WO2014188727A1 - 視線計測装置、視線計測方法および視線計測プログラム - Google Patents

視線計測装置、視線計測方法および視線計測プログラム Download PDF

Info

Publication number
WO2014188727A1
WO2014188727A1 PCT/JP2014/002707 JP2014002707W WO2014188727A1 WO 2014188727 A1 WO2014188727 A1 WO 2014188727A1 JP 2014002707 W JP2014002707 W JP 2014002707W WO 2014188727 A1 WO2014188727 A1 WO 2014188727A1
Authority
WO
WIPO (PCT)
Prior art keywords
line
visual
axes
optical axis
sight
Prior art date
Application number
PCT/JP2014/002707
Other languages
English (en)
French (fr)
Inventor
隆 長松
植木 達彦
Original Assignee
国立大学法人神戸大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人神戸大学 filed Critical 国立大学法人神戸大学
Priority to US14/891,578 priority Critical patent/US10379609B2/en
Priority to JP2015518087A priority patent/JP6265348B2/ja
Publication of WO2014188727A1 publication Critical patent/WO2014188727A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/011Arrangements for interaction with the human body, e.g. for user immersion in virtual reality
    • G06F3/013Eye tracking input arrangements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/16Devices for psychotechnics; Testing reaction times ; Devices for evaluating the psychological state
    • A61B5/163Devices for psychotechnics; Testing reaction times ; Devices for evaluating the psychological state by tracking eye movement, gaze, or pupil change
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K35/00Arrangement of adaptations of instruments
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0093Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 with means for monitoring data relating to the user, e.g. head-tracking, eye-tracking
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/70Determining position or orientation of objects or cameras
    • G06T7/73Determining position or orientation of objects or cameras using feature-based methods
    • G06T7/74Determining position or orientation of objects or cameras using feature-based methods involving reference images or patches
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/80Analysis of captured images to determine intrinsic or extrinsic camera parameters, i.e. camera calibration
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/18Eye characteristics, e.g. of the iris
    • G06V40/19Sensors therefor
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B21/00Alarms responsive to a single specified undesired or abnormal condition and not otherwise provided for
    • G08B21/02Alarms for ensuring the safety of persons
    • G08B21/06Alarms for ensuring the safety of persons indicating a condition of sleep, e.g. anti-dozing alarms
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/56Cameras or camera modules comprising electronic image sensors; Control thereof provided with illuminating means
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/90Arrangement of cameras or camera modules, e.g. multiple cameras in TV studios or sports stadiums
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/113Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for determining or recording eye movement
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/16Devices for psychotechnics; Testing reaction times ; Devices for evaluating the psychological state
    • A61B5/18Devices for psychotechnics; Testing reaction times ; Devices for evaluating the psychological state for vehicle drivers or machine operators
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/014Head-up displays characterised by optical features comprising information/image processing systems
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30196Human being; Person
    • G06T2207/30201Face

Definitions

  • the present invention mainly relates to a gaze measurement of a user who looks far away, for example, a gaze measurement of a user who looks far away from an observation deck, and a gaze measurement of a pilot such as a train, an automobile, and a ship.
  • the present invention relates to a device that can perform calibration and perform line-of-sight measurement.
  • This line-of-sight interface detects a user's line of sight as data using a camera and a light source, and operates an icon or the like on a computer screen using the detected line-of-sight data.
  • the eyeball is imaged by irradiating the user's eyeball with light from a light source such as infrared rays, and direction data calculated from the distance between the reflected light such as infrared rays on the corneal surface of the photographed image and the pupil is obtained by the user. It is detected as estimated gaze data.
  • An error that differs for each user occurs between the estimated line-of-sight data calculated by this technique and the actual line-of-sight data of the actual user.
  • There are various factors that cause the error such as individual differences in eyeball shape, light refraction on the corneal surface, and individual differences in the position of the fovea. Therefore, in order to correct the error of the estimated line-of-sight data with respect to the actual line-of-sight data, a process called calibration is performed in which a correction parameter for each user is calculated in advance, and the calculated estimated line-of-sight data is corrected with this correction parameter. Done.
  • the calibration process allows a user to gaze at a plurality of predetermined markers in order, detects estimated line-of-sight data when each marker is watched, and detects the estimated line-of-sight data and the actual position from the eyeball to each marker. This is done by using a correction parameter calculated from the difference from the direction data.
  • the optical axis of the eyeball which is an axis connecting the center of curvature of the cornea and the center of the pupil of the pupil, is obtained from the eyeball image by photographing the reflected light and the pupil on the cornea surface of the light source with a camera. Then, a deviation (individual difference) between the optical axis of the eyeball and the visual axis (equivalent to the line of sight) is obtained by calibrating one point, and then the measured optical axis is accurately shifted by the amount of deviation. Seeking gaze.
  • the position of the central fovea inside the eyeball cannot be photographed from the outside by a camera, and it is difficult to reduce the number of points to be watched during calibration from one point.
  • the present inventor has already proposed a line-of-sight measurement device that does not require calibration processing by measuring the optical axes of both eyes and adding a constraint that the visual axes intersect on the display screen (patent) Reference 2).
  • the eye gaze measuring apparatus proposed by the present inventor obtains an eyeball image in which light from a light source is reflected by a camera for a user looking at a display screen, and connects the center of curvature of the cornea and the pupil center of the pupil from the eyeball image.
  • the optical axis that is the axis is calculated, and using the calculated optical axis, the deviation between the optical axis and the visual axis that is the axis connecting the fovea and the center of curvature of the cornea is calculated, and the optical axis and the visual axis are calculated. Based on the deviation from the axis, the optical axis is shifted to obtain the visual axis, and the gazing point on the user's screen is calculated as the intersection of the screen and the visual axis.
  • a gaze measurement of a user who looks far away such as a gaze when driving a vehicle such as a car, a train, or a ship, or a user who looks far away from an observation deck is performed.
  • the user is considered to be looking somewhere in front and far away most of the time.
  • An arrow 1 in FIG. 1 indicates the line of sight of the car driver 2 in (1), the line of sight of the train driver 3 in (2), and the line of sight of the ship's captain 4 in (3).
  • Such a user would be very ideal if the calibration was made naturally during a line-of-sight movement looking into the distance without looking elsewhere specifically.
  • Patent Document 1 and Non-Patent Documents 1 to 3 have a limitation that it is necessary to watch at least one predetermined place. Even if there are such restrictions, if an individual can be identified, the first calibration is sufficient, but it is not suitable for a case where an unspecified number of people are to be measured.
  • JP 2007-136000 A JP 2009-297323 A JP 2009-183473 A
  • the present invention provides a line-of-sight measurement apparatus and method for performing line-of-sight measurement of users who look far away, including users who look far away from the observation deck, operators such as trains, automobiles, and ships, by automatic calibration.
  • the purpose is to do.
  • a visual line measuring device of the present invention is a visual line measuring device for a user who mainly looks far away, and is a light for calculating the optical axes of the left and right eyeballs when viewing at least two points in the distance.
  • a user who mainly looks far away refers to a user who is looking far away at an observation deck or the like, or a pilot who is operating a moving means including a train, a car, and a ship.
  • a pilot of a training simulation apparatus for driving training of vehicles such as trains, automobiles, ships, airplanes, and bicycles is also included.
  • the present invention can be suitably used for measuring the line of sight of a driver who controls an actual vehicle and for measuring the line of sight of a pilot in a training simulation apparatus for driving training.
  • the projection screen may be several meters away, but by using a device that displays an image at infinity with a special optical system, the simulator operator can be treated as a user looking far away There is sex. Further, it can be suitably used for measuring the line of sight of a user who looks far away on the observation deck.
  • the line of sight of the user who looks far away at the observation deck and the operator (user) during the operation of trains, cars, ships, etc. is mainly focused on the distance.
  • a constraint condition that the line of sight is parallel is used.
  • the size of the outer product of the vectors of the visual axes of the left and right eyes or the inner product of the unit vectors is set up. Then, four variables expressing the deviation between the optical axis of the eyeball and the visual axis are calculated. Note that “at least” is calculated by extracting features from an image taken with a camera, for example, in order to calculate the optical axis of the eyeball. This is because the measurement accuracy can be improved by measuring points.
  • the constraint condition is that the magnitude of the outer product of the vectors of the left and right eye visual axes is 0, or The inner product of the unit vectors of the visual axes of both the left and right eyes is 1.
  • the constraint condition is the following formula (1) with respect to the optical axes of the left and right binocular eyes when viewing at least four points in the distance. Fulfill.
  • c Ln ( ⁇ L , ⁇ L ) and c Rn ( ⁇ R , ⁇ R ) are unit vectors of the visual axis of the left and right eyeballs, respectively, and the horizontal shift angle ⁇ and the vertical shift from the optical axis. It is expressed as a function of the angle ⁇ .
  • L is left
  • R is right
  • n is 0, 1,..., N (N is 3 or more).
  • the constraint condition is that when the magnitude of the outer product of the vectors of the visual axes of the left and right eyes is 0, with respect to the optical axes of the left and right eyes when viewing at least four points in the distance, Satisfy (2).
  • c Ln ( ⁇ L , ⁇ L ) and c Rn ( ⁇ R , ⁇ R ) are unit vectors of the visual axis of the left and right eyeballs, respectively, and the horizontal shift angle ⁇ and the vertical shift from the optical axis. It is expressed as a function of the angle ⁇ .
  • L is left
  • R is right
  • n is 0, 1,..., N (N is 3 or more).
  • the left side of the following formula (2) represents the magnitude of the vector (norm), it is surrounded by double vertical bars.
  • the optical axis calculation means obtains an eyeball image that is an image of an eyeball for a user viewing a distance, and connects the center of curvature of the cornea or the rotation center of the eyeball and the pupil center of the pupil from the eyeball image.
  • the optical axis is calculated.
  • the eyeball image is preferably an eyeball image in which light from a predetermined light source is reflected.
  • the line-of-sight measurement device of the present invention has different positions so as to acquire an eyeball image of both left and right eyes in front of the user. And at least two light source means arranged at different positions so that the reflected images of the light source on the eyeball are separated from each other.
  • At least two Purkinje images are formed in a region of constant curvature radius of the cornea of the left and right eyeballs, the position of the Purkinje image of the light source means on the eyeball image picked up by any camera means, and the actual light source
  • the positions of the means are associated with each other, and the optical axis of the eyeball is calculated from the positional relationship between at least two sets of the associated camera means and the light source means.
  • the search range of the visual axis deviation angle with respect to the optical axes of the left and right eyes is ⁇ 7 ° or less in the horizontal direction and ⁇ 2 ° or less in the vertical direction. Converge the corners. This ensures the stability of the solution for the deviation angle.
  • the horizontal direction is ⁇ 7 ° or less and the vertical direction is ⁇ 2 ° or less.
  • the average of the optical axis of the eyeball and the line of sight seen by humans is about 5 ° in the horizontal direction and about 1 ° in the vertical direction. This is because it is known that there is a deviation.
  • the magnitude and direction of the deviation differ from individual to individual, but there are few cases where the deviation in the horizontal direction is more than ⁇ 7 ° and in the vertical direction is more than ⁇ 2 °.
  • a range of a predetermined deviation angle is set as a search range.
  • the gaze measurement method of the present invention is a gaze measurement method for a user who mainly looks far away, and an optical axis calculation step for calculating the optical axes of the right and left eyeballs when viewing at least two points in the distance;
  • a displacement calculating step for calculating a displacement between the optical axis of the left and right eyes and the visual axis, and a relationship between the optical axis and the visual axis, with the constraint that the visual axes (line of sight) of both the left and right eyes are parallel during the distant gaze
  • the constraint condition is that the size of the outer product of the respective vectors of the left and right eye visual axes is 0 or the inner product of the unit vectors of the visual axes of both the left and right eyes is 1.
  • the line-of-sight measurement program of the present invention is a line-of-sight measurement program for users who mainly look far away, and causes a computer to execute the following steps 1) to 3).
  • a gazing point calculation step for calculating a user's gaze point based on the shift between the optical axis and the visual axis
  • the present invention it is possible to perform gaze measurement by performing automatic calibration on the line of sight of a user who looks far away, including operators such as trains, cars, ships, etc., so that an unspecified number of people other than a specific user can be measured. There is an effect that can be done.
  • there is no need for a user's burden because calibration is not required in which the user gazes at a specific marker in advance.
  • the present invention by measuring the line of sight when a driver such as a car is mainly looking far away, it is possible to detect aside driving and activate a warning transmission or a safety device to prevent accidents. it can.
  • the deviation angle between the optical axes of the left and right eyes and the visual axis is automatically obtained.
  • the constraint is that the visual axes (line of sight) of both the left and right eyes are parallel during distant gaze. This constraint condition is used because, for example, it is assumed that most of the user's line of sight at the time of maneuvering a train, an automobile, a ship, etc. is a normal natural state of gazing far away in front.
  • calibration can be automatically performed. Then, by obtaining the deviation between the optical axis and the visual axis, the subsequent gaze point of the user can be calculated, and the line of sight can be measured. Subsequent gaze points can be measured not only from distant gaze points, but also from nearby gaze points such as meter panels.
  • the eyeball does not perform all the operations that can be performed in its operation, but normally operates according to a certain law. This constant law is called the law of listing.
  • the law of listing is the law regarding the rotational movement and eye position of the eye, (a) any eye position of the eyeball takes only a position that can be reached with a single rotation from the primary position, and (B)
  • the rotation axis of the rotation refers to a law relating to eye movements that exists in a plane (listing plane) perpendicular to the visual axis direction of the first eye position.
  • the first eye position is a relative eye position with respect to the head satisfying the law of listing, and is a direction when the head is viewed straight in a horizontal position.
  • FIG. 2 shows the relationship between the visual axis and the optical axis in the first eye position (Primary Position) before the eye movement and the eye position after the movement.
  • a and b are the visual axis vector and optical axis vector of the eyeball in the first eye position
  • c and d are the visual axis vector and optical axis vector after rotation. Both are unit vectors.
  • A represents the center of corneal curvature of the eyeball.
  • a, b, c, d, and A are written in bold to indicate that they are vectors.
  • the capital letter (bold type) of the alphabet is properly used so as to indicate the position vector
  • the small letter of the alphabet is the unit direction vector.
  • the eye position after the operation includes rotation other than the position of the eyeball (second eye position) when the eyeball is rotated vertically or horizontally from the first eye position, and rotation from the first eye position vertically or horizontally. It includes the position of the eyeball (third eye position).
  • the unit direction vector (first visual axis vector) of the visual axis in the first eye position is a
  • the unit direction vector (first optical axis vector) of the optical axis in the first eye position is b
  • after eye movement The unit direction vector (second visual axis vector) of the visual axis in the eye position is c
  • the unit direction vector (second optical axis vector) of the optical axis in the eye position after the eyeball operation is d.
  • the first visual axis vector a is a vector of a direction when a person stands almost straight and looks at the front, is a vector that varies with the position of the head, and is determined relative to the position of the head. is there.
  • the first visual axis vector a is measured by some method such as approximating the front direction, and the direction is known.
  • FIG. 3 shows the relationship between the visual axis and the optical axis in the first eye position and the eye position after movement based on the law of listing.
  • the vectors a, b, c, and d in FIG. 2 are moved so that the starting points are collected in one place so that the rotation relationship can be easily understood.
  • the rotation axis when the eyeball directly moves from the first eye position to the eye position after the operation is l.
  • l is a unit direction vector along the rotation axis of the eyeball, and the eyeball is rotated from a, which is the first eye position, around an axis in the listing plane perpendicular to a (axis direction vector is l). Only take position.
  • the first visual axis vector a rotates by an angle ⁇ to become the second visual axis vector c
  • the first optical axis vector b Is rotated by an angle ⁇ to become the second optical axis vector d.
  • the rotation axis l exists in a listing plane perpendicular to the first visual axis vector a. More specifically, the rotation axis l is perpendicular to the first visual axis vector a and the second visual axis vector c.
  • the rotation axis 1 and the rotation angle ⁇ can be calculated using the following formulas (3) and (4), respectively.
  • the second visual axis vector c can be calculated by rotating the first visual axis vector a by an angle ⁇ about the rotation axis l. That is, c can be obtained by rotating a as shown in the following formula (5).
  • R ( ⁇ , l) is a matrix that rotates ⁇ around l.
  • the line-of-sight measurement apparatus 100 includes five components, that is, a light source unit 10, a camera unit 12, an optical axis calculation unit 14, a deviation calculation unit 16, and a gaze point calculation unit 18.
  • the optical axis calculation means is means for calculating the optical axis of the user's eyeball, but any means can be used as long as it can always calculate the optical axis of the eyeball using a known method.
  • a method using two cameras and two light sources for one eye is used. As a result, the optical axis of the eyeball can be obtained accurately and quickly (in one frame).
  • the LED light source irradiates infrared rays
  • an infrared camera having sensitivity to infrared rays is prepared. Two cameras may be used to capture both eyes, but in order to take an eyeball image with high resolution, a total of four cameras, two for the right eye and two for the left eye, are used.
  • the line-of-sight measurement apparatus 100 includes a CPU 211, a memory 212, a hard disk 213, a keyboard 214, a mouse 215, a display 216, an external memory 217, an LED 218, and a camera 219.
  • the CPU 211 performs processing based on other applications such as an operating system (OS) and a line-of-sight measurement program recorded on the hard disk 213.
  • the memory 212 provides a work area for the CPU 211.
  • the hard disk 213 records and holds an operating system (OS), other applications such as a visual line measurement program, and measurement data obtained as a result of the visual line measurement.
  • the keyboard 214 and the mouse 215 accept external commands.
  • the display 216 displays the eyeball images of the subject captured by the two cameras 219 for the right eye and the two for the left eye for confirmation by the user of the line-of-sight measurement apparatus 100.
  • the external memory 217 is a USB memory, for example, and reads data such as a line-of-sight measurement program.
  • the LED 218 irradiates the subject whose line of sight is measured by the line-of-sight measuring apparatus 100 with light.
  • the camera 219 captures an eyeball image of the subject. In the case of two cameras, they are configured as a stereo camera and are used to capture a binocular image. In the case of four cameras, two sets of stereo cameras are configured and used to capture images of the left and right eyes.
  • the position of the Purkinje image of the light source on the eyeball image captured by any camera is associated with the actual position of the light source. Then, a surface including the corneal curvature center is calculated from the position of the camera (center of the lens) and the position of the light source associated with the position of the captured Purkinje image, and three or more surfaces are obtained, thereby calculating the curvature of the cornea. The center position is calculated. Then, the center position of the pupil is calculated from the eyeball image, and an optical axis that is an axis connecting the curvature center of the cornea and the pupil center of the pupil is calculated based on the center position of the curvature of the cornea and the center position of the pupil. For details, see the flow charts of FIGS. 6 and 7 and paragraphs 0019 to 0029 of Patent Document 2 described above.
  • a deviation value between the optical axis of the eyeball and the visual axis is calculated in advance by, for example, gazing at a predetermined place by a calibration operation performed in advance by the user. Then, the visual axis, which is an axis connecting the fovea and the center of curvature of the cornea, is calculated from the calculated optical axis using the calculated deviation value.
  • Calibration is to obtain the relationship between a and b in FIG.
  • a is determined relatively to the position of the head
  • the calibration is equivalent to estimating b by assuming that the front is approximated to the direction and is known.
  • the deviation between a and b is represented by two variables. Assuming that the horizontal shift angle is ⁇ and the vertical direction is ⁇ , b can be expressed by the following equation (6) using ⁇ and ⁇ .
  • c L and c R respectively the visual axis of the left and right eyes of the eye. If c L and c R are unit vectors and are parallel to each other, the inner product of c L and c R is 1 as shown in the following equation (7).
  • a L is known, and b L can be expressed as a function of ⁇ L and ⁇ L from the above equation (6).
  • d L is obtained from a conventional method. Therefore, from the above formulas (3) to (6), c L can be expressed as a function of ⁇ L and ⁇ L.
  • c R can be expressed as a function of ⁇ R and ⁇ R. If there are four unknowns and the user looks at four different directions, four equations are established as shown in the following equation (8). By solving these four equations, four variables ⁇ L , ⁇ L , ⁇ R and ⁇ R which are unknown numbers can be obtained.
  • the optical axis of the eyeball is calculated by extracting features from an image taken by a camera, but usually contains noise. Therefore, more points are measured, and solutions of the four variables ⁇ L , ⁇ L , ⁇ R , ⁇ R are determined so that the evaluation function F of the following formula (9) is minimized.
  • the deviation between the optical axis of the eyeball and the visual axis When the deviation between the optical axis of the eyeball and the visual axis is large, the deviation can be accurately obtained when the present invention is used. However, when the deviation between the optical axis of the eyeball and the visual axis is small, the calculation for obtaining the deviation is performed. The influence of noise becomes large, the calculation result becomes unstable, and the deviation cannot be obtained accurately. However, when the deviation between the optical axis of the eyeball and the visual axis is small, it can be said that the optical axis can be approximated to the visual axis. In either case, there is a possibility that it can be judged by calculating several times and whether the result varies.
  • FIGS. 9 and 10 an experimental system as shown in FIGS. 9 and 10 was constructed to evaluate the accuracy of the visual line measuring device.
  • the subject 20 looks at a distant target through the front glass 21, and the state of the target is displayed by the four cameras 22 (Camera 0 to Camera 3) provided on the lower edge of the glass 21. It can be obtained.
  • Two infrared LEDs (IR-LEDs) 23 are provided on the glass 21.
  • a one-point calibration marker 24 for obtaining ⁇ L , ⁇ L , ⁇ R , ⁇ R is provided on the glass 21 by a one-point calibration method which is a conventional technique (one-point calibration is performed). (See Non-Patent Document 3 above for the method).
  • the test subject looks at the nine targets ahead of the glass 21 by 8 m.
  • the nine targets are arranged in a 3 m (horizontal direction) ⁇ 2 m (vertical direction) frame in front of the user.
  • the optical axis of the eyeball of the right eye is calculated using a pair of two cameras 22 (Camera 0, Camera 1) among the four cameras provided on the lower edge of the glass 21, and the two cameras 22 (Camera 2, Camera 3) are calculated.
  • the optical axis of the eyeball of the left eye is calculated using The camera used is a digital camera equipped with a CMOS image sensor equipped with a 50 mm lens and an infrared (IR) filter.
  • IR infrared
  • the experiment calculates the optical axis of both eyes while the subject is looking at one of the nine targets through the glass 21, and the inner product of the unit vectors of the visual axes of the left and right eyes is
  • the displacement ( ⁇ L , ⁇ L , ⁇ R , ⁇ R ) between the optical axis and the visual axis was calculated with 1 being a constraint condition.
  • the deviation between the optical axis and the visual axis was calculated using the conventional one-point calibration method, and the two were compared.
  • Table 2 There are 3 participants in the experiment (1 boy and 2 girls).
  • the calculation is a search range for the value of ⁇ in the horizontal direction of the left eye, from ⁇ 7 ° to 0 °, the search range of the value of ⁇ in the horizontal direction of the right eye is 0 ° to 7 °, and a search for the value of ⁇ in the vertical direction.
  • the range was -2 ° to 2 ° for both left and right.
  • ⁇ L , ⁇ L , ⁇ R , and ⁇ R are automatically obtained by looking at a distance, but these values can be used even when looking close. By just looking far away for a while, it becomes possible to know exactly where you saw a nearby meter.
  • data necessary for calculation of ⁇ L , ⁇ L , ⁇ R , ⁇ R can always be obtained even after calibration. Unlike a normal gaze measurement device, always, It is possible to correct the calibration result. Since the calibration of the present invention is based on the premise that the user is looking far away, it is important to determine whether he is looking far or near.
  • the optical axis of the eyeball is obtained within an error range of about ⁇ 5 °, so that it can be determined to some extent from the direction of the optical axis. From the direction of the optical axis alone, it is impossible to discern when looking at insects that are still on the glass. If you have a certain speed, such as a car, you can't think of seeing it for a long time. It is possible to determine the vehicle speed from the viewpoint of how often the convergence angle increases above a certain vehicle speed.
  • Example 2 a line-of-sight measurement apparatus according to Example 2 will be described.
  • a state when two distant points are viewed is captured, and at least two distant points are viewed with a constraint condition that the visual axes (gazes) of the left and right eyes of the user are parallel.
  • the optical axis of the right and left eyeballs can be calculated and the deviation between the optical axis of the left and right eyes and the visual axis can be calculated.
  • the unit vectors of the visual axes of the left and right eyes are equal.
  • c L and c R are unit direction vectors of the visual axis of the left and right eyeballs, respectively, and ⁇ L , ⁇ L , ⁇ R , and ⁇ R represent the deviation between the optical axis of the eyeball and the visual axis. These represent the deviations in the horizontal direction, vertical direction, right eye horizontal direction, and vertical direction of the left eye, respectively.
  • the restriction that the unit vectors of the visual axes of the left and right eyes are equal is the same as the constraint that the visual axes (line of sight) of the left and right eyes are parallel.
  • the present invention is useful as a line-of-sight measurement device and a line-of-sight measurement method for operators of trains, cars, ships, and the like, and users looking far away from the observation deck.

Abstract

 電車、自動車、船などの操縦者を含む、遠方を眺めるユーザの視線計測を自動キャリブレーションで行う視線計測装置および方法を提供する。遠方の少なくとも2点を眺める際の左右両眼の眼球の光軸を算出する光軸算出手段と、遠方注視の際、左右両眼の視軸(視線)が平行であることを拘束条件として、左右両眼の光軸と視軸との間のずれを算出するずれ算出手段と、光軸と視軸との間のずれに基づき、ユーザの注視点を算出する注視点算出手段とを備える。ここで、拘束条件は、左右両眼の視軸のそれぞれのベクトルの外積の大きさが0、もしくは、左右両眼の視軸のそれぞれの単位ベクトルの内積が1とする。

Description

視線計測装置、視線計測方法および視線計測プログラム
 本発明は、主に遠方を眺めるユーザ、例えば、展望台から遠方を眺めるユーザの視線計測や、電車、自動車、船などの操縦者の視線計測に関し、ユーザが遠方を見ている状況下で自動キャリブレーションを行い、視線計測を行えるものに関する。
 従来、コンピュータを操作するためのインタフェースの一種として非接触型の視線インタフェースがある。この視線インタフェースは、カメラと光源を用いて、ユーザの視線をデータとして検出し、検出された視線データを用いてコンピュータの画面上のアイコンなどを操作するものである。この視線インタフェースでは、ユーザの眼球に赤外線などの光源からの光を照射して眼球を撮影し、撮影した画像の角膜表面における赤外線などの反射光と瞳孔との距離から算出される方向データをユーザの推定視線データとして検出する。
 この技術により算出される推定視線データと、実際のユーザの実視線データとの間には、ユーザごとに異なる誤差が生じる。誤差が生じる原因には、眼球形状の個人差、角膜表面での光の屈折、中心窩の位置に関する個人差など様々な要素がある。
 そこで、実視線データに対する推定視線データの誤差を補正するために、ユーザ毎の補正用パラメタを予め算出しておき、算出された推定視線データをこの補正用パラメタで補正するキャリブレーションと呼ばれる処理が行われる。
 キャリブレーション処理は、予め定められた複数のマーカを利用者に順に注視させ、それぞれのマーカが注視されたときの推定視線データを検出し、検出された推定視線データと眼球から各マーカへの実際の方向データとの差から算出される補正用パラメタを用いることにより行われる。
 キャリブレーション処理を行うことにより、ユーザの実際の視線により近い方向データを視線データとして検出することが可能になる。
 しかし、精度の高い視線データを検出するためには、補正用パラメタを生成する際に利用者に5点から20点程のマーカを注視させる必要があり、ユーザの負担が大きかった。このような状況下、キャリブレーション処理を1点のマーカにまで減少させる技術が開示されている(例えば、特許文献1,非特許文献1~3を参照。)。
 これらの手法では、光源の角膜表面での反射光と瞳孔をカメラで撮影することより、眼球画像から角膜の曲率中心と瞳孔の瞳孔中心とを結ぶ軸である眼球の光軸を求めている。そして、眼球の光軸と視軸(視線と同等)とのずれ(個人差がある)を、1点を注視するキャリブレーションで求めて、その後計測した光軸をずれの分ずらすことにより正確に視線を求めている。これら技術では、眼球の内部の中心窩の位置がカメラで外部から撮影できないことから、キャリブレーション時に注視する点数を1点から減らすことは困難である。
 既に、本発明者は、両眼の光軸を計測し、ディスプレイ画面上で視軸が交差するという拘束条件を付加することにより、キャリブレーション処理が不要な視線計測装置を提案している(特許文献2を参照)。
 本発明者の提案する視線計測装置は、ディスプレイ画面を見ているユーザについて、光源からの光が反射した眼球画像をカメラで取得し、眼球画像から角膜の曲率中心と瞳孔の瞳孔中心とを結ぶ軸である光軸を算出し、算出した光軸を利用して、光軸と、中心窩と角膜の曲率中心とを結ぶ軸である視軸との間のずれを算出し、光軸と視軸との間のずれに基づき、光軸をずらして視軸を求め、ユーザの画面上での注視点を画面と視軸の交点として算出するものである。
 一方、コンピュータを操作するためのインタフェースではなく、図1に示すように、車、電車、船などの乗り物の操縦時の視線など遠方を眺めるユーザや、展望台から遠方を眺めるユーザの視線計測を行う状況を想定した場合、ユーザは殆どの時間、前方で遠方のどこかを見ていると考えられる。図1の中の矢印1は、(1)では自動車の運転手2の視線、(2)では電車の運転手3の視線、(3)では船の船長等4の視線を示している。
 このようなユーザは、特別に指定されたどこかを見ることなしに、遠方を眺める視線動作中に自然にキャリブレーションがなされるならば、非常に理想的である。
 上述の如く、特許文献1,非特許文献1~3に開示された技術では、少なくとも1点の事前に決められた場所を注視しなければならないといった制約がある。このような制約があっても、個人が特定できれば、最初の1回だけのキャリブレーションで済むのであるが、仮に不特定多数の人を計測対象とするケースには適さない。
 また、特許文献2に開示された技術では、ディスプレイ画面を見ているケースでは自動的にキャリブレーションが可能であるが、車、電車、船などの乗り物の操縦の場合、操縦者が近くのディスプレイ等を見る時間は非常に短く、殆どの時間は遠方のどこかを注視していることから適当ではない。また、特許文献2に開示された技術のうち左右の眼球の光軸とディスプレイとの交点の中点を利用するものでは、一瞬(1フレーム)で自動キャリブレーションが行えるものの、注視を伴うキャリブレーションを行うものより精度が低くなるといった問題がある。
 この他、運転者に注視させるターゲットをヘッドアップディスプレイにより運転者前方の虚像面に表示させて、視線方向を検出する技術が知られているが(特許文献3を参照)、この場合は、注視しやすいターゲットを用いてキャリブレーションを行うものであり、ユーザの自然な視線動作中に自動的にキャリブレーションを行うものではない。
 また、車の運転については、全ての人が自分専用の車を所有しているわけではなく、家族や友人が運転することもある。電車の運転手も途中で交代があり、異なる人が運転することもある。船については、同時に複数人がブリッジに存在し、交代もある。また、急病などにより、予定外の人が運転・操縦する可能性も否定できない。このような事情があり、特定ユーザ以外の利用時も常に安全装置として視線計測装置を使うために、自動キャリブレーションが行える技術が要望されている。
特開2007-136000号公報 特開2009-297323号公報 特開2009-183473号公報
Guestrin, E.D.,M. Eizenman: General Theory of Remote Gaze Estimation Using the Pupil Center and Corneal Reflections, IEEE Transactions on Biomedical Engineering, Vol. 53, No.6,  pp.1124-1133 (2006). Shih, S.-W.,J. Liu: A novel approach to 3-D gaze tracking using stereo cameras, IEEE Transactions on Systems, Man, and Cybernetics, Part B, Vol. 34, No.1,  pp.234-245 (2004). Nagamatsu, T., J. Kamahara, N. Tanaka: 3D Gaze Tracking with Easy Calibration Using stereo Cameras for Robot and Human Communication, in Proceedings of the 17th International Symposium on Robot and Human Interactive Communication (IEEE RO-MAN) 2008,  pp.59-64. (2008).
 上記状況に鑑みて、本発明は、展望台から遠方を眺めるユーザ、電車、自動車、船などの操縦者を含む、遠方を眺めるユーザの視線計測を自動キャリブレーションで行う視線計測装置および方法を提供することを目的とする。
 上記目的を達成すべく、本発明の視線計測装置は、主に遠方を眺めるユーザの視線計測装置であって、遠方の少なくとも2点を眺める際の左右両眼の眼球の光軸を算出する光軸算出手段と、遠方注視の際、左右両眼の視軸(視線)が平行であることを拘束条件として、左右両眼の光軸と視軸との間のずれを算出するずれ算出手段と、光軸と視軸との間のずれに基づき、ユーザの注視点を算出する注視点算出手段とを備える。
 上記の構成により、主に遠方を眺めるユーザの視線計測を、予め定めた注視点を意識的に注視されて行うキャリブレーションではなく、遠方を自然に眺める状態下で自動キャリブレーションができる。すなわち、ユーザが遠方注視の際に、ユーザの左右両眼の視軸(視線)が平行であることを拘束条件とし、遠方の少なくとも2点を眺める際の左右両眼の眼球の光軸を算出することにより、左右両眼の光軸と視軸との間のずれを算出できる。そのため、自動キャリブレーションが行えるので、ユーザに対して予め特定のマーカを注視するというキャリブレーションが不要である。
 なお、本明細書において、キャリブレーションとは、眼球の光軸と視軸のずれを求めることと同義である。
 ここで、主に遠方を眺めるユーザとは、展望台などで遠方を注視するユーザや、電車、自動車、船舶を含む移動手段の操縦時の操縦者をいう。この他、電車、自動車、船舶、飛行機、自転車などの乗り物の操縦訓練のための訓練シミュレーション装置の操縦者も含まれる。本発明は、実際の乗り物を操縦する操縦者の視線計測や、操縦訓練のための訓練シミュレーション装置の操縦者の視線計測に好適に用いることができる。シミュレーション装置の場合、投影スクリーンが数m先の可能性があるが、特殊な光学系により、無限遠に映像を表示する装置を用いることにより、シミュレーション装置の操縦者が遠方を眺めるユーザとして扱える可能性がある。また、展望台で遠方を眺めるユーザの視線計測にも好適に用いることができる。
 展望台で遠方を眺めるユーザや、電車、自動車、船などの操縦時の操縦者(ユーザ)の視線は、ユーザが主に遠方を注視していることから、ユーザの左右両眼の視軸(視線)が平行であるという拘束条件を用いる。
 遠方の少なくとも2点を眺めることにより自動キャリブレーションを行う場合、左右両眼の視軸のそれぞれの単位ベクトルが等しいと制約を設けて、眼球の光軸と視軸のずれを表現する4つの変数を算定し、眼球の光軸と視軸のずれを算出する。
 また、遠方の少なくとも4点を眺めることにより自動キャリブレーションを行う場合、後述するように、左右両眼の視軸のそれぞれのベクトルの外積の大きさ、或いは、単位ベクトルの内積の式を立てて、眼球の光軸と視軸のずれを表現する4つの変数を算定する。なお、“少なくとも”とするのは、眼球の光軸の算出にために、例えばカメラで撮影した画像から特徴を抽出して計算するのであるが、通常ノイズが含まれているため、より多くの点を計測する方が算定精度を高めることができるからである。
 光軸算出手段が遠方の少なくとも4点を眺める際の左右両眼の眼球の光軸を算出する場合、拘束条件は、左右両眼の視軸のそれぞれのベクトルの外積の大きさが0、もしくは、左右両眼の視軸のそれぞれの単位ベクトルの内積が1とする。数式を用いることで、コンピュータを用いた演算処理が容易に実現できる。
 拘束条件は、左右両眼の視軸のそれぞれの単位ベクトルの内積が1である場合、遠方の少なくとも4点を眺める際の左右両眼の眼球の光軸に対して、下記数式(1)を満たす。但し、cLn(α,β)、cRn(α,β)は、それぞれ左右眼球の視軸の単位ベクトルであり、光軸からの水平方向のずれ角αと垂直方向のずれ角βの関数として表現されたものである。但し、Lは左、Rは右、nは0,1,・・・,N(Nは3以上)である。
(数3)
 cLn(α,β)・cRn(α,β)=1 ・・・ (1)
 左右眼球の視軸の単位ベクトルは、光軸からの水平方向のずれ角αと垂直方向のずれ角βの関数として表現されるからである。これについては後述する。
 また、拘束条件は、左右両眼の視軸のそれぞれのベクトルの外積の大きさが0である場合、遠方の少なくとも4点を眺める際の左右両眼の眼球の光軸に対して、下記数式(2)を満たす。但し、cLn(α,β)、cRn(α,β)は、それぞれ左右眼球の視軸の単位ベクトルであり、光軸からの水平方向のずれ角αと垂直方向のずれ角βの関数として表現されたものである。但し、Lは左、Rは右、nは0,1,・・・,N(Nは3以上)である。なお、下記数式(2)の左辺は、ベクトルの大きさ(ノルム:norm)を表すことから、二重の縦棒で囲んでいる。
(数4)
 ||cLn(α,β)×cRn(α,β)||=0 ・・・ (2)
 また、光軸算出手段は、遠方を眺める際のユーザについて、眼球の画像である眼球画像を取得し、眼球画像から、角膜の曲率中心もしくは眼球の回転中心と、瞳孔の瞳孔中心とを結ぶ軸である光軸を算出する。ここで、眼球画像は、好適には所定の光源からの光が反射した眼球の画像である。
 眼球画像として、所定の光源からの光が反射した眼球の画像を取得するために、本発明の視線計測装置は、ユーザの前方に、左右両眼の眼球画像を取得し得るように各々異なる位置に配置される少なくとも2個のカメラ手段と、眼球における光源の反射像が互いに分離したものとなるように各々異なる位置に配置される少なくとも2個の光源手段が設けられる。そして、左右両眼の眼球の角膜の曲率半径一定領域に少なくとも2個のプルキニエ像を形成させ、何れかのカメラ手段により撮像された眼球画像上における光源手段のプルキニエ像の位置と、実際の光源手段の位置とを対応付け、対応付けられた少なくとも2組のカメラ手段と光源手段の位置関係から眼球の光軸を算出する。
 また、上記のずれ算出手段において、左右両眼の光軸に対する視軸のずれ角の探索範囲を、水平方向で±7°以下、垂直方向で±2°以下とする制約を設けることにより、ずれ角を収束させる。これによりずれ角の解の安定性を確保する。水平方向で±7°以下、垂直方向で±2°以下としたのは、眼球の光軸と実際に人間が見ている視線は平均で、水平方向に約5°、垂直方向に約1°ずれていることが知られているからである。但し、ずれの大きさや向きは、個人毎に異なるが、水平方向で±7°より大きくずれるケース、垂直方向で±2°より大きくずれるケースは少なく、解の安定性を優先して、上記の如く、所定のずれ角の範囲を探索範囲とする。
 また、本発明の視線計測方法は、主に遠方を眺めるユーザの視線計測方法であって、遠方の少なくとも2点を眺める際の左右両眼の眼球の光軸を算出する光軸算出ステップと、遠方注視の際、左右両眼の視軸(視線)が平行であることを拘束条件として、左右両眼の光軸と視軸との間のずれを算出するずれ算出ステップと、光軸と視軸との間のずれに基づき、ユーザの注視点を算出する注視点算出ステップとを備えることを特徴とする。上記の光軸算出ステップによって、遠方の少なくとも4点を眺める際の左右両眼の眼球の光軸を算出する場合、拘束条件は、左右両眼の視軸のそれぞれのベクトルの外積の大きさが0、もしくは、左右両眼の視軸のそれぞれの単位ベクトルの内積が1である。
 また、本発明の視線計測プログラムは、主に遠方を眺めるユーザの視線計測プログラムであって、コンピュータに、下記1)~3)のステップを実行させる。
1)遠方の少なくとも2点を眺める際の左右両眼の眼球の光軸を算出する光軸算出ステップ
2)遠方注視の際、左右両眼の視軸(視線)が平行であることを拘束条件として、左右両眼の光軸と視軸との間のずれを算出するずれ算出ステップ
3)光軸と視軸との間のずれに基づき、ユーザの注視点を算出する注視点算出ステップ
 本発明によれば、電車、自動車、船などの操縦者を含む、遠方を眺めるユーザの視線について、自動キャリブレーションを行って視線計測できるので、特定ユーザ以外の不特定多数の人を計測対象にできるといった効果がある。
 また、本発明によれば、ユーザが予め特定のマーカを注視するというキャリブレーションが不要であるので、ユーザの負担がないといった効果がある。
 本発明を用いて、車などの操縦者が主に遠方を見ている状況での視線を計測することにより、よそ見運転を検出して警告発信や安全装置を作動させ、事故防止を図ることができる。
乗り物での視線についての説明図、(1)は自動車の運転手の視線、(2)は電車の運転手の視線、(3)は船の船長の視線を示している。 眼球の回転を示す模式図 眼球の光軸と視軸の回転の説明図 実施例1の視線計測装置の機能ブロック図 実施例1の視線計測装置のシステム構成図 実施例1の視線計測装置の光軸算出処理フロー図 第1プルキニエ像抽出処理フロー図 遠方を眺めているときの両眼の光軸と視軸との関係図 実験システムの説明図1 実験システムの説明図2
 本発明では、電車、自動車、船などの操縦者を含む、遠方を眺めるユーザの視線計測において、先ず初めに、左右両眼の光軸と視軸のずれ角を自動で求める。
 左右両眼の光軸と視軸のずれ角を自動で求めるために、遠方注視の際に左右両眼の視軸(視線)が平行であることを拘束条件とする。この拘束条件を用いるのは、例えば、電車、自動車、船舶などの操縦時のユーザの視線の殆どは、前方で遠方を注視することが通常の自然な状態と想定されるためである。遠方の少なくとも4点を眺めた眼球の状態を捉えることにより、左右両眼の眼球の光軸を算出し、左右両眼の光軸と視軸との間のずれを算出する。
 これにより、ユーザが予め特定のマーカを注視するというキャリブレーションという処理を必要としないで、ユーザの自然な視線の状態を利用して、左右両眼の光軸と視軸との間のずれを算出することにより、自動でキャリブレーションを行うことが可能になる。
 そして、光軸と視軸との間のずれが求まることで、ユーザのその後の注視点を算出でき、視線を計測できる。その後の注視点は、遠方の注視点のみならず、メータパネルなど近くの注視点も計測可能である。
 まず、本発明の視線計測装置および方法について説明する前に、リスティングの法則に従った眼球の回転について以下に説明する。
 眼球は、その動作において実行可能な全ての動作をするわけではなく、通常は、ある一定の法則に従って動作している。この一定の法則をリスティングの法則という。リスティングの法則は、眼の回転運動と眼位に関する法則であり、(a)眼球の任意の眼位は、第一眼位(Primary Position)から単一の回転で到達できる位置しかとらず、そして、(b)その回転の回転軸は、第一眼位の視軸方向に垂直な平面(リスティング平面)内に存在するという眼球動作に関する法則をいう。なお、第一眼位は、リスティングの法則を満たす頭部に対する相対的な目の位置であり、およそまっすぐ立ったときに水平に真正面を見たときの方向となる。
 眼球動作前の第一眼位(Primary Position)及び動作後の眼位における視軸と光軸との関係を図2に示す。図2において、a,bは第一眼位における眼球の視軸ベクトル、光軸ベクトルであり、c,dは回転後の視軸ベクトル、光軸ベクトルである。いずれも単位ベクトルである。また、Aは眼球の角膜曲率中心を表している。ここで、a,b,c,d,Aは、ベクトルであることを表すためにボールド体で記載している。なお、本明細書では、アルファベットの大文字(ボールド体)は位置ベクトル、アルファベット小文字(ボールド体)は単位方向ベクトルを表すように使い分けしている。
 なお、動作後の眼位には、第一眼位から縦または横に眼球が回転した時の眼球の位置(第二眼位)及び第一眼位から縦または横への回転以外の回転をした時の眼球の位置(第三眼位)を含む。図2では、第一眼位における視軸の単位方向ベクトル(第一視軸ベクトル)をa、第一眼位における光軸の単位方向ベクトル(第一光軸ベクトル)をb、眼球動作後の眼位における視軸の単位方向ベクトル(第二視軸ベクトル)をc、眼球動作後の眼位における光軸の単位方向ベクトル(第二光軸ベクトル)をdとしている。
 第一視軸ベクトルaは、人がおおよそ真っ直ぐ立って正面を見た時の向きのベクトルであり、頭部の位置とともに変動するベクトルであり、頭部の位置に相対的に決定されるものである。第一視軸ベクトルaは、正面の方向と近似するなど、なんらかの方法で計測し、向きは既知であるとする。
 次に、リスティングの法則に基づく第一眼位及び動作後の眼位における視軸と光軸との関係を図3に示す。図3では、図2における各ベクトルa、b、c、dを移動して、始点を一カ所に集め、回転の関係が分かりやすくなるようにしている。図3では、第一眼位から動作後の眼位まで眼球が直接的に動作する際の回転軸をlとしている。lは、眼球の回転軸に沿った単位方向ベクトルであり、眼球は第一眼位であるaから、aに垂直なリスティング平面内の軸(軸の向きのベクトルがl)を中心に回転した位置しかとらない。眼球が、第一眼位から角度ψだけ回転動作し動作後の眼位に到達すると、第一視軸ベクトルaは角度ψだけ回転移動し第二視軸ベクトルcとなり、第一光軸ベクトルbは角度ψだけ回転移動し第二光軸ベクトルdとなる。この際、回転軸lは、第一視軸ベクトルaに垂直なリスティング平面に存在する。より詳細には、回転軸lは、第一視軸ベクトルa及び第二視軸ベクトルcに垂直となる。
 ここで、第一光軸ベクトルbは3次元空間のベクトルであるため、X軸の値(x)、Y軸の値(y)、Z軸の値(z)の3変数で表すことができ、第一光軸ベクトルbを単位ベクトルとすることによって、x+y+z=1の条件が付加されるので、x、yが分かればzも分かることになる。
 第一光軸ベクトルb及び第二光軸ベクトルdから、回転軸lと回転角度ψは、それぞれ下記数式(3)、(4)を用いて算出できる。
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
 第二視軸ベクトルcは、第一視軸ベクトルaを回転軸lを中心に角度ψだけ回転させることによって算出できる。すなわち、下記数式(5)のように、aを回転させればcを求めることができる。ここで、R(ψ,l)は、lを軸にψ回転する行列である。
Figure JPOXMLDOC01-appb-M000003
 以上、リスティングの法則に従った眼球の回転について説明した。
 以下では、本発明の実施形態について、図面を参照しながら詳細に説明していく。なお、本発明の範囲は、以下の実施例や図示例に限定されるものではなく、幾多の変更及び変形が可能である。
 本発明の視線計測装置の実施例について、図4に示す機能ブロック図を用いて説明する。視線計測装置100は、光源手段10、カメラ手段12、光軸算出手段14、ずれ算出手段16、注視点算出手段18の5つの構成要素からなる。ここで、光軸算出手段は、ユーザの眼球の光軸を算出する手段であるが、既知の方法を用いて、常に眼球の光軸を算出できるものであればよい。本実施例では、片眼に対してカメラ2台、光源2個を用いる方法を用いる。これにより、精度良くかつ速く(1フレームで)眼球の光軸を求めることが可能である。
 ユーザの前方周囲に配置された2個のLED光源(LED光源は赤外光線を照射するものを用いる)と、前方で遠方を注視しているユーザについて、LED光源からの光が反射した眼球画像を取得するカメラ(LED光源が赤外光線を照射する場合、赤外線に感度をもつ赤外線カメラ(infrared camera))を用意する。
 2台のカメラでそれぞれ両眼撮影すればよいが、高解像度で眼球画像を撮るためには、右目用2台、左目用2台の合計4台のカメラを使用する。
 視線計測装置100のハードウェア構成を図5に基づき説明する。視線計測装置100は、CPU211、メモリ212、ハードディスク213、キーボード214、マウス215、ディスプレイ216、外部メモリ217、LED218及びカメラ219を備えている。
 CPU211は、ハードディスク213に記録されているオペレーティング・システム(OS)、視線計測プログラム等その他のアプリケーションに基づいた処理を行う。メモリ212は、CPU211に対して作業領域を提供する。ハードディスク213は、オペレーティング・システム(OS)、視線計測プログラム等その他のアプリケーション、及び視線計測の結果得られた計測データを記録保持する。
 キーボード214、マウス215は、外部からの命令を受け付ける。ディスプレイ216は、右目用2台、左目用2台のカメラ219で撮像した被験者の眼球画像を、視線計測装置100の使用者の確認のために表示する。外部メモリ217は、例えばUSBメモリなどであり、視線計測プログラム等のデータを読み取る。
 LED218は、視線計測装置100によって視線を計測する被験者に対して、光を照射する。カメラ219は、被験者の眼球画像を撮影する。2台のカメラの場合、それらはステレオカメラとして構成され、両眼の画像を撮影するために用いる。また、4台のカメラの場合、2組のステレオカメラが構成され、左右の眼の画像を撮影するために用いる。
 実施例1の視線計測装置では、何れかのカメラにより撮像された眼球画像上における光源のプルキニエ像の位置と、実際の光源の位置とを対応付ける。そして、そのカメラの位置(レンズ中心)と撮像されたプルキニエ像の位置と対応付けられた光源の位置から角膜曲率中心を含む面を算出し、その面を3つ以上求めることにより、角膜の曲率中心位置を算出する。そして、眼球画像から瞳孔の中心位置を算出し、角膜の曲率中心位置及び瞳孔の中心位置に基づき角膜の曲率中心と瞳孔の瞳孔中心とを結ぶ軸である光軸を算出する。詳細については、図6,7のフロー図、並びに上述の特許文献2の段落0019~0029を参照のこと。
 従来の方法では、ユーザが事前に行うキャリブレーション操作によって、例えば、事前に決められた場所を注視する等によって、予め眼球の光軸と視軸とのずれ値を算出していた。そして、算出したずれ値を用いて、算出した光軸から中心窩と角膜の曲率中心とを結ぶ軸である視軸を算出していた。
 キャリブレーションは、図3において、a,bの関係を求めることである。aは頭部の位置に相対的に決まるものであるが、ここでは正面を方向と近似して、既知であるとすることにより、キャリブレーションはbを推定することと同等になる。
 aとbのずれは2変数で表される。水平方向のずれ角度をα、垂直方向をβとすると、bは、α、βを用いて下記数式(6)のように表現できる。
Figure JPOXMLDOC01-appb-M000004
 本発明では、ユーザは遠方を注視している時、両眼の視軸は平行になることに着眼し、ユーザが事前に決められたマーカを注視することが必要なキャリブレーションを行わずに、ユーザの自然の両眼の状態をとらえて、自動でキャリブレーションを行う方法を用いている。
 これについて以下に説明する。ユーザが遠方を見ているとき、両眼の光軸と視軸の関係は図8のように示される。両目の視軸は平行になる。ここで、眼球の光軸と視軸のずれは、全部で4変数を用いて表現できる。4変数は、左目の水平方向、垂直方向、右目の水平方向、垂直方向を、それぞれα,β,α,βとする。
 ここで、cとcを、それぞれ左目と右目の眼球の視軸とする。cとcが、単位ベクトルで互いに平行ならば、下記数式(7)のように、cとcの内積は1となる。
Figure JPOXMLDOC01-appb-M000005
 ところで、aは既知であり、bは上記数式(6)から、α、βの関数として表現できる。dは従来方法から求められる。
 よって、上記数式(3)~(6)から、cはα,βの関数として表現できる。同様に、cはα,βの関数として表現できる。
 未知数が4つあり、ユーザが異なる4方向を見るとすると、下記数式(8)のように式が4つ成立することになる。この4つの式を解くことにより、未知数である4変数α,β,α,βを求めることができる。
Figure JPOXMLDOC01-appb-M000006
 眼球の光軸は、カメラで撮影した画像から特徴を抽出して計算するが、通常ノイズが含まれている。そのため、より多くの点を計測して、下記数式(9)の評価関数Fが最小となるように、4変数α,β,α,βの解を決定する。
Figure JPOXMLDOC01-appb-M000007
 次に、シミュレーションにより評価を行った。
 シミュレーションは、正解(True Value)のαを変化させた5ケースについて実施した。眼球の動きについては、水平、垂直方向、それぞれ10°刻みで、-20°~20°の範囲で計25方向について計算を行った。各方向について、標準偏差が0.3°となるように計測に伴う誤差を載せて60点のデータを作成した。計測誤差の大きさは、従来方法から眼球の光軸を計測した結果から、水平方向0.21°、垂直方向0.18°であったことから0.3°と決定した。
 以上のように作成された眼球の光軸の計測結果をシミュレーションしたデータを用いて、各方向について中央値で代表させた25方向のデータを作成し、そのデータを用いて、上記数式(9)式を最少とするαを求めた。各ケースについて、これを5回繰り返し、その5回の平均(ave.)と標準偏差(SD)を計算した。
 結果を下記表1に示す。
 下記表1より、Case1~4の|α|が大きい場合(ずれ角が3°や5°の場合)、正確にαを計算でき、また、標準偏差が小さい。一方、Case5,6の|α|が小さい場合は(ずれ角が1°の場合)、αの値はあまり正確に求まらず、また標準偏差も大きくばらついていることがわかる。
Figure JPOXMLDOC01-appb-T000001
 眼球の光軸と視軸とのずれが大きい場合は、本発明を用いた場合、そのずれは正確に求まるが、眼球の光軸と視軸とのずれ小さい場合は、そのずれを求める計算において、ノイズの影響が大きくなり、計算結果は不安定となり、ずれは正確に求まらない結果となっている。しかしながら、眼球の光軸と視軸とのずれが小さい場合は、光軸を視軸と近似することが可能であるとも言える。どちらの場合かは、何度か計算し、その結果がばらつくかどうかで判断できる可能性がある。
 次に、図9,10のような実験システムを構築して、視線計測装置の精度を評価した。
 実験システムは、被験者20に、前方のガラス21越しに遠方のターゲットを眺めてもらい、その状態を、ガラス21下縁部に設けた4台のカメラ22(Camera0~Camera3)で眼球部分の画像を取得できるようにしたものである。ガラス21上に赤外線LED(IR-LED)23を2台設けている。また、従来技術である1点キャリブレーション方法により、α,β,α,βを求めるための1点キャリブレーション用のマーカ24をガラス21上に設けている(1点キャリブレーションの方法については上述の非特許文献3を参照)。
 被験者は、ガラス21越しに8m離れた先の9点のターゲットを眺めてもらう。9点のターゲットは、ユーザの正面に3m(水平方向)×2m(垂直方向)の枠内に収まるように配置されている。
 ガラス21下縁部に設けた4台のカメラの内、2台のカメラ22(Camera0,Camera1)のペアーを用いて右目の眼球の光軸を算出し、2台のカメラ22(Camera2,Camera3)のペアーを用いて左目の眼球の光軸を算出することにしている。使用したカメラは、50mmレンズと赤外線(IR)フィルタを備えたCMOSイメージセンサを搭載したディジタルカメラである。
 実験は、被験者が9点のターゲットの内、ガラス21越しに何れかのターゲットを眺めている状態で、両眼の光軸を算出し、左右両眼の視軸のそれぞれの単位ベクトルの内積が1であることを拘束条件として光軸と視軸のずれ(α,β,α,β)を算出した。また、従来手法の1点キャリブレーションの方法を用いて光軸と視軸のずれを算出し、両者を比較した。
 実験結果を下記表2に示す。実験参加者は3名(男子1名、女子2名)である。計算は、左目の水平方向のαの値の探索範囲を、-7°から0°、右目の水平方向のαの値の探索範囲は、0°から7°、垂直方向のβの値の探索範囲は、左右ともに-2°から2°とした。
Figure JPOXMLDOC01-appb-T000002
 上記表2の結果から、従来手法の1点キャリブレーションの方法(表中「One-point」と表記)と、本発明の視線計測装置(表中「Proposed method」と表記)による自動キャリブレーションの結果は近い値となっていることがわかる。
 本発明によれば、遠方注視により自動的にαが求まるが、この値は、近くを見た場合にも使えるものである。しばらく遠方を見ているだけで、近くにあるメータ等のどこを見たかを正確に知ることが可能となる。また、本発明を用いた場合、キャリブレーション後も常にαの計算に必要なデータが取得できる状況となっており、通常の視線計測装置と異なり、常に、キャリブレーションの結果の補正をすることが可能である。本発明のキャリブレーションは遠方を見ていることを前提としているので、遠方を見ているか、近くを見ているかの判別は重要である。従来方法で、眼球の光軸が±5°程度の誤差の範囲で求まることから、光軸の向きからその判別はある程度可能である。
光軸の向きのみからは、ガラス上に止まっている虫を見ている場合は判別できない。車など、ある程度速度が出ている場合、長時間近くを見ることは考えられない。車速を取得し、一定の車速以上で、どれだけの頻度で輻輳角が大きくなるのかという観点から判別が可能であろう。
 なお、遠方の1点だけ注視していたのでは、上記数式(8)からでは解を得ることができない。本発明の計算には異なる方向のデータが必要である。時系列データを方向によりクラスタリングし、一方向のデータに偏らないデータを作成してからαを計算する必要がある。
 次に、実施例2の視線計測装置について説明する。
 実施例2の視線計測装置では、遠方の2点を眺める際の状態を捉えて、ユーザの左右両眼の視軸(視線)が平行であることを拘束条件とし、遠方の少なくとも2点を眺める際の左右両眼の眼球の光軸を算出し、左右両眼の光軸と視軸との間のずれを算出できることを説明する。
 実施例1の視線計測装置とは異なり、遠方の2点を眺めることにより自動キャリブレーションを行う場合、左右両眼の視軸のそれぞれの単位ベクトルが等しいと制約を設ける。
 すなわち、下記数式(10)が成立する。ここで、cとcはそれぞれ左目と右目の眼球の視軸の単位方向ベクトルであり、α,β,α,βは眼球の光軸と視軸のずれを表現するものであり、それぞれ左目の水平方向、垂直方向、右目の水平方向、垂直方向のずれを表す。
 (数12)
L0(α,β)=cR0(α,β
L1(α,β)=cR1(α,β)  ・・・(10)
 左右両眼の視軸のそれぞれの単位ベクトルが等しいという制約は、左右両眼の視軸(視線)が平行であることを拘束条件とするのと同じである。
 本発明は、電車、自動車、船舶などの操縦者や、展望台から遠方を眺めるユーザの視線計測装置や視線計測方法として有用である。
 1   視線
 10  光源手段
 12  カメラ手段
 14  光軸算出手段
 16  ずれ算出手段
 18  注視点算出手段
 20  被験者
 21  ガラス
 22  カメラ
 23  赤外線LED
 24  1点キャリブレーション用のマーカ
 100 視線計測装置
 

Claims (14)

  1.  主に遠方を眺めるユーザの視線計測装置であって、
     遠方の少なくとも2点を眺める際の左右両眼の眼球の光軸を算出する光軸算出手段と、
     遠方注視の際、左右両眼の視軸(視線)が平行であることを拘束条件として、左右両眼の光軸と視軸との間のずれを算出するずれ算出手段と、
     光軸と視軸との間のずれに基づき、前記ユーザの注視点を算出する注視点算出手段と、を備えたことを特徴とする視線計測装置。
  2.  前記拘束条件は、左右両眼の視軸のそれぞれの単位ベクトルが等しいことを特徴とする請求項1に記載の視線計測装置。
  3.  前記光軸算出手段は、遠方の少なくとも4点を眺める際の左右両眼の眼球の光軸を算出し、
     前記拘束条件は、左右両眼の視軸のそれぞれのベクトルの外積の大きさが0、もしくは、左右両眼の視軸のそれぞれの単位ベクトルの内積が1であることを特徴とする請求項1に記載の視線計測装置。
  4.  前記拘束条件は、左右両眼の視軸のそれぞれの単位ベクトルの内積が1である場合、遠方の少なくとも4点を眺める際の左右両眼の眼球の光軸に対して、下記数式を満たすことを特徴とする請求項3に記載の視線計測装置。
    (数1)
     cLn(α,β)・cRn(α,β)=1
     但し、cLn(α,β)、cRn(α,β)は、それぞれ左右眼球の視軸の単位ベクトルであり、光軸からの水平方向のずれ角αと垂直方向のずれ角βの関数として表現されたもの。但し、Lは左、Rは右、nは0,1,・・・,N(Nは3以上)。
  5.  前記拘束条件は、左右両眼の視軸のそれぞれのベクトルの外積の大きさが0である場合、遠方の少なくとも4点を眺める際の左右両眼の眼球の光軸に対して、下記数式を満たすことを特徴とする請求項3に記載の視線計測装置。
    (数2)
     ||cLn(α,β)×cRn(α,β)||=0
     但し、cLn(α,β)、cRn(α,β)は、それぞれ左右眼球の視軸のベクトルであり、光軸からの水平方向のずれ角αと垂直方向のずれ角βの関数として表現されたもの。但し、Lは左、Rは右、nは0,1,・・・,N(Nは3以上)。
  6.  前記光軸算出手段は、
     遠方を眺める際のユーザについて、眼球の画像である眼球画像を取得し、
     前記眼球画像から、角膜の曲率中心もしくは眼球の回転中心と、瞳孔の瞳孔中心とを結ぶ軸である光軸を算出することを特徴とする請求項1~5のいずれかに記載の視線計測装置。
  7.  前記眼球画像が、所定の光源からの光が反射した眼球の画像であることを特徴とする請求項6に記載の視線計測装置。
  8.  前記ユーザの前方に
     左右両眼の眼球画像を取得し得るように各々異なる位置に配置される少なくとも2個のカメラ手段と、
     眼球における光源の反射像が互いに分離したものとなるように各々異なる位置に配置される少なくとも2個の光源手段と、
     が設けられ、
     左右両眼の眼球の角膜の曲率半径一定領域に少なくとも2個のプルキニエ像を形成させ、何れかのカメラ手段により撮像された眼球画像上における光源手段のプルキニエ像の位置と、実際の光源手段の位置とを対応付け、対応付けられた少なくとも2組のカメラ手段と光源手段の位置関係から眼球の光軸を算出する、
     ことを特徴とする請求項6又は7に記載の視線計測装置。
  9.  前記ずれ算出手段において、
     左右両眼の光軸に対する視軸のずれ角の探索範囲を、水平方向で±7°以下、垂直方向で±2°以下とする制約を設けることにより、ずれ角を収束させることを特徴とする請求項1~8のいずれかに記載の視線計測装置。
  10.  前記ユーザは、電車、自動車、船舶を含む移動手段の操縦時の操縦者であることを特徴とする請求項1~9のいずれかに記載の視線計測装置。
  11.  主に遠方を眺めるユーザの視線計測方法であって、
     遠方の少なくとも2点を眺める際の左右両眼の眼球の光軸を算出する光軸算出ステップと、
     遠方注視の際、左右両眼の視軸(視線)が平行であることを拘束条件として、左右両眼の光軸と視軸との間のずれを算出するずれ算出ステップと、
     光軸と視軸との間のずれに基づき、前記ユーザの注視点を算出する注視点算出ステップと、を備えたことを特徴とする視線計測方法。
  12.  前記光軸算出ステップは、遠方の少なくとも4点を眺める際の左右両眼の眼球の光軸を算出し、
     前記拘束条件は、左右両眼の視軸のそれぞれのベクトルの外積の大きさが0、もしくは、左右両眼の視軸のそれぞれの単位ベクトルの内積が1である請求項11に記載の視線計測方法。
  13.  主に遠方を眺めるユーザの視線計測プログラムであって、
     コンピュータに、
     遠方の少なくとも2点を眺める際の左右両眼の眼球の光軸を算出する光軸算出ステップと、
     遠方注視の際、左右両眼の視軸(視線)が平行であることを拘束条件として、左右両眼の光軸と視軸との間のずれを算出するずれ算出ステップと、
     光軸と視軸との間のずれに基づき、前記ユーザの注視点を算出する注視点算出ステップと、
     を実行させる視線計測プログラム。
  14.  前記光軸算出ステップは、遠方の少なくとも4点を眺める際の左右両眼の眼球の光軸を算出し、
     前記拘束条件は、左右両眼の視軸のそれぞれのベクトルの外積の大きさが0、もしくは、左右両眼の視軸のそれぞれの単位ベクトルの内積が1である請求項13に記載の視線計測プログラム。
     
PCT/JP2014/002707 2013-05-22 2014-05-22 視線計測装置、視線計測方法および視線計測プログラム WO2014188727A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/891,578 US10379609B2 (en) 2013-05-22 2014-05-22 Line-of-sight measurement device, line-of-sight measurement method and line-of-sight measurement program
JP2015518087A JP6265348B2 (ja) 2013-05-22 2014-05-22 視線計測装置、視線計測方法および視線計測プログラム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-108441 2013-05-22
JP2013108441 2013-05-22

Publications (1)

Publication Number Publication Date
WO2014188727A1 true WO2014188727A1 (ja) 2014-11-27

Family

ID=51933294

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/002707 WO2014188727A1 (ja) 2013-05-22 2014-05-22 視線計測装置、視線計測方法および視線計測プログラム

Country Status (3)

Country Link
US (1) US10379609B2 (ja)
JP (1) JP6265348B2 (ja)
WO (1) WO2014188727A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017130514A1 (ja) * 2016-01-27 2017-08-03 ソニー株式会社 情報処理装置、情報処理方法、およびプログラムを記録したコンピュータ読み取り可能な記録媒体
JP2018026120A (ja) * 2016-07-27 2018-02-15 フォーブ インコーポレーテッド 視線検出システム、ずれ検出方法、ずれ検出プログラム
JP2020181281A (ja) * 2019-04-24 2020-11-05 株式会社デンソーアイティーラボラトリ 視線方向推定装置、視線方向推定装置の較正方法、およびプログラム

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6227996B2 (ja) * 2013-12-18 2017-11-08 浜松ホトニクス株式会社 計測装置及び計測方法
US10682038B1 (en) 2014-09-19 2020-06-16 Colorado School Of Mines Autonomous robotic laparoscope based on eye tracking
JP6459421B2 (ja) * 2014-11-17 2019-01-30 セイコーエプソン株式会社 頭部装着型表示装置、頭部装着型表示装置を制御する方法、コンピュータープログラム
DE102015204283A1 (de) * 2015-03-10 2016-09-15 Robert Bosch Gmbh Verfahren und Vorrichtung zur Erfassung der Blickrichtung einer Person
KR101745140B1 (ko) * 2015-09-21 2017-06-08 현대자동차주식회사 시선 추적 장치 및 방법
EP3242228A1 (en) * 2016-05-02 2017-11-08 Artag SARL Managing the display of assets in augmented reality mode
EP3478557A4 (en) * 2016-07-01 2020-03-11 Eyesight Mobile Technologies Ltd. DRIVER MONITORING SYSTEM AND METHOD
JP6963820B2 (ja) * 2016-08-12 2021-11-10 国立大学法人静岡大学 視線検出装置
EP3510562A1 (en) 2016-09-07 2019-07-17 Starship Technologies OÜ Method and system for calibrating multiple cameras
JP6776970B2 (ja) * 2017-03-24 2020-10-28 株式会社Jvcケンウッド 視線検出装置、視線検出方法及び視線検出プログラム
JP2019021049A (ja) * 2017-07-18 2019-02-07 ソニー株式会社 情報処理装置、情報処理方法、及びプログラム
TWI704473B (zh) 2018-11-16 2020-09-11 財團法人工業技術研究院 視線向量偵測方向與裝置
TWI699671B (zh) * 2018-12-12 2020-07-21 國立臺灣大學 減低眼球追蹤運算的方法和其眼動追蹤裝置
CN112561780B (zh) * 2020-12-02 2022-04-15 武汉大学 一种附加多视线特征约束的城市场景网格模型优化方法
CN116027910B (zh) * 2023-03-29 2023-07-04 广州视景医疗软件有限公司 一种基于vr眼动追踪技术的眼位图生成方法及系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007136000A (ja) * 2005-11-21 2007-06-07 Nippon Telegr & Teleph Corp <Ntt> 視線検出装置、視線検出方法、および視線検出プログラム
WO2012020760A1 (ja) * 2010-08-09 2012-02-16 国立大学法人静岡大学 注視点検出方法及び注視点検出装置
WO2012077713A1 (ja) * 2010-12-08 2012-06-14 国立大学法人静岡大学 注視点検出方法及び注視点検出装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7533989B2 (en) * 2003-12-25 2009-05-19 National University Corporation Shizuoka University Sight-line detection method and device, and three-dimensional view-point measurement device
US8730266B2 (en) 2008-11-13 2014-05-20 Queen's University At Kingston System and method for integrating gaze tracking with virtual reality or augmented reality
US8553936B2 (en) 2009-03-03 2013-10-08 The Ohio State University Gaze tracking measurement and training system and method
ES2880475T3 (es) 2009-04-01 2021-11-24 Tobii Ab Sistema de representación visual con iluminadores para el seguimiento de la mirada
CN103402440B (zh) * 2010-12-06 2016-03-02 国立大学法人冈山大学 用于确认是否出现痴呆症症状的装置
US8493390B2 (en) 2010-12-08 2013-07-23 Sony Computer Entertainment America, Inc. Adaptive displays using gaze tracking
US8510166B2 (en) 2011-05-11 2013-08-13 Google Inc. Gaze tracking system
US8885877B2 (en) 2011-05-20 2014-11-11 Eyefluence, Inc. Systems and methods for identifying gaze tracking scene reference locations
US8929589B2 (en) 2011-11-07 2015-01-06 Eyefluence, Inc. Systems and methods for high-resolution gaze tracking
US8710986B2 (en) 2012-01-19 2014-04-29 Utechzone Co., Ltd. Gaze tracking password input method and device utilizing the same
JP2014064784A (ja) * 2012-09-26 2014-04-17 Renesas Microsystem:Kk 視線検出装置、視線検出方法及びプログラム
KR101438948B1 (ko) 2012-12-12 2014-09-11 현대자동차주식회사 시선 추적 제어 장치 및 방법
US9179833B2 (en) 2013-02-28 2015-11-10 Carl Zeiss Meditec, Inc. Systems and methods for improved ease and accuracy of gaze tracking

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007136000A (ja) * 2005-11-21 2007-06-07 Nippon Telegr & Teleph Corp <Ntt> 視線検出装置、視線検出方法、および視線検出プログラム
WO2012020760A1 (ja) * 2010-08-09 2012-02-16 国立大学法人静岡大学 注視点検出方法及び注視点検出装置
WO2012077713A1 (ja) * 2010-12-08 2012-06-14 国立大学法人静岡大学 注視点検出方法及び注視点検出装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TAKASHI NAGAMATSU ET AL.: "Automatic user- calibration method for gaze tracking system by looking into the distance", IEICE TECHNICAL REPORT, vol. 113, no. 73, 23 May 2013 (2013-05-23), pages 65 - 68 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017130514A1 (ja) * 2016-01-27 2017-08-03 ソニー株式会社 情報処理装置、情報処理方法、およびプログラムを記録したコンピュータ読み取り可能な記録媒体
US10606351B2 (en) 2016-01-27 2020-03-31 Sony Corporation Information processing apparatus, information processing method, and computer readable recording medium
JP2018026120A (ja) * 2016-07-27 2018-02-15 フォーブ インコーポレーテッド 視線検出システム、ずれ検出方法、ずれ検出プログラム
JP2020181281A (ja) * 2019-04-24 2020-11-05 株式会社デンソーアイティーラボラトリ 視線方向推定装置、視線方向推定装置の較正方法、およびプログラム

Also Published As

Publication number Publication date
US10379609B2 (en) 2019-08-13
US20160086338A1 (en) 2016-03-24
JP6265348B2 (ja) 2018-01-24
JPWO2014188727A1 (ja) 2017-02-23

Similar Documents

Publication Publication Date Title
JP6265348B2 (ja) 視線計測装置、視線計測方法および視線計測プログラム
JP6340503B2 (ja) 目追跡システム及び利き目を検出する方法
CN110913751B (zh) 具有滑动检测和校正功能的可穿戴眼睛跟踪系统
CN109008944B (zh) 视线计测装置、rom及视线计测方法
JP6083761B2 (ja) 瞳孔検出方法、角膜反射検出方法、顔姿勢検出方法及び瞳孔追尾方法
US10902635B2 (en) Line-of-sight detection device
JP6014931B2 (ja) 視線計測方法
WO2015190204A1 (ja) 瞳孔検出システム、視線検出システム、瞳孔検出方法、および瞳孔検出プログラム
US20180133593A1 (en) Algorithm for identifying three-dimensional point-of-gaze
JP2013024662A (ja) 3次元範囲計測システム、3次元範囲計測プログラムおよび記録媒体
JP7168953B2 (ja) 自動キャリブレーションを行う視線計測装置、視線計測方法および視線計測プログラム
JP6948688B2 (ja) 視線計測装置、視線計測方法および視線計測プログラム
JP2018099174A (ja) 瞳孔検出装置及び瞳孔検出方法
JP6452235B2 (ja) 顔検出方法、顔検出装置、及び顔検出プログラム
CN106709398A (zh) 凝视分析方法与装置
EP3542308B1 (en) Method and device for eye metric acquisition
Liu et al. 3D model-based gaze tracking via iris features with a single camera and a single light source
JP2018101212A (ja) 車載器および顔正面度算出方法
CN106708249B (zh) 交互方法、交互装置及用户设备
JP2012029940A (ja) 視線計測方法及び視線計測装置
US20180089508A1 (en) Visual line measuring device and visual line measuring method
JP7269617B2 (ja) 顔画像処理装置、画像観察システム、及び瞳孔検出システム
Santini et al. Depth perception in an anthropomorphic robot that replicates human eye movements
Kwon et al. Selective attentional point-tracking through a head-mounted stereo gaze tracker based on trinocular epipolar geometry
JP2015123262A (ja) 角膜表面反射画像を利用した視線計測方法及びその装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14801427

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015518087

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14891578

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14801427

Country of ref document: EP

Kind code of ref document: A1