WO2014188645A1 - Optical conversion element and light source using same - Google Patents

Optical conversion element and light source using same Download PDF

Info

Publication number
WO2014188645A1
WO2014188645A1 PCT/JP2014/001692 JP2014001692W WO2014188645A1 WO 2014188645 A1 WO2014188645 A1 WO 2014188645A1 JP 2014001692 W JP2014001692 W JP 2014001692W WO 2014188645 A1 WO2014188645 A1 WO 2014188645A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light source
conversion element
emitting unit
optical conversion
Prior art date
Application number
PCT/JP2014/001692
Other languages
French (fr)
Japanese (ja)
Inventor
森本 廉
山中 一彦
琢磨 片山
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2014188645A1 publication Critical patent/WO2014188645A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B33/00Colour photography, other than mere exposure or projection of a colour film
    • G03B33/06Colour photography, other than mere exposure or projection of a colour film by additive-colour projection apparatus
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2013Plural light sources
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources
    • G03B21/204LED or laser light sources using secondary light emission, e.g. luminescence or fluorescence
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3102Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using two-dimensional electronic spatial light modulators
    • H04N9/3111Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using two-dimensional electronic spatial light modulators for displaying the colours sequentially, e.g. by using sequentially activated light sources
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/208Homogenising, shaping of the illumination light

Definitions

  • the present disclosure relates to an optical conversion element used in a projector such as a commercial projector, a home projector, and a pico projector, a rear projection television, a head-up display, and the like, and a light source including the optical conversion element.
  • a projector such as a commercial projector, a home projector, and a pico projector
  • a rear projection television such as a head-up display, and the like
  • a light source including the optical conversion element.
  • FIG. 30 A conventional light source will be described with reference to FIGS. 30 and 31.
  • FIG. 31 A conventional light source will be described with reference to FIGS. 30 and 31.
  • the conventional light source includes a light emitting diode 1001 that emits ultraviolet light and a color wheel 1002.
  • the color wheel 1002 has a partitioned area 1004, an area 1005, and an area 1006.
  • a phosphor layer including a red phosphor is disposed in the region 1004, a phosphor layer including a green phosphor is disposed in the region 1005, and a phosphor layer including a blue phosphor is disposed in the region 1006. ing.
  • the light emitted from the light emitting diode 1001 is sequentially converted into red, green, and blue, and is driven so that white light is emitted when observed on a time average.
  • JP 2009-252651 A Japanese National Patent Publication No. 11-064789 JP 2012-8409 A JP 2004-341105 A
  • This disclosure is intended to reduce the size of the optical conversion element and the light source.
  • the optical conversion element of the present disclosure includes a rotating body having a rotating shaft and a plurality of fluorescent light emitting units provided on the rotating body.
  • the plurality of fluorescent light emitting units includes a first fluorescent light emitting unit and a second fluorescent light emitting unit.
  • the 1st fluorescence light emission part and the 2nd fluorescence light emission part are arrange
  • This configuration eliminates the need for a color wheel that occupies a large area, thus reducing the size of the light source.
  • FIG. 1 is a schematic diagram illustrating a configuration of a light source according to the first embodiment of the present disclosure.
  • FIG. 2 is a schematic diagram illustrating a configuration of the optical conversion element according to the first embodiment of the present disclosure.
  • FIG. 3 is a schematic diagram illustrating the configuration and operation of the light source according to the first embodiment of the present disclosure.
  • FIG. 4 is an excitation timing chart of the fluorescent light emitting unit when seven color sources are generated in a time division manner in the light source according to the first embodiment of the present disclosure.
  • FIG. 5A is a diagram illustrating a spectrum of emitted light from an irradiation light source in the light source according to the first embodiment of the present disclosure.
  • FIG. 5B is a diagram illustrating a spectrum of emitted light from the fluorescent light emitting unit in the light source according to the first embodiment of the present disclosure.
  • FIG. 5C is a diagram illustrating a reflection characteristic of the dichroic mirror in the light source according to the first embodiment of the present disclosure.
  • FIG. 5D is a diagram illustrating a spectrum of emitted light from the light source according to the first embodiment of the present disclosure.
  • FIG. 6 is a diagram illustrating chromaticity coordinates of the emitted light of the light source according to the first embodiment of the present disclosure.
  • FIG. 7A is a schematic diagram illustrating a cross section of an optical conversion element according to Modification 1 of the first embodiment of the present disclosure.
  • FIG. 7B is a schematic diagram illustrating a cross section of the optical conversion element according to the first modification of the first embodiment of the present disclosure.
  • FIG. 8A is a schematic diagram illustrating a cross section of an optical conversion element according to Modification 2 of the first embodiment of the present disclosure.
  • FIG. 8B is a schematic diagram illustrating a cross section of the optical conversion element according to Modification 2 of the first embodiment of the present disclosure.
  • FIG. 9A is a schematic diagram illustrating a manufacturing method of Modification 2 of the optical conversion element according to the first embodiment of the present disclosure.
  • FIG. 9B is a schematic diagram illustrating a manufacturing method of Modification 2 of the optical conversion element according to the first embodiment of the present disclosure.
  • FIG. 9C is a schematic diagram illustrating a manufacturing method of Modification 2 of the optical conversion element according to the first embodiment of the present disclosure.
  • FIG. 9D is a schematic diagram illustrating a manufacturing method of Modification 2 of the optical conversion element according to the first embodiment of the present disclosure.
  • FIG. 10A is a schematic diagram illustrating a cross section of an optical conversion element according to Modification 3 of the first embodiment of the present disclosure.
  • FIG. 10B is a schematic diagram illustrating a cross section of an optical conversion element according to Modification 3 of the first embodiment of the present disclosure.
  • FIG. 11 is a schematic diagram illustrating an optical conversion element according to the second embodiment of the present disclosure.
  • FIG. 12 is a schematic diagram illustrating a configuration of a light source according to the second embodiment of the present disclosure.
  • FIG. 13A is a diagram illustrating a spectrum of light emitted from an irradiation light source in a light source according to the second embodiment of the present disclosure.
  • FIG. 13B is a diagram illustrating a spectrum of emitted light from the fluorescent light emitting unit in the light source according to the second embodiment of the present disclosure.
  • FIG. 13C is a diagram illustrating a reflection characteristic of the dichroic mirror in the light source according to the second embodiment of the present disclosure.
  • FIG. 13D is a diagram illustrating a spectrum of emitted light from a light source according to the second embodiment of the present disclosure.
  • FIG. 14 is a diagram illustrating chromaticity coordinates of the emitted light of the light source according to the second embodiment of the present disclosure.
  • FIG. 15 is a schematic cross-sectional view illustrating a configuration of a light source according to Modification 1 of the second embodiment of the present disclosure.
  • FIG. 16 is a schematic diagram illustrating a light source according to Modification 1 of the second embodiment of the present disclosure.
  • FIG. 17 is a schematic diagram illustrating an optical conversion element in a light source according to Modification 1 of the second embodiment of the present disclosure.
  • FIG. 18 is a schematic diagram illustrating a light source according to the third embodiment of the present disclosure.
  • FIG. 19 is a schematic diagram of an optical conversion element in a light source according to the third embodiment of the present disclosure.
  • FIG. 20 is a schematic diagram illustrating a light source according to a modification of the third embodiment of the present disclosure.
  • FIG. 21 is a schematic diagram showing a cross section taken along line 21-21 of FIG.
  • FIG. 22 is a schematic diagram illustrating an optical conversion element and a light source according to the fourth embodiment of the present disclosure.
  • FIG. 23 is a schematic diagram illustrating an optical conversion element and a light source according to a modification of the fourth embodiment of the present disclosure.
  • FIG. 24 is a schematic diagram illustrating a configuration of a light source according to the fifth embodiment of the present disclosure.
  • FIG. 25 is a schematic diagram illustrating an operation of the light source according to the fifth embodiment of the present disclosure.
  • FIG. 26A is a diagram illustrating a spectrum of light emitted from an irradiation light source in a light source according to the fifth embodiment of the present disclosure.
  • FIG. 26B is a diagram showing a spectrum of emitted light from the fluorescent light emitting unit in the light source according to the fifth embodiment of the present disclosure.
  • FIG. 26C is a diagram illustrating a reflection characteristic of a dichroic mirror in a light source according to the fifth embodiment of the present disclosure.
  • FIG. 26D is a diagram illustrating a spectrum of emitted light from a light source according to the fifth embodiment of the present disclosure.
  • FIG. 27 is a diagram illustrating chromaticity coordinates of the emitted light of the light source according to the fifth embodiment of the present disclosure.
  • FIG. 28A is a diagram illustrating a spectrum of emitted light from an irradiation light source in a light source according to a modification of the fifth embodiment of the present disclosure.
  • FIG. 28B is a diagram illustrating a spectrum of light emitted from the fluorescent light emitting unit in the light source according to the modification of the fifth embodiment of the present disclosure.
  • FIG. 28C is a diagram illustrating a reflection characteristic of the dichroic mirror in the light source according to the modification of the fifth embodiment of the present disclosure.
  • FIG. 28D is a diagram illustrating a spectrum of emitted light from a light source according to a modification of the fifth embodiment of the present disclosure.
  • FIG. 29 is a diagram illustrating chromaticity coordinates of outgoing light of a light source according to a modification of the fifth embodiment of the present disclosure.
  • FIG. 30 is a schematic diagram showing the configuration of a conventional light source.
  • FIG. 31 is a schematic diagram showing a configuration of a color wheel in a conventional light source.
  • FIG. 1 is a diagram illustrating a configuration of a light source 1 according to the first embodiment of the present disclosure.
  • FIG. 2 is a schematic diagram illustrating a configuration of the optical conversion element 50 used in the light source 1 according to the first embodiment of the present disclosure.
  • FIG. 3 is a diagram illustrating a configuration when the light source 1 according to the first embodiment of the present disclosure is used in the image projection apparatus, and an operation explanatory diagram when emitting red, green, and blue fluorescence from the light source 1.
  • FIG. 4 shows the first fluorescent light emitting unit 51R, the second fluorescent light emitting unit 51G, and the third fluorescent light emission when the seven color sources are generated in a time division manner in the light source 1 according to the first embodiment of the present disclosure. It is an excitation / light emission timing chart of a part 51B.
  • the light source 1 has an optical conversion element 50.
  • the optical conversion element 50 includes a rotating body 58 having a rotating shaft 57 and a plurality of fluorescent light emitting units provided on the rotating body 58.
  • the plurality of fluorescent light emitting units in the present embodiment are a first fluorescent light emitting unit 51R, a second fluorescent light emitting unit 51G, and a third fluorescent light emitting unit 51B.
  • the first fluorescent light emitting unit 51R, the second fluorescent light emitting unit 51G, and the third fluorescent light emitting unit 51B are arranged on a circumference around the rotation shaft 57.
  • the light source 1 includes a first irradiation light source 10R, a second irradiation light source 10G, and a third irradiation light source 10B.
  • the first light 75R emitted from the first irradiation light source 10R enters the first fluorescent light emitting unit 51R.
  • the second light 75G emitted from the second irradiation light source 10G enters the second fluorescent light emitting unit 51G.
  • the third light 75B emitted from the third irradiation light source 10B enters the third fluorescent light emitting unit 51B.
  • the first fluorescent light emitting unit 51R receives the first light 75R, it emits red light.
  • the second fluorescent light emitting unit 51G receives the second light 75G, it emits green light.
  • the third fluorescent light emitting unit 51B receives the third light 75B, it emits blue light.
  • the light source 1 can emit the mixed color light 100 without using a color wheel having a large occupied area, and the light source 1 can be downsized.
  • the first irradiation light source 10R, the second irradiation light source 10G, and the third irradiation light source 10B are, for example, nitride semiconductor lasers, and mainly emit near ultraviolet light. In the present embodiment, it does not matter whether the wavelength ranges of the first light 75R, the second light 75G, and the third light 75B are equal.
  • the 2 has the rotating body 58 as described above, and the diameter of the rotating body 58 is, for example, 5 mm to 20 mm.
  • a specific configuration of the optical conversion element 50 is, for example, on the outer peripheral surface of the rotating body 58 that is a cylindrical aluminum alloy rod, the first fluorescent light emitting unit 51R, the second fluorescent light emitting unit 51G, and the third fluorescent light emitting device.
  • the part 51B is arranged.
  • the first fluorescent light emitting unit 51R, the second fluorescent light emitting unit 51G, and the third fluorescent light emitting unit 51B are arranged on a circumference around the rotation shaft 57.
  • the first fluorescent light emitting unit 51R includes a red phosphor and a binder in which the red phosphor is mixed.
  • the red phosphor is, for example, La 2 W 3 O 12 ((La, Eu, Sm) 2 W 2 O 12 phosphor) whose main component is activated Eu and Sm.
  • the binder is an organic transparent material such as dimethyl silicone, or an inorganic transparent material such as low-melting glass.
  • the second fluorescent light emitting unit 51G includes a green phosphor and a binder in which the green phosphor is mixed.
  • the main component of the green phosphor is Ce-activated Y 3 (Al, Ga) 5 O 12 .
  • the binder is an organic transparent material such as dimethyl silicone, or an inorganic transparent material such as low-melting glass.
  • the 3rd fluorescence light emission part 51B has a blue fluorescent substance and the binder with which this blue fluorescent substance was mixed.
  • the main component of the blue phosphor is Eu-activated Sr 3 MgSi 2 O 8 .
  • the binder is an organic transparent material such as dimethyl silicone, or an inorganic transparent material such as low-melting glass.
  • the thicknesses of the first fluorescent light emitting unit 51R, the second fluorescent light emitting unit 51G, and the third fluorescent light emitting unit 51B are, for example, 100 ⁇ m to 1000 ⁇ m, and the first fluorescent light emitting unit 51R, the second fluorescent light emitting unit 51G, The width of the third fluorescent light emitting unit 51B is 5 mm to 10 mm.
  • a rotating shaft 57 is provided at the center of the rotating body 58, and one end of the rotating shaft 57 is held by a bearing 59.
  • the other end of the rotating shaft 57 is fixed to a connecting portion 56 of a rotating mechanism 55 such as a motor.
  • the rotating mechanism 55 rotates the rotating body 58 around the rotating shaft 57.
  • the light source 1 including the optical conversion element 50 is configured as follows.
  • the light source 1 includes a first irradiation light source 10R, a second irradiation light source 10G, and a third irradiation light source 10B.
  • the first irradiation light source 10R, the second irradiation light source 10G, and the third irradiation light source 10B are, for example, semiconductor lasers having an optical output of 2 watts and a central wavelength of emission wavelength in the range of 380 nm to 430 nm.
  • the first irradiation light source 10 ⁇ / b> R, the second irradiation light source 10 ⁇ / b> G, and the third irradiation light source 10 ⁇ / b> B are disposed on the heat sink 90.
  • three first irradiation light sources 10R, three second irradiation light sources 10G, and three third irradiation light sources 10B are arranged.
  • the mounting surface 90 a of the heat sink 90 is disposed in parallel to the rotation shaft 57 of the optical conversion element 50.
  • the first irradiation light source 10R, the second irradiation light source 10G, and the third irradiation light source 10B are arranged in a matrix on the mounting surface 90a. Further, the heat radiating fins 90b are formed on the surface of the heat sink 90 opposite to the mounting surface 90a.
  • the fan 95 is disposed at a position facing the radiation fin 90b. Yes.
  • the collimating lens 20 1st relay lens 25R, 25G, 25B, 2nd Relay lenses 27R, 27G, 25B, first dichroic mirror 30R, second dichroic mirror 30G, third dichroic mirror 30B, first condenser lens 40R, second condenser lens 40G, third condenser A lens 40B is disposed.
  • the collimating lens 20 is arranged in a matrix so as to correspond to each of the first irradiation light source 10R, the second irradiation light source 10G, and the third irradiation light source 10B.
  • the other optical components generate red light, green light, and blue light from the excitation light, and correspond to the positions of the first fluorescent light emitting unit 51R, the second fluorescent light emitting unit 51G, and the third fluorescent light emitting unit 51B. Arranged.
  • the first light 75R emitted from the first irradiation light source 10R is converted into parallel light by the collimating lens 20, and is further passed through the first relay lens 25R that is a convex lens and the second relay lens 27R that is a concave lens. 1 to the dichroic mirror 30R.
  • the first dichroic mirror 30R is set to transmit light with a wavelength of 380 nm to 600 nm and reflect light with a wavelength of 600 nm to 800 nm, for example.
  • the first dichroic mirror 30R, the first condenser lens 40R, and the first fluorescent light emitting unit 51R are arranged in this order.
  • the first light 75R that has passed through the first dichroic mirror 30R is condensed by the first condenser lens 40R and irradiated onto the first fluorescent light emitting unit 51R.
  • the main optical axis of the first light 75 ⁇ / b> R collected by the first condenser lens 40 ⁇ / b> R is orthogonal to the rotation axis 57 of the optical conversion element 50.
  • second light 75G emitted from the second irradiation light source 10G is irradiated onto the second fluorescent light emitting unit 51G via the second condenser lens 40G.
  • the third light 75B emitted from the third irradiation light source 10B is irradiated onto the third fluorescent light emitting unit 51B via the third condenser lens 40B.
  • first fluorescent light emitting portion 51R When the first fluorescent light emitting portion 51R receives the first light 75R, it emits red light, and when the second fluorescent light emitting portion 51G receives the second light 75G, it emits green light, and the third fluorescent light emitting portion. When 51B receives the third light 75B, it emits blue light.
  • the second dichroic mirror 30G is set to transmit light having a wavelength of 380 nm to 500 nm and reflect light having a wavelength of 500 nm to 800 nm.
  • the third dichroic mirror 30B is set to transmit light with a wavelength of 380 nm to 430 nm and reflect light with a wavelength of 430 nm to 800 nm, for example.
  • the first dichroic mirror 30R transmits the first light 75R and reflects the red light from the first fluorescent light emitting unit 51R.
  • the second dichroic mirror 30G transmits the second light 75G and reflects the green light from the second fluorescent light emitting unit 51G.
  • the third dichroic mirror 30B transmits the third light 75B and reflects the blue light from the third fluorescent light emitting unit 51B.
  • the first dichroic mirror 30R transmits blue light and green light.
  • the second dichroic mirror 30G transmits blue light.
  • the red light reflected by the first dichroic mirror 30R, the green light reflected by the second dichroic mirror 30G, and the blue light reflected by the third dichroic mirror 30B have the same optical axis.
  • the mixed color light 100 is synthesized.
  • the image projection apparatus 199 includes an image display element 71, a projection lens 65, and the like at the emission portion of the light source 1, and can project an image.
  • the light source 1 of the present embodiment emits mixed color light 100.
  • the mixed color light 100 includes a red light 78R having a main emission wavelength in the range of 590 to 660 nm, a green light 78G having a main emission wavelength in the range of 500 to 590 nm, and a blue light 78B having a main emission wavelength of 430 to 500 nm.
  • the mixed color light 100 is, for example, white light generated by periodically emitting red light 78R, green light 78G, and blue light 78B, which are light of three primary colors.
  • One period is, for example, about 8.3 ms (120 Hz) during double-speed scanning.
  • the first light 75R emitted from the first irradiation light source 10R becomes one light flux by the collimating lens 20, the first relay lens 25R, and the second relay lens 27R.
  • the first light 75R has a center wavelength of 405 nm and a total light amount of 18 watts.
  • the first light 75R passes through the first dichroic mirror 30R.
  • the first condenser lens 40R condenses the first light 75R on the first fluorescent light emitting unit 51R, for example, with an area of 1 mm 2 or less.
  • the second light 75G emitted from the second irradiation light source 10G becomes one light flux by the collimating lens 20, the first relay lens 25G, and the second relay lens 27G.
  • the second light 75G has a center wavelength of 405 nm and a total light amount of 18 watts.
  • the second light 75G passes through the second dichroic mirror 30G.
  • the second condenser lens 40G condenses the second light 75G on the second fluorescent light emitting unit 51G with an area of 1 mm 2 or less, for example.
  • the third light 75B emitted from the third irradiation light source 10B becomes one light flux by the collimating lens 20, the first relay lens 25B, and the second relay lens 27B.
  • the third light 75B has a central wavelength of 405 nm and a total light amount of 18 watts.
  • the third light 75B passes through the third dichroic mirror 30B.
  • the third condenser lens 40B condenses the third light 75B on the third fluorescent light emitting unit 51B with an area of 1 mm 2 or less, for example.
  • the first light 75R collected by the first condenser lens 40R is converted into red light 78R having a main emission wavelength in the range of 590 nm to 660 nm by the red phosphor included in the first fluorescent light emitting unit 51R. It is converted and enters the first condenser lens 40R.
  • the red light 78R is a Lambertian light distribution whose radiating angle is omnidirectional, but the light emitting area is 1 mm 2 or less. Therefore, the first condenser lens 40R can make the red light 78R substantially parallel light.
  • the red light 78R is incident on the first dichroic mirror 30R, most of which is reflected by the first dichroic mirror 30R, and becomes red light 79R.
  • the red light 79 ⁇ / b> R is incident on the third relay lens 41.
  • the second light 75G collected by the second condenser lens 40G is converted into green light 78G having a main emission wavelength in the range of 500 nm to 590 nm by the green phosphor contained in the second fluorescent light emitting unit 51G. After being converted, the light enters the second condenser lens 40G.
  • the green light 78G is a Lambertian light distribution whose radiating angle is omnidirectional, but the light emitting area is 1 mm 2 or less. Therefore, the second condenser lens 40G can make the green light 78G substantially parallel light.
  • the green light 78G is incident on the second dichroic mirror 30G, most of which is reflected by the second dichroic mirror 30G, and becomes green light 79G.
  • the green light 79 ⁇ / b> G enters the third relay lens 41.
  • the third light 75B collected by the third condenser lens 40B is converted into blue light 78B having a main emission wavelength in the range of 430 nm to 500 nm by the blue phosphor included in the third fluorescent light emitting unit 51B. After being converted, the light enters the third condenser lens 40B.
  • the blue light 78B is a Lambertian light distribution whose radiating angle is omnidirectional, but the light emitting area is 1 mm 2 or less. Therefore, the third condenser lens 40B can make the blue light 78B substantially parallel light.
  • the blue light 78B is incident on the third dichroic mirror 30B, most of which is reflected by the third dichroic mirror 30B, and becomes blue light 79B.
  • the blue light 79 ⁇ / b> B is incident on the third relay lens 41.
  • the red light 79R, the green light 79G, and the blue light 79B are superimposed to become the mixed color light 100.
  • the mixed color light 100 is condensed on the end of the rod integrator 42 by the third relay lens 41.
  • the mixed color light 100 is multiple-reflected in the rod integrator 42 and is emitted after the light intensity distribution of the wave front is converted into a rectangle.
  • the fourth relay lens 43 turns the mixed-color light 100 into straight light.
  • the mixed color light 100 is guided by a reflection mirror 45 to a reflective image display element 71 such as DMD (Digital Mirror Device).
  • DMD Digital Mirror Device
  • the mixed light 100 irradiated to the image display element 71 is reflected as signal light 80 on which a two-dimensional video signal is superimposed, and is incident on the projection lens 65.
  • the projection lens 65 turns the signal light 80 into image light 89 that can be projected onto a predetermined screen (not shown), and the image light 89 is emitted from the image projection device 199.
  • FIG. 4 is a diagram illustrating an excitation / light emission timing chart of the fluorescent light emitting unit when the seven color sources are generated in a time division manner in the light source 1 according to the first embodiment of the present disclosure.
  • the emitted light in one cycle is switched in the order of blue, green, red, white, cyan, yellow, and black.
  • the third irradiation light source 10B that emits the third light 75B is turned on alone.
  • the second irradiation light source 10G that emits the second light 75G is turned on alone.
  • the first irradiation light source 10R that emits the first light 75R is turned on alone.
  • all of the first irradiation light source 10R, the second irradiation light source 10G, and the third irradiation light source 10B are simultaneously turned on.
  • the second irradiation light source 10G and the third irradiation light source 10B are simultaneously turned on.
  • the first irradiation light source 10R and the second irradiation light source 10G are simultaneously turned on.
  • all of the first irradiation light source 10R, the second irradiation light source 10G, and the third irradiation light source 10B are turned off.
  • the light source 1 has four or more colors.
  • the mixed color light 100 can be emitted.
  • the effect is that the first light 75R corresponding to the first fluorescent light emitting part 51R, the second light 75G corresponding to the second fluorescent light emitting part 51G, and the third light corresponding to the third fluorescent light emitting part 51B. This is an effect that can be obtained because the light 75B can be irradiated independently, and the emission spectrum can be changed more freely than in the conventional structure.
  • FIG. 5A shows emission spectra of the first light 75R, the second light 75G, and the third light 75B emitted from the first irradiation light source 10R, the second irradiation light source 10G, and the third irradiation light source 10B. .
  • FIG. 5A shows emission spectra of the first light 75R, the second light 75G, and the third light 75B emitted from the first irradiation light source 10R, the second irradiation light source 10G, and the third irradiation light source 10B.
  • FIG. 5B shows emission spectra of the red light 78R, the green light 78G, and the blue light 78B emitted from the first fluorescent light emitting unit 51R, the second fluorescent light emitting unit 51G, and the third fluorescent light emitting unit 51B.
  • FIG. 5C shows the wavelength dependence of the reflectivity of the first dichroic mirror 30R, the second dichroic mirror 30G, and the third dichroic mirror 30B.
  • FIG. 5D shows the emission of red light 79R, green light 79G, and blue light 79B that is reflected from the first dichroic mirror 30R, the second dichroic mirror 30G, and the third dichroic mirror 30B and emitted from the light source 1 to the outside. The spectrum is shown.
  • FIG. 5C shows the wavelength dependence of the reflectivity of the first dichroic mirror 30R, the second dichroic mirror 30G, and the third dichroic mirror 30B.
  • FIG. 5D shows the emission of red light 79R, green light 79G, and blue
  • FIG. 5D also shows white mixed light 100W obtained by mixing red light 79R, green light 79G, and blue light 79B.
  • FIG. 6 shows the chromaticity coordinates of the red light 78R, the green light 78G, the blue light 78B, the red light 79R, the green light 79G, the blue light 79B, and the white mixed light 100W, the sRGB standard, and the black body radiation locus.
  • the first light 75R, the second light 75G, and the third light 75B having an emission wavelength of 405 nm shown in FIG. 5A are converted into red light 78R, green light 78G, and blue light 78B having the spectrum shown in FIG. 5B. .
  • red light 79R having a spectrum as shown in FIG. 5D.
  • Green light 79G, blue light 79B, and white mixed light 100W can be emitted.
  • the emission spectra of the red light 79R, the green light 79G, and the blue light 79B can be cut into a preferable shape.
  • the green light 78G radiated from the second fluorescent light emitting unit 51G is short wavelength side (wavelength 500 nm or less) and long wavelength side (wavelength 600 nm or more) by the second dichroic mirror 30G and the first dichroic mirror 30R. Are cut and emitted as green light 79G having a higher green purity.
  • the chromaticity point of the green light 79G moves to the peripheral side with respect to the chromaticity coordinate shown in FIG.
  • These actions are the same for the blue light 78B and the red light 78R.
  • the blue light 78B the component on the long wavelength side (wavelength 500 nm or more) is cut, and if the red light 78R is used, the short wavelength side (wavelength 600 nm).
  • the following components are cut and become blue light 79B and 79R with high color purity and emitted from the light source 1.
  • the mixed color light 100 composed of the red light 79R, the green light 79G, and the blue light 79B substantially covers sRGB.
  • the red light 79R is light having a much higher color purity than sRGB, and is optimal as a light source for an image projection apparatus.
  • the white mixed light 100W shown in FIGS. 5 and 6 is white light having a correlated color temperature of 6000K, which is formed by the sum of red light 79R, green light 79G, and blue light 79B.
  • the first irradiation light source 10R, the second irradiation light source 10G, and the third irradiation light source 10B are used as the irradiation light sources. It can be done independently on a time scale on the order of seconds. For this reason, it is possible to generate the three primary colors of RGB in a time-sharing manner without any problem even at a speed higher than double speed scanning (120 Hz, cycle 8.3 ms).
  • switching of the emission state of the red light 79R, the green light 79G, and the blue light 79B is performed regardless of the rotation speed of the optical conversion element 50, the first irradiation light source 10R, the second irradiation light source.
  • Control can be performed only by switching between the ON state and the OFF state of 10G and the third irradiation light source 10B. Therefore, a mechanism such as controlling the rotation speed of the optical conversion element 50 to a constant rotation speed is unnecessary, and a light source capable of switching the emission color of the mixed color light 100 can be realized by a simple method. .
  • the light source 1 can emit the mixed color light 100 without using a color wheel having a large occupied area, and the light source 1 can be downsized.
  • the first fluorescent light emitting unit 51R including the red fluorescent material, the second fluorescent light emitting unit 51G including the green fluorescent material, and the third fluorescent light emitting unit 51B including the blue fluorescent material. Can be rotated by the same rotation mechanism 55. For this reason, it is possible to generate RGB three primary colors with high efficiency and high speed with a compact configuration, and it is possible to provide a high-performance light source 1 without color breakup.
  • blue phosphors include Eu-activated (Ba, Sr) MgAl 10 O 17 phosphors represented by Eu-activated BaMgAl 10 O 17 and the like, as well as Eu-activated (Sr, Ca, Ba, Mg) 10 , (PO 4 ) 6 Cl2 phosphor may be used.
  • the green phosphors are Eu-activated ⁇ -type SiAlON phosphor, Eu-activated SrSiO 3 phosphor, Eu-activated SrSi 2 O 2 N 2 phosphor, Eu-activated Ba 3 Si 8 O 12 N 2 phosphor, and Ce-activated CaSc 2.
  • a phosphor in which Ce or Eu is activated, such as an O 4 phosphor, may be used.
  • the red phosphor is not limited to Eu and Sm activated La 2 W 3 O 12 .
  • the red phosphor includes, for example, at least one of silicon oxide, tungsten oxide, molybdenum oxide, indium oxide, yttrium oxide, zinc oxide, silicon nitride, silicon oxynitride, aluminum oxynitride, and organic polymer. It may be a phosphor contained in the constituent elements of the material.
  • the base material contains a lanthanoid ion element or a metal ion element as an activator.
  • the red phosphors are Eu activated La 2 O 2 S phosphor, Eu activated LiW 2 O 8 phosphor, Eu and Sm activated LiW 2 O 8 phosphor, Eu and Mn activated (Sr, Ba) 3 MgSi 2 O 8 fluorescence Body, Mn activated 3.5MgO ⁇ 0.5MgF 2 ⁇ GeO 2 phosphor, Eu activated YVO 4 phosphor, Eu activated Y 2 O 3 phosphor, Eu activated Y 2 O 2 S phosphor, etc. Is preferably a narrow phosphor.
  • the red phosphor may be a rare earth complex phosphor using a lanthanoid ion element or a metal ion element as an activator.
  • the rare earth complex phosphor has a molecular structure in which, for example, two types of phosphine oxide are coordinated to trivalent europium.
  • a semiconductor laser having a center wavelength of 405 nm is given as an example of the first irradiation light source 10R, the second irradiation light source 10G, and the third irradiation light source 10B, but this is not restrictive.
  • the center wavelengths of the first irradiation light source 10R, the second irradiation light source 10G, and the third irradiation light source 10B can be adjusted in the range of 380 nm to 430 nm according to the absorption spectrum of the phosphor in the optical conversion element 50.
  • one irradiation light source includes a plurality of semiconductor lasers having different center wavelengths in the range of 2 nm to 10 nm, the wavelength spectrum width can be widened.
  • a transparent body 60 is formed on the outer peripheral side of the fluorescent light emitting unit 51 of the optical conversion element 50 of the first embodiment.
  • a substantially cylindrical rotating body 58 is provided on the circumference centering on the rotation shaft 57, and a transparent body is provided on the outer peripheral side of the rotating body 58. 60 is formed.
  • the transparent body 60 is made of, for example, low-melting glass that transmits light having a wavelength of 380 nm to 800 nm.
  • the wavelength-converted light 78 emitted from the fluorescent light emitting portion 51 in all directions is refracted at the interface between the transparent body 60 and air.
  • the emission divergence angle of the wavelength-converted light 78 in the plane perpendicular to the rotation shaft 57 can be reduced. Therefore, it becomes possible for the wavelength converted light 78 to enter the first condenser lens 40R, the second condenser lens 40G, and the third condenser lens 40B shown in FIG. 1 more efficiently.
  • the emission divergence angle of the wavelength converted light 78 originally emitted by the Lambertian light distribution can be reduced, and the utilization efficiency of the wavelength converted light 78 can be increased.
  • FIGS. 8A and 8B are enlarged views of the vicinity of the fluorescent light emitting unit 51 in FIG. 1, FIG. 8A is a cross section parallel to the rotation axis 57 of the optical conversion element 50C, and FIG. A cross section perpendicular to the shaft 57 is shown.
  • FIG. 8A and FIG. 7A in this modification, the cross-sectional shape of the transparent body 60C is different from the cross-sectional shape of the transparent body 60 of the first modification.
  • the transparent body 60C of this modification has a cross section parallel to the rotation shaft 57 that is convex toward the outer periphery. More specifically, the transparent body 60 ⁇ / b> C desirably has a parabola (quadratic curve) shape in a cross section parallel to the rotation shaft 57.
  • the wavelength-converted light 78 emitted from the fluorescent light-emitting unit 51 in all directions is refracted at the interface between the transparent body 60C and air. As a result, as shown in FIGS.
  • the emission divergence angle of the wavelength-converted light 78 can be reduced on both the plane parallel to the rotation axis 57 and the plane perpendicular to the rotation axis 57. Therefore, the wavelength converted light 78 can enter the first condenser lens 40R, the second condenser lens 40G, and the third condenser lens 40B shown in FIG. 1 more efficiently.
  • FIG. 9A for example, low-melting glass 102 is poured into a lens mold 101, and a glass lens 103 having a hollow portion 61 as shown in FIG. 9B is molded.
  • the glass lens 103 has a parabolic shape in a cross section parallel to the rotation shaft 57.
  • a dispersion liquid 104 in which phosphor particles are dispersed in liquid silicone is prepared and set in the syringe of the syringe 105. Furthermore, as shown in FIG.
  • the dispersion liquid 104 is inserted into the gap formed between the hollow portion 61 and the rotating body 58 using the syringe 105. Fill. Further, by performing heat treatment at 150 ° C., the fluorescent light emitting part 51 can be formed between the transparent body 60 and the rotating body 58.
  • the wavelength-converted light 78 emitted from the fluorescent light emitting portion 51 in all directions is refracted at the interface between the transparent body 60C and air.
  • the emission divergence angle of the wavelength-converted light 78 on the surface perpendicular to the rotation shaft 57 and the surface parallel to the rotation shaft 57 can be reduced. Therefore, the wavelength converted light 78 can enter the first condenser lens 40R, the second condenser lens 40G, and the third condenser lens 40B shown in FIG. 1 more efficiently.
  • the emission divergence angle of the wavelength converted light 78 originally emitted by the Lambertian light distribution can be reduced, and the utilization efficiency of the wavelength converted light 78 can be increased.
  • FIGS. 10A and 10B show enlarged views of the vicinity of the fluorescent light emitting portion of FIG. 1, and FIG. 10A shows a cross section parallel to the rotation axis 57 of the optical conversion element 50D.
  • FIG. 10B shows a cross section perpendicular to the rotation shaft 57 of the optical conversion element 50D.
  • an antireflection film 70 made of, for example, a dielectric film is provided on the transparent body 60.
  • the refractive index of the antireflection film 70 is preferably set as shown by the following equation, where n is the refractive index of the transparent body 60.
  • the film thickness of the antireflection film 70 is preferably set as shown by the following formula.
  • the antireflection film 70 reduces the reflection loss when the excitation light 75 is incident on the transparent body 60, so that the intensity of the wavelength converted light 78 per power of the excitation light 75 is further increased. It becomes possible to raise.
  • the structure which provides the antireflection film 70 on the transparent body 60 was demonstrated in this modification, you may form the antireflection film 70 directly on the fluorescence light emission part 51.
  • the refractive index of the antireflection film 70 is set as shown by the following equation, where n2 is the refractive index of the fluorescent light emitting portion 51.
  • the thickness of the antireflection film 70 if the peak emission wavelength of the fluorescent light-emitting section 51 and the lambda p, preferably set as shown by the following equation.
  • the antireflection film 70 has a single layer structure, but may have a multilayer structure.
  • a cooling mechanism 92 is formed in a part of the rotating body 58.
  • a cooling mechanism 92 is provided in the vicinity of the first fluorescent light emitting unit 51R, the second fluorescent light emitting unit 51G, and the third fluorescent light emitting unit 51B. More specifically, for example, blades made of an aluminum alloy or the like are attached as a cooling mechanism 92 to the outer peripheral portion of the rotating body 58 made of an aluminum alloy or the like. A plurality of blades as the cooling mechanism 92 constitutes the propeller fan. When the optical conversion element 50 ⁇ / b> E is operating, the cooling mechanism 92 rotates together with the rotating body 58, so that the cool air 93 is generated by the rotation of the cooling mechanism 92.
  • the cold air 93 passes through the surfaces of the first fluorescent light emitting unit 51R, the second fluorescent light emitting unit 51G, and the third fluorescent light emitting unit 51B, and the first fluorescent light emitting unit 51R, the second fluorescent light emitting unit 51G, and the third fluorescent light emitting unit 51B.
  • the fluorescent light emitting unit 51B is cooled. Further, a part of the heat generated in the first fluorescent light emitting unit 51R, the second fluorescent light emitting unit 51G, and the third fluorescent light emitting unit 51B is transferred into the air by using the rotating body 58 and the cooling mechanism 92 as a heat dissipation path 94. Heat is dissipated.
  • the heat generated in the first fluorescent light emitting unit 51R, the second fluorescent light emitting unit 51G, and the third fluorescent light emitting unit 51B can be efficiently cooled. It is possible to suppress a decrease in fluorescence intensity due to a temperature rise in the first fluorescent light emitting unit 51R, the second fluorescent light emitting unit 51G, and the third fluorescent light emitting unit 51B.
  • cooling mechanisms 92 are illustrated, but depending on the degree of heat generation of the first fluorescent light emitting unit 51R, the second fluorescent light emitting unit 51G, and the third fluorescent light emitting unit 51B, the cooling mechanism is shown. The number of 92 may be changed.
  • Modification 1 of the present embodiment will be described with reference to FIGS.
  • the configuration of the optical conversion element 50F is different from the configuration described above.
  • the configurations and arrangements of the first dichroic mirror 30R, the second dichroic mirror 30G, and the third dichroic mirror 30B are different from those in the first embodiment.
  • the first relay lens and the second relay lens are omitted.
  • the optical conversion element 50F includes a rotating shaft 57 and three rotating bodies 58 provided on the rotating shaft 57.
  • the rotating body 58 is made of, for example, an aluminum alloy.
  • the rotating body 58 is integrally formed with blades as the cooling mechanism 92.
  • the first fluorescent light emitting portion 51R, the second fluorescent light emitting portion 51G, and the third fluorescent light emitting portion 51B are formed on the side surface of the outermost peripheral portion of the rotating body 58.
  • the transparent body 60F is arrange
  • the cross section of the transparent body 60F is preferably semicircular or parabolic in a cross section parallel to the rotation axis 57.
  • the first fluorescent light emitting unit 51R includes, for example, a red phosphor whose main component is Eu-activated (Sr, Ca) AlSiN 3 and a transparent material in which the red phosphor is mixed.
  • the second fluorescent light emitting unit 51G includes, for example, a green phosphor whose main component is Ce-activated Y 3 (Al, Ga) 5 O 12 and a transparent material in which the green phosphor is mixed.
  • the third fluorescent light emitting unit 51B includes a blue phosphor whose main component is Eu-activated Sr 3 MgSi 2 O 8 and a transparent material in which the blue phosphor is mixed.
  • a first fluorescent light emitting portion 51R that emits light 78B is disposed.
  • a mirror 30R is arranged.
  • the first irradiation light source 10R, the second irradiation light source 10G, and the third irradiation light source 10B emit the first light 75R, the second light 75G, and the third light 75B.
  • the first light 75R, the second light 75G, and the third light 75B are laser light having a center wavelength of 405 nm, for example.
  • the first light 75R, the second light 75G, and the third light 75B pass through the first dichroic mirror 30R, the second dichroic mirror 30G, and the third dichroic mirror 30B, and the first condenser lens.
  • the light is condensed by 40R, the second condenser lens 40G, and the third condenser lens 40B.
  • the first light 75R, the second light 75G, and the third light 75B are the red light 78R and the green light 78G in the first fluorescent light emitting part 51R, the second fluorescent light emitting part 51G, and the third fluorescent light emitting part 51B. , Converted into blue light 78B.
  • the red light 78R, the green light 78G, and the blue light 78B are reflected by the first dichroic mirror 30R, the second dichroic mirror 30G, and the third dichroic mirror 30B, and become red light 79R, green light 79G, and blue light 79B.
  • FIG. 13A shows emission spectra of the first light 75R, the second light 75G, and the third light 75B.
  • FIG. 13B shows emission spectra of red light 78R, green light 78G, and blue light 78B.
  • FIG. 13C shows the reflection characteristics of the first dichroic mirror 30R, the second dichroic mirror 30G, and the third dichroic mirror 30B.
  • FIG. 13D shows emission spectra of red light 79R, green light 79G, and blue light 79B.
  • the optical conversion element 50 ⁇ / b> F includes a rotating shaft 57 and three rotating bodies 58 provided on the rotating shaft 57.
  • a first fluorescent light emitting unit 51R, a second fluorescent light emitting unit 51G, and a third fluorescent light emitting unit 51B are mounted on the outer peripheral side of the three rotating bodies 58.
  • a blade that is a cooling mechanism 92 is formed between the rotating shaft 57 of the rotating body 58 and the outer peripheral portion.
  • the rotating body 58 is made of, for example, an aluminum alloy, and is formed integrally with, for example, a blade.
  • a transparent body 60F having a semicircular cross section is formed on the surface side of the first fluorescent light emitting unit 51R, the second fluorescent light emitting unit 51G, and the third fluorescent light emitting unit 51B.
  • the heat generated in the first fluorescent light emitting unit 51R, the second fluorescent light emitting unit 51G, and the third fluorescent light emitting unit 51B is transmitted to the cooling mechanism 92, and by the rotation of the cooling mechanism 92 accompanying the rotation of the rotating body 58, Heat is discharged from the cooling mechanism 92.
  • the red light 78R, the green light 78G, and the blue light 78B emitted from the first fluorescent light emitting unit 51R, the second fluorescent light emitting unit 51G, and the third fluorescent light emitting unit 51B are emitted as a Lambertian light distribution.
  • the directivity in the light distribution direction is improved by the transparent body 60F.
  • the first condenser lens 40R, the second condenser lens 40G, and the third condenser lens 40B turn the red light 78R, the green light 78G, and the blue light 78B into parallel lights.
  • the red light 78R, the green light 78G, and the blue light 78B are reflected by the first dichroic mirror 30R, the second dichroic mirror 30G, and the third dichroic mirror 30B having the reflection characteristics shown in FIG. 13C, and the red light 79R. , Green light 79G and blue light 79B.
  • the blue light 78B becomes high-purity blue light 79B from which light having a wavelength of 500 nm or more is cut, and the green light 78G has purity obtained by cutting light having a wavelength of 500 nm or less and light having a wavelength of 590 nm or more.
  • Green light 79G, and red light 78R becomes high-purity red light 79R from which light having a wavelength of 590 nm or less is cut.
  • the red light 79R, the green light 79G, and the blue light 79B are mixed and become the mixed color light 100.
  • the heat generated in the first fluorescent light emitting unit 51R, the second fluorescent light emitting unit 51G, and the third fluorescent light emitting unit 51B can be efficiently exhausted, and the first It is possible to suppress a decrease in fluorescence intensity due to a temperature rise of the fluorescent light emitting unit 51R, the second fluorescent light emitting unit 51G, and the third fluorescent light emitting unit 51B.
  • the light source 1F can be configured with a compact configuration, and the high-mixed color light 100 can be emitted from the light source 1F.
  • the first dichroic mirror 30R, the second dichroic mirror 30G, and the third dichroic mirror 30B high-purity red light 79R, green light 79G, and blue light 79B that are optimal for a display or the like are emitted. be able to.
  • Modification 2 of the present embodiment will be described with reference to FIGS. 15 to 17.
  • the configuration of the optical conversion element 50G constituting the light source 1G is different from the configuration described above.
  • the optical conversion element 50G of the present modification has a first rotating body 58R provided on the first rotating shaft 57R and a first fluorescent light emitting section 51R provided on the outer periphery of the first rotating body 58R. . Further, the optical conversion element 50G includes a second rotating body 58G provided on the second rotating shaft 57G, and a second fluorescent light emitting section 51G provided on the outer periphery of the second rotating body 58G. Furthermore, the optical conversion element 50G includes a third rotating body 58B provided on the third rotating shaft 57B and a third fluorescent light emitting section 51B provided on the outer periphery of the third rotating body 58B.
  • the first rotating body 58R, the second rotating body 58G, and the third rotating body 58B are provided with blades as the cooling mechanism 92.
  • the cooling mechanism 92 includes a first rotating shaft 57R and a first fluorescent light emitting unit 51R in the first rotating body 58R, and a second rotating shaft 57G and a second fluorescent light emitting unit in the second rotating body 58G. 51G and between the third rotating shaft 57B and the third fluorescent light emitting unit 51B in the third rotating body 58B.
  • the cooling mechanism 92 rotates with the rotation of the first rotating body 58R, the second rotating body 58G, and the third rotating body 58B.
  • the heat generated in the first fluorescent light emitting unit 51R, the second fluorescent light emitting unit 51G, and the third fluorescent light emitting unit 51B can be efficiently cooled, and the first fluorescent light emitting unit 51G can be efficiently cooled. It is possible to suppress a decrease in fluorescence intensity due to a temperature rise of the light emitting unit 51R, the second fluorescent light emitting unit 51G, and the third fluorescent light emitting unit 51B. As a result, the light source 1G can be realized with a compact configuration, and the high-luminance mixed color light 100 can be emitted from the light source 1G.
  • the first fluorescent light emitting unit 51R, the second fluorescent light emitting unit 51G, and the third fluorescent light emitting unit 51B are arranged while the thickness of the light source 1G is kept thin as shown in FIG.
  • the size of the first rotating body 58R, the second rotating body 58G, and the third rotating body 58B can be increased.
  • the size of the cooling mechanism 92 can be increased while keeping the thickness of the light source 1G thin. As a result, it is possible to achieve both high luminance and thinning of the light source 1G.
  • the first rotating body 58R, the second rotating body 58G, and the third rotating body 58B are configured by three first gears 64A. It is preferable that the adjacent first gears 64A are connected by the second gear 64B.
  • a transparent body may be formed on the surfaces of the first fluorescent light emitting part 51R, the second fluorescent light emitting part 51G, and the third fluorescent light emitting part 51B.
  • the light source 1H of the present embodiment is different from the first embodiment in the configuration of the fluorescent light emitting unit and the irradiation light source of the optical conversion element 50H.
  • the description will focus on the different parts of the light source 1H and the light source 1.
  • the number of optical axes is different from that of the first embodiment.
  • a rotating body 58 having a rotating shaft 57, a first fluorescent light emitting section 51R, a second fluorescent light emitting section 51G, and a third fluorescent light provided on the outer periphery of the rotating body 58.
  • the first fluorescent light emitting unit 51R, the second fluorescent light emitting unit 51G, and the third fluorescent light emitting unit 51B are arranged on a circumference around the rotation axis 57.
  • the first fluorescent light emitting unit 51R, the second fluorescent light emitting unit 51G, and the third fluorescent light emitting unit 51B are arranged on three arcs divided on one circumference. ing.
  • the optical conversion element 50H can be configured more compactly. Furthermore, since the irradiation light source can be composed of only the first irradiation light source 10 and the optical axis of the irradiation light source can be reduced from three axes to one axis, a light source component, specifically a collimating lens, a relay lens, etc. It is possible to achieve significant simplification, downsizing, and energy saving.
  • the first fluorescent light emitting part 51R, the second fluorescent light emitting part 51G, and the third fluorescent light emitting part 51B are configured to be divided into three arcs on one circumference.
  • another phosphor such as a yellow phosphor may be added and the light source 1H may have three or more color sources.
  • Modification 1 A modification of the light source according to the third embodiment will be described with reference to FIGS.
  • the light source 1I according to this modification is different from the first embodiment in the configuration of the fluorescent light emitting unit and the irradiation light source of the optical conversion element 50I.
  • the optical conversion element 50I includes a rotating body 58 having a rotating shaft 57.
  • the rotating body 58 has blades as the cooling mechanism 92, and the first fluorescent light emitting unit 51R, the second fluorescent light emitting unit 51G, and the third fluorescent light emitting unit 51B are formed on the outer periphery of the rotating body 58.
  • the heat sink 90 that fixes the first irradiation light source 10 is thermally connected to the rotating body 58 by a heat transport member 99 that is a heat pipe, for example.
  • the cold air 93 sent by the cooling mechanism 92 passes through the surface of the heat transport member 99.
  • the heat generated in the first fluorescent light emitting unit 51R, the second fluorescent light emitting unit 51G, and the third fluorescent light emitting unit 51B can be efficiently cooled. As a result, it is possible to suppress a decrease in fluorescence intensity due to a temperature rise in the first fluorescent light emitting unit 51R, the second fluorescent light emitting unit 51G, and the third fluorescent light emitting unit 51B. Further, the heat generated by the first fluorescent light emitting unit 51R, the second fluorescent light emitting unit 51G, the third fluorescent light emitting unit 51B, and the first irradiation light source 10 is cooled by the common cooling mechanism 92.
  • the light source 1J of the present embodiment is different from the first embodiment in the configuration of the optical conversion element and the irradiation light source. For this reason, it demonstrates centering on the different part of both.
  • the optical conversion element 50J of the present embodiment has a moving mechanism 62 that changes the position of the rotating body 58 in the axial direction of the rotating shaft 57.
  • the first fluorescent light emitting portion 51R, the second fluorescent light emitting portion 51G, and the third fluorescent light emitting portion 51B are formed adjacent to each other on the outer peripheral surface of the rotating body 58.
  • the irradiation light source consists of the 1st irradiation light source 10, and the optical axis of an irradiation light source is one.
  • the rotating body 58 is rotated by the rotating mechanism 55 when the optical conversion element 50J is operating.
  • the rotation mechanism 55 is a DC motor, for example.
  • the rotational speed of the rotating body 58 is, for example, 10,000 rpm.
  • the moving mechanism 62 vibrates the rotating body 58 in the axial direction of the rotating shaft 57, for example, at 180 hertz.
  • the excitation light 75 emitted from the first irradiation light source 10 is irradiated to the first fluorescent light emitting unit 51R, the second fluorescent light emitting unit 51G, and the third fluorescent light emitting unit 51B at a constant cycle.
  • red light 79R whose main emission wavelength is in the range of 590 to 660 nm
  • green light 79G whose main emission wavelength is in the range of 500 to 590 nm
  • blue light 79B whose main emission wavelength is in the range of 430 to 500 nm
  • the number of optical axes can be reduced from three to one, and as a result, the light source can be reduced in size and energy can be saved.
  • the fluorescent light emitting units are the first fluorescent light emitting unit 51R, the second fluorescent light emitting unit 51G, and the third fluorescent light emitting unit 51B.
  • the fluorescent light emitting unit is a yellow phosphor or the like. It is good also as a structure which has fluorescent substance other than RGB, and the source color of the mixed-color light 100 is four or more.
  • the optical conversion element 50K of the present modification includes a columnar rotating body 58 having a rotating shaft 57.
  • a rotating mechanism 55 is connected to the rotating shaft 57 and rotates the rotating body 58.
  • the rotating body 58 has blades as the cooling mechanism 92.
  • On the outer peripheral surface of the rotator 58 a first fluorescent light emitting part 51R, a second fluorescent light emitting part 51G, and a third fluorescent light emitting part 51B are formed adjacent to each other.
  • the moving mechanism 62 is connected with the rotary body 58 via the piston movable part (not shown).
  • the moving mechanism 62 includes a pin 62a, a connecting rod 62b, a pin 62c, and a motor 62d connected to the piston movable portion. In the moving mechanism 62, the rotational motion in the motor 62d is converted into vertical motion by the connecting rod 62b.
  • the rotating body 58 is rotated by the rotating mechanism 55 when the optical conversion element 50K is operating.
  • the rotational speed of the rotating body 58 is, for example, 10,000 rpm.
  • the moving mechanism 62 vibrates the rotating body 58 in the axial direction of the rotating shaft 57, for example, at 180 hertz.
  • the excitation light 75 emitted from the first irradiation light source 10 is irradiated to the first fluorescent light emitting unit 51R, the second fluorescent light emitting unit 51G, and the third fluorescent light emitting unit 51B at a constant cycle.
  • Red light 79R whose main emission wavelength is in the range of 590 to 660 nm
  • green light 79G whose main emission wavelength is in the range of 500 to 590 nm
  • blue light 79B whose main emission wavelength is in the range of 430 to 500 nm
  • the light is emitted in a divided manner and becomes mixed color light 100.
  • optical conversion element 50K of this modification it is possible to realize the light source 1K that emits the mixed color light 100 with an optical system having a simple configuration.
  • the heat generated in the first fluorescent light emitting unit 51R, the second fluorescent light emitting unit 51G, and the third fluorescent light emitting unit 51B can be efficiently cooled, and the first It is possible to suppress a decrease in fluorescence intensity due to a temperature rise in the fluorescent light emitting unit 51R, the second fluorescent light emitting unit 51G, and the third fluorescent light emitting unit 51B.
  • the rotating body 58 can be rotated within the formation surface of the rotating body 58, so that the light source 1K can be configured to be very thin.
  • FIG. 24 is a schematic diagram showing a configuration of a light source according to the present embodiment.
  • FIG. 25 is an operation explanatory diagram when the light source according to the present embodiment is used in an image projection apparatus.
  • 26A, FIG. 26B, FIG. 26C, and FIG. 26D show the spectrum of the emitted light from the light source according to this embodiment
  • FIG. 27 shows the chromaticity coordinates and the like of the emitted light from the light source according to this embodiment. Show.
  • the third light 75B emitted from the third irradiation light source 10B is blue light, and the main wavelength of the third light 75B is from 430 nm. The range is up to 480 nm.
  • the light source 1L does not include the third fluorescent light emitting unit 51B and the third condenser lens 40B shown in FIG.
  • the light source 1L uses the third light 75B emitted from the third irradiation light source 10B as it is as a blue light source.
  • the light source 1L includes a first irradiation light source 10R, a second irradiation light source 10G, and a third irradiation light source 10B.
  • the first irradiation light source 10R and the second irradiation light source 10G are semiconductor lasers having an optical output of, for example, 2 watts and a central wavelength of the emission wavelength in the range of 380 nm to 430 nm.
  • the third irradiation light source 10B is a semiconductor laser having a central wavelength of emission wavelength in the range from 430 nm to 480 nm.
  • the first light 75R emitted from the first irradiation light source 10R is red, such as Eu or Sm activated La 2 W 3 O 12 phosphor, in the same procedure as described in the first embodiment.
  • the light is condensed on the first fluorescent light emitting portion 51R including the fluorescent material.
  • the second light 75G emitted from the second irradiation light source 10G is, for example, Ce activated (Lu, Y) 3 (Ga, Al) 5 O in the same procedure as described in the first embodiment.
  • the light is condensed on the second fluorescent light emitting unit 51G including a green fluorescent material such as 12 fluorescent materials.
  • the main optical axes of the first light 75R and the second light 75G collected by the first condenser lens 40R and the second condenser lens 40G are relative to the axial direction of the rotation shaft 57 of the optical conversion element 50L. It is installed so that it is incident vertically.
  • the light emitted from the third irradiation light source 10B becomes parallel light by the collimating lens 20, and further passes through the first relay lens 25B which is a convex lens and the second relay lens 27B which is a concave lens, and the third mirror 31B. Led to.
  • the third mirror 31B is set to reflect light having a wavelength of 430 to 480 nm, for example. Therefore, after the blue light 76B, which is the third light 75B emitted from the third irradiation light source 10B, is reflected by the third mirror 31B, it is superimposed on the red light 79R and the green light 79G, and the mixed light 100 It becomes.
  • the second dichroic mirror 30G transmits light having a wavelength of 380 nm to 500 nm and reflects light having a wavelength of 500 nm to 800 nm.
  • the first dichroic mirror 30R transmits light having a wavelength of 380 nm to 600 nm and reflects light having a wavelength of 600 nm to 800 nm.
  • the third mirror 31B may be a dichroic mirror or a simple reflection mirror as long as it reflects light with a wavelength of 430 nm to 480 nm.
  • the light source 1L of the present embodiment includes so-called red light 79R having a main emission wavelength in the range of 590 to 660 nm, so-called green light 79G having a main emission wavelength in the range of 500 to 590 nm, and a main emission wavelength of 430 nm.
  • the mixed color light 100 which is output in a time division manner with the blue light 76B in the range of 480 nm is emitted. That is, the mixed-color light 100 is, for example, white light obtained by periodically emitting red light 79R, green light 79G, and blue light 76B, which are light of three primary colors.
  • One cycle is, for example, about 8.3 ms (120 Hz) during double-speed scanning.
  • the first light 75R having a central wavelength of 405 nm and a total light amount of 18 watts emitted from the first irradiation light source 10R becomes one light flux by the collimating lens 20, the first relay lens 25R, and the second relay lens 27R.
  • the first light 75R passes through the first dichroic mirror 30R and is condensed to an area of 1 mm 2 or less in the first fluorescent light emitting unit 51R by the first condenser lens 40R.
  • the condensed first light 75R has a main emission wavelength from 590 nm to 660 nm due to, for example, a red phosphor, which is Eu, Sm activated La 2 W 3 O 12 phosphor, included in the first fluorescence emission part 51R. Is converted into red light 78R.
  • the second light 75G having a center wavelength of 405 nm and a total light amount of 18 watts emitted from the second irradiation light source 10G becomes one light flux by the collimating lens 20, the first relay lens 25G, and the second relay lens 27G.
  • the second light 75G passes through the second dichroic mirror 30G and is condensed to an area of 1 mm 2 or less in the second fluorescent light emitting unit 51G by the second condenser lens 40G.
  • the condensed second light 75G is converted into green light 78G by the green phosphor included in the second fluorescent light emitting unit 51G.
  • the emission angle of the red light 78R is omnidirectional, and the red light 78R is light emitted by a Lambertian light distribution. However, since the emission region of the red light 78R is a point light source of 1 mm 2 or less, the first condenser lens 40R can make the red light 78R substantially parallel light.
  • the red light 78R is incident on the first dichroic mirror 30R. Then, the red light 78R is reflected by the first dichroic mirror 30R, becomes red light 79R, and enters the third relay lens 41.
  • the second condenser lens 40G can make the green light 78G substantially parallel light.
  • the green light 78G is incident on the second dichroic mirror 30G. Then, the green light 78G is reflected by the second dichroic mirror 30G, becomes green light 79G, and enters the third relay lens 41.
  • the third light 75B emitted from the third irradiation light source 10B becomes one light flux by the collimating lens 20, the first relay lens 25B, and the second relay lens 27B.
  • the third light 75B is reflected by the third mirror 31B and becomes blue light 76B.
  • the blue light 76 ⁇ / b> B is incident on the third relay lens 41.
  • the red light 78R, the green light 78G, and the blue light 76B are superimposed in the third relay lens 41 to become the mixed color light 100.
  • the mixed color light 100 is collected by the third relay lens 41 and enters the end of the rod integrator 42.
  • the mixed color light 100 is multiple-reflected in the rod integrator 42, and the light intensity distribution of the wave front is converted into a rectangle. Thereafter, the mixed color light 100 is radiated from the rod integrator 42 and is converted into straight light by the fourth relay lens 43.
  • the mixed color light 100 that has become straight-ahead light is reflected by the reflection mirror 45 and enters a reflective image display element 71 such as a DMD, for example.
  • the mixed color light 100 irradiated to the image display element 71 becomes signal light 80 on which a two-dimensional video signal is superimposed in the image display element 71 and is reflected by the image display element 71.
  • the signal light 80 is converted into video light 89 that can be projected onto a predetermined screen (not shown) by the projection lens 65. Thereafter, the image light 89 is emitted from the image projection device 199.
  • the above operation will be described with reference to emission spectra shown in FIGS. 26A, 26B, 26C, and 26D.
  • the spectrum of the first light 75R emitted from the first irradiation light source 10R and the spectrum of the second light 75G emitted from the second irradiation light source 10G are the same.
  • the spectrum of the third light 75B emitted from the third irradiation light source 10B is different from the spectrum of the first light 75R and the second light 75G.
  • FIG. 26B shows the spectrum of red light 78R and green light 78G.
  • the red light 78R is light obtained by converting the wavelength of the first light 75R by the first fluorescent light emitting unit 51R
  • the green light 78G is obtained by converting the wavelength of the second light 75G by the second fluorescent light emitting unit 51G.
  • the blue light 78B is light obtained by wavelength conversion of the third light 75B by the third fluorescent light emitting unit 51B.
  • FIG. 26C is a diagram showing the reflection characteristics of the first dichroic mirror 30R and the second dichroic mirror 30G.
  • FIG. 26D shows the spectrum of red light 79R, green light 79G, and blue light 76B.
  • the blue light 76B is light that is reflected by the third mirror 31B without wavelength conversion of the third light 75B.
  • the red light 79R is light obtained by reflecting the red light 78R to the first dichroic mirror 30R.
  • the color purity of the red light 79R is higher than the color purity of the red light 78R. From this result, it can be seen that the first dichroic mirror 30R extends the color reproduction range of the mixed color light 100.
  • the green light 79G is light obtained by reflecting the green light 78G to the second dichroic mirror 30G.
  • the color purity of the green light 79G is higher than the color purity of the green light 78G. From this result, it can be seen that the second dichroic mirror 30G extends the color reproduction range of the mixed-color light 100.
  • the first irradiation light source 10R, the second irradiation light source 10G, and the third irradiation light source 10B are used, there is no problem even at a speed of double speed scanning (120 Hz, cycle 8.3 ms) or more.
  • the light source 1L can emit the three primary colors of RGB in a time division manner. The reason is that the first irradiation light source 10R, the second irradiation light source 10G, and the third irradiation light source 10B can be switched between the on state and the off state on a time scale of nanosecond order. .
  • the first irradiation light source having the excitation wavelength for the first fluorescent light emitting unit 51R, the excitation wavelength of the green phosphor for the second fluorescent light emitting unit 51G, and the wavelength of the blue light 76B, respectively.
  • the irradiation light source 10R, the second irradiation light source 10G, and the third irradiation light source 10B can be selected. For this reason, the luminous efficiency of the phosphor can be improved, and a high-luminance light source can be realized.
  • the light source 1L capable of emitting the RGB three primary colors in a time-sharing manner with high efficiency and high speed can be realized with a compact configuration.
  • the fluorescent substance which can be used in this Embodiment is not restricted to the above-mentioned thing.
  • the green phosphor Eu activated ⁇ -type SiAlON phosphor, Eu activated SrSiO 3 phosphor, Eu activated SrSi 2 O 2 N 2 phosphor, Eu activated Ba 3 Si 8 O 12 N 2 phosphor, Ce activated A phosphor activated with Ce or Eu, such as a CaSc 2 O 4 phosphor, can be used.
  • the red phosphor is not limited to Eu and Sm activated La 2 W 3 O 12 .
  • red phosphor one or more of silicon oxide, tungsten oxide, molybdenum oxide, indium oxide, yttrium oxide, zinc oxide, silicon nitride, silicon oxynitride, aluminum oxynitride, and organic polymer is a mother substance. It may be a phosphor contained in the constituent elements of the material. As an activator for the base material, a lanthanoid ion element or a metal ion element is contained.
  • red phosphor examples include Eu activated La 2 O 2 S phosphor, Eu activated LiW 2 O 8 phosphor, Eu and Sm activated LiW 2 O 8 phosphor, Eu and Mn activated (Sr, Ba) 3 MgSi 2 O 8 phosphor, Mn activated 3.5 MgO ⁇ 0.5 MgF 2 .GeO 2 phosphor, Eu activated YVO 4 phosphor, Eu activated Y 2 O 3 phosphor, Eu activated Y 2 O 2 S phosphor, etc. It is done.
  • These phosphors are phosphors having a narrow half-width of the fluorescence spectrum, and are effective in the present embodiment.
  • the red phosphor may be a rare earth complex phosphor using a lanthanoid ion element or a metal ion element as an activator.
  • specific examples of red phosphors include rare earth complex phosphors having a molecular structure in which two types of phosphine oxides are coordinated to trivalent europium.
  • a semiconductor laser having a center wavelength of 450 nm is given as an example of the first irradiation light source 10R and the second irradiation light source 10G, but this is not restrictive.
  • the center wavelengths of the first irradiation light source 10R and the second irradiation light source 10G are in the range of 430 nm to 480 nm in accordance with the absorption spectra of the phosphors in the first fluorescent light emitting unit 51R and the second fluorescent light emitting unit 51G. You may adjust with.
  • the first irradiation light source 10R and the second irradiation light source 10G may be configured by combining a plurality of semiconductor lasers. In that case, the wavelength spectrum width can be widened by adopting a configuration in which the center wavelengths of the plurality of semiconductor lasers are different within a range of 2 nm to 10 nm.
  • the first irradiation light source 10R and the second irradiation light source 10G a semiconductor laser having a center wavelength of 405 nm is mentioned, but this is not restrictive.
  • the center wavelengths of the first irradiation light source 10R and the second irradiation light source 10G are in the range of 380 nm to 430 nm in accordance with the absorption spectra of the phosphors in the first fluorescent light emitting unit 51R and the second fluorescent light emitting unit 51G. You may adjust with.
  • the first irradiation light source 10R and the second irradiation light source 10G may be configured by combining a plurality of semiconductor lasers. In that case, the wavelength spectrum width can be widened by adopting a configuration in which the center wavelengths of the plurality of semiconductor lasers are different within a range of 2 nm to 10 nm.
  • the first irradiation light source 10R, the second irradiation light source 10G, and the third irradiation light source 10B are made of the same material, and their emission wavelengths are between 430 nm and 480 nm.
  • the first fluorescent light emitting unit 51R has a phosphor that converts blue light into red light
  • the second fluorescent light emitting unit 51G converts blue light into green light. Has a phosphor.
  • the first irradiation light source 10R emits the first light 75R.
  • the second irradiation light source 10G emits the second light 75G.
  • the third irradiation light source 10B emits third light 75B.
  • the wavelengths of the first light 75R, the second light 75G, and the third light 75B are equal.
  • FIG. 28B shows the spectra of red light 78R and green light 78G.
  • the red light 78R is light obtained by converting the wavelength of the first light 75R by the first fluorescent light emitting unit 51R
  • the green light 78G is obtained by converting the wavelength of the second light 75G by the second fluorescent light emitting unit 51G.
  • the phosphor included in the first fluorescent light emitting portion 51R is an Eu activated (Sr, Ca) AlSiN 3 phosphor.
  • the phosphor included in the second fluorescent light emitting unit 51G is Ce-activated (Lu, Y) 3 (Ga, Al) 5 O 12 phosphor.
  • FIG. 28C is a diagram showing the reflection characteristics of the first dichroic mirror 30R and the second dichroic mirror 30G.
  • FIG. 28D shows the spectrum of red light 79R, green light 79G, and blue light 76B.
  • the blue light 76B is light that is reflected by the third mirror 31B without wavelength conversion of the third light 75B.
  • the red light 79R is light obtained by reflecting the red light 78R to the first dichroic mirror 30R.
  • the color purity of the red light 79R is higher than the color purity of the red light 78R. From this result, it can be seen that the first dichroic mirror 30R extends the color reproduction range of the mixed color light 100.
  • the green light 79G is light obtained by reflecting the green light 78G to the second dichroic mirror 30G.
  • the color purity of the green light 79G is higher than the color purity of the green light 78G. From this result, it can be seen that the second dichroic mirror 30G extends the color reproduction range of the mixed-color light 100.
  • the first irradiation light source 10R, the second irradiation light source 10G, and the third irradiation light source 10B can be configured as one type, so that the light source 1L can be realized more easily.
  • the light source of the present disclosure is a light source that emits light emitted from an irradiation light source after being converted into fluorescence by a plurality of phosphors, and can emit mixed color light without using a color wheel. Therefore, the light source of the present disclosure can be widely used not only for display illumination such as a projector, a rear projection television, and a head-up display, but also for in-vehicle illumination such as a headlight or medical illumination such as an endoscope. it can.

Abstract

An optical conversion element (50) according to the present disclosure and equipped with a rotating body (58) having a rotational axis (57), and also equipped with one or more fluorescent light-emitting parts (51R, 51G, 51B) positioned on the surface of the rotating body (58), wherein the fluorescent light-emitting parts (51R, 51G, 51B) are configured so as to be formed along the circumference centered around the rotational axis (57). This configuration makes it possible to make light sources more compact, because a color wheel comprising a large surface area is no longer necessary.

Description

光学変換素子およびそれを用いた光源Optical conversion element and light source using the same
 本開示は、業務用プロジェクタ、ホームプロジェクタ、ピコプロジェクタなどの投写機や、リアプロジェクションテレビ、ヘッドアップディスプレイなどに用いられる光学変換素子およびこの光学変換素子を備えた光源に関する。 The present disclosure relates to an optical conversion element used in a projector such as a commercial projector, a home projector, and a pico projector, a rear projection television, a head-up display, and the like, and a light source including the optical conversion element.
 以下、図30、図31を用いて従来の光源について説明する。 Hereinafter, a conventional light source will be described with reference to FIGS. 30 and 31. FIG.
 図30に示すように、従来の光源は、紫外光を発光する発光ダイオード1001と、カラーホイール1002とを備える。カラーホイール1002は、図31に示すように、区画された領域1004、領域1005、領域1006を有する。領域1004には赤色の蛍光体を含む蛍光体層が配置され、領域1005には緑色の蛍光体を含む蛍光体層が配置され、領域1006には青色の蛍光体を含む蛍光体層が配置されている。カラーホイール1002が回転することによって、発光ダイオード1001から放射される光が赤色、緑色、青色と順次変換され、時間平均で観察した場合に白色光が放射されるように駆動される。 As shown in FIG. 30, the conventional light source includes a light emitting diode 1001 that emits ultraviolet light and a color wheel 1002. As shown in FIG. 31, the color wheel 1002 has a partitioned area 1004, an area 1005, and an area 1006. A phosphor layer including a red phosphor is disposed in the region 1004, a phosphor layer including a green phosphor is disposed in the region 1005, and a phosphor layer including a blue phosphor is disposed in the region 1006. ing. By rotating the color wheel 1002, the light emitted from the light emitting diode 1001 is sequentially converted into red, green, and blue, and is driven so that white light is emitted when observed on a time average.
特開2009-252651号公報JP 2009-252651 A 特表平11-064789号公報Japanese National Patent Publication No. 11-064789 特開2012-8409号公報JP 2012-8409 A 特開2004-341105号公報JP 2004-341105 A
 しかしながら、上記構成においては、カラーホイール1002を用いているため、光源の小型化が困難であるという問題点があった。 However, in the above configuration, since the color wheel 1002 is used, there is a problem that it is difficult to reduce the size of the light source.
 本開示は、光学変換素子および光源の小型化を図ることを目的としている。 This disclosure is intended to reduce the size of the optical conversion element and the light source.
 上記課題を解決するために、本開示の光学変換素子は、回転軸を有する回転体と、回転体に設けられた複数の蛍光発光部と、を備える。複数の蛍光発光部が第1の蛍光発光部と、第2の蛍光発光部と、を有する。第1の蛍光発光部と第2の蛍光発光部とが回転軸を中心とする円周上に配置されている。 In order to solve the above problems, the optical conversion element of the present disclosure includes a rotating body having a rotating shaft and a plurality of fluorescent light emitting units provided on the rotating body. The plurality of fluorescent light emitting units includes a first fluorescent light emitting unit and a second fluorescent light emitting unit. The 1st fluorescence light emission part and the 2nd fluorescence light emission part are arrange | positioned on the circumference centering on a rotating shaft.
 この構成により、占有面積の大きいカラーホイールが不要となるため光源の小型化が可能になる。 This configuration eliminates the need for a color wheel that occupies a large area, thus reducing the size of the light source.
図1は本開示の第1の実施の形態に係る光源の構成を示す模式図である。FIG. 1 is a schematic diagram illustrating a configuration of a light source according to the first embodiment of the present disclosure. 図2は本開示の第1の実施の形態に係る光学変換素子の構成を示す模式図である。FIG. 2 is a schematic diagram illustrating a configuration of the optical conversion element according to the first embodiment of the present disclosure. 図3は本開示の第1の実施の形態に係る光源の構成および動作を示す模式図である。FIG. 3 is a schematic diagram illustrating the configuration and operation of the light source according to the first embodiment of the present disclosure. 図4は本開示の第1の実施の形態に係る光源において、7色源を時分割生成させる場合の蛍光発光部の励起タイミングチャートである。FIG. 4 is an excitation timing chart of the fluorescent light emitting unit when seven color sources are generated in a time division manner in the light source according to the first embodiment of the present disclosure. 図5Aは本開示の第1の実施の形態に係る光源における照射光源からの出射光のスペクトルを示す図である。FIG. 5A is a diagram illustrating a spectrum of emitted light from an irradiation light source in the light source according to the first embodiment of the present disclosure. 図5Bは本開示の第1の実施の形態に係る光源における蛍光発光部からの出射光のスペクトルを示す図である。FIG. 5B is a diagram illustrating a spectrum of emitted light from the fluorescent light emitting unit in the light source according to the first embodiment of the present disclosure. 図5Cは本開示の第1の実施の形態に係る光源におけるダイクロイックミラーの反射特性を示す図である。FIG. 5C is a diagram illustrating a reflection characteristic of the dichroic mirror in the light source according to the first embodiment of the present disclosure. 図5Dは本開示の第1の実施の形態に係る光源の出射光のスペクトルを示す図である。FIG. 5D is a diagram illustrating a spectrum of emitted light from the light source according to the first embodiment of the present disclosure. 図6は本開示の第1の実施の形態に係る光源の出射光の色度座標を示す図である。FIG. 6 is a diagram illustrating chromaticity coordinates of the emitted light of the light source according to the first embodiment of the present disclosure. 図7Aは本開示の第1の実施の形態の変形例1に係る光学変換素子の断面を示す模式図である。FIG. 7A is a schematic diagram illustrating a cross section of an optical conversion element according to Modification 1 of the first embodiment of the present disclosure. 図7Bは本開示の第1の実施の形態の変形例1に係る光学変換素子の断面を示す模式図である。FIG. 7B is a schematic diagram illustrating a cross section of the optical conversion element according to the first modification of the first embodiment of the present disclosure. 図8Aは本開示の第1の実施の形態の変形例2に係る光学変換素子の断面を示す模式図である。FIG. 8A is a schematic diagram illustrating a cross section of an optical conversion element according to Modification 2 of the first embodiment of the present disclosure. 図8Bは本開示の第1の実施の形態の変形例2に係る光学変換素子の断面を示す模式図である。FIG. 8B is a schematic diagram illustrating a cross section of the optical conversion element according to Modification 2 of the first embodiment of the present disclosure. 図9Aは本開示の第1の実施の形態に係る光学変換素子の変形例2の製造方法を示す模式図である。FIG. 9A is a schematic diagram illustrating a manufacturing method of Modification 2 of the optical conversion element according to the first embodiment of the present disclosure. 図9Bは本開示の第1の実施の形態に係る光学変換素子の変形例2の製造方法を示す模式図である。FIG. 9B is a schematic diagram illustrating a manufacturing method of Modification 2 of the optical conversion element according to the first embodiment of the present disclosure. 図9Cは本開示の第1の実施の形態に係る光学変換素子の変形例2の製造方法を示す模式図である。FIG. 9C is a schematic diagram illustrating a manufacturing method of Modification 2 of the optical conversion element according to the first embodiment of the present disclosure. 図9Dは本開示の第1の実施の形態に係る光学変換素子の変形例2の製造方法を示す模式図である。FIG. 9D is a schematic diagram illustrating a manufacturing method of Modification 2 of the optical conversion element according to the first embodiment of the present disclosure. 図10Aは本開示の第1の実施の形態の変形例3に係る光学変換素子断面を示す模式図である。FIG. 10A is a schematic diagram illustrating a cross section of an optical conversion element according to Modification 3 of the first embodiment of the present disclosure. 図10Bは本開示の第1の実施の形態の変形例3に係る光学変換素子の断面を示す模式図である。FIG. 10B is a schematic diagram illustrating a cross section of an optical conversion element according to Modification 3 of the first embodiment of the present disclosure. 図11は本開示の第2の実施の形態に係る光学変換素子を示す模式図である。FIG. 11 is a schematic diagram illustrating an optical conversion element according to the second embodiment of the present disclosure. 図12は本開示の第2の実施の形態に係る光源の構成を示す模式図である。FIG. 12 is a schematic diagram illustrating a configuration of a light source according to the second embodiment of the present disclosure. 図13Aは本開示の第2の実施の形態に係る光源における照射光源からの出射光のスペクトルを示す図である。FIG. 13A is a diagram illustrating a spectrum of light emitted from an irradiation light source in a light source according to the second embodiment of the present disclosure. 図13Bは本開示の第2の実施の形態に係る光源における蛍光発光部からの出射光のスペクトルを示す図である。FIG. 13B is a diagram illustrating a spectrum of emitted light from the fluorescent light emitting unit in the light source according to the second embodiment of the present disclosure. 図13Cは本開示の第2の実施の形態に係る光源におけるダイクロイックミラーの反射特性を示す図である。FIG. 13C is a diagram illustrating a reflection characteristic of the dichroic mirror in the light source according to the second embodiment of the present disclosure. 図13Dは本開示の第2の実施の形態に係る光源の出射光のスペクトルを示す図である。FIG. 13D is a diagram illustrating a spectrum of emitted light from a light source according to the second embodiment of the present disclosure. 図14は本開示の第2の実施の形態に係る光源の出射光の色度座標を示す図である。FIG. 14 is a diagram illustrating chromaticity coordinates of the emitted light of the light source according to the second embodiment of the present disclosure. 図15は本開示の第2の実施の形態の変形例1に係る光源の構成を示す模式的な断面図である。FIG. 15 is a schematic cross-sectional view illustrating a configuration of a light source according to Modification 1 of the second embodiment of the present disclosure. 図16は本開示の第2の実施の形態の変形例1に係る光源を示す模式図である。FIG. 16 is a schematic diagram illustrating a light source according to Modification 1 of the second embodiment of the present disclosure. 図17は本開示の第2の実施の形態の変形例1に係る光源における光学変換素子を示す模式図である。FIG. 17 is a schematic diagram illustrating an optical conversion element in a light source according to Modification 1 of the second embodiment of the present disclosure. 図18は本開示の第3の実施の形態に係る光源を示す模式図である。FIG. 18 is a schematic diagram illustrating a light source according to the third embodiment of the present disclosure. 図19は本開示の第3の実施の形態に係る光源における光学変換素子の模式図である。FIG. 19 is a schematic diagram of an optical conversion element in a light source according to the third embodiment of the present disclosure. 図20は本開示の第3の実施の形態の変形例に係る光源を示す模式図である。FIG. 20 is a schematic diagram illustrating a light source according to a modification of the third embodiment of the present disclosure. 図21は図20の21-21線における断面を示す模式図である。FIG. 21 is a schematic diagram showing a cross section taken along line 21-21 of FIG. 図22は本開示の第4の実施の形態に係る光学変換素子および光源を示す模式図である。FIG. 22 is a schematic diagram illustrating an optical conversion element and a light source according to the fourth embodiment of the present disclosure. 図23は本開示の第4の実施の形態の変形例に係る光学変換素子および光源を示す模式図である。FIG. 23 is a schematic diagram illustrating an optical conversion element and a light source according to a modification of the fourth embodiment of the present disclosure. 図24は本開示の第5の実施の形態に係る光源の構成を示す模式図である。FIG. 24 is a schematic diagram illustrating a configuration of a light source according to the fifth embodiment of the present disclosure. 図25は本開示の第5の実施の形態に係る光源の動作を示す模式図である。FIG. 25 is a schematic diagram illustrating an operation of the light source according to the fifth embodiment of the present disclosure. 図26Aは本開示の第5の実施の形態に係る光源における照射光源からの出射光のスペクトルを示す図である。FIG. 26A is a diagram illustrating a spectrum of light emitted from an irradiation light source in a light source according to the fifth embodiment of the present disclosure. 図26Bは本開示の第5の実施の形態に係る光源における蛍光発光部からの出射光のスペクトルを示す図である。FIG. 26B is a diagram showing a spectrum of emitted light from the fluorescent light emitting unit in the light source according to the fifth embodiment of the present disclosure. 図26Cは本開示の第5の実施の形態に光源におけるダイクロイックミラーの反射特性を示す図である。FIG. 26C is a diagram illustrating a reflection characteristic of a dichroic mirror in a light source according to the fifth embodiment of the present disclosure. 図26Dは本開示の第5の実施の形態に係る光源の出射光のスペクトルを示す図である。FIG. 26D is a diagram illustrating a spectrum of emitted light from a light source according to the fifth embodiment of the present disclosure. 図27は本開示の第5の実施の形態に係る光源の出射光の色度座標を示す図である。FIG. 27 is a diagram illustrating chromaticity coordinates of the emitted light of the light source according to the fifth embodiment of the present disclosure. 図28Aは本開示の第5の実施の形態の変形例に係る光源における照射光源からの出射光のスペクトルを示す図である。FIG. 28A is a diagram illustrating a spectrum of emitted light from an irradiation light source in a light source according to a modification of the fifth embodiment of the present disclosure. 図28Bは本開示の第5の実施の形態の変形例に係る光源における蛍光発光部からの出射光のスペクトルを示す図である。FIG. 28B is a diagram illustrating a spectrum of light emitted from the fluorescent light emitting unit in the light source according to the modification of the fifth embodiment of the present disclosure. 図28Cは本開示の第5の実施の形態の変形例に係る光源におけるダイクロイックミラーの反射特性を示す図である。FIG. 28C is a diagram illustrating a reflection characteristic of the dichroic mirror in the light source according to the modification of the fifth embodiment of the present disclosure. 図28Dは本開示の第5の実施の形態の変形例に係る光源の出射光のスペクトルを示す図である。FIG. 28D is a diagram illustrating a spectrum of emitted light from a light source according to a modification of the fifth embodiment of the present disclosure. 図29は本開示の第5の実施の形態の変形例に係る光源の出射光の色度座標を示す図である。FIG. 29 is a diagram illustrating chromaticity coordinates of outgoing light of a light source according to a modification of the fifth embodiment of the present disclosure. 図30は従来の光源の構成を示す模式図である。FIG. 30 is a schematic diagram showing the configuration of a conventional light source. 図31は従来の光源におけるカラーホイールの構成を示す模式図である。FIG. 31 is a schematic diagram showing a configuration of a color wheel in a conventional light source.
 以下、本開示の光学変換素子および光源について、実施の形態に基づいて説明する。なお、以下で説明する実施の形態は、いずれも本開示の好ましい一具体例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素の配置方法および使用形態などは、一例であり、本開示を限定する趣旨ではない。また、以下の実施の形態における構成要素のうち、本開示の最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。 Hereinafter, the optical conversion element and the light source of the present disclosure will be described based on the embodiments. Note that each of the embodiments described below shows a preferred specific example of the present disclosure. Numerical values, shapes, materials, arrangement methods and usage forms of components shown in the following embodiments are merely examples, and are not intended to limit the present disclosure. In addition, among the constituent elements in the following embodiments, constituent elements that are not described in the independent claims indicating the highest concept of the present disclosure are described as optional constituent elements.
 なお、各図は、模式図であり、必ずしも厳密に図示したものではない。また、各図において、同じ構成要素には同じ符号を付している。 Each figure is a schematic diagram and is not necessarily shown strictly. Moreover, in each figure, the same code | symbol is attached | subjected to the same component.
 (第1の実施の形態)
 以下、本開示の第1の実施の形態およびその変形例に係る光学変換素子および光源の構成と効果について、図1から図10A、図10Bを用いて説明する。
(First embodiment)
Hereinafter, configurations and effects of the optical conversion element and the light source according to the first embodiment of the present disclosure and modifications thereof will be described with reference to FIGS. 1 to 10A and 10B.
 図1は、本開示の第1の実施の形態に係る光源1の構成を示す図である。図2は、本開示の第1の実施の形態に係る光源1に用いられる光学変換素子50の構成を示す模式図である。また、図3は本開示の第1の実施の形態に係る光源1を画像投写装置に用いる場合の構成、および光源1から赤色、緑色、青色蛍光を出射する際の動作説明図である。図4は、本開示の第1の実施の形態に係る光源1において、7色源を時分割生成させる場合の第1の蛍光発光部51R、第2の蛍光発光部51G、第3の蛍光発光部51Bの励起・発光タイミングチャート図である。 FIG. 1 is a diagram illustrating a configuration of a light source 1 according to the first embodiment of the present disclosure. FIG. 2 is a schematic diagram illustrating a configuration of the optical conversion element 50 used in the light source 1 according to the first embodiment of the present disclosure. FIG. 3 is a diagram illustrating a configuration when the light source 1 according to the first embodiment of the present disclosure is used in the image projection apparatus, and an operation explanatory diagram when emitting red, green, and blue fluorescence from the light source 1. FIG. 4 shows the first fluorescent light emitting unit 51R, the second fluorescent light emitting unit 51G, and the third fluorescent light emission when the seven color sources are generated in a time division manner in the light source 1 according to the first embodiment of the present disclosure. It is an excitation / light emission timing chart of a part 51B.
 (構成)
 図1に示すように、本実施の形態に係る光源1は光学変換素子50を有する。光学変換素子50は、図2に示すように、回転軸57を有する回転体58と、回転体58に設けられた複数の蛍光発光部と、を備える。本実施の形態における複数の蛍光発光部は、第1の蛍光発光部51R、第2の蛍光発光部51G、第3の蛍光発光部51Bである。第1の蛍光発光部51R、第2の蛍光発光部51G、第3の蛍光発光部51Bは回転軸57を中心とする円周上に配置されている。
(Constitution)
As shown in FIG. 1, the light source 1 according to the present embodiment has an optical conversion element 50. As shown in FIG. 2, the optical conversion element 50 includes a rotating body 58 having a rotating shaft 57 and a plurality of fluorescent light emitting units provided on the rotating body 58. The plurality of fluorescent light emitting units in the present embodiment are a first fluorescent light emitting unit 51R, a second fluorescent light emitting unit 51G, and a third fluorescent light emitting unit 51B. The first fluorescent light emitting unit 51R, the second fluorescent light emitting unit 51G, and the third fluorescent light emitting unit 51B are arranged on a circumference around the rotation shaft 57.
 光源1は第1の照射光源10R、第2の照射光源10G、第3の照射光源10Bを有する。第1の照射光源10Rから出射された第1の光75Rが第1の蛍光発光部51Rに入射する。第2の照射光源10Gから出射された第2の光75Gが第2の蛍光発光部51Gに入射する。第3の照射光源10Bから出射された第3の光75Bが第3の蛍光発光部51Bに入射する。第1の蛍光発光部51Rが第1の光75Rを受けると赤色光を出射する。第2の蛍光発光部51Gが第2の光75Gを受けると緑色光を出射する。第3の蛍光発光部51Bが第3の光75Bを受けると青色光を出射する。これら赤色光、緑色光、青色光が混合され混色光100となり、混色光100が光源1から出射される。 The light source 1 includes a first irradiation light source 10R, a second irradiation light source 10G, and a third irradiation light source 10B. The first light 75R emitted from the first irradiation light source 10R enters the first fluorescent light emitting unit 51R. The second light 75G emitted from the second irradiation light source 10G enters the second fluorescent light emitting unit 51G. The third light 75B emitted from the third irradiation light source 10B enters the third fluorescent light emitting unit 51B. When the first fluorescent light emitting unit 51R receives the first light 75R, it emits red light. When the second fluorescent light emitting unit 51G receives the second light 75G, it emits green light. When the third fluorescent light emitting unit 51B receives the third light 75B, it emits blue light. These red light, green light, and blue light are mixed to form a mixed color light 100, and the mixed color light 100 is emitted from the light source 1.
 この構成により、光源1が、占有面積の大きいカラーホイールを用いることなく混色光100を出射することができ、光源1の小型化が可能になる。 With this configuration, the light source 1 can emit the mixed color light 100 without using a color wheel having a large occupied area, and the light source 1 can be downsized.
 以下、必須ではない任意の構成を含めたより具体的な構成について説明する。 Hereinafter, more specific configurations including optional configurations that are not essential will be described.
 本実施の形態において、第1の照射光源10R、第2の照射光源10G、第3の照射光源10Bは、例えば窒化物半導体レーザであり、主に、近紫外光を放射する。なお、本実施の形態においては、第1の光75R、第2の光75G、第3の光75Bの波長範囲がそれぞれ等しいか否かについては問わない。 In the present embodiment, the first irradiation light source 10R, the second irradiation light source 10G, and the third irradiation light source 10B are, for example, nitride semiconductor lasers, and mainly emit near ultraviolet light. In the present embodiment, it does not matter whether the wavelength ranges of the first light 75R, the second light 75G, and the third light 75B are equal.
 図2に示す光学変換素子50は、上述したとおり回転体58を有し、回転体58の直径は例えば5mmから20mmである。光学変換素子50の具体的な構成は、例えば円柱状のアルミニウム合金棒である回転体58の外周面上に、第1の蛍光発光部51R、第2の蛍光発光部51G、第3の蛍光発光部51Bが配置されている。第1の蛍光発光部51R、第2の蛍光発光部51G、第3の蛍光発光部51Bは回転軸57を中心とする円周上に配置されている。 2 has the rotating body 58 as described above, and the diameter of the rotating body 58 is, for example, 5 mm to 20 mm. A specific configuration of the optical conversion element 50 is, for example, on the outer peripheral surface of the rotating body 58 that is a cylindrical aluminum alloy rod, the first fluorescent light emitting unit 51R, the second fluorescent light emitting unit 51G, and the third fluorescent light emitting device. The part 51B is arranged. The first fluorescent light emitting unit 51R, the second fluorescent light emitting unit 51G, and the third fluorescent light emitting unit 51B are arranged on a circumference around the rotation shaft 57.
 第1の蛍光発光部51Rは、赤色蛍光体と、この赤色蛍光体が混合されたバインダーとを有する。赤色蛍光体は、例えば、主成分がEuとSmを賦活させたLa12((La、Eu、Sm)12蛍光体)である。バインダーは、例えばジメチルシリコーンなどの有機透明材料、もしくは、例えば低融点ガラスなどの無機透明材料である。 The first fluorescent light emitting unit 51R includes a red phosphor and a binder in which the red phosphor is mixed. The red phosphor is, for example, La 2 W 3 O 12 ((La, Eu, Sm) 2 W 2 O 12 phosphor) whose main component is activated Eu and Sm. The binder is an organic transparent material such as dimethyl silicone, or an inorganic transparent material such as low-melting glass.
 第2の蛍光発光部51Gは、緑色蛍光体と、この緑色蛍光体が混合されたバインダーとを有する。緑色蛍光体は、例えば、主成分がCe賦活Y(Al、Ga)12である。バインダーは、例えばジメチルシリコーンなどの有機透明材料、もしくは、例えば低融点ガラスなどの無機透明材料である。 The second fluorescent light emitting unit 51G includes a green phosphor and a binder in which the green phosphor is mixed. For example, the main component of the green phosphor is Ce-activated Y 3 (Al, Ga) 5 O 12 . The binder is an organic transparent material such as dimethyl silicone, or an inorganic transparent material such as low-melting glass.
 第3の蛍光発光部51Bは、青色蛍光体と、この青色蛍光体が混合されたバインダーとを有する。青色蛍光体は、例えば、主成分がEu賦活SrMgSiである。バインダーは、例えばジメチルシリコーンなどの有機透明材料、もしくは、例えば低融点ガラスなどの無機透明材料である。 The 3rd fluorescence light emission part 51B has a blue fluorescent substance and the binder with which this blue fluorescent substance was mixed. For example, the main component of the blue phosphor is Eu-activated Sr 3 MgSi 2 O 8 . The binder is an organic transparent material such as dimethyl silicone, or an inorganic transparent material such as low-melting glass.
 第1の蛍光発光部51R、第2の蛍光発光部51G、第3の蛍光発光部51Bの厚みは、例えば100μmから1000μmであり、第1の蛍光発光部51R、第2の蛍光発光部51G、第3の蛍光発光部51Bの幅は、5mmから10mmである。 The thicknesses of the first fluorescent light emitting unit 51R, the second fluorescent light emitting unit 51G, and the third fluorescent light emitting unit 51B are, for example, 100 μm to 1000 μm, and the first fluorescent light emitting unit 51R, the second fluorescent light emitting unit 51G, The width of the third fluorescent light emitting unit 51B is 5 mm to 10 mm.
 図1及び図2に示すように、回転体58の中心部には回転軸57が設けられ、回転軸57の一方の端部は軸受け59で保持されている。回転軸57の他方の端部は、モータ等の回転機構55の連結部56に固定されている。回転機構55が回転体58を、回転軸57を中心として回転させる。 As shown in FIGS. 1 and 2, a rotating shaft 57 is provided at the center of the rotating body 58, and one end of the rotating shaft 57 is held by a bearing 59. The other end of the rotating shaft 57 is fixed to a connecting portion 56 of a rotating mechanism 55 such as a motor. The rotating mechanism 55 rotates the rotating body 58 around the rotating shaft 57.
 上記の光学変換素子50を具備した光源1は、より詳しくは以下のように構成される。 More specifically, the light source 1 including the optical conversion element 50 is configured as follows.
 図1に示すように、まず光源1には、第1の照射光源10R、第2の照射光源10G、第3の照射光源10Bを有する。第1の照射光源10R、第2の照射光源10G、第3の照射光源10Bは、例えば光出力が2ワットで、発光波長の中心波長が380nmから430nmの範囲にある半導体レーザである。第1の照射光源10R、第2の照射光源10G、第3の照射光源10Bがヒートシンク90上に配置されている。本実施の形態においては、第1の照射光源10Rが3個、第2の照射光源10Gが3個、第3の照射光源10Bが3個配置されている。 As shown in FIG. 1, first, the light source 1 includes a first irradiation light source 10R, a second irradiation light source 10G, and a third irradiation light source 10B. The first irradiation light source 10R, the second irradiation light source 10G, and the third irradiation light source 10B are, for example, semiconductor lasers having an optical output of 2 watts and a central wavelength of emission wavelength in the range of 380 nm to 430 nm. The first irradiation light source 10 </ b> R, the second irradiation light source 10 </ b> G, and the third irradiation light source 10 </ b> B are disposed on the heat sink 90. In the present embodiment, three first irradiation light sources 10R, three second irradiation light sources 10G, and three third irradiation light sources 10B are arranged.
 ヒートシンク90の実装面90aは、光学変換素子50の回転軸57に対して平行に配置されている。第1の照射光源10R、第2の照射光源10G、第3の照射光源10Bは、実装面90aにマトリックス状に配置される。また、放熱フィン90bが、ヒートシンク90における実装面90aと反対の面に形成されている。第1の照射光源10R、第2の照射光源10G、第3の照射光源10Bから発生した熱を効率良く空気中に排熱させるため、ファン95が、放熱フィン90bと対向する位置に配置されている。そして、第1の照射光源10R、第2の照射光源10G、第3の照射光源10Bと光学変換素子50の間には、コリメートレンズ20、第1のリレーレンズ25R、25G、25B、第2のリレーレンズ27R、27G、25B、第1のダイクロイックミラー30R、第2のダイクロイックミラー30G、第3のダイクロイックミラー30B、第1の集光レンズ40R、第2の集光レンズ40G、第3の集光レンズ40Bが、配置されている。このとき、コリメートレンズ20は、第1の照射光源10R、第2の照射光源10G、第3の照射光源10Bのそれぞれに対応するようにマトリックス状に配置されている。その他の光学部品は、励起光から赤色光、緑色光、青色光を生成させるため、第1の蛍光発光部51R、第2の蛍光発光部51G、第3の蛍光発光部51Bに位置に対応して配置される。 The mounting surface 90 a of the heat sink 90 is disposed in parallel to the rotation shaft 57 of the optical conversion element 50. The first irradiation light source 10R, the second irradiation light source 10G, and the third irradiation light source 10B are arranged in a matrix on the mounting surface 90a. Further, the heat radiating fins 90b are formed on the surface of the heat sink 90 opposite to the mounting surface 90a. In order to efficiently exhaust heat generated from the first irradiation light source 10R, the second irradiation light source 10G, and the third irradiation light source 10B into the air, the fan 95 is disposed at a position facing the radiation fin 90b. Yes. And between the 1st irradiation light source 10R, the 2nd irradiation light source 10G, the 3rd irradiation light source 10B, and the optical conversion element 50, the collimating lens 20, 1st relay lens 25R, 25G, 25B, 2nd Relay lenses 27R, 27G, 25B, first dichroic mirror 30R, second dichroic mirror 30G, third dichroic mirror 30B, first condenser lens 40R, second condenser lens 40G, third condenser A lens 40B is disposed. At this time, the collimating lens 20 is arranged in a matrix so as to correspond to each of the first irradiation light source 10R, the second irradiation light source 10G, and the third irradiation light source 10B. The other optical components generate red light, green light, and blue light from the excitation light, and correspond to the positions of the first fluorescent light emitting unit 51R, the second fluorescent light emitting unit 51G, and the third fluorescent light emitting unit 51B. Arranged.
 第1の照射光源10Rから出射された第1の光75Rはコリメートレンズ20により平行光となり、さらに凸レンズである第1のリレーレンズ25Rと、凹レンズである第2のリレーレンズ27Rを介して、第1のダイクロイックミラー30Rへと導かれる。第1のダイクロイックミラー30Rは、図5Cに示すように、例えば、波長380nmから600nmの光を透過し、波長600nmから800nmの光を反射するように設定される。第1の光75Rの主光軸には、第1のダイクロイックミラー30R、第1の集光レンズ40R、第1の蛍光発光部51Rが順に並ぶように配置される。第1のダイクロイックミラー30Rを透過した第1の光75Rは第1の集光レンズ40Rにより集光され、第1の蛍光発光部51R上に照射される。この際、第1の集光レンズ40Rで集光された第1の光75Rの主光軸は、光学変換素子50の回転軸57に直交する。同様に、第2の照射光源10Gから出射され第2の光75Gが、第2の集光レンズ40Gを介して第2の蛍光発光部51G上に照射される。第3の照射光源10Bから出射された第3の光75Bが、第3の集光レンズ40Bを介して第3の蛍光発光部51B上に照射される。 The first light 75R emitted from the first irradiation light source 10R is converted into parallel light by the collimating lens 20, and is further passed through the first relay lens 25R that is a convex lens and the second relay lens 27R that is a concave lens. 1 to the dichroic mirror 30R. As shown in FIG. 5C, the first dichroic mirror 30R is set to transmit light with a wavelength of 380 nm to 600 nm and reflect light with a wavelength of 600 nm to 800 nm, for example. On the main optical axis of the first light 75R, the first dichroic mirror 30R, the first condenser lens 40R, and the first fluorescent light emitting unit 51R are arranged in this order. The first light 75R that has passed through the first dichroic mirror 30R is condensed by the first condenser lens 40R and irradiated onto the first fluorescent light emitting unit 51R. At this time, the main optical axis of the first light 75 </ b> R collected by the first condenser lens 40 </ b> R is orthogonal to the rotation axis 57 of the optical conversion element 50. Similarly, second light 75G emitted from the second irradiation light source 10G is irradiated onto the second fluorescent light emitting unit 51G via the second condenser lens 40G. The third light 75B emitted from the third irradiation light source 10B is irradiated onto the third fluorescent light emitting unit 51B via the third condenser lens 40B.
 第1の蛍光発光部51Rが第1の光75Rを受けると赤色光を出射し、第2の蛍光発光部51Gが第2の光75Gを受けると緑色光を出射し、第3の蛍光発光部51Bが第3の光75Bを受けると青色光を出射する。 When the first fluorescent light emitting portion 51R receives the first light 75R, it emits red light, and when the second fluorescent light emitting portion 51G receives the second light 75G, it emits green light, and the third fluorescent light emitting portion. When 51B receives the third light 75B, it emits blue light.
 第2のダイクロイックミラー30Gは、例えば、図5Cに示すように、波長380nmから500nmの光を透過し、波長500nmから800nmの光を反射するように設定されている。また、第3のダイクロイックミラー30Bは、例えば、波長380nmから430nmの光を透過し、波長430nmから800nmの光を反射するように設定されている。 For example, as shown in FIG. 5C, the second dichroic mirror 30G is set to transmit light having a wavelength of 380 nm to 500 nm and reflect light having a wavelength of 500 nm to 800 nm. Further, the third dichroic mirror 30B is set to transmit light with a wavelength of 380 nm to 430 nm and reflect light with a wavelength of 430 nm to 800 nm, for example.
 第1のダイクロイックミラー30Rは第1の光75Rを透過し、且つ第1の蛍光発光部51Rからの赤色光を反射する。第2のダイクロイックミラー30Gは第2の光75Gを透過し、且つ第2の蛍光発光部51Gからの緑色光を反射する。第3のダイクロイックミラー30Bは第3の光75Bを透過し、且つ第3の蛍光発光部51Bからの青色光を反射する。 The first dichroic mirror 30R transmits the first light 75R and reflects the red light from the first fluorescent light emitting unit 51R. The second dichroic mirror 30G transmits the second light 75G and reflects the green light from the second fluorescent light emitting unit 51G. The third dichroic mirror 30B transmits the third light 75B and reflects the blue light from the third fluorescent light emitting unit 51B.
 一方、第1のダイクロイックミラー30Rは、青色光と緑色光を透過する。第2のダイクロイックミラー30Gは青色光を透過する。 On the other hand, the first dichroic mirror 30R transmits blue light and green light. The second dichroic mirror 30G transmits blue light.
 このため、第1のダイクロイックミラー30Rに反射された赤色光と、第2のダイクロイックミラー30Gに反射された緑色光と、第3のダイクロイックミラー30Bに反射された青色光が、同一の光軸に合成され、混色光100となる。 For this reason, the red light reflected by the first dichroic mirror 30R, the green light reflected by the second dichroic mirror 30G, and the blue light reflected by the third dichroic mirror 30B have the same optical axis. The mixed color light 100 is synthesized.
 (動作)
 次に、本実施の形態に係る光源1の動作について、図3に示す、光源1を具備する画像投写装置199を用いて説明する。本実施の形態における画像投写装置199は、光源1の出射部に、画像表示素子71と、投影レンズ65などを備え、画像を投写することができる。
(Operation)
Next, the operation of the light source 1 according to the present embodiment will be described using an image projection apparatus 199 including the light source 1 shown in FIG. The image projection apparatus 199 according to the present embodiment includes an image display element 71, a projection lens 65, and the like at the emission portion of the light source 1, and can project an image.
 本実施の形態の光源1は、混色光100を放射する。混色光100は、主な発光波長が590から660nmの範囲の赤色光78Rと、主な発光波長が500から590nmの範囲の緑色光78Gと、主な発光波長が430から500nmの青色光78Bとが、時間に連続して合成されている。つまり、混色光100は、例えば、三原色の光である赤色光78R、緑色光78G、青色光78Bが、順に周期的に放射されることによって生成された白色光である。一周期は例えば倍速スキャン時には約8.3ms(120Hz)である。 The light source 1 of the present embodiment emits mixed color light 100. The mixed color light 100 includes a red light 78R having a main emission wavelength in the range of 590 to 660 nm, a green light 78G having a main emission wavelength in the range of 500 to 590 nm, and a blue light 78B having a main emission wavelength of 430 to 500 nm. Are synthesized continuously in time. That is, the mixed color light 100 is, for example, white light generated by periodically emitting red light 78R, green light 78G, and blue light 78B, which are light of three primary colors. One period is, for example, about 8.3 ms (120 Hz) during double-speed scanning.
 続いて、光源1の動作について説明する。第1の照射光源10Rから出射された第1の光75Rは、コリメートレンズ20および第1のリレーレンズ25Rと第2のリレーレンズ27Rにより一つの光束となる。第1の光75Rは、例えば中心波長が405nmであり、全光量が18ワットである。第1の光75Rは、第1のダイクロイックミラー30Rを通過する。第1の集光レンズ40Rが第1の光75Rを第1の蛍光発光部51Rに例えば1mm以下の面積で集光する。 Next, the operation of the light source 1 will be described. The first light 75R emitted from the first irradiation light source 10R becomes one light flux by the collimating lens 20, the first relay lens 25R, and the second relay lens 27R. For example, the first light 75R has a center wavelength of 405 nm and a total light amount of 18 watts. The first light 75R passes through the first dichroic mirror 30R. The first condenser lens 40R condenses the first light 75R on the first fluorescent light emitting unit 51R, for example, with an area of 1 mm 2 or less.
 第2の照射光源10Gから出射された第2の光75Gは、コリメートレンズ20および第1のリレーレンズ25Gと第2のリレーレンズ27Gにより一つの光束となる。第2の光75Gは、例えば中心波長が405nmであり、全光量が18ワットである。第2の光75Gは、第2のダイクロイックミラー30Gを通過する。第2の集光レンズ40Gが第2の光75Gを第2の蛍光発光部51Gに例えば1mm以下の面積で集光する。 The second light 75G emitted from the second irradiation light source 10G becomes one light flux by the collimating lens 20, the first relay lens 25G, and the second relay lens 27G. For example, the second light 75G has a center wavelength of 405 nm and a total light amount of 18 watts. The second light 75G passes through the second dichroic mirror 30G. The second condenser lens 40G condenses the second light 75G on the second fluorescent light emitting unit 51G with an area of 1 mm 2 or less, for example.
 第3の照射光源10Bから出射された第3の光75Bは、コリメートレンズ20および第1のリレーレンズ25Bと第2のリレーレンズ27Bにより一つの光束となる。第3の光75Bは、例えば中心波長が405nmであり、全光量が18ワットである。第3の光75Bは、第3のダイクロイックミラー30Bを通過する。第3の集光レンズ40Bが第3の光75Bを第3の蛍光発光部51Bに例えば1mm以下の面積で集光する。 The third light 75B emitted from the third irradiation light source 10B becomes one light flux by the collimating lens 20, the first relay lens 25B, and the second relay lens 27B. For example, the third light 75B has a central wavelength of 405 nm and a total light amount of 18 watts. The third light 75B passes through the third dichroic mirror 30B. The third condenser lens 40B condenses the third light 75B on the third fluorescent light emitting unit 51B with an area of 1 mm 2 or less, for example.
 第1の集光レンズ40Rに集光された第1の光75Rは、第1の蛍光発光部51Rに含まれる赤色蛍光体により、主な発光波長が590nmから660nmの範囲にある赤色光78Rに変換され、第1の集光レンズ40Rに入射する。赤色光78Rは、その放射角が全方位のランバーシアン配光であるが、発光領域が1mm以下である。そのため、第1の集光レンズ40Rが、赤色光78Rをほぼ平行光とすることができる。赤色光78Rが、第1のダイクロイックミラー30Rに入射し、その大部分が第1のダイクロイックミラー30Rで反射され、赤色光79Rとなる。赤色光79Rは、第3のリレーレンズ41に入射する。 The first light 75R collected by the first condenser lens 40R is converted into red light 78R having a main emission wavelength in the range of 590 nm to 660 nm by the red phosphor included in the first fluorescent light emitting unit 51R. It is converted and enters the first condenser lens 40R. The red light 78R is a Lambertian light distribution whose radiating angle is omnidirectional, but the light emitting area is 1 mm 2 or less. Therefore, the first condenser lens 40R can make the red light 78R substantially parallel light. The red light 78R is incident on the first dichroic mirror 30R, most of which is reflected by the first dichroic mirror 30R, and becomes red light 79R. The red light 79 </ b> R is incident on the third relay lens 41.
 第2の集光レンズ40Gに集光された第2の光75Gは、第2の蛍光発光部51Gに含まれる緑色蛍光体により、主な発光波長が500nmから590nmの範囲にある緑色光78Gに変換され、第2の集光レンズ40Gに入射する。緑色光78Gは、その放射角が全方位のランバーシアン配光であるが、発光領域が1mm以下である。そのため、第2の集光レンズ40Gが、緑色光78Gをほぼ平行光とすることができる。緑色光78Gが、第2のダイクロイックミラー30Gに入射し、その大部分が第2のダイクロイックミラー30Gで反射され、緑色光79Gとなる。緑色光79Gは、第3のリレーレンズ41に入射する。 The second light 75G collected by the second condenser lens 40G is converted into green light 78G having a main emission wavelength in the range of 500 nm to 590 nm by the green phosphor contained in the second fluorescent light emitting unit 51G. After being converted, the light enters the second condenser lens 40G. The green light 78G is a Lambertian light distribution whose radiating angle is omnidirectional, but the light emitting area is 1 mm 2 or less. Therefore, the second condenser lens 40G can make the green light 78G substantially parallel light. The green light 78G is incident on the second dichroic mirror 30G, most of which is reflected by the second dichroic mirror 30G, and becomes green light 79G. The green light 79 </ b> G enters the third relay lens 41.
 第3の集光レンズ40Bに集光された第3の光75Bは、第3の蛍光発光部51Bに含まれる青色蛍光体により、主な発光波長が430nmから500nmの範囲にある青色光78Bに変換され、第3の集光レンズ40Bに入射する。青色光78Bは、その放射角が全方位のランバーシアン配光であるが、発光領域が1mm以下である。そのため、第3の集光レンズ40Bが、青色光78Bをほぼ平行光とすることができる。青色光78Bが、第3のダイクロイックミラー30Bに入射し、その大部分が第3のダイクロイックミラー30Bで反射され、青色光79Bとなる。青色光79Bは、第3のリレーレンズ41に入射する。 The third light 75B collected by the third condenser lens 40B is converted into blue light 78B having a main emission wavelength in the range of 430 nm to 500 nm by the blue phosphor included in the third fluorescent light emitting unit 51B. After being converted, the light enters the third condenser lens 40B. The blue light 78B is a Lambertian light distribution whose radiating angle is omnidirectional, but the light emitting area is 1 mm 2 or less. Therefore, the third condenser lens 40B can make the blue light 78B substantially parallel light. The blue light 78B is incident on the third dichroic mirror 30B, most of which is reflected by the third dichroic mirror 30B, and becomes blue light 79B. The blue light 79 </ b> B is incident on the third relay lens 41.
 第3のリレーレンズ41において、赤色光79R、緑色光79G、青色光79Bが重畳され、混色光100となる。混色光100は、第3のリレーレンズ41でロッドインテグレータ42の端部に集光される。混色光100は、ロッドインテグレータ42内で多重反射され、波面の光強度分布が矩形に変換された後、放射される。その後、第4のリレーレンズ43が混色光100を直進光にする。混色光100は、反射ミラー45により、例えばDMD(Digital Mirror Device)などの反射型の画像表示素子71に導かれる。画像表示素子71に照射された混色光100は2次元の映像信号が重畳された信号光80となり反射され、投影レンズ65に入射する。投影レンズ65は、信号光80を所定のスクリーン(図示なし)に投影可能な映像光89にし、映像光89が画像投写装置199から出射される。 In the third relay lens 41, the red light 79R, the green light 79G, and the blue light 79B are superimposed to become the mixed color light 100. The mixed color light 100 is condensed on the end of the rod integrator 42 by the third relay lens 41. The mixed color light 100 is multiple-reflected in the rod integrator 42 and is emitted after the light intensity distribution of the wave front is converted into a rectangle. Thereafter, the fourth relay lens 43 turns the mixed-color light 100 into straight light. The mixed color light 100 is guided by a reflection mirror 45 to a reflective image display element 71 such as DMD (Digital Mirror Device). The mixed light 100 irradiated to the image display element 71 is reflected as signal light 80 on which a two-dimensional video signal is superimposed, and is incident on the projection lens 65. The projection lens 65 turns the signal light 80 into image light 89 that can be projected onto a predetermined screen (not shown), and the image light 89 is emitted from the image projection device 199.
 さらに混色光100を生成するための第1の照射光源10R、第2の照射光源10G、第3の照射光源10Bの駆動方法について説明する。図4は本開示の第1の実施の形態に係る光源1において、7色源を時分割生成させる場合の蛍光発光部の励起・発光タイミングチャートを示す図である。本実施の形態においては、1周期における出射光が青、緑、赤、白、シアン、黄、黒の順に切り替わる。まず、第3の光75Bを発する第3の照射光源10Bを単独でON状態とする。次に、第2の光75Gを発する第2の照射光源10Gを単独でON状態とする。その後、第1の光75Rを発する第1の照射光源10Rを単独でON状態とする。次に、第1の照射光源10R、第2の照射光源10G、第3の照射光源10B全てを同時にON状態とする。その後、第2の照射光源10G、第3の照射光源10Bを同時にON状態とする。次に、第1の照射光源10R、第2の照射光源10Gを同時にON状態とする。その後、第1の照射光源10R、第2の照射光源10G、第3の照射光源10B全てをOFF状態とする。 Further, a driving method of the first irradiation light source 10R, the second irradiation light source 10G, and the third irradiation light source 10B for generating the mixed color light 100 will be described. FIG. 4 is a diagram illustrating an excitation / light emission timing chart of the fluorescent light emitting unit when the seven color sources are generated in a time division manner in the light source 1 according to the first embodiment of the present disclosure. In the present embodiment, the emitted light in one cycle is switched in the order of blue, green, red, white, cyan, yellow, and black. First, the third irradiation light source 10B that emits the third light 75B is turned on alone. Next, the second irradiation light source 10G that emits the second light 75G is turned on alone. Thereafter, the first irradiation light source 10R that emits the first light 75R is turned on alone. Next, all of the first irradiation light source 10R, the second irradiation light source 10G, and the third irradiation light source 10B are simultaneously turned on. Thereafter, the second irradiation light source 10G and the third irradiation light source 10B are simultaneously turned on. Next, the first irradiation light source 10R and the second irradiation light source 10G are simultaneously turned on. Thereafter, all of the first irradiation light source 10R, the second irradiation light source 10G, and the third irradiation light source 10B are turned off.
 このように動作させることにより、蛍光発光部が第1の蛍光発光部51R、第2の蛍光発光部51G、第3の蛍光発光部51Bの3種類しかない場合でも、光源1が4色以上の混色光100を出射することができる。この効果は、第1の蛍光発光部51Rに対応する第1の光75Rと、第2の蛍光発光部51Gに対応する第2の光75Gと、第3の蛍光発光部51Bに対応する第3の光75Bとを、独立に照射させることができる構成であるからこそ得られる効果であり、従来構成よりも、より自由に発光スペクトルを変化させることができる。 By operating in this way, even when there are only three types of fluorescent light emitting units, the first fluorescent light emitting unit 51R, the second fluorescent light emitting unit 51G, and the third fluorescent light emitting unit 51B, the light source 1 has four or more colors. The mixed color light 100 can be emitted. The effect is that the first light 75R corresponding to the first fluorescent light emitting part 51R, the second light 75G corresponding to the second fluorescent light emitting part 51G, and the third light corresponding to the third fluorescent light emitting part 51B. This is an effect that can be obtained because the light 75B can be irradiated independently, and the emission spectrum can be changed more freely than in the conventional structure.
 続いて、図5A、図5B、図5C、図5Dおよび図6を用いて、本実施の形態の光源1から放射される混色光100のスペクトルおよび色度座標について説明する。図5Aは、第1の照射光源10R、第2の照射光源10G、第3の照射光源10Bから放射される第1の光75R、第2の光75G、第3の光75Bの発光スペクトルを示す。図5Bは、第1の蛍光発光部51R、第2の蛍光発光部51G、第3の蛍光発光部51Bから放射される赤色光78R、緑色光78G、青色光78Bの発光スペクトルを示す。図5Cは、第1のダイクロイックミラー30R、第2のダイクロイックミラー30G、第3のダイクロイックミラー30Bの反射率の波長依存性を示す。図5Dは、第1のダイクロイックミラー30R、第2のダイクロイックミラー30G、第3のダイクロイックミラー30Bで反射されて、光源1から外部に出射される赤色光79R、緑色光79G、青色光79Bの発光スペクトルを示す。また、図5Dは、赤色光79R、緑色光79G、青色光79Bが混色されてなる白色の混色光100Wも示す。図6は、赤色光78R、緑色光78G、青色光78B、赤色光79R、緑色光79G、青色光79B、及び白色の混色光100W、sRGB規格および黒体輻射軌跡の色度座標を示す。 Subsequently, the spectrum and chromaticity coordinates of the mixed-color light 100 emitted from the light source 1 of the present embodiment will be described with reference to FIGS. 5A, 5B, 5C, 5D, and 6. FIG. FIG. 5A shows emission spectra of the first light 75R, the second light 75G, and the third light 75B emitted from the first irradiation light source 10R, the second irradiation light source 10G, and the third irradiation light source 10B. . FIG. 5B shows emission spectra of the red light 78R, the green light 78G, and the blue light 78B emitted from the first fluorescent light emitting unit 51R, the second fluorescent light emitting unit 51G, and the third fluorescent light emitting unit 51B. FIG. 5C shows the wavelength dependence of the reflectivity of the first dichroic mirror 30R, the second dichroic mirror 30G, and the third dichroic mirror 30B. FIG. 5D shows the emission of red light 79R, green light 79G, and blue light 79B that is reflected from the first dichroic mirror 30R, the second dichroic mirror 30G, and the third dichroic mirror 30B and emitted from the light source 1 to the outside. The spectrum is shown. FIG. 5D also shows white mixed light 100W obtained by mixing red light 79R, green light 79G, and blue light 79B. FIG. 6 shows the chromaticity coordinates of the red light 78R, the green light 78G, the blue light 78B, the red light 79R, the green light 79G, the blue light 79B, and the white mixed light 100W, the sRGB standard, and the black body radiation locus.
 図5Aに示す発光波長が405nmの第1の光75R、第2の光75G第3の光75Bが、図5Bに示すスペクトルを有する、赤色光78R、緑色光78G、青色光78Bに変換される。そして、図5Cに示すような反射特性を有する第1のダイクロイックミラー30R、第2のダイクロイックミラー30G、第3のダイクロイックミラー30Bを用いることにより、図5Dに示すようなスペクトルを有する、赤色光79R、緑色光79G、青色光79B、及び白色の混色光100Wを放射させることができる。 The first light 75R, the second light 75G, and the third light 75B having an emission wavelength of 405 nm shown in FIG. 5A are converted into red light 78R, green light 78G, and blue light 78B having the spectrum shown in FIG. 5B. . Then, by using the first dichroic mirror 30R, the second dichroic mirror 30G, and the third dichroic mirror 30B having reflection characteristics as shown in FIG. 5C, red light 79R having a spectrum as shown in FIG. 5D. , Green light 79G, blue light 79B, and white mixed light 100W can be emitted.
 さらに、第1のダイクロイックミラー30R、第2のダイクロイックミラー30G、第3のダイクロイックミラー30Bを用いることで、赤色光79R、緑色光79G、青色光79Bの発光スペクトルを好ましい形状にカットすることができる。例えば、第2の蛍光発光部51Gから放射される緑色光78Gは、第2のダイクロイックミラー30G、第1のダイクロイックミラー30Rにより、短波長側(波長500nm以下)と長波長側(波長600nm以上)の成分がカットされ、より緑色の純度の高い緑色光79Gとして放射される。この結果は、図6に示す色度座標において、緑色光78Gの色度点よりも、緑色光79Gの色度点が周辺側へと移動していることから確認できる。これらの作用は、青色光78B、赤色光78Rでも同様であり、青色光78Bであれば長波長側(波長500nm以上)の成分がカットされ、赤色光78Rであれば短波長側の(波長600nm以下)の成分がカットされ、色純度の高い青色光79B、79Rとなり光源1から放射される。その結果、図6に示すように、赤色光79R、緑色光79G、青色光79Bで構成される混色光100は、sRGBをほぼカバーする。特に赤色光79Rに関してはsRGBよりも色純度の非常に高い光であり、画像投写装置の光源として最適である。なお、図5、図6において示しめされる白色の混色光100Wは、赤色光79R、緑色光79G、青色光79Bの和で構成された相関色温度6000Kの白色光である。 Furthermore, by using the first dichroic mirror 30R, the second dichroic mirror 30G, and the third dichroic mirror 30B, the emission spectra of the red light 79R, the green light 79G, and the blue light 79B can be cut into a preferable shape. . For example, the green light 78G radiated from the second fluorescent light emitting unit 51G is short wavelength side (wavelength 500 nm or less) and long wavelength side (wavelength 600 nm or more) by the second dichroic mirror 30G and the first dichroic mirror 30R. Are cut and emitted as green light 79G having a higher green purity. This result can be confirmed from the fact that the chromaticity point of the green light 79G moves to the peripheral side with respect to the chromaticity coordinate shown in FIG. These actions are the same for the blue light 78B and the red light 78R. If the blue light 78B, the component on the long wavelength side (wavelength 500 nm or more) is cut, and if the red light 78R is used, the short wavelength side (wavelength 600 nm). The following components are cut and become blue light 79B and 79R with high color purity and emitted from the light source 1. As a result, as shown in FIG. 6, the mixed color light 100 composed of the red light 79R, the green light 79G, and the blue light 79B substantially covers sRGB. In particular, the red light 79R is light having a much higher color purity than sRGB, and is optimal as a light source for an image projection apparatus. The white mixed light 100W shown in FIGS. 5 and 6 is white light having a correlated color temperature of 6000K, which is formed by the sum of red light 79R, green light 79G, and blue light 79B.
 (効果)
 本開示の構成によれば、照射光源として第1の照射光源10R、第2の照射光源10G、第3の照射光源10Bを用いており、これら照射光源のオン状態、オフ状態の切り替えを、ナノ秒オーダーの時間スケールで、独立して行うことが可能である。そのため、倍速スキャン(120Hz、周期8.3ms)以上の速度でも問題なくRGB三原色を時分割生成することが可能となる。
(effect)
According to the configuration of the present disclosure, the first irradiation light source 10R, the second irradiation light source 10G, and the third irradiation light source 10B are used as the irradiation light sources. It can be done independently on a time scale on the order of seconds. For this reason, it is possible to generate the three primary colors of RGB in a time-sharing manner without any problem even at a speed higher than double speed scanning (120 Hz, cycle 8.3 ms).
 また本開示の構成によれば、赤色光79R、緑色光79G、青色光79Bの出射状態の切り替えを、光学変換素子50の回転数によらず、第1の照射光源10R、第2の照射光源10G、第3の照射光源10Bのオン状態、オフ状態の切り替えのみで制御することができる。このため、光学変換素子50の回転数を一定の回転数に制御するなどの機構が不要であり、簡単な方法で、混色光100の発光色を切り替えることが可能な光源を実現することが出来る。この構成により、光源1が、占有面積の大きいカラーホイールを用いることなく混色光100を出射することができ、光源1の小型化が可能になる。 Further, according to the configuration of the present disclosure, switching of the emission state of the red light 79R, the green light 79G, and the blue light 79B is performed regardless of the rotation speed of the optical conversion element 50, the first irradiation light source 10R, the second irradiation light source. Control can be performed only by switching between the ON state and the OFF state of 10G and the third irradiation light source 10B. Therefore, a mechanism such as controlling the rotation speed of the optical conversion element 50 to a constant rotation speed is unnecessary, and a light source capable of switching the emission color of the mixed color light 100 can be realized by a simple method. . With this configuration, the light source 1 can emit the mixed color light 100 without using a color wheel having a large occupied area, and the light source 1 can be downsized.
 また本開示によれば、赤色蛍光体を含んだ第1の蛍光発光部51Rと、緑色蛍光体を含んだ第2の蛍光発光部51Gと、青色蛍光体を含んだ第3の蛍光発光部51Bを同じ回転機構55で回転させることができる。このためコンパクトな構成にて、RGB三原色を高効率、かつ高速に生成することが可能となり、色割れのない高性能な光源1を提供することができる。 In addition, according to the present disclosure, the first fluorescent light emitting unit 51R including the red fluorescent material, the second fluorescent light emitting unit 51G including the green fluorescent material, and the third fluorescent light emitting unit 51B including the blue fluorescent material. Can be rotated by the same rotation mechanism 55. For this reason, it is possible to generate RGB three primary colors with high efficiency and high speed with a compact configuration, and it is possible to provide a high-performance light source 1 without color breakup.
 なお、上記の構成において、蛍光体として上述のものを挙げたがこれに限らない。例えば、青色蛍光体は、Eu賦活BaMgAl1017などに代表されるEu賦活(Ba、Sr)MgAl1017蛍光体のほか、Eu賦活(Sr、Ca、Ba、Mg)10、(POl2蛍光体であってもよい。また緑色蛍光体は、Eu賦活β型SiAlON蛍光体や、Eu賦活SrSiO蛍光体、Eu賦活SrSi蛍光体、Eu賦活BaSi12蛍光体、Ce賦活CaSc蛍光体などの、CeもしくはEuを賦活させた蛍光体であってもよい。 In the above-described configuration, the above-described phosphor is used as the phosphor. For example, blue phosphors include Eu-activated (Ba, Sr) MgAl 10 O 17 phosphors represented by Eu-activated BaMgAl 10 O 17 and the like, as well as Eu-activated (Sr, Ca, Ba, Mg) 10 , (PO 4 ) 6 Cl2 phosphor may be used. The green phosphors are Eu-activated β-type SiAlON phosphor, Eu-activated SrSiO 3 phosphor, Eu-activated SrSi 2 O 2 N 2 phosphor, Eu-activated Ba 3 Si 8 O 12 N 2 phosphor, and Ce-activated CaSc 2. A phosphor in which Ce or Eu is activated, such as an O 4 phosphor, may be used.
 また赤色蛍光体は、Eu、Sm賦活La12に限らない。赤色蛍光体は、例えば、シリコンオキサイド、タングステンオキサイド、モリブデンオキサイド、インジウムオキサイド、イットリウムオキサイド、ジンクオキサイド、シリコンナイトライド、シリコンオキシナイトライド、アルミニウムオキシナイトライド、有機高分子の内の少なくとも一つが、母材の構成元素に含まれた蛍光体であってもよい。母材は、その賦活剤としてランタノイドイオン元素あるいは金属イオン元素が含有されている。赤色蛍光体は、Eu賦活LaS蛍光体、Eu賦活LiW蛍光体、EuおよびSm賦活LiW蛍光体、EuおよびMn賦活(Sr、Ba)MgSi蛍光体、Mn賦活3.5MgO・0.5MgF・GeO蛍光体、Eu賦活YVO蛍光体、Eu賦活Y蛍光体、Eu賦活YS蛍光体など、蛍光スペクトルの半値幅が狭い蛍光体であることが好ましい。 The red phosphor is not limited to Eu and Sm activated La 2 W 3 O 12 . The red phosphor includes, for example, at least one of silicon oxide, tungsten oxide, molybdenum oxide, indium oxide, yttrium oxide, zinc oxide, silicon nitride, silicon oxynitride, aluminum oxynitride, and organic polymer. It may be a phosphor contained in the constituent elements of the material. The base material contains a lanthanoid ion element or a metal ion element as an activator. The red phosphors are Eu activated La 2 O 2 S phosphor, Eu activated LiW 2 O 8 phosphor, Eu and Sm activated LiW 2 O 8 phosphor, Eu and Mn activated (Sr, Ba) 3 MgSi 2 O 8 fluorescence Body, Mn activated 3.5MgO · 0.5MgF 2 · GeO 2 phosphor, Eu activated YVO 4 phosphor, Eu activated Y 2 O 3 phosphor, Eu activated Y 2 O 2 S phosphor, etc. Is preferably a narrow phosphor.
 また、赤色蛍光体は、ランタノイドイオン元素、金属イオン元素を賦活材とした希土類錯体蛍光体であってもよい。希土類錯体蛍光体は、例えば2種類のホスフィンオキシドが三価のユーロピウムに配位した分子構造を持つ。 The red phosphor may be a rare earth complex phosphor using a lanthanoid ion element or a metal ion element as an activator. The rare earth complex phosphor has a molecular structure in which, for example, two types of phosphine oxide are coordinated to trivalent europium.
 なお、本実施の形態において、第1の照射光源10R、第2の照射光源10G、第3の照射光源10Bの例として中心波長が405nmである半導体レーザを挙げたがこの限りではない。第1の照射光源10R、第2の照射光源10G、第3の照射光源10Bの中心波長は、光学変換素子50における蛍光体の吸収スペクトルにあわせて、380nmから430nmの範囲で調整することできる。また、一つの照射光源が、中心波長が2nmから10nmの範囲で異なる複数の半導体レーザを備えることにより、その波長スペクトル幅を広くすることもできる。 In the present embodiment, a semiconductor laser having a center wavelength of 405 nm is given as an example of the first irradiation light source 10R, the second irradiation light source 10G, and the third irradiation light source 10B, but this is not restrictive. The center wavelengths of the first irradiation light source 10R, the second irradiation light source 10G, and the third irradiation light source 10B can be adjusted in the range of 380 nm to 430 nm according to the absorption spectrum of the phosphor in the optical conversion element 50. In addition, when one irradiation light source includes a plurality of semiconductor lasers having different center wavelengths in the range of 2 nm to 10 nm, the wavelength spectrum width can be widened.
 (変形例1)
 続いて図7Aおよび図7Bを用いて、第1の実施の形態に係る光学変換素子の第1の変形例を説明する。本変形例は、第1の実施の形態と比較し、光学変換素子50Bの構成が異なる。このため、本変形例においては、蛍光発光部51付近の拡大図を用いて、第1の実施の形態と異なる部分を中心に説明する。図7Aおよび図7Bにおいては、図1の第1の蛍光発光部51R、第2の蛍光発光部51G、第3の蛍光発光部51Bは蛍光発光部51として示してある。図7Aは光学変換素子50Bの回転軸に平行な断面を、また図7Bは光学変換素子50Bの回転軸に垂直な断面を示している。
(Modification 1)
Next, a first modification of the optical conversion element according to the first embodiment will be described with reference to FIGS. 7A and 7B. This modification is different from the first embodiment in the configuration of the optical conversion element 50B. For this reason, in this modification, it demonstrates focusing on a different part from 1st Embodiment using the enlarged view of the fluorescence light emission part 51 vicinity. 7A and 7B, the first fluorescent light emitting unit 51R, the second fluorescent light emitting unit 51G, and the third fluorescent light emitting unit 51B in FIG. 7A shows a cross section parallel to the rotation axis of the optical conversion element 50B, and FIG. 7B shows a cross section perpendicular to the rotation axis of the optical conversion element 50B.
 本変形例の光学変換素子50Bは、第1の実施の形態の光学変換素子50の蛍光発光部51の外周側に透明体60が形成されている。 In the optical conversion element 50B of this modification, a transparent body 60 is formed on the outer peripheral side of the fluorescent light emitting unit 51 of the optical conversion element 50 of the first embodiment.
 具体的には、図7Bに示すように、回転軸57を中心とする円周上に、略円柱形上の回転体58が設けられており、この回転体58の外周側には、透明体60が形成されている。透明体60は、例えば波長380nmから800nmの間の光を透過する低融点ガラス等からなる。 Specifically, as shown in FIG. 7B, a substantially cylindrical rotating body 58 is provided on the circumference centering on the rotation shaft 57, and a transparent body is provided on the outer peripheral side of the rotating body 58. 60 is formed. The transparent body 60 is made of, for example, low-melting glass that transmits light having a wavelength of 380 nm to 800 nm.
 この構成により、蛍光発光部51から全方位出射した波長変換光78は、透明体60と空気との界面において屈折する。その結果、図7Bに示すように、回転軸57に垂直な面における波長変換光78の出射拡がり角を小さくすることができる。そのため、波長変換光78が、より効率的に図1に示した第1の集光レンズ40R、第2の集光レンズ40G、第3の集光レンズ40Bに入射することが可能となる。 With this configuration, the wavelength-converted light 78 emitted from the fluorescent light emitting portion 51 in all directions is refracted at the interface between the transparent body 60 and air. As a result, as shown in FIG. 7B, the emission divergence angle of the wavelength-converted light 78 in the plane perpendicular to the rotation shaft 57 can be reduced. Therefore, it becomes possible for the wavelength converted light 78 to enter the first condenser lens 40R, the second condenser lens 40G, and the third condenser lens 40B shown in FIG. 1 more efficiently.
 上記のように本変形例の構成を用いることで、本来、ランバーシアン配光で放射される波長変換光78の出射拡がり角を小さくでき、波長変換光78の利用効率を高くすることができる。 As described above, by using the configuration of this modified example, the emission divergence angle of the wavelength converted light 78 originally emitted by the Lambertian light distribution can be reduced, and the utilization efficiency of the wavelength converted light 78 can be increased.
 (変形例2)
 続いて、第1の実施の形態に係る光源変換素子の第2の変形例を、図8Aおよび図8Bを用いて説明する。図8A、図8Bは、図1の蛍光発光部51付近の拡大図を示しており、図8Aは光学変換素子50Cの回転軸57に平行な断面を、また図8Bは光学変換素子50Cの回転軸57に垂直な断面を示している。本変形例は、図8Aと図7Aとの比較からわかるように、透明体60Cの断面形状が、第1の変形例の透明体60の断面形状と異なる。
(Modification 2)
Subsequently, a second modification of the light source conversion element according to the first embodiment will be described with reference to FIGS. 8A and 8B. 8A and 8B are enlarged views of the vicinity of the fluorescent light emitting unit 51 in FIG. 1, FIG. 8A is a cross section parallel to the rotation axis 57 of the optical conversion element 50C, and FIG. A cross section perpendicular to the shaft 57 is shown. As can be seen from a comparison between FIG. 8A and FIG. 7A, in this modification, the cross-sectional shape of the transparent body 60C is different from the cross-sectional shape of the transparent body 60 of the first modification.
 本変形例の透明体60Cは、図8Aに示すように回転軸57に平行な断面が外周に向かって凸状となっている。より具体的には、透明体60Cは回転軸57に平行な断面において放物線(2次曲線)形状を有するのが望ましい。この構成により蛍光発光部51から全方位に出射した波長変換光78は、透明体60Cと空気との界面で屈折する。その結果し、図8Aおよび図8Bに示すように、回転軸57に平行な面、および回転軸57に垂直な面の両方において、波長変換光78の出射拡がり角を小さくすることができる。そのため、波長変換光78が、より効率よく、図1に示した第1の集光レンズ40R、第2の集光レンズ40G、第3の集光レンズ40Bに入射できる。 As shown in FIG. 8A, the transparent body 60C of this modification has a cross section parallel to the rotation shaft 57 that is convex toward the outer periphery. More specifically, the transparent body 60 </ b> C desirably has a parabola (quadratic curve) shape in a cross section parallel to the rotation shaft 57. With this configuration, the wavelength-converted light 78 emitted from the fluorescent light-emitting unit 51 in all directions is refracted at the interface between the transparent body 60C and air. As a result, as shown in FIGS. 8A and 8B, the emission divergence angle of the wavelength-converted light 78 can be reduced on both the plane parallel to the rotation axis 57 and the plane perpendicular to the rotation axis 57. Therefore, the wavelength converted light 78 can enter the first condenser lens 40R, the second condenser lens 40G, and the third condenser lens 40B shown in FIG. 1 more efficiently.
 上記のように本変形例の構成を用いることで、本来、ランバーシアン配光で放射される波長変換光78の出射拡がり角を小さくでき、波長変換光の利用効率を高くすることができる。 As described above, by using the configuration of this modified example, it is possible to reduce the emission divergence angle of the wavelength-converted light 78 that is originally emitted by the Lambertian light distribution, and to increase the use efficiency of the wavelength-converted light.
 次に図9A、図9B、図9C、図9Dを用いて第2の変形例における透明体60C及び光学変換素子50Cの製造方法を説明する。まず、図9Aに示すように、レンズ金型101に、例えば低融点ガラス102を流し込み、図9Bに示すような中空部61を有したガラスレンズ103を成型する。ガラスレンズ103は、回転軸57に平行な断面において放物線形状をしている。次に、図9Cに示すように、液状シリコーンに蛍光体粒子を分散させた分散液104を作製し、注射器105のシリンジにセットする。さらに、図9Dに示すごとく、ガラスレンズ103の中空部61に回転体58を挿入した後、中空部61と回転体58との間に形成された空隙部に、注射器105を用いて分散液104を充填する。さらに150℃で熱処理を行うことにより、透明体60と回転体58の間に蛍光発光部51を形成することができる。 Next, a method for manufacturing the transparent body 60C and the optical conversion element 50C in the second modification will be described with reference to FIGS. 9A, 9B, 9C, and 9D. First, as shown in FIG. 9A, for example, low-melting glass 102 is poured into a lens mold 101, and a glass lens 103 having a hollow portion 61 as shown in FIG. 9B is molded. The glass lens 103 has a parabolic shape in a cross section parallel to the rotation shaft 57. Next, as shown in FIG. 9C, a dispersion liquid 104 in which phosphor particles are dispersed in liquid silicone is prepared and set in the syringe of the syringe 105. Furthermore, as shown in FIG. 9D, after inserting the rotating body 58 into the hollow portion 61 of the glass lens 103, the dispersion liquid 104 is inserted into the gap formed between the hollow portion 61 and the rotating body 58 using the syringe 105. Fill. Further, by performing heat treatment at 150 ° C., the fluorescent light emitting part 51 can be formed between the transparent body 60 and the rotating body 58.
 この構成により、蛍光発光部51から全方位出射した波長変換光78は、透明体60Cと空気との界面において屈折する。その結果、図8Bに示すように、回転軸57に垂直な面、及び回転軸57に平行な面における波長変換光78の出射拡がり角を小さくすることができる。そのため、波長変換光78が、より効率よく、図1に示した第1の集光レンズ40R、第2の集光レンズ40G、第3の集光レンズ40Bに入射できる。 With this configuration, the wavelength-converted light 78 emitted from the fluorescent light emitting portion 51 in all directions is refracted at the interface between the transparent body 60C and air. As a result, as shown in FIG. 8B, the emission divergence angle of the wavelength-converted light 78 on the surface perpendicular to the rotation shaft 57 and the surface parallel to the rotation shaft 57 can be reduced. Therefore, the wavelength converted light 78 can enter the first condenser lens 40R, the second condenser lens 40G, and the third condenser lens 40B shown in FIG. 1 more efficiently.
 上記のように本変形例の構成を用いることで、本来、ランバーシアン配光で放射される波長変換光78の出射拡がり角を小さくでき、波長変換光78の利用効率を高くすることができる。 As described above, by using the configuration of this modified example, the emission divergence angle of the wavelength converted light 78 originally emitted by the Lambertian light distribution can be reduced, and the utilization efficiency of the wavelength converted light 78 can be increased.
 (変形例3)
 続いて、第1の実施の形態に係る光源変換素子の第3の変形例を、図10Aおよび図10Bをもとに説明する。図10A、図10Bは、図1の蛍光発光部付近の拡大図を示しており、図10Aは光学変換素子50Dの回転軸57に平行な断面を示す。図10Bは光学変換素子50Dの回転軸57に垂直な断面を示している。本変形例においては、透明体60上に、例えば誘電体膜からなる反射防止膜70が設けられている。反射防止膜70の屈折率は透明体60の屈折率をnとすれば、以下の式で示すように設定するのが好ましい。
(Modification 3)
Next, a third modification of the light source conversion element according to the first embodiment will be described with reference to FIGS. 10A and 10B. 10A and 10B show enlarged views of the vicinity of the fluorescent light emitting portion of FIG. 1, and FIG. 10A shows a cross section parallel to the rotation axis 57 of the optical conversion element 50D. FIG. 10B shows a cross section perpendicular to the rotation shaft 57 of the optical conversion element 50D. In this modification, an antireflection film 70 made of, for example, a dielectric film is provided on the transparent body 60. The refractive index of the antireflection film 70 is preferably set as shown by the following equation, where n is the refractive index of the transparent body 60.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 また反射防止膜70の膜厚は、以下の式で示すように設定するのが好ましい。 The film thickness of the antireflection film 70 is preferably set as shown by the following formula.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 本変形例の構成を用いることで、反射防止膜70が、励起光75が透明体60に入射する際の反射ロスを低減するため、励起光75のパワー当たりの波長変換光78の強度をさらに高めることが可能となる。 By using the configuration of this modification, the antireflection film 70 reduces the reflection loss when the excitation light 75 is incident on the transparent body 60, so that the intensity of the wavelength converted light 78 per power of the excitation light 75 is further increased. It becomes possible to raise.
 なお、本変形例では透明体60上に反射防止膜70を設ける構成を説明したが、蛍光発光部51上に反射防止膜70を直接形成しても良い。その場合、反射防止膜70の屈折率は蛍光発光部51の屈折率をn2とすれば、以下の式で示すように設定するのが好ましい。 In addition, although the structure which provides the antireflection film 70 on the transparent body 60 was demonstrated in this modification, you may form the antireflection film 70 directly on the fluorescence light emission part 51. FIG. In that case, it is preferable that the refractive index of the antireflection film 70 is set as shown by the following equation, where n2 is the refractive index of the fluorescent light emitting portion 51.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 また反射防止膜70の膜厚は、蛍光発光部51のピーク発光波長をλとすれば、以下の式で示すように設定するのが好ましい。 The thickness of the antireflection film 70, if the peak emission wavelength of the fluorescent light-emitting section 51 and the lambda p, preferably set as shown by the following equation.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 また、本変形例では反射防止膜70は単層構成としたが、多層構成にしても良い。 In the present modification, the antireflection film 70 has a single layer structure, but may have a multilayer structure.
 (第2の実施の形態)
 続いて図11を用いて、第2の実施の形態に係る光学変換素子50Eを説明する。本実施の形態では、光学変換素子50Eの構成の内、第1の実施の形態と異なる部分を中心に説明する。
(Second Embodiment)
Next, an optical conversion element 50E according to the second embodiment will be described with reference to FIG. In the present embodiment, a description will be given focusing on portions of the configuration of the optical conversion element 50E that are different from the first embodiment.
 本実施の形態の光学変換素子50Eは、回転体58の一部に冷却機構92が形成されている。 In the optical conversion element 50E of the present embodiment, a cooling mechanism 92 is formed in a part of the rotating body 58.
 具体的には、図11に示すように、第1の蛍光発光部51R、第2の蛍光発光部51G、第3の蛍光発光部51Bの近傍に冷却機構92がそれぞれ設けられている。より具体的には、例えばアルミ合金などで製造される回転体58の外周部に、アルミ合金などで構成される羽根が冷却機構92として取り付けられている。冷却機構92としての複数の羽根が、このプロペラファンを構成している。そして、光学変換素子50Eが動作している際には、回転体58と共に冷却機構92が回転するため、冷却機構92の回転により冷風93が発生する。冷風93が第1の蛍光発光部51R、第2の蛍光発光部51G、第3の蛍光発光部51Bの表面を通過し、第1の蛍光発光部51R、第2の蛍光発光部51G、第3の蛍光発光部51Bを冷却する。さらに、第1の蛍光発光部51R、第2の蛍光発光部51G、第3の蛍光発光部51Bで発生した熱の一部は、回転体58、冷却機構92を放熱経路94として、空気中に放熱される。 Specifically, as shown in FIG. 11, a cooling mechanism 92 is provided in the vicinity of the first fluorescent light emitting unit 51R, the second fluorescent light emitting unit 51G, and the third fluorescent light emitting unit 51B. More specifically, for example, blades made of an aluminum alloy or the like are attached as a cooling mechanism 92 to the outer peripheral portion of the rotating body 58 made of an aluminum alloy or the like. A plurality of blades as the cooling mechanism 92 constitutes the propeller fan. When the optical conversion element 50 </ b> E is operating, the cooling mechanism 92 rotates together with the rotating body 58, so that the cool air 93 is generated by the rotation of the cooling mechanism 92. The cold air 93 passes through the surfaces of the first fluorescent light emitting unit 51R, the second fluorescent light emitting unit 51G, and the third fluorescent light emitting unit 51B, and the first fluorescent light emitting unit 51R, the second fluorescent light emitting unit 51G, and the third fluorescent light emitting unit 51B. The fluorescent light emitting unit 51B is cooled. Further, a part of the heat generated in the first fluorescent light emitting unit 51R, the second fluorescent light emitting unit 51G, and the third fluorescent light emitting unit 51B is transferred into the air by using the rotating body 58 and the cooling mechanism 92 as a heat dissipation path 94. Heat is dissipated.
 上記のように本開示の構成を用いることで、第1の蛍光発光部51R、第2の蛍光発光部51G、第3の蛍光発光部51Bで発生した熱を効率よく冷却することができ、第1の蛍光発光部51R、第2の蛍光発光部51G、第3の蛍光発光部51Bの温度上昇による蛍光強度減少を抑制することが可能である。 By using the configuration of the present disclosure as described above, the heat generated in the first fluorescent light emitting unit 51R, the second fluorescent light emitting unit 51G, and the third fluorescent light emitting unit 51B can be efficiently cooled. It is possible to suppress a decrease in fluorescence intensity due to a temperature rise in the first fluorescent light emitting unit 51R, the second fluorescent light emitting unit 51G, and the third fluorescent light emitting unit 51B.
 なお、本実施の形態では3個の冷却機構92を図示しているが、第1の蛍光発光部51R、第2の蛍光発光部51G、第3の蛍光発光部51Bの発熱度合いによって、冷却機構92の個数を変更しても良い。 In the present embodiment, three cooling mechanisms 92 are illustrated, but depending on the degree of heat generation of the first fluorescent light emitting unit 51R, the second fluorescent light emitting unit 51G, and the third fluorescent light emitting unit 51B, the cooling mechanism is shown. The number of 92 may be changed.
 (変形例1)
 続いて図12から図14を用いて本実施の形態の変形例1について説明する。本変形例においては、光学変換素子50Fの構成が、上述した構成と異なる。また、本変形例においては、第1のダイクロイックミラー30R、第2のダイクロイックミラー30G、第3のダイクロイックミラー30Bの構成および配置が、第1の実施の形態と異なる。なお、本変形例においては、第1のリレーレンズ、第2のリレーレンズを省略して説明する。
(Modification 1)
Subsequently, Modification 1 of the present embodiment will be described with reference to FIGS. In this modification, the configuration of the optical conversion element 50F is different from the configuration described above. In the present modification, the configurations and arrangements of the first dichroic mirror 30R, the second dichroic mirror 30G, and the third dichroic mirror 30B are different from those in the first embodiment. In this modification, the first relay lens and the second relay lens are omitted.
 本変形例においては、光学変換素子50Fは、回転軸57と、回転軸57に設けられた3つの回転体58を備える。回転体58は、例えばアルミニウム合金からなる。回転体58には冷却機構92としての羽根が一体で成型されている。そして第1の蛍光発光部51R、第2の蛍光発光部51G、第3の蛍光発光部51Bが、回転体58の最外周部の側面に形成される。そして、第1の蛍光発光部51R、第2の蛍光発光部51G、第3の蛍光発光部51Bの表面には透明体60Fが配置されている。透明体60Fの断面は、回転軸57に平行な断面において好ましくは半円もしくは放物線形状をしている。 In this modification, the optical conversion element 50F includes a rotating shaft 57 and three rotating bodies 58 provided on the rotating shaft 57. The rotating body 58 is made of, for example, an aluminum alloy. The rotating body 58 is integrally formed with blades as the cooling mechanism 92. Then, the first fluorescent light emitting portion 51R, the second fluorescent light emitting portion 51G, and the third fluorescent light emitting portion 51B are formed on the side surface of the outermost peripheral portion of the rotating body 58. And the transparent body 60F is arrange | positioned on the surface of the 1st fluorescence light emission part 51R, the 2nd fluorescence light emission part 51G, and the 3rd fluorescence light emission part 51B. The cross section of the transparent body 60F is preferably semicircular or parabolic in a cross section parallel to the rotation axis 57.
 第1の蛍光発光部51Rは、例えば、主成分がEu賦活(Sr、Ca)AlSiNである赤色蛍光体と、赤色蛍光体が混合された透明材料とを有する。第2の蛍光発光部51Gは、例えば、主成分がCe賦活Y(Al、Ga)12である緑色蛍光体と、緑色蛍光体が混合された透明材料とを有する。第3の蛍光発光部51Bは、例えば、主成分がEu賦活SrMgSiである青色蛍光体と、青色蛍光体が混合された透明材料とを有する。 The first fluorescent light emitting unit 51R includes, for example, a red phosphor whose main component is Eu-activated (Sr, Ca) AlSiN 3 and a transparent material in which the red phosphor is mixed. The second fluorescent light emitting unit 51G includes, for example, a green phosphor whose main component is Ce-activated Y 3 (Al, Ga) 5 O 12 and a transparent material in which the green phosphor is mixed. For example, the third fluorescent light emitting unit 51B includes a blue phosphor whose main component is Eu-activated Sr 3 MgSi 2 O 8 and a transparent material in which the blue phosphor is mixed.
 本変形例の光源1Fにおいては、混色光100の出射部に近い方から順に、青色光78Bを出射する第3の蛍光発光部51B、緑色光78Gを出射する第2の蛍光発光部51G、青色光78Bを出射する第1の蛍光発光部51Rが配置されている。また、混色光100の出射部に近い方から順に、青色光79Bを出射する第3のダイクロイックミラー30B、緑色光79Gを出射する第2のダイクロイックミラー30G、青色光79Bを出射する第1のダイクロイックミラー30Rが配置されている。 In the light source 1F of the present modification, the third fluorescent light emitting unit 51B that emits blue light 78B, the second fluorescent light emitting unit 51G that emits green light 78G, in order from the side closer to the emitting unit of the mixed color light 100, blue A first fluorescent light emitting portion 51R that emits light 78B is disposed. The third dichroic mirror 30B that emits the blue light 79B, the second dichroic mirror 30G that emits the green light 79G, and the first dichroic that emits the blue light 79B, in order from the side closer to the emission part of the mixed color light 100. A mirror 30R is arranged.
 まず、第1の照射光源10R、第2の照射光源10G、第3の照射光源10Bは第1の光75R、第2の光75G、第3の光75Bを出射する。第1の光75R、第2の光75G、第3の光75Bは、例えば中心波長405nmのレーザ光である。第1の光75R、第2の光75G、第3の光75Bは、第1のダイクロイックミラー30R、第2のダイクロイックミラー30G、第3のダイクロイックミラー30B、を通過し、第1の集光レンズ40R、第2の集光レンズ40G、第3の集光レンズ40Bで集光される。第1の光75R、第2の光75G、第3の光75Bは、第1の蛍光発光部51R、第2の蛍光発光部51G、第3の蛍光発光部51Bで赤色光78R、緑色光78G、青色光78Bに変換される。赤色光78R、緑色光78G、青色光78Bは第1のダイクロイックミラー30R、第2のダイクロイックミラー30G、第3のダイクロイックミラー30Bによって反射され、赤色光79R、緑色光79G、青色光79Bとなる。 First, the first irradiation light source 10R, the second irradiation light source 10G, and the third irradiation light source 10B emit the first light 75R, the second light 75G, and the third light 75B. The first light 75R, the second light 75G, and the third light 75B are laser light having a center wavelength of 405 nm, for example. The first light 75R, the second light 75G, and the third light 75B pass through the first dichroic mirror 30R, the second dichroic mirror 30G, and the third dichroic mirror 30B, and the first condenser lens. The light is condensed by 40R, the second condenser lens 40G, and the third condenser lens 40B. The first light 75R, the second light 75G, and the third light 75B are the red light 78R and the green light 78G in the first fluorescent light emitting part 51R, the second fluorescent light emitting part 51G, and the third fluorescent light emitting part 51B. , Converted into blue light 78B. The red light 78R, the green light 78G, and the blue light 78B are reflected by the first dichroic mirror 30R, the second dichroic mirror 30G, and the third dichroic mirror 30B, and become red light 79R, green light 79G, and blue light 79B.
 図13Aは、第1の光75R、第2の光75G、第3の光75Bの発光スペクトルを示す。図13Bは、赤色光78R、緑色光78G、青色光78Bの発光スペクトルを示す。図13Cは、第1のダイクロイックミラー30R、第2のダイクロイックミラー30G、第3のダイクロイックミラー30Bの反射特性を示す。図13Dは、赤色光79R、緑色光79G、青色光79Bの発光スペクトルを示す。 FIG. 13A shows emission spectra of the first light 75R, the second light 75G, and the third light 75B. FIG. 13B shows emission spectra of red light 78R, green light 78G, and blue light 78B. FIG. 13C shows the reflection characteristics of the first dichroic mirror 30R, the second dichroic mirror 30G, and the third dichroic mirror 30B. FIG. 13D shows emission spectra of red light 79R, green light 79G, and blue light 79B.
 光学変換素子50Fは、回転軸57と、回転軸57に設けられた3つの回転体58とを有する。3つの回転体58の外周側には、第1の蛍光発光部51R、第2の蛍光発光部51G、第3の蛍光発光部51Bが搭載されている。回転体58の回転軸57と外周部の間には、冷却機構92である羽根が形成されている。回転体58は例えば、アルミ合金で構成され、例えば羽根と一体に形成されている。また、第1の蛍光発光部51R、第2の蛍光発光部51G、第3の蛍光発光部51Bの表面側には、断面が半円状の透明体60Fが形成される。第1の蛍光発光部51R、第2の蛍光発光部51G、第3の蛍光発光部51Bで発生した熱は、冷却機構92に伝達され、回転体58の回転に伴う冷却機構92の回転により、冷却機構92から排熱される。さらに、第1の蛍光発光部51R、第2の蛍光発光部51G、第3の蛍光発光部51Bから出射された赤色光78R、緑色光78G、青色光78Bは、ランバーシアン配光として放射されるが、透明体60Fにより配光方向の指向性が向上される。第1の集光レンズ40R、第2の集光レンズ40G、第3の集光レンズ40Bが赤色光78R、緑色光78G、青色光78Bを平行光にする。赤色光78R、緑色光78G、青色光78Bが、図13Cに示された反射特性を有する第1のダイクロイックミラー30R、第2のダイクロイックミラー30G、第3のダイクロイックミラー30Bで反射され、赤色光79R、緑色光79G、青色光79Bとなる。図14に示すように、青色光78Bは、波長500nm以上の光がカットされた純度の高い青色光79Bとなり、緑色光78Gは、波長500nm以下の光と波長590nm以上の光がカットされた純度の高い緑色光79Gとなり、赤色光78Rは、波長590nm以下の光がカットされた純度の高い赤色光79Rとなる。赤色光79R、緑色光79G、青色光79Bが混合され、混色光100となる。 The optical conversion element 50 </ b> F includes a rotating shaft 57 and three rotating bodies 58 provided on the rotating shaft 57. A first fluorescent light emitting unit 51R, a second fluorescent light emitting unit 51G, and a third fluorescent light emitting unit 51B are mounted on the outer peripheral side of the three rotating bodies 58. A blade that is a cooling mechanism 92 is formed between the rotating shaft 57 of the rotating body 58 and the outer peripheral portion. The rotating body 58 is made of, for example, an aluminum alloy, and is formed integrally with, for example, a blade. Further, a transparent body 60F having a semicircular cross section is formed on the surface side of the first fluorescent light emitting unit 51R, the second fluorescent light emitting unit 51G, and the third fluorescent light emitting unit 51B. The heat generated in the first fluorescent light emitting unit 51R, the second fluorescent light emitting unit 51G, and the third fluorescent light emitting unit 51B is transmitted to the cooling mechanism 92, and by the rotation of the cooling mechanism 92 accompanying the rotation of the rotating body 58, Heat is discharged from the cooling mechanism 92. Further, the red light 78R, the green light 78G, and the blue light 78B emitted from the first fluorescent light emitting unit 51R, the second fluorescent light emitting unit 51G, and the third fluorescent light emitting unit 51B are emitted as a Lambertian light distribution. However, the directivity in the light distribution direction is improved by the transparent body 60F. The first condenser lens 40R, the second condenser lens 40G, and the third condenser lens 40B turn the red light 78R, the green light 78G, and the blue light 78B into parallel lights. The red light 78R, the green light 78G, and the blue light 78B are reflected by the first dichroic mirror 30R, the second dichroic mirror 30G, and the third dichroic mirror 30B having the reflection characteristics shown in FIG. 13C, and the red light 79R. , Green light 79G and blue light 79B. As shown in FIG. 14, the blue light 78B becomes high-purity blue light 79B from which light having a wavelength of 500 nm or more is cut, and the green light 78G has purity obtained by cutting light having a wavelength of 500 nm or less and light having a wavelength of 590 nm or more. Green light 79G, and red light 78R becomes high-purity red light 79R from which light having a wavelength of 590 nm or less is cut. The red light 79R, the green light 79G, and the blue light 79B are mixed and become the mixed color light 100.
 本変形例の構成を用いることで、第1の蛍光発光部51R、第2の蛍光発光部51G、第3の蛍光発光部51Bで発生した熱を効率よく排熱することができ、第1の蛍光発光部51R、第2の蛍光発光部51G、第3の蛍光発光部51Bの温度上昇による蛍光強度減少を抑制することが可能である。その結果、コンパクトな構成で光源1Fを構成することができ、光源1Fから高輝度の混色光100を放射させることができる。さらに第1のダイクロイックミラー30R、第2のダイクロイックミラー30G、第3のダイクロイックミラー30Bを用いたことにより、ディスプレイ等に最適な、純度の高い赤色光79R、緑色光79G、青色光79Bを出射させることができる。 By using the configuration of this modification, the heat generated in the first fluorescent light emitting unit 51R, the second fluorescent light emitting unit 51G, and the third fluorescent light emitting unit 51B can be efficiently exhausted, and the first It is possible to suppress a decrease in fluorescence intensity due to a temperature rise of the fluorescent light emitting unit 51R, the second fluorescent light emitting unit 51G, and the third fluorescent light emitting unit 51B. As a result, the light source 1F can be configured with a compact configuration, and the high-mixed color light 100 can be emitted from the light source 1F. Further, by using the first dichroic mirror 30R, the second dichroic mirror 30G, and the third dichroic mirror 30B, high-purity red light 79R, green light 79G, and blue light 79B that are optimal for a display or the like are emitted. be able to.
 (変形例2)
 続いて図15から図17を用いて本実施の形態の変形例2について説明する。本変形例においては、光源1Gを構成する光学変換素子50Gの構成が、上述した構成と異なる。
(Modification 2)
Subsequently, Modification 2 of the present embodiment will be described with reference to FIGS. 15 to 17. In the present modification, the configuration of the optical conversion element 50G constituting the light source 1G is different from the configuration described above.
 本変形例の光学変換素子50Gは、第1の回転軸57Rに設けられた第1の回転体58Rと、第1の回転体58Rの外周部に設けられた第1の蛍光発光部51Rと有する。また、光学変換素子50Gは、第2の回転軸57Gに設けられた第2の回転体58Gと、第2の回転体58Gの外周部に設けられた第2の蛍光発光部51Gとを有する。さらに、光学変換素子50Gは、第3の回転軸57Bに設けられた第3の回転体58Bと、第3の回転体58Bの外周部に設けられた第3の蛍光発光部51Bとを有する。 The optical conversion element 50G of the present modification has a first rotating body 58R provided on the first rotating shaft 57R and a first fluorescent light emitting section 51R provided on the outer periphery of the first rotating body 58R. . Further, the optical conversion element 50G includes a second rotating body 58G provided on the second rotating shaft 57G, and a second fluorescent light emitting section 51G provided on the outer periphery of the second rotating body 58G. Furthermore, the optical conversion element 50G includes a third rotating body 58B provided on the third rotating shaft 57B and a third fluorescent light emitting section 51B provided on the outer periphery of the third rotating body 58B.
 第1の回転体58R、第2の回転体58G、第3の回転体58Bには冷却機構92としての羽根が形成されている。冷却機構92は、第1の回転体58Rにおける第1の回転軸57Rと第1の蛍光発光部51Rとの間、第2の回転体58Gにおける第2の回転軸57Gと第2の蛍光発光部51Gとの間、及び第3の回転体58Bにおける第3の回転軸57Bと第3の蛍光発光部51Bとの間に設けられる。第1の回転体58R、第2の回転体58G、第3の回転体58Bの回転に伴い、冷却機構92は回転する。 The first rotating body 58R, the second rotating body 58G, and the third rotating body 58B are provided with blades as the cooling mechanism 92. The cooling mechanism 92 includes a first rotating shaft 57R and a first fluorescent light emitting unit 51R in the first rotating body 58R, and a second rotating shaft 57G and a second fluorescent light emitting unit in the second rotating body 58G. 51G and between the third rotating shaft 57B and the third fluorescent light emitting unit 51B in the third rotating body 58B. The cooling mechanism 92 rotates with the rotation of the first rotating body 58R, the second rotating body 58G, and the third rotating body 58B.
 本変形例の構成を用いることで、第1の蛍光発光部51R、第2の蛍光発光部51G、第3の蛍光発光部51Bで発生した熱を効率よく冷却することができ、第1の蛍光発光部51R、第2の蛍光発光部51G、第3の蛍光発光部51Bの温度上昇による蛍光強度減少を抑制することが可能である。その結果、コンパクトな構成で光源1Gを実現することができ、光源1Gから高輝度の混色光100を出射させることができる。また、本変形例においては図16に示すように光源1Gの厚みを薄く保持したまま、第1の蛍光発光部51R、第2の蛍光発光部51G、第3の蛍光発光部51Bが配置された第1の回転体58R、第2の回転体58G、第3の回転体58Bの大きさを大きくすることができる。また、光源1Gの厚みを薄く保持したまま、冷却機構92の大きさを大きくすることができる。その結果、光源1Gの高輝度化と薄型化を両立させることができる。 By using the configuration of this modification, the heat generated in the first fluorescent light emitting unit 51R, the second fluorescent light emitting unit 51G, and the third fluorescent light emitting unit 51B can be efficiently cooled, and the first fluorescent light emitting unit 51G can be efficiently cooled. It is possible to suppress a decrease in fluorescence intensity due to a temperature rise of the light emitting unit 51R, the second fluorescent light emitting unit 51G, and the third fluorescent light emitting unit 51B. As a result, the light source 1G can be realized with a compact configuration, and the high-luminance mixed color light 100 can be emitted from the light source 1G. In the present modification, the first fluorescent light emitting unit 51R, the second fluorescent light emitting unit 51G, and the third fluorescent light emitting unit 51B are arranged while the thickness of the light source 1G is kept thin as shown in FIG. The size of the first rotating body 58R, the second rotating body 58G, and the third rotating body 58B can be increased. In addition, the size of the cooling mechanism 92 can be increased while keeping the thickness of the light source 1G thin. As a result, it is possible to achieve both high luminance and thinning of the light source 1G.
 なお本変形例の光学変換素子50Gにおいては、図17に示すように、第1の回転体58R、第2の回転体58G、第3の回転体58Bを3つの第1のギア64Aで構成し、隣り合う第1のギア64Aの間を第2のギア64Bで連結する構成とすることが好ましい。このような構成とすることにより、第1の回転体58R、第2の回転体58G、第3の回転体58Bを回転させる回転機構の数を減らすことができ、よりコンパクトな光源1Gを実現することができる。 In the optical conversion element 50G of this modification, as shown in FIG. 17, the first rotating body 58R, the second rotating body 58G, and the third rotating body 58B are configured by three first gears 64A. It is preferable that the adjacent first gears 64A are connected by the second gear 64B. By adopting such a configuration, the number of rotating mechanisms that rotate the first rotating body 58R, the second rotating body 58G, and the third rotating body 58B can be reduced, and a more compact light source 1G is realized. be able to.
 なお本変形例の光学変換素子50Gにおいては、第1の蛍光発光部51R、第2の蛍光発光部51G、第3の蛍光発光部51Bの表面に透明体を形成しても良い。 In the optical conversion element 50G of this modification, a transparent body may be formed on the surfaces of the first fluorescent light emitting part 51R, the second fluorescent light emitting part 51G, and the third fluorescent light emitting part 51B.
 (第3の実施の形態)
 続いて図18および図19を用いて、第3の実施の形態に係る光源1Hを説明する。本実施の形態の光源1Hは、光学変換素子50Hの蛍光発光部および照射光源の構成が、第1の実施の形態と異なる。以下、光源1Hと光源1との異なる部分を中心に説明する。
(Third embodiment)
Next, a light source 1H according to the third embodiment will be described with reference to FIGS. The light source 1H of the present embodiment is different from the first embodiment in the configuration of the fluorescent light emitting unit and the irradiation light source of the optical conversion element 50H. Hereinafter, the description will focus on the different parts of the light source 1H and the light source 1.
 本実施の形態の光学変換素子50Hは、回転体58上での第1の蛍光発光部51R、第2の蛍光発光部51G、第3の蛍光発光部51Bの形成される位置、および蛍光体励起のための光軸数が、第1の実施の形態と異なる。 In the optical conversion element 50H of the present embodiment, the position where the first fluorescent light emitting unit 51R, the second fluorescent light emitting unit 51G, and the third fluorescent light emitting unit 51B are formed on the rotating body 58, and the phosphor excitation. The number of optical axes is different from that of the first embodiment.
 具体的には、図19に示すように、回転軸57を有する回転体58と、回転体58の外周部に設けられた第1の蛍光発光部51R、第2の蛍光発光部51G、第3の蛍光発光部51Bとを有する。第1の蛍光発光部51R、第2の蛍光発光部51G、第3の蛍光発光部51Bは、回転軸57を中心とする円周上に配置されている。そして、本実施の形態においては、第1の蛍光発光部51R、第2の蛍光発光部51G、第3の蛍光発光部51Bが、一つの円周上において分割された3つの円弧上に配置されている。 Specifically, as shown in FIG. 19, a rotating body 58 having a rotating shaft 57, a first fluorescent light emitting section 51R, a second fluorescent light emitting section 51G, and a third fluorescent light provided on the outer periphery of the rotating body 58. The fluorescent light emitting part 51B. The first fluorescent light emitting unit 51R, the second fluorescent light emitting unit 51G, and the third fluorescent light emitting unit 51B are arranged on a circumference around the rotation axis 57. In the present embodiment, the first fluorescent light emitting unit 51R, the second fluorescent light emitting unit 51G, and the third fluorescent light emitting unit 51B are arranged on three arcs divided on one circumference. ing.
 本実施の形態の構成を用いることで、光学変換素子50Hをより小型に構成することができる。さらに照射光源を第1の照射光源10のみで構成することができ、照射光源の光軸を3軸から1軸に減らすことができるため、光源構成部材、具体的にはコリメートレンズやリレーレンズなどの大幅な簡略化および小型化、省エネ化を実現することが可能となる。 By using the configuration of the present embodiment, the optical conversion element 50H can be configured more compactly. Furthermore, since the irradiation light source can be composed of only the first irradiation light source 10 and the optical axis of the irradiation light source can be reduced from three axes to one axis, a light source component, specifically a collimating lens, a relay lens, etc. It is possible to achieve significant simplification, downsizing, and energy saving.
 なお、本実施の形態では、第1の蛍光発光部51R、第2の蛍光発光部51G、第3の蛍光発光部51Bが、一つの円周上において3つの円弧状に分割される構成としたが、黄色蛍光体など他の蛍光体を加え、光源1Hが3以上の色源を有する構成としても良い。 In the present embodiment, the first fluorescent light emitting part 51R, the second fluorescent light emitting part 51G, and the third fluorescent light emitting part 51B are configured to be divided into three arcs on one circumference. However, another phosphor such as a yellow phosphor may be added and the light source 1H may have three or more color sources.
 (変形例1)
 図20および図21を用いて、第3の実施の形態に係る光源の変形例について説明する。本変形例に係る光源1Iは、光学変換素子50Iの蛍光発光部および照射光源の構成が、第1の実施の形態と異なる。
(Modification 1)
A modification of the light source according to the third embodiment will be described with reference to FIGS. The light source 1I according to this modification is different from the first embodiment in the configuration of the fluorescent light emitting unit and the irradiation light source of the optical conversion element 50I.
 本変形例においては、光学変換素子50Iは、回転軸57を有する回転体58を備える。回転体58は、冷却機構92としての羽根を有し、回転体58の外周部には、第1の蛍光発光部51R、第2の蛍光発光部51G、第3の蛍光発光部51Bが形成される。 In this modification, the optical conversion element 50I includes a rotating body 58 having a rotating shaft 57. The rotating body 58 has blades as the cooling mechanism 92, and the first fluorescent light emitting unit 51R, the second fluorescent light emitting unit 51G, and the third fluorescent light emitting unit 51B are formed on the outer periphery of the rotating body 58. The
 さらに本変形例においては、第1の照射光源10を固定するヒートシンク90が、例えばヒートパイプである熱輸送部材99により、回転体58と熱的に連結されている。具体的には、冷却機構92により送られる冷風93が熱輸送部材99の表面を通過する。この構成により、第1の照射光源10で発生した熱が、ヒートシンク90、熱輸送部材99に伝達され、冷風93により第1の照射光源10で発生した熱を冷却することができる。 Furthermore, in this modification, the heat sink 90 that fixes the first irradiation light source 10 is thermally connected to the rotating body 58 by a heat transport member 99 that is a heat pipe, for example. Specifically, the cold air 93 sent by the cooling mechanism 92 passes through the surface of the heat transport member 99. With this configuration, the heat generated in the first irradiation light source 10 is transmitted to the heat sink 90 and the heat transport member 99, and the heat generated in the first irradiation light source 10 can be cooled by the cold air 93.
 本変形例の構成を用いることで、第1の蛍光発光部51R、第2の蛍光発光部51G、第3の蛍光発光部51Bで発生した熱を、効率よく冷却することができる。その結果、第1の蛍光発光部51R、第2の蛍光発光部51G、第3の蛍光発光部51Bの温度上昇による蛍光強度減少を抑制することが可能である。また、第1の蛍光発光部51R、第2の蛍光発光部51G、第3の蛍光発光部51Bと第1の照射光源10とで発生する熱が、共通の冷却機構92により冷却される。 By using the configuration of this modification, the heat generated in the first fluorescent light emitting unit 51R, the second fluorescent light emitting unit 51G, and the third fluorescent light emitting unit 51B can be efficiently cooled. As a result, it is possible to suppress a decrease in fluorescence intensity due to a temperature rise in the first fluorescent light emitting unit 51R, the second fluorescent light emitting unit 51G, and the third fluorescent light emitting unit 51B. Further, the heat generated by the first fluorescent light emitting unit 51R, the second fluorescent light emitting unit 51G, the third fluorescent light emitting unit 51B, and the first irradiation light source 10 is cooled by the common cooling mechanism 92.
 (第4の実施の形態)
 続いて図22を用いて、第4の実施の形態に係る光源及び光学変換素子の構成及び効果について説明する。本実施の形態の光源1Jは、光学変換素子および照射光源の構成が第1の実施の形態と異なる。このため、両者の異なる部分を中心に説明する。
(Fourth embodiment)
Next, configurations and effects of the light source and the optical conversion element according to the fourth embodiment will be described with reference to FIG. The light source 1J of the present embodiment is different from the first embodiment in the configuration of the optical conversion element and the irradiation light source. For this reason, it demonstrates centering on the different part of both.
 本実施の形態の光学変換素子50Jは、回転軸57の軸方向において回転体58の位置を変化させる移動機構62を有する。 The optical conversion element 50J of the present embodiment has a moving mechanism 62 that changes the position of the rotating body 58 in the axial direction of the rotating shaft 57.
 第1の蛍光発光部51R、第2の蛍光発光部51G、第3の蛍光発光部51Bは回転体58の外周面上に、隣接して形成されている。そして、照射光源は第1の照射光源10からなり、照射光源の光軸は一つである。 The first fluorescent light emitting portion 51R, the second fluorescent light emitting portion 51G, and the third fluorescent light emitting portion 51B are formed adjacent to each other on the outer peripheral surface of the rotating body 58. And the irradiation light source consists of the 1st irradiation light source 10, and the optical axis of an irradiation light source is one.
 本実施の形態において、光学変換素子50Jが動作している際に、回転体58が回転機構55により回転される。回転機構55は、例えばDCモータである。回転体58の回転数は、例えば10、000rpmなどである。そして、移動機構62が、回転体58を、回転軸57の軸方向に、例えば180ヘルツで振動させる。第1の照射光源10が出射した励起光75が、第1の蛍光発光部51R、第2の蛍光発光部51G、第3の蛍光発光部51Bに、一定の周期で照射される。その結果、主な発光波長が590から660nmの範囲の赤色光79Rと、主な発光波長が500から590nmの範囲の緑色光79Gと、主な発光波長が430から500nmの範囲の青色光79Bとが、時分割で出射され、混色光100となる。 In the present embodiment, the rotating body 58 is rotated by the rotating mechanism 55 when the optical conversion element 50J is operating. The rotation mechanism 55 is a DC motor, for example. The rotational speed of the rotating body 58 is, for example, 10,000 rpm. Then, the moving mechanism 62 vibrates the rotating body 58 in the axial direction of the rotating shaft 57, for example, at 180 hertz. The excitation light 75 emitted from the first irradiation light source 10 is irradiated to the first fluorescent light emitting unit 51R, the second fluorescent light emitting unit 51G, and the third fluorescent light emitting unit 51B at a constant cycle. As a result, red light 79R whose main emission wavelength is in the range of 590 to 660 nm, green light 79G whose main emission wavelength is in the range of 500 to 590 nm, and blue light 79B whose main emission wavelength is in the range of 430 to 500 nm, Are emitted in a time-sharing manner and become the mixed-color light 100.
 本実施の形態の構成を用いることで、光軸数を3軸から1軸に減らせることができ、その結果、光源の小型化、省エネ化を実現することが可能となる。 By using the configuration of this embodiment, the number of optical axes can be reduced from three to one, and as a result, the light source can be reduced in size and energy can be saved.
 なお、本実施の形態では、蛍光発光部が第1の蛍光発光部51R、第2の蛍光発光部51G、第3の蛍光発光部51Bである構成としたが、蛍光発光部が黄色蛍光体などのRGB以外の蛍光体を有し、混色光100の源色が4以上である構成としても良い。 In the present embodiment, the fluorescent light emitting units are the first fluorescent light emitting unit 51R, the second fluorescent light emitting unit 51G, and the third fluorescent light emitting unit 51B. However, the fluorescent light emitting unit is a yellow phosphor or the like. It is good also as a structure which has fluorescent substance other than RGB, and the source color of the mixed-color light 100 is four or more.
 (変形例)
 続いて図23を用いて、第4の実施の形態に係る光源の変形例について説明する。本変形例に係る光源1Kは、上述の構成と比較し、光学変換素子50Kの構成が異なる。
(Modification)
Next, a modification of the light source according to the fourth embodiment will be described with reference to FIG. The light source 1K according to this modification is different from the above-described configuration in the configuration of the optical conversion element 50K.
 本変形例の光学変換素子50Kは、回転軸57を有する円柱状の回転体58を備える。回転機構55が回転軸57に連結されており、回転体58を回転させる。回転体58は冷却機構92としての羽根を有する。回転体58の外周面面には、第1の蛍光発光部51R、第2の蛍光発光部51G、第3の蛍光発光部51Bが隣接して形成される。そして、移動機構62がピストン可動部(図示せず)を介して回転体58と接続されている。移動機構62は、ピストン可動部と連結されたピン62aとコネクティングロッド62bとピン62cとモータ62dとを有する。移動機構62においては、モータ62dにおける回転運動が、コネクティングロッド62bにより上下方向の運動に変換される。 The optical conversion element 50K of the present modification includes a columnar rotating body 58 having a rotating shaft 57. A rotating mechanism 55 is connected to the rotating shaft 57 and rotates the rotating body 58. The rotating body 58 has blades as the cooling mechanism 92. On the outer peripheral surface of the rotator 58, a first fluorescent light emitting part 51R, a second fluorescent light emitting part 51G, and a third fluorescent light emitting part 51B are formed adjacent to each other. And the moving mechanism 62 is connected with the rotary body 58 via the piston movable part (not shown). The moving mechanism 62 includes a pin 62a, a connecting rod 62b, a pin 62c, and a motor 62d connected to the piston movable portion. In the moving mechanism 62, the rotational motion in the motor 62d is converted into vertical motion by the connecting rod 62b.
 本変形例において、光学変換素子50Kが動作している際に、回転体58が回転機構55により回転される。回転体58の回転数は、例えば10、000rpmなどである。移動機構62が、回転体58を、回転軸57の軸方向に、例えば180ヘルツで振動させる。第1の照射光源10が出射した励起光75が、第1の蛍光発光部51R、第2の蛍光発光部51G、第3の蛍光発光部51Bに、一定の周期で照射される。主な発光波長が590から660nmの範囲の赤色光79Rと、主な発光波長が500から590nmの範囲の緑色光79Gと、主な発光波長が430から500nmの範囲の青色光79Bとが、時分割で出射され、混色光100となる。 In this modification, the rotating body 58 is rotated by the rotating mechanism 55 when the optical conversion element 50K is operating. The rotational speed of the rotating body 58 is, for example, 10,000 rpm. The moving mechanism 62 vibrates the rotating body 58 in the axial direction of the rotating shaft 57, for example, at 180 hertz. The excitation light 75 emitted from the first irradiation light source 10 is irradiated to the first fluorescent light emitting unit 51R, the second fluorescent light emitting unit 51G, and the third fluorescent light emitting unit 51B at a constant cycle. Red light 79R whose main emission wavelength is in the range of 590 to 660 nm, green light 79G whose main emission wavelength is in the range of 500 to 590 nm, and blue light 79B whose main emission wavelength is in the range of 430 to 500 nm, The light is emitted in a divided manner and becomes mixed color light 100.
 本変形例の光学変換素子50Kを用いることで、簡素な構成の光学系で、混色光100を出射する光源1Kを実現することができる。 By using the optical conversion element 50K of this modification, it is possible to realize the light source 1K that emits the mixed color light 100 with an optical system having a simple configuration.
 また、本変形例の構成を用いることで、第1の蛍光発光部51R、第2の蛍光発光部51G、第3の蛍光発光部51Bで発生した熱を効率よく冷却することができ、第1の蛍光発光部51R、第2の蛍光発光部51G、第3の蛍光発光部51Bの温度上昇による蛍光強度減少を抑制することが可能である。 In addition, by using the configuration of this modification, the heat generated in the first fluorescent light emitting unit 51R, the second fluorescent light emitting unit 51G, and the third fluorescent light emitting unit 51B can be efficiently cooled, and the first It is possible to suppress a decrease in fluorescence intensity due to a temperature rise in the fluorescent light emitting unit 51R, the second fluorescent light emitting unit 51G, and the third fluorescent light emitting unit 51B.
 さらに、本変形例においては、回転体58を回転体58の形成面内において回転させることができるため、光源1Kを非常に薄型で構成することができる。 Furthermore, in the present modification, the rotating body 58 can be rotated within the formation surface of the rotating body 58, so that the light source 1K can be configured to be very thin.
 (第5の実施の形態)
 以下、本開示の第5の実施の形態およびその変形例に係る光学変換素子および光源の構成と効果について、図24、図25、図26A、図26B、図26C、図26D、図27を用いて説明する。
(Fifth embodiment)
Hereinafter, the configurations and effects of the optical conversion element and the light source according to the fifth embodiment of the present disclosure and the modifications thereof will be described with reference to FIGS. 24, 25, 26 A, 26 B, 26 C, 26 D, and 27. I will explain.
 図24は、本実施の形態に係る光源の構成を示す模式図である。また、図25は本実施の形態に係る光源を画像投写装置に用いたときの動作説明図である。図26A、図26B、図26C、図26Dは本実施の形態に係る光源からの出射光のスペクトル等を示し、図27は、本実施の形態に係る光源からの出射光の色度座標等を示す。 FIG. 24 is a schematic diagram showing a configuration of a light source according to the present embodiment. FIG. 25 is an operation explanatory diagram when the light source according to the present embodiment is used in an image projection apparatus. 26A, FIG. 26B, FIG. 26C, and FIG. 26D show the spectrum of the emitted light from the light source according to this embodiment, and FIG. 27 shows the chromaticity coordinates and the like of the emitted light from the light source according to this embodiment. Show.
 (構成)
 本開示の第5の実施の形態に係る光源1Lにおいては、第3の照射光源10Bから出射される第3の光75Bが青色の光であり、第3の光75Bの主な波長が430nmから480nmまでの範囲である。また、光源1Lは、図1において示した第3の蛍光発光部51Bおよび第3の集光レンズ40Bを有していない。光源1Lは、第3の照射光源10Bから出射される第3の光75Bを、そのまま青色光源として用いる。
(Constitution)
In the light source 1L according to the fifth embodiment of the present disclosure, the third light 75B emitted from the third irradiation light source 10B is blue light, and the main wavelength of the third light 75B is from 430 nm. The range is up to 480 nm. The light source 1L does not include the third fluorescent light emitting unit 51B and the third condenser lens 40B shown in FIG. The light source 1L uses the third light 75B emitted from the third irradiation light source 10B as it is as a blue light source.
 本実施の形態の光源1Lのより具体的な構成を、以下で説明する。 A more specific configuration of the light source 1L of the present embodiment will be described below.
 図24に示すように、光源1Lは、第1の照射光源10Rと第2の照射光源10Gと第3の照射光源10Bとを備える。第1の照射光源10Rと第2の照射光源10Gは、その光出力が例えば2ワットであり、その発光波長の中心波長が380nmから430nmの範囲にある半導体レーザである。第3の照射光源10Bは、発光波長の中心波長が430nmから480nmまでの範囲にある半導体レーザである。 As shown in FIG. 24, the light source 1L includes a first irradiation light source 10R, a second irradiation light source 10G, and a third irradiation light source 10B. The first irradiation light source 10R and the second irradiation light source 10G are semiconductor lasers having an optical output of, for example, 2 watts and a central wavelength of the emission wavelength in the range of 380 nm to 430 nm. The third irradiation light source 10B is a semiconductor laser having a central wavelength of emission wavelength in the range from 430 nm to 480 nm.
 図24においては、第1の照射光源10R、第2の照射光源10G、第3の照射光源10Bがそれぞれ3個ずつ配置されているが、この個数には限定されない。第1の照射光源10Rから出射された第1の光75Rは、第1の実施の形態で説明したのと同様な手順にて、例えばEu、Sm賦活La12蛍光体などの赤色蛍光体を含む第1の蛍光発光部51R上に集光される。第2の照射光源10Gから出射された第2の光75Gは、第1の実施の形態で説明したのと同様な手順にて、例えばCe賦活(Lu、Y)(Ga、Al)12蛍光体などの緑色蛍光体を含む第2の蛍光発光部51G上に集光される。 In FIG. 24, three each of the first irradiation light source 10R, the second irradiation light source 10G, and the third irradiation light source 10B are arranged, but the number is not limited. The first light 75R emitted from the first irradiation light source 10R is red, such as Eu or Sm activated La 2 W 3 O 12 phosphor, in the same procedure as described in the first embodiment. The light is condensed on the first fluorescent light emitting portion 51R including the fluorescent material. The second light 75G emitted from the second irradiation light source 10G is, for example, Ce activated (Lu, Y) 3 (Ga, Al) 5 O in the same procedure as described in the first embodiment. The light is condensed on the second fluorescent light emitting unit 51G including a green fluorescent material such as 12 fluorescent materials.
 第1の集光レンズ40R、第2の集光レンズ40Gが集光した第1の光75R、第2の光75Gの主光軸は、光学変換素子50Lの回転軸57の軸方向に対して垂直に入射するよう設置される。また第3の照射光源10Bから出射した光はコリメートレンズ20により平行光となり、さらに凸レンズである第1のリレーレンズ25Bと、凹レンズである第2のリレーレンズ27Bを介して、第3のミラー31Bへと導かれる。 The main optical axes of the first light 75R and the second light 75G collected by the first condenser lens 40R and the second condenser lens 40G are relative to the axial direction of the rotation shaft 57 of the optical conversion element 50L. It is installed so that it is incident vertically. The light emitted from the third irradiation light source 10B becomes parallel light by the collimating lens 20, and further passes through the first relay lens 25B which is a convex lens and the second relay lens 27B which is a concave lens, and the third mirror 31B. Led to.
 ここで、第3のミラー31Bは、例えば、波長430から480nmの光を反射するように設定される。そのため、第3の照射光源10Bから出射された第3の光75Bである青色光76Bは、第3のミラー31Bで反射された後、赤色光79Rと緑色光79Gと重畳されて、混色光100となる。 Here, the third mirror 31B is set to reflect light having a wavelength of 430 to 480 nm, for example. Therefore, after the blue light 76B, which is the third light 75B emitted from the third irradiation light source 10B, is reflected by the third mirror 31B, it is superimposed on the red light 79R and the green light 79G, and the mixed light 100 It becomes.
 また、図26Cに示すように、第2のダイクロイックミラー30Gは、例えば、波長380nmから500nmの光を透過し、波長500nmから800nmの光を反射する。そして第1のダイクロイックミラー30Rは、例えば、波長380nmから600nmの光を透過し、波長600nmから波長800nmの光を反射する。 Further, as shown in FIG. 26C, for example, the second dichroic mirror 30G transmits light having a wavelength of 380 nm to 500 nm and reflects light having a wavelength of 500 nm to 800 nm. For example, the first dichroic mirror 30R transmits light having a wavelength of 380 nm to 600 nm and reflects light having a wavelength of 600 nm to 800 nm.
 なお、第3のミラー31Bは、波長430nmから480nmの光を反射するミラーであれば、ダイクロイックミラーであってもよく、単なる反射ミラーであってもよい。 The third mirror 31B may be a dichroic mirror or a simple reflection mirror as long as it reflects light with a wavelength of 430 nm to 480 nm.
 (動作)
 次に、本実施の形態に係る光源1Lの動作について、図25から図27に示す、光源1Lを具備する画像投写装置199及び発光スペクトルなどを用いて説明する。
(Operation)
Next, the operation of the light source 1L according to the present embodiment will be described using an image projection device 199 including the light source 1L and an emission spectrum shown in FIGS.
 本実施の形態の光源1Lは、主な発光波長が590nmから660nmの範囲のいわゆる赤色光79Rと、主な発光波長が500nmから590nmの範囲のいわゆる緑色光79Gと、主な発光波長が430nmから480nmの範囲の青色光76Bとが時分割に出力されてなる混色光100を放射する。つまり、混色光100は、例えば、三原色の光である赤色光79R、緑色光79G、青色光76Bが、周期的に出射されることによってなる白色光である。一周期は、例えば倍速スキャン時には約8.3ms(120Hz)である。 The light source 1L of the present embodiment includes so-called red light 79R having a main emission wavelength in the range of 590 to 660 nm, so-called green light 79G having a main emission wavelength in the range of 500 to 590 nm, and a main emission wavelength of 430 nm. The mixed color light 100 which is output in a time division manner with the blue light 76B in the range of 480 nm is emitted. That is, the mixed-color light 100 is, for example, white light obtained by periodically emitting red light 79R, green light 79G, and blue light 76B, which are light of three primary colors. One cycle is, for example, about 8.3 ms (120 Hz) during double-speed scanning.
 続いて、光源1Lの動作について説明する。第1の照射光源10Rから出射された例えば中心波長405nm、全光量18ワットの第1の光75Rは、コリメートレンズ20および第1のリレーレンズ25Rと第2のリレーレンズ27Rにより一つの光束となる。第1の光75Rは、第1のダイクロイックミラー30Rを通過し、第1の集光レンズ40Rにより第1の蛍光発光部51Rにおける1mm以下の面積に集光される。集光された第1の光75Rは、第1の蛍光発光部51Rに含まれる例えばEu、Sm賦活La12蛍光体である赤色蛍光体により、主な発光波長が590nmから660nmまでの間にある赤色光78Rへと変換される。 Next, the operation of the light source 1L will be described. For example, the first light 75R having a central wavelength of 405 nm and a total light amount of 18 watts emitted from the first irradiation light source 10R becomes one light flux by the collimating lens 20, the first relay lens 25R, and the second relay lens 27R. . The first light 75R passes through the first dichroic mirror 30R and is condensed to an area of 1 mm 2 or less in the first fluorescent light emitting unit 51R by the first condenser lens 40R. The condensed first light 75R has a main emission wavelength from 590 nm to 660 nm due to, for example, a red phosphor, which is Eu, Sm activated La 2 W 3 O 12 phosphor, included in the first fluorescence emission part 51R. Is converted into red light 78R.
 第2の照射光源10Gから出射された例えば中心波長405nm、全光量18ワットの第2の光75Gは、コリメートレンズ20および第1のリレーレンズ25Gと第2のリレーレンズ27Gにより一つの光束となる。第2の光75Gは、第2のダイクロイックミラー30Gを通過し、第2の集光レンズ40Gにより第2の蛍光発光部51Gにおける1mm以下の面積に集光される。集光された第2の光75Gは、第2の蛍光発光部51Gに含まれる緑色蛍光体により、緑色光78Gへと変換される。 For example, the second light 75G having a center wavelength of 405 nm and a total light amount of 18 watts emitted from the second irradiation light source 10G becomes one light flux by the collimating lens 20, the first relay lens 25G, and the second relay lens 27G. . The second light 75G passes through the second dichroic mirror 30G and is condensed to an area of 1 mm 2 or less in the second fluorescent light emitting unit 51G by the second condenser lens 40G. The condensed second light 75G is converted into green light 78G by the green phosphor included in the second fluorescent light emitting unit 51G.
 赤色光78Rの放射角は全方位であり、赤色光78Rはランバーシアン配光で放射される光である。しかし、赤色光78Rの発光領域が1mm以下の点光源であるため、第1の集光レンズ40Rが、赤色光78Rをほぼ平行光にすることができる。赤色光78Rは、第1のダイクロイックミラー30Rに入射する。そして、赤色光78Rは第1のダイクロイックミラー30Rに反射され、赤色光79Rとなり、第3のリレーレンズ41に入射する。 The emission angle of the red light 78R is omnidirectional, and the red light 78R is light emitted by a Lambertian light distribution. However, since the emission region of the red light 78R is a point light source of 1 mm 2 or less, the first condenser lens 40R can make the red light 78R substantially parallel light. The red light 78R is incident on the first dichroic mirror 30R. Then, the red light 78R is reflected by the first dichroic mirror 30R, becomes red light 79R, and enters the third relay lens 41.
 同様に、第2の集光レンズ40Gが、緑色光78Gをほぼ平行光にすることができる。緑色光78Gは、第2のダイクロイックミラー30Gに入射する。そして、緑色光78Gは第2のダイクロイックミラー30Gに反射され、緑色光79Gとなり、第3のリレーレンズ41に入射する。 Similarly, the second condenser lens 40G can make the green light 78G substantially parallel light. The green light 78G is incident on the second dichroic mirror 30G. Then, the green light 78G is reflected by the second dichroic mirror 30G, becomes green light 79G, and enters the third relay lens 41.
 第3の照射光源10Bから出射された第3の光75Bは、コリメートレンズ20および第1のリレーレンズ25Bと第2のリレーレンズ27Bにより一つの光束となる。第3の光75Bは、第3のミラー31Bに反射され青色光76Bとなる。青色光76Bは、第3のリレーレンズ41に入射する。 The third light 75B emitted from the third irradiation light source 10B becomes one light flux by the collimating lens 20, the first relay lens 25B, and the second relay lens 27B. The third light 75B is reflected by the third mirror 31B and becomes blue light 76B. The blue light 76 </ b> B is incident on the third relay lens 41.
 赤色光78R、緑色光78Gおよび青色光76Bは第3のリレーレンズ41内で重畳されて混色光100となる。混色光100は、第3のリレーレンズ41により集光され、ロッドインテグレータ42の端部に入射する。混色光100は、ロッドインテグレータ42内で多重反射され、波面の光強度分布が矩形に変換される。その後、混色光100はロッドインテグレータ42から放射され、第4のリレーレンズ43で直進光となる。直進光となった混色光100は、反射ミラー45により反射され、例えばDMDなどの反射型の画像表示素子71に入射する。画像表示素子71に照射された混色光100は、画像表示素子71おいて2次元の映像信号が重畳された信号光80となり、画像表示素子71により反射される。信号光80は、投影レンズ65により所定のスクリーン(図示なし)に投影可能な映像光89とされる。その後、映像光89は、画像投写装置199から出射される。 The red light 78R, the green light 78G, and the blue light 76B are superimposed in the third relay lens 41 to become the mixed color light 100. The mixed color light 100 is collected by the third relay lens 41 and enters the end of the rod integrator 42. The mixed color light 100 is multiple-reflected in the rod integrator 42, and the light intensity distribution of the wave front is converted into a rectangle. Thereafter, the mixed color light 100 is radiated from the rod integrator 42 and is converted into straight light by the fourth relay lens 43. The mixed color light 100 that has become straight-ahead light is reflected by the reflection mirror 45 and enters a reflective image display element 71 such as a DMD, for example. The mixed color light 100 irradiated to the image display element 71 becomes signal light 80 on which a two-dimensional video signal is superimposed in the image display element 71 and is reflected by the image display element 71. The signal light 80 is converted into video light 89 that can be projected onto a predetermined screen (not shown) by the projection lens 65. Thereafter, the image light 89 is emitted from the image projection device 199.
 上記動作を、図26A、図26B、図26C、図26Dに示す発光スペクトル等を用いて説明する。図26Aに示すように、第1の照射光源10Rが出射する第1の光75Rのスペクトルと、第2の照射光源10Gが出射する第2の光75Gのスペクトルは同じである。第3の照射光源10Bが出射する第3の光75Bのスペクトルは、第1の光75R、第2の光75Gのスペクトルと異なる。 The above operation will be described with reference to emission spectra shown in FIGS. 26A, 26B, 26C, and 26D. As shown in FIG. 26A, the spectrum of the first light 75R emitted from the first irradiation light source 10R and the spectrum of the second light 75G emitted from the second irradiation light source 10G are the same. The spectrum of the third light 75B emitted from the third irradiation light source 10B is different from the spectrum of the first light 75R and the second light 75G.
 図26Bは、赤色光78Rと緑色光78Gのスペクトルを示す。赤色光78Rは、第1の光75Rが第1の蛍光発光部51Rにより波長変換された光であり、緑色光78Gは、第2の光75Gが第2の蛍光発光部51Gにより波長変換された光であり、青色光78Bは、第3の光75Bが第3の蛍光発光部51Bにより波長変換された光である。 FIG. 26B shows the spectrum of red light 78R and green light 78G. The red light 78R is light obtained by converting the wavelength of the first light 75R by the first fluorescent light emitting unit 51R, and the green light 78G is obtained by converting the wavelength of the second light 75G by the second fluorescent light emitting unit 51G. The blue light 78B is light obtained by wavelength conversion of the third light 75B by the third fluorescent light emitting unit 51B.
 図26Cは、第1のダイクロイックミラー30R、第2のダイクロイックミラー30Gの反射特性を示す図である。 FIG. 26C is a diagram showing the reflection characteristics of the first dichroic mirror 30R and the second dichroic mirror 30G.
 図26Dは、赤色光79R、緑色光79G、青色光76Bのスペクトルを示す。青色光76Bは、第3の光75Bが波長変換されることなく第3のミラー31Bに反射された光である。赤色光79Rは、赤色光78Rが第1のダイクロイックミラー30Rに反射された光である。図27に示すように、赤色光79Rの色純度は、赤色光78Rの色純度よりも向上している。この結果から、第1のダイクロイックミラー30Rが混色光100の色再現範囲を広げていることがわかる。緑色光79Gは、緑色光78Gが第2のダイクロイックミラー30Gに反射された光である。図27に示すように、緑色光79Gの色純度は、緑色光78Gの色純度よりも向上している。この結果から、第2のダイクロイックミラー30Gが混色光100の色再現範囲を広げていることがわかる。 FIG. 26D shows the spectrum of red light 79R, green light 79G, and blue light 76B. The blue light 76B is light that is reflected by the third mirror 31B without wavelength conversion of the third light 75B. The red light 79R is light obtained by reflecting the red light 78R to the first dichroic mirror 30R. As shown in FIG. 27, the color purity of the red light 79R is higher than the color purity of the red light 78R. From this result, it can be seen that the first dichroic mirror 30R extends the color reproduction range of the mixed color light 100. The green light 79G is light obtained by reflecting the green light 78G to the second dichroic mirror 30G. As shown in FIG. 27, the color purity of the green light 79G is higher than the color purity of the green light 78G. From this result, it can be seen that the second dichroic mirror 30G extends the color reproduction range of the mixed-color light 100.
 (効果)
 本開示の構成によれば、第1の照射光源10R、第2の照射光源10G、第3の照射光源10Bを用いているため、倍速スキャン(120Hz、周期8.3ms)以上の速度でも問題なく、光源1LがRGB三原色を時分割で出射することが可能である。その理由は、第1の照射光源10R、第2の照射光源10G、第3の照射光源10Bは、ナノ秒オーダーの時間スケールでオン状態とオフ状態の切り替えをすることが可能であるからである。
(effect)
According to the configuration of the present disclosure, since the first irradiation light source 10R, the second irradiation light source 10G, and the third irradiation light source 10B are used, there is no problem even at a speed of double speed scanning (120 Hz, cycle 8.3 ms) or more. The light source 1L can emit the three primary colors of RGB in a time division manner. The reason is that the first irradiation light source 10R, the second irradiation light source 10G, and the third irradiation light source 10B can be switched between the on state and the off state on a time scale of nanosecond order. .
 また、本構成により、第1の蛍光発光部51Rに対する励起波長、第2の蛍光発光部51Gに対する緑色蛍光体の励起波長、青色光76Bの波長、それぞれに適した波長を有する照射光源を第1の照射光源10R、第2の照射光源10G、第3の照射光源10Bに選択することができる。このため、蛍光体の発光効率を向上させることができ、高輝度な光源を実現することができる。 In addition, according to this configuration, the first irradiation light source having the excitation wavelength for the first fluorescent light emitting unit 51R, the excitation wavelength of the green phosphor for the second fluorescent light emitting unit 51G, and the wavelength of the blue light 76B, respectively. The irradiation light source 10R, the second irradiation light source 10G, and the third irradiation light source 10B can be selected. For this reason, the luminous efficiency of the phosphor can be improved, and a high-luminance light source can be realized.
 この構成により、RGB三原色を高効率、かつ高速に時分割で出射することができる光源1Lを、コンパクトな構成にて実現することができる。 With this configuration, the light source 1L capable of emitting the RGB three primary colors in a time-sharing manner with high efficiency and high speed can be realized with a compact configuration.
 なお、本実施の形態において使用できる蛍光体は、上述のものに限らない。例えば、緑色蛍光体としては、Eu賦活β型SiAlON蛍光体や、Eu賦活SrSiO蛍光体、Eu賦活SrSi蛍光体、Eu賦活BaSi12蛍光体、Ce賦活CaSc蛍光体などの、CeもしくはEuを賦活させた蛍光体を用いることができる。また、赤色蛍光体としては、Eu、Sm賦活La12に限らない。例えば、赤色蛍光体としては、シリコンオキサイド、タングステンオキサイド、モリブデンオキサイド、インジウムオキサイド、イットリウムオキサイド、ジンクオキサイド、シリコンナイトライド、シリコンオキシナイトライド、アルミニウムオキシナイトライド、有機高分子の一つもしくは複数が母材の構成元素に含まれた蛍光体であってもよい。母材に対する賦活剤としては、ランタノイドイオン元素あるいは金属イオン元素が含有されている。赤色蛍光体の具体例としては、Eu賦活LaS蛍光体、Eu賦活LiW蛍光体、EuおよびSm賦活LiW蛍光体、EuおよびMn賦活(Sr、Ba)MgSi蛍光体、Mn賦活3.5MgO・0.5MgF・GeO蛍光体、Eu賦活YVO蛍光体、Eu賦活Y蛍光体、Eu賦活YS蛍光体などがあげられる。これらの蛍光体は、蛍光スペクトルの半値幅が狭い蛍光体であり、本実施の形態において有効である。また、赤色蛍光体は、ランタノイドイオン元素、金属イオン元素を賦活材とした希土類錯体蛍光体であってもよい。赤色蛍光体の具体例としては、2種類のホスフィンオキシドが三価のユーロピウムに配位した分子構造を持つ希土類錯体蛍光体が挙げられる。 In addition, the fluorescent substance which can be used in this Embodiment is not restricted to the above-mentioned thing. For example, as the green phosphor, Eu activated β-type SiAlON phosphor, Eu activated SrSiO 3 phosphor, Eu activated SrSi 2 O 2 N 2 phosphor, Eu activated Ba 3 Si 8 O 12 N 2 phosphor, Ce activated A phosphor activated with Ce or Eu, such as a CaSc 2 O 4 phosphor, can be used. The red phosphor is not limited to Eu and Sm activated La 2 W 3 O 12 . For example, as a red phosphor, one or more of silicon oxide, tungsten oxide, molybdenum oxide, indium oxide, yttrium oxide, zinc oxide, silicon nitride, silicon oxynitride, aluminum oxynitride, and organic polymer is a mother substance. It may be a phosphor contained in the constituent elements of the material. As an activator for the base material, a lanthanoid ion element or a metal ion element is contained. Specific examples of the red phosphor include Eu activated La 2 O 2 S phosphor, Eu activated LiW 2 O 8 phosphor, Eu and Sm activated LiW 2 O 8 phosphor, Eu and Mn activated (Sr, Ba) 3 MgSi 2 O 8 phosphor, Mn activated 3.5 MgO · 0.5 MgF 2 .GeO 2 phosphor, Eu activated YVO 4 phosphor, Eu activated Y 2 O 3 phosphor, Eu activated Y 2 O 2 S phosphor, etc. It is done. These phosphors are phosphors having a narrow half-width of the fluorescence spectrum, and are effective in the present embodiment. Moreover, the red phosphor may be a rare earth complex phosphor using a lanthanoid ion element or a metal ion element as an activator. Specific examples of red phosphors include rare earth complex phosphors having a molecular structure in which two types of phosphine oxides are coordinated to trivalent europium.
 なお、本実施の形態において、第1の照射光源10R、第2の照射光源10Gの例として、中心波長450nmの半導体レーザを挙げたが、この限りではない。例えば、第1の照射光源10R、第2の照射光源10Gの中心波長は、第1の蛍光発光部51R、第2の蛍光発光部51Gにおける蛍光体の吸収スペクトルにあわせて、430nmから480nmの範囲で調整してもよい。あるいは、第1の照射光源10R、第2の照射光源10Gが、半導体レーザが複数組み合わされた構成としてもより。その場合、複数の半導体レーザの中心波長がそれぞれ2nm~10nmの範囲で異なる構成とすることで、波長スペクトル幅を広くすることができる。 In the present embodiment, a semiconductor laser having a center wavelength of 450 nm is given as an example of the first irradiation light source 10R and the second irradiation light source 10G, but this is not restrictive. For example, the center wavelengths of the first irradiation light source 10R and the second irradiation light source 10G are in the range of 430 nm to 480 nm in accordance with the absorption spectra of the phosphors in the first fluorescent light emitting unit 51R and the second fluorescent light emitting unit 51G. You may adjust with. Alternatively, the first irradiation light source 10R and the second irradiation light source 10G may be configured by combining a plurality of semiconductor lasers. In that case, the wavelength spectrum width can be widened by adopting a configuration in which the center wavelengths of the plurality of semiconductor lasers are different within a range of 2 nm to 10 nm.
 また、第1の照射光源10R、第2の照射光源10Gの例として、中心波長405nmの半導体レーザを挙げたがこの限りではない。例えば、第1の照射光源10R、第2の照射光源10Gの中心波長は、第1の蛍光発光部51R、第2の蛍光発光部51Gにおける蛍光体の吸収スペクトルにあわせて、380nmから430nmの範囲で調整してもよい。あるいは、第1の照射光源10R、第2の照射光源10Gが、半導体レーザが複数組み合わされた構成としてもより。その場合、複数の半導体レーザの中心波長がそれぞれ2nm~10nmの範囲で異なる構成とすることで、波長スペクトル幅を広くすることができる。 In addition, as an example of the first irradiation light source 10R and the second irradiation light source 10G, a semiconductor laser having a center wavelength of 405 nm is mentioned, but this is not restrictive. For example, the center wavelengths of the first irradiation light source 10R and the second irradiation light source 10G are in the range of 380 nm to 430 nm in accordance with the absorption spectra of the phosphors in the first fluorescent light emitting unit 51R and the second fluorescent light emitting unit 51G. You may adjust with. Alternatively, the first irradiation light source 10R and the second irradiation light source 10G may be configured by combining a plurality of semiconductor lasers. In that case, the wavelength spectrum width can be widened by adopting a configuration in which the center wavelengths of the plurality of semiconductor lasers are different within a range of 2 nm to 10 nm.
 (変形例)
 続いて、本実施の形態の変形例について図28A、図28B、図28C、図28Dおよび図29を用いて説明する。本変形例においては第1の照射光源10R、第2の照射光源10G、第3の照射光源10Bを同じもので構成し、それらの発光波長が430nmから480nmの間にある。本変形例においては、第1の蛍光発光部51Rが、青色の光を赤色の光に変換する蛍光体を有し、第2の蛍光発光部51Gが、青色の光を緑色の光に変換する蛍光体を有する。
(Modification)
Subsequently, a modification of the present embodiment will be described with reference to FIGS. 28A, 28B, 28C, 28D, and 29. FIG. In the present modification, the first irradiation light source 10R, the second irradiation light source 10G, and the third irradiation light source 10B are made of the same material, and their emission wavelengths are between 430 nm and 480 nm. In the present modification, the first fluorescent light emitting unit 51R has a phosphor that converts blue light into red light, and the second fluorescent light emitting unit 51G converts blue light into green light. Has a phosphor.
 本変形例の動作を、図28A、図28B、図28C、図28Dに示す発光スペクトル等を用いて説明する。 The operation of this modification will be described using the emission spectra shown in FIGS. 28A, 28B, 28C, and 28D.
 図28Aに示すように、第1の照射光源10Rは第1の光75Rを出射する。第2の照射光源10Gは第2の光75Gを出射する。第3の照射光源10Bは第3の光75Bを出射する。第1の光75R、第2の光75G、第3の光75Bの波長は等しい。 As shown in FIG. 28A, the first irradiation light source 10R emits the first light 75R. The second irradiation light source 10G emits the second light 75G. The third irradiation light source 10B emits third light 75B. The wavelengths of the first light 75R, the second light 75G, and the third light 75B are equal.
 図28Bは、赤色光78Rと緑色光78Gのスペクトルを示す。赤色光78Rは、第1の光75Rが第1の蛍光発光部51Rにより波長変換された光であり、緑色光78Gは、第2の光75Gが第2の蛍光発光部51Gにより波長変換された光である。第1の蛍光発光部51Rに含まれる蛍光体は、Eu賦活(Sr、Ca)AlSiN蛍光体である。また、第2の蛍光発光部51Gに含まれる蛍光体は、Ce賦活(Lu、Y)(Ga、Al)12蛍光体である。 FIG. 28B shows the spectra of red light 78R and green light 78G. The red light 78R is light obtained by converting the wavelength of the first light 75R by the first fluorescent light emitting unit 51R, and the green light 78G is obtained by converting the wavelength of the second light 75G by the second fluorescent light emitting unit 51G. Light. The phosphor included in the first fluorescent light emitting portion 51R is an Eu activated (Sr, Ca) AlSiN 3 phosphor. The phosphor included in the second fluorescent light emitting unit 51G is Ce-activated (Lu, Y) 3 (Ga, Al) 5 O 12 phosphor.
 図28Cは、第1のダイクロイックミラー30R、第2のダイクロイックミラー30Gの反射特性を示す図である。 FIG. 28C is a diagram showing the reflection characteristics of the first dichroic mirror 30R and the second dichroic mirror 30G.
 図28Dは、赤色光79R、緑色光79G、青色光76Bのスペクトルを示す。青色光76Bは、第3の光75Bが波長変換されることなく第3のミラー31Bに反射された光である。赤色光79Rは、赤色光78Rが第1のダイクロイックミラー30Rに反射された光である。図29に示すように、赤色光79Rの色純度は、赤色光78Rの色純度よりも向上している。この結果から、第1のダイクロイックミラー30Rが混色光100の色再現範囲を広げていることがわかる。緑色光79Gは、緑色光78Gが第2のダイクロイックミラー30Gに反射された光である。図29に示すように、緑色光79Gの色純度は、緑色光78Gの色純度よりも向上している。この結果から、第2のダイクロイックミラー30Gが混色光100の色再現範囲を広げていることがわかる。 FIG. 28D shows the spectrum of red light 79R, green light 79G, and blue light 76B. The blue light 76B is light that is reflected by the third mirror 31B without wavelength conversion of the third light 75B. The red light 79R is light obtained by reflecting the red light 78R to the first dichroic mirror 30R. As shown in FIG. 29, the color purity of the red light 79R is higher than the color purity of the red light 78R. From this result, it can be seen that the first dichroic mirror 30R extends the color reproduction range of the mixed color light 100. The green light 79G is light obtained by reflecting the green light 78G to the second dichroic mirror 30G. As shown in FIG. 29, the color purity of the green light 79G is higher than the color purity of the green light 78G. From this result, it can be seen that the second dichroic mirror 30G extends the color reproduction range of the mixed-color light 100.
 本変形例においては、第1の照射光源10R、第2の照射光源10G、第3の照射光源10Bを1種類で構成することができるため、より簡単に光源1Lを実現することが出来る。 In the present modification, the first irradiation light source 10R, the second irradiation light source 10G, and the third irradiation light source 10B can be configured as one type, so that the light source 1L can be realized more easily.
 本開示の光源は、照射光源からの出射光が、複数の蛍光体で蛍光に変換されて放射する光源であり、カラーホイールを用いることなく混色光を出射することができる。そのため、本開示の光源は、プロジェクタ、リアプロジェクションテレビ、ヘッドアップディスプレイなどのディスプレイ用照明だけでなく、ヘッドライトなどの車載用照明または内視鏡などの医療用照明などにおいても広く利用することができる。 The light source of the present disclosure is a light source that emits light emitted from an irradiation light source after being converted into fluorescence by a plurality of phosphors, and can emit mixed color light without using a color wheel. Therefore, the light source of the present disclosure can be widely used not only for display illumination such as a projector, a rear projection television, and a head-up display, but also for in-vehicle illumination such as a headlight or medical illumination such as an endoscope. it can.
1,1F,1G,1H,1I,1J,1K,1L  光源
10,10R  第1の照射光源
10G  第2の照射光源
10B  第3の照射光源
20  コリメートレンズ
25R,25G,25B  第1のリレーレンズ
27R,27G,27B  第2のリレーレンズ
30R  第1のダイクロイックミラー
30G  第2のダイクロイックミラー
30B  第3のダイクロイックミラー
31B  第3のミラー
40R  第1の集光レンズ
40G  第2の集光レンズ
40B  第3の集光レンズ
41  第3のリレーレンズ
42  ロッドインテグレータ
43  第4のリレーレンズ
45  反射ミラー
50,50B,50C,50D,50E,50F,50G,50H,50I,50J,50K,50L  光学変換素子
51  蛍光発光部
51R  第1の蛍光発光部
51G  第2の蛍光発光部
51B  第3の蛍光発光部
55  回転機構
56  連結部
57  回転軸
57R  第1の回転軸
57G  第2の回転軸
57B  第3の回転軸
58  回転体
58R  第1の回転体
58G  第2の回転体
58B  第3の回転体
59  軸受け
60,60C,60F  透明体
61  中空部
62  移動機構
64A  第1のギア
64B  第2のギア
65  投影レンズ
70  反射防止膜
71  画像表示素子
75  励起光
75R  第1の光
75G  第2の光
75B  第3の光
76B  青色光
78   波長変換光
78R  赤色光
78G  緑色光
78B  青色光
79R  赤色光
79G  緑色光
79B  青色光
80  信号光
89  映像光
90  ヒートシンク
92  冷却機構
95  ファン
99  熱輸送部材
100,100W  混色光
199  画像投写装置
1, 1F, 1G, 1H, 1I, 1J, 1K, 1L Light source 10, 10R First irradiation light source 10G Second irradiation light source 10B Third irradiation light source 20 Collimating lenses 25R, 25G, 25B First relay lens 27R 27G, 27B Second relay lens 30R First dichroic mirror 30G Second dichroic mirror 30B Third dichroic mirror 31B Third mirror 40R First condenser lens 40G Second condenser lens 40B Third Condensing lens 41 Third relay lens 42 Rod integrator 43 Fourth relay lens 45 Reflective mirrors 50, 50B, 50C, 50D, 50E, 50F, 50G, 50H, 50I, 50J, 50K, 50L Optical conversion element 51 Fluorescent light emission Part 51R First fluorescent light emitting part 51G Second fluorescent light emitting 51B 3rd fluorescence light emission part 55 Rotation mechanism 56 Connection part 57 Rotating shaft 57R 1st rotating shaft 57G 2nd rotating shaft 57B 3rd rotating shaft 58 Rotating body 58R 1st rotating body 58G 2nd rotating body 58B Third rotating body 59 Bearing 60, 60C, 60F Transparent body 61 Hollow portion 62 Movement mechanism 64A First gear 64B Second gear 65 Projection lens 70 Antireflection film 71 Image display element 75 Excitation light 75R First light 75G Second light 75B Third light 76B Blue light 78 Wavelength converted light 78R Red light 78G Green light 78B Blue light 79R Red light 79G Green light 79B Blue light 80 Signal light 89 Video light 90 Heat sink 92 Cooling mechanism 95 Fan 99 Heat transport MEMBER 100, 100W MIXED LIGHT 199 IMAGE PROJECTION DEVICE

Claims (20)

  1. 回転軸を有する回転体と、
    前記回転体に設けられた複数の蛍光発光部と、を備え、
    前記複数の蛍光発光部が第1の蛍光発光部と、第2の蛍光発光部と、を有し、
    前記第1の蛍光発光部と前記第2の蛍光発光部とが前記回転軸を中心とする円周上に配置された
    光学変換素子。
    A rotating body having a rotation axis;
    A plurality of fluorescent light emitting units provided on the rotating body,
    The plurality of fluorescent light emitting units includes a first fluorescent light emitting unit and a second fluorescent light emitting unit,
    An optical conversion element in which the first fluorescent light emitting unit and the second fluorescent light emitting unit are arranged on a circumference around the rotation axis.
  2. 前記複数の蛍光発光部がさらに第3の蛍光発光部を有し、
    前記第3の蛍光発光部が前記回転軸を中心とする円周上に配置された
    請求項1に記載の光学変換素子。
    The plurality of fluorescent light emitting units further includes a third fluorescent light emitting unit,
    The optical conversion element according to claim 1, wherein the third fluorescent light emitting unit is disposed on a circumference centered on the rotation axis.
  3. 前記複数の蛍光発光部上に配置された透明体をさらに有する
    請求項1に記載の光学変換素子。
    The optical conversion element according to claim 1, further comprising a transparent body disposed on the plurality of fluorescent light emitting units.
  4. 前記回転軸を中心として前記回転体を回転させる回転機構と、
    前記回転体に設けられた冷却機構と、をさらに備える、
    請求項1に記載の光学変換素子。
    A rotating mechanism for rotating the rotating body around the rotating shaft;
    A cooling mechanism provided on the rotating body,
    The optical conversion element according to claim 1.
  5. 前記回転体の最表面に設けられた反射防止膜をさらに有し、
    前記反射防止膜が380nmから700nmまでの波長領域の光の反射を防止する、
    請求項1に記載の光学変換素子。
    Further comprising an antireflection film provided on the outermost surface of the rotating body,
    The antireflection film prevents reflection of light in a wavelength region from 380 nm to 700 nm;
    The optical conversion element according to claim 1.
  6. 前記回転軸の軸方向において前記回転体の位置を変化させる移動機構をさらに有する、
    請求項1に記載の光学変換素子。
    A moving mechanism for changing the position of the rotating body in the axial direction of the rotating shaft;
    The optical conversion element according to claim 1.
  7. 請求項1に記載の光学変換素子と、
    前記光学変換素子に第1の光を照射する第1の照射光源と、
    前記光学変換素子に第2の光を照射する第2の照射光源と、
    第3の光を出射する第3の照射光源と、
    を備え、
    前記第1の蛍光発光部が前記第1の光を受けると赤色光を出射し、
    前記第2の蛍光発光部が前記第2の光を受けると緑色光を出射し、
    前記赤色光と前記緑色光と前記第3の光とを混合して出射する光源。
    The optical conversion element according to claim 1;
    A first irradiation light source for irradiating the optical conversion element with first light;
    A second irradiation light source for irradiating the optical conversion element with second light;
    A third irradiation light source that emits third light;
    With
    When the first fluorescent light emitting unit receives the first light, it emits red light;
    When the second fluorescent light emitting unit receives the second light, it emits green light,
    A light source that mixes and emits the red light, the green light, and the third light.
  8. 前記第3の光が青色の光である
    請求項7に記載の光源。
    The light source according to claim 7, wherein the third light is blue light.
  9. 前記第1の光が前記回転軸の軸方向に対して垂直な方向から前記光学変換素子に入射し、
    前記第2の光が前記回転軸の軸方向に対して垂直な方向から前記光学変換素子に入射する請求項7に記載の光源。
    The first light is incident on the optical conversion element from a direction perpendicular to the axial direction of the rotation axis;
    The light source according to claim 7, wherein the second light is incident on the optical conversion element from a direction perpendicular to an axial direction of the rotation axis.
  10. 前記第1の照射光源と前記光学変換素子との間に配置された第1のダイクロイックミラーと、
    前記第2の照射光源と前記光学変換素子との間に配置された第2のダイクロイックミラーと、
    をさらに備えた請求項7に記載の光源。
    A first dichroic mirror disposed between the first irradiation light source and the optical conversion element;
    A second dichroic mirror disposed between the second irradiation light source and the optical conversion element;
    The light source according to claim 7, further comprising:
  11. 前記第3の照射光源からの第3の光を受ける第3のミラーをさらに備え、
    前記第1のダイクロイックミラーが前記第1の光を透過し、且つ前記赤色光を反射し、
    前記第2のダイクロイックミラーが前記第2の光を透過し、且つ前記緑色光を反射し、
    前記第3のミラーが前記第3の光を反射する
    請求項10に記載の光源。
    A third mirror for receiving third light from the third irradiation light source;
    The first dichroic mirror transmits the first light and reflects the red light;
    The second dichroic mirror transmits the second light and reflects the green light;
    The light source according to claim 10, wherein the third mirror reflects the third light.
  12. 前記第1のダイクロイックミラーと前記光学変換素子との間に配置された第1の集光レンズと、
    前記第2のダイクロイックミラーと前記光学変換素子との間に配置された第2の集光レンズと、をさらに有する請求項10に記載の光源。
    A first condenser lens disposed between the first dichroic mirror and the optical conversion element;
    The light source according to claim 10, further comprising: a second condenser lens disposed between the second dichroic mirror and the optical conversion element.
  13. 請求項2に記載の光学変換素子と、
    前記光学変換素子に第1の光を照射する第1の照射光源と、
    前記光学変換素子に第2の光を照射する第2の照射光源と、
    前記光学変換素子に第3の光を照射する第3の照射光源と、
    を備え、
    前記第1の蛍光発光部が前記第1の光を受けると赤色光を出射し、
    前記第2の蛍光発光部が前記第2の光を受けると緑色光を出射し、
    前記第3の蛍光発光部が前記第3の光を受けると青色光を出射し、
    前記赤色光と前記緑色光と前記青色光とを混合して出射する
    光源。
    The optical conversion element according to claim 2;
    A first irradiation light source for irradiating the optical conversion element with first light;
    A second irradiation light source for irradiating the optical conversion element with second light;
    A third irradiation light source for irradiating the optical conversion element with third light;
    With
    When the first fluorescent light emitting unit receives the first light, it emits red light;
    When the second fluorescent light emitting unit receives the second light, it emits green light,
    When the third fluorescent light emitting unit receives the third light, it emits blue light,
    A light source that mixes and emits the red light, the green light, and the blue light.
  14. 前記第1の光が前記回転軸の軸方向に対して垂直な方向から前記光学変換素子に入射し、
    前記第2の光が前記回転軸の軸方向に対して垂直な方向から前記光学変換素子に入射し、
    前記第3の光が前記回転軸の軸方向に対して垂直な方向から前記光学変換素子に入射する請求項13に記載の光源。
    The first light is incident on the optical conversion element from a direction perpendicular to the axial direction of the rotation axis;
    The second light is incident on the optical conversion element from a direction perpendicular to the axial direction of the rotation axis;
    The light source according to claim 13, wherein the third light is incident on the optical conversion element from a direction perpendicular to an axial direction of the rotation axis.
  15. 前記第1の照射光源と前記光学変換素子との間に配置された第1のダイクロイックミラーと、
    前記第2の照射光源と前記光学変換素子との間に配置された第2のダイクロイックミラーと、
    前記第3の照射光源と前記光学変換素子との間に配置された第3のダイクロイックミラーと、
    をさらに備える請求項13に記載の光源。
    A first dichroic mirror disposed between the first irradiation light source and the optical conversion element;
    A second dichroic mirror disposed between the second irradiation light source and the optical conversion element;
    A third dichroic mirror disposed between the third irradiation light source and the optical conversion element;
    The light source according to claim 13, further comprising:
  16. 前記第1のダイクロイックミラーが前記第1の光を透過し、且つ前記赤色光を反射し、
    前記第2のダイクロイックミラーが前記第2の光を透過し、且つ前記緑色光を反射し、
    前記第3のダイクロイックミラーが前記第3の光を透過し、且つ前記青色光を反射する
    請求項15に記載の光源。
    The first dichroic mirror transmits the first light and reflects the red light;
    The second dichroic mirror transmits the second light and reflects the green light;
    The light source according to claim 15, wherein the third dichroic mirror transmits the third light and reflects the blue light.
  17. 前記第1のダイクロイックミラーと前記光学変換素子との間に配置された第1の集光レンズと、
    前記第2のダイクロイックミラーと前記光学変換素子との間に配置された第2の集光レンズと、
    前記第3のダイクロイックミラーと前記光学変換素子との間に配置された第3の集光レンズと、
    をさらに有する請求項15に記載の光源。
    A first condenser lens disposed between the first dichroic mirror and the optical conversion element;
    A second condenser lens disposed between the second dichroic mirror and the optical conversion element;
    A third condenser lens disposed between the third dichroic mirror and the optical conversion element;
    The light source according to claim 15, further comprising:
  18. 前記第1の蛍光発光部と、前記第2の蛍光発光部と、前記第3の蛍光発光部とが同一の円周上に配置された請求項2に記載の光学変換素子。 The optical conversion element according to claim 2, wherein the first fluorescent light emitting unit, the second fluorescent light emitting unit, and the third fluorescent light emitting unit are arranged on the same circumference.
  19. 請求項18に記載の光学変換素子と、
    前記光学変換素子に第1の光を照射する第1の照射光源と、
    を備え、
    前記第1の蛍光発光部が前記第1の光を受けると赤色光を出射し、
    前記第2の蛍光発光部が前記第1の光を受けると緑色光を出射し、
    前記第3の蛍光発光部が前記第1の光を受けると青色光を出射し、
    前記赤色光と前記緑色光と前記青色光とを混合して出射する光源。
    The optical conversion element according to claim 18,
    A first irradiation light source for irradiating the optical conversion element with first light;
    With
    When the first fluorescent light emitting unit receives the first light, it emits red light;
    When the second fluorescent light emitting unit receives the first light, it emits green light,
    When the third fluorescent light emitting unit receives the first light, it emits blue light,
    A light source that mixes and emits the red light, the green light, and the blue light.
  20. 前記第1の照射光源と前記光学変換素子との間に配置されたダイクロイックミラーを有し、
    前記第ダイクロイックミラーが前記第1の光を透過し、
    前記第ダイクロイックミラーが前記赤色光、前記緑色光、前記青色光を反射する請求項19に記載の光源。
    A dichroic mirror disposed between the first irradiation light source and the optical conversion element;
    The first dichroic mirror transmits the first light;
    The light source according to claim 19, wherein the first dichroic mirror reflects the red light, the green light, and the blue light.
PCT/JP2014/001692 2013-05-22 2014-03-25 Optical conversion element and light source using same WO2014188645A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-107708 2013-05-22
JP2013107708A JP2016145848A (en) 2013-05-22 2013-05-22 Optical conversion element and light source using the same

Publications (1)

Publication Number Publication Date
WO2014188645A1 true WO2014188645A1 (en) 2014-11-27

Family

ID=51933218

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/001692 WO2014188645A1 (en) 2013-05-22 2014-03-25 Optical conversion element and light source using same

Country Status (2)

Country Link
JP (1) JP2016145848A (en)
WO (1) WO2014188645A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3070510A4 (en) * 2014-12-08 2016-12-21 Panasonic Ip Man Co Ltd Headup display and mobile body provided with same
TWI719706B (en) * 2019-11-07 2021-02-21 台達電子工業股份有限公司 Wavelength conversion unit and lighting device
CN112782843A (en) * 2019-11-07 2021-05-11 台达电子工业股份有限公司 Wavelength conversion unit and lighting device
CN113534439A (en) * 2020-04-16 2021-10-22 中强光电股份有限公司 Wavelength conversion device and projection equipment

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6929058B2 (en) * 2016-12-28 2021-09-01 キヤノン株式会社 Light source device and image projection device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010164846A (en) * 2009-01-16 2010-07-29 Casio Computer Co Ltd Projection apparatus
JP2010197497A (en) * 2009-02-23 2010-09-09 Casio Computer Co Ltd Light emitting device, light source device, and projector using the light source device
JP2011221502A (en) * 2010-03-25 2011-11-04 Sanyo Electric Co Ltd Projection type video display apparatus and light source device
WO2012002254A1 (en) * 2010-06-30 2012-01-05 株式会社Jvcケンウッド Light source device and lighting device
JP2012108486A (en) * 2010-10-21 2012-06-07 Panasonic Corp Light source device and image display
JP2013047777A (en) * 2011-07-22 2013-03-07 Ricoh Co Ltd Illumination device, projection device, and control method of projection device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010164846A (en) * 2009-01-16 2010-07-29 Casio Computer Co Ltd Projection apparatus
JP2010197497A (en) * 2009-02-23 2010-09-09 Casio Computer Co Ltd Light emitting device, light source device, and projector using the light source device
JP2011221502A (en) * 2010-03-25 2011-11-04 Sanyo Electric Co Ltd Projection type video display apparatus and light source device
WO2012002254A1 (en) * 2010-06-30 2012-01-05 株式会社Jvcケンウッド Light source device and lighting device
JP2012108486A (en) * 2010-10-21 2012-06-07 Panasonic Corp Light source device and image display
JP2013047777A (en) * 2011-07-22 2013-03-07 Ricoh Co Ltd Illumination device, projection device, and control method of projection device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3070510A4 (en) * 2014-12-08 2016-12-21 Panasonic Ip Man Co Ltd Headup display and mobile body provided with same
TWI719706B (en) * 2019-11-07 2021-02-21 台達電子工業股份有限公司 Wavelength conversion unit and lighting device
CN112782843A (en) * 2019-11-07 2021-05-11 台达电子工业股份有限公司 Wavelength conversion unit and lighting device
US11041614B2 (en) 2019-11-07 2021-06-22 Delta Electronics, Inc. Wavelength conversion unit and lighting device
CN113534439A (en) * 2020-04-16 2021-10-22 中强光电股份有限公司 Wavelength conversion device and projection equipment

Also Published As

Publication number Publication date
JP2016145848A (en) 2016-08-12

Similar Documents

Publication Publication Date Title
JP6225338B2 (en) Light source and image projection device
JP5427324B1 (en) Light emitting device and projection device
JP5840711B2 (en) Illumination device having a pump light source and at least two phosphor wheels
CN103019018B (en) Projection display device and light supply apparatus
JP5240521B2 (en) Light emitting device, light source device, and projector using the light source device
JP4920907B2 (en) Separate wavelength conversion in lighting systems
TWI421448B (en) Illumination device and image display apparatus
US20150042963A1 (en) Light source device and image projecting apparatus having the same
WO2011118536A1 (en) Projection image display device and light source device
JP5618120B2 (en) Light emitting device, light source device, and projector using the light source device
WO2014103093A1 (en) Image display device and light conversion panel used in same
WO2014188645A1 (en) Optical conversion element and light source using same
JP2013029831A (en) Illumination apparatus and projection type image display apparatus
JP2011165555A (en) Solid light source device
EP2889685B1 (en) Wavelength converter, optical system and light source unit incorporating wavelength converter, and projection device incorporating light source unit
JP6777075B2 (en) Light converter, light source, and projection display
JP6547861B2 (en) Light source device and projection device
WO2016185851A1 (en) Light conversion device, light source device, and projector
US11279871B2 (en) Ceramic composite, light source apparatus, and projector
JP5979199B2 (en) Light emitting device, light source device, and projector using the light source device
JP2010197500A (en) Light-emitting device, light source device, and projector using the light source device
JP2014002416A (en) Control method of light source device
JP7228010B2 (en) solid state light source
KR20120130610A (en) Light source apparatus and method for manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14800699

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14800699

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP