化器51Aおよび量子化器51Bの少なくとも一方が制御信号を生成していない場合に相当する。つまり、AND回路294は、量子化器51Aおよび量子化器51Bの両方が制御信号を生成しているか否かを判定している。
 差分器295は、PacE1端子の電圧からPacE2端子の電圧を差し引いて得られる差分電圧(x1q-x2q)を出力する。
 比較器296は、差分器295の出力電圧が0V以下であれば高レベル電圧を出力し、0Vを超える場合は低レベル電圧を出力する。即ち、比較器296は、PacE1端子の電圧がPacE2端子の電圧以下の場合、高レベル電圧を出力する。一方、比較器296は、PacE1端子の電圧がPacE2端子の電圧を超える場合、低レベル電圧を出力する。
 つまり、比較器296は、量子化器51Aが制御信号を生成しかつ量子化器51Bが制御信号を生成していない場合、低レベル電圧を出力する。また、比較器296は、量子化器51Aが制御信号を生成しておらずかつ量子化器51Bが制御信号を生成している場合、高レベル電圧を出力する。
 スイッチ292は、2つの入力端子と1つの駆動端子とを有する。図6において、3つの端子のうち、最も上側の端子と最も下側の端子が入力端子であり、中央の端子が駆動端子である。以下、スイッチ292について、図面における上側の入力端子を上側入力端子、下側の入力端子を下側入力端子と称する。スイッチ292は、駆動端子の電圧に応じて、出力端子の接続先を上側入力端子または下側入力端子に切り替える。具体的には、駆動端子の電圧が高レベル電圧であれば、出力端子の接続先を上側入力端子に切り替え、駆動端子の電圧が低レベル電圧であれば、出力端子の接続先を下側入力端子に切り替える。
 スイッチ292の上側入力端子は、比較器291の出力端子に接続され、下側入力端子は、比較器296の出力端子に接続されている。また、スイッチ292の駆動端子は、AND回路294の出力端子に接続されている。そして、スイッチ292の出力端子は、加算器297に接続されている。
 スイッチ292は、AND回路294の出力電圧が高レベル電圧、即ち、量子化器51A,51Bの両方が制御信号を生成している場合は、出力端子の接続先を上側入力端子に切り替える。一方、スイッチ292は、AND回路294の出力電圧が低レベル電圧、即ち、量子化器51A,51Bの少なくとも一方が制御信号を生成していない場合は、出力端子の接続先を下側入力端子に切り替える。
 加算器297は、スイッチ292の出力電圧と、基準電圧源298の出力電圧とを加算して得られる電圧をAct端子に出力する。基準電圧源298の出力電圧は、電圧V1である。この電圧V1は、比較器291から出力される高レベル電圧に相当する。
 以上の構成を有することにより、セレクタ29は、量子化器51A,51Bの両方が制御信号を生成している場合、比較器291から出力される電圧に電圧V1を加えた電圧がAct端子から出力される。
 ここで、比較器291は、量子化器51AのStaE1端子から入力される電圧(差分電圧ΔV1)が量子化器51BのStaE2端子から入力される電圧(差分電圧ΔV2)以上であれば、低レベル電圧を出力する。すると、セレクタ29のAct端子からは、大きさV1の電圧が出力される。
 一方、比較器291は、量子化器51AのStaE1端子から入力される電圧(差分電圧ΔV1)が量子化器51BのStaE2端子から入力される電圧(差分電圧ΔV2)未満であれば、高レベル電圧を出力する。すると、セレクタ29のAct端子からは、大きさ2*V1の電圧が出力される。
 量子化器51A,51Bの両方が制御信号を生成している場合、AND回路294は、高レベル電圧をスイッチ292に与えるので、スイッチ292は上側入力端子に切り替わる。よって、セレクタ29は、上述のように、比較器291から出力される電圧に電圧V1を加えた電圧をAct端子から出力する。
 この場合、量子化器51Aの差分電圧ΔV1が量子化器51Bの差分電圧ΔV2以上であれば、セレクタ29は、上述のように、大きさV1の電圧をAct端子から出力する。
 また、量子化器51Aの差分電圧ΔV1が量子化器51Bの差分電圧ΔV2よりも小さければ、セレクタ29は、上述のように、大きさ2*V1の電圧をAct端子から出力する。
 一方、量子化器51A,51Bの少なくとも一方が制御信号を生成していない場合、AND回路294は、低レベル電圧をスイッチ292に与えるので、スイッチ292は下側入力端子に切り替わる。よって、セレクタ29は、比較器296から出力される電圧に電圧V1を加えた電圧をAct端子から出力する。
 ここで、比較器296は、量子化器51Aが制御信号を生成しかつ量子化器51Bが制御信号を生成していない場合、低レベル電圧を出力する。この場合、セレクタ29は、Act端子から大きさV1の電圧を出力する。
 また、比較器296は、量子化器51Aが制御信号を生成しておらずかつ量子化器51Bが制御信号を生成している場合、高レベル電圧を出力する。この場合、セレクタ29は、Act端子から大きさ2*V1の電圧を出力する。
 これにより、セレクタ29は、パケット生成器28A,28Bを上述の生成状態又は非生成状態のいずれかの状態にする。具体的には、セレクタ29は、パケット生成器28Aを生成状態にし、パケット生成器28Bを非生成状態にする。或いは、セレクタ29は、パケット生成器28Aを非生成状態にし、パケット生成器28Bを生成状態にする。
 量子化器51A,51Bの少なくとも一方が制御信号を生成していない場合は、主伝送路L1に送出される電力パケットが互いに衝突することはないので、セレクタ29は、量子化器51A,51Bのいずれかが生成した制御信号をそのまま出力するように制御する。
 一方、パケット生成器28A及び28Bそれぞれに対して目標電圧が与えられることで、量子化器51A,51Bの両方が制御信号を生成している場合、互いの電力パケットが衝突する可能性が生じる。
 このような場合、本実施形態のセレクタ29は、量子化器51A,51Bの内のいずれか一方から制御信号が出力されるように制御する。
 ここで、Act端子の電圧がV1であれば、比較器53Aは、Hレベル電圧を量子化器51Aに与えるので、量子化器51Aは制御信号を出力する。また、Act端子の電圧がV1であれば、比較器53Bは、Lレベル電圧を量子化器51Bに与えるので、量子化器51Bは制御信号を出力しない。
 一方、Act端子の電圧が2*V1であれば、比較器53Aは、Lレベル電圧を量子化器51Aに与えるので、量子化器51Aは制御信号を出力しない。また、Act端子の電圧が2*V1であれば、比較器53Bは、Hレベル電圧を量子化器51Bに与えるので、量子化器51Bは制御信号を出力する。
 上述のように、量子化器51A,51Bの両方が制御信号を生成している場合、セレクタ29は、量子化器51Aの差分電圧ΔV1が量子化器51Bの差分電圧ΔV2以上であれば、大きさV1の電圧をAct端子から出力し、量子化器51Aの差分電圧ΔV1が量子化器51Bの差分電圧ΔV2よりも小さければ、大きさ2*V1の電圧をAct端子から出力する。
 よって、セレクタ29は、量子化器51Aの差分電圧ΔV1が量子化器51Bの差分電圧ΔV2以上の場合、量子化器51Aに制御信号を出力させ、量子化器51Aの差分電圧ΔV1が量子化器51Bの差分電圧ΔV2よりも小さい場合、量子化器51Bに制御信号を出力させる。
 つまり、セレクタ29は、量子化器51A,51Bの両方が制御信号を生成している場合、量子化器51A,51Bのうち、印加されていると推定される電圧と目標電圧との差分電圧ΔV1(ΔV2)が大きい方の負荷4A(4B)に対応する量子化器51A(51B)のみから制御信号が出力されるようにAct端子の電圧を変化させる。
 つまり、負荷1A,1Bそれぞれにおいて、印加されていると推定される電圧と目標電圧との差分電圧ΔV1(ΔV2)が生じているとする。この場合、セレクタ29は、負荷1A,1Bそれぞれにおける、印加されていると推定される電圧と目標電圧との差分電圧ΔV1(ΔV2)に基づいて、各パケット生成器28A,28Bを生成状態および非生成状態のいずれかにする。具体的には、セレクタ29は、2つの負荷4A,4Bそれぞれについて、印加されていると推定される電圧と、目標電圧との差分電圧ΔV1(ΔV2)のより大きい方に電力パケットが供給されるように、各パケット生成器28A,28Bを生成状態および非生成状態のいずれかにする。
 これにより、2つの負荷4A,4Bそれぞれに印加される電圧を、目標電圧に比較的近い電圧で推移させることができる。
 以上のように、パケット生成器28A及び28B両方に対して目標電圧が与えられることで量子化器51A,51Bの両方が制御信号を生成している場合、セレクタ29は、量子化器51A,51Bのうち、差分電圧ΔV1(ΔV2)が大きい方の量子化器51A(51B)のみから制御信号が出力されるように量子化器51A,51Bを制御する。
 これによって、セレクタ29は、量子化器51A,51Bの両方が制御信号を生成している場合であっても、制御信号を出力させる量子化器を、量子化器51Aと量子化器51Bとの間で適切に切り替えることができる。この結果、両パケット生成器28A,28Bそれぞれが生成する電力パケットの衝突を回避しつつ、各負荷4A,4Bに対して目標電圧に近似させるように電力パケットを供給することができる。
<2>制御部の動作
 以下、本実施の形態に係る制御部25の動作について説明する。
 制御部25は、負荷4A,4Bに電力パケットが供給されている状態(第1状態)と、負荷4A,4Bに電力パケットが供給されていない状態(第2状態)とで、負荷4A,4Bに印加されている電圧を推定する。このとき、制御部25は、例えば、負荷4A,4Bと、負荷4A,4Bに対して並列接続されたバッファ用のコンデンサと、接続抵抗とを含む等価回路に基づいて負荷4A,4Bに印加されている電圧を推定する。
 図7(a)および(b)に、本実施の形態に係る制御部25が想定する負荷4A(4B)の等価回路の一例を示す。等価回路は、例えば、抵抗RLと、抵抗RLに並列に接続されたコンデンサCと、抵抗RLに直列に接続された抵抗Rとから構成される。ここで、抵抗RLは、負荷4A,4Bに相当し、コンデンサCは、バッファ用のコンデンサに相当し、抵抗Rは、接続抵抗に相当する。そして、図7(a)は、負荷4A(4B)に電力パケットが供給されている状態を示している。ここでは、等価回路の入力端間に電圧Vが印加されている状態で表されている。また、図7(b)は、負荷4A(4B)に電力パケットが供給されていない状態を示している。ここでは、等価回路の入力端間が開放されている状態で表されている。
 この図7(a)および(b)で示す2つの状態それぞれは、負荷4A(4B)に電力パケットが供給されている場合とされていない場合とで取り得る状態である。
 制御部25は、当該制御部25が有するスイッチ521A(512B)の出力に基づいて負荷4A(4B)の状態が、図7(a)に示す状態であるのか、図7(b)に示す状態であるのかを判定する。
 つまり、スイッチ521A(521B)は、パケット生成器28A(28B)が生成状態であるときは制御信号を出力する。一方、パケット生成器28A(28B)が非生成状態であるときは、制御信号を出力しない。
 よって、制御部25は、スイッチ521A(512B)が制御信号を出力しているか否かによって、負荷4A(4B)に電力パケットが与えられたか否かを判定することができる。
 制御部25は、負荷4A(4B)に電力パケットが与えられたか否かの判定に応じて後述する処理を切り替える。
 図8に、2つのパケット生成器28A,28Bの動作のタイムチャートを示す。以下の説明では、図8に示すように、2つのパケット生成器28A,28Bそれぞれに目標電圧が与えられることで、2つのパケット生成器28A,28Bが動作するものとする。ここでは、時間間隔Kを時間単位として、2つのパケット生成器28A,28Bの動作が変化するものとする。この時間間隔Kは、電力パケット1つ分に相当する。以下、時間間隔Kを「1パケット時間」と称する。
 まず、図8における期間INT1における動作について説明する。この期間INT1は、スイッチ514Aの出力値(差分電圧ΔV1)がスイッチ514Bの出力値(差分電圧ΔV2)に比べて大きいと、セレクタ29が判定したときに開始する。即ち、負荷4Aに印加されていると推定される電圧と目標電圧との差分電圧ΔV1が、負荷4Bに印加されていると推定される電圧と目標電圧との差分電圧ΔV2に比べて大きいと判定されたときに開始する。
 また、期間INT1は、パケット生成器28A,28Bの両方が1パケット時間前に制御信号を出力していない期間に相当する。即ち、1パケット時間前に、負荷4A,4Bの両方に対して電力パケットが供給されていない期間に相当する。
 図9は、図8における期間INT1における制御部25の状態を示すブロック図である。ここで、u1,u2は、目標電圧を示しており、x1R,x2Rは、離散化器511A,511Bから出力される信号を示している。また、x1Lq,x2Lqは、離散化器517A,517Bから出力される信号を示しており、x1,x2は、差分器512A,512Bから出力される信号を示す。また、x1q,x2qは、2値化器520A,520Bから出力される信号を示しており、y1,y2は、スイッチ521A,521Bから出力される信号を示す。K2,K4は、増幅器5131A(5131B),5132A(5132B)の増幅率を表す。なお、図9では、比較器53A,53B、ヘッダ/フッタ付加部55A,55B、増幅器57A,57Bは、図示を省略している。また、量子化器51A,51Bにおける遅延器523A(523B),524A(524B)も、図示を省略している。
 期間INT1では、セレクタ29からパケット生成器28A,28Bの比較器53A,53Bに向けて電圧V1が与えられ(図4)、さらに、比較器53A,53Bが電圧V1に応じた電圧(Hレベル電圧又はLレベル電圧)を量子化器51AのAct1端子および量子化器51BのAct2端子に与えることにより、スイッチ521Aは、出力端子の接続先が上側入力端子に設定され、スイッチ521Bは、出力端子の接続先が下側入力端子に設定されている。これにより、パケット生成器28Aは、制御信号を出力し、パケット生成器28Bは、制御信号の出力を停止する。
 また、期間INT1以前は、パケット生成器28A,28Bの両方が制御信号を出力していないので、スイッチ514A,514Bおよびスイッチ516A,516Bの駆動端子はLレベル電圧に維持されている。従って、スイッチ514A,514Bは、共に出力端子の接続先が下側入力端子に設定され、スイッチ516A,516Bも、共に出力端子の接続先が下側入力端子に設定されている。
 ところで、量子化器51A(51B)において、増幅器5131A(5131B)の増幅率をK2とし、増幅器5132A(5132B)の増幅率をK4とする。この場合、K2=-(C1・B1)-1・C1・A1、K4=-(C1・B1)-1・C1・A2の関係が成立する。なお、「・」は乗算を示している。
 ここで、上記K2を定義するために用いられているA1,B1,C1は、負荷4A(4B)に電力パケットが供給されている状態(図7(a)の状態)にあるとした場合に導出されるパラメータである。また、上記K4を定義するために用いられているA2は、負荷4A(4B)に電力パケットが供給されていない状態(図7(b)の状態)にあるとした場合に導出されるパラメータである。
 パラメータA1,B1,C1は、図7(a)における、バッファ用のコンデンサの容量をC、接続抵抗の大きさをR、負荷4A(4B)の大きさをRとすると、下記式(1)のように表される。
Figure JPOXMLDOC01-appb-M000001
 また、パラメータA2は、図7(b)における、バッファ用のコンデンサの容量をC、負荷4A(4B)の大きさをRとすると、下記式(2)のように表される。
Figure JPOXMLDOC01-appb-M000002
 以上のように、増幅器5131A(5131B)は、その増幅率がK2となるように設定され、増幅器5132A(5132B)は、その増幅率がK4となるように設定されている。
 期間INT1では、各信号u1,u2,x1R,x2R,x1Lq,x2Lq,x1,x2,x1q,x2q,y1,y2の間には、下記式(3)および式(4)の関係式が成立する。ここで、Q[]は、2値化関数を表す。また、kは、0乃至S-1(Sは正の整数)の間の値を取り得るパラメータである。ここで、Sの値は例えば100に設定される。そして、パラメータkの値は、時間間隔K/S毎にインクリメントされていく。ここで、Sの値は、例えば100に設定される。なお、後述の式(5)乃至式(12)においても同様である。
Figure JPOXMLDOC01-appb-M000003

Figure JPOXMLDOC01-appb-M000004
 ここで、上記各式に関連して、量子化器51Aの各部について説明する。
 離散化器511Aは、上記式(3-3)に示す処理を実行する。離散化器511Aから出力される信号x1R(k+1)は、負荷4Aに対して目標電圧を与えたときにおける負荷4Aの電圧を示しており、負荷4Aに電力を与えていない状態から電力を与え始めて目標電圧に到達するまでの過渡状態を含んだ電圧を示している。
 離散化器511Aは、目標電圧u1(k)と、x1R(k)(過去の値)とに基づいて、信号x1R(k+1)を出力する。
 図9において、増幅器518A及び離散化器517Aは、上記式(3-2)に示す処理を実行する。増幅器518A及び離散化器517Aによって処理された信号x1Lq(k+1)は、負荷4Aに印加されていると推定される電圧を示している。
 つまり、信号x1Lq(k+1)は、電力パケットが供給されることによって、負荷4Aに印加されていると推定される電圧を示している。
 離散化器517Aは、下記式(3-6)に示す処理を実行する。式(3-6)中、「P」は、現状よりも1つ前の期間(INT単位)において量子化器51Aが制御信号を出力している場合、「1」に設定され、現状よりも1つ前の期間(INT単位)において量子化器51Aが制御信号を出力していない場合、「0」が設定される。
 言い換えると、「P」が「1」に設定されている場合、現状よりも1つ前の期間(INT単位)において量子化器51Aが生成状態であったことを示しており、「P」が「0」に設定されている場合、現状よりも1つ前の期間(INT単位)において量子化器51Aが非生成状態であったことを示している。
Figure JPOXMLDOC01-appb-M000005
 ここで、スイッチ521Aからの制御信号の出力は、遅延器524A(図5)を介してスイッチ516Aに与えられる。遅延器524Aは、上述のように、INT単位の期間1つ分(電力パケット1つ分)だけ遅延させた上で与えられた制御信号をスイッチ516Aに与える。よって、現状よりも1つ前の期間(INT単位)において量子化器51Aが制御信号を出力していた場合、スイッチ516Aは、上側入力端子に切り替わる。それ以外の場合、スイッチ516Aは、下側入力端子に切り替わる。
 つまり、式(3―6)中の「P」は、スイッチ516Aの状態を示している。
 現状よりも1つ前の期間(INT単位)において量子化器51Aが非生成状態であった場合、スイッチ516Aは、下側入力端子に切り替わるので、増幅器518Aと、離散化器517Aとを接続する。
 ここで離散化器517Aは、スイッチ516Aが下側入力端子に切り替わることで、「P」を「0」に設定する。また、期間1つ分だけ前における制御信号(y(k))は「0」である。
 また、増幅器518Aの増幅率は、(A2-A1)/B1倍に設定されている。
 よって、離散化器517Aは、直前まで出力していた信号(x1Lq(k))に対して(A2-A1)/B1を乗算し、上記式(3-6)に示す処理を実行する。これにより、離散化器517Aと増幅器518Aは、結果的に上記式(3-2)に示す処理を実行して信号x1Lq(k+1)を出力する。
 また、現状よりも1つ前の期間(INT単位)において量子化器51Aが生成状態であった場合、スイッチ516Aは、上側入力端子に切り替わるので、スイッチ521Aの後段と、離散化器517Aとを接続する。
 離散化器517Aは、スイッチ516Aが上側入力端子に切り替わることで、「P」を「1」に設定する。
 よって、離散化器517Aは、上記式(3-6)に示す処理を実行する。これにより、離散化器517Aは、結果的に後述の式(5-2)に示す処理を実行して信号x1Lq(k+1)を出力する。
 ここで、現状よりも1つ前の期間(INT単位)において量子化器51Aが生成状態であった場合とは、現状よりも1つ前の期間(INT単位)において負荷4Aに電力パケットが与えられたことを示している。
 また、現状よりも1つ前の期間(INT単位)において量子化器51Aが非生成状態であった場合とは、現状よりも1つ前の期間(INT単位)において負荷4Aに電力パケットが与えられなかったことを示している。
 このように本実施形態の離散化器517Aは、スイッチ521Aからの制御信号の出力の有無によって、負荷4Aに電力パケットが供給されている状態か否かを判定し、それに応じて、信号x1Lq(k+1)を求めるための処理を切り替えている。
 つまり、離散化器517Aは、負荷4Aにおける電力パケットの供給状態を判定し、その判定結果に応じて、電力パケットが供給されている状態(第1状態)および電力パケットが供給されていない状態(第2状態)それぞれにおける信号x1Lq(k+1)を出力する。
 図9では、現状よりも1つ前の期間(INT単位)において量子化器51Aが非生成状態であった場合を示しており、量子化器51Aは、現状よりも1つ前の期間(INT単位)において負荷4Aの状態が電力パケットが供給されていない状態であると判定する。
 量子化器51Aは、その判定に基づいて、上記式(3-2)に示す処理を実行して信号x1Lq(k+1)を出力する。つまり、式(3-2)は、負荷4Aに電力パケットが供給されていない状態(図7(b))を想定した場合の負荷4Aに印加されていると推定される電圧を求めるための式である。
 差分器512A(512B)から出力される信号x1(x2)は、増幅器5132A(5132B)により増幅されて加算器519A(519B)に入力される。また、離散化器517A(517B)から出力される信号x1Lq(x2Lq)は、増幅器518A(518B)に入力される。これにより、信号x1Lqは、パラメータkが1ずつインクリメントされていく毎に(A2-A1)/B1倍ずつ増幅されて差分器512A(512B)に入力される。
 上記式(3-1)は、差分器512Aにおいて実行される処理を示している。すなわち、差分器512Aは、信号x1Lq(k)と、信号x1R(k)との間の差分を求めて、信号x1(k)を出力する。つまり、信号x1(k)は、信号x1Lq(k)と、信号x1R(k)との間の差分である。
 ここで、信号x1R(k)は、上述したように、負荷4Aに対して目標電圧を与えたときにおける負荷4Aの電圧を示している。
 また、信号x1Lq(k)は、上述したように、電力パケットが供給されることによって、負荷4Aに印加されていると推定される電圧を示している。
 つまり、信号x1R(k)は、負荷4Aに対して目標電圧を与えたときにおける理想状態の電圧値を示しており、信号x1Lq(k)は、断続的に電力パケットが供給されることで変動しうる負荷4Aにおける現実の電圧値(の推定値)を示している。
 よって、信号x1Lq(k)と、信号x1R(k)との間の差分である信号x1(k)は、負荷4Aにおける現実の電圧値と、理想状態の電圧値との差分を示している。
 以上より、信号x1R(k)は、負荷4Aにおける目標電圧と言える。
 なお、本明細書における目標電圧とは、上述の目標電圧u1(k)と、信号x1R(k)とを含んでいる。
 また、信号x1(k)は、負荷4Aに印加されていると推定される電圧である信号x1Lq(k)と、目標電圧である信号x1R(k)との差分電圧であると言える。
 信号x1(k)は、増幅器5131A、又は増幅器5132Aに与えられる。
 信号x1(k)は、増幅器5131A、又は増幅器5132Aによって、上述の増幅率であるK2、又はK4が乗算された後、スイッチ514Aに与えられる。
 スイッチ514Aは、K2、又はK4が乗算された信号x1(k)を、差分電圧ΔV1として、加算器519A、及びセレクタ29に与える。
 図9では、スイッチ514Aは、下側入力端子に切り替えられている。よって、スイッチ514Aは、K4が乗算された信号x1(k)を、差分電圧ΔV1として、加算器519A、及びセレクタ29に与える。
 差分電圧ΔV1は、負荷4Aにおける現実の電圧値と理想状態の電圧値との差分を示している信号x1(k)を量子化器51A側における制御用の信号として変換した電圧(信号)である。
 つまり、差分電圧ΔV1は、負荷4Aにおける現実の電圧値と理想状態の電圧値との差分の度合を示している。よって、差分電圧ΔV1がより大きければ、負荷4Aにおける現実の電圧値が理想状態の電圧値からより大きく乖離していると判断でき、差分電圧ΔV1がより小さければ、負荷4Aにおける現実の電圧値が理想状態の電圧値により則していると判断することができる。
 上述したように、セレクタ29は、量子化器51A,51Bのうち、差分電圧ΔV1(ΔV2)が大きい方の量子化器51A(51B)のみから制御信号が出力されるように量子化器51A,51Bを制御する。
 よって、セレクタ29は、現実の電圧値が理想状態の電圧値からより大きく乖離していると判断できる負荷4A(4B)に対応する量子化器51A(51B)のみから制御信号が出力されるように制御することができる。
 この結果、制御部25は、2つの負荷4A,4Bそれぞれに印加される電圧が、目標電圧にできるだけ近い電圧で推移するように制御することができる。
 加算器519Aは、差分電圧ΔV1に対して目標電圧u(k)を加算した値(電圧)を2値化器520Aに与える。
 図9における2値化器520Aは、上記式(3-4)に示す処理を行うことで、信号x1q(k)を出力する。
 2値化器520Aは、差分電圧ΔV1に対して目標電圧u(k)を加算した値(電圧)が、所定の閾値より小さい場合、信号x1q(k)を、Lレベル電圧を出力する。
 一方、2値化器520Aは、差分電圧ΔV1に対して目標電圧u(k)を加算した値(電圧)が、所定の閾値以上である場合、信号x1q(k)を、所定の電圧値に設定された信号を出力する。
 なお、前記所定の閾値は、例えば、目標電圧又は目標電圧よりも僅かに高い電圧値に設定される。また、所定の電圧値は、例えば、目標電圧以上の電圧値に設定される。
 また、図9では、スイッチ521Aが上側入力端子に切り替えられているので、量子化器51Aは、上記式(3-5)に示すように、信号x1q(k)を、信号y1(k)として出力する。この信号y1(k)は、制御信号として出力され、後段のヘッダ/フッタ付加部55A(図4)に与えられる。
 以上によって、図9のパケット生成器28A(量子化器51A)は、制御信号を出力する。
 なお、パケット生成器28B(量子化器51B)の各部も、パケット生成器28A(量子化器51A)と同様の処理を行う。
 図9では、パケット生成器28B(量子化器51B)は、スイッチ521Bが出力端子の接続先が下側入力端子に設定されているので、制御信号の出力を停止している。
 パケット生成器28Bは、上記点以外、スイッチ514B及びスイッチ516Bの設定がパケット生成器28Aと同じ設定となっている。
 次に、図8における期間INT2における動作について説明する。この期間INT2は、期間INT1と同様に、スイッチ514Aの出力値(差分電圧ΔV1)がスイッチ514Bの出力値(差分電圧ΔV2)以上とセレクタ29が判定したときに開始する。即ち、負荷4Aに印加されていると推定される電圧と目標電圧との差分電圧ΔV1が、負荷4Bに印加されていると推定される電圧と目標電圧との差分電圧ΔV2以上と判定されたときに開始する。
 また、期間INT2は、パケット生成器28Aが1パケット時間前に制御信号を出力し且つパケット生成器28Bが1パケット時間前に制御信号を出力していない期間に相当する。即ち、1パケット時間前に、負荷4Aに対して電力パケットが供給され且つ負荷4Bに対して電力パケットが供給されていない期間に相当する。
 図10は、図8における期間INT2における制御部25の状態を示すブロック図である。なお、図10では、比較器53A,53B、ヘッダ/フッタ付加部55A,55B、増幅器57A,57Bは、図示を省略している。また、量子化器51A,51Bにおける遅延器523A(523B),524A(524B)も、図示を省略している。
 期間INT2では、セレクタ29からパケット生成器28A,28Bの比較器53A,53Bに向けて電圧V1が与えられ(図4)、さらに、比較器53A,53Bが電圧V1に応じた電圧(Hレベル電圧又はLレベル電圧)を量子化器51AのAct1端子および量子化器51BのAct2端子に与えることにより、スイッチ521Aは、出力端子の接続先が上側入力端子に設定され、スイッチ521Bは、出力端子の接続先が下側入力端子に設定されている。これにより、パケット生成器28Aは、制御信号を出力し、パケット生成器28Bは、制御信号の出力を停止する。
 また、期間INT1では、パケット生成器28Aが制御信号を出力し、パケット生成器28Bが制御信号を出力していないので、スイッチ514Aおよびスイッチ516Aの駆動端子はHレベル電圧に設定される。また、スイッチ514Bおよびスイッチ516Bの駆動端子はLレベル電圧に維持されている。従って、スイッチ514A,516Aは、共に出力端子の接続先が上側入力端子に設定されている。一方、スイッチ514B,516Bは、出力端子の接続先が下側入力端子に設定されている。
 期間INT2では、各信号u1,u2,x1R,x2R,x1Lq,x2Lq,x1,x2,x1q,x2q,y1,y2の間には、下記式(5)および式(6)の関係式が成立する。
Figure JPOXMLDOC01-appb-M000006

Figure JPOXMLDOC01-appb-M000007
 ここにおいて、差分器512Aから出力される信号x1は、増幅器5131Aにより増幅されて加算器519Aに入力される。一方、差分器512Bから出力される信号x2は、増幅器5132Bにより増幅されて加算器519Bに入力される。
 また、離散化器517Aは、スイッチ521Aから出力される信号y1を離散化してなる信号x1Lqを差分器512Aに入力する。一方、離散化器517Bから出力される信号x2Lqは、増幅器518Bに入力される。これにより、信号x2Lqは、パラメータkが1ずつインクリメントされていく毎に(A2-A1)/B1倍ずつ増幅されて差分器512Bに入力される。
 期間INT2のパケット生成器28Aは、以下の点において、期間INT1のパケット生成器28Aと相違している。すなわち、期間INT2のパケット生成器28Aは、スイッチ514A及びスイッチ516Aが下側入力端子から上側入力端子に切り替わっている。
 スイッチ516Aが上側入力端子に切り替わることで、スイッチ521Aの後段と、離散化器517Aとが接続される。
 このため、離散化器517Aは、上記式(3-6)に示す処理を実行し、結果的に上記式(5-2)に示す処理を実行して信号x1Lq(k+1)を出力する。
 上記式(5-2)は、負荷4Aに電力パケットが供給されている状態(図7(a))を想定した場合の負荷4Aに印加されていると推定される電圧を求めるための式である。
 また、スイッチ514Aが上側入力端子に切り替わることで、信号x1(k)は、増幅器5131Aに与えられて上記K2が乗算される。その後の処理は、図8の量子化器51Aと同様である。よって、図10における2値化器520Aは、上記式(5-4)に示す処理を行うことで、信号x1q(k)を出力する。
 このように、スイッチ514Bは、スイッチ516Aと同じタイミングで切り替わることで、離散化器517Aが実行する処理に応じて、信号x1(k)が与えられる対象を増幅器5131A、又は増幅器5132Aのいずれかに切り替える。
 これによって、量子化器51Aは、期間INT1における上記式(3-2),(5-2)と上記式(5-2),(5-4)とを切り替えて処理することができる。
 なお、期間INT2のパケット生成器28Aが実行する上記式5の内、式(5-2)、式(5-4)以外の各式(5-1),(5-3),(5-5)は、上記式(3-1),(3-3),(3-5)と同一である。
 また、期間INT2のパケット生成器28Bは、各スイッチ514B,516B,521Bの設定が、期間INT1のパケット生成器28Bと同じ設定である。よって、上記式(6)に含まれる各式は、上記式(4)に含まれる各式と同一である。
 次に、図8における期間INT3における動作について説明する。この期間INT3は、スイッチ514Aの出力値(差分電圧ΔV1)がスイッチ514Bの出力値(差分電圧ΔV2)に比べて小さいとセレクタ29が判定したときに開始する。即ち、負荷4Aに印加されていると推定される電圧と目標電圧との差分電圧ΔV1が、負荷4Bに印加されていると推定される電圧と目標電圧との差分電圧ΔV2に比べて小さいと判定されたときに開始する。
 また、期間INT3は、パケット生成器28Aが1パケット時間前に制御信号を出力し且つパケット生成器28Bが1パケット時間前に制御信号を出力していない期間に相当する。即ち、1パケット時間前に、負荷4Aに対して電力パケットが供給され且つ負荷4Bに対して電力パケットが供給されていない期間に相当する。
 図11は、図8における期間INT3における制御部25の状態を示すブロック図である。なお、図11では、比較器53A,53B、ヘッダ/フッタ付加部55A,55B、増幅器57A,57Bは、図示を省略している。また、量子化器51A,51Bにおける遅延器523A(523B),524A(524B)も、図示を省略している。
 期間INT3では、セレクタ29からパケット生成器28A,28Bの比較器53A,53Bに向けて電圧2*V1が与えられ(図4)、さらに、比較器53A,53Bが電圧2*V1に応じた電圧(Lレベル電圧又はHレベル電圧)を量子化器51AのAct1端子及び量子化器51BのAct2端子に与えることにより、スイッチ521Aの出力端子の接続先が下側入力端子に設定され、スイッチ521Bの出力端子の接続先が上側入力端子に設定されている。これにより、パケット生成器28Aは、制御信号の出力を停止し、パケット生成器28Bは、制御信号を出力する。
 また、期間INT2では、パケット生成器28Aが制御信号を出力し、パケット生成器28Bが制御信号を出力していないので、スイッチ514Aおよびスイッチ516Aの駆動端子はHレベル電圧に設定される。また、スイッチ514Bおよびスイッチ516Bの駆動端子はLレベル電圧に維持されている。従って、スイッチ514A,516Aは、共に出力端子の接続先が上側入力端子に設定されている。一方、スイッチ514B,516Bは、出力端子の接続先が下側入力端子に設定されている。この状態は、遅延器523A(523B),524A(524B)の作用により期間INT3の間維持される。
 期間INT3では、各信号u1,u2,x1R,x2R,x1Lq,x2Lq,x1,x2,x1q,x2q,y1,y2の間には、下記式(7)および式(8)の関係式が成立する。
Figure JPOXMLDOC01-appb-M000008

Figure JPOXMLDOC01-appb-M000009
 差分器512Aから出力される信号x1は、増幅器5131Aにより増幅されて加算器519Aに入力される。一方、差分器512Bから出力される信号x2は、増幅器5132Bにより増幅されて加算器519Bに入力される。
 また、離散化器517Aに入力される信号はゼロとなり、これにより、離散化器517Aから差分器512Aに入力される信号x1Lqは減衰していく。一方、離散化器517Bから出力される信号x2Lqは、増幅器518Bに入力される。これにより、信号x2Lqは、パラメータkが1ずつインクリメントされていく毎に(A2-A1)/B1倍ずつ増幅されて差分器512Bに入力される。
 期間INT3のパケット生成器28Aは、以下の点において、期間INT2のパケット生成器28Aと相違している。すなわち、期間INT3のパケット生成器28Aは、スイッチ521Aが上側入力端子から下側入力端子に切り替わることで、制御信号の出力が停止されている。
 よって、上記式(7-5)に示すように、信号y1(k)は、「0」となる。
 なお、期間INT3のパケット生成器28Aが実行する上記式7の内、式(7-5)以外の各式は、上記式(5)に含まれる各式と同一である。
 また、期間INT3のパケット生成器28Bは、各スイッチ514B,516B,521Bの設定が、期間INT1のパケット生成器28Aの設定と同一である。よって、期間INT3のパケット生成器28Bが実行する上記式(8)に含まれる各式は、上記式(3)に含まれる各式と同一である。
 次に、図8における期間INT4における動作について説明する。この期間INT4は、期間INT3と同様に、スイッチ514Aの出力値(差分電圧ΔV1)がスイッチ514Bの出力値(差分電圧ΔV2)に比べて小さいとセレクタ29が判定したときに開始する。即ち、負荷4Aに印加されていると推定される電圧と目標電圧との差分電圧ΔV1が、負荷4Bに印加されていると推定される電圧と目標電圧との差分電圧ΔV2に比べて小さいと判定されたときに開始する。
 また、期間INT4は、パケット生成器28Aが1パケット時間前に制御信号を出力せず且つパケット生成器28Bが1パケット時間前に制御信号を出力している期間に相当する。即ち、1パケット時間前に、負荷4Aに対して電力パケットが供給されず且つ負荷4Bに対して電力パケットが供給されている期間に相当する。
 図12は、図8における期間INT4における制御部25の状態を示すブロック図である。なお、図12では、比較器53A,53B、ヘッダ/フッタ付加部55A,55B、増幅器57A,57Bは、図示を省略している。また、量子化器51A,51Bにおける遅延器523A(523B),524A(524B)も、図示を省略している。
 期間INT4では、セレクタ29からパケット生成器28A,28Bの比較器53A,53Bに向けて電圧2*V1が与えられ(図4)、さらに、比較器53A,53Bが電圧2*V1に応じた電圧(Lレベル電圧又はHレベル電圧)を量子化器51AのAct1端子及び量子化器51BのAct2端子に与えることにより、スイッチ521Aの出力端子の接続先が下側入力端子に設定され、スイッチ521Bの出力端子の接続先が上側入力端子に設定されている。これにより、パケット生成器28Aは、制御信号の出力を停止し、パケット生成器28Bは、制御信号を出力する。
 また、期間INT3では、パケット生成器28Aが制御信号を出力せず、パケット生成器28Bが制御信号を出力しているので、スイッチ514Aおよびスイッチ516Aの駆動端子はLレベル電圧に設定される。また、スイッチ514Bおよびスイッチ516Bの駆動端子はHレベル電圧に維持されている。従って、スイッチ514A,516Aは、共に出力端子の接続先が下側入力端子に設定されている。一方、スイッチ514B,516Bは、出力端子の接続先が上側入力端子に設定されている。この状態は、遅延器523A(523B),524A(524B)により期間INT4の間維持される。
 期間INT4では、各信号u1,u2,x1R,x2R,x1Lq,x2Lq,x1,x2,x1q,x2q,y1,y2の間には、下記式(9)および式(10)の関係式が成立する。
Figure JPOXMLDOC01-appb-M000010

Figure JPOXMLDOC01-appb-M000011
 ここにおいて、差分器512Aから出力される信号x1は、増幅器5132Aにより増幅されて加算器519Aに入力される。一方、差分器512Bから出力される信号x2は、増幅器5131Bにより増幅されて加算器519Bに入力される。
 また、離散化器517Aから出力される信号x1Lqは、増幅器518Aに入力される。これにより、信号x1Lqは、パラメータkが1ずつインクリメントされていく毎に(A2-A1)/B1倍ずつ増幅されて差分器512Aに入力される。一方、離散化器517Bは、スイッチ521Bから出力される信号y2を離散化してなる信号x2Lqを差分器512Bに入力する。
 期間INT4のパケット生成器28Aは、以下の点において、期間INT3のパケット生成器28Aと相違している。すなわち、期間INT4のパケット生成器28Aは、スイッチ514A及びスイッチ516Aが上側入力端子から下側入力端子に切り替わっている。
 スイッチ516Aが下側入力端子に切り替わることで、増幅器518Aと、離散化器517Aとが接続される。
 このため、離散化器517Aは、上記式(3-6)に示す処理を実行し、結果的に上記式(9-2)に示す処理を実行して信号x1Lq(k+1)を出力する。
 上記式(9-2)は、上記式(3-2)と同一であり、負荷4Aに電力パケットが供給されていない状態(図7(b))を想定した場合の負荷4Aに印加されていると推定される電圧を求めるための式である。
 また、スイッチ514Aが下側入力端子に切り替わることで、信号x1(k)は、増幅器5132Aに与えられて上記K4が乗算される。その後の処理は、図8の量子化器51Aと同様である。よって、図10における2値化器520Aは、上記式(9-4)に示す処理を行うことで、信号x1q(k)を出力する。
 なお、式(9-4)は、上記式(3-2)と同一である。
 また、期間INT4のパケット生成器28Aが実行する上記式(9)の内、式(9-2)、式(9-4)以外の各式(9-1),(9-3),(9-5)は、上記式(7-1),(7-3),(7-5)と同一である。
 また、期間INT4のパケット生成器28Bは、各スイッチ514B,516B,521Bの設定が、期間INT2のパケット生成器28Aと同じ設定である。よって、上記式(10)に含まれる各式は、上記式(5)に含まれる各式と同一である。
 次に、図8における期間INT5における動作について説明する。この期間INT5は、スイッチ514Aの出力値(差分電圧ΔV1)がスイッチ514Bの出力値(差分電圧ΔV2)以上とセレクタ29が判定したときに開始する。即ち、負荷4Aに印加されていると推定される電圧と目標電圧との差分電圧ΔV1が、負荷4Bに印加されていると推定される電圧と目標電圧との差分電圧ΔV2以上と判定されたときに開始する。
 また、期間INT5は、パケット生成器28Aが1パケット時間前に制御信号を出力せず且つパケット生成器28Bが1パケット時間前に制御信号を出力している期間に相当する。即ち、1パケット時間前に、負荷4Aに対して電力パケットが供給されず且つ負荷4Bに対して電力パケットが供給されている期間に相当する。
 図13は、図8における期間INT5における制御部25の状態を示すブロック図である。なお、図13では、比較器53A,53B、ヘッダ/フッタ付加部55A,55B、増幅器57A,57Bは、図示を省略している。また、量子化器51A,51Bにおける遅延器523A(523B),524A(524B)も、図示を省略している。
 期間INT5では、セレクタ29からパケット生成器28A,28Bの比較器53A,53Bに向けて電圧V1が与えられ(図4)、さらに、比較器53A,53Bが電圧V1に応じた電圧(Hレベル電圧又はLレベル電圧)を量子化器51AのAct1端子及び量子化器51BのAct2端子に与えることにより、スイッチ521Aの出力端子の接続先が上側入力端子に設定され、スイッチ521Bの出力端子の接続先が下側入力端子に設定されている。これにより、パケット生成器28Aは、制御信号を出力し、パケット生成器28Bは、制御信号の出力を停止する。
 また、期間INT4では、パケット生成器28Aが制御信号を出力せず、パケット生成器28Bが制御信号を出力しているので、スイッチ514Aおよびスイッチ516Aの駆動端子はLレベル電圧に設定される。また、スイッチ514Bおよびスイッチ516Bの駆動端子はHレベル電圧に維持されている。従って、スイッチ514A,516Aは、共に出力端子の接続先が下側入力端子に設定されている。一方、スイッチ514B,516Bは、出力端子の接続先が上側入力端子に設定されている。この状態は、遅延器523A(523B),524A(524B)の作用により期間INT4の間維持される。
 期間INT5では、各信号u1,u2,x1R,x2R,x1Lq,x2Lq,x1,x2,x1q,x2q,y1,y2の間には、下記式(11)および式(12)の関係式が成立する。
Figure JPOXMLDOC01-appb-M000012

Figure JPOXMLDOC01-appb-M000013
 ここにおいて、差分器512Aから出力される信号x1は、増幅器5132Aにより増幅されて加算器519Aに入力される。一方、差分器512Bから出力される信号x2は、増幅器5131Bにより増幅されて加算器519Bに入力される。
 また、離散化器517Aから出力される信号x1Lqは、増幅器518Aに入力される。これにより、信号x1Lqは、パラメータkが1ずつインクリメントされていく毎に(A2-A1)/B1倍ずつ増幅されて差分器512Aに入力される。一方、離散化器517Bに入力される信号はゼロとなり、これにより、離散化器517Bから差分器512Bに入力される信号x2Lqは減衰していく。
 期間INT5のパケット生成器28Aは、以下の点において、期間INT4のパケット生成器28Aと相違している。すなわち、期間INT5のパケット生成器28Aは、スイッチ521Aが下側入力端子から上側入力端子に切り替わることで、制御信号が出力されている。
 よって、期間INT5のパケット生成器28Aは、各スイッチ514B,516B,521Bの設定が、期間INT1のパケット生成器28Aの設定と同一である。よって、期間INT5のパケット生成器28Aが実行する上記式(11)に含まれる各式は、上記式(3)に含まれる各式と同一である。
 また、期間INT5のパケット生成器28Bは、各スイッチ514B,516B,521Bの設定が、期間INT3のパケット生成器28Aの設定と同一である。よって、期間INT5のパケット生成器28Bが実行する上記式(12)に含まれる各式は、上記式(7)に含まれる各式と同一である。
 次に、図8における期間INT6における動作について説明する。この期間INT6は、スイッチ514Aの出力値(差分電圧ΔV1)がスイッチ514Bの出力値(差分電圧ΔV2)よりも小さいとセレクタ29が判定したときに開始する。即ち、負荷4Aに印加されていると推定される電圧と目標電圧との差分電圧ΔV1が、負荷4Bに印加されていると推定される電圧と目標電圧との差分電圧ΔV2よりも小さいと判定されたときに開始する。
 また、期間INT6は、パケット生成器28Aが1パケット時間前に制御信号を出力しており且つパケット生成器28Bが1パケット時間前に制御信号を出力していない期間に相当する。即ち、1パケット時間前に、負荷4Aに対して電力パケットが供給され且つ負荷4Bに対して電力パケットが供給されていない期間に相当する。
 期間INT6では、図11に示す状態と同様になる。即ち、制御部25は、期間INT3と同様の動作をする。
 以上のように、本実施の形態に係る制御部25では、セレクタ29が、1パケット時間K前における負荷4A,4Bに印加されていると推定される電圧の挙動を考慮して、各パケット生成器28A,28Bの生成状態および非生成状態のいずれかにする。具体的には、セレクタ29は、パケット生成器28Aを生成状態にするとともにパケット生成器28Bを非生成状態にしたり、パケット生成器28Aを非生成状態にするとともにパケット生成器28Bを生成状態にしたりする。
 また、式(3)乃至式(12)に示すように、量子化器51A(51B)は、ある時刻(k+1)における制御信号を過去に取得した目標電圧に基づいて生成する。
<3>まとめ
 結局、本実施の形態に係るミキサ2によれば、セレクタ29が、パケット生成器28A,28Bがスイッチ21A,21Bをオンオフ動作させる状態と、パケット生成器28A,28Bがスイッチ21A,21Bをオフで維持する状態とを切り替える。これにより、パケット生成器28A,28Bが、2つのスイッチ21A,21Bのいずれか1つをオンオフ動作させているときに、他のスイッチをオフで維持させることができる。これにより、1つの主伝送路L1に対して複数の電力パケットが送出される構成としながらも、電力パケット同士が衝突するのを防ぎ、各電力パケットの波形が崩れるのを防止できる。
 しかして、2つの電源1A,1Bを用いる構成としながらも、電力パケットが所望の負荷に送信されないという不具合を防止することができる。
<実施の形態2>
 図14に、本実施の形態に係る電力ネットワークの構成図を示す。
 電力ネットワークは、電源1A,1Bと、ミキサ202と、電力ルータ203A,3B,3Cと、負荷4A,4Bと、負荷電圧指令部5とを備える。なお、実施の形態1と同様の構成については同一の符号を付して適宜説明を省略する。
 本実施の形態に係る電力ネットワークでは、ミキサ202および電力ルータ203Aの動作が実施の形態1とは相違する。具体的には、ミキサ202が、まず、電力ルータ203Aのアドレス宛に電力パケットを送信する。そして、電力ルータ203Aが、負荷電圧指令部5から入力される指令値(電圧目標値)に基づいて、電力パケットの送信先を負荷4A,4Bのいずれかのアドレスに設定する。
 電力ルータ203Aは、複数の蓄電部を備えている。そして、電力ルータ203Aは、受信ポートIn1,In2のいずれかで電力パケットを受信すると、受信した電力パケットの送信元に応じて複数の蓄電部に振り分けて各蓄電部に充電する。その後、電力ルータ203Aは、負荷電圧指令部5から入力される指令値(電圧目標値)に基づいて、送信ポートOut1,Out2の両方から電力パケットを送信する。電力ルータ203Aの構成の詳細については後述する。
 負荷電圧指令部5は、各負荷4A,4Bに印加すべき電圧の指令値(電圧目標値)を電力ルータ203Aに入力する。
 図15は、本実施の形態に係る電力ネットワークの一部のブロック図である。
 電力ルータ203Aは、スイッチ221A乃至221Dと、ドライバ223A乃至223Dと、蓄電部201A,201Bと、制御部25と、ダイオード227A,227Bとを備える。これらの構成は、2つの蓄電部201A,201Bのいずれかから電力パケットを生成するための構成であり、電力パケット生成部に相当する。
 また、電力ルータ203Aは、更に、スイッチ231A乃至231Dと、ドライバ233と、制御部235と、信号分離器239と、ダイオード237A乃至237Dとを備える。これらの構成は、2つの受信ポートIn1,In2の両方で受信した電力パケットを、当該電力パケットの送信元に応じて、2つの蓄電部201A,201Bに振り分けて充電するための構成である。
 スイッチ221Aは、一端がダイオードD227Aを介して蓄電部201Aに接続され、他端が送信ポートOut1に接続されている。言い換えると、スイッチ221Aは、蓄電部201Aと、送信ポートOut1を通る主伝送路L11とを結合する、副伝送路L12中に介挿されている。
 スイッチ221Bは、一端がダイオードD227Aを介して蓄電部201Aに接続され、他端が送信ポートOut2に接続されている。言い換えると、スイッチ221Bは、蓄電部201Aと、送信ポートOut2を通る主伝送路L21とを結合する、副伝送路L22中に介挿されている。
 スイッチ221Cは、一端がダイオードD227Bを介して蓄電部201Bに接続され、他端が送信ポートOut2に接続されている。言い換えると、スイッチ221Cは、蓄電部201Bと、送信ポートOut2を通る主伝送路L21とを結合する、副伝送路L23中に介挿されている。
 スイッチ221Dは、一端がダイオードD227Bを介して蓄電部201Bに接続され、他端が送信ポートOut1に接続されている。言い換えると、スイッチ221Dは、蓄電部201Bと、送信ポートOut1を通る主伝送路L11とを結合する、副伝送路L13中に介挿されている。
 ここで、ダイオード227Aは、蓄電部201A側がアノード、スイッチ221A,221B側がカソードとなるように接続されている。
 また、ダイオード227Bは、蓄電部201B側がアノード、スイッチ221C,221D側がカソードとなるように接続されている。
 これらのダイオード227A,227Bは、送信ポートOut1,Out2から蓄電部201A,201Bに向かって電流が流れるのを防止するためである。
 ドライバ223A乃至223Dは、制御部25から入力される制御信号に応じて、スイッチ221A乃至221Dのゲート電圧を変化させる。ドライバ223Aとドライバ223Bとには、同一の制御信号が入力される。また、ドライバ223Cとドライバ223Dとにも、同一の制御信号が入力される。これにより、スイッチ221Aとスイッチ221Bとが連動し、スイッチ221Cとスイッチ221Dとが連動する。
 制御部25は、パケット生成器28A,28Bと、セレクタ29と、を備える。この制御部25は、実施形態1の制御部25と同じである。
 なお、制御部25の動作の詳細は、実施の形態1の<2>で説明した内容と同様なのでここでは省略する。
 スイッチ231Aは、一端がダイオード237Aを介して受信ポートIn1に接続され、他端がダイオード237Bを介して蓄電部201Aに接続されている。
 スイッチ231Bは、一端がダイオード237Aを介して受信ポートIn1に接続され、他端がダイオード237Dを介して蓄電部201Bに接続されている。
 スイッチ231Cは、一端がダイオード237Cを介して受信ポートIn2に接続され、他端がダイオード237Dを介して蓄電部201Bに接続されている。
 スイッチ231Dは、一端がダイオード237Cを介して受信ポートIn2に接続され、他端がダイオード237Bを介して蓄電部201Aに接続されている。
 ここで、ダイオード237Aは、受信ポートIn1側がアノード、スイッチ231A,231B側がカソードとなるように接続されている。
 ダイオード237Bは、スイッチ231A,231D側がアノード、蓄電部201A側がカソードとなるように接続されている。
 ダイオード237Cは、受信ポートIn2側がアノード、スイッチ231C,231D側がカソードとなるように接続されている。
 ダイオード237Dは、スイッチ231B,231C側がアノード、蓄電部201B側がカソードとなるように接続されている。
 ダイオード237A,237Cは、スイッチ231A乃至231Dから受信ポートIn1,In2に向かって電流が流れるのを防止するためである。
 ダイオード237B,237Dは、蓄電部201A,201Bからスイッチ231A乃至231Dに向かって電流が流れるのを防止するためのものである。
 ドライバ233は、制御部235から入力される制御信号に応じて、スイッチ231A乃至231Dのゲート電圧を個別に変化させる。
 制御部235は、信号分離器239から入力される信号波形から、受信ポートIn1,In2で受信した電力パケットの送信元を特定する。そして、制御部235は、特定した電力パケットの送信元に応じてドライバ233を制御する。ここで、制御部235は、ドライバ233に対してスイッチ231A乃至231Dそれぞれに対応した制御信号を入力する。
 例えば、蓄電部201Aに、送信元が商用発電設備である電力パケットが充電され、蓄電部201Bに、送信元が自家用発電設備である電力パケットが充電されるとする。
 そして、受信ポートIn1,In2両方が、送信元が商用発電設備である電力パケットを受信したとする。この場合、制御部235は、スイッチ231A,231Dがオンし、スイッチ231B,231Cがオフするように、ドライバ233を制御する。
 一方、受信ポートIn1,In2両方が、送信元が自家用発電設備である電力パケットを受信したとする。この場合、制御部235は、スイッチ231B,231Cがオンし、スイッチ231A,231Dがオフするように、ドライバ233を制御する。
 しかして、制御部235は、電力パケットがその送信元に応じて2つの蓄電部201A,201Bに振り分けて充電されるように、ドライバ233を制御する。
 信号分離器239は、例えば、フォトカプラ等を用いて構成されており、受信ポートIn1,In2で受信した電力パケットそれぞれについて個別に信号波形を抽出する。そして、信号分離器239は、抽出した信号波形を制御部235に入力する。
<検証試験について>
 本発明者らは、上記電力ネットワークについて、その効果を確認するための検証試験を実施した。
 試験方法としては、上記実施の形態1に示す電力ネットワークをコンピュータ上に構築し、コンピュータシミュレーションによって各負荷4A,4Bに電力パケットを同時に供給したときの状態を再現し、そのときに各負荷4A,4Bにおける電力について評価した。
 試験条件としては、第1条件として、第1電源1Aの電圧を15V、第2電源1Bの電圧を12Vとし、第1電源1Aから第1負荷4Aに対して目標電圧8Vの電力を供給し、第2電源1Bから第2負荷4Bに対して目標電圧8Vの電力を供給する場合を設定した。
 また、第2条件として、第1電源1Aの電圧を14V、第2電源1Bの電圧を12Vとし、第1電源1Aから第1負荷4Aに対して目標電圧10Vの電力を供給し、第2電源1Bから第2負荷4Bに対して目標電圧8Vの電力を供給する場合を設定した。
 また、電力パケットは、1つ当たり2×10-4秒に設定した。
 評価方法としては、各負荷4A,4Bに対して電力パケットの供給を同時に供給したときの各負荷4A,4Bにおける電圧の経時変化を求め、この経時変化の状態に基づいて評価した。
 図16は、コンピュータシミュレーションによって各負荷4A,4Bに電力パケットを供給したときの各負荷4A,4Bにおける電圧の経時変化を示すグラフであり、(a)は第1条件のグラフ、(b)は第2条件のグラフである。
 図16中、縦軸は、各負荷4A,4Bにおける電圧値(V)を示している。また、横軸は、経過時間(秒)を示している。
 図16では、各負荷4A,4Bに電力パケットを与えていない状態である各負荷4A,4Bの電圧が「0V」の状態から、電力を与え始めて目標電圧に到達するまでの過渡状態を含んだ電圧の経時変化を示している。
 図16(a)に示すように、各負荷4A,4Bに対してそれぞれ目標電圧8Vに設定して電力を供給した結果、各負荷4A,4B共に、目標電圧付近で安定して供給できていることが確認できる。
 また、図16(b)においても、負荷4Aに対して目標電圧10V、負荷4Bに対して目標電圧8Vに設定して電力を供給した結果、各グラフを見ると、各負荷4A,4B共に、目標電圧付近で安定して供給できていることが確認できる。
 この結果から、実施形態に係る電力パケット生成装置を備えた電力ネットワークによれば、複数の負荷に向けた電力パケットを生成し供給したとしても、送出先の異なる電力パケットの送出のタイミングを適切に調整できることで、適切に各負荷に対して電力パケットを送出されていることが確認できた。
<変形例>
(1)実施の形態1では、電力ネットワークが2つの電源1A,1Bと、2つの負荷4A,4Bを備える例について説明したが、電源と負荷の数はこれに限定されるものではない。例えば、3つ以上の電源と3つ以上の負荷を備える構成であってもよい。この場合、ミキサは、3つ以上のパケット生成器と、これらのパケット生成器で互いに排他的に電力パケットを生成させるセレクタとを備える構成とすればよい。
 特に、負荷が3つ以上ある場合、各パケット生成器は、複数の負荷のうち、指令値と負荷に印加されている電圧値との差分絶対値が最も大きい負荷を送信先に決定するようにすればよい。
(2)実施の形態1では、ミキサ2が、負荷電圧指令部5から入力される指令値に基づいて電力パケットの送信先を設定する例について説明した。但し、ミキサ2の構成は、必ずしも電力パケットの送信先を設定する機能を有する構成に限定されるものではない。例えば、ミキサ2が、電力パケットの生成に用いる電源1A,1Bを選択する機能のみを有し、電力パケットの送信先を設定する機能は有しないものであってもよい。具体的には、以下の構成が挙げられる。
 ミキサ2が、2つのパケット生成器とセレクタを備える。そして、2つのパケット生成器が、予め送信先として設定された負荷のアドレスを、生成した電力パケットの送信先に設定する。
(3)実施の形態2では、電力ルータ203Aが、負荷電圧指令部5から入力される指令値に基づいて電力パケットの送信先を設定する例について説明した。但し、電力ルータ203Aの構成は、必ずしも電力パケットの送信先を設定する機能を有する構成に限定されるものではない。例えば、電力ルータが、電力パケットの再構成に用いる蓄電部201A,201Bを選択する機能のみを有し、電力パケットの送信先を設定する機能は有しないものであってもよい。具体的には、以下の構成が挙げられる。
電力ルータが、2つのパケット生成器とセレクタを備える。そして、2つのパケット生成器が、受信ポートIn1,In2で受信した電力パケットの送信先アドレスを、そのまま再構成した電力パケットの送信先に設定する。
(4)なお、今回開示された実施の形態および変形例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。
 本発明に係る電力パケット生成装置、電力ルータおよび電力ネットワークは、送配電システム、家庭内配電システムに適用できる。或いは、複数のセンサーや複数の駆動アクチュエータを含むシステムへの電力供給や、複数の照明機器や複数のバッテリを含むシステムへの電力供給、複数の太陽電池と複数の負荷とを含むシステムへの電力供給にも好適である。また、電気機器内蔵の基板上の電力マネージメントにも好適である。
1A,1B 電源(直流電源)
2,202 ミキサ(電力パケット生成装置)
3A,3B,3C,203A 電力ルータ
4A,4B 負荷(第1、第2負荷)
5     負荷電圧指令部
21A,21B,221A,221B,221C,221D,231A,231B,231C,231D スイッチ
28A,28B パケット生成器
29 セレクタ
51A,51B 量子化器(制御信号生成部)
L1,L11,L21 主伝送路
L2,L3,L12,L13,L22,L23 副伝送路

Claims (10)

  1.  少なくとも1つの直流電源の供給する電力から複数の負荷に供給する電力パケットを生成し、前記複数の負荷それぞれに目標電圧が印加されるように、生成した電力パケットを主伝送路に送出する電力パケット生成装置であって、
     前記直流電源と前記主伝送路とを結合する複数の副伝送路それぞれに介挿された複数のスイッチと、
     前記複数の負荷それぞれについて、前記電力パケットが供給されている第1状態および前記電力パケットが供給されていない第2状態それぞれにおいて印加されていると推定される電圧と、前記目標電圧とに基づいて、前記スイッチをオンオフ動作させることにより前記電力パケットを生成する複数のパケット生成器と、
     前記パケット生成器が前記スイッチをオンオフ動作させる状態と、前記パケット生成器が前記スイッチをオフで維持する状態とを切り替える切替器と、を備える
     ことを特徴とする電力パケット生成装置。
  2.  前記複数のパケット生成器は、前記複数のスイッチそれぞれに対応して設けられ、
     前記切替器は、複数のパケット生成器のいずれか1つを、前記スイッチをオンオフ動作させて前記電力パケットを生成する生成状態とし、他のパケット生成器全てを、前記スイッチをオフで維持することにより前記電力パケットを生成しない非生成状態とする
     ことを特徴とする請求項1記載の電力パケット生成装置。
  3.  前記切替器は、
     前記複数の負荷それぞれにおいて、印加されていると推定される電圧と前記目標電圧との差分電圧が生じている場合、
     前記複数の負荷それぞれにおける、印加されていると推定される電圧と前記目標電圧との差分電圧に基づいて、各パケット生成器を前記生成状態および前記非生成状態のいずれかにする
     ことを特徴とする請求項2記載の電力パケット生成装置。
  4.  前記パケット生成器は、過去に取得した目標電圧に基づいて前記スイッチをオンオフ動作させるための制御信号を生成する制御信号生成部を備える
     ことを特徴とする請求項1乃至3のいずれか1項に記載の電力パケット生成装置。
  5.  請求項1乃至4のいずれか1項に記載の電力パケット生成装置を含む
     ことを特徴とする電力ネットワーク。
  6.  受信した電力パケットの電力を蓄電する少なくとも1つの蓄電部と、
     前記少なくとも1つの蓄電部の供給する電力から複数の負荷に供給する電力パケットを生成し、前記複数の負荷それぞれに目標電圧が印加されるように、生成した電力パケットを主伝送路に送出する電力パケット生成部と、を備える電力ルータであって、
     前記電力パケット生成部は、
     前記蓄電部と前記主伝送路とを結合する複数の副伝送路それぞれに介挿された複数のスイッチと、
     前記複数の負荷それぞれについて、前記電力パケットが供給されている第1状態および前記電力パケットが供給されていない第2状態それぞれにおいて印加されていると推定される電圧と、前記目標電圧とに基づいて、前記スイッチをオンオフ動作させることにより前記電力パケットを生成する少なくとも1つのパケット生成器と、
     前記パケット生成器が前記スイッチをオンオフ動作させる状態と、前記パケット生成器が前記スイッチをオフで維持する状態とを切り替える切替器と、を有する
     ことを特徴とする電力ルータ。
  7.  前記複数のパケット生成器は、前記複数のスイッチそれぞれに対して1個ずつ存在し、
     前記切替器は、複数のパケット生成器のいずれか1つを、前記スイッチをオンオフ動作させて前記電力パケットを生成する生成状態とし、他のパケット生成器全てを、前記スイッチをオフで維持することにより前記電力パケットを生成しない非生成状態とする
     ことを特徴とする請求項6記載の電力ルータ。
  8.  前記切替器は、
     前記複数の負荷それぞれにおいて、印加されていると推定される電圧と前記目標電圧との差分電圧が生じている場合、
     前記複数の負荷それぞれにおける、印加されていると推定される電圧と前記目標電圧との差分電圧に基づいて、各パケット生成器を前記生成状態および前記非生成状態のいずれかにする
     ことを特徴とする請求項7記載の電力パケット生成装置。
  9.  前記パケット生成器は、過去に取得した目標電圧に基づいて前記スイッチをオンオフ動作させるための制御信号を生成する制御信号生成部を備える
     ことを特徴とする請求項6乃至8のいずれか1項に記載の電力パケット生成装置。
  10.  請求項6乃至9のいずれか1項に記載の電力ルータを含む
     ことを特徴とする電力ネットワーク。
PCT/JP2014/063363 2013-05-21 2014-05-20 電力パケット生成装置、電力ルータおよび電力ネットワーク WO2014189051A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/892,159 US9787090B2 (en) 2013-05-21 2014-05-20 Power packet generation device, power router, and power network
JP2015518260A JP6322835B2 (ja) 2013-05-21 2014-05-20 電力パケット生成装置、電力ルータおよび電力ネットワーク
CN201480028755.0A CN105264732B (zh) 2013-05-21 2014-05-20 电力分组生成装置、电力路由器以及电力网络
EP14801363.4A EP3001526B1 (en) 2013-05-21 2014-05-20 Power packet generation device, power router, and power network

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013107393 2013-05-21
JP2013-107393 2013-05-21

Publications (1)

Publication Number Publication Date
WO2014189051A1 true WO2014189051A1 (ja) 2014-11-27

Family

ID=51933604

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/063363 WO2014189051A1 (ja) 2013-05-21 2014-05-20 電力パケット生成装置、電力ルータおよび電力ネットワーク

Country Status (5)

Country Link
US (1) US9787090B2 (ja)
EP (1) EP3001526B1 (ja)
JP (1) JP6322835B2 (ja)
CN (1) CN105264732B (ja)
WO (1) WO2014189051A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017085871A (ja) * 2015-10-23 2017-05-18 パナソニックIpマネジメント株式会社 電力ルータ装置及び電力伝送システム
WO2018174208A1 (ja) * 2017-03-22 2018-09-27 矢崎総業株式会社 電力供給システム
JP2018161040A (ja) * 2017-03-22 2018-10-11 矢崎総業株式会社 電力供給システム
WO2018190249A1 (ja) 2017-04-12 2018-10-18 国立大学法人京都大学 スイッチング電源システム、コントローラ、及び制御方法
WO2019221035A1 (ja) * 2018-05-14 2019-11-21 国立大学法人京都大学 電力演算装置、電力伝送システム、及び電力パケットのデータ構造
JP2020502982A (ja) * 2016-12-19 2020-01-23 エレクトリシテ・ドゥ・フランス 配電網のユーザエンティティ間の電気エネルギーの伝送
WO2021054387A1 (ja) * 2019-09-17 2021-03-25 国立大学法人京都大学 電力パケット伝送装置、電力パケット伝送システム、及び電力パケット伝送制御方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105264732B (zh) * 2013-05-21 2018-09-21 国立大学法人京都大学 电力分组生成装置、电力路由器以及电力网络
CN106030545B (zh) * 2014-01-19 2019-07-26 沃尔特瑟弗儿公司 数字电力网络方法和装置
US20160119880A1 (en) * 2014-10-27 2016-04-28 Hsuan-Chih HONG Wireless beacon device
CN106230724B (zh) * 2016-09-28 2019-04-05 华北电力科学研究院有限责任公司 电力通信网路由计算方法
JP2019161864A (ja) * 2018-03-13 2019-09-19 矢崎総業株式会社 パルス電力伝送装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010148172A (ja) * 2008-12-16 2010-07-01 Sony Corp 電力供給システム
JP2011142771A (ja) * 2010-01-08 2011-07-21 Yokogawa Electric Corp 電力パケットシステム

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130082525A1 (en) * 2011-09-29 2013-04-04 GCCA Inc. Shared Power System with Multiple Inputs
JP6070723B2 (ja) * 2013-01-25 2017-02-01 日本電気株式会社 電力ネットワークシステム、電力識別方法及び電力ルータ
WO2014185035A1 (ja) * 2013-05-17 2014-11-20 日本電気株式会社 電力ネットワークシステム並びに電力調整装置及び方法
CN105264732B (zh) * 2013-05-21 2018-09-21 国立大学法人京都大学 电力分组生成装置、电力路由器以及电力网络
US20160227483A1 (en) * 2013-09-18 2016-08-04 Kabushiki Kaisha Toshiba Wireless device and method
US9461756B2 (en) * 2014-03-06 2016-10-04 Samsung Electronics Co., Ltd Calibration apparatus and method of terminal in wireless communication system
JP2016225840A (ja) * 2015-05-29 2016-12-28 株式会社東芝 増幅回路、ad変換器、無線通信装置、及びセンサシステム
US9877308B2 (en) * 2015-08-11 2018-01-23 Qualcomm Incorporated Interference mitigation techniques for broadcast multimedia receiver device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010148172A (ja) * 2008-12-16 2010-07-01 Sony Corp 電力供給システム
JP2011142771A (ja) * 2010-01-08 2011-07-21 Yokogawa Electric Corp 電力パケットシステム

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
RYO TAKAHASHI ET AL.: "Design and experimental verification of power packet generation system for power packet dispatching system", 2013 AMERICAN CONTROL CONFERENCE, 17 June 2013 (2013-06-17), pages 4368 - 4373, XP032475760 *
See also references of EP3001526A4 *
TAKASHI HIKIHARA: "Power Packetization and Routing Technology", JOHO SHORI, vol. 51, no. 8, 15 August 2010 (2010-08-15), pages 943 - 950, XP008181263 *
TSUGUHIRO TAKUNO ET AL.: "In-home Power Distribution Systems by Circuit Switching and Power Packet Dispatching", 2010 FIRST IEEE INTERNATIONAL CONFERENCE ON SMART GRID COMMUNICATIONS, 4 October 2010 (2010-10-04), pages 427 - 430, XP031790263 *
TSUGUHIRO TAKUNO ET AL.: "Power Packet Routing with Multiple Input Multiple Output Power Conversion Circuits", PROCEEDINGS OF THE 2010 IEICE GENERAL CONFERENCE, 2 March 2010 (2010-03-02), pages S-140 - S-141, XP008181271 *

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017085871A (ja) * 2015-10-23 2017-05-18 パナソニックIpマネジメント株式会社 電力ルータ装置及び電力伝送システム
JP2020502982A (ja) * 2016-12-19 2020-01-23 エレクトリシテ・ドゥ・フランス 配電網のユーザエンティティ間の電気エネルギーの伝送
JP2018161039A (ja) * 2017-03-22 2018-10-11 矢崎総業株式会社 電力供給システム
JP2018161028A (ja) * 2017-03-22 2018-10-11 矢崎総業株式会社 電力供給システム
JP2018161034A (ja) * 2017-03-22 2018-10-11 矢崎総業株式会社 電力供給システム
JP2018161035A (ja) * 2017-03-22 2018-10-11 矢崎総業株式会社 電力供給システム
JP2018161027A (ja) * 2017-03-22 2018-10-11 矢崎総業株式会社 電力供給システム
JP2018161038A (ja) * 2017-03-22 2018-10-11 矢崎総業株式会社 電力供給システム
JP2018161040A (ja) * 2017-03-22 2018-10-11 矢崎総業株式会社 電力供給システム
JP2018161030A (ja) * 2017-03-22 2018-10-11 矢崎総業株式会社 電力供給システム
JP2018161036A (ja) * 2017-03-22 2018-10-11 矢崎総業株式会社 電力供給システム
JP2018161032A (ja) * 2017-03-22 2018-10-11 矢崎総業株式会社 電力供給システム
JP2018161033A (ja) * 2017-03-22 2018-10-11 矢崎総業株式会社 電力供給システム
JP2018161031A (ja) * 2017-03-22 2018-10-11 矢崎総業株式会社 電力供給システム
JP2018161029A (ja) * 2017-03-22 2018-10-11 矢崎総業株式会社 電力供給システム
WO2018174208A1 (ja) * 2017-03-22 2018-09-27 矢崎総業株式会社 電力供給システム
WO2018190249A1 (ja) 2017-04-12 2018-10-18 国立大学法人京都大学 スイッチング電源システム、コントローラ、及び制御方法
WO2019221035A1 (ja) * 2018-05-14 2019-11-21 国立大学法人京都大学 電力演算装置、電力伝送システム、及び電力パケットのデータ構造
WO2021054387A1 (ja) * 2019-09-17 2021-03-25 国立大学法人京都大学 電力パケット伝送装置、電力パケット伝送システム、及び電力パケット伝送制御方法

Also Published As

Publication number Publication date
JP6322835B2 (ja) 2018-05-16
US20160094029A1 (en) 2016-03-31
CN105264732A (zh) 2016-01-20
EP3001526A4 (en) 2017-04-05
EP3001526B1 (en) 2019-07-03
JPWO2014189051A1 (ja) 2017-02-23
CN105264732B (zh) 2018-09-21
EP3001526A1 (en) 2016-03-30
US9787090B2 (en) 2017-10-10

Similar Documents

Publication Publication Date Title
JP6322835B2 (ja) 電力パケット生成装置、電力ルータおよび電力ネットワーク
Prabhakaran et al. A novel communication-based average voltage regulation scheme for a droop controlled DC microgrid
US8120935B2 (en) Power converter with dual ring network control
US9979197B2 (en) Micro-grid energy management system
WO2007016186A3 (en) Inline power controller
CN106170913B (zh) 模块化多电平转换器的联网控制
JP2015523844A (ja) デジタル電流均等化装置、アナログ電流均等化装置、電流均等化方法及びシステム
JP6210496B2 (ja) 電力ルータ及び電力ネットワーク
US20180090988A1 (en) Time-Locked Data Alignment in Distributed Embedded Systems
CN106664006B (zh) 用于运行负载的功率电子系统和用于功率模块同步的方法
KR20150055735A (ko) 다중 배터리 충전기 및 그 제어방법
CN104253461A (zh) 一种充电设备和充电设备的供电方法
JP2017063589A (ja) 双方向dc/dcコンバータ及び系統連系インバータシステム
Reza et al. Improved power routing algorithm for power packet distribution system
Girbau-Llistuella et al. Experimental validation of a single phase intelligent power router
Yang et al. Cooperative optimal coordination for distributed energy resources
CN201766574U (zh) 一种高速共模不敏感电荷比较器电路
CN111316522B (zh) 输电系统中基于电压下垂的方法
CN106463969A (zh) 逆变器、尤其是作为发电复合电网的部件的逆变器和方法
CN116114131A (zh) 电源系统和电源单元
US11411429B2 (en) Management system, management method, power conversion device, and management device
Brusco et al. A compact nanogrid with a behavior-tree control for islanded applications and remote areas
Gupta High-frequency link power electronics interface for discrete power and data transfer
WO2021171926A1 (ja) 電力システム、コントローラ、電力変換装置、電力システムの制御方法及びプログラム
Zhao et al. Distributed fixed-time secondary voltage control for time-delayed microgrid via sampled-data control

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480028755.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14801363

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015518260

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14892159

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2014801363

Country of ref document: EP