WO2011118536A1 - Projection image display device and light source device - Google Patents

Projection image display device and light source device Download PDF

Info

Publication number
WO2011118536A1
WO2011118536A1 PCT/JP2011/056613 JP2011056613W WO2011118536A1 WO 2011118536 A1 WO2011118536 A1 WO 2011118536A1 JP 2011056613 W JP2011056613 W JP 2011056613W WO 2011118536 A1 WO2011118536 A1 WO 2011118536A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
phosphor
light source
source device
emitted
Prior art date
Application number
PCT/JP2011/056613
Other languages
French (fr)
Japanese (ja)
Inventor
前田 誠
松本 慎也
金山 秀行
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Publication of WO2011118536A1 publication Critical patent/WO2011118536A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2066Reflectors in illumination beam
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/16Cooling; Preventing overheating
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2013Plural light sources
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources
    • G03B21/204LED or laser light sources using secondary light emission, e.g. luminescence or fluorescence
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3102Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using two-dimensional electronic spatial light modulators
    • H04N9/3111Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using two-dimensional electronic spatial light modulators for displaying the colours sequentially, e.g. by using sequentially activated light sources
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/315Modulator illumination systems
    • H04N9/3164Modulator illumination systems using multiple light sources

Definitions

  • the present invention relates to a projection display apparatus and a light source apparatus.
  • thermoluminescent halogen lamps discharge ultra-high pressure mercury lamps and metal halide lamps are widely used as light source devices.
  • a shape in which an arc tube and a reflector that reflects light emitted from the arc tube is combined is used in order to efficiently propagate light to an irradiated surface.
  • the ultra high pressure mercury lamp has a relatively high light intensity, its emission characteristic has an emission spectrum unique to mercury, and is red (hereinafter referred to as R), green (hereinafter referred to as G), and blue.
  • R red
  • G green
  • B blue
  • the wavelength range of colored light hereinafter referred to as B
  • the light intensity in the wavelength range of R light tends to be insufficient. For this reason, there is a problem that illumination light having a good color balance in the visible wavelength region cannot be obtained.
  • Patent Document 1 discloses a light source that emits light including visible light and ultraviolet light, a reflector that reflects the light emitted from the light source, and A plurality of filters that individually transmit light of a plurality of colors including red are provided in the circumferential direction, the rotation axis is shifted from the optical axis, and the light emitted from the light source is rotated sequentially.
  • a light source device including a color wheel to be illuminated is disclosed.
  • the color wheel includes a phosphor layer that fluoresces ultraviolet light into light of each color at least at a part of a portion irradiated with light from each filter, and emits from the light source.
  • the color balance is adjusted by superimposing the R light converted from the ultraviolet light by the phosphor layer on the visible light of each color.
  • the light source device described in Patent Document 1 increases the component of each color by superimposing the visible light of each color, which has been wavelength-converted from ultraviolet light, on the light emitted from the ultra-high pressure mercury lamp as the light source lamp. Therefore, a high voltage power source for driving the ultra high pressure mercury lamp is required.
  • the light source device is desired to have a long life and a short time until lighting.
  • the light source device described in Patent Document 1 rotates a disk-shaped color wheel around a rotation axis parallel to the optical axis of the light source, and therefore is perpendicular to the optical axis to accommodate the color wheel. It is necessary to ensure a certain height in any direction, and there is a restriction on downsizing of the entire apparatus.
  • the wavelength difference between the ultraviolet light that is the excitation light and the R light that is the light emitted from the phosphor layer is different from the ultraviolet light and the G light or B light. Since it becomes larger than the wavelength difference from light, it is difficult to obtain high efficiency.
  • the present invention has been made to solve such a problem, and an object of the present invention is to provide a light source device capable of ensuring the color balance and light amount of illumination light without a significant system change from the light source lamp. And a projection display apparatus including the same.
  • Another object of the present invention is to provide a high-efficiency and high-luminance light source device and a projection-type image display device including the same while achieving miniaturization.
  • a projection display apparatus is modulated by a light source device, a light modulation unit that modulates light emitted from the light source device based on an input video signal, and a light modulation unit.
  • the light source device includes a solid-state light source, a phosphor that is excited by light emitted from the solid-state light source and emits light in a visible range, a reflector that reflects the light emitted from the phosphor and emits the light in a predetermined direction, And a phosphor installation section that installs the phosphor at the focal position of the reflector.
  • the phosphor installation part has a reflection part for guiding the light emitted from the phosphor to the reflection surface of the reflector.
  • the light source device further includes an irradiation position moving mechanism for continuously moving the irradiation position of the light emitted from the solid light source to the phosphor.
  • the irradiation position moving mechanism is attached to the phosphor installation part, and rotates the phosphor installation part around the rotation axis and the rotation axis parallel to the optical axis of the reflector, so that the light emitted from the solid light source
  • the phosphor has a light incident surface in which a plurality of light emitting portions that emit different color lights are arranged in order along a circumferential direction around the rotation axis.
  • the solid light source comprises at least one light source.
  • the at least one light source is arranged on the apex side of the reflector or the opening side of the reflector, and emits light toward the inside of the reflector.
  • the light source device further includes a light condensing member for condensing the light emitted from the solid light source on the phosphor.
  • a light source device includes a solid-state light source, a phosphor that is excited by light emitted from the solid-state light source, and emits light in the visible range, and reflects light emitted from the phosphor to give a predetermined light source.
  • a reflector for emitting light in the direction of, and a phosphor installation portion that installs the phosphor at the focal position of the reflector.
  • the phosphor installation part has a reflection part for guiding the light emitted from the phosphor to the reflection surface of the reflector.
  • a projection display apparatus is modulated by a light source device, a light modulation unit that modulates light emitted from the light source device based on an input video signal, and a light modulation unit.
  • the light source device is provided on a solid light source, a rotating body whose axis of rotation is orthogonal to the optical axis of the solid light source, and an outer peripheral surface of the rotating body. And a phosphor that emits light.
  • the rotating body includes a cylindrical translucent substrate that is driven to rotate about the rotation axis.
  • the phosphor is disposed on the outer peripheral surface of the translucent substrate so as to have a predetermined angle range in the circumferential direction.
  • the light source device is disposed on the inner peripheral surface of the translucent substrate at a position facing the phosphor, and reflects the light emitted from the phosphor toward the outside in the radial direction of the rotating body, and the solid light source emits the light.
  • a dichroic film that transmits light is further included.
  • the phosphor includes a plurality of fluorescent portions that are arranged in parallel along the rotation axis direction and that receive light emitted from the solid-state light source and emit a plurality of colored lights respectively.
  • the plurality of fluorescent portions are arranged on the outer peripheral surface of the translucent substrate so as to have different angular ranges in the circumferential direction when viewed from the rotation axis direction.
  • the rotating body includes a cylindrical translucent substrate that is driven to rotate about the rotation axis.
  • a fluorescent substance is arrange
  • the light source device further includes a reflective film that is disposed over the entire inner peripheral surface of the translucent substrate and reflects the light emitted by the phosphor toward the outside in the radial direction of the rotating body.
  • the phosphor includes a plurality of fluorescent portions that are arranged side by side along the circumferential direction and emit light of a plurality of color lights in response to light emitted from the solid light source.
  • the plurality of fluorescent portions are arranged on the outer peripheral surface of the translucent substrate so as to have different angular ranges in the circumferential direction.
  • a light source device is provided on a solid light source, a rotating body whose axis of rotation is orthogonal to the optical axis of the solid light source, and an outer peripheral surface of the rotating body, and the solid light source emits the light source device.
  • a phosphor that emits light in the visible range when excited by the emitted light.
  • the light source device is configured such that the phosphor as the light emitting unit converts the light from the solid light source into visible light, while maintaining the shape of the light source lamp including the combination of the light emitting unit and the reflector.
  • the casing and system of the projection display apparatus equipped with the light source lamp can be shared. Therefore, a significant system change from a projection display apparatus equipped with a light source lamp becomes unnecessary.
  • the light source device can easily emit illumination light with good color balance. Furthermore, since the light emitted from the phosphor can be efficiently guided to the reflecting surface of the reflector, the light utilization efficiency of the light source device can be increased.
  • FIG. 1 It is a figure which shows typically the structure of the principal part of the projector which concerns on Embodiment 1 of this invention. It is a figure explaining the structure of the light source device in FIG. It is a figure which shows the structure of a general light source lamp. It is a figure explaining the structure of the light source device which concerns on Embodiment 2 of this invention. It is a figure explaining the structure of the light source device which concerns on the modification 1 of Embodiment 2 of this invention. It is a figure explaining the structure of the light source device which concerns on the modification 2 of Embodiment 2 of this invention. It is a figure explaining the structure of the light source device which concerns on Embodiment 3 of this invention.
  • FIG. 1 is a diagram schematically showing a configuration of a main part of a projection display apparatus (hereinafter also referred to as “projector”) according to Embodiment 1 of the present invention.
  • projector a projection display apparatus
  • the projector is a liquid crystal projector that projects an image using a liquid crystal device, and includes an optical engine 2 and a projection lens 3, and the outline is covered with a cavity (not shown). ing.
  • the projector is also equipped with components for outputting sound such as a speaker, a circuit board for electrically controlling the components of the optical engine 2 and the sound output means, but in FIG. The illustration of some components including these is omitted.
  • the optical engine 2 includes a light source device 10.
  • the light source device 10 includes a solid light source 50, a phosphor 60 that emits light when excited by light from the solid light source 50, and a reflector 56 that reflects light emitted from the phosphor 60.
  • the light source device 10 is mounted in a detachable state with respect to the cavity.
  • the light emitted from the phosphor 60 is emitted as a substantially parallel light in a predetermined direction by the action of the reflector 56.
  • the light from the light source device 10 enters a PBS (polarized beam splitter) array 12 and a condenser lens 13 via a fly eye integrator 11.
  • the fly-eye integrator 11 includes a fly-eye lens composed of a lens group having an eyelet shape. The fly-eye integrator 11 applies light to the light incident from the light source device 10 so that the light quantity distribution of the light incident on the liquid crystal panels 18, 24, 33 is uniform. Add optical action.
  • the PBS array 12 has a plurality of PBSs and half-wave plates arranged in an array, and aligns the polarization direction of the light incident from the fly eye integrator 11 in one direction.
  • the condenser lens 13 condenses light incident from the PBS array 12. The light transmitted through the condenser lens 13 enters the dichroic mirror 14.
  • the dichroic mirror 14 transmits only light in the blue wavelength range (hereinafter referred to as “B light”) out of the light incident from the condenser lens 13, and light in the red wavelength range (hereinafter referred to as “R light”) and Reflects light in the green wavelength range (hereinafter referred to as “G light”).
  • B light blue wavelength range
  • R light red wavelength range
  • G light green wavelength range
  • the condenser lens 16 imparts an optical action to the B light so that the B light enters the liquid crystal panel 18 as substantially parallel light.
  • the B light transmitted through the condenser lens 16 is incident on the liquid crystal panel 18 via the incident side polarizing plate 17.
  • the liquid crystal panel 18 is driven according to the blue video signal, and modulates the B light according to the driving state.
  • the B light modulated by the liquid crystal panel 18 is incident on the dichroic prism 20 via the emission side polarizing plate 19.
  • G light out of the light reflected by the dichroic mirror 14 is reflected by the dichroic mirror 21 and enters the condenser lens 22.
  • the condenser lens 22 imparts an optical action to the G light so that the G light enters the liquid crystal panel 24 as substantially parallel light.
  • the G light transmitted through the condenser lens 22 is incident on the liquid crystal panel 24 through the incident side polarizing plate 23.
  • the liquid crystal panel 24 is driven according to the green video signal and modulates the G light according to the driving state.
  • the G light modulated by the liquid crystal panel 24 is incident on the dichroic prism 20 via the output side polarizing plate 25.
  • the R light transmitted through the dichroic mirror 21 is incident on the condenser lens 26.
  • the condenser lens 26 imparts an optical action to the R light so that the R light enters the liquid crystal panel 33 as substantially parallel light.
  • the R light transmitted through the condenser lens 26 travels on an optical path composed of relay lenses 27, 29, 31 for adjusting the optical path length and the two mirrors 28, 30, and is incident on the liquid crystal panel 33 through the incident side polarizing plate 32.
  • the liquid crystal panel 33 is driven according to the video signal for red and modulates the R light according to the drive information.
  • the R light modulated by the liquid crystal panel 33 is incident on the dichroic prism 20 via the emission side polarizing plate 34.
  • the dichroic prism 20 color-synthesizes the B light, G light, and R light modulated by the liquid crystal panels 18, 24, 33 and makes the light enter the projection lens 3.
  • the projection lens 3 adjusts the zoom state and the focus state of the projected image by displacing a part of the lens group for forming an image of the projection light on the projection surface (screen) and in the optical axis direction.
  • An actuator is provided.
  • the light synthesized by the dichroic prism 20 is enlarged and projected on the screen by the projection lens 3.
  • FIG. 2 is a diagram illustrating the configuration of the light source device 10 in FIG.
  • FIG. 3 is a diagram showing a configuration of a general light source lamp for comparison with the light source device of FIG.
  • the light source device 10 includes a solid-state light source 50, a translucent rod 52, a condenser lens 54, a dichroic mirror 55, a reflector 56, a support portion 58, a phosphor 60, and a fluorescent light. And a phosphor installation part 62 on which the body 60 is installed.
  • the solid light source 50 includes a solid light source such as an LED (Light Emitting Diode) or an LD (Laser Diode), and emits light in a predetermined wavelength band.
  • the solid light source 50 is composed of, for example, an excitation laser light source that emits laser light including ultraviolet light toward the phosphor 60 that is a light emitting unit.
  • an excitation laser light source that emits laser light including ultraviolet light toward the phosphor 60 that is a light emitting unit.
  • the other end of the translucent rod 52 is optically connected to the apex of the reflector 56.
  • a through hole is provided at the apex of the reflector 56, and a condenser lens 54 is attached to the through hole.
  • the condensing lens 54 condenses the light guided to the other end of the translucent rod 52 and enters the inside of the reflector 56.
  • the reflector 56 is provided around the optical axis AX.
  • the reflector 56 has a reflection surface that reflects light emitted from the light emitting unit provided on the optical axis AX.
  • This reflecting surface has substantially the same shape as a rotating paraboloid obtained by rotating a part of a parabola around the optical axis AX.
  • the reflector 56 is obtained by vapor-depositing a highly reflective member such as a dielectric multilayer film or a metal member on the surface on the side where the reflecting surface is formed.
  • a base material constituting the reflector 56 for example, heat resistant glass is used.
  • the phosphor 60 is installed at the focal position of the reflector 56 having substantially the same shape as the rotary paraboloid. Specifically, the phosphor 60 can be installed at the focal position of the reflector 56 by supporting the phosphor installation unit 62 where the phosphor 60 is installed by the support unit 58.
  • the condensing lens 54 condenses the light from the solid light source 50 at the focal position of the reflector 56 by its refraction action.
  • the phosphor 60 arranged at the focal position of the reflector 56 is excited by the light condensed by the condenser lens 54 and emits light in the visible wavelength region.
  • the light emitted from the phosphor 60 enters the reflecting surface of the reflector 56.
  • the light incident on the reflecting surface of the reflector 56 becomes substantially parallel light and is emitted in a predetermined direction.
  • the phosphor 60 constitutes the “light emitting unit” of the light source device according to Embodiment 1 of the present invention.
  • the light condensed by the condensing lens 54 is incident on the phosphor 60, the light that can be effectively used for excitation (wavelength conversion) in the phosphor 60 increases. A highly efficient light emitting unit close to the light source can be realized.
  • the phosphor 60 uses, for example, a fluorescent material that emits R light, G light, and B light when excited by light in a specific wavelength region (for example, ultraviolet light) out of light emitted from the solid light source 50.
  • the fluorescent material contains rare earth element ions that function as fluorescent active element ions.
  • Europium (Eu) and terbium (Tb) can be used as the rare earth element ions.
  • a fluorescent substance containing europium Eu3 + as a rare earth element ion absorbs light of 200 nm to 430 nm and emits light in the vicinity of 570 nm to 630 nm. Therefore, it absorbs ultraviolet light or near ultraviolet light and emits R light. it can.
  • the fluorescent substance containing europium Eu2 + absorbs light of 200 nm to 400 nm and emits light in the vicinity of 540 nm to 560 nm, it can absorb ultraviolet light or near ultraviolet light and emit G light. Further, since the fluorescent substance containing terbium Tb3 + absorbs light of 300 nm to 400 nm and emits light of around 380 nm to 460 nm, it can absorb ultraviolet light or near ultraviolet light and emit B light.
  • the phosphor 60 By mixing the plurality of fluorescent substances to form the phosphor 60, the phosphor 60 absorbs ultraviolet light emitted from the solid light source 50 and emits R light, G light, and B light. The R light, G light, and B light emitted by the phosphor 60 are mixed to generate white light.
  • the kind, content, etc. of rare earth element ions can be adjusted according to the wavelength range of light to be emitted and the wavelength range of excitation light therefor.
  • the emitted light of the phosphor 60 is an isotropic radiated light. Therefore, the phosphor installation part 62 has a substrate made of a light-transmitting material such as heat-resistant glass, and a reflection mirror 61 disposed on the apex side of the reflector 56 of the substrate. The phosphor installation part 62 guides the emitted light of the phosphor 60 radiated toward the opening of the reflector 56 to the apex part side of the reflector 56 by reflection by the reflection mirror 61.
  • the reflection mirror 61 is formed in a planar shape or a curved surface shape so that the directivity of the emitted light is efficiently converted in the direction of the irradiated surface on the reflection surface of the reflector 56 after reflection by the reflection mirror 61. ing.
  • the light use efficiency of the light source device 10 indicates the ratio of the total light amount emitted as illumination light from the opening of the reflector 56 to the total light amount emitted from the solid light source 50.
  • the dichroic mirror 55 reflects light in a predetermined wavelength region emitted from the phosphor 60 and transmits light in other wavelength regions (ultraviolet light). Thereby, it is possible to prevent the solid light source 50 from being thermally damaged by receiving the light emitted from the phosphor 60.
  • a general light source lamp used for a projector is configured by combining a reflector 1100 and an arc tube 1000 having a light emission center at the focal position of the reflector 1100.
  • the arc tube 1000 has a tube bulb portion and a pair of sealing portions extending on both sides of the tube bulb portion.
  • the tube portion is formed in a spherical shape, and has a pair of electrodes disposed in the tube portion, and mercury, a rare gas, and a small amount of halogen sealed in the tube portion.
  • the arc tube 1000 for example, a metal halide lamp, an ultra-high pressure mercury lamp, or the like is employed, and the reflector 1100 reflects light emitted from the arc tube 1000 toward the irradiated surface side.
  • the ultra high pressure mercury lamp has a relatively high light intensity, its emission characteristic has an emission spectrum unique to mercury, and among the R, G, and B color light wavelength ranges, the R light wavelength range. The light intensity tends to be insufficient. For this reason, there was a problem that illumination light with good color balance in the visible wavelength range could not be obtained.
  • the light source lamp is used while keeping the arc tube 1000 at a high voltage and a high temperature, a large ballast and a cooling device are required, and there is a problem that the projector system becomes large.
  • a high voltage pulse is applied to the electrode arranged in the bulb portion, and the electrode is warmed to some extent to shift to arc discharge. .
  • the temperature in the arc tube 1000 rises due to the heat generated by the light emission of the arc tube 1000 and heat convection occurs, and there is a temperature difference between the upper side and the lower side with respect to the gravity in the arc tube 1000. It will occur.
  • whitening or blackening occurs on the inner wall of the arc tube 1000, so that the brightness of the light source lamp is reduced and the life of the light source lamp is shortened.
  • the temperature distribution on the upper side and the lower side of the arc tube 1000 should be uniform even when the projector is in both the normal position and the ceiling position. As a result, the position of the light source lamp accommodated in the projector is limited.
  • the light source device 10 uses the phosphor 60 as a light emitting unit instead of the arc tube 1000 of the light source lamp of FIG.
  • the configuration using the solid light source 50 it is possible to instantaneously turn on the light source lamp without changing the shape of the light source lamp, and it is possible to realize low power consumption and long life.
  • the light source device has substantially the same shape as the light source lamp, the housing and system can be shared with a projector equipped with the light source lamp. As a result, a large system change is not necessary from a projector equipped with a light source lamp.
  • the light source device condenses the excitation light emitted from the solid light source 50 onto the phosphor 60 by the translucent rod 52 and the condensing lens 54. 60 can be efficiently converted into light in the visible wavelength region. Thereby, illumination light with good color balance can be easily obtained with high light use efficiency.
  • an excitation laser light source with low power consumption is used as an excitation light source, and excitation light is guided by guiding light into the reflector 56 using a light guide means such as a translucent rod 52.
  • a light guide means such as a translucent rod 52.
  • the light source device according to Embodiment 1 of the present invention eliminates the restriction of the arrangement position due to the temperature difference inside the arc tube when housed in the projector.
  • the degree of freedom of arrangement of the light source device can be increased.
  • the projector can be further reduced in size.
  • FIG. 4 is a diagram for explaining the configuration of a light source device according to Embodiment 2 of the present invention.
  • light source device 10a according to Embodiment 2 of the present invention includes a plurality (for example, two) of solid light sources 50a and 50b as compared with light source device 10 shown in FIG. It differs only in respect.
  • Both the solid light sources 50a and 50b are composed of excitation laser light sources, and the wavelength ranges of the emitted laser beams are different from each other.
  • the first wavelength band laser beam emitted from the solid light source 50 a and the second wavelength band laser light emitted from the solid light source 50 b are both incident on one end of the translucent rod 52. Then, the light propagates through the translucent rod 52 and is emitted toward the phosphor 60 through the condensing lens 54 provided at the other end of the translucent rod 52.
  • the phosphor 60 is excited by light in the first wavelength band and emits two of R light, G light, and B light (for example, R light and G light), and And a second fluorescent material that is excited by light in the second wavelength band and emits the remaining one of R light, G light, and B light (for example, B light).
  • White light is generated by mixing R light and G light emitted by the first fluorescent material and B light emitted by the second fluorescent material.
  • the light source device 10a uses a plurality of laser beams having different wavelength regions as excitation light of the phosphor 60, thereby converting the laser light having a single wavelength region into the phosphor.
  • an excitation laser light source that emits laser light having a first wavelength range close to the wavelength range of R light and G light is applied to the solid light source 50a, and the solid light source 50b is By applying an excitation laser light source that emits laser light having a second wavelength region close to the wavelength region of B light, the excitation light rate of the entire phosphor can be increased. As a result, the light use efficiency of the light source device 10a can be increased.
  • the configuration in which R light, G light, and B light are obtained by using the emitted light of the two types of solid light sources 50a and 50b as the excitation light of the phosphor is exemplified.
  • the wavelength of the laser light emitted so as to be close to the corresponding color light is set, The phosphor excitation light rate can be further increased.
  • the light source device including the plurality of solid light sources 50a and 50b can be realized by the light source device 10b shown in FIG. 5 instead of the light source device 10a shown in FIG.
  • FIG. 5 is a diagram for explaining the configuration of the light source device according to the first modification of the second embodiment of the present invention.
  • the light source device 10 b according to the first modification includes a plurality of (for example, two) solid light sources 50 a and 50 b of the reflector 56 as compared with the light source device 10 a illustrated in FIG. 4. It differs in that it is provided on the opening side.
  • the solid light sources 50 a and 50 b are provided at positions that are symmetric with respect to the optical axis AX of the reflector 56.
  • the solid light source 50a emits laser light having a first wavelength region in a direction perpendicular to the optical axis AX.
  • the solid light source 50b emits laser light having a second wavelength region in a direction perpendicular to the optical axis AX.
  • a reflection mirror 50 c is provided at the opening of the reflector 56.
  • the reflection mirror 50c is disposed on the optical axis AX in which the light emitted from the phosphor 60 does not pass directly.
  • the laser light emitted from the solid light source 50 a is bent by approximately 90 ° by the reflection mirror 50 c and is incident on the phosphor setting portion 62.
  • the laser light emitted from the solid-state light source 50b is incident on the phosphor installation portion 62 after the optical path is bent by approximately 90 ° by the reflection mirror 50c.
  • the phosphor installation portion 62 has a dichroic mirror 61 b on the apex portion side of the reflector 56.
  • the dichroic mirror 61 b transmits the laser light (phosphor excitation light) incident on the phosphor setting portion 62, while reflecting the emitted light of the phosphor 60 radiated toward the opening of the reflector 56. It leads to the apex side of the reflector 56.
  • a plurality of solid light sources can be installed on the outer edge of the opening of the reflector 56.
  • the amount of light emitted from the phosphor 60 can be increased by irradiating the phosphor 60 with higher output excitation light.
  • the plurality of solid light sources 50a and 50b may be configured by a plurality of excitation laser light sources having different wavelength ranges as described in FIG. A plurality of excitation laser light sources having the same may be used.
  • the reflection mirror 50 c is not limited to the configuration provided outside the reflector 56 as shown in FIG. 5, and may be configured to be provided inside the reflector 56.
  • the reflection mirror 50c can also guide the light from each solid light source to the phosphor 60 by reflecting it at a reflection angle other than 90 °.
  • FIG. 6 is a diagram illustrating the configuration of a light source device according to Modification 2 of Embodiment 2 of the present invention.
  • the light source device 10c according to the second modification is different only in that it includes reflection mirrors 50d and 50e instead of the reflection mirror 50c in the light source device 10b shown in FIG.
  • the reflection mirrors 50 d and 50 e are installed on the outer edge of the opening of the reflector 56.
  • the laser light emitted from the solid light source 50 a is incident on the reflecting surface of the reflector 56 after the optical path is bent by approximately 90 ° by the reflecting mirror 50 d.
  • the laser light incident on the reflecting surface of the reflector 56 is further bent in the optical path and is incident on the phosphor installation portion 62.
  • the laser light emitted from the solid-state light source 50b has its optical path bent by approximately 90 ° by the reflecting mirror 50e and is incident on the reflecting surface of the reflector 56.
  • the laser light incident on the reflecting surface of the reflector 56 is further bent in the optical path and is incident on the phosphor installation portion 62.
  • the phosphor installation part 62 has a dichroic mirror 61 c on the apex side of the reflector 56.
  • the dichroic mirror 61 c transmits laser light (phosphor excitation light) incident on the phosphor setting portion 62, while reflecting the emitted light of the phosphor 60 radiated toward the opening of the reflector 56. Guide to the apex side of the reflector 56.
  • the light source device 10b is optically located near the optical axis AX of the reflector 56. Since the components are arranged, it is desirable that the reflector 56 has a reflecting surface having substantially the same shape as the paraboloid of revolution. On the other hand, in the light source device 10c, since the optical component is disposed in the vicinity of the outer edge of the opening of the reflector 56, it is desirable that the reflector 56 has a reflecting surface having substantially the same shape as the spheroid.
  • FIG. 7 is a diagram for explaining the configuration of a light source device according to Embodiment 3 of the present invention.
  • the light source device 10 d allows the solid light source 50 to rotate around the optical axis AX of the reflector 56 as compared with the light source device 10 illustrated in FIG. 2. It differs in that it is arranged.
  • the solid light source 50 is arranged so that its optical axis is substantially parallel to the optical axis AX of the reflector 56.
  • the optical axis of the solid light source 50 is separated from the optical axis AX of the reflector 56 by a predetermined distance.
  • the solid light source 50 has a rotation shaft 51 provided so as to coincide with the optical axis AX of the reflector 56.
  • the rotating shaft 51 is connected to a motor (not shown), and when the motor rotates with respect to the rotating shaft, the solid light source 50 rotates about the rotating shaft 51. Then, when the solid light source 50 rotates around the rotation axis 51, the optical axis of the solid light source 50 rotates around the optical axis AX of the reflector 56.
  • the irradiation position of the light emitted from the solid light source 50 and entering the phosphor 60 through the translucent rod 52 and the condenser lens 54 is centered on the optical axis AX of the reflector 56. It moves in time on the circumference of the predetermined radius. Thereby, it can suppress that the said specific position is overheated and light emission performance of the fluorescent substance 60 deteriorates because light injects into the specific position of the fluorescent substance 60 intensively. As a result, the life of the light source device 10d can be extended.
  • FIG. 8 is a diagram illustrating the configuration of the light source device according to Modification 1 of Embodiment 3 of the present invention.
  • the light source device 10 e according to the first modification example is different from the light source device 10 d illustrated in FIG. 7 in that a rotation mechanism that rotates the eccentric lens 53 instead of the rotation mechanism that rotates the solid light source 50. It differs in that it is equipped with.
  • the eccentric lens 53 is provided between the translucent rod 52 and the condenser lens 54.
  • the decentering lens 53 is an optical element that emits incident light from the translucent rod 52 in a direction bent by a predetermined angle.
  • a rotation shaft 57 that is substantially parallel to the optical axis AX of the reflector 56 is fixed at the center of the eccentric lens 53.
  • the rotation shaft 57 is separated from the optical axis AX of the reflector 56 by a predetermined distance so that light is incident on the eccentric position of the eccentric lens 53.
  • the rotating shaft 57 is connected to a motor (not shown), and when the motor rotates with respect to the rotating shaft, the eccentric lens 53 rotates around the rotating shaft 57. Then, when the eccentric lens 53 rotates around the rotation axis, the emitted light from the eccentric lens 53 rotates around the optical axis AX of the reflector 56. Light emitted from the eccentric lens 53 is incident on the phosphor 60 through the condenser lens 54.
  • the eccentric lens 53 By rotating the eccentric lens 53 in this way, the irradiation position of the light emitted from the solid light source 50 and incident on the phosphor 60 through the translucent rod 52, the eccentric lens 53 and the condenser lens 54 is the light of the reflector 56. It moves on the circumference of a predetermined radius centered on the axis AX. Thereby, since it can suppress that the fluorescent substance 60 overheats when light concentrates on the specific position of the fluorescent substance 60, the lifetime of the light source device 10e can be extended.
  • FIG. 9 is a diagram illustrating the configuration of a light source device according to Modification 2 of Embodiment 3 of the present invention.
  • the light source device 10 f according to the second modification example is different from the light source device 10 d illustrated in FIG. 7 in that a rotation mechanism that rotates the phosphor 60 instead of the rotation mechanism that rotates the solid light source 50. It differs in that it is equipped with.
  • a rotation shaft 63 that is substantially parallel to the optical axis AX of the reflector 56 is fixed at the center of the phosphor installation portion 62 in which the phosphor 60 is installed.
  • the rotating shaft 63 is separated from the optical axis AX of the reflector 56 by a predetermined distance.
  • the rotating shaft 63 is connected to a motor (not shown). When the motor rotates with respect to the rotating shaft 63, the phosphor setting portion 62 and the phosphor 60 rotate around the rotating shaft 63.
  • the irradiation position of the light emitted from the solid light source 50 and incident on the phosphor 60 through the translucent rod 52 and the condenser lens 54 is centered on the optical axis AX of the reflector 56. It moves in time on the circumference of a predetermined radius. Thereby, since it can suppress that the fluorescent substance 60 overheats when light concentrates on the specific position of the fluorescent substance 60, the lifetime of the light source device 10f can be extended.
  • FIG. 10 is a diagram illustrating the configuration of the light source device according to Embodiment 4 of the present invention.
  • light source device 10g according to Embodiment 4 of the present invention is different from light source device 10f shown in FIG. 9 in that solid light source 50g and phosphor 60 are used instead of solid light source 50 and phosphor 60. It differs by the point provided with 60g.
  • the solid light source 50g is a three-wavelength laser light source that emits laser light with three wavelengths.
  • the solid light source 50g is configured, for example, by mounting three single-wavelength laser light sources in a single package.
  • the three laser light sources mounted on the package are spaced apart by a predetermined distance, and the solid light source 50g emits parallel light having three different wavelengths.
  • the three laser beams emitted from the solid light source 50g propagate through the same optical path and enter the phosphor 60g.
  • the condenser lens 54 causes the three laser beams to be incident on the phosphor 60g while being separated from each other.
  • the light source device 10g includes a rotation mechanism that rotates the phosphor 60g, similarly to the light source device 10f shown in FIG. Specifically, a rotation shaft 63 substantially parallel to the optical axis AX of the reflector 56 is fixed at the center of the phosphor installation portion 62 where the phosphor 60g is installed.
  • the rotating shaft 63 is connected to a motor (not shown), and when the motor rotates with respect to the rotating shaft 63, the phosphor setting portion 62 and the phosphor 60g rotate around the rotating shaft 63.
  • the irradiation positions of the three laser beams emitted from the three-wavelength laser light source, which is the solid light source 50g, and incident on the phosphor 60g through the translucent rod 52 and the condenser lens 54 are respectively It moves temporally on the circumference of three concentric circles having different radii around the optical axis AX of the reflector 56. Thereby, it can suppress that three laser beams are intensively incident on the specific position of the fluorescent substance 60g, respectively.
  • the phosphor 60g according to the fourth embodiment of the present invention includes three phosphors that absorb laser light having three different wavelengths as excitation light and emit R light, G light, and B light, respectively.
  • FIG. 11 is a diagram illustrating the configuration of the phosphor 60g viewed from the A direction (optical axis direction) in FIG.
  • phosphor 60g includes an R light phosphor 600R that emits R light, a G light phosphor 600G that emits G light, and a B light phosphor 600B that emits B light.
  • the R light phosphor 600R, the G light phosphor 600G, and the B light phosphor 600B are arranged in the arrangement shown in FIG. 11 on the main surface of the reflection mirror 61 provided in the phosphor installation portion 62. Specifically, the B light phosphor 600B, the R light phosphor 600R, and the G light phosphor 600G are arranged concentrically so as to be adjacent to each other in the radial direction in this order from the rotating shaft 63 side.
  • the first laser beam is incident on the B phosphor 600B
  • the second laser beam is incident on the R phosphor 600R
  • the third laser light is incident on the G phosphor 600G.
  • the B phosphor 600B emits B light when excited by the first laser beam.
  • the R light phosphor 600R is excited by the second laser light to emit R light.
  • the G light phosphor 600G is excited by the third laser light to emit G light.
  • the B light, R light, and G light emitted from the phosphors 600B, 600R, and 600G are incident on the reflecting surface of the reflector 56 either directly or indirectly by being reflected by the reflecting mirror 61.
  • the light incident on the reflecting surface of the reflector 56 becomes substantially parallel light and is emitted in a predetermined direction. At this time, since the R light, B light, and G light are mixed, white light can be obtained.
  • the first laser beam is a laser beam having a wavelength close to the wavelength range of the B light
  • the second laser beam is a wavelength range of the R light
  • the third laser beam is a laser beam having a wavelength close to the wavelength range of the G light.
  • the shape and arrangement of the R light phosphor 600R, the G light phosphor 600G, and the B light phosphor 600B are determined by the intensity of light emitted by each color phosphor (fluorescence emission amount). Set accordingly. As a result, as described below, it is possible to obtain illumination light with a good color balance and to suppress the deterioration of the light emission performance due to the temperature rise of each color phosphor.
  • the light source device 10g emits white light generated by mixing R light, G light, and B light emitted from the phosphors 600R, 600G, and 600B as illumination light.
  • the color balance of the image projected from the projector depends on the color balance of the illumination light of the light source device 10g.
  • the color balance of the illumination light of the light source device 10g is determined by the ratio of the R, B, and G fluorescence emission amounts.
  • the amount of fluorescent light emission varies according to the excitation efficiency of each color phosphor. For example, assuming that the ratio of mixing R light, G light, and B light to obtain white illumination light is 3: 6: 1, the R light phosphor 600R, the G light phosphor 600G, and the B light phosphor By adjusting the ratio of 600B fluorescence emission to 3: 6: 1, illumination light with good color balance can be irradiated.
  • the amount of light emitted from the phosphor increases as the excitation light received by the phosphor increases, that is, as the output light amount of the laser light source increases. Therefore, in order to realize the ratio (3: 6: 1) described above, it is necessary to make the output light amount of the laser light source for G light excitation larger than the output light amount of the laser light source for R light and B light excitation. Therefore, non-uniform heat generation occurs between the phosphors 600R, 600G, and 600B. In the above-described case, the heat generation amount of the G light phosphor 600G is maximized. Therefore, the performance of the G light phosphor 600G is likely to deteriorate compared to the R light phosphor 600R and the B light phosphor 600B.
  • the G light phosphor 600G having the largest calorific value is disposed on the outer peripheral side, and the R light phosphor 600R and the B light phosphor 600B are disposed on the inner peripheral side. ing.
  • the amount of movement per unit time of the irradiation position of the laser light for G light excitation is the unit of the laser light for R light excitation and the laser light for B light excitation. It will be larger than the amount of movement per hour.
  • FIG. 12 is a diagram for explaining the configuration of a projector equipped with a light source device according to Embodiment 5 of the present invention.
  • the projector according to the fifth embodiment of the present invention is a multi-lamp projector equipped with a plurality of (for example, four) light source devices 10 as compared with the projector shown in FIG. There are some differences.
  • the four light source devices 10 all have the same structure as the light source device 10 described in FIG.
  • FIG. 12 four light source devices 10 are arranged to face each other in the X direction in the figure.
  • a reflective mirror 8 is installed between the two light source devices 10 facing each other.
  • the reflection mirror 8 guides the light emitted from each light source device 10 to the fly eye integrator 11.
  • the light source device 10 has substantially the same shape as a light source lamp (FIG. 3) such as an ultra-high pressure mercury lamp, so that not only the single lamp projector shown in FIG. Even in a multi-lamp type projector, a housing and a system can be shared with a projector equipped with a light source lamp. Therefore, a high-brightness projector can be constructed at low cost.
  • a light source lamp such as an ultra-high pressure mercury lamp
  • FIG. 13 is a diagram for explaining the configuration of a light source device according to Embodiment 6 of the present invention.
  • light source device 10 h according to Embodiment 6 of the present invention differs from light source device 10 f shown in FIG. 9 only in that phosphor 60 h is provided instead of phosphor 60.
  • the light source device 10h includes a rotation mechanism that rotates the phosphor 60h, similarly to the light source device 10f shown in FIG. Specifically, a rotation shaft 63 parallel to the optical axis AX of the reflector 56 is fixed at the center of the phosphor installation portion 62 where the phosphor 60h is installed. The rotating shaft 63 is separated from the optical axis AX of the reflector 56 by a predetermined distance. The rotating shaft 63 is connected to a motor (not shown). When the motor rotates with respect to the rotating shaft 63, the phosphor setting portion 62 and the phosphor 60 h rotate around the rotating shaft 63.
  • the irradiation position of the laser light emitted from the excitation laser light source that is the solid light source 50 and incident on the phosphor 60h through the translucent rod 52 and the condensing lens 54 is respectively reflected by the reflector 56. And move around the circumference of a predetermined radius centered on the optical axis AX.
  • the phosphor 60h according to the sixth embodiment of the present invention is composed of three phosphors that absorb laser light as excitation light and emit R light, G light, and B light in a time-sharing manner.
  • FIG. 14 is a diagram illustrating the configuration of the phosphor 60h viewed from the optical axis direction (A direction in FIG. 13).
  • phosphor 60h includes an R light phosphor 620R, a G light phosphor 620G, and a B light phosphor 620B.
  • the R light phosphor 620R, the G light phosphor 620G, and the B light phosphor 620B are arranged in the arrangement shown in FIG. 14 on the main surface of the reflection mirror 61 of the phosphor mounting portion 62. Specifically, the fan-shaped R light phosphor 620R, the G light phosphor 620G, and the B light phosphor 620B are arranged side by side in the circumferential direction around the rotation axis 63.
  • the irradiation position of the laser light incident on the phosphor 60h is the R light phosphor 620R, the G light phosphor 620G, and the B light phosphor. It changes periodically in the order of 620B.
  • the phosphor 60h periodically emits and emits R light, G light, and B light in that order.
  • R light, G light, and B light periodically emitted from the phosphor 60 h are directly or indirectly reflected by the reflection mirror 61 and incident on the reflection surface of the reflector 56.
  • the light incident on the reflecting surface of the reflector 56 becomes substantially parallel light and is emitted in a predetermined direction. At this time, R light, G light, and B light are periodically emitted in this order from the opening of the reflector 56.
  • the phosphor 60h can be rotated about the rotation axis 63, and the R phosphor 620R and the G phosphor are rotated in the rotation direction of the phosphor 60h.
  • a light source device capable of emitting R light, G light, and B light in that order in a time-division manner without changing the shape of the light source lamp (FIG. 3) is realized. can do. Therefore, by using the light source device according to Embodiment 6 of the present invention, a time-division projector can be easily and compactly constructed. Also in such a projector, since the light source device has substantially the same shape as the light source lamp, the housing and system can be shared with the projector equipped with the light source lamp. System changes are not required.
  • the order of emitting the three color lights is arbitrary depending on the configuration of the phosphor 60h. Further, the emitted color light is not limited to the three colors R, G, and B, and it is also possible to periodically emit four or more color lights.
  • the emitted color light is not limited to the three colors R, G, and B, and it is also possible to periodically emit four or more color lights.
  • Ye light Ye phosphors that fluoresce light in the yellow wavelength band
  • B light and Ye light can be emitted periodically in order.
  • phosphors that emit cyan (Cy) or magenta (Mg) color light are arranged, R, G, B, Cy, and Mg color light can be emitted in order.
  • the shapes of the R light phosphor 620R, the G light phosphor 620G, and the B light phosphor 620B are set according to the intensity of light (fluorescent light flux) emitted from each color phosphor. Specifically, assuming that the ratio of mixing R light, G light, and B light to obtain white light is 3: 6: 1, the R light phosphor 600R, the G light phosphor 600G, B White light illumination light can be irradiated by adjusting the ratio of the angle range of the photophosphor 600B to 3: 6: 1. As a result, an image with good color balance can be displayed.
  • FIG. 15 is a diagram illustrating a configuration of a light source device according to Embodiment 7 of the present invention and an optical engine of a projector equipped with the light source device.
  • optical engine 2 i includes light source device 10 i, translucent rod 80, relay optical system 82, light modulation element 84, and projection lens 3. .
  • the light source device 10i, the translucent rod 80, and the relay optical system 82 are sequentially arranged along the optical axis AX.
  • the light source device 10i differs from the light source device 10h shown in FIG. 13 only in that a reflector 56i is provided instead of the reflector 56.
  • the reflector 56i has a reflecting surface having substantially the same shape as a spheroidal surface obtained by rotating an ellipse around the optical axis AX.
  • the phosphor 60h is installed at a first focal point which is one of the focal points defining the ellipse of the reflector 56I having a spheroid shape.
  • the phosphor 60h can be installed at the first focal point of the reflector 56i by supporting the phosphor installation unit 62 with a support unit (not shown).
  • a rotation shaft 63 parallel to the optical axis AX of the reflector 56i is fixed at the center of the phosphor installation portion 62 where the phosphor 60h is installed.
  • the rotating shaft 63 is separated from the optical axis AX of the reflector 56 by a predetermined distance.
  • the rotating shaft 63 is connected to a motor (not shown). When the motor rotates with respect to the rotating shaft 63, the phosphor setting portion 62 and the phosphor 60 h rotate around the rotating shaft 63.
  • the phosphor 60h includes three phosphors 620R, 620G, and 620B that absorb laser light as excitation light and emit R light, G light, and B light in a time-sharing manner. . Specifically, the fan-shaped R light phosphor 620R, the G light phosphor 620G, and the B light phosphor 620B are arranged side by side in the rotation direction. As the phosphor 60h rotates about the rotation axis 63, the irradiation position of the laser light incident on the phosphor 60h is periodically in the order of the R light phosphor 620R, the G light phosphor 620G, and the B light phosphor 620B. To change. Thereby, the phosphor 60h periodically emits and emits R light, G light, and B light in that order.
  • the R light, G light, and B light periodically emitted from the phosphor 60h are directly or indirectly reflected by the reflecting mirror 61 and incident on the reflecting surface of the reflector 56i.
  • the light incident on the reflecting surface of the reflector 56i is reflected by the reflecting surface and emerges toward the second focal point of the ellipse.
  • the relay optical system 82 includes an entrance side lens, a relay lens, and an exit side lens.
  • the light emitted from the translucent rod 80 is guided to the light incident surface of the light modulation element 84 through the incident side lens, the relay lens, and the emission side lens. Note that the configuration of the relay optical system 82 is not limited to this.
  • the light modulation element 84 is a DMD (Digital Micromirror Device) (registered trademark of TI), and is configured by a plurality of micromirrors.
  • the plurality of micromirrors are movable, and each micromirror basically corresponds to one pixel.
  • the light modulation element 84 is controlled by a control unit (not shown) to change the angle of each micromirror, thereby switching whether or not the light received from the relay optical system 82 is reflected to the projection lens 3 side.
  • luminance of emitted light is modulated by driving each micromirror and changing a reflection angle.
  • the light modulation element 84 controls each micromirror in synchronization with the timing when the R light, the G light, and the B light are emitted in order by the rotation of the phosphor 60h. That is, the change (pattern) of intensity applied to the light based on the image is switched in synchronization with the generation timing of the colored light by the phosphor 60h.
  • the color light reflected by the light modulation element 84 is projected onto a screen (not shown) through the projection lens 3.
  • images of R, G, and B color lights are projected in order according to the rotation of the phosphor 60h. Images of colored light of each color projected on the screen in order are recognized by the human eye as a color image generated by superimposing images of the colored light.
  • the light source device 10i can emit the R light, the G light, and the B light in that order in a time division manner without changing the shape of the light source lamp.
  • a time-division projector can be easily and compactly constructed. Also in such a projector, since the light source device has substantially the same shape as the light source lamp, the housing and system can be shared with the projector equipped with the light source lamp. System changes are not required.
  • FIG. 16 is a diagram illustrating the configuration of a light source device according to a modification of the seventh embodiment of the present invention.
  • the light source device 10j according to this modification is a light source device capable of emitting R, G, B light in a time-sharing manner as described below. Therefore, it can be applied to the optical engine of the projector shown in FIG. 15 instead of the light source device 10i described above.
  • the light source device 10j according to this modification is different from the light source device 10 shown in FIG. 2 only in that it includes three solid light sources 50j, 50k, and 50l.
  • the solid light sources 50j, 50k, and 50l are all composed of excitation laser light sources, and the wavelength ranges of the emitted laser beams are different from each other.
  • the phosphor 60 includes a first fluorescent material that emits R light when excited by light in the first wavelength region, and a second fluorescent material that emits G light when excited by light in the second wavelength region. And a third fluorescent material that emits B light when excited by light in the third wavelength region.
  • the three solid light sources 50j, 50k, and 50l are controlled to be lit in a time division manner by a lighting control unit (not shown). Specifically, the lighting control unit turns on the solid light source 50k for the first period, and then turns on the solid light source 50k for the second period. Then, after the solid light source 50k is turned on for the second period, the solid light source 50l is turned on for the third period. That is, the lighting control unit periodically turns on the solid light source 50j, the solid light source 50k, and the solid light source 50l in this order. Thereby, the light of the first wavelength range, the light of the second wavelength range, and the light of the third wavelength range are periodically incident on the phosphor 60 in that order.
  • the first fluorescent material, the second fluorescent material, and the third fluorescent material absorb light in the first wavelength region, light in the second wavelength region, and light in the third wavelength region, respectively. Then, R light, G light, and B light are periodically emitted and emitted in this order. R light, G light, and B light periodically emitted from the phosphor 60 are directly or indirectly reflected by the reflecting mirror 61 and incident on the reflecting surface of the reflector 56. Therefore, R light, G light, and B light are periodically emitted in this order from the opening of the reflector 56.
  • the shape of the light source lamp remains unchanged, and the R light, G light, A light source device capable of emitting B light in a time-sharing manner can be realized.
  • the first fluorescent material, the second fluorescent material, and the third fluorescent material included in the phosphor 60 are switched in a time division manner to emit light. Such a thermal load is distributed. Thereby, the rotation mechanism for moving the irradiation position of the excitation light to the phosphor 60 becomes unnecessary.
  • the light source device 10j it is possible to freely irradiate illumination lights of a plurality of colors by changing the ratio of the period during which the solid light sources 50j, 50k, and 50l are turned on in the lighting control. .
  • the ratio of the first period during which the solid light source 50j is turned on, the second period during which the solid light source 50k is lit, and the third period during which the solid light source 50l is lit is set to 3: 6: 1. Illumination light can be obtained. On the other hand, if the ratio of the period is 5: 3: 2, reddish illumination light can be generated. Therefore, by adopting a configuration in which the ratio of the period is adjusted according to the color reproducibility required for the image to be displayed, it is suitable for each image even when displaying an image in which color gradation expression is important. Color reproduction can be performed.
  • FIG. 17 schematically shows a configuration of a main part of the projector according to the eighth embodiment of the invention.
  • the projector is a type of projector that modulates illumination light incident from a light source as reflected light using a reflective light modulation element, and includes an optical engine 2k and a projection lens 3.
  • the outer shell is covered with a casing (not shown).
  • the projector is also equipped with components such as a speaker for outputting sound, a circuit board for electrically controlling the components of the optical engine 2k and the sound output means, but in FIG. The illustration of some components including these is omitted.
  • the optical engine 2k includes a first LED 104 that emits B light, a second LED 106 that emits R light, and a light source device 10k.
  • the first LED 104 is made of, for example, an InGaN-based material, a GaN-based material, or a zinc oxide-based material, and emits B light (wavelength is 430 to 470 nm, for example).
  • the second LED 106 is made of, for example, a material such as GaP or AlGaAs mixed color, and emits R light (wavelength is 580 to 780 nm, for example).
  • the light source device 10k includes an excitation laser light source 102 that emits laser light including ultraviolet light as a phosphor excitation light source, a condensing lens 108, and a phosphor rotating drum 110k.
  • the phosphor rotating drum 110k is coated with a phosphor that absorbs ultraviolet light and emits G light, as will be described later.
  • the G light emitted from the phosphor rotating drum 110k enters the condenser lens 112.
  • the B light from the first LED 104 is incident on the dichroic prism 114 via the condenser lens 116.
  • the R light from the second LED 106 is incident on the dichroic prism 114 via the condenser lens 118.
  • the G light from the light source device 10 k is incident on the dichroic prism 114 via the condenser lens 112.
  • the first LED 104, the second LED 106, and the light source device 10k are switched and driven in a time division manner under the control of a control unit (not shown). Thereby, R light, G light, and B light are incident on the dichroic prism 114 in a time-sharing manner.
  • the dichroic prism 114 causes the B light, R light, and G light incident in a time division manner through the condenser lenses 116, 118, and 112 to enter one end portion of the translucent rod 80.
  • the B light, the R light, and the G light propagate through the inside of the translucent rod 80 and are emitted from the other end of the translucent rod 80.
  • the translucent rod 80 has a function of an integrator optical system that converts a light beam having a non-uniform intensity distribution into a light beam having a substantially uniform intensity distribution.
  • the relay optical system 82 includes an entrance side lens, a relay lens, and an exit side lens.
  • the light beam emitted from the translucent rod 80 is guided to the DMD 124 via the relay optical system 82 and the mirror 126.
  • the configurations of the relay optical system 82 and the mirror 126 are not limited to this. That is, the relay optical system 82 and the mirror 126 may be configured to have a function of causing the DMD 124 to form an image of a substantially uniform light beam emitted from the translucent rod 80.
  • the DMD 124 is composed of a plurality of minute mirrors.
  • the plurality of micromirrors are movable, and each micromirror basically corresponds to one pixel.
  • the DMD 124 is controlled by a control unit (not shown) to change whether to reflect the light received from the relay optical system 82 via the mirror 126 to the projection lens 3 side by changing the angle of each micromirror.
  • luminance of emitted light is modulated by driving each micromirror and changing a reflection angle.
  • the tilt angle of each micromirror is controlled in synchronization with the timing at which the R light, the G light, and the B light are sequentially irradiated. That is, the emission timing of the R, G, and B color lights and the timing at which the DMD drive signal corresponding to each color light is output to the DMD 124 are synchronized.
  • the colored light reflected by the DMD 124 is projected on a screen (not shown) through the projection lens 3. Images with R, G, and B color lights are projected on the screen in order. Images of colored light of each color projected on the screen in order are recognized by the human eye as a color image generated by superimposing images of the colored light.
  • FIG. 18 is a diagram illustrating the configuration of the light source device 10k in FIG.
  • the light source device 10k includes an excitation laser light source 102, a condenser lens 108, and a phosphor rotating drum 110k.
  • the excitation laser light source 102 emits laser light including ultraviolet light.
  • the condensing lens 108 condenses the light emitted from the excitation laser light source 102. Specifically, the light emitted from the excitation laser light source 102 is condensed on the outer peripheral surface of the phosphor rotating drum 110 k by the refraction action of the condenser lens 108. Thereby, the light which can be effectively used for excitation of the phosphor in the phosphor rotating drum 110k can be efficiently supplied.
  • phosphor rotating drum 110k includes a rotating shaft 300 that is orthogonal to the optical axis of excitation laser light source 102, and a rotating member 200k that is rotatable about rotating shaft 300.
  • the rotary shaft 300 is connected to a motor (not shown). By rotating the motor, the rotating body 200k rotates about the rotating shaft 300.
  • the rotating body 200k is formed in a hollow cylindrical shape using heat resistant glass or the like as a base material, and receives light emitted from the excitation laser light source 102 on the outer peripheral surface thereof.
  • the irradiation position of light incident on the phosphor (corresponding to the hatched portion in the figure) arranged on the outer peripheral surface of the rotating body 200k is a circle centering on the rotation axis 300. It will move in time on the circumference. Thereby, it can suppress that the said specific position is overheated and damaged when light intensively injects into the specific position of fluorescent substance. As a result, the life of the light source device 10k can be extended.
  • FIG. 19 is a diagram illustrating the configuration of the rotating body 200k in FIG.
  • FIG. 19A is a cross-sectional view in a direction perpendicular to the rotating shaft 300
  • FIG. 19B is an enlarged view of the outer peripheral portion of the rotating body 200k.
  • a rotating body 200k has a cylindrical translucent substrate 210 and a predetermined angular range in the circumferential direction on the outer peripheral surface of the translucent substrate 210.
  • membrane 230 are included.
  • the phosphor 220 emits visible light that is excited by light of a specific wavelength range emitted from the excitation laser light source 102 (for example, ultraviolet light).
  • the ultraviolet-excited phosphor is excited by absorbing ultraviolet light / near-ultraviolet light of 200 to 400 nm emitted from an ultraviolet light emitting element (corresponding to the excitation laser light source 102), and the spectrum of R light, G light, and B light. Or, it emits and emits white visible light with mixed spectrum.
  • the phosphor contains rare earth element ions that function as fluorescently active element ions.
  • Europium (Eu) and terbium (Tb) can be used as the rare earth element ions.
  • a phosphor containing europium Eu3 + as a rare earth element ion absorbs light of 200 nm to 430 nm and emits light in the vicinity of 570 nm to 630 nm. Therefore, it can absorb ultraviolet light or near ultraviolet light and emit R light. it can.
  • the phosphor containing Europium Eu2 + absorbs light of 200 nm to 400 nm and emits light of 540 nm to 560 nm, it can absorb ultraviolet light or near ultraviolet light and emit G light.
  • the phosphor containing terbium Tb3 + absorbs light of 300 nm to 400 nm and emits light of around 380 nm to 460 nm, it can absorb ultraviolet light or near ultraviolet light and emit B light. As shown in FIG. 17, when obtaining monochromatic light of G light, an emission spectrum with high color purity can be obtained by using the above phosphor.
  • the dichroic film 230 is disposed on the inner peripheral surface of the translucent substrate 210 at a position facing the phosphor 220.
  • the dichroic film 230 is a visible light reflecting member that transmits excitation light (ultraviolet light) emitted from the excitation laser light source 102 and reflects visible light emitted from the phosphor 220.
  • FIG. 19 (b) shows an enlarged view of the region RGN1 surrounded by a broken line in FIG. 18 (a).
  • excitation light (ultraviolet light) transmitted through the dichroic film 230 and the translucent substrate 210 is incident on the phosphor 220.
  • the phosphor 220 absorbs the ultraviolet light and emits G light.
  • the emitted light of the phosphor 220 is an isotropic radiated light, so that light traveling inward in the radial direction is generated in addition to light traveling outward in the radial direction of the rotating body 200k.
  • the dichroic film 230 is formed so as to reflect light traveling inward in the radial direction.
  • the light use efficiency of the light source device 10k indicates the ratio of the total light amount emitted from the phosphor 220 as illumination light to the total light amount emitted from the excitation laser light source 102.
  • Etendue is known as the product of area and solid angle.
  • the condensing lens 108 condenses the excitation light on the phosphor 220, so that the emission area of the phosphor 220 can be reduced. Thereby, since the value of etendue can be suppressed small, light utilization efficiency improves.
  • a laser beam having a shorter wavelength than the light emitted from the phosphor 220 is applied to the laser beam as the excitation light. This is based on the fact that the light extraction efficiency is higher than when the wavelength of the excitation light is shorter than the wavelength of the emitted light of the phosphor.
  • ultraviolet light is used as excitation light for the phosphor, but the excitation light is not limited to this as long as the wavelength is shorter than the color light to be emitted.
  • the phosphor 220 has a predetermined angular range (for example, 180 °) in the circumferential direction on the outer peripheral surface of the translucent substrate 210 as shown in FIG. It is arranged. Therefore, when the rotating body 200k is rotated, the phosphor 220 emits G light at a generation timing corresponding to the angular range. In the example of FIG. 19A, the phosphor 220 emits G light at a frequency that is approximately twice the rotational frequency of the rotating body 200k. Therefore, for example, when the frame frequency of the projector is set to 60 Hz, the rotation frequency of the rotating body 200k is set to 120 Hz or more in order to display an image of one frame by sequentially projecting images of R, G, B color light. It is desirable to do.
  • a predetermined angular range for example, 180 °
  • the G light emitted from the phosphor 220 is again collected by the condenser lens 112 and then incident on the translucent rod 80 via the dichroic prism 114 (FIG. 1). .
  • the B light from the first LED 104, the R light from the second LED 106, and the G light from the phosphor 220 emitted from the translucent rod 80 are applied to the DMD 124 (FIG. 17).
  • the excitation light emitted from the solid-state light source is condensed on the phosphor, whereby the wavelength can be efficiently converted by the phosphor, and the phosphor The emitted light can be efficiently directed toward the emission side. Therefore, the light use efficiency can be increased, and the luminance of the illumination light is improved. As a result, a light source device with high brightness and high efficiency can be realized.
  • the irradiation position of the light incident on the phosphor arranged on the outer peripheral surface of the rotating body moves with time, so that thermal damage to the phosphor can be suppressed, so the light source device Can extend the service life.
  • the phosphor rotating drum is rotated around the rotation axis orthogonal to the optical axis of the excitation light, the rotation axis direction is different from that of the color wheel. Therefore, the phosphor size is set in the direction perpendicular to the optical axis. Can be small. Therefore, it is possible to reduce the size of the light source device.
  • the configuration in which only G light is fluorescently emitted out of R light, G light, and B light is exemplified, but this is R light, G light, and B light for obtaining white light.
  • the mixing ratio is based on the fact that the luminance of the G light needs to be higher than that of other color lights, such as 1: 2: 1. That is, in the light source device according to the eighth embodiment, high luminance is efficiently obtained with the G light by fluorescently emitting the G light.
  • one of G light, B light, and R light may be emitted by fluorescence, and the other of B light and R light may be emitted by an LED.
  • FIG. 20 is a view for explaining the configuration of an optical engine 21 according to Embodiment 9 of the present invention.
  • the optical engine 21 according to the ninth embodiment of the present invention is different from the optical engine 2k shown in FIG. 17 in that the combination of the first LED 104, the second 106 and the light source device 10k is a single unit. The difference is that the light source device 10l is provided.
  • the light source device 101 includes a plurality of excitation laser light sources 102, a condensing lens 108, and a phosphor rotating drum 110l.
  • a plurality of (for example, six) excitation laser light sources 102 are arranged apart from each other by a predetermined distance, and each emits laser light including ultraviolet light.
  • the condensing lens 108 is provided corresponding to each excitation laser light source 102.
  • the condensing lens 108 condenses the light emitted from the corresponding excitation laser light source 102 and causes the light to enter the phosphor rotating drum 110l.
  • the phosphor rotating drum 110l includes a plurality of (for example, six) fluorescent parts that receive light emitted from the plurality of excitation laser light sources 102 and emit one of R light, G light, and B light, respectively.
  • the plurality of fluorescent portions are formed by arranging a plurality of rotating rings each having a fluorescent material coated on each outer peripheral surface in the direction of the rotation axis.
  • the light emitted from the excitation laser light source 102 is condensed on the outer peripheral surface of the corresponding rotating ring (fluorescent portion) by the refraction action of the condenser lens 108.
  • the light which can be utilized effectively for excitation of a fluorescent substance for every fluorescent part can be supplied efficiently.
  • the R light, G light, and B light emitted from the plurality of rotating rings are incident on the condenser lens 112.
  • the condensing lens 112 condenses the incident R light, G light, and B light and causes the light to enter one end of the translucent rod 80.
  • FIG. 21 is a diagram illustrating the configuration of the light source device 101 in FIG.
  • the phosphor rotating drum 110l includes a rotating shaft 300 orthogonal to the optical axes of the plurality of excitation laser light sources 102, and a rotating body 200l that is rotatable about the rotating shaft 300.
  • the rotary shaft 300 is connected to a motor (not shown). By rotating the motor, the rotating body 200l rotates around the rotating shaft 300.
  • the rotating body 200l is formed in a hollow cylindrical shape using heat-resistant glass or the like as a base material, and receives light emitted from a plurality of excitation laser light sources 102 on the outer peripheral surface thereof.
  • the irradiation position of light incident on the phosphor (corresponding to the hatched portion in the figure) arranged on the outer peripheral surface of the rotator 200l is a circle centering on the rotation axis 300. It will move in time on the circumference. Thereby, it can suppress that the said specific position is overheated and damaged when light injects into the specific position of fluorescent substance intensively. As a result, the life of the light source device 10l can be extended.
  • the rotating body 200l includes a plurality of rotating rings in which a phosphor is applied on each outer peripheral surface.
  • the plurality of rotating rings are arranged side by side in the rotation axis direction.
  • the plurality of rotating rings include an R light rotating ring 210R as an R light fluorescent part, a G light rotating ring 210G as a G light fluorescent part, and a B light rotating ring 210B as a B light fluorescent part. It consists of.
  • the R light rotating ring 210R, the G light rotating ring 210G, and the B light rotating ring 210B are arranged in parallel in the rotation axis direction in that order.
  • two R light rotating rings 210R, two G light rotating rings 210G, and two B light rotating rings 210B are arranged in that order.
  • FIG. 22 is a cross-sectional view of each rotating ring with a plane perpendicular to the arrangement direction of the rotating rings as a cut surface.
  • R light rotating ring 210 ⁇ / b> R is arranged with an annular translucent base 210 and a predetermined angular range in the circumferential direction on the outer peripheral surface of translucent base 210.
  • the R phosphor 220R absorbs ultraviolet light and emits R light.
  • the dichroic film 230 is disposed on the inner peripheral surface of the translucent substrate 210 at a position facing the R light phosphor 220R.
  • the dichroic film 230 transmits the ultraviolet light emitted from the excitation laser light source 102 corresponding to the R light rotating ring 210R, while reflecting the R light emitted from the R light phosphor 220R.
  • the G light rotating ring 210G has an annular light transmitting base 210 and a G light phosphor 220G disposed on the outer peripheral surface of the light transmitting base 210 with a predetermined angular range in the circumferential direction. And a dichroic film 230.
  • the G light phosphor 220G absorbs ultraviolet light and emits G light.
  • the dichroic film 230 is disposed on the inner peripheral surface of the translucent substrate 210 at a position facing the G light phosphor 220G.
  • the dichroic film 230 transmits the ultraviolet light emitted from the excitation laser light source 102 corresponding to the G light rotating ring 210G, while reflecting the G light emitted from the G light phosphor 220G.
  • the B light rotating ring 210B includes an annular light transmitting base 210 and a B light phosphor 220B arranged on the outer peripheral surface of the light transmitting base 210 with a predetermined angular range in the circumferential direction. And a dichroic film 230.
  • the B photophosphor 220B absorbs ultraviolet light and emits B light.
  • the dichroic film 230 is disposed on the inner peripheral surface of the translucent substrate 210 at a position facing the B photophosphor 220B.
  • the dichroic film 230 transmits the ultraviolet light emitted from the excitation laser light source 102 corresponding to the B light rotating ring 210B, while reflecting the B light emitted from the B light phosphor 220B.
  • the R light phosphor 220R, the G light phosphor 220G, and the B light phosphor 220B are disposed so as to have different angular ranges in the circumferential direction when viewed from the rotation axis direction. That is, when the sectional views of the rotating rings 210R, 210G, and 210B are virtually overlapped, the respective color phosphors 220R, 220G, and 220B are arranged so as to be adjacent to each other in the circumferential direction in the order of R, G, and B. Is done.
  • the ratio of the angle range occupied by the R light phosphor 220R, the G light phosphor 220G, and the B light phosphor 220B is set according to the mixing ratio of the R light, the G light, and the B light to obtain white light. be able to.
  • the ratio of the angle ranges of the respective color phosphors 220R, 220G, 220B may be 1: 2: 1.
  • the ratio of the angle range can be set in consideration of the light emission characteristics of the respective color phosphors 220R, 220G, and 220B in accordance with the mixing ratio of the respective color lights.
  • excitation light (ultraviolet light) from the excitation laser light source 102 corresponding to each of the R light rotation ring 210R, the G light rotation ring 210G, and the B light rotation ring 210B.
  • the excitation light is periodically absorbed in the order of the R light phosphor 220R, the G light phosphor 220G, and the B light phosphor 220B.
  • FIG. 22 shows a state where excitation light is absorbed by the G light phosphor 220G
  • FIG. 23 shows a state where excitation light is absorbed by the R light phosphor 220R
  • FIG. The excitation light is shown as being absorbed by the B light phosphor 220B.
  • the rotating body 200l periodically transitions these three states in that order. As a result, R light, G light, and B light are periodically emitted in this order from the rotating body 200l.
  • the R light, G light, and B light emitted from the rotating body 200l are collected by the condenser lens 112, and then transmitted through the dichroic prism 114 (FIG. 1). 80 is incident in a time division manner.
  • the B light from the first LED 104, the R light from the second LED 106, and the G light from the phosphor 220 emitted from the translucent rod 80 are applied to the DMD 124 (FIG. 17).
  • the DMD 124 controls each micromirror in synchronization with the timing at which the R light, G light, and B light are irradiated.
  • the color light reflected by the DMD 124 is projected onto the screen via the projection lens 3.
  • the rotational frequency of the phosphor rotating drum 110l is set to the same frequency as the frame frequency (for example, 120 Hz) of the projector.
  • the phosphor rotating drum is excited by arranging a plurality of phosphors each emitting a plurality of colored lights on the outer peripheral surface of the phosphor rotating drum.
  • the light emitted from the laser light source can be absorbed and the R light, the G light, and the B light can be emitted in time division in order.
  • the luminous flux is aggregated for each excitation laser light source, and is condensed and irradiated on the phosphors.
  • the light emitting area can be made constant. As a result, even if the amount of illumination light is increased, the etendue value does not increase, and it is possible to achieve both higher luminance and improved light utilization efficiency.
  • the plurality of excitation laser light sources may be configured to emit laser beams having the same wavelength, or may be configured to emit laser beams having different wavelengths.
  • the wavelength of the laser light may be set so that the conversion efficiency to the color light is increased according to the wavelength of the color light emitted from the corresponding phosphor. In this case, the light utilization efficiency can be further increased.
  • FIG. 25 is a diagram illustrating the configuration of an optical engine 2m according to a modification of the ninth embodiment of the present invention.
  • the optical engine 2m according to this modification is different from the optical engine 2l shown in FIG. 20 in that a light source device 10m is provided instead of the light source device 10l.
  • the light source device 10m includes a plurality of (for example, three) excitation laser light sources 1021, a condenser lens 108, and a phosphor rotating drum 110m.
  • the excitation laser light source 1021 can emit high-power laser light as compared with the excitation laser light source 102 shown in FIG. In this modified example, three excitation laser light sources 1021 are arranged at a predetermined distance, and each emits laser light including ultraviolet light.
  • the condenser lens 108 is provided corresponding to each excitation laser light source 1021.
  • the condensing lens 108 condenses the light emitted from the corresponding excitation laser light source 1021 and causes the light to enter the phosphor rotating drum 110m.
  • the phosphor rotating drum 110m includes three fluorescent sections that receive light emitted from the three excitation laser light sources 1021 and emit R light, G light, and B light, respectively.
  • the three fluorescent portions are formed by arranging a plurality of rotating rings each having a fluorescent material coated on the outer peripheral surface thereof in the direction of the rotation axis.
  • the light emitted from the excitation laser light source 1021 is condensed on the outer peripheral surface of the corresponding rotating ring (fluorescent portion) by the refracting action of the condenser lens 108.
  • the light which can be utilized effectively for excitation of a fluorescent substance for every fluorescent part can be supplied efficiently.
  • the R light, G light, and B light emitted from the three rotating rings are converted into substantially parallel light by the collimation lens 112m, and then enter the dichroic cube 115.
  • the mirror 113 guides the light emitted from the collimation lens 112 m to the dichroic cube 115.
  • the dichroic cube 115 combines the R light, the G light, and the B light, and emits the combined light toward the condenser lens 117.
  • the condensing lens 117 condenses incident light and makes it incident on one end of the translucent rod 80.
  • FIG. 26 is a diagram illustrating the configuration of the light source device 10m in FIG.
  • phosphor rotating drum 110m differs from phosphor rotating drum 110l shown in FIG. 21 only in that it includes rotating body 200m instead of rotating body 200l.
  • the rotating body 200m is formed in a hollow cylindrical shape using heat-resistant glass or the like as a base material, and receives light emitted from three excitation laser light sources 1021 on the outer peripheral surface thereof.
  • the rotating body 200m includes an R light rotating ring as an R light fluorescent part, a G light rotating ring as a G light fluorescent part, and a B light rotating ring as a B light fluorescent part arranged in the rotation axis direction. It is installed and configured.
  • the R light rotating ring, the G light rotating ring, and the B light rotating ring have the same structures as the R light rotating ring 210R, the G light rotating ring 210G, and the B light rotating ring 210B shown in FIG.
  • the rotation ring according to this modification has a wider width in the rotation axis direction than the rotation ring shown in FIG.
  • excitation light (ultraviolet light) from the corresponding excitation laser light source 1021 is incident on the R light rotation ring, the G light rotation ring, and the B light rotation ring, respectively.
  • the excitation light is periodically absorbed in the order of the R light phosphor 220R, the G light phosphor 220G, and the B light phosphor 220B (see FIGS. 22 to 24).
  • the irradiation position of the light incident on the respective color phosphors 220R, 220G, and 220B moves temporally on the circumference around the rotation axis 300.
  • the condensing lens 108 condenses the excitation light on each color phosphor, so that the emission area of the phosphor can be reduced while the thermal load increases. There is a risk of damage. Therefore, in the light source device 10m according to this modification, thermal damage is suppressed by increasing the area of the condensing point of the high-output excitation light.
  • the width of the rotating ring in the direction of the rotation axis is increased as the area of the condensing point of the excitation light is increased. Thereby, the lifetime of the light source device 10m can be extended while increasing the luminance.
  • FIG. 27 is a view for explaining the configuration of an optical engine 2n according to Embodiment 10 of the present invention.
  • optical engine 2n is different from optical engine 2l shown in FIG. 20 in that light source device 10n is provided instead of light source device 10l. More specifically, in comparison with the light source device 10l, the light source device 10n has a wavelength when the excitation light is reflected instead of the transmissive phosphor rotating drum 110l that is wavelength-converted when the excitation light is transmitted. The difference is that a reflective phosphor rotating drum 110n to be converted is included.
  • the light source device 10n includes an excitation laser light source 102, a phosphor rotating drum 110n, a condenser lens 111, and a dichroic mirror 119.
  • the excitation laser light source 102 emits excitation light (ultraviolet light).
  • the dichroic mirror 119 is disposed at an angle at which excitation light emitted from the excitation laser light source 102 is incident at 45 °, and has an optical characteristic of reflecting visible light while reflecting ultraviolet light. ing.
  • the excitation light reflected by the dichroic mirror 119 is condensed on the outer peripheral surface of the phosphor rotating drum 110n by the refracting action of the condenser lens 111. Thereby, the light which can be effectively used for excitation of the phosphor in the phosphor rotating drum 110n can be efficiently supplied.
  • the phosphor rotating drum 110n includes a rotating shaft 300n orthogonal to the optical axis of the excitation light (corresponding to a direction perpendicular to the drawing sheet), and a rotating body 200n that is rotatable about the rotating shaft 300n.
  • Rotating body 200n is connected to a motor (not shown). By rotating the motor, the rotating body 200n rotates about the rotation shaft 300n.
  • the rotating body 200n is formed in a hollow cylindrical shape using heat-resistant glass or the like as a base material, and receives light emitted from the excitation laser light source 102 on the outer peripheral surface thereof.
  • the irradiation position of light incident on a phosphor (not shown) arranged on the outer peripheral surface of the rotator 200n takes time on the circumference around the rotation axis 300n. Will move. Thereby, it can suppress that the said specific position is overheated and damaged when light injects into the specific position of fluorescent substance intensively.
  • FIG. 28 is a diagram illustrating the configuration of the rotating body 200n in FIG.
  • FIG. 28A is a cross-sectional view in a direction perpendicular to the rotating shaft 300n (corresponding to a direction horizontal to the drawing sheet), and
  • FIG. 28B is an enlarged view of the outer peripheral portion of the rotating body 200n.
  • a rotating body 200n includes a cylindrical translucent substrate 210 extending in the rotation axis direction, and a phosphor disposed over the entire outer peripheral surface of the translucent substrate 210. , And mirror film 232.
  • the phosphor includes an R light phosphor 220R, a G light phosphor 220G, and a B light phosphor 220B.
  • the R light phosphor 220R emits R light when excited by ultraviolet light.
  • the G light phosphor 220G is excited by ultraviolet light and emits G light.
  • the B light phosphor 220B is excited by ultraviolet light to emit B light.
  • the R light phosphor 220R, the G light phosphor 220G, and the B light phosphor 220B are arranged on the outer peripheral surface of the translucent substrate 210 in the arrangement shown in FIG. Specifically, the R light phosphor 220R, the G light phosphor 220G, and the B light phosphor 220B are arranged so as to be adjacent to each other in the circumferential direction in that order, and have different angle ranges. .
  • the ratio of the angle range occupied by the R light phosphor 220R, the G light phosphor 220G, and the B light phosphor 220B is set according to the mixing ratio of the R light, the G light, and the B light to obtain white light. be able to.
  • the ratio of the angle ranges of the respective color phosphors 220R, 220G, 220B may be 1: 2: 1.
  • the ratio of the angle range can be set in consideration of the light emission characteristics of the respective color phosphors 220R, 220G, and 220B in accordance with the mixing ratio of the respective color lights.
  • the mirror film 232 is disposed over the entire inner peripheral surface of the translucent substrate 210.
  • the mirror film 232 is a visible light reflecting member that reflects visible light emitted from the respective color phosphors 220R, 220G, and 220B.
  • FIG. 28 (b) shows an enlarged view of the region RGN2 surrounded by a broken line in FIG. 28 (a).
  • excitation light condensed by the condenser lens 111 is incident on the R, G, and B phosphors (for example, the G light phosphor 220G).
  • the G light phosphor 220G absorbs this excitation light and emits G light.
  • the emitted light of the G light phosphor 220G is isotropic radiated light, light traveling inward in the radial direction is also generated in addition to light traveling outward in the radial direction of the rotating body 200n.
  • the mirror film 232 is formed so as to reflect the light traveling inward in the radial direction. Therefore, the emitted light of the G light phosphor 220G can be efficiently incident on the condenser lens 111, and the light use efficiency of the light source device 10n can be increased.
  • the excitation light condensed by the condenser lens 111 is configured to be incident on the respective color phosphors 220R, 220G, and 220B, light that can be effectively used for excitation (wavelength conversion) in the phosphor 220 increases. A light emitting unit close to a point light source can be realized. As a result, light utilization efficiency is improved.
  • the incident positions of the excitation light incident on the phosphor are the R light phosphor 220R, the G light phosphor 220G, and the B light phosphor 220B. It changes periodically in this order.
  • the rotating body 200n periodically emits R light, G light, and B light in that order.
  • R light, G light, and B light periodically emitted from the rotating body 200 n are collected by the condenser lens 111.
  • Each color light condensed by the condenser lens 111 passes through the dichroic mirror 119 and enters one end of the translucent rod 80 (FIG. 28).
  • a plurality of phosphors each emitting a plurality of colored lights in the circumferential direction are arranged in parallel on the outer circumferential surface of the phosphor rotating drum, thereby Light emitted from the laser light source can be converted into illumination light composed of R light, G light, and B light by time division using a phosphor rotating drum. Therefore, the light source device can be configured only from a single excitation laser light source, and the light source device can be reduced in size.
  • the excitation light emitted from the excitation laser light source can be condensed on the phosphor, whereby the wavelength can be efficiently converted by the phosphor, and the light emitted from the phosphor can be converted. Since the light can be efficiently directed to the emission side, the light use efficiency can be increased, and the luminance of the illumination light is improved. As a result, a light source device that is small and has high brightness and high efficiency can be realized.
  • FIG. 29 is a diagram illustrating the configuration of a rotating body 200p included in a light source device according to a modification of the tenth embodiment of the present invention.
  • FIG. 29A is a cross-sectional view in a direction perpendicular to a rotation axis (not shown) (corresponding to a direction horizontal to the drawing sheet), and
  • FIG. 29B is an enlarged view of the outer peripheral portion of the rotating body 200p.
  • a rotator 200p includes a cylindrical translucent substrate 210 extending in the direction of the rotation axis, and a phosphor disposed over the entire outer peripheral surface of the translucent substrate 210. , And mirror film 232.
  • the phosphor includes an R light phosphor 220R, a G light phosphor 220G, a B light phosphor 220B, and a Ye light phosphor 220Ye that emits Ye light when excited by ultraviolet light.
  • the R light phosphor 220R, the G light phosphor 220G, the B light phosphor 220B, and the Ye light phosphor 220Ye are arranged on the outer peripheral surface of the translucent substrate 210 in the arrangement shown in FIG. .
  • the R light phosphor 220R, the Ye light phosphor 220Ye, the G light phosphor 220G, and the B light phosphor 220B are arranged so as to be adjacent to each other in the circumferential direction in that order, and are at different angles. Have a range.
  • the ratio of the angle ranges occupied by the R light phosphor 220R, the G light phosphor 220G, the B light phosphor 220B, and the Ye light phosphor 220Ye is R light, G light, B light, and Ye for obtaining white light. It can be set according to the mixing ratio of light. For example, when the mixing ratio of R light, G light, B light, and Ye light is 1: 1: 1: 1, the ratio of the angular ranges of the respective color phosphors 220R, 220G, 200B, and 220Ye is 1: 1: 1. : 1.
  • the ratio of the angle range can be set in consideration of the light emission characteristics of the respective color phosphors 220R, 220G, 220B, and 220Ye in combination with the mixing ratio of the respective color lights.
  • the mirror film 232 is disposed over the entire inner peripheral surface of the translucent substrate 210, and reflects visible light emitted from the color phosphors 220R, 220G, 220B, and 220Ye. *
  • FIG. 29 (b) shows an enlarged view of the region RGN3 surrounded by a broken line in FIG. 29 (a).
  • the excitation light condensed by the condenser lens 117 is incident on the Ye light phosphor 220Ye.
  • the Ye light phosphor 220Ye absorbs this excitation light and emits Ye light.
  • the mirror film 232 reflects light traveling inward in the radial direction of the rotating body 200p out of Ye light emitted from the Ye light phosphor 220Ye.
  • the irradiation position of the excitation light incident on the phosphor is R light phosphor 220R, Ye light phosphor 220Ye, G light phosphor. It changes periodically in the order of 220G and B photophosphor 220B.
  • the rotating body 200p periodically emits R light, Ye light, G light, and B light in that order.
  • R light, Ye light, G light, and B light periodically emitted from the rotating body 200p are collected by the condenser lens 117.
  • Each color light condensed by the condenser lens 117 passes through the dichroic mirror 119 and enters one end of the translucent rod 80 (FIG. 27).
  • the light emitted from the excitation laser light is converted into illumination light composed of R light, G light, B light, and Ye light by time division using the phosphor rotating drum. can do.
  • Ye light is light that can reproduce colors outside the color range in which R light, G light, and B light can be reproduced on the chromaticity diagram. Therefore, according to the light source device according to the present modification, the color range that can be reproduced on the chromaticity diagram is widened, so that the color reproducibility of the displayed image is improved. Further, the Ye light is added to the R light, the G light, and the B light, so that the brightness of the displayed image is improved.
  • FIG. 30 is a diagram schematically showing the configuration of the main part of the projector using the light source device according to Embodiment 11 of the present invention for the light source system.
  • the projector according to the eleventh embodiment of the present invention uses a single light modulation element in common by switching R, G, and B colors in a time division manner. Instead of the single plate method, it is different in that it is changed to a three plate method including light modulation elements dedicated to R, G, and B colors.
  • a projector is a projector that projects an image using a liquid crystal device, and includes an optical engine 2q and a projection lens 3, and has an outer casing. Covered with a body (not shown).
  • the projector is also equipped with components such as a speaker for outputting sound, a circuit board for electrically controlling the components of the optical engine 2q and the sound output means, but in FIG. The illustration of some components including these is omitted.
  • the optical engine 2q includes a light source device 10q.
  • the light source device 10q has the same basic configuration as the light source device 10n described with reference to FIG. 27, and includes a reflective phosphor rotating drum 110q that converts the wavelength when excitation light is reflected.
  • the light source device 10q includes an excitation laser light source 102, a phosphor rotating drum 110q, a condenser lens 111, and a dichroic mirror 119.
  • the excitation laser light source 102 emits excitation light (ultraviolet light).
  • the dichroic mirror 119 reflects the excitation light emitted from the excitation laser light source 102 and transmits visible light whose wavelength is converted from the excitation light.
  • the excitation light reflected by the dichroic mirror 119 is condensed on the outer peripheral surface of the phosphor rotating drum 110q by the refracting action of the condenser lens 111. Thereby, the light which can be effectively used for excitation of the phosphor in the phosphor rotating drum 110q can be efficiently supplied.
  • the phosphor rotating drum 110q includes a rotating shaft 300q orthogonal to the optical axis of the excitation light (corresponding to a direction perpendicular to the drawing sheet), and a rotating body 200q that is rotatable about the rotating shaft 300q.
  • Rotating body 200q is connected to a motor (not shown). By rotating the motor, the rotating body 200q rotates about the rotation shaft 300q.
  • Rotating body 200q is formed in a hollow cylindrical shape using heat-resistant glass or the like as a base material, and receives light emitted from excitation laser light source 102 on the outer peripheral surface thereof.
  • the rotating body 200q absorbs light emitted from the excitation laser light source 102 and emits R light, G light, and B light. Each color light emitted from the rotating body 200q is condensed by the condenser lens 111. Each color light condensed by the condenser lens 111 passes through the dichroic mirror 119 and enters the fly eye integrator 11.
  • the light from the light source device 10 q is incident on a PBS (polarized beam splitter) array 12 and a condenser lens 13 via the fly eye integrator 11.
  • the fly-eye integrator 11 includes a fly-eye lens made up of a lens group having a corrugated eye shape. Add optical action.
  • the PBS array 12 has a plurality of PBSs and half-wave plates arranged in an array, and aligns the polarization direction of the light incident from the fly eye integrator 11 in one direction.
  • the condenser lens 13 condenses light incident from the PBS array 12. The light transmitted through the condenser lens 13 enters the dichroic mirror 14.
  • the dichroic mirror 14 transmits only the B light among the light incident from the condenser lens 13 and reflects the R light and the G light.
  • the B light transmitted through the dichroic mirror 14 is guided to the mirror 15, reflected there, and incident on the condenser lens 16.
  • the condenser lens 16 imparts an optical action to the B light so that the B light enters the liquid crystal panel 18 as substantially parallel light.
  • the B light transmitted through the condenser lens 16 is incident on the liquid crystal panel 18 via the incident side polarizing plate 17.
  • the liquid crystal panel 18 is driven according to the blue video signal, and modulates the B light according to the driving state.
  • the B light modulated by the liquid crystal panel 18 is incident on the dichroic prism 20 via the emission side polarizing plate 19.
  • G light out of the light reflected by the dichroic mirror 14 is reflected by the dichroic mirror 21 and enters the condenser lens 22.
  • the condenser lens 22 imparts an optical action to the G light so that the G light enters the liquid crystal panel 24 as substantially parallel light.
  • the G light transmitted through the condenser lens 22 is incident on the liquid crystal panel 24 through the incident side polarizing plate 23.
  • the liquid crystal panel 24 is driven according to the green video signal and modulates the G light according to the driving state.
  • the G light modulated by the liquid crystal panel 24 is incident on the dichroic prism 20 via the output side polarizing plate 25.
  • the R light transmitted through the dichroic mirror 21 is incident on the condenser lens 26.
  • the condenser lens 26 imparts an optical action to the R light so that the R light enters the liquid crystal panel 33 as substantially parallel light.
  • the R light transmitted through the condenser lens 26 travels on an optical path composed of relay lenses 27, 29, 31 for adjusting the optical path length and the two mirrors 28, 30, and is incident on the liquid crystal panel 33 through the incident side polarizing plate 32.
  • the liquid crystal panel 33 is driven according to the video signal for red and modulates the R light according to the drive information.
  • the R light modulated by the liquid crystal panel 33 is incident on the dichroic prism 20 via the emission side polarizing plate 34.
  • the dichroic prism 20 color-synthesizes the B light, G light, and R light modulated by the liquid crystal panels 18, 24, 33 and makes the light enter the projection lens 3.
  • the projection lens 3 adjusts the zoom state and the focus state of the projected image by displacing a part of the lens group for forming an image of the projection light on the projection surface (screen) and in the optical axis direction.
  • An actuator is provided.
  • the light synthesized by the dichroic prism 20 is enlarged and projected on the screen by the projection lens 3.
  • the rotating body 200q includes a plurality of fluorescent portions that each receive light emitted from the excitation laser light source 102 and emit R light, G light, and B light.
  • the plurality of fluorescent portions are formed by arranging a plurality of rotating rings each having a fluorescent material coated on each outer peripheral surface in the rotation axis direction.
  • FIG. 31 is a cross-sectional view of each rotating ring with a plane perpendicular to the direction in which the rotating rings are arranged.
  • rotating body 200q includes a plurality of (for example, three) rotating rings 212_1, 212_2, and 212_3.
  • the rotating rings 212_1, 212_2, and 212_3 are displayed while being shifted in parallel with the rotating shaft. However, in actuality, these rotating rings are arranged in parallel in the rotating shaft direction. Is.
  • the rotating rings 212_1, 212_2, 212_3 have the same shape.
  • the reference numeral 212 is used to collectively refer to the rotating rings 212_1, 212_2, and 212_3.
  • the rotating ring 212 includes an annular translucent substrate 210, a phosphor disposed over the entire outer peripheral surface of the translucent substrate 210, and a mirror film 232.
  • the phosphor includes an R light phosphor 220R, a G light phosphor 220G, and a B light phosphor 220B.
  • the R light phosphor 220R, the G light phosphor 220G, and the B light phosphor 220B are arranged on the outer peripheral surface of the translucent substrate 210 in the arrangement shown in FIG. Specifically, the R light phosphor 220R, the G light phosphor 220G, and the B light phosphor 220B are arranged so as to be adjacent to each other in the circumferential direction in that order, and have different angle ranges. .
  • the mirror film 232 is disposed over the entire inner peripheral surface of the translucent substrate 210.
  • the mirror film 232 reflects visible light emitted from the respective color phosphors 220R, 220G, and 220B.
  • the rotating ring 212 rotates around the rotation axis 300q, the irradiation position of the excitation light incident on the phosphor is periodically in the order of the R light phosphor 220R, the G light phosphor 220G, and the B light phosphor 220B. Change. As a result, the rotating ring 212 periodically emits R light, G light, and B light in that order.
  • the plurality of rotating rings 212_1, 212_2, and 212_3 are arranged so that phosphors of different color lights are adjacent to each other in the rotation axis direction.
  • the R light phosphor 220R of the rotating ring 212_1, the G light phosphor 220G of the rotating ring 212_2, and the B light phosphor 220B of the rotating ring 212_3 are arranged adjacent to each other in the rotation axis direction.
  • the rotating rings 212_1, 212_2, and 212_3 emit R light, G light, and B light, respectively. Since each of the rotating rings 212_1, 212_2, and 212_3 periodically emits light in the order of R light, G light, and B light, the entire rotating body 200q always emits R light, G light, and B light. It will be emitted.
  • the R light, G light, and B light emitted from the rotating body 200q are collected by the condenser lens 111.
  • Each color light condensed by the condenser lens 117 passes through the dichroic mirror 119 and enters the fly eye integrator 11 (FIG. 30).
  • the light from the light source device 10 q is incident on a PBS (polarized beam splitter) array 12 and a condenser lens 13 via the fly eye integrator 11.
  • PBS polarized beam splitter
  • a rotating ring in which a plurality of phosphors each emitting a plurality of color lights in the circumferential direction is arranged, and phosphors of different color lights are arranged in the rotation axis direction.
  • the light emitted from the excitation laser light source can be converted into illumination light composed of combined light of R light, G light, and B light using a phosphor rotating drum. .
  • the excitation light emitted from the excitation laser light source is condensed on the phosphor, whereby the wavelength can be efficiently converted by the phosphor, and the light emitted from the phosphor can be converted. Since the light can be efficiently directed to the emission side, the light use efficiency can be increased, and the luminance of the illumination light is improved. As a result, a light source device with high brightness and high efficiency can be realized.
  • FIG. 32 is a diagram illustrating the configuration of a rotating body 200r provided in a light source device according to a modification of Embodiment 11 of the present invention.
  • the rotating body 200r according to the present modification example includes four rotating rings 214_1 to 214_4 instead of the three rotating rings 212_1 to 212_3 as compared to the rotating body 200q illustrated in FIG. It differs in that it is configured.
  • FIG. 32 is a cross-sectional view of each rotating ring with a plane perpendicular to the direction in which the rotating rings are arranged.
  • the rotating rings 214_1 to 214_4 are displayed while being shifted in parallel to the rotating shaft.
  • these rotating rings are arranged in parallel in the rotating shaft direction. It is.
  • the rotating rings 214_1 to 214_4 have the same shape.
  • the reference numeral 214 is used to collectively refer to the rotating rings 214_1 to 214_4.
  • the rotating ring 214 includes an annular translucent substrate 210, a phosphor disposed over the entire outer peripheral surface of the translucent substrate 210, and a mirror film 232.
  • the phosphor includes an R light phosphor 220R, a G light phosphor 220G, a B light phosphor 220B, and a Ye light phosphor 220Ye.
  • the R light phosphor 220R, the G light phosphor 220G, the B light phosphor 220B, and the Ye phosphor 220Ye are arranged on the outer peripheral surface of the translucent substrate 210 in the arrangement shown in FIG. Specifically, the R light phosphor 220R, the G light phosphor 220G, the B light phosphor 220B, and the Ye phosphor 220Ye are arranged so as to be adjacent to each other in the circumferential direction in that order, and each has a different angular range. have.
  • the mirror film 232 is disposed over the entire inner peripheral surface of the translucent substrate 210.
  • the mirror film 232 reflects visible light emitted from the respective color phosphors 220R, 220G, 220B, and 220Ye.
  • the rotating ring 214 By rotating the rotating ring 214 around a rotation axis (not shown), the irradiation position of the excitation light incident on the phosphor is the R light phosphor 220R, the G light phosphor 220G, the B light phosphor 220B, It changes periodically in the order of Ye photophosphor 220Ye. As a result, the rotating ring 214 periodically emits R light, G light, B light, and Ye light in that order.
  • the plurality of rotating rings 214_1 to 214_4 are arranged so that phosphors of different color lights are adjacent to each other in the direction of the rotation axis.
  • the R phosphor 220R of the rotating ring 214_1 the G phosphor 220G of the rotating ring 214_4, the B phosphor 220B of the rotating ring 214_3, and the Ye phosphor 220Ye of the rotating ring 214_4 are adjacent to each other in the rotation axis direction.
  • the rotating rings 214_1 to 214_4 emit R light, G light, B light, and Ye light, respectively. Since each of the rotating rings 214_1 to 214_4 periodically emits light in the order of R light, G light, B light, and Ye light, the entire rotating body 200r always has R light, G light, and B light. , Ye light is emitted.
  • the R light, G light, B light, and Ye light emitted from the rotating body 200r are condensed by the condenser lens 111.
  • Each color light condensed by the condenser lens 117 passes through the dichroic mirror 119 and enters the fly eye integrator 11 (FIG. 30).
  • the light from the light source device 10 r enters the PBS (polarized beam splitter) array 12 and the condenser lens 13 via the fly eye integrator 11.
  • PBS polarized beam splitter
  • the light emitted from the excitation laser beam is converted into illumination light composed of the combined light of R light, G light, B light, and Ye light using the phosphor rotating drum. can do.
  • the color reproducibility of the image displayed is improved by expanding the range of the color which can be reproduced on a chromaticity diagram.
  • the Ye light is added to the R light, the G light, and the B light, so that the brightness of the displayed image is improved.
  • the fourth color light is not limited to this.
  • the fourth color light may be cyan light or magenta light.
  • a plurality of color lights may be used besides the single color light.
  • the present invention is not limited to this.
  • the configuration of the projector is not limited to the configuration described in the above embodiment.
  • the solid light source that emits the excitation light is described as the laser light source that emits the ultraviolet light.
  • the present invention is not limited to this.
  • the solid light source may be constituted by a laser light source that emits blue laser light.
  • 2,2k-2q optical engine 3 projection lens, 8 reflecting mirror, 10, 10a-10r light source device, 11 fly eye integrator, 12 PBS array, 13, 16, 22, 26 condenser lens, 14, 21, 55, 61b , 61c, 119, dichroic mirror, 15, 28, 30, 113, 126 mirror, 18, 24, 33 liquid crystal panel, 19, 25, 34 exit side polarizing plate, 20, 114 dichroic prism, 17, 23, 32 incident side polarization Plate, 27, 29, 31 relay lens, 50c-50e, 61 reflecting mirror, 50, 50a, 50b, 50g, 50j-50l solid light source, 51, 57, 63, 300, 300n, 300q rotating shaft, 52, 80 through Optical rod, 53 eccentric lens, 54, 108, 11 , 112, 116, 117, 118 condenser lens, 56, 56i, 1100 reflector, 58 support, 60, 60g, 60h, 220, 220R, 220G, 200B, 220Ye, 600R, 600G, 600B, 620

Abstract

Disclosed is a light source device which maintains illumination colour balance and light intensity without requiring widespread system changes from a light source lamp, and a projection image display device using same. A light source device (10) comprises: an exciting laser light source which is a solid state light source (50); a fluorescent body (60) which is excited by ultraviolet light contained in laser light output by the exciting laser light source and emits light in the visible range; a reflector (56) to reflect light emitted by the fluorescent body (60) and output same in a specified direction; and a fluorescent body mount (62) which positions the fluorescent body (60) at the focal position of the reflector (56). The fluorescent body mount (62) is provided with a reflecting mirror (61) in order to effectively guide light emitted by the fluorescent body (60) to the reflective surface of the reflector (56).

Description

投写型映像表示装置および光源装置Projection-type image display device and light source device
 この発明は、投写型映像表示装置および光源装置に関する。 The present invention relates to a projection display apparatus and a light source apparatus.
 プロジェクタ等の投写型映像表示装置においては、光源装置として、熱発光型のハロゲンランプや、放電型の超高圧水銀ランプやメタルハライドランプなどの光源ランプが広く用いられている。たとえば超高圧水銀ランプにおいては、被照射面に効率良く光を進行させるために、発光管と、発光管から出射した光を反射させるリフレクタとを組合わせた形状が採用されている。 2. Description of the Related Art In projection display devices such as projectors, light source lamps such as thermoluminescent halogen lamps, discharge ultra-high pressure mercury lamps and metal halide lamps are widely used as light source devices. For example, in an ultra-high pressure mercury lamp, a shape in which an arc tube and a reflector that reflects light emitted from the arc tube is combined is used in order to efficiently propagate light to an irradiated surface.
 このような光源ランプの発光特性としては、一般的に、可視波長域の色バランスが良く、光強度が大きいことが望まれる。しかしながら、超高圧水銀ランプは、光強度は比較的大きいものの、その発光特性が水銀固有の発光スペクトルを有しており、赤(以下、Rと称す)、緑(以下、Gと称す)、青(以下、Bと称す)の色光の波長域のうち、R光の波長域の光強度が不足する傾向にある。このため、可視波長域での色バランスが良い照明光を得ることができないという問題がある。 As light emission characteristics of such a light source lamp, it is generally desired that the color balance in the visible wavelength region is good and the light intensity is high. However, although the ultra high pressure mercury lamp has a relatively high light intensity, its emission characteristic has an emission spectrum unique to mercury, and is red (hereinafter referred to as R), green (hereinafter referred to as G), and blue. Of the wavelength range of colored light (hereinafter referred to as B), the light intensity in the wavelength range of R light tends to be insufficient. For this reason, there is a problem that illumination light having a good color balance in the visible wavelength region cannot be obtained.
 そこで、R光の増強対策として、たとえば特開2007-156270号公報(特許文献1)には、可視光および紫外光を含む光を出射する光源と、該光源から出射した光を反射させるリフレクタと、赤色を含む複数色の光を各別に透過させる複数のフィルタを周方向に併設し、その回転軸を光軸からずらした状態で配置され、回転させられて光源から出射した光が逐次的に照射されるカラーホイールとを備える光源装置が開示されている。この特許文献1の光源装置において、カラーホイールは、少なくとも、各フィルタの光が照射される部分の一部に、紫外光を各色の光に蛍光発光させる蛍光体層を備えており、光源から出射された各色の可視光に該蛍光体層が紫外光から変換したR光を重畳させることによって、色バランスを調整する。 Therefore, as a countermeasure for enhancing the R light, for example, Japanese Patent Application Laid-Open No. 2007-156270 (Patent Document 1) discloses a light source that emits light including visible light and ultraviolet light, a reflector that reflects the light emitted from the light source, and A plurality of filters that individually transmit light of a plurality of colors including red are provided in the circumferential direction, the rotation axis is shifted from the optical axis, and the light emitted from the light source is rotated sequentially. A light source device including a color wheel to be illuminated is disclosed. In the light source device of Patent Document 1, the color wheel includes a phosphor layer that fluoresces ultraviolet light into light of each color at least at a part of a portion irradiated with light from each filter, and emits from the light source. The color balance is adjusted by superimposing the R light converted from the ultraviolet light by the phosphor layer on the visible light of each color.
特開2007-156270号公報JP 2007-156270 A
 しかしながら、上記の特許文献1に記載される光源装置は、光源ランプとしての超高圧水銀ランプが出射した光に、紫外光から波長変換した各色の可視光を重畳させることにより、各色の成分を増量させているため、超高圧水銀ランプを駆動するための高電圧電源が必要となる。また、光源装置は、長寿命であること、点灯までの時間が短いこと等が望まれている。 However, the light source device described in Patent Document 1 increases the component of each color by superimposing the visible light of each color, which has been wavelength-converted from ultraviolet light, on the light emitted from the ultra-high pressure mercury lamp as the light source lamp. Therefore, a high voltage power source for driving the ultra high pressure mercury lamp is required. In addition, the light source device is desired to have a long life and a short time until lighting.
 これらの課題に対しては、発光ダイオードなどの固体光源を光源として用いることが検討されるが、R,G,Bのそれぞれの色光を発光する光源を用意しなければならず、光源ランプを利用したプロジェクタからの大幅なシステム変更が必要となってしまう。 To deal with these problems, it is considered to use a solid light source such as a light emitting diode as a light source. A major system change from the projector is required.
 また、上記の特許文献1に記載される光源装置は、光源の光軸に平行な回転軸を中心として円板状のカラーホイールを回転させるため、カラーホイールを収容するために、光軸に垂直な方向に一定の高さを確保する必要があり、装置全体の小型化に制約が生じていた。 In addition, the light source device described in Patent Document 1 rotates a disk-shaped color wheel around a rotation axis parallel to the optical axis of the light source, and therefore is perpendicular to the optical axis to accommodate the color wheel. It is necessary to ensure a certain height in any direction, and there is a restriction on downsizing of the entire apparatus.
 さらに、蛍光体の励起効率(=蛍光体への励起スペクトルが波長変換されて蛍光スペクトルとして放射される変換効率)は、蛍光体の励起光の波長と、蛍光体の発光光の波長との差が小さいほど高くなるところ、上記の特許文献1に記載される光源装置では、励起光である紫外光と蛍光体層の発光光であるR光との波長差が、紫外光とG光やB光との波長差と比べて大きくなってしまうため、高い効率を得ることが困難であった。 Further, the excitation efficiency of the phosphor (= the conversion efficiency that is emitted as a fluorescence spectrum by converting the wavelength of the excitation spectrum to the phosphor) is the difference between the wavelength of the excitation light of the phosphor and the wavelength of the emitted light of the phosphor. However, in the light source device described in Patent Document 1, the wavelength difference between the ultraviolet light that is the excitation light and the R light that is the light emitted from the phosphor layer is different from the ultraviolet light and the G light or B light. Since it becomes larger than the wavelength difference from light, it is difficult to obtain high efficiency.
 それゆえ、この発明はかかる課題を解決するためになされたものであり、その目的は、光源ランプからの大幅なシステム変更を伴なうことなく、照明光の色バランスおよび光量を確保できる光源装置およびこれを備える投写型映像表示装置を提供することである。 SUMMARY OF THE INVENTION Therefore, the present invention has been made to solve such a problem, and an object of the present invention is to provide a light source device capable of ensuring the color balance and light amount of illumination light without a significant system change from the light source lamp. And a projection display apparatus including the same.
 また、この発明の別の目的は、小型化を図りつつ、高効率および高輝度の光源装置およびこれを備える投写型映像表示装置を提供することである。 Another object of the present invention is to provide a high-efficiency and high-luminance light source device and a projection-type image display device including the same while achieving miniaturization.
 この発明のある局面に従えば、投写型映像表示装置は、光源装置と、入力された映像信号に基づき、光源装置から出射された光を変調する光変調部と、光変調部により変調された光を投写する投写部とを備える。光源装置は、固体光源と、固体光源が出射した光により励起され、可視域の光を発光する蛍光体と、蛍光体が発光した光を反射して所定の方向へ出射するためのリフレクタと、リフレクタの焦点位置に蛍光体を設置する蛍光体設置部とを含む。蛍光体設置部は、蛍光体の発光した光をリフレクタの反射面に導くための反射部を有する。 According to one aspect of the present invention, a projection display apparatus is modulated by a light source device, a light modulation unit that modulates light emitted from the light source device based on an input video signal, and a light modulation unit. A projection unit for projecting light. The light source device includes a solid-state light source, a phosphor that is excited by light emitted from the solid-state light source and emits light in a visible range, a reflector that reflects the light emitted from the phosphor and emits the light in a predetermined direction, And a phosphor installation section that installs the phosphor at the focal position of the reflector. The phosphor installation part has a reflection part for guiding the light emitted from the phosphor to the reflection surface of the reflector.
 好ましくは、光源装置は、固体光源が出射した光の蛍光体への照射位置を連続的に移動させるための照射位置移動機構をさらに含む。 Preferably, the light source device further includes an irradiation position moving mechanism for continuously moving the irradiation position of the light emitted from the solid light source to the phosphor.
 好ましくは、照射位置移動機構は、蛍光体設置部に取付けられ、リフレクタの光軸に平行な回転軸と、回転軸を中心として蛍光体設置部を回転させることにより、固体光源が出射した光の蛍光体への照射位置を、回転軸を中心とする円周上において移動させるための回転機構とを含む。蛍光体は、発光する色光が互いに異なる複数の発光部が回転軸を中心とする円周方向に沿って順に配列された光入射面を有する。 Preferably, the irradiation position moving mechanism is attached to the phosphor installation part, and rotates the phosphor installation part around the rotation axis and the rotation axis parallel to the optical axis of the reflector, so that the light emitted from the solid light source A rotation mechanism for moving the irradiation position on the phosphor on a circumference around the rotation axis. The phosphor has a light incident surface in which a plurality of light emitting portions that emit different color lights are arranged in order along a circumferential direction around the rotation axis.
 好ましくは、固体光源は、少なくとも1個の光源からなる。少なくとも1個の光源は、リフレクタの頂点部側またはリフレクタの開口部側に配され、リフレクタの内部に向けて光を出射する。 Preferably, the solid light source comprises at least one light source. The at least one light source is arranged on the apex side of the reflector or the opening side of the reflector, and emits light toward the inside of the reflector.
 好ましくは、光源装置は、固体光源が出射した光を、蛍光体に集光させるための集光部材をさらに含む。 Preferably, the light source device further includes a light condensing member for condensing the light emitted from the solid light source on the phosphor.
 この発明の別の局面に従えば、光源装置は、固体光源と、固体光源が出射した光により励起され、可視域の光を発光する蛍光体と、蛍光体が発光した光を反射して所定の方向へ出射するためのリフレクタと、リフレクタの焦点位置に蛍光体を設置する蛍光体設置部とを備える。蛍光体設置部は、蛍光体の発光した光をリフレクタの反射面に導くための反射部を有する。 According to another aspect of the present invention, a light source device includes a solid-state light source, a phosphor that is excited by light emitted from the solid-state light source, and emits light in the visible range, and reflects light emitted from the phosphor to give a predetermined light source. A reflector for emitting light in the direction of, and a phosphor installation portion that installs the phosphor at the focal position of the reflector. The phosphor installation part has a reflection part for guiding the light emitted from the phosphor to the reflection surface of the reflector.
 この発明の別の局面に従えば、投写型映像表示装置は、光源装置と、入力された映像信号に基づき、光源装置から出射された光を変調する光変調部と、光変調部により変調された光を投写する投写部とを備える。光源装置は、固体光源と、固体光源の光軸と直交する軸を回転軸とする回転体と、回転体の外周面上に設けられ、固体光源が出射した光により励起されて可視域の光を発光する蛍光体とを含む。 According to another aspect of the present invention, a projection display apparatus is modulated by a light source device, a light modulation unit that modulates light emitted from the light source device based on an input video signal, and a light modulation unit. A projection unit for projecting the light. The light source device is provided on a solid light source, a rotating body whose axis of rotation is orthogonal to the optical axis of the solid light source, and an outer peripheral surface of the rotating body. And a phosphor that emits light.
 好ましくは、回転体は、回転軸を中心として回転駆動される円筒状の透光性基材を含む。蛍光体は、透光性基材の外周面上に、円周方向に所定の角度範囲を有して配置される。光源装置は、透光性基材の内周面上に蛍光体と対向する位置に配置され、蛍光体が発光した光を回転体の径方向の外側に向けて反射して固体光源が出射した光を透過するダイクロイック膜をさらに含む。 Preferably, the rotating body includes a cylindrical translucent substrate that is driven to rotate about the rotation axis. The phosphor is disposed on the outer peripheral surface of the translucent substrate so as to have a predetermined angle range in the circumferential direction. The light source device is disposed on the inner peripheral surface of the translucent substrate at a position facing the phosphor, and reflects the light emitted from the phosphor toward the outside in the radial direction of the rotating body, and the solid light source emits the light. A dichroic film that transmits light is further included.
 好ましくは、蛍光体は、回転軸方向に沿って並設され、固体光源が出射した光を受けて複数の色光をそれぞれ発光する複数の蛍光部を含む。複数の蛍光部は、透光性基材の外周面上に、回転軸方向から見たときに円周方向に互いに異なる角度範囲を有するように配置される。 Preferably, the phosphor includes a plurality of fluorescent portions that are arranged in parallel along the rotation axis direction and that receive light emitted from the solid-state light source and emit a plurality of colored lights respectively. The plurality of fluorescent portions are arranged on the outer peripheral surface of the translucent substrate so as to have different angular ranges in the circumferential direction when viewed from the rotation axis direction.
 好ましくは、回転体は、回転軸を中心として回転駆動される円筒状の透光性基材を含む。蛍光体は、透光性基材の外周面の全面にわたって配置される。光源装置は、透光性基材の内周面の全面にわたって配置され、蛍光体が発光した光を回転体の径方向の外側に向けて反射する反射膜をさらに含む。 Preferably, the rotating body includes a cylindrical translucent substrate that is driven to rotate about the rotation axis. A fluorescent substance is arrange | positioned over the whole outer peripheral surface of a translucent base material. The light source device further includes a reflective film that is disposed over the entire inner peripheral surface of the translucent substrate and reflects the light emitted by the phosphor toward the outside in the radial direction of the rotating body.
 好ましくは、蛍光体は、円周方向に沿って並設され、固体光源が出射した光を受けて複数の色光をそれぞれ発光する複数の蛍光部を含む。複数の蛍光部は、透光性基材の外周面上に、円周方向に互いに異なる角度範囲を有するように配置される。 Preferably, the phosphor includes a plurality of fluorescent portions that are arranged side by side along the circumferential direction and emit light of a plurality of color lights in response to light emitted from the solid light source. The plurality of fluorescent portions are arranged on the outer peripheral surface of the translucent substrate so as to have different angular ranges in the circumferential direction.
 この発明の別の局面に従えば、光源装置は、固体光源と、固体光源の光軸と直交する軸を回転軸とする回転体と、回転体の外周面上に設けられ、固体光源が出射した光により励起されて可視域の光を発光する蛍光体とを備える。 According to another aspect of the present invention, a light source device is provided on a solid light source, a rotating body whose axis of rotation is orthogonal to the optical axis of the solid light source, and an outer peripheral surface of the rotating body, and the solid light source emits the light source device. And a phosphor that emits light in the visible range when excited by the emitted light.
 この発明によれば、光源装置は、発光部およびリフレクタの組合せからなる光源ランプの形状はそのままに、発光部としての蛍光体が固体光源からの光を可視光に波長変換する構成としたことにより、光源ランプを搭載した投写型映像表示装置の筐体およびシステムを共用することができる。そのため、光源ランプを搭載した投写型映像表示装置からの大幅なシステム変更が不要となる。 According to the present invention, the light source device is configured such that the phosphor as the light emitting unit converts the light from the solid light source into visible light, while maintaining the shape of the light source lamp including the combination of the light emitting unit and the reflector. The casing and system of the projection display apparatus equipped with the light source lamp can be shared. Therefore, a significant system change from a projection display apparatus equipped with a light source lamp becomes unnecessary.
 また、蛍光体の励起により所望の発光色を得ることができるため、光源装置は、容易に色バランスのよい照明光を出射することができる。さらに、蛍光体が発光した光を効率良くリフレクタの反射面に導くことができるため、光源装置の光利用効率を高めることができる。 In addition, since a desired emission color can be obtained by excitation of the phosphor, the light source device can easily emit illumination light with good color balance. Furthermore, since the light emitted from the phosphor can be efficiently guided to the reflecting surface of the reflector, the light utilization efficiency of the light source device can be increased.
 また、この発明によれば、小型化を図りつつ、高効率および高輝度の光源装置およびこれを備える投写型映像表示装置を実現することができる。 In addition, according to the present invention, it is possible to realize a light source device with high efficiency and high brightness and a projection type video display device including the same while achieving miniaturization.
この発明の実施の形態1に係るプロジェクタの主要部の構成を模式的に示す図である。It is a figure which shows typically the structure of the principal part of the projector which concerns on Embodiment 1 of this invention. 図1における光源装置の構成を説明する図である。It is a figure explaining the structure of the light source device in FIG. 一般的な光源ランプの構成を示す図である。It is a figure which shows the structure of a general light source lamp. この発明の実施の形態2に係る光源装置の構成を説明する図である。It is a figure explaining the structure of the light source device which concerns on Embodiment 2 of this invention. この発明の実施の形態2の変更例1に係る光源装置の構成を説明する図である。It is a figure explaining the structure of the light source device which concerns on the modification 1 of Embodiment 2 of this invention. この発明の実施の形態2の変更例2に係る光源装置の構成を説明する図である。It is a figure explaining the structure of the light source device which concerns on the modification 2 of Embodiment 2 of this invention. この発明の実施の形態3に係る光源装置の構成を説明する図である。It is a figure explaining the structure of the light source device which concerns on Embodiment 3 of this invention. この発明の実施の形態3の変更例1に係る光源装置の構成を説明する図である。It is a figure explaining the structure of the light source device which concerns on the modification 1 of Embodiment 3 of this invention. この発明の実施の形態3の変更例2に係る光源装置の構成を説明する図である。It is a figure explaining the structure of the light source device which concerns on the modification 2 of Embodiment 3 of this invention. この発明の実施の形態4に係る光源装置の構成を説明する図である。It is a figure explaining the structure of the light source device which concerns on Embodiment 4 of this invention. 光軸方向から見た蛍光体の構成を説明する図である。It is a figure explaining the structure of the fluorescent substance seen from the optical axis direction. この発明の実施の形態5に係る光源装置を搭載したプロジェクタの構成を説明する図である。It is a figure explaining the structure of the projector carrying the light source device which concerns on Embodiment 5 of this invention. この発明の実施の形態6に係る光源装置の構成を説明する図である。It is a figure explaining the structure of the light source device which concerns on Embodiment 6 of this invention. 光軸方向から見た蛍光体の構成を説明する図である。It is a figure explaining the structure of the fluorescent substance seen from the optical axis direction. 本発明の実施の形態7に従う光源装置および当該光源装置を搭載したプロジェクタの光学エンジンの構成を説明する図である。It is a figure explaining the structure of the optical engine of the light source device according to Embodiment 7 of this invention, and the projector carrying the said light source device. この発明の実施の形態7の変更例に係る光源装置の構成を説明する図である。It is a figure explaining the structure of the light source device which concerns on the example of a change of Embodiment 7 of this invention. この発明の実施の形態8に係るプロジェクタの主要部の構成を模式的に示す図である。It is a figure which shows typically the structure of the principal part of the projector which concerns on Embodiment 8 of this invention. 図17における光源装置の構成を説明する図である。It is a figure explaining the structure of the light source device in FIG. 図18における回転体の構成を説明する図である。It is a figure explaining the structure of the rotary body in FIG. この発明の実施の形態9に係る光学エンジンの構成を説明する図である。It is a figure explaining the structure of the optical engine which concerns on Embodiment 9 of this invention. 図20における光源装置の構成を説明する図である。It is a figure explaining the structure of the light source device in FIG. 回転リングの配列方向と垂直となる面を切り口とした回転リングごとの断面図である。It is sectional drawing for every rotation ring which used the surface perpendicular | vertical to the arrangement direction of a rotation ring as a cut surface. 回転リングごとの断面図である。It is sectional drawing for every rotation ring. 回転リングごとの断面図である。It is sectional drawing for every rotation ring. この発明の実施の形態9の変更例に係る光学エンジンの構成を説明する図である。It is a figure explaining the structure of the optical engine which concerns on the example of a change of Embodiment 9 of this invention. 図25における光源装置の構成を説明する図である。It is a figure explaining the structure of the light source device in FIG. この発明の実施の形態10に係る光学エンジンの構成を説明する図である。It is a figure explaining the structure of the optical engine which concerns on Embodiment 10 of this invention. 図27における回転体の構成を説明する図である。It is a figure explaining the structure of the rotary body in FIG. この発明の実施の形態10の変更例に係る光源装置が備える回転体の構成を説明する図である。It is a figure explaining the structure of the rotary body with which the light source device which concerns on the example of a change of Embodiment 10 of this invention is provided. この発明の実施の形態11に係る光源装置を光源系に用いた、プロジェクタの主要部の構成を模式的に示す図である。It is a figure which shows typically the structure of the principal part of a projector using the light source device which concerns on Embodiment 11 of this invention for the light source system. 回転リングの配列方向と垂直となる面を切り口とした回転リングごとの断面図である。It is sectional drawing for every rotation ring which used the surface perpendicular | vertical to the arrangement direction of a rotation ring as a cut surface. この発明の実施の形態11の変更例に係る光源装置が備える回転体の構成を説明する図である。It is a figure explaining the structure of the rotary body with which the light source device which concerns on the example of a change of Embodiment 11 of this invention is provided.
 以下、本発明の実施の形態について、図面を参照しながら詳細に説明する。なお、図中の同一または相当する部分には同一符号を付してその説明は繰返さない。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. It should be noted that the same or corresponding parts in the drawings are denoted by the same reference numerals and description thereof will not be repeated.
 [実施の形態1]
 図1は、この発明の実施の形態1に係る投写型映像表示装置(以下、「プロジェクタ」ともいう)の主要部の構成を模式的に示す図である。
[Embodiment 1]
FIG. 1 is a diagram schematically showing a configuration of a main part of a projection display apparatus (hereinafter also referred to as “projector”) according to Embodiment 1 of the present invention.
 図1を参照して、プロジェクタは、液晶デバイスを利用して映像を投影する液晶プロジェクタであって、光学エンジン2と、投写レンズ3とを備え、その外郭をキャビティ(図示せず)で覆われている。なお、プロジェクタは、スピーカ等の音声を出力するための構成要素や、光学エンジン2の構成要素および音声出力手段を電気的に制御するための回路基板なども搭載されているが、図1では、これらを含む一部の構成要素の図示は省略されている。 Referring to FIG. 1, the projector is a liquid crystal projector that projects an image using a liquid crystal device, and includes an optical engine 2 and a projection lens 3, and the outline is covered with a cavity (not shown). ing. The projector is also equipped with components for outputting sound such as a speaker, a circuit board for electrically controlling the components of the optical engine 2 and the sound output means, but in FIG. The illustration of some components including these is omitted.
 光学エンジン2は、光源装置10を含む。光源装置10は、固体光源50と、固体光源50からの光により励起されて発光する蛍光体60と、蛍光体60から発光した光を反射させるリフレクタ56とを含む。光源装置10は、キャビティに対して着脱自在な状態で装着されている。蛍光体60から発光した光は、リフレクタ56の作用により、ほぼ平行光となって所定の方向へ出射される。 The optical engine 2 includes a light source device 10. The light source device 10 includes a solid light source 50, a phosphor 60 that emits light when excited by light from the solid light source 50, and a reflector 56 that reflects light emitted from the phosphor 60. The light source device 10 is mounted in a detachable state with respect to the cavity. The light emitted from the phosphor 60 is emitted as a substantially parallel light in a predetermined direction by the action of the reflector 56.
 光源装置10からの光は、フライアイインテグレータ11を介して、PBS(偏光ビームスプリッタ)アレイ12およびコンデンサレンズ13に入射される。フライアイインテグレータ11は、蝿の目状のレンズ群からなるフライアイレンズを備え、液晶パネル18,24,33に入射する光の光量分布が均一となるよう、光源装置10から入射される光に光学作用を付与する。 The light from the light source device 10 enters a PBS (polarized beam splitter) array 12 and a condenser lens 13 via a fly eye integrator 11. The fly-eye integrator 11 includes a fly-eye lens composed of a lens group having an eyelet shape. The fly-eye integrator 11 applies light to the light incident from the light source device 10 so that the light quantity distribution of the light incident on the liquid crystal panels 18, 24, 33 is uniform. Add optical action.
 PBSアレイ12は、複数のPBSと1/2波長板がアレイ状に配列されたものであり、フライアイインテグレータ11から入射された光の偏光方向を1方向に揃える。コンデンサレンズ13は、PBSアレイ12から入射された光に集光作用を付与する。コンデンサレンズ13を透過した光は、ダイクロイックミラー14に入射する。 The PBS array 12 has a plurality of PBSs and half-wave plates arranged in an array, and aligns the polarization direction of the light incident from the fly eye integrator 11 in one direction. The condenser lens 13 condenses light incident from the PBS array 12. The light transmitted through the condenser lens 13 enters the dichroic mirror 14.
 ダイクロイックミラー14は、コンデンサレンズ13から入射された光のうち、青色波長域の光(以下、「B光」という)のみを透過し、赤色波長域の光(以下、「R光」という)および緑色波長域の光(以下、「G光」という)を反射する。ダイクロイックミラー14を透過したB光は、ミラー15に導かれ、そこで反射され、コンデンサレンズ16に入射される。 The dichroic mirror 14 transmits only light in the blue wavelength range (hereinafter referred to as “B light”) out of the light incident from the condenser lens 13, and light in the red wavelength range (hereinafter referred to as “R light”) and Reflects light in the green wavelength range (hereinafter referred to as “G light”). The B light transmitted through the dichroic mirror 14 is guided to the mirror 15, reflected there, and incident on the condenser lens 16.
 コンデンサレンズ16は、B光がほぼ平行光で液晶パネル18に入射するよう、B光に光学作用を付与する。コンデンサレンズ16を透過したB光は、入射側偏光板17を介して液晶パネル18に入射される。液晶パネル18は、青色用の映像信号に応じて駆動され、その駆動状態に応じてB光を変調する。液晶パネル18によって変調されたB光は、出射側偏光板19を介して、ダイクロイックプリズム20に入射される。 The condenser lens 16 imparts an optical action to the B light so that the B light enters the liquid crystal panel 18 as substantially parallel light. The B light transmitted through the condenser lens 16 is incident on the liquid crystal panel 18 via the incident side polarizing plate 17. The liquid crystal panel 18 is driven according to the blue video signal, and modulates the B light according to the driving state. The B light modulated by the liquid crystal panel 18 is incident on the dichroic prism 20 via the emission side polarizing plate 19.
 ダイクロイックミラー14によって反射された光のうちG光は、ダイクロイックミラー21によって反射され、コンデンサレンズ22に入射される。コンデンサレンズ22は、G光がほぼ平行光で液晶パネル24に入射するよう、G光に光学作用を付与する。コンデンサレンズ22を透過したG光は、入射側偏光板23を介して液晶パネル24に入射される。液晶パネル24は、緑色用の映像信号に応じて駆動され、その駆動状態に応じてG光を変調する。液晶パネル24によって変調されたG光は、出射側偏光板25を介して、ダイクロイックプリズム20に入射される。 G light out of the light reflected by the dichroic mirror 14 is reflected by the dichroic mirror 21 and enters the condenser lens 22. The condenser lens 22 imparts an optical action to the G light so that the G light enters the liquid crystal panel 24 as substantially parallel light. The G light transmitted through the condenser lens 22 is incident on the liquid crystal panel 24 through the incident side polarizing plate 23. The liquid crystal panel 24 is driven according to the green video signal and modulates the G light according to the driving state. The G light modulated by the liquid crystal panel 24 is incident on the dichroic prism 20 via the output side polarizing plate 25.
 ダイクロイックミラー21を透過したR光は、コンデンサレンズ26に入射される。コンデンサレンズ26は、R光がほぼ平行光で液晶パネル33に入射するよう、R光に光学作用を付与する。コンデンサレンズ26を透過したR光は、光路長調整用のリレーレンズ27,29,31と2つのミラー28,30とからなる光路を進み、入射側偏光板32を介して液晶パネル33に入射される。液晶パネル33は、赤色用の映像信号に応じて駆動され、その駆動情報に応じてR光を変調する。液晶パネル33によって変調されたR光は、出射側偏光板34を介して、ダイクロイックプリズム20に入射される。 The R light transmitted through the dichroic mirror 21 is incident on the condenser lens 26. The condenser lens 26 imparts an optical action to the R light so that the R light enters the liquid crystal panel 33 as substantially parallel light. The R light transmitted through the condenser lens 26 travels on an optical path composed of relay lenses 27, 29, 31 for adjusting the optical path length and the two mirrors 28, 30, and is incident on the liquid crystal panel 33 through the incident side polarizing plate 32. The The liquid crystal panel 33 is driven according to the video signal for red and modulates the R light according to the drive information. The R light modulated by the liquid crystal panel 33 is incident on the dichroic prism 20 via the emission side polarizing plate 34.
 ダイクロイックプリズム20は、液晶パネル18,24,33によって変調されたB光、G光およびR光を色合成し、投写レンズ3へと入射させる。投写レンズ3は、投写光を被投写面(スクリーン)上に結像させるためのレンズ群と、これらレンズ群の一部を光軸方向に変位させて投写画像のズーム状態およびフォーカス状態を調整するためのアクチュエータを備えている。ダイクロイックプリズム20によって色合成された光は、投写レンズ3によって、スクリーン上に拡大投写される。 The dichroic prism 20 color-synthesizes the B light, G light, and R light modulated by the liquid crystal panels 18, 24, 33 and makes the light enter the projection lens 3. The projection lens 3 adjusts the zoom state and the focus state of the projected image by displacing a part of the lens group for forming an image of the projection light on the projection surface (screen) and in the optical axis direction. An actuator is provided. The light synthesized by the dichroic prism 20 is enlarged and projected on the screen by the projection lens 3.
 (光源装置の構成)
 図2は、図1における光源装置10の構成を説明する図である。図3は、図2の光源装置との比較のために、一般的な光源ランプの構成を示した図である。
(Configuration of light source device)
FIG. 2 is a diagram illustrating the configuration of the light source device 10 in FIG. FIG. 3 is a diagram showing a configuration of a general light source lamp for comparison with the light source device of FIG.
 図2を参照して、光源装置10は、固体光源50と、透光性ロッド52と、集光レンズ54と、ダイクロイックミラー55と、リフレクタ56と、支持部58と、蛍光体60と、蛍光体60が設置される蛍光体設置部62とを備える。 Referring to FIG. 2, the light source device 10 includes a solid-state light source 50, a translucent rod 52, a condenser lens 54, a dichroic mirror 55, a reflector 56, a support portion 58, a phosphor 60, and a fluorescent light. And a phosphor installation part 62 on which the body 60 is installed.
 固体光源50は、LED(Light Emitting Diode)やLD(Laser Diode)などの固体光源からなり、所定の波長帯域の光を出射する。本発明の実施の形態1では、固体光源50は、たとえば、発光部である蛍光体60に向けて紫外光を含むレーザ光を出射する励起用レーザ光源からなる。固体光源50から出射された光は、透光性ロッド52の一方の端部に入射されると、透光性ロッド52の内部を伝搬して透光性ロッド52の他方の端部から出射される。透光性ロッド52は、固体光源50からの出射光の広がりを抑えるものである。 The solid light source 50 includes a solid light source such as an LED (Light Emitting Diode) or an LD (Laser Diode), and emits light in a predetermined wavelength band. In the first embodiment of the present invention, the solid light source 50 is composed of, for example, an excitation laser light source that emits laser light including ultraviolet light toward the phosphor 60 that is a light emitting unit. When the light emitted from the solid light source 50 is incident on one end of the translucent rod 52, it propagates through the translucent rod 52 and is emitted from the other end of the translucent rod 52. The The translucent rod 52 suppresses the spread of light emitted from the solid light source 50.
 透光性ロッド52の他方の端部は、リフレクタ56の頂点部と光学的に接続されている。このリフレクタ56の頂点部には貫通孔が設けられており、この貫通孔には集光レンズ54が取付けられている。集光レンズ54は、透光性ロッド52の他方の端部に導かれた光を集光してリフレクタ56の内部に入射する。 The other end of the translucent rod 52 is optically connected to the apex of the reflector 56. A through hole is provided at the apex of the reflector 56, and a condenser lens 54 is attached to the through hole. The condensing lens 54 condenses the light guided to the other end of the translucent rod 52 and enters the inside of the reflector 56.
 リフレクタ56は、光軸AXの周囲に設けられている。リフレクタ56は、光軸AX上に設けられた発光部から出射した光を反射させる反射面を有する。この反射面は、光軸AXを中心として放物線の一部を回転させることにより得られる回転放物面と略同じ形状を有している。リフレクタ56は、反射面を形成する側の表面に高反射性部材、たとえば誘電体多層膜や金属部材を蒸着させることにより得られる。リフレクタ56を構成する基材としては、たとえば、耐熱性ガラスが用いられる。 The reflector 56 is provided around the optical axis AX. The reflector 56 has a reflection surface that reflects light emitted from the light emitting unit provided on the optical axis AX. This reflecting surface has substantially the same shape as a rotating paraboloid obtained by rotating a part of a parabola around the optical axis AX. The reflector 56 is obtained by vapor-depositing a highly reflective member such as a dielectric multilayer film or a metal member on the surface on the side where the reflecting surface is formed. As a base material constituting the reflector 56, for example, heat resistant glass is used.
 蛍光体60は、回転放物面と略同じ形状をなすリフレクタ56の焦点位置に設置される。具体的には、蛍光体60が設置される蛍光体設置部62を支持部58によって支持することにより、蛍光体60をリフレクタ56の焦点位置に設置させることができる。 The phosphor 60 is installed at the focal position of the reflector 56 having substantially the same shape as the rotary paraboloid. Specifically, the phosphor 60 can be installed at the focal position of the reflector 56 by supporting the phosphor installation unit 62 where the phosphor 60 is installed by the support unit 58.
 集光レンズ54は、固体光源50からの光を、その屈折作用により、リフレクタ56の焦点位置に集光させる。リフレクタ56の焦点位置に配された蛍光体60は、集光レンズ54により集光された光により励起され、可視波長域の光を発光する。蛍光体60から出射された光は、リフレクタ56の反射面に入射する。リフレクタ56の反射面に入射した光は、ほぼ平行光となって、所定の方向へ出射される。 The condensing lens 54 condenses the light from the solid light source 50 at the focal position of the reflector 56 by its refraction action. The phosphor 60 arranged at the focal position of the reflector 56 is excited by the light condensed by the condenser lens 54 and emits light in the visible wavelength region. The light emitted from the phosphor 60 enters the reflecting surface of the reflector 56. The light incident on the reflecting surface of the reflector 56 becomes substantially parallel light and is emitted in a predetermined direction.
 このように、蛍光体60は、本発明の実施の形態1に係る光源装置の「発光部」を構成する。本発明の実施の形態1では、蛍光体60に集光レンズ54により集光された光を入射することにより、蛍光体60での励起(波長変換)に有効に利用できる光が増えるため、点光源に近い高効率な発光部を実現することができる。 Thus, the phosphor 60 constitutes the “light emitting unit” of the light source device according to Embodiment 1 of the present invention. In Embodiment 1 of the present invention, since the light condensed by the condensing lens 54 is incident on the phosphor 60, the light that can be effectively used for excitation (wavelength conversion) in the phosphor 60 increases. A highly efficient light emitting unit close to the light source can be realized.
 蛍光体60は、たとえば、固体光源50が出射した光のうち、特定の波長域の光(たとえば、紫外光とする)により励起されてR光、G光およびB光を発光する蛍光物質を用いて構成される。蛍光物質は、蛍光活性元素イオンとして機能する希土類元素イオンを含有する。希土類元素イオンとしては、ユウロピウム(Eu)やテルビウム(Tb)を利用することができる。希土類元素イオンとしてユウロピウムEu3+を含む蛍光物質は、200nm~430nmの光を吸収して、570nm~630nm付近の光を発光するので、紫外光または近紫外光を吸収してR光を発光することができる。また、ユウロピウムEu2+を含む蛍光物質は、200nm~400nmの光を吸収して、540nm~560nm付近の光を発光するので、紫外光または近紫外光を吸収してG光を発光することができる。また、テルビウムTb3+を含む蛍光物質は、300nm~400nmの光を吸収して、380nm~460nm付近の光を発光するので、紫外光または近紫外光を吸収してB光を発光することができる。 The phosphor 60 uses, for example, a fluorescent material that emits R light, G light, and B light when excited by light in a specific wavelength region (for example, ultraviolet light) out of light emitted from the solid light source 50. Configured. The fluorescent material contains rare earth element ions that function as fluorescent active element ions. Europium (Eu) and terbium (Tb) can be used as the rare earth element ions. A fluorescent substance containing europium Eu3 + as a rare earth element ion absorbs light of 200 nm to 430 nm and emits light in the vicinity of 570 nm to 630 nm. Therefore, it absorbs ultraviolet light or near ultraviolet light and emits R light. it can. In addition, since the fluorescent substance containing europium Eu2 + absorbs light of 200 nm to 400 nm and emits light in the vicinity of 540 nm to 560 nm, it can absorb ultraviolet light or near ultraviolet light and emit G light. Further, since the fluorescent substance containing terbium Tb3 + absorbs light of 300 nm to 400 nm and emits light of around 380 nm to 460 nm, it can absorb ultraviolet light or near ultraviolet light and emit B light.
 これらの複数の蛍光物質を混合させて蛍光体60を形成することにより、蛍光体60は固体光源50から発せられる紫外光を吸収してR光、G光およびB光を発光する。蛍光体60により発光されたR光、G光およびB光が混合されて白色光が生成される。なお、希土類元素イオンの種類や含有量等は、発光したい光の波長域やそのための励起光の波長域に応じて調整することができる。 By mixing the plurality of fluorescent substances to form the phosphor 60, the phosphor 60 absorbs ultraviolet light emitted from the solid light source 50 and emits R light, G light, and B light. The R light, G light, and B light emitted by the phosphor 60 are mixed to generate white light. In addition, the kind, content, etc. of rare earth element ions can be adjusted according to the wavelength range of light to be emitted and the wavelength range of excitation light therefor.
 ここで、蛍光体60の発光光は、等方性を有する放射光である。そのため、蛍光体設置部62は、耐熱性ガラスなどの透光性材料からなる基板と、当該基板のリフレクタ56の頂点部側に配された反射ミラー61とを有している。蛍光体設置部62は、リフレクタ56の開口部に向かって放射される蛍光体60の発光光を、反射ミラー61による反射によってリフレクタ56の頂点部側に導く。なお、反射ミラー61での反射の後、リフレクタ56の反射面で発光光の指向性が効率良く被照射面の方向に変換されるように、反射ミラー61は、平面形状もしくは曲面形状に形成されている。 Here, the emitted light of the phosphor 60 is an isotropic radiated light. Therefore, the phosphor installation part 62 has a substrate made of a light-transmitting material such as heat-resistant glass, and a reflection mirror 61 disposed on the apex side of the reflector 56 of the substrate. The phosphor installation part 62 guides the emitted light of the phosphor 60 radiated toward the opening of the reflector 56 to the apex part side of the reflector 56 by reflection by the reflection mirror 61. In addition, the reflection mirror 61 is formed in a planar shape or a curved surface shape so that the directivity of the emitted light is efficiently converted in the direction of the irradiated surface on the reflection surface of the reflector 56 after reflection by the reflection mirror 61. ing.
 これにより、蛍光体60の等方性の発光光を、効率良くリフレクタ56の反射面に入射させることができる。この結果、光源装置10の光利用効率を高めることができる。なお、光源装置10の光利用効率とは、固体光源50から出射される総光量に対する、リフレクタ56の開口部から照明光として放射される総光量の比率を示すものである。 Thereby, the isotropic emitted light of the phosphor 60 can be efficiently incident on the reflecting surface of the reflector 56. As a result, the light use efficiency of the light source device 10 can be increased. The light use efficiency of the light source device 10 indicates the ratio of the total light amount emitted as illumination light from the opening of the reflector 56 to the total light amount emitted from the solid light source 50.
 また、リフレクタ56の頂点部に向かって放射される蛍光体60の発光光が、集光レンズ54および透光性ロッド52を通じて固体光源50に入射するのを抑制するために、集光レンズ54には、ダイクロイックミラー55が設けられる。このダイクロイックミラー55は、蛍光体60から出射された所定の波長域の光を反射し、他の波長領域の光(紫外光)を透過する。これにより、蛍光体60の発光光を受けて固体光源50が熱的に損傷するのを防止することができる。 Further, in order to suppress the emission light of the phosphor 60 emitted toward the apex of the reflector 56 from entering the solid light source 50 through the condensing lens 54 and the translucent rod 52, Is provided with a dichroic mirror 55. The dichroic mirror 55 reflects light in a predetermined wavelength region emitted from the phosphor 60 and transmits light in other wavelength regions (ultraviolet light). Thereby, it is possible to prevent the solid light source 50 from being thermally damaged by receiving the light emitted from the phosphor 60.
 ここで、プロジェクタに用いられる一般的な光源ランプは、図3に示すように、リフレクタ1100と、リフレクタ1100の焦点位置に発光中心を有する発光管1000とを組合せて構成される。発光管1000は、管球部と、管球部の両側に延びる一対の封止部とを有する。管球部は、球状に形成されており、この管球部内に配置された一対の電極と、管球部内に封入された水銀、希ガスおよび少量のハロゲンとを有している。発光管1000としては、たとえば、メタルハライドランプ、超高圧水銀ランプ等が採用されており、リフレクタ1100は、発光管1000から放射された光を被照射面側に向けて反射する。 Here, as shown in FIG. 3, a general light source lamp used for a projector is configured by combining a reflector 1100 and an arc tube 1000 having a light emission center at the focal position of the reflector 1100. The arc tube 1000 has a tube bulb portion and a pair of sealing portions extending on both sides of the tube bulb portion. The tube portion is formed in a spherical shape, and has a pair of electrodes disposed in the tube portion, and mercury, a rare gas, and a small amount of halogen sealed in the tube portion. As the arc tube 1000, for example, a metal halide lamp, an ultra-high pressure mercury lamp, or the like is employed, and the reflector 1100 reflects light emitted from the arc tube 1000 toward the irradiated surface side.
 このような光源ランプの発光特性としては、一般的に、可視波長域の色バランスが良く、光強度が大きいことが望まれる。しかしながら、超高圧水銀ランプは、光強度は比較的大きいものの、その発光特性が水銀固有の発光スペクトルを有しており、R、G、Bの色光の波長域のうち、R光の波長域の光強度が不足する傾向にある。このため、可視波長域での色バランスが良い照明光を得ることができないという問題があった。 As light emission characteristics of such a light source lamp, it is generally desired that the color balance in the visible wavelength region is good and the light intensity is high. However, although the ultra high pressure mercury lamp has a relatively high light intensity, its emission characteristic has an emission spectrum unique to mercury, and among the R, G, and B color light wavelength ranges, the R light wavelength range. The light intensity tends to be insufficient. For this reason, there was a problem that illumination light with good color balance in the visible wavelength range could not be obtained.
 また、光源ランプでは、発光管1000を高電圧かつ高温に保って使用するため、大きなバラストや冷却装置が必要となり、プロジェクタのシステムが大型化してしまうという問題がある。また、光源ランプの点灯始動時には、まず、高電圧パルスを管球部内に配置された電極に印加し、電極をある程度温めることによってアーク放電に移行させるため、点灯までに時間がかかるという不具合がある。 Further, since the light source lamp is used while keeping the arc tube 1000 at a high voltage and a high temperature, a large ballast and a cooling device are required, and there is a problem that the projector system becomes large. In addition, when starting the lighting of the light source lamp, first, a high voltage pulse is applied to the electrode arranged in the bulb portion, and the electrode is warmed to some extent to shift to arc discharge. .
 さらに、光源ランプでは、発光管1000の発光に伴なう発熱で発光管1000内の温度が上昇して熱対流が生じ、発光管1000における重力に対して上方側と下方側とに温度差が生じてしまう。このような温度差が発生した場合には、発光管1000の内壁に白化または黒化が生じるため、光源ランプの明るさが低下するとともに、光源ランプの寿命が短くなってしまう。このような白化や黒化の現象を発生させないためには、プロジェクタが正置き姿勢、天吊り姿勢の両方の姿勢でも、発光管1000の上方側と下方側との温度分布が一様となるように冷却風を送風することが必要となり、結果として、プロジェクタの内部に収容する光源ランプの位置が制限されていた。 Further, in the light source lamp, the temperature in the arc tube 1000 rises due to the heat generated by the light emission of the arc tube 1000 and heat convection occurs, and there is a temperature difference between the upper side and the lower side with respect to the gravity in the arc tube 1000. It will occur. When such a temperature difference occurs, whitening or blackening occurs on the inner wall of the arc tube 1000, so that the brightness of the light source lamp is reduced and the life of the light source lamp is shortened. In order to prevent such a phenomenon of whitening or blackening, the temperature distribution on the upper side and the lower side of the arc tube 1000 should be uniform even when the projector is in both the normal position and the ceiling position. As a result, the position of the light source lamp accommodated in the projector is limited.
 これに対して、本発明の実施の形態1に係る光源装置10は、図3の光源ランプの発光管1000に代えて、蛍光体60を発光部として用いるとともに、この蛍光体60の励起光源に固体光源50を用いる構成としたことにより、光源ランプの形状はそのままに、瞬時点灯を可能とするとともに、低消費電力化および長寿命化を実現することができる。 On the other hand, the light source device 10 according to Embodiment 1 of the present invention uses the phosphor 60 as a light emitting unit instead of the arc tube 1000 of the light source lamp of FIG. With the configuration using the solid light source 50, it is possible to instantaneously turn on the light source lamp without changing the shape of the light source lamp, and it is possible to realize low power consumption and long life.
 また、光源装置は光源ランプと略同じ形状であることから、光源ランプを搭載したプロジェクタとの間で筐体やシステムを共用することができる。その結果、光源ランプを搭載したプロジェクタから大きなシステム変更が不要となる。 Also, since the light source device has substantially the same shape as the light source lamp, the housing and system can be shared with a projector equipped with the light source lamp. As a result, a large system change is not necessary from a projector equipped with a light source lamp.
 また、本発明の実施の形態1に係る光源装置は、固体光源50から出射される励起光を透光性ロッド52および集光レンズ54によって蛍光体60に集光させるため、励起光を蛍光体60で効率良く可視波長域の光に変換することができる。これにより、高い光利用効率で、容易に色バランスがよい照明光を得ることができる。 Further, the light source device according to Embodiment 1 of the present invention condenses the excitation light emitted from the solid light source 50 onto the phosphor 60 by the translucent rod 52 and the condensing lens 54. 60 can be efficiently converted into light in the visible wavelength region. Thereby, illumination light with good color balance can be easily obtained with high light use efficiency.
 また、図2で説明したように、励起光源として低消費電力の励起用レーザ光源を用いるとともに、励起光を透光性ロッド52などの導光手段を用いてリフレクタ56の内部に導くことによって励起光源をリフレクタ56の外部に備える構成としたことにより、発光部を冷却するための大型な冷却装置が不要となり、光源装置を小型化することができる。 In addition, as described with reference to FIG. 2, an excitation laser light source with low power consumption is used as an excitation light source, and excitation light is guided by guiding light into the reflector 56 using a light guide means such as a translucent rod 52. By adopting a configuration in which the light source is provided outside the reflector 56, a large cooling device for cooling the light emitting unit is not necessary, and the light source device can be downsized.
 さらに、図3に示す光源ランプと比較して、本発明の実施の形態1に係る光源装置は、プロジェクタ内部に収容する際に、発光管内部の温度差に起因した配置位置の制限がなくなるため、光源装置の配置の自由度を高めることができる。この結果、プロジェクタのさらなる小型化を図ることができる。 Further, as compared with the light source lamp shown in FIG. 3, the light source device according to Embodiment 1 of the present invention eliminates the restriction of the arrangement position due to the temperature difference inside the arc tube when housed in the projector. The degree of freedom of arrangement of the light source device can be increased. As a result, the projector can be further reduced in size.
 [実施の形態2]
 図4は、この発明の実施の形態2に係る光源装置の構成を説明する図である。
[Embodiment 2]
FIG. 4 is a diagram for explaining the configuration of a light source device according to Embodiment 2 of the present invention.
 図4を参照して、本発明の実施の形態2に係る光源装置10aは、図2に示す光源装置10と比較して、複数(たとえば、2個とする)の固体光源50a,50bを備える点でのみ異なる。 Referring to FIG. 4, light source device 10a according to Embodiment 2 of the present invention includes a plurality (for example, two) of solid light sources 50a and 50b as compared with light source device 10 shown in FIG. It differs only in respect.
 固体光源50a,50bは、ともに励起用レーザ光源からなり、出射するレーザ光の波長域が互いに異なっている。固体光源50aから出射された第1の波長域のレーザ光と、固体光源50bから出射された第2の波長域のレーザ光とは、ともに透光性ロッド52の一方の端部に入射されると、透光性ロッド52の内部を伝搬し、透光性ロッド52の他方の端部に設けられた集光レンズ54を通じて蛍光体60に向けて出射される。 Both the solid light sources 50a and 50b are composed of excitation laser light sources, and the wavelength ranges of the emitted laser beams are different from each other. The first wavelength band laser beam emitted from the solid light source 50 a and the second wavelength band laser light emitted from the solid light source 50 b are both incident on one end of the translucent rod 52. Then, the light propagates through the translucent rod 52 and is emitted toward the phosphor 60 through the condensing lens 54 provided at the other end of the translucent rod 52.
 蛍光体60は、第1の波長域の光により励起されてR光、G光およびB光のうちの2つ(たとえば、R光およびG光とする)を発光する第1の蛍光物質と、第2の波長域の光により励起されてR光、G光およびB光のうちの残りの1つ(たとえばB光とする)を発光する第2の蛍光物質とを含む。第1の蛍光物質により発光されたR光およびG光と、第2の蛍光物質により発光されたB光とが混合されることにより、白色光が生成される。 The phosphor 60 is excited by light in the first wavelength band and emits two of R light, G light, and B light (for example, R light and G light), and And a second fluorescent material that is excited by light in the second wavelength band and emits the remaining one of R light, G light, and B light (for example, B light). White light is generated by mixing R light and G light emitted by the first fluorescent material and B light emitted by the second fluorescent material.
 このように、本発明の実施の形態2に係る光源装置10aは、波長域が異なる複数のレーザ光を蛍光体60の励起光として用いることにより、単一の波長域からなるレーザ光を蛍光体励起光として用いる光源装置10(図2)と比較して、蛍光体60の励起効率(=蛍光体60への励起スペクトルが波長変換されて蛍光スペクトルとして放射される変換効率)を高めることができる。 As described above, the light source device 10a according to the second embodiment of the present invention uses a plurality of laser beams having different wavelength regions as excitation light of the phosphor 60, thereby converting the laser light having a single wavelength region into the phosphor. Compared with the light source device 10 (FIG. 2) used as excitation light, the excitation efficiency of the phosphor 60 (= conversion efficiency in which the excitation spectrum to the phosphor 60 is converted in wavelength and emitted as a fluorescence spectrum) can be increased. .
 これは、蛍光体の励起光(たとえば、紫外光)の波長と、蛍光体の発光光の波長との差が小さいほど、蛍光体励起光率が高くなることに基づくものである。すなわち、図4の例では、固体光源50aに、R光およびG光の波長域に近い第1の波長域を有するレーザ光を出射する励起用レーザ光源を適用し、かつ、固体光源50bに、B光の波長域に近い第2の波長域を有するレーザ光を出射する励起用レーザ光源を適用することにより、蛍光体全体としての励起光率を高めることができる。この結果、光源装置10aの光利用効率を高めることができる。 This is based on the fact that the smaller the difference between the wavelength of the phosphor excitation light (for example, ultraviolet light) and the wavelength of the phosphor emission light, the higher the phosphor excitation light rate. That is, in the example of FIG. 4, an excitation laser light source that emits laser light having a first wavelength range close to the wavelength range of R light and G light is applied to the solid light source 50a, and the solid light source 50b is By applying an excitation laser light source that emits laser light having a second wavelength region close to the wavelength region of B light, the excitation light rate of the entire phosphor can be increased. As a result, the light use efficiency of the light source device 10a can be increased.
 なお、図4の光源装置10aでは、2種類の固体光源50a,50bの出射光を蛍光体の励起光に使用して、R光、G光およびB光を得る構成を例示したが、R光、G光およびB光のそれぞれに対応して3種類の固体光源を設けるとともに、固体光源ごとに、対応する色光に波長が近くなるように出射するレーザ光の波長を設定する構成とすれば、蛍光体励起光率をより一層高めることができる。 In the light source device 10a of FIG. 4, the configuration in which R light, G light, and B light are obtained by using the emitted light of the two types of solid light sources 50a and 50b as the excitation light of the phosphor is exemplified. In addition to providing three types of solid light sources corresponding to each of the G light and the B light, and for each solid light source, the wavelength of the laser light emitted so as to be close to the corresponding color light is set, The phosphor excitation light rate can be further increased.
 (変更例1)
 上述のように、複数の固体光源50a,50bを備える光源装置は、図4に示す光源装置10aに代えて、図5に示す光源装置10bによっても実現することができる。
(Modification 1)
As described above, the light source device including the plurality of solid light sources 50a and 50b can be realized by the light source device 10b shown in FIG. 5 instead of the light source device 10a shown in FIG.
 図5は、この発明の実施の形態2の変更例1に係る光源装置の構成を説明する図である。 FIG. 5 is a diagram for explaining the configuration of the light source device according to the first modification of the second embodiment of the present invention.
 図5を参照して、本変更例1に係る光源装置10bは、図4に示す光源装置10aと比較して、複数(たとえば、2個とする)の固体光源50a,50bが、リフレクタ56の開口部側に設けられる点で異なっている。 Referring to FIG. 5, the light source device 10 b according to the first modification includes a plurality of (for example, two) solid light sources 50 a and 50 b of the reflector 56 as compared with the light source device 10 a illustrated in FIG. 4. It differs in that it is provided on the opening side.
 固体光源50aおよび50bは、リフレクタ56の光軸AXに対して対称となる位置に設けられている。固体光源50aは、光軸AXに対して垂直な方向に、第1の波長域を持つレーザ光を出射する。固体光源50bは、光軸AXに対して垂直な方向に、第2の波長域を持つレーザ光を出射する。 The solid light sources 50 a and 50 b are provided at positions that are symmetric with respect to the optical axis AX of the reflector 56. The solid light source 50a emits laser light having a first wavelength region in a direction perpendicular to the optical axis AX. The solid light source 50b emits laser light having a second wavelength region in a direction perpendicular to the optical axis AX.
 リフレクタ56の開口部には、反射ミラー50cが設けられている。反射ミラー50cは、蛍光体60の発光光が直接的に通過することのない光軸AX上に配置されている。 A reflection mirror 50 c is provided at the opening of the reflector 56. The reflection mirror 50c is disposed on the optical axis AX in which the light emitted from the phosphor 60 does not pass directly.
 固体光源50aから出射されたレーザ光は、反射ミラー50cによって光路が略90°折り曲げられ、蛍光体設置部62に入射する。同様に、固体光源50bから出射されたレーザ光は、反射ミラー50cによって光路が略90°折り曲げられ、蛍光体設置部62に入射する。 The laser light emitted from the solid light source 50 a is bent by approximately 90 ° by the reflection mirror 50 c and is incident on the phosphor setting portion 62. Similarly, the laser light emitted from the solid-state light source 50b is incident on the phosphor installation portion 62 after the optical path is bent by approximately 90 ° by the reflection mirror 50c.
 蛍光体設置部62は、リフレクタ56の頂点部側にダイクロイックミラー61bを有する。ダイクロイックミラー61bは、蛍光体設置部62に入射されるレーザ光(蛍光体励起光)を透過する一方で、リフレクタ56の開口部に向かって放射される蛍光体60の発光光を反射させることによりリフレクタ56の頂点部側に導くものである。 The phosphor installation portion 62 has a dichroic mirror 61 b on the apex portion side of the reflector 56. The dichroic mirror 61 b transmits the laser light (phosphor excitation light) incident on the phosphor setting portion 62, while reflecting the emitted light of the phosphor 60 radiated toward the opening of the reflector 56. It leads to the apex side of the reflector 56.
 このような構成としたことにより、本変更例1に係る光源装置10bでは、リフレクタ56の開口部の外縁に複数個の固体光源を設置することができる。その結果、より高出力の励起光を蛍光体60に照射することにより、蛍光体60の発光量を増やすことができる。 With this configuration, in the light source device 10b according to the first modification, a plurality of solid light sources can be installed on the outer edge of the opening of the reflector 56. As a result, the amount of light emitted from the phosphor 60 can be increased by irradiating the phosphor 60 with higher output excitation light.
 なお、本変更例1に係る光源装置10bにおいて、複数の固体光源50a,50bは、図4で述べたような、波長域が互いに異なる複数の励起用レーザ光源で構成してもよく、波長域が同じである複数の励起用レーザ光源で構成してもよい。 In the light source device 10b according to the first modification, the plurality of solid light sources 50a and 50b may be configured by a plurality of excitation laser light sources having different wavelength ranges as described in FIG. A plurality of excitation laser light sources having the same may be used.
 また、反射ミラー50cは、図5のようにリフレクタ56の外部に設ける構成に限らず、リフレクタ56の内部に設ける構成としてもよい。また、反射ミラー50cは、各固体光源からの光を90°以外の反射角で反射させて蛍光体60に導くことも可能である。 Further, the reflection mirror 50 c is not limited to the configuration provided outside the reflector 56 as shown in FIG. 5, and may be configured to be provided inside the reflector 56. The reflection mirror 50c can also guide the light from each solid light source to the phosphor 60 by reflecting it at a reflection angle other than 90 °.
 (変更例2)
 図6は、この発明の実施の形態2の変更例2に係る光源装置の構成を説明する図である。
(Modification 2)
FIG. 6 is a diagram illustrating the configuration of a light source device according to Modification 2 of Embodiment 2 of the present invention.
 図6を参照して、本変更例2に係る光源装置10cは、図5に示す光源装置10bにおける反射ミラー50cに代えて、反射ミラー50dおよび50eを備える点でのみ異なる。 Referring to FIG. 6, the light source device 10c according to the second modification is different only in that it includes reflection mirrors 50d and 50e instead of the reflection mirror 50c in the light source device 10b shown in FIG.
 反射ミラー50d,50eは、リフレクタ56の開口部の外縁に設置される。固体光源50aから出射されたレーザ光は、反射ミラー50dによって光路が略90°折り曲げられ、リフレクタ56の反射面に入射する。リフレクタ56の反射面に入射したレーザ光は、さらに光路が折り曲げられて、蛍光体設置部62へ入射する。同様に、固体光源50bから出射されたレーザ光は、反射ミラー50eによって光路が略90°折り曲げられ、リフレクタ56の反射面に入射する。リフレクタ56の反射面に入射したレーザ光は、さらに光路が折り曲げられて、蛍光体設置部62へ入射する。 The reflection mirrors 50 d and 50 e are installed on the outer edge of the opening of the reflector 56. The laser light emitted from the solid light source 50 a is incident on the reflecting surface of the reflector 56 after the optical path is bent by approximately 90 ° by the reflecting mirror 50 d. The laser light incident on the reflecting surface of the reflector 56 is further bent in the optical path and is incident on the phosphor installation portion 62. Similarly, the laser light emitted from the solid-state light source 50b has its optical path bent by approximately 90 ° by the reflecting mirror 50e and is incident on the reflecting surface of the reflector 56. The laser light incident on the reflecting surface of the reflector 56 is further bent in the optical path and is incident on the phosphor installation portion 62.
 蛍光体設置部62は、リフレクタ56の頂点部側にダイクロイックミラー61cを有する。ダイクロイックミラー61cは、蛍光体設置部62に入射されるレーザ光(蛍光体励起光)を透過する一方で、リフレクタ56の開口部に向かって放射される蛍光体60の発光光を反射させることによりリフレクタ56の頂点部側に導く。 The phosphor installation part 62 has a dichroic mirror 61 c on the apex side of the reflector 56. The dichroic mirror 61 c transmits laser light (phosphor excitation light) incident on the phosphor setting portion 62, while reflecting the emitted light of the phosphor 60 radiated toward the opening of the reflector 56. Guide to the apex side of the reflector 56.
 なお、図5に示す本変更例1に係る光源装置10bと、図6に示す本変更例2に係る光源装置10cとを対比して、光源装置10bは、リフレクタ56の光軸AX付近に光学部品が配置されることから、リフレクタ56が回転放物面とほぼ同じ形状の反射面を有していることが望ましい。一方、光源装置10cは、リフレクタ56の開口部の外縁付近に光学部品が配置されることから、リフレクタ56が回転楕円面とほぼ同じ形状の反射面を有していることが望ましい。 In contrast to the light source device 10b according to the first modification shown in FIG. 5 and the light source device 10c according to the second modification shown in FIG. 6, the light source device 10b is optically located near the optical axis AX of the reflector 56. Since the components are arranged, it is desirable that the reflector 56 has a reflecting surface having substantially the same shape as the paraboloid of revolution. On the other hand, in the light source device 10c, since the optical component is disposed in the vicinity of the outer edge of the opening of the reflector 56, it is desirable that the reflector 56 has a reflecting surface having substantially the same shape as the spheroid.
 [実施の形態3]
 図7は、この発明の実施の形態3に係る光源装置の構成を説明する図である。
[Embodiment 3]
FIG. 7 is a diagram for explaining the configuration of a light source device according to Embodiment 3 of the present invention.
 図7を参照して、本発明の実施の形態3に係る光源装置10dは、図2に示す光源装置10と比較して、固体光源50が、リフレクタ56の光軸AXを中心に回転可能に配置されている点で異なる。 Referring to FIG. 7, the light source device 10 d according to the third embodiment of the present invention allows the solid light source 50 to rotate around the optical axis AX of the reflector 56 as compared with the light source device 10 illustrated in FIG. 2. It differs in that it is arranged.
 具体的には、固体光源50は、その光軸がリフレクタ56の光軸AXに略平行となるように配設されている。固体光源50の光軸は、リフレクタ56の光軸AXから所定の距離だけ隔てられている。固体光源50は、リフレクタ56の光軸AXと一致するように設けられた回転軸51を有している。この回転軸51は図示しないモータに接続されており、当該モータが回転軸に対して回転駆動を行なうと、固体光源50は回転軸51を中心にして回転する。そして、固体光源50が回転軸51を中心にして回転することにより、固体光源50の光軸は、リフレクタ56の光軸AXのまわりを回転する。 Specifically, the solid light source 50 is arranged so that its optical axis is substantially parallel to the optical axis AX of the reflector 56. The optical axis of the solid light source 50 is separated from the optical axis AX of the reflector 56 by a predetermined distance. The solid light source 50 has a rotation shaft 51 provided so as to coincide with the optical axis AX of the reflector 56. The rotating shaft 51 is connected to a motor (not shown), and when the motor rotates with respect to the rotating shaft, the solid light source 50 rotates about the rotating shaft 51. Then, when the solid light source 50 rotates around the rotation axis 51, the optical axis of the solid light source 50 rotates around the optical axis AX of the reflector 56.
 このように固体光源50を回転させることにより、固体光源50から出射され、透光性ロッド52および集光レンズ54を通じて蛍光体60に入射する光の照射位置は、リフレクタ56の光軸AXを中心とする所定半径の円周上を時間的に移動することとなる。これにより、蛍光体60の特定の位置に集中的に光が入射されることによって、当該特定の位置が過熱されて蛍光体60の発光性能が劣化するのを抑制することができる。この結果、光源装置10dを長寿命化することができる。 By rotating the solid light source 50 in this way, the irradiation position of the light emitted from the solid light source 50 and entering the phosphor 60 through the translucent rod 52 and the condenser lens 54 is centered on the optical axis AX of the reflector 56. It moves in time on the circumference of the predetermined radius. Thereby, it can suppress that the said specific position is overheated and light emission performance of the fluorescent substance 60 deteriorates because light injects into the specific position of the fluorescent substance 60 intensively. As a result, the life of the light source device 10d can be extended.
 (変更例1)
 図8は、この発明の実施の形態3の変更例1に係る光源装置の構成を説明する図である。
(Modification 1)
FIG. 8 is a diagram illustrating the configuration of the light source device according to Modification 1 of Embodiment 3 of the present invention.
 図8を参照して、本変更例1に係る光源装置10eは、図7に示す光源装置10dと比較して、固体光源50を回転させる回転機構に代えて、偏心レンズ53を回転させる回転機構を備える点で異なる。 Referring to FIG. 8, the light source device 10 e according to the first modification example is different from the light source device 10 d illustrated in FIG. 7 in that a rotation mechanism that rotates the eccentric lens 53 instead of the rotation mechanism that rotates the solid light source 50. It differs in that it is equipped with.
 偏心レンズ53は、透光性ロッド52と集光レンズ54との間に設けられる。偏心レンズ53は、透光性ロッド52からの入射光を所定角度曲げた方向に出射する光学素子である。偏心レンズ53の中心には、リフレクタ56の光軸AXに略平行な回転軸57が固定されている。この回転軸57は、偏心レンズ53の偏心位置に光が入射されるように、リフレクタ56の光軸AXから所定の距離だけ隔てられている。 The eccentric lens 53 is provided between the translucent rod 52 and the condenser lens 54. The decentering lens 53 is an optical element that emits incident light from the translucent rod 52 in a direction bent by a predetermined angle. A rotation shaft 57 that is substantially parallel to the optical axis AX of the reflector 56 is fixed at the center of the eccentric lens 53. The rotation shaft 57 is separated from the optical axis AX of the reflector 56 by a predetermined distance so that light is incident on the eccentric position of the eccentric lens 53.
 回転軸57は図示しないモータに接続されており、当該モータが回転軸に対して回転駆動を行なうと、偏心レンズ53は、回転軸57を中心にして回転する。そして、偏心レンズ53が回転軸を中心にして回転することにより、偏心レンズ53からの出射光は、リフレクタ56の光軸AXのまわりを回転する。この偏心レンズ53の出射光は、集光レンズ54を通じて蛍光体60に入射される。 The rotating shaft 57 is connected to a motor (not shown), and when the motor rotates with respect to the rotating shaft, the eccentric lens 53 rotates around the rotating shaft 57. Then, when the eccentric lens 53 rotates around the rotation axis, the emitted light from the eccentric lens 53 rotates around the optical axis AX of the reflector 56. Light emitted from the eccentric lens 53 is incident on the phosphor 60 through the condenser lens 54.
 このように偏心レンズ53を回転させることにより、固体光源50から出射され、透光性ロッド52、偏心レンズ53および集光レンズ54を通じて蛍光体60に入射する光の照射位置は、リフレクタ56の光軸AXを中心とする所定半径の円周上を時間的に移動する。これにより、蛍光体60の特定の位置に集中的に光が入射されることによって蛍光体60が過熱するのを抑制することができるため、光源装置10eを長寿命化することができる。 By rotating the eccentric lens 53 in this way, the irradiation position of the light emitted from the solid light source 50 and incident on the phosphor 60 through the translucent rod 52, the eccentric lens 53 and the condenser lens 54 is the light of the reflector 56. It moves on the circumference of a predetermined radius centered on the axis AX. Thereby, since it can suppress that the fluorescent substance 60 overheats when light concentrates on the specific position of the fluorescent substance 60, the lifetime of the light source device 10e can be extended.
 (変更例2)
 図9は、この発明の実施の形態3の変更例2に係る光源装置の構成を説明する図である。
(Modification 2)
FIG. 9 is a diagram illustrating the configuration of a light source device according to Modification 2 of Embodiment 3 of the present invention.
 図9を参照して、本変更例2に係る光源装置10fは、図7に示す光源装置10dと比較して、固体光源50を回転させる回転機構に代えて、蛍光体60を回転させる回転機構を備える点で異なる。 Referring to FIG. 9, the light source device 10 f according to the second modification example is different from the light source device 10 d illustrated in FIG. 7 in that a rotation mechanism that rotates the phosphor 60 instead of the rotation mechanism that rotates the solid light source 50. It differs in that it is equipped with.
 具体的には、蛍光体60を設置する蛍光体設置部62の中心には、リフレクタ56の光軸AXに略平行な回転軸63が固定されている。回転軸63は、リフレクタ56の光軸AXから所定の距離だけ隔てられている。回転軸63は図示しないモータに接続されており、当該モータが回転軸63に対して回転駆動を行なうと、蛍光体設置部62および蛍光体60は、回転軸63を中心にして回転する。 Specifically, a rotation shaft 63 that is substantially parallel to the optical axis AX of the reflector 56 is fixed at the center of the phosphor installation portion 62 in which the phosphor 60 is installed. The rotating shaft 63 is separated from the optical axis AX of the reflector 56 by a predetermined distance. The rotating shaft 63 is connected to a motor (not shown). When the motor rotates with respect to the rotating shaft 63, the phosphor setting portion 62 and the phosphor 60 rotate around the rotating shaft 63.
 このように蛍光体60を回転させることにより、固体光源50から出射され、透光性ロッド52および集光レンズ54を通じて蛍光体60に入射する光の照射位置は、リフレクタ56の光軸AXを中心とする所定半径の円周上を時間的に移動する。これにより、蛍光体60の特定の位置に集中的に光が入射されることによって蛍光体60が過熱するのを抑制できるため、光源装置10fを長寿命化することができる。 By rotating the phosphor 60 in this manner, the irradiation position of the light emitted from the solid light source 50 and incident on the phosphor 60 through the translucent rod 52 and the condenser lens 54 is centered on the optical axis AX of the reflector 56. It moves in time on the circumference of a predetermined radius. Thereby, since it can suppress that the fluorescent substance 60 overheats when light concentrates on the specific position of the fluorescent substance 60, the lifetime of the light source device 10f can be extended.
 [実施の形態4]
 図10は、この発明の実施の形態4に係る光源装置の構成を説明する図である。
[Embodiment 4]
FIG. 10 is a diagram illustrating the configuration of the light source device according to Embodiment 4 of the present invention.
 図10を参照して、本発明の実施の形態4に係る光源装置10gは、図9に示す光源装置10fと比較して、固体光源50および蛍光体60に代えて、固体光源50gおよび蛍光体60gを備える点で異なる。 Referring to FIG. 10, light source device 10g according to Embodiment 4 of the present invention is different from light source device 10f shown in FIG. 9 in that solid light source 50g and phosphor 60 are used instead of solid light source 50 and phosphor 60. It differs by the point provided with 60g.
 固体光源50gは、3つの波長のレーザ光を出射する3波長レーザ光源からなる。具体的には、固体光源50gは、たとえば、単一のパッケージに単波長のレーザ光源を3個搭載して構成される。パッケージに搭載される3つのレーザ光源は所定の距離だけ離れて配置されており、固体光源50gは、3つの異なる波長の平行光を出射する。固体光源50gから出射された3つのレーザ光は、同一の光路を伝搬して蛍光体60gに入射する。このとき、集光レンズ54は、3つのレーザ光を互いに分離させた状態で蛍光体60gに入射させる。 The solid light source 50g is a three-wavelength laser light source that emits laser light with three wavelengths. Specifically, the solid light source 50g is configured, for example, by mounting three single-wavelength laser light sources in a single package. The three laser light sources mounted on the package are spaced apart by a predetermined distance, and the solid light source 50g emits parallel light having three different wavelengths. The three laser beams emitted from the solid light source 50g propagate through the same optical path and enter the phosphor 60g. At this time, the condenser lens 54 causes the three laser beams to be incident on the phosphor 60g while being separated from each other.
 光源装置10gは、図9に示す光源装置10fと同様に、蛍光体60gを回転させる回転機構を備える。具体的には、蛍光体60gを設置する蛍光体設置部62の中心には、リフレクタ56の光軸AXに略平行な回転軸63が固定されている。回転軸63は図示しないモータに接続されており、当該モータが回転軸63に対して回転駆動を行なうと、蛍光体設置部62および蛍光体60gは、回転軸63を中心にして回転する。 The light source device 10g includes a rotation mechanism that rotates the phosphor 60g, similarly to the light source device 10f shown in FIG. Specifically, a rotation shaft 63 substantially parallel to the optical axis AX of the reflector 56 is fixed at the center of the phosphor installation portion 62 where the phosphor 60g is installed. The rotating shaft 63 is connected to a motor (not shown), and when the motor rotates with respect to the rotating shaft 63, the phosphor setting portion 62 and the phosphor 60g rotate around the rotating shaft 63.
 蛍光体60gを回転させることにより、固体光源50gである3波長レーザ光源から出射され、透光性ロッド52および集光レンズ54を通じて蛍光体60gに入射する3つのレーザ光の照射位置は、それぞれ、リフレクタ56の光軸AXを中心として半径が互いに異なる3つの同心円の円周上を時間的に移動する。これにより、3つのレーザ光がそれぞれ蛍光体60gの特定の位置に集中的に入射されるのを抑制できる。 By rotating the phosphor 60g, the irradiation positions of the three laser beams emitted from the three-wavelength laser light source, which is the solid light source 50g, and incident on the phosphor 60g through the translucent rod 52 and the condenser lens 54 are respectively It moves temporally on the circumference of three concentric circles having different radii around the optical axis AX of the reflector 56. Thereby, it can suppress that three laser beams are intensively incident on the specific position of the fluorescent substance 60g, respectively.
 ここで、本発明の実施の形態4に係る蛍光体60gは、3つの波長が異なるレーザ光を励起光として吸収して、R光、G光およびB光をそれぞれ発光する3つの蛍光体から構成されている。図11は、図10のA方向(光軸方向)から見た蛍光体60gの構成を説明する図である。 Here, the phosphor 60g according to the fourth embodiment of the present invention includes three phosphors that absorb laser light having three different wavelengths as excitation light and emit R light, G light, and B light, respectively. Has been. FIG. 11 is a diagram illustrating the configuration of the phosphor 60g viewed from the A direction (optical axis direction) in FIG.
 図11を参照して、蛍光体60gは、R光を発光するR光蛍光体600Rと、G光を発光するG光蛍光体600Gと、B光を発光するB光蛍光体600Bとを含む。 Referring to FIG. 11, phosphor 60g includes an R light phosphor 600R that emits R light, a G light phosphor 600G that emits G light, and a B light phosphor 600B that emits B light.
 R光蛍光体600R、G光蛍光体600GおよびB光蛍光体600Bは、蛍光体設置部62に設けられた反射ミラー61の主面上に、図11に示す配列で並べられている。具体的には、回転軸63側からB光蛍光体600B、R光蛍光体600R、G光蛍光体600Gの順に径方向に隣り合わせとなるように、同心円状に配置される。 The R light phosphor 600R, the G light phosphor 600G, and the B light phosphor 600B are arranged in the arrangement shown in FIG. 11 on the main surface of the reflection mirror 61 provided in the phosphor installation portion 62. Specifically, the B light phosphor 600B, the R light phosphor 600R, and the G light phosphor 600G are arranged concentrically so as to be adjacent to each other in the radial direction in this order from the rotating shaft 63 side.
 上記の構成において、蛍光体60gに入射する3つの異なる波長のレーザ光のうち、第1のレーザ光はB光蛍光体600Bに入射し、第2のレーザ光はR光蛍光体600Rに入射し、第3のレーザ光はG光蛍光体600Gに入射する。 In the above configuration, of the three different wavelength laser beams incident on the phosphor 60g, the first laser beam is incident on the B phosphor 600B, and the second laser beam is incident on the R phosphor 600R. The third laser light is incident on the G phosphor 600G.
 B光蛍光体600Bは、第1のレーザ光により励起されてB光を発光する。R光蛍光体600Rは、第2のレーザ光により励起されてR光を発光する。G光蛍光体600Gは、第3のレーザ光により励起されてG光を発光する。蛍光体600B,600R,600Gからそれぞれ放射されるB光、R光、G光は、直接的に、もしくは反射ミラー61で反射されることにより間接的に、リフレクタ56の反射面に入射される。リフレクタ56の反射面に入射した光は、ほぼ平行光となって、所定の方向へ出射される。このとき、R光、B光およびG光が混色されるため、白色光を得ることができる。 The B phosphor 600B emits B light when excited by the first laser beam. The R light phosphor 600R is excited by the second laser light to emit R light. The G light phosphor 600G is excited by the third laser light to emit G light. The B light, R light, and G light emitted from the phosphors 600B, 600R, and 600G are incident on the reflecting surface of the reflector 56 either directly or indirectly by being reflected by the reflecting mirror 61. The light incident on the reflecting surface of the reflector 56 becomes substantially parallel light and is emitted in a predetermined direction. At this time, since the R light, B light, and G light are mixed, white light can be obtained.
 ここで、3波長レーザ光源から出射される3つのレーザ光において、第1のレーザ光は、B光の波長域に近い波長のレーザ光であり、第2のレーザ光は、R光の波長域に近い波長のレーザ光であり、第3のレーザ光は、G光の波長域に近い波長のレーザ光である。このように、蛍光体ごとに、蛍光体が発光する光の波長とそのための励起光の波長との差が小さくなるように、対応するレーザ光の波長を設定することにより、各色蛍光体の励起効率を高めることができる。この結果、光源装置10gの光利用効率を向上できる。 Here, in the three laser beams emitted from the three-wavelength laser light source, the first laser beam is a laser beam having a wavelength close to the wavelength range of the B light, and the second laser beam is a wavelength range of the R light. The third laser beam is a laser beam having a wavelength close to the wavelength range of the G light. Thus, for each phosphor, the wavelength of the corresponding laser beam is set so that the difference between the wavelength of the light emitted from the phosphor and the wavelength of the excitation light for that becomes small, thereby exciting each color phosphor. Efficiency can be increased. As a result, the light use efficiency of the light source device 10g can be improved.
 また、図11に示す蛍光体60gにおいて、R光蛍光体600R、G光蛍光体600G、B光蛍光体600Bの形状および配列は、各色蛍光体が発光する光の強さ(蛍光発光量)に応じて設定される。これにより、以下に述べるように、色バランスの良い照明光を得るとともに、各色蛍光体の温度上昇による発光性能の劣化を抑制することが可能となる。 Further, in the phosphor 60g shown in FIG. 11, the shape and arrangement of the R light phosphor 600R, the G light phosphor 600G, and the B light phosphor 600B are determined by the intensity of light emitted by each color phosphor (fluorescence emission amount). Set accordingly. As a result, as described below, it is possible to obtain illumination light with a good color balance and to suppress the deterioration of the light emission performance due to the temperature rise of each color phosphor.
 光源装置10gは、照明光として、蛍光体600R,600G,600Bがそれぞれ発光するR光、G光、B光を混色して生成した白色光を出射する。プロジェクタ(図1)から投写される映像の色バランスは、光源装置10gの照明光の色バランスに依存する。 The light source device 10g emits white light generated by mixing R light, G light, and B light emitted from the phosphors 600R, 600G, and 600B as illumination light. The color balance of the image projected from the projector (FIG. 1) depends on the color balance of the illumination light of the light source device 10g.
 ここで、光源装置10gの照明光の色バランスは、R、B、Gの蛍光発光量の比率で決まる。なお、蛍光発光量は、各色蛍光体の励起効率などに応じて変化する。たとえば、白色光の照明光を得るためにR光、G光、B光を混合する比率を3:6:1と想定した場合、R光蛍光体600R、G光蛍光体600G、B光蛍光体600Bの蛍光発光量の比率を3:6:1に調整することによって、色バランスのよい照明光を照射することができる。 Here, the color balance of the illumination light of the light source device 10g is determined by the ratio of the R, B, and G fluorescence emission amounts. Note that the amount of fluorescent light emission varies according to the excitation efficiency of each color phosphor. For example, assuming that the ratio of mixing R light, G light, and B light to obtain white illumination light is 3: 6: 1, the R light phosphor 600R, the G light phosphor 600G, and the B light phosphor By adjusting the ratio of 600B fluorescence emission to 3: 6: 1, illumination light with good color balance can be irradiated.
 一方、蛍光体の発光光量は、蛍光体が受ける励起光が強くなるに従って、すなわち、レーザ光源の出力光量が大きくなるに従って大きくなる。そのため、上述した比率(3:6:1)を実現するためには、G光励起用のレーザ光源の出力光量を、R光およびB光励起用のレーザ光源の出力光量よりも大きくする必要がある。そのため、蛍光体600R,600G,600Bの間では発熱量に不均一が生じ、上述した場合ではG光蛍光体600Gの発熱量が最大となる。したがって、G光蛍光体600Gは、R光蛍光体600RおよびB光蛍光体600Bと比べて、性能が劣化しやすくなる。 On the other hand, the amount of light emitted from the phosphor increases as the excitation light received by the phosphor increases, that is, as the output light amount of the laser light source increases. Therefore, in order to realize the ratio (3: 6: 1) described above, it is necessary to make the output light amount of the laser light source for G light excitation larger than the output light amount of the laser light source for R light and B light excitation. Therefore, non-uniform heat generation occurs between the phosphors 600R, 600G, and 600B. In the above-described case, the heat generation amount of the G light phosphor 600G is maximized. Therefore, the performance of the G light phosphor 600G is likely to deteriorate compared to the R light phosphor 600R and the B light phosphor 600B.
 このような不具合を解消するため、蛍光体60gでは、発熱量が最も大きいG光蛍光体600Gを外周側に配置するとともに、R光蛍光体600RおよびB光蛍光体600Bを内周側に配置している。これにより、蛍光体60gを所定の回転速度で回転させたとき、G光励起用のレーザ光の照射位置の単位時間あたりの移動量は、R光励起用のレーザ光およびB光励起用のレーザ光の単位時間あたりの移動量よりも大きくなる。したがって、各色蛍光体の発熱量を単位面積あたりの発熱量に換算したときに、蛍光体600R,600B,600Gの間で単位面積あたりの発熱量のばらつきをなくすことができる。この結果、各色蛍光体の温度上昇を抑えながら、色バランスの良い照明光を得ることができる。 In order to eliminate such problems, in the phosphor 60g, the G light phosphor 600G having the largest calorific value is disposed on the outer peripheral side, and the R light phosphor 600R and the B light phosphor 600B are disposed on the inner peripheral side. ing. Thereby, when the phosphor 60g is rotated at a predetermined rotation speed, the amount of movement per unit time of the irradiation position of the laser light for G light excitation is the unit of the laser light for R light excitation and the laser light for B light excitation. It will be larger than the amount of movement per hour. Therefore, when the calorific value of each color phosphor is converted into the calorific value per unit area, the variation in the calorific value per unit area among the phosphors 600R, 600B, and 600G can be eliminated. As a result, it is possible to obtain illumination light with good color balance while suppressing the temperature rise of each color phosphor.
 [実施の形態5]
 図12は、この発明の実施の形態5に係る光源装置を搭載したプロジェクタの構成を説明する図である。
[Embodiment 5]
FIG. 12 is a diagram for explaining the configuration of a projector equipped with a light source device according to Embodiment 5 of the present invention.
 図12を参照して、本発明の実施の形態5に係るプロジェクタは、図1に示すプロジェクタと比較して、複数(たとえば、4個とする)の光源装置10を搭載した多灯式プロジェクタである点で異なる。なお、4個の光源装置10は、いずれも図2で説明した光源装置10と同一の構造を有している。 Referring to FIG. 12, the projector according to the fifth embodiment of the present invention is a multi-lamp projector equipped with a plurality of (for example, four) light source devices 10 as compared with the projector shown in FIG. There are some differences. The four light source devices 10 all have the same structure as the light source device 10 described in FIG.
 図12において、4個の光源装置10は、図中のX方向に2個ずつ対向して配置されている。対向する2個の光源装置10の間には、反射ミラー8が設置されている。反射ミラー8は、各光源装置10から出射される光を、フライアイインテグレータ11へ導く。 In FIG. 12, four light source devices 10 are arranged to face each other in the X direction in the figure. A reflective mirror 8 is installed between the two light source devices 10 facing each other. The reflection mirror 8 guides the light emitted from each light source device 10 to the fly eye integrator 11.
 上述したように、光源装置10は、超高圧水銀ランプなどの光源ランプ(図3)と略同じ形状であるため、図1に示した単灯式のプロジェクタのみならず、図12に示すような多灯式のプロジェクタにおいても、光源ランプを搭載したプロジェクタとの間で、筐体およびシステムを共用することができる。したがって、高輝度のプロジェクタを低コストに構築することができる。 As described above, the light source device 10 has substantially the same shape as a light source lamp (FIG. 3) such as an ultra-high pressure mercury lamp, so that not only the single lamp projector shown in FIG. Even in a multi-lamp type projector, a housing and a system can be shared with a projector equipped with a light source lamp. Therefore, a high-brightness projector can be constructed at low cost.
 また、プロジェクタ内部に収容される光源装置10の位置に制限がないことから、図12に示すような配置以外の配置とすることも可能である。 Further, since the position of the light source device 10 accommodated in the projector is not limited, it is possible to adopt an arrangement other than the arrangement shown in FIG.
 [実施の形態6]
 図13は、この発明の実施の形態6に係る光源装置の構成を説明する図である。
[Embodiment 6]
FIG. 13 is a diagram for explaining the configuration of a light source device according to Embodiment 6 of the present invention.
 図13を参照して、本発明の実施の形態6に係る光源装置10hは、図9に示す光源装置10fと比較して、蛍光体60に代えて、蛍光体60hを備える点でのみ異なる。 Referring to FIG. 13, light source device 10 h according to Embodiment 6 of the present invention differs from light source device 10 f shown in FIG. 9 only in that phosphor 60 h is provided instead of phosphor 60.
 光源装置10hは、図9に示す光源装置10fと同様に、蛍光体60hを回転させる回転機構を備える。具体的には、蛍光体60hを設置する蛍光体設置部62の中心には、リフレクタ56の光軸AXに平行な回転軸63が固定されている。回転軸63は、リフレクタ56の光軸AXから所定の距離だけ隔てられている。回転軸63は図示しないモータに接続されており、当該モータが回転軸63に対して回転駆動を行なうと、蛍光体設置部62および蛍光体60hは、回転軸63を中心にして回転する。 The light source device 10h includes a rotation mechanism that rotates the phosphor 60h, similarly to the light source device 10f shown in FIG. Specifically, a rotation shaft 63 parallel to the optical axis AX of the reflector 56 is fixed at the center of the phosphor installation portion 62 where the phosphor 60h is installed. The rotating shaft 63 is separated from the optical axis AX of the reflector 56 by a predetermined distance. The rotating shaft 63 is connected to a motor (not shown). When the motor rotates with respect to the rotating shaft 63, the phosphor setting portion 62 and the phosphor 60 h rotate around the rotating shaft 63.
 蛍光体60hを回転させることにより、固体光源50である励起用レーザ光源から出射され、透光性ロッド52および集光レンズ54を通じて蛍光体60hに入射するレーザ光の照射位置は、それぞれ、リフレクタ56の光軸AXを中心とする所定の半径の円周上を時間的に移動する。 By rotating the phosphor 60h, the irradiation position of the laser light emitted from the excitation laser light source that is the solid light source 50 and incident on the phosphor 60h through the translucent rod 52 and the condensing lens 54 is respectively reflected by the reflector 56. And move around the circumference of a predetermined radius centered on the optical axis AX.
 本発明の実施の形態6に係る蛍光体60hは、レーザ光を励起光として吸収して、R光、G光およびB光を時分割に発光する3つの蛍光体から構成されている。 The phosphor 60h according to the sixth embodiment of the present invention is composed of three phosphors that absorb laser light as excitation light and emit R light, G light, and B light in a time-sharing manner.
 図14は、光軸方向(図13のA方向)から見た蛍光体60hの構成を説明する図である。 FIG. 14 is a diagram illustrating the configuration of the phosphor 60h viewed from the optical axis direction (A direction in FIG. 13).
 図14を参照して、蛍光体60hは、R光蛍光体620Rと、G光蛍光体620Gと、B光蛍光体620Bとを含む。 Referring to FIG. 14, phosphor 60h includes an R light phosphor 620R, a G light phosphor 620G, and a B light phosphor 620B.
 R光蛍光体620R、G光蛍光体620GおよびB光蛍光体620Bは、蛍光体設置部62の反射ミラー61の主面上に、図14に示す配列で並べられる。具体的には、扇形形状のR光蛍光体620R、G光蛍光体620GおよびB光蛍光体620Bが回転軸63を中心とする円周方向に並べて配置される。 The R light phosphor 620R, the G light phosphor 620G, and the B light phosphor 620B are arranged in the arrangement shown in FIG. 14 on the main surface of the reflection mirror 61 of the phosphor mounting portion 62. Specifically, the fan-shaped R light phosphor 620R, the G light phosphor 620G, and the B light phosphor 620B are arranged side by side in the circumferential direction around the rotation axis 63.
 上記の構成において、蛍光体60hが回転軸63を中心にして回転することにより、蛍光体60hに入射するレーザ光の照射位置は、R光蛍光体620R、G光蛍光体620G、B光蛍光体620Bの順に周期的に変化する。この結果、蛍光体60hは、R光、G光、B光をその順に周期的に発光・放射する。蛍光体60hから周期的に放射されるR光、G光、B光は、直接的に、もしくは反射ミラー61により反射されて間接的に、リフレクタ56の反射面に入射される。リフレクタ56の反射面に入射した光は、ほぼ平行光となって、所定の方向へ出射される。このとき、リフレクタ56の開口部からは、R光、G光、B光がその順に周期的に出射される。 In the above configuration, when the phosphor 60h rotates around the rotation axis 63, the irradiation position of the laser light incident on the phosphor 60h is the R light phosphor 620R, the G light phosphor 620G, and the B light phosphor. It changes periodically in the order of 620B. As a result, the phosphor 60h periodically emits and emits R light, G light, and B light in that order. R light, G light, and B light periodically emitted from the phosphor 60 h are directly or indirectly reflected by the reflection mirror 61 and incident on the reflection surface of the reflector 56. The light incident on the reflecting surface of the reflector 56 becomes substantially parallel light and is emitted in a predetermined direction. At this time, R light, G light, and B light are periodically emitted in this order from the opening of the reflector 56.
 以上のように、本発明の実施の形態6によれば、蛍光体60hを回転軸63を中心として回転可能とし、かつ、蛍光体60hの回転方向に、R光蛍光体620R、G光蛍光体620GおよびB光蛍光体620Bを順に配列することにより、光源ランプ(図3)の形状はそのままに、R光、G光、B光をその順に時分割に出射することが可能な光源装置を実現することができる。したがって、本発明の実施の形態6に係る光源装置を利用することにより、時分割方式のプロジェクタを簡易かつ小型に構築することができる。また、このようなプロジェクタにおいても、光源装置は光源ランプと略同じ形状であることから、光源ランプを搭載したプロジェクタとの間で筐体やシステムを共用することができるため、当該プロジェクタからの大幅なシステム変更が不要となる。 As described above, according to the sixth embodiment of the present invention, the phosphor 60h can be rotated about the rotation axis 63, and the R phosphor 620R and the G phosphor are rotated in the rotation direction of the phosphor 60h. By arranging 620G and B light phosphors 620B in order, a light source device capable of emitting R light, G light, and B light in that order in a time-division manner without changing the shape of the light source lamp (FIG. 3) is realized. can do. Therefore, by using the light source device according to Embodiment 6 of the present invention, a time-division projector can be easily and compactly constructed. Also in such a projector, since the light source device has substantially the same shape as the light source lamp, the housing and system can be shared with the projector equipped with the light source lamp. System changes are not required.
 なお、蛍光体60hにおいて、3色の色光の出射の順番は、蛍光体60hの構成に応じて任意である。また、出射する色光はR,G,Bの3色に限定されるものではなく、4色以上の色光を周期的に出射することも可能である。たとえば、図14に示す蛍光体60hにおいて、回転方向に黄色波長帯域の光(以下、「Ye光」という)を蛍光発光するYe蛍光体をさらに配列する構成とすることにより、R光、G光、B光、Ye光を順に周期的に出射することができる。あるいは、シアン(Cy)やマゼンタ(Mg)の色光を発光する蛍光体を配列すれば、R,G,B,Cy,Mgの色光を順に出射することができる。 In the phosphor 60h, the order of emitting the three color lights is arbitrary depending on the configuration of the phosphor 60h. Further, the emitted color light is not limited to the three colors R, G, and B, and it is also possible to periodically emit four or more color lights. For example, in the phosphor 60h shown in FIG. 14, a configuration in which Ye phosphors that fluoresce light in the yellow wavelength band (hereinafter referred to as “Ye light”) in the rotation direction is further arranged so that R light and G light are arranged. , B light and Ye light can be emitted periodically in order. Alternatively, if phosphors that emit cyan (Cy) or magenta (Mg) color light are arranged, R, G, B, Cy, and Mg color light can be emitted in order.
 また、蛍光体60hにおいて、R光蛍光体620R、G光蛍光体620G、B光蛍光体620Bの形状は、各色蛍光体が発光する光の強さ(蛍光光束)に応じて設定される。具体的には、白色光の照明光を得るためにR光、G光、B光を混合する比率を3:6:1と想定した場合、R光蛍光体600R、G光蛍光体600G、B光蛍光体600Bが有する角度範囲の比率を3:6:1に調整することによって、白色光の照明光を照射することができる。この結果、色バランスのよい映像を表示することができる。 Further, in the phosphor 60h, the shapes of the R light phosphor 620R, the G light phosphor 620G, and the B light phosphor 620B are set according to the intensity of light (fluorescent light flux) emitted from each color phosphor. Specifically, assuming that the ratio of mixing R light, G light, and B light to obtain white light is 3: 6: 1, the R light phosphor 600R, the G light phosphor 600G, B White light illumination light can be irradiated by adjusting the ratio of the angle range of the photophosphor 600B to 3: 6: 1. As a result, an image with good color balance can be displayed.
 [実施の形態7]
 図15は、本発明の実施の形態7に係る光源装置および当該光源装置を搭載したプロジェクタの光学エンジンの構成を説明する図である。
[Embodiment 7]
FIG. 15 is a diagram illustrating a configuration of a light source device according to Embodiment 7 of the present invention and an optical engine of a projector equipped with the light source device.
 図15を参照して、本発明の実施の形態7に従う光学エンジン2iは、光源装置10iと、透光性ロッド80と、リレー光学系82と、光変調素子84と、投写レンズ3とを備える。光源装置10i、透光性ロッド80と、リレー光学系82とは、光軸AXに沿って順に配置されている。 Referring to FIG. 15, optical engine 2 i according to the seventh embodiment of the present invention includes light source device 10 i, translucent rod 80, relay optical system 82, light modulation element 84, and projection lens 3. . The light source device 10i, the translucent rod 80, and the relay optical system 82 are sequentially arranged along the optical axis AX.
 光源装置10iは、図13に示す光源装置10hと比較して、リフレクタ56に代えて、リフレクタ56iを有する点でのみ異なる。 The light source device 10i differs from the light source device 10h shown in FIG. 13 only in that a reflector 56i is provided instead of the reflector 56.
 リフレクタ56iは、光軸AXを中心として楕円を回転させることにより得られる回転楕円面とほぼ同じ形状の反射面を有する。蛍光体60hは、回転楕円面状をなすリフレクタ56Iの楕円を定義する焦点の一つである第1焦点に設置される。具体的には、蛍光体設置部62を支持部(図示せず)によって支持することにより、蛍光体60hをリフレクタ56iの第1焦点に設置させることができる。 The reflector 56i has a reflecting surface having substantially the same shape as a spheroidal surface obtained by rotating an ellipse around the optical axis AX. The phosphor 60h is installed at a first focal point which is one of the focal points defining the ellipse of the reflector 56I having a spheroid shape. Specifically, the phosphor 60h can be installed at the first focal point of the reflector 56i by supporting the phosphor installation unit 62 with a support unit (not shown).
 蛍光体60hを設置する蛍光体設置部62の中心には、リフレクタ56iの光軸AXに平行な回転軸63が固定されている。回転軸63は、リフレクタ56の光軸AXから所定の距離だけ隔てられている。回転軸63は図示しないモータに接続されており、当該モータが回転軸63に対して回転駆動を行なうと、蛍光体設置部62および蛍光体60hは、回転軸63を中心にして回転する。 A rotation shaft 63 parallel to the optical axis AX of the reflector 56i is fixed at the center of the phosphor installation portion 62 where the phosphor 60h is installed. The rotating shaft 63 is separated from the optical axis AX of the reflector 56 by a predetermined distance. The rotating shaft 63 is connected to a motor (not shown). When the motor rotates with respect to the rotating shaft 63, the phosphor setting portion 62 and the phosphor 60 h rotate around the rotating shaft 63.
 蛍光体60hは、図14で説明したように、レーザ光を励起光として吸収して、R光、G光およびB光を時分割に発光する3つの蛍光体620R,620G,620Bから構成される。具体的には、扇形形状のR光蛍光体620R、G光蛍光体620GおよびB光蛍光体620Bが回転方向に並べて配置される。蛍光体60hが回転軸63を中心にして回転することにより、蛍光体60hに入射するレーザ光の照射位置は、R光蛍光体620R、G光蛍光体620G、B光蛍光体620Bの順に周期的に変化する。これにより、蛍光体60hは、R光、G光、B光をその順に周期的に発光・放射する。 As described with reference to FIG. 14, the phosphor 60h includes three phosphors 620R, 620G, and 620B that absorb laser light as excitation light and emit R light, G light, and B light in a time-sharing manner. . Specifically, the fan-shaped R light phosphor 620R, the G light phosphor 620G, and the B light phosphor 620B are arranged side by side in the rotation direction. As the phosphor 60h rotates about the rotation axis 63, the irradiation position of the laser light incident on the phosphor 60h is periodically in the order of the R light phosphor 620R, the G light phosphor 620G, and the B light phosphor 620B. To change. Thereby, the phosphor 60h periodically emits and emits R light, G light, and B light in that order.
 蛍光体60hから周期的に放射されるR光、G光、B光は、直接的に、もしくは反射ミラー61により反射されて間接的に、リフレクタ56iの反射面に入射される。リフレクタ56iの反射面に入射した光は、反射面により反射されて楕円の第2焦点へ向けて新興する。反射面を回転楕円面とほぼ同じ形状とすることにより、第1焦点上の発光点から反射面へ入射した光を、第2焦点へ向かう方向へ効率良く進行させることができる。 The R light, G light, and B light periodically emitted from the phosphor 60h are directly or indirectly reflected by the reflecting mirror 61 and incident on the reflecting surface of the reflector 56i. The light incident on the reflecting surface of the reflector 56i is reflected by the reflecting surface and emerges toward the second focal point of the ellipse. By making the reflecting surface substantially the same shape as the spheroid, the light incident on the reflecting surface from the light emitting point on the first focus can be efficiently advanced in the direction toward the second focus.
 反射面の第2焦点へ進行した光は、透光性ロッド80の一方の端部に入射されると、透光性ロッド80の内部を伝搬して透光性ロッド80の他方の端部から出射される。 When the light traveling to the second focal point of the reflecting surface is incident on one end of the translucent rod 80, it propagates through the translucent rod 80 and from the other end of the translucent rod 80. Emitted.
 リレー光学系82は、入射側レンズと、リレーレンズと、出射側レンズとを含む。透光性ロッド80から出射された光は、入射側レンズ、リレーレンズおよび出射側レンズを介して、光変調素子84の光入射面に導かれる。なお、リレー光学系82の構成は、これに限定されるものではない。 The relay optical system 82 includes an entrance side lens, a relay lens, and an exit side lens. The light emitted from the translucent rod 80 is guided to the light incident surface of the light modulation element 84 through the incident side lens, the relay lens, and the emission side lens. Note that the configuration of the relay optical system 82 is not limited to this.
 光変調素子84は、DMD(Digital Micromirror Device)(TI社の登録商標)であり、複数の微小ミラーによって構成されている。複数の微小ミラーは可動式であり、各微小ミラーが基本的に1画素に相当する。光変調素子84は、図示しない制御部に制御されて各微小ミラーの角度を変更することによって、リレー光学系82から受けた光を投写レンズ3側に反射するか否かを切替える。このように各微小ミラーを駆動して反射角度を変更することによって出射光の輝度を変調する。 The light modulation element 84 is a DMD (Digital Micromirror Device) (registered trademark of TI), and is configured by a plurality of micromirrors. The plurality of micromirrors are movable, and each micromirror basically corresponds to one pixel. The light modulation element 84 is controlled by a control unit (not shown) to change the angle of each micromirror, thereby switching whether or not the light received from the relay optical system 82 is reflected to the projection lens 3 side. Thus, the brightness | luminance of emitted light is modulated by driving each micromirror and changing a reflection angle.
 光変調素子84は、蛍光体60hが回転することによってR光、G光、B光が順に出射されるタイミングに同期して、各微小ミラーを制御する。すなわち、蛍光体60hによる色光の発生タイミングと同期して、画像に基づく光に付す強弱の変化(模様)を切替える。 The light modulation element 84 controls each micromirror in synchronization with the timing when the R light, the G light, and the B light are emitted in order by the rotation of the phosphor 60h. That is, the change (pattern) of intensity applied to the light based on the image is switched in synchronization with the generation timing of the colored light by the phosphor 60h.
 光変調素子84で反射された色光は、投写レンズ3を経てスクリーン(図示せず)に投写される。スクリーンには、蛍光体60hの回転に応じて、R,G,Bの色光による画像が順に投写される。スクリーン上に順に投写される各色の色光による画像は、人間の目には、それらの色光による画像が重ね合わされて生成されるカラー画像として認識される。 The color light reflected by the light modulation element 84 is projected onto a screen (not shown) through the projection lens 3. On the screen, images of R, G, and B color lights are projected in order according to the rotation of the phosphor 60h. Images of colored light of each color projected on the screen in order are recognized by the human eye as a color image generated by superimposing images of the colored light.
 以上のように、この発明の実施の形態7によれば、光源装置10iは、光源ランプの形状はそのままに、R光、G光、B光をその順に時分割に出射可能となることから、時分割方式のプロジェクタを簡易かつ小型に構築することができる。また、このようなプロジェクタにおいても、光源装置は光源ランプと略同じ形状であることから、光源ランプを搭載したプロジェクタとの間で筐体やシステムを共用することができるため、当該プロジェクタからの大幅なシステム変更が不要となる。 As described above, according to the seventh embodiment of the present invention, the light source device 10i can emit the R light, the G light, and the B light in that order in a time division manner without changing the shape of the light source lamp. A time-division projector can be easily and compactly constructed. Also in such a projector, since the light source device has substantially the same shape as the light source lamp, the housing and system can be shared with the projector equipped with the light source lamp. System changes are not required.
 (変更例)
 図16は、この発明の実施の形態7の変更例に係る光源装置の構成を説明する図である。本変更例に係る光源装置10jは、以下に述べるように、R,G,B光を時分割に出射可能な光源装置である。したがって、上述した光源装置10iに代えて、図15に示すプロジェクタの光学エンジンに適用することができる。
(Example of change)
FIG. 16 is a diagram illustrating the configuration of a light source device according to a modification of the seventh embodiment of the present invention. The light source device 10j according to this modification is a light source device capable of emitting R, G, B light in a time-sharing manner as described below. Therefore, it can be applied to the optical engine of the projector shown in FIG. 15 instead of the light source device 10i described above.
 図16を参照して、本変更例に係る光源装置10jは、図2に示す光源装置10と比較して、3個の固体光源50j,50k,50lを備える点でのみ異なる。 Referring to FIG. 16, the light source device 10j according to this modification is different from the light source device 10 shown in FIG. 2 only in that it includes three solid light sources 50j, 50k, and 50l.
 固体光源50j,50k,50lは、ともに励起用レーザ光源からなり、出射するレーザ光の波長域が互いに異なっている。固体光源50jから出射された第1の波長域のレーザ光と、固体光源50kから出射された第2の波長域のレーザ光と、固体光源50lから出射された第3の波長域のレーザ光とは、ともに透光性ロッド52の一方の端部に入射されると、透光性ロッド52の内部を伝搬し、透光性ロッド52の他方の端部に設けられた集光レンズ54を通じて蛍光体60に向けて出射される。 The solid light sources 50j, 50k, and 50l are all composed of excitation laser light sources, and the wavelength ranges of the emitted laser beams are different from each other. A first wavelength range laser beam emitted from the solid state light source 50j, a second wavelength range laser beam emitted from the solid state light source 50k, and a third wavelength range laser beam emitted from the solid state light source 50l; When both are incident on one end of the translucent rod 52, they propagate through the translucent rod 52 and fluoresce through the condensing lens 54 provided on the other end of the translucent rod 52. It is emitted toward the body 60.
 蛍光体60は、第1の波長域の光により励起されてR光を発光する第1の蛍光物質と、第2の波長域の光により励起されてG光を発光する第2の蛍光物質と、第3の波長域の光により励起されてB光を発光する第3の蛍光物質とを含む。 The phosphor 60 includes a first fluorescent material that emits R light when excited by light in the first wavelength region, and a second fluorescent material that emits G light when excited by light in the second wavelength region. And a third fluorescent material that emits B light when excited by light in the third wavelength region.
 以上のような構成において、3個の固体光源50j,50k,50lは、図示しない点灯制御部により、時分割で点灯させるように制御される。具体的には、点灯制御部は、固体光源50jを第1の期間点灯させた後、固体光源50kを第2の期間点灯させる。そして、固体光源50kを第2の期間点灯させた後、固体光源50lを第3の期間点灯させる。すなわち、点灯制御部は、固体光源50j、固体光源50k、固体光源50lの順に周期的に点灯させる。これにより、蛍光体60には、第1の波長域の光、第2の波長域の光、第3の波長域の光が、その順に周期的に入射される。 In the configuration as described above, the three solid light sources 50j, 50k, and 50l are controlled to be lit in a time division manner by a lighting control unit (not shown). Specifically, the lighting control unit turns on the solid light source 50k for the first period, and then turns on the solid light source 50k for the second period. Then, after the solid light source 50k is turned on for the second period, the solid light source 50l is turned on for the third period. That is, the lighting control unit periodically turns on the solid light source 50j, the solid light source 50k, and the solid light source 50l in this order. Thereby, the light of the first wavelength range, the light of the second wavelength range, and the light of the third wavelength range are periodically incident on the phosphor 60 in that order.
 蛍光体60では、第1の蛍光物質、第2の蛍光物質、第3の蛍光物質が、第1の波長域の光、第2の波長域の光、第3の波長域の光をそれぞれ吸収して、R光、G光、B光をその順に周期的に発光・放射する。蛍光体60から周期的に放射されるR光、G光、B光は、直接的に、もしくは反射ミラー61により反射されて間接的に、リフレクタ56の反射面に入射される。よって、リフレクタ56の開口部からは、R光、G光、B光がその順に周期的に出射される。 In the phosphor 60, the first fluorescent material, the second fluorescent material, and the third fluorescent material absorb light in the first wavelength region, light in the second wavelength region, and light in the third wavelength region, respectively. Then, R light, G light, and B light are periodically emitted and emitted in this order. R light, G light, and B light periodically emitted from the phosphor 60 are directly or indirectly reflected by the reflecting mirror 61 and incident on the reflecting surface of the reflector 56. Therefore, R light, G light, and B light are periodically emitted in this order from the opening of the reflector 56.
 以上に述べたように、本変更例によれば、波長域が異なる3個の励起用レーザ光源を、時分割で点灯制御することにより、光源ランプの形状はそのままに、R光、G光、B光を時分割に出射することが可能な光源装置を実現することができる。 As described above, according to this modified example, by controlling lighting of three excitation laser light sources having different wavelength ranges in a time-sharing manner, the shape of the light source lamp remains unchanged, and the R light, G light, A light source device capable of emitting B light in a time-sharing manner can be realized.
 また、本変更例によれば、上記の蛍光体60に含まれる第1の蛍光物質、第2の蛍光物質、第3の蛍光物質は時分割で切換えられて発光することから、蛍光体60にかかる熱的負荷が分散される。これにより、蛍光体60への励起光の照射位置を移動させるための回転機構が不要となる。 In addition, according to this modification, the first fluorescent material, the second fluorescent material, and the third fluorescent material included in the phosphor 60 are switched in a time division manner to emit light. Such a thermal load is distributed. Thereby, the rotation mechanism for moving the irradiation position of the excitation light to the phosphor 60 becomes unnecessary.
 また、本変更例に係る光源装置10jにおいては、点灯制御において固体光源50j,50k,50lを点灯させる期間の比率を変えることによって、複数の色の照明光を自在に照射することが可能となる。 Further, in the light source device 10j according to this modification, it is possible to freely irradiate illumination lights of a plurality of colors by changing the ratio of the period during which the solid light sources 50j, 50k, and 50l are turned on in the lighting control. .
 たとえば、固体光源50jを点灯させる第1の期間、固体光源50kを点灯させる第2の期間、固体光源50lを点灯させる第3の期間の比率を3:6:1とすることにより、白色光の照明光を得ることができる。これに対して、上記期間の比率を5:3:2にすれば、赤みがかった照明光を生成することができる。したがって、表示する画像が要求する色再現性に応じて上記期間の比率を調整する構成とすることにより、色の階調表現が重視される画像を表示する場合においても、それぞれの画像に適した色の再現を行なうことが可能となる。 For example, the ratio of the first period during which the solid light source 50j is turned on, the second period during which the solid light source 50k is lit, and the third period during which the solid light source 50l is lit is set to 3: 6: 1. Illumination light can be obtained. On the other hand, if the ratio of the period is 5: 3: 2, reddish illumination light can be generated. Therefore, by adopting a configuration in which the ratio of the period is adjusted according to the color reproducibility required for the image to be displayed, it is suitable for each image even when displaying an image in which color gradation expression is important. Color reproduction can be performed.
 [実施の形態8]
 図17は、この発明の実施の形態8に係るプロジェクタの主要部の構成を模式的に示す図である。
[Embodiment 8]
FIG. 17 schematically shows a configuration of a main part of the projector according to the eighth embodiment of the invention.
 図17を参照して、プロジェクタは、光源から入射した照明光を反射型の光変調素子を用いて反射光として変調するタイプのプロジェクタであって、光学エンジン2kと、投写レンズ3とを備え、その外郭を筐体(図示せず)で覆われている。なお、プロジェクタは、スピーカ等の音声を出力するための構成要素や、光学エンジン2kの構成要素および音声出力手段を電気的に制御するための回路基板なども搭載されているが、図17では、これらを含む一部の構成要素の図示は省略されている。 Referring to FIG. 17, the projector is a type of projector that modulates illumination light incident from a light source as reflected light using a reflective light modulation element, and includes an optical engine 2k and a projection lens 3. The outer shell is covered with a casing (not shown). The projector is also equipped with components such as a speaker for outputting sound, a circuit board for electrically controlling the components of the optical engine 2k and the sound output means, but in FIG. The illustration of some components including these is omitted.
 光学エンジン2kは、B光を発光する第1LED104と、R光を発光する第2LED106と、光源装置10kとを備える。 The optical engine 2k includes a first LED 104 that emits B light, a second LED 106 that emits R light, and a light source device 10k.
 第1LED104は、たとえばInGaN系、GaN系または酸化亜鉛系等の材料を用いて構成され、B光(波長はたとえば430~470nm)を発光する。 The first LED 104 is made of, for example, an InGaN-based material, a GaN-based material, or a zinc oxide-based material, and emits B light (wavelength is 430 to 470 nm, for example).
 第2LED106は、たとえばGaP系、AlGaAs混色系等の材料を用いて構成され、のR光(波長はたとえば580~780nm)を発光する。 The second LED 106 is made of, for example, a material such as GaP or AlGaAs mixed color, and emits R light (wavelength is 580 to 780 nm, for example).
 光源装置10kは、蛍光体励起用光源として紫外光を含むレーザ光を出射する励起用レーザ光源102と、集光レンズ108と、蛍光体回転ドラム110kとを含む。光源装置10kにおいて、蛍光体回転ドラム110kには、後述するように、紫外光を吸収してG光を発光する蛍光体が塗布されている。蛍光体回転ドラム110kから放射されるG光は、集光レンズ112に入射される。 The light source device 10k includes an excitation laser light source 102 that emits laser light including ultraviolet light as a phosphor excitation light source, a condensing lens 108, and a phosphor rotating drum 110k. In the light source device 10k, the phosphor rotating drum 110k is coated with a phosphor that absorbs ultraviolet light and emits G light, as will be described later. The G light emitted from the phosphor rotating drum 110k enters the condenser lens 112.
 第1LED104からのB光は、集光レンズ116を介して、ダイクロイックプリズム114に入射される。第2LED106からのR光は、集光レンズ118を介して、ダイクロイックプリズム114に入射される。光源装置10kからのG光は、集光レンズ112を介して、ダイクロイックプリズム114に入射される。 The B light from the first LED 104 is incident on the dichroic prism 114 via the condenser lens 116. The R light from the second LED 106 is incident on the dichroic prism 114 via the condenser lens 118. The G light from the light source device 10 k is incident on the dichroic prism 114 via the condenser lens 112.
 なお、第1LED104、第2LED106および光源装置10kは、図示しない制御部の制御により、時分割で切替えて駆動される。これにより、ダイクロイックプリズム114には、R光、G光、B光が時分割で入射される。 The first LED 104, the second LED 106, and the light source device 10k are switched and driven in a time division manner under the control of a control unit (not shown). Thereby, R light, G light, and B light are incident on the dichroic prism 114 in a time-sharing manner.
 ダイクロイックプリズム114は、集光レンズ116,118,112を介して時分割で入射されたB光、R光およびG光を、透光性ロッド80の一方の端部へと入射させる。B光、R光およびG光は、透光性ロッド80の内部を伝搬して透光性ロッド80の他方の端部から出射される。透光性ロッド80は、不均一な強度分布を有する光束を略均一な強度分布を有する光束に変換するインテグレータ光学系の機能を有している。 The dichroic prism 114 causes the B light, R light, and G light incident in a time division manner through the condenser lenses 116, 118, and 112 to enter one end portion of the translucent rod 80. The B light, the R light, and the G light propagate through the inside of the translucent rod 80 and are emitted from the other end of the translucent rod 80. The translucent rod 80 has a function of an integrator optical system that converts a light beam having a non-uniform intensity distribution into a light beam having a substantially uniform intensity distribution.
 リレー光学系82は、入射側レンズと、リレーレンズと、出射側レンズとを含む。透光性ロッド80から出射された光束は、リレー光学系82およびミラー126を介して、DMD124に導かれる。なお、リレー光学系82およびミラー126の構成は、これに限定されるものではない。すなわち、リレー光学系82およびミラー126は、透光性ロッド80から出射された略均一な光束をDMD124に結像させる機能を有する構成であればよい。 The relay optical system 82 includes an entrance side lens, a relay lens, and an exit side lens. The light beam emitted from the translucent rod 80 is guided to the DMD 124 via the relay optical system 82 and the mirror 126. The configurations of the relay optical system 82 and the mirror 126 are not limited to this. That is, the relay optical system 82 and the mirror 126 may be configured to have a function of causing the DMD 124 to form an image of a substantially uniform light beam emitted from the translucent rod 80.
 DMD124は、複数の微小ミラーによって構成されている。複数の微小ミラーは可動式であり、各微小ミラーが基本的に1画素に相当する。DMD124は、図示しない制御部に制御されて、各微小ミラーの角度を変更することによって、リレー光学系82からミラー126を介して受けた光を投写レンズ3側に反射するか否かを切替える。このように各微小ミラーを駆動して反射角度を変更することによって出射光の輝度を変調する。 The DMD 124 is composed of a plurality of minute mirrors. The plurality of micromirrors are movable, and each micromirror basically corresponds to one pixel. The DMD 124 is controlled by a control unit (not shown) to change whether to reflect the light received from the relay optical system 82 via the mirror 126 to the projection lens 3 side by changing the angle of each micromirror. Thus, the brightness | luminance of emitted light is modulated by driving each micromirror and changing a reflection angle.
 DMD124は、R光、G光、B光が順に照射されるタイミングに同期して、各微小ミラーの傾斜角度が制御される。すなわち、R,G,Bの色光の発光タイミングと、それぞれの色光に対応するDMD駆動信号がDMD124へ出力されるタイミングとは、同期している。 In the DMD 124, the tilt angle of each micromirror is controlled in synchronization with the timing at which the R light, the G light, and the B light are sequentially irradiated. That is, the emission timing of the R, G, and B color lights and the timing at which the DMD drive signal corresponding to each color light is output to the DMD 124 are synchronized.
 DMD124で反射された色光は、投写レンズ3を経てスクリーン(図示せず)に投写される。スクリーンには、R,G,Bの色光による画像が順に投写される。スクリーン上に順に投写される各色の色光による画像は、人間の目には、それらの色光による画像が重ね合わされて生成されるカラー画像として認識される。 The colored light reflected by the DMD 124 is projected on a screen (not shown) through the projection lens 3. Images with R, G, and B color lights are projected on the screen in order. Images of colored light of each color projected on the screen in order are recognized by the human eye as a color image generated by superimposing images of the colored light.
 (光源装置の構成)
 以下に、図面を参照して、本実施の形態に係る光学エンジン2kに搭載される光源装置10kの構成について説明する。図18は、図17における光源装置10kの構成を説明する図である。
(Configuration of light source device)
Below, with reference to drawings, the structure of the light source device 10k mounted in the optical engine 2k which concerns on this Embodiment is demonstrated. FIG. 18 is a diagram illustrating the configuration of the light source device 10k in FIG.
 図17において、光源装置10kは、励起用レーザ光源102と、集光レンズ108と、蛍光体回転ドラム110kとを備える。 17, the light source device 10k includes an excitation laser light source 102, a condenser lens 108, and a phosphor rotating drum 110k.
 励起用レーザ光源102は、紫外光を含むレーザ光を出射する。集光レンズ108は、励起用レーザ光源102から出射した光を集光させる。具体的には、励起用レーザ光源102から出射した光は、集光レンズ108での屈折作用により、蛍光体回転ドラム110kの外周面にて集光する。これにより、蛍光体回転ドラム110kにおける蛍光体の励起に有効利用できる光を効率良く供給することができる。 The excitation laser light source 102 emits laser light including ultraviolet light. The condensing lens 108 condenses the light emitted from the excitation laser light source 102. Specifically, the light emitted from the excitation laser light source 102 is condensed on the outer peripheral surface of the phosphor rotating drum 110 k by the refraction action of the condenser lens 108. Thereby, the light which can be effectively used for excitation of the phosphor in the phosphor rotating drum 110k can be efficiently supplied.
 図18を参照して、蛍光体回転ドラム110kは、励起用レーザ光源102の光軸と直交する回転軸300と、回転軸300を中心に回転自在な回転体200kとを含む。 Referring to FIG. 18, phosphor rotating drum 110k includes a rotating shaft 300 that is orthogonal to the optical axis of excitation laser light source 102, and a rotating member 200k that is rotatable about rotating shaft 300.
 回転軸300は、図示しないモータに接続される。当該モータを回転駆動することにより、回転体200kが回転軸300を中心として回転する。回転体200kは、耐熱性ガラス等を基材として中空円筒状に形成されており、その外周面に、励起用レーザ光源102から出射された光を受ける。 The rotary shaft 300 is connected to a motor (not shown). By rotating the motor, the rotating body 200k rotates about the rotating shaft 300. The rotating body 200k is formed in a hollow cylindrical shape using heat resistant glass or the like as a base material, and receives light emitted from the excitation laser light source 102 on the outer peripheral surface thereof.
 このように回転体200kを回転させることにより、回転体200kの外周面上に配された蛍光体(図中の斜線部分に相当)に入射する光の照射位置は回転軸300を中心とする円周上を時間的に移動することとなる。これにより、蛍光体の特定の位置に集中的に光が入射されることによって、当該特定の位置が過熱されて損傷するのを抑制することができる。この結果、光源装置10kを長寿命化することができる。 By rotating the rotating body 200k in this way, the irradiation position of light incident on the phosphor (corresponding to the hatched portion in the figure) arranged on the outer peripheral surface of the rotating body 200k is a circle centering on the rotation axis 300. It will move in time on the circumference. Thereby, it can suppress that the said specific position is overheated and damaged when light intensively injects into the specific position of fluorescent substance. As a result, the life of the light source device 10k can be extended.
 図19は、図18における回転体200kの構成を説明する図である。図19(a)は、回転軸300に垂直な方向の断面図であり、図19(b)は、回転体200kの外周部の拡大図である。 FIG. 19 is a diagram illustrating the configuration of the rotating body 200k in FIG. FIG. 19A is a cross-sectional view in a direction perpendicular to the rotating shaft 300, and FIG. 19B is an enlarged view of the outer peripheral portion of the rotating body 200k.
 図19(a)を参照して、回転体200kは、円筒状の透光性基材210と、透光性基材210の外周面上に、円周方向に所定の角度範囲を有して配置される蛍光体220と、ダイクロイック膜230とを含む。 Referring to FIG. 19A, a rotating body 200k has a cylindrical translucent substrate 210 and a predetermined angular range in the circumferential direction on the outer peripheral surface of the translucent substrate 210. The fluorescent substance 220 arrange | positioned and the dichroic film | membrane 230 are included.
 蛍光体220は、励起用レーザ光源102が出射した特定の波長域の光(たとえば、紫外光とする)により励起された可視光を発光する。紫外励起の蛍光体は、紫外発光素子(励起用レーザ光源102に相当)から出射される200~400nmの紫外光/近紫外光を吸収して励起され、R光、G光、B光のスペクトル、もしくはそれらのスペクトルが混在した白色光の可視光を発光・放射する。 The phosphor 220 emits visible light that is excited by light of a specific wavelength range emitted from the excitation laser light source 102 (for example, ultraviolet light). The ultraviolet-excited phosphor is excited by absorbing ultraviolet light / near-ultraviolet light of 200 to 400 nm emitted from an ultraviolet light emitting element (corresponding to the excitation laser light source 102), and the spectrum of R light, G light, and B light. Or, it emits and emits white visible light with mixed spectrum.
 蛍光体は、蛍光活性元素イオンとして機能する希土類元素イオンを含有する。希土類元素イオンとしては、ユウロピウム(Eu)やテルビウム(Tb)を利用することができる。希土類元素イオンとしてユウロピウムEu3+を含む蛍光体は、200nm~430nmの光を吸収して、570nm~630nm付近の光を発光するので、紫外光または近紫外光を吸収してR光を発光することができる。また、ユウロピウムEu2+を含む蛍光体は、200nm~400nmの光を吸収して、540nm~560nm付近の光を発光するので、紫外光または近紫外光を吸収してG光を発光することができる。また、テルビウムTb3+を含む蛍光体は、300nm~400nmの光を吸収して、380nm~460nm付近の光を発光するので、紫外光または近紫外光を吸収してB光を発光することができる。図17のように、G光の単色光を得る場合には、上記の蛍光体を用いることにより、色純度の高い発光スペクトルを得ることができる。 The phosphor contains rare earth element ions that function as fluorescently active element ions. Europium (Eu) and terbium (Tb) can be used as the rare earth element ions. A phosphor containing europium Eu3 + as a rare earth element ion absorbs light of 200 nm to 430 nm and emits light in the vicinity of 570 nm to 630 nm. Therefore, it can absorb ultraviolet light or near ultraviolet light and emit R light. it can. In addition, since the phosphor containing Europium Eu2 + absorbs light of 200 nm to 400 nm and emits light of 540 nm to 560 nm, it can absorb ultraviolet light or near ultraviolet light and emit G light. In addition, since the phosphor containing terbium Tb3 + absorbs light of 300 nm to 400 nm and emits light of around 380 nm to 460 nm, it can absorb ultraviolet light or near ultraviolet light and emit B light. As shown in FIG. 17, when obtaining monochromatic light of G light, an emission spectrum with high color purity can be obtained by using the above phosphor.
 ダイクロイック膜230は、透光性基材210の内周面上に蛍光体220と対向する位置に配置される。ダイクロイック膜230は、励起用レーザ光源102から出射される励起光(紫外光)を透過する一方で、蛍光体220が発光する可視光を反射する可視光反射部材である。 The dichroic film 230 is disposed on the inner peripheral surface of the translucent substrate 210 at a position facing the phosphor 220. The dichroic film 230 is a visible light reflecting member that transmits excitation light (ultraviolet light) emitted from the excitation laser light source 102 and reflects visible light emitted from the phosphor 220.
 図19(b)には、図18(a)中に破線で囲んだ領域RGN1の拡大図を示す。図19(b)に示すように、蛍光体220には、ダイクロイック膜230および透光性基材210を透過した励起光(紫外光)が入射される。蛍光体220は、この紫外光を吸収してG光を発光する。このとき、蛍光体220の発光光は、等方性を有する放射光であるため、回転体200kの径方向の外側に向かう光以外に、径方向の内側に向かう光も発生する。ダイクロイック膜230は、この径方向の内側に向かう光を反射するように形成されている。そのため、蛍光体220の発光光を、効率良く集光レンズ112(図18)に入射させることができ、光源装置10kの光利用効率を高めることができる。なお、光源装置10kの光利用効率とは、励起用レーザ光源102から出射される総光量に対する、蛍光体220から照明光として放射される総光量の比率を示すものである。 FIG. 19 (b) shows an enlarged view of the region RGN1 surrounded by a broken line in FIG. 18 (a). As shown in FIG. 19B, excitation light (ultraviolet light) transmitted through the dichroic film 230 and the translucent substrate 210 is incident on the phosphor 220. The phosphor 220 absorbs the ultraviolet light and emits G light. At this time, the emitted light of the phosphor 220 is an isotropic radiated light, so that light traveling inward in the radial direction is generated in addition to light traveling outward in the radial direction of the rotating body 200k. The dichroic film 230 is formed so as to reflect light traveling inward in the radial direction. Therefore, the light emitted from the phosphor 220 can be efficiently incident on the condenser lens 112 (FIG. 18), and the light use efficiency of the light source device 10k can be increased. The light use efficiency of the light source device 10k indicates the ratio of the total light amount emitted from the phosphor 220 as illumination light to the total light amount emitted from the excitation laser light source 102.
 また、図17で示したように、集光レンズ108で集光した励起光を蛍光体220に入射する構成としたことにより、蛍光体220での励起(波長変換)に有効に利用できる光が増えるため、点光源に近い発光部を実現することができる。その結果、光利用効率が向上する。 In addition, as shown in FIG. 17, by adopting a configuration in which the excitation light condensed by the condenser lens 108 is incident on the phosphor 220, light that can be effectively used for excitation (wavelength conversion) by the phosphor 220 is obtained. Since it increases, the light emission part close | similar to a point light source is realizable. As a result, light utilization efficiency is improved.
 一般に、光源装置の光源系と、光変調素子等の表示装置の表示系とを含めた光学エンジンにおいては、光源系や表示系で有効に利用できる光束範囲の空間的な広がりを表す指標として、面積と立体角との積で表現したエテンデュー(Etendue)が知られている。光源系のエテンデューは、その値が小さいほど、光源からの放射光束が狭い放射立体角の中に収束することになるため、表示系で有効利用できる光線角度範囲の中に光源系からの放射光が収まる率が高くなり、その結果、光学エンジン全体での光利用効率が向上する。 In general, in an optical engine including a light source system of a light source device and a display system of a display device such as a light modulation element, as an index representing a spatial spread of a luminous flux range that can be effectively used in a light source system or a display system, Etendue is known as the product of area and solid angle. The smaller the value of the etendue of the light source system, the more the emitted light flux from the light source converges in a narrow solid solid angle. Therefore, the emitted light from the light source system falls within the light angle range that can be effectively used in the display system. As a result, the light utilization efficiency of the entire optical engine is improved.
 光源系のエテンデューは、発光部の面積に比例することから、光源系の光利用効率を高めるためには、光源系の発光面積をできるだけ小さくすることが必要となる。本発明の実施の形態8に係る光源装置では、集光レンズ108が励起光を蛍光体220に集光するため、蛍光体220における発光面積を小さくすることができる。これにより、エテンデューの値を小さく抑えることができるため、光利用効率が向上する。 Since the etendue of the light source system is proportional to the area of the light emitting unit, it is necessary to make the light emitting area of the light source system as small as possible in order to increase the light use efficiency of the light source system. In the light source device according to Embodiment 8 of the present invention, the condensing lens 108 condenses the excitation light on the phosphor 220, so that the emission area of the phosphor 220 can be reduced. Thereby, since the value of etendue can be suppressed small, light utilization efficiency improves.
 なお、励起光としてのレーザ光には、蛍光体220の発光する光よりも波長の短いものが適用される。これは、励起光の波長が蛍光体の発光光の波長よりも短いときと比較して、光の取り出し効率が高くなることに基づいている。本実施の形態8では、紫外光を蛍光体の励起光として用いているが、発光させたい色光よりも波長が短い限りにおいて、励起光はこれに限定されるものではない。 Note that a laser beam having a shorter wavelength than the light emitted from the phosphor 220 is applied to the laser beam as the excitation light. This is based on the fact that the light extraction efficiency is higher than when the wavelength of the excitation light is shorter than the wavelength of the emitted light of the phosphor. In the eighth embodiment, ultraviolet light is used as excitation light for the phosphor, but the excitation light is not limited to this as long as the wavelength is shorter than the color light to be emitted.
 本実施の形態8において、蛍光体220は、図19(a)に示すように、透光性基材210の外周面上に、円周方向に所定の角度範囲(たとえば180°とする)を有して配置される。したがって、回転体200kを回転させたとき、蛍光体220は、その角度範囲に応じた発生タイミングでG光を発光する。図19(a)の例では、蛍光体220は、回転体200kの回転周波数の略2倍の周波数でG光を発光する。したがって、たとえばプロジェクタのフレーム周波数を60Hzとしたとき、R,G,Bの色光による画像を順に投写して1フレーム分の画像を表示するためには、回転体200kの回転周波数を120Hz以上に設定することが望ましい。 In the eighth embodiment, the phosphor 220 has a predetermined angular range (for example, 180 °) in the circumferential direction on the outer peripheral surface of the translucent substrate 210 as shown in FIG. It is arranged. Therefore, when the rotating body 200k is rotated, the phosphor 220 emits G light at a generation timing corresponding to the angular range. In the example of FIG. 19A, the phosphor 220 emits G light at a frequency that is approximately twice the rotational frequency of the rotating body 200k. Therefore, for example, when the frame frequency of the projector is set to 60 Hz, the rotation frequency of the rotating body 200k is set to 120 Hz or more in order to display an image of one frame by sequentially projecting images of R, G, B color light. It is desirable to do.
 再び図18を参照して、蛍光体220から出射されたG光は、集光レンズ112で再度集光された後に、ダイクロイックプリズム114(図1)を介して透光性ロッド80に入射される。透光性ロッド80から出射した、第1LED104からのB光、第2LED106からのR光および蛍光体220からのG光は、DMD124(図17)に照射される。 Referring to FIG. 18 again, the G light emitted from the phosphor 220 is again collected by the condenser lens 112 and then incident on the translucent rod 80 via the dichroic prism 114 (FIG. 1). . The B light from the first LED 104, the R light from the second LED 106, and the G light from the phosphor 220 emitted from the translucent rod 80 are applied to the DMD 124 (FIG. 17).
 以上のように、この発明の実施の形態8によれば、固体光源から出射される励起光を蛍光体に集光させることにより、蛍光体で効率良く波長変換することができるとともに、蛍光体で発光した光を効率良く出射側に向かわせることができる。したがって、光利用効率を高めることができ、照明光の輝度が向上する。この結果、高輝度かつ高効率な光源装置を実現することができる。 As described above, according to the eighth embodiment of the present invention, the excitation light emitted from the solid-state light source is condensed on the phosphor, whereby the wavelength can be efficiently converted by the phosphor, and the phosphor The emitted light can be efficiently directed toward the emission side. Therefore, the light use efficiency can be increased, and the luminance of the illumination light is improved. As a result, a light source device with high brightness and high efficiency can be realized.
 また、回転体を回転させることにより、回転体の外周面上に配された蛍光体に入射する光の照射位置が時間的に移動するため、蛍光体の熱的損傷が抑えられるため、光源装置を長寿命化することができる。 Further, by rotating the rotating body, the irradiation position of the light incident on the phosphor arranged on the outer peripheral surface of the rotating body moves with time, so that thermal damage to the phosphor can be suppressed, so the light source device Can extend the service life.
 さらに、励起光の光軸と直交する回転軸を中心として蛍光体回転ドラムを回転させるため、カラーホイールと比較して回転軸方向が異なるため、蛍光体のサイズを、光軸に垂直な方向に小さくすることができる。よって、光源装置の小型化を図ることができる。 Furthermore, since the phosphor rotating drum is rotated around the rotation axis orthogonal to the optical axis of the excitation light, the rotation axis direction is different from that of the color wheel. Therefore, the phosphor size is set in the direction perpendicular to the optical axis. Can be small. Therefore, it is possible to reduce the size of the light source device.
 なお、上述した実施の形態8では、R光、G光、B光のうちG光のみを蛍光発光する構成を例示したが、これは、白色光を得るためのR光、G光、B光の混合比率は、たとえば1:2:1のように、G光の輝度を他の色光よりも高くする必要があることに基づいている。すなわち、本実施の形態8に係る光源装置では、G光を蛍光発光することにより効率良くG光で高輝度を得ている。なお、実施の形態8の構成に代えて、G光とB光およびR光のうちの一方とを蛍光発光し、B光およびR光のうちの他方をLEDにより発光させる構成としてもよい。 In the above-described eighth embodiment, the configuration in which only G light is fluorescently emitted out of R light, G light, and B light is exemplified, but this is R light, G light, and B light for obtaining white light. The mixing ratio is based on the fact that the luminance of the G light needs to be higher than that of other color lights, such as 1: 2: 1. That is, in the light source device according to the eighth embodiment, high luminance is efficiently obtained with the G light by fluorescently emitting the G light. Instead of the configuration of the eighth embodiment, one of G light, B light, and R light may be emitted by fluorescence, and the other of B light and R light may be emitted by an LED.
 [実施の形態9]
 図20は、この発明の実施の形態9に係る光学エンジン2lの構成を説明する図である。
[Embodiment 9]
FIG. 20 is a view for explaining the configuration of an optical engine 21 according to Embodiment 9 of the present invention.
 図20を参照して、本発明の実施の形態9に係る光学エンジン2lは、図17に示す光学エンジン2kと比較して、第1LED104、第2106および光源装置10kの組合せに代えて、単一の光源装置10lを備える点で異なる。 Referring to FIG. 20, the optical engine 21 according to the ninth embodiment of the present invention is different from the optical engine 2k shown in FIG. 17 in that the combination of the first LED 104, the second 106 and the light source device 10k is a single unit. The difference is that the light source device 10l is provided.
 光源装置10lは、複数の励起用レーザ光源102と、集光レンズ108と、蛍光体回転ドラム110lとを備える。 The light source device 101 includes a plurality of excitation laser light sources 102, a condensing lens 108, and a phosphor rotating drum 110l.
 複数(たとえば6個とする)の励起用レーザ光源102は、所定の距離だけ離れて配置されており、各々が紫外光を含むレーザ光を出射する。 A plurality of (for example, six) excitation laser light sources 102 are arranged apart from each other by a predetermined distance, and each emits laser light including ultraviolet light.
 集光レンズ108は、各励起用レーザ光源102に対応して設けられている。集光レンズ108は、対応する励起用レーザ光源102から出射した光を集光して蛍光体回転ドラム110lに入射させる。 The condensing lens 108 is provided corresponding to each excitation laser light source 102. The condensing lens 108 condenses the light emitted from the corresponding excitation laser light source 102 and causes the light to enter the phosphor rotating drum 110l.
 蛍光体回転ドラム110lは、複数の励起用レーザ光源102から出射された光を受けてR光、G光、B光のいずれかをそれぞれ発光する複数(たとえば6個)の蛍光部を含む。複数の蛍光部は、後述するように、各々の外周面上に蛍光体が塗布された複数の回転リングを、回転軸方向に配列させることにより形成される。 The phosphor rotating drum 110l includes a plurality of (for example, six) fluorescent parts that receive light emitted from the plurality of excitation laser light sources 102 and emit one of R light, G light, and B light, respectively. As will be described later, the plurality of fluorescent portions are formed by arranging a plurality of rotating rings each having a fluorescent material coated on each outer peripheral surface in the direction of the rotation axis.
 このような構成において、励起用レーザ光源102から出射した光は、集光レンズ108での屈折作用により、対応する回転リング(蛍光部)の外周面にて集光する。これにより、蛍光部ごとに蛍光体の励起に有効利用できる光を効率良く供給することができる。 In such a configuration, the light emitted from the excitation laser light source 102 is condensed on the outer peripheral surface of the corresponding rotating ring (fluorescent portion) by the refraction action of the condenser lens 108. Thereby, the light which can be utilized effectively for excitation of a fluorescent substance for every fluorescent part can be supplied efficiently.
 複数の回転リングから放射されるR光、G光、B光は、集光レンズ112に入射される。集光レンズ112は、入射されたR光、G光、B光を集光して透光性ロッド80の一方の端部へと入射させる。 The R light, G light, and B light emitted from the plurality of rotating rings are incident on the condenser lens 112. The condensing lens 112 condenses the incident R light, G light, and B light and causes the light to enter one end of the translucent rod 80.
 (光源装置の構成)
 以下に、図面を参照して、本実施の形態9に係る光学エンジン2lに搭載される光源装置10lの構成について説明する。図21は、図20における光源装置10lの構成を説明する図である。
(Configuration of light source device)
The configuration of the light source device 10l mounted on the optical engine 21 according to the ninth embodiment will be described below with reference to the drawings. FIG. 21 is a diagram illustrating the configuration of the light source device 101 in FIG.
 図21を参照して、蛍光体回転ドラム110lは、複数の励起用レーザ光源102の光軸と直交する回転軸300と、回転軸300を中心に回転自在な回転体200lとを含む。 Referring to FIG. 21, the phosphor rotating drum 110l includes a rotating shaft 300 orthogonal to the optical axes of the plurality of excitation laser light sources 102, and a rotating body 200l that is rotatable about the rotating shaft 300.
 回転軸300は、図示しないモータに接続される。当該モータを回転駆動することにより、回転体200lが回転軸300を中心として回転する。回転体200lは、耐熱性ガラス等を基材として中空円筒状に形成されており、その外周面に、複数の励起用レーザ光源102から出射された光を受ける。 The rotary shaft 300 is connected to a motor (not shown). By rotating the motor, the rotating body 200l rotates around the rotating shaft 300. The rotating body 200l is formed in a hollow cylindrical shape using heat-resistant glass or the like as a base material, and receives light emitted from a plurality of excitation laser light sources 102 on the outer peripheral surface thereof.
 このように回転体200lを回転させることにより、回転体200lの外周面上に配された蛍光体(図中の斜線部分に相当)に入射する光の照射位置は回転軸300を中心とする円周上を時間的に移動することとなる。これにより、蛍光体の特定の位置に集中的に光が入射されることによって、当該特定の位置が過熱されて損傷するのを抑制することができる。この結果、光源装置10lを長寿命化することができる。 By rotating the rotator 200l in this way, the irradiation position of light incident on the phosphor (corresponding to the hatched portion in the figure) arranged on the outer peripheral surface of the rotator 200l is a circle centering on the rotation axis 300. It will move in time on the circumference. Thereby, it can suppress that the said specific position is overheated and damaged when light injects into the specific position of fluorescent substance intensively. As a result, the life of the light source device 10l can be extended.
 (回転体の構成)
 以下に、図面を参照して、図21における回転体200lの構成について説明する。 
(Configuration of rotating body)
Below, with reference to drawings, the structure of the rotary body 200l in FIG. 21 is demonstrated.
 本実施の形態9において、回転体200lは、各々の外周面上に蛍光体が塗布された複数の回転リングを含む。複数の回転リングは、回転軸方向に並設される。図22に示すように、複数の回転リングは、R光蛍光部としてのR光回転リング210Rと、G光蛍光部としてのG光回転リング210Gと、B光蛍光部としてのB光回転リング210Bとからなる。 In the ninth embodiment, the rotating body 200l includes a plurality of rotating rings in which a phosphor is applied on each outer peripheral surface. The plurality of rotating rings are arranged side by side in the rotation axis direction. As shown in FIG. 22, the plurality of rotating rings include an R light rotating ring 210R as an R light fluorescent part, a G light rotating ring 210G as a G light fluorescent part, and a B light rotating ring 210B as a B light fluorescent part. It consists of.
 R光回転リング210R、G光回転リング210G、B光回転リング210Bは、その順で回転軸方向に並設されている。本実施の形態9では、R光回転リング210R、G光回転リング210G、B光回転リング210Bはその順に、各2個ずつ配列されている。 The R light rotating ring 210R, the G light rotating ring 210G, and the B light rotating ring 210B are arranged in parallel in the rotation axis direction in that order. In the ninth embodiment, two R light rotating rings 210R, two G light rotating rings 210G, and two B light rotating rings 210B are arranged in that order.
 図22は、回転リングの配列方向と垂直となる面を切り口とした回転リングごとの断面図である。 FIG. 22 is a cross-sectional view of each rotating ring with a plane perpendicular to the arrangement direction of the rotating rings as a cut surface.
 図22を参照して、R光回転リング210Rは、円環状の透光性基材210と、透光性基材210の外周面上に、円周方向に所定の角度範囲を有して配置されるR光蛍光体220Rと、ダイクロイック膜230とを含む。 Referring to FIG. 22, R light rotating ring 210 </ b> R is arranged with an annular translucent base 210 and a predetermined angular range in the circumferential direction on the outer peripheral surface of translucent base 210. R photophosphor 220 </ b> R and a dichroic film 230.
 R光蛍光体220Rは、紫外光を吸収してR光を発光する。ダイクロイック膜230は、透光性基材210の内周面上にR光蛍光体220Rと対向する位置に配置される。ダイクロイック膜230は、R光回転リング210Rに対応する励起用レーザ光源102から出射される紫外光を透過する一方で、R光蛍光体220Rが発光するR光を反射する。 The R phosphor 220R absorbs ultraviolet light and emits R light. The dichroic film 230 is disposed on the inner peripheral surface of the translucent substrate 210 at a position facing the R light phosphor 220R. The dichroic film 230 transmits the ultraviolet light emitted from the excitation laser light source 102 corresponding to the R light rotating ring 210R, while reflecting the R light emitted from the R light phosphor 220R.
 G光回転リング210Gは、円環状の透光性基材210と、透光性基材210の外周面上に、円周方向に所定の角度範囲を有して配置されるG光蛍光体220Gと、ダイクロイック膜230とを含む。 The G light rotating ring 210G has an annular light transmitting base 210 and a G light phosphor 220G disposed on the outer peripheral surface of the light transmitting base 210 with a predetermined angular range in the circumferential direction. And a dichroic film 230.
 G光蛍光体220Gは、紫外光を吸収してG光を発光する。ダイクロイック膜230は、透光性基材210の内周面上にG光蛍光体220Gと対向する位置に配置される。ダイクロイック膜230は、G光回転リング210Gに対応する励起用レーザ光源102から出射される紫外光を透過する一方で、G光蛍光体220Gが発光するG光を反射する。 The G light phosphor 220G absorbs ultraviolet light and emits G light. The dichroic film 230 is disposed on the inner peripheral surface of the translucent substrate 210 at a position facing the G light phosphor 220G. The dichroic film 230 transmits the ultraviolet light emitted from the excitation laser light source 102 corresponding to the G light rotating ring 210G, while reflecting the G light emitted from the G light phosphor 220G.
 B光回転リング210Bは、円環状の透光性基材210と、透光性基材210の外周面上に、円周方向に所定の角度範囲を有して配置されるB光蛍光体220Bと、ダイクロイック膜230とを含む。 The B light rotating ring 210B includes an annular light transmitting base 210 and a B light phosphor 220B arranged on the outer peripheral surface of the light transmitting base 210 with a predetermined angular range in the circumferential direction. And a dichroic film 230.
 B光蛍光体220Bは、紫外光を吸収してB光を発光する。ダイクロイック膜230は、透光性基材210の内周面上にB光蛍光体220Bと対向する位置に配置される。ダイクロイック膜230は、B光回転リング210Bに対応する励起用レーザ光源102から出射される紫外光を透過する一方で、B光蛍光体220Bが発光するB光を反射する。 The B photophosphor 220B absorbs ultraviolet light and emits B light. The dichroic film 230 is disposed on the inner peripheral surface of the translucent substrate 210 at a position facing the B photophosphor 220B. The dichroic film 230 transmits the ultraviolet light emitted from the excitation laser light source 102 corresponding to the B light rotating ring 210B, while reflecting the B light emitted from the B light phosphor 220B.
 R光蛍光体220R,G光蛍光体220G,B光蛍光体220Bは、回転軸方向から見たときに、円周方向に互いに異なる角度範囲を有するように配置される。すなわち、回転リング210R,210G,210Bの各断面図を仮想的に重ね合わせたときに、各色蛍光体220R,220G,220Bは、R,G,Bの順に円周方向に隣り合わせとなるように配置される。 The R light phosphor 220R, the G light phosphor 220G, and the B light phosphor 220B are disposed so as to have different angular ranges in the circumferential direction when viewed from the rotation axis direction. That is, when the sectional views of the rotating rings 210R, 210G, and 210B are virtually overlapped, the respective color phosphors 220R, 220G, and 220B are arranged so as to be adjacent to each other in the circumferential direction in the order of R, G, and B. Is done.
 なお、R光蛍光体220R,G光蛍光体220G,B光蛍光体220Bの占有する角度範囲の比率は、白色光を得るためのR光、G光、B光の混合比率に応じて設定することができる。たとえばR光,G光,B光の混合比率が1:2:1である場合には、各色蛍光体220R,220G,220Bの角度範囲の比率を1:2:1とすればよい。この角度範囲の比率は、各色光の混合比率に併せて各色蛍光体220R,220G,220Bの発光特性を考慮して設定することが可能である。 The ratio of the angle range occupied by the R light phosphor 220R, the G light phosphor 220G, and the B light phosphor 220B is set according to the mixing ratio of the R light, the G light, and the B light to obtain white light. be able to. For example, when the mixing ratio of R light, G light, and B light is 1: 2: 1, the ratio of the angle ranges of the respective color phosphors 220R, 220G, 220B may be 1: 2: 1. The ratio of the angle range can be set in consideration of the light emission characteristics of the respective color phosphors 220R, 220G, and 220B in accordance with the mixing ratio of the respective color lights.
 以上の構成において、回転体200lを回転させたときには、R光回転リング210R,G光回転リング210G,B光回転リング210Bにはそれぞれ対応する励起用レーザ光源102からの励起光(紫外光)が入射される。励起光は、R光蛍光体220R,G光蛍光体220G,B光蛍光体220Bの順に周期的に吸収される。 In the above configuration, when the rotating body 200l is rotated, excitation light (ultraviolet light) from the excitation laser light source 102 corresponding to each of the R light rotation ring 210R, the G light rotation ring 210G, and the B light rotation ring 210B. Incident. The excitation light is periodically absorbed in the order of the R light phosphor 220R, the G light phosphor 220G, and the B light phosphor 220B.
 具体的には、図22は、励起光がG光蛍光体220Gに吸収されている状態を示し、図23は、励起光がR光蛍光体220Rに吸収されている状態を示し、図24は、励起光がB光蛍光体220Bに吸収されている状態を示す。回転体200lは、これら3つの状態をその順に周期的に遷移する。この結果、回転体200lからは、R光、G光、B光がその順に周期的に出射される。 Specifically, FIG. 22 shows a state where excitation light is absorbed by the G light phosphor 220G, FIG. 23 shows a state where excitation light is absorbed by the R light phosphor 220R, and FIG. The excitation light is shown as being absorbed by the B light phosphor 220B. The rotating body 200l periodically transitions these three states in that order. As a result, R light, G light, and B light are periodically emitted in this order from the rotating body 200l.
 再び図21を参照して、回転体200lから出射されたR光、G光、B光は、集光レンズ112で集光された後、ダイクロイックプリズム114(図1)を介して透光性ロッド80に時分割に入射される。透光性ロッド80から出射した、第1LED104からのB光、第2LED106からのR光および蛍光体220からのG光は、DMD124(図17)に照射される。DMD124は、R光、G光、B光が照射されるタイミングに同期して、各微小ミラーを制御する。DMD124で反射された色光は、投写レンズ3を経てスクリーンに投写される。 Referring to FIG. 21 again, the R light, G light, and B light emitted from the rotating body 200l are collected by the condenser lens 112, and then transmitted through the dichroic prism 114 (FIG. 1). 80 is incident in a time division manner. The B light from the first LED 104, the R light from the second LED 106, and the G light from the phosphor 220 emitted from the translucent rod 80 are applied to the DMD 124 (FIG. 17). The DMD 124 controls each micromirror in synchronization with the timing at which the R light, G light, and B light are irradiated. The color light reflected by the DMD 124 is projected onto the screen via the projection lens 3.
 なお、本実施の形態9において、蛍光体回転ドラム110lの回転周波数は、プロジェクタのフレーム周波数(たとえば、120Hz)と同じ周波数に設定される。 In the ninth embodiment, the rotational frequency of the phosphor rotating drum 110l is set to the same frequency as the frame frequency (for example, 120 Hz) of the projector.
 以上のように、この発明の実施の形態9によれば、蛍光体回転ドラムの外周面上に複数の色光をそれぞれ発光する複数の蛍光体を並設することにより、蛍光体回転ドラムは、励起用レーザ光源から出射した光を吸収して、R光、G光、B光を順に時分割に出射することができる。 As described above, according to the ninth embodiment of the present invention, the phosphor rotating drum is excited by arranging a plurality of phosphors each emitting a plurality of colored lights on the outer peripheral surface of the phosphor rotating drum. The light emitted from the laser light source can be absorbed and the R light, the G light, and the B light can be emitted in time division in order.
 また、高輝度化の観点から励起用レーザ光源の個数を増やした場合であっても、励起用レーザ光源ごとに光束を集約し、蛍光体に集光させて照射させることにより、蛍光体ごとの発光面積を一定とすることができる。この結果、照明光の光量を増加させても、エテンデューの値は上がらず、高輝度化と光利用効率の向上とを両立させることが可能となる。 Moreover, even when the number of excitation laser light sources is increased from the viewpoint of increasing the brightness, the luminous flux is aggregated for each excitation laser light source, and is condensed and irradiated on the phosphors. The light emitting area can be made constant. As a result, even if the amount of illumination light is increased, the etendue value does not increase, and it is possible to achieve both higher luminance and improved light utilization efficiency.
 なお、複数の励起用レーザ光源は、同一の波長のレーザ光を出射する構成としてもよく、互いに異なる波長のレーザ光を出射する構成としてもよい。たとえば、励起用レーザ光源ごとに、対応する蛍光体が発光する色光の波長に応じて、色光への変換効率が高くなるようにレーザ光の波長を設定する構成としてもよい。この場合、光利用効率をさらに高めることが可能となる。 Note that the plurality of excitation laser light sources may be configured to emit laser beams having the same wavelength, or may be configured to emit laser beams having different wavelengths. For example, for each excitation laser light source, the wavelength of the laser light may be set so that the conversion efficiency to the color light is increased according to the wavelength of the color light emitted from the corresponding phosphor. In this case, the light utilization efficiency can be further increased.
 (変更例)
 図25は、この発明の実施の形態9の変更例に係る光学エンジン2mの構成を説明する図である。
(Example of change)
FIG. 25 is a diagram illustrating the configuration of an optical engine 2m according to a modification of the ninth embodiment of the present invention.
 図25を参照して、本変更例に係る光学エンジン2mは、図20に示す光学エンジン2lと比較して、光源装置10lに代えて、光源装置10mを備える点で異なる。 25, the optical engine 2m according to this modification is different from the optical engine 2l shown in FIG. 20 in that a light source device 10m is provided instead of the light source device 10l.
 光源装置10mは、複数(たとえば3個とする)の励起用レーザ光源1021と、集光レンズ108と、蛍光体回転ドラム110mとを備える。 The light source device 10m includes a plurality of (for example, three) excitation laser light sources 1021, a condenser lens 108, and a phosphor rotating drum 110m.
 励起用レーザ光源1021は、図20に示す励起用レーザ光源102と比べて、高出力のレーザ光を出射することができる。本変更例では、3個の励起用レーザ光源1021が所定の距離だけ離れて配置されており、各々が紫外光を含むレーザ光を出射する。 The excitation laser light source 1021 can emit high-power laser light as compared with the excitation laser light source 102 shown in FIG. In this modified example, three excitation laser light sources 1021 are arranged at a predetermined distance, and each emits laser light including ultraviolet light.
 集光レンズ108は、各励起用レーザ光源1021に対応して設けられている。集光レンズ108は、対応する励起用レーザ光源1021から出射した光を集光して蛍光体回転ドラム110mに入射させる。 The condenser lens 108 is provided corresponding to each excitation laser light source 1021. The condensing lens 108 condenses the light emitted from the corresponding excitation laser light source 1021 and causes the light to enter the phosphor rotating drum 110m.
 蛍光体回転ドラム110mは、3個の励起用レーザ光源1021から出射された光を受けてR光、G光、B光をそれぞれ発光する3個の蛍光部を含む。この3個の蛍光部は、後述するように、各々の外周面上に蛍光体が塗布された複数の回転リングを、回転軸方向に配列させることにより形成されている。 The phosphor rotating drum 110m includes three fluorescent sections that receive light emitted from the three excitation laser light sources 1021 and emit R light, G light, and B light, respectively. As will be described later, the three fluorescent portions are formed by arranging a plurality of rotating rings each having a fluorescent material coated on the outer peripheral surface thereof in the direction of the rotation axis.
 このような構成において、励起用レーザ光源1021から出射した光は、集光レンズ108での屈折作用により、対応する回転リング(蛍光部)の外周面にて集光する。これにより、蛍光部ごとに蛍光体の励起に有効利用できる光を効率良く供給することができる。 In such a configuration, the light emitted from the excitation laser light source 1021 is condensed on the outer peripheral surface of the corresponding rotating ring (fluorescent portion) by the refracting action of the condenser lens 108. Thereby, the light which can be utilized effectively for excitation of a fluorescent substance for every fluorescent part can be supplied efficiently.
 3個の回転リングからそれぞれ放射されるR光、G光、B光は、コリメーションレンズ112mにより略平行光に変換された後、ダイクロイックキューブ115に入射される。ミラー113は、コリメーションレンズ112mから出射した光を、ダイクロイックキューブ115に導く。ダイクロイックキューブ115は、R光、G光、B光を合成し、その合成した光を集光レンズ117に向けて出射する。集光レンズ117は、入射された光を集光して透光性ロッド80の一方の端部へと入射させる。 The R light, G light, and B light emitted from the three rotating rings are converted into substantially parallel light by the collimation lens 112m, and then enter the dichroic cube 115. The mirror 113 guides the light emitted from the collimation lens 112 m to the dichroic cube 115. The dichroic cube 115 combines the R light, the G light, and the B light, and emits the combined light toward the condenser lens 117. The condensing lens 117 condenses incident light and makes it incident on one end of the translucent rod 80.
 (光源装置の構成)
 以下に、図面を参照して、本実施の形態9の変更例に係る光学エンジン2mに搭載される光源装置10mの構成について説明する。図26は、図25における光源装置10mの構成を説明する図である。
(Configuration of light source device)
The configuration of the light source device 10m mounted on the optical engine 2m according to the modification of the ninth embodiment will be described below with reference to the drawings. FIG. 26 is a diagram illustrating the configuration of the light source device 10m in FIG.
 図26を参照して、蛍光体回転ドラム110mは、図21に示す蛍光体回転ドラム110lと比較して、回転体200lに代えて、回転体200mを含む点でのみ異なる。 Referring to FIG. 26, phosphor rotating drum 110m differs from phosphor rotating drum 110l shown in FIG. 21 only in that it includes rotating body 200m instead of rotating body 200l.
 回転体200mは、耐熱性ガラス等を基材として中空円筒状に形成されており、その外周面に、3個の励起用レーザ光源1021から出射された光を受ける。具体的には、回転体200mは、R光蛍光部としてのR光回転リング、G光蛍光部としてのG光回転リング、およびB光蛍光部としてのB光回転リングを、回転軸方向に並設されて構成されている。R光回転リング、G光回転リングおよびB光回転リングは、図22に示したR光回転リング210R、G光回転リング210GおよびB光回転リング210Bとそれぞれ同一の構造を有している。ただし、本変更例に係る回転リングは、回転軸方向の幅が、図22に示す回転リングと比べて広くなっている。 The rotating body 200m is formed in a hollow cylindrical shape using heat-resistant glass or the like as a base material, and receives light emitted from three excitation laser light sources 1021 on the outer peripheral surface thereof. Specifically, the rotating body 200m includes an R light rotating ring as an R light fluorescent part, a G light rotating ring as a G light fluorescent part, and a B light rotating ring as a B light fluorescent part arranged in the rotation axis direction. It is installed and configured. The R light rotating ring, the G light rotating ring, and the B light rotating ring have the same structures as the R light rotating ring 210R, the G light rotating ring 210G, and the B light rotating ring 210B shown in FIG. However, the rotation ring according to this modification has a wider width in the rotation axis direction than the rotation ring shown in FIG.
 以上の構成において、回転体200mを回転させたときには、R光回転リング、G光回転リング、B光回転リングにはそれぞれ対応する励起用レーザ光源1021からの励起光(紫外光)が入射される。励起光は、R光蛍光体220R、G光蛍光体220G、B光蛍光体220B(図22~図24参照)の順に周期的に吸収される。 In the above configuration, when the rotating body 200m is rotated, excitation light (ultraviolet light) from the corresponding excitation laser light source 1021 is incident on the R light rotation ring, the G light rotation ring, and the B light rotation ring, respectively. . The excitation light is periodically absorbed in the order of the R light phosphor 220R, the G light phosphor 220G, and the B light phosphor 220B (see FIGS. 22 to 24).
 このとき、各色蛍光体220R,220G,220Bに入射する光の照射位置は回転軸300を中心とする円周上を時間的に移動する。励起用レーザ光源1021は高出力の励起光を出射するため、集光レンズ108が励起光を各色蛍光体に集光することにより、蛍光体の発光面積を小さくできる一方で、熱負荷が増大して損傷するおそれがある。そのため、本変更例に係る光源装置10mでは、高出力の励起光の集光点の面積を大きくすることによって熱的損傷を抑えている。また、励起光の集光点の面積を大きくすることに伴ない、回転リングの回転軸方向の幅を広げている。これにより高輝度化を図りつつ、光源装置10mを長寿命化することができる。 At this time, the irradiation position of the light incident on the respective color phosphors 220R, 220G, and 220B moves temporally on the circumference around the rotation axis 300. Since the excitation laser light source 1021 emits high-output excitation light, the condensing lens 108 condenses the excitation light on each color phosphor, so that the emission area of the phosphor can be reduced while the thermal load increases. There is a risk of damage. Therefore, in the light source device 10m according to this modification, thermal damage is suppressed by increasing the area of the condensing point of the high-output excitation light. In addition, the width of the rotating ring in the direction of the rotation axis is increased as the area of the condensing point of the excitation light is increased. Thereby, the lifetime of the light source device 10m can be extended while increasing the luminance.
 [実施の形態10]
 図27は、この発明の実施の形態10に係る光学エンジン2nの構成を説明する図である。
[Embodiment 10]
FIG. 27 is a view for explaining the configuration of an optical engine 2n according to Embodiment 10 of the present invention.
 図27を参照して、光学エンジン2nは、図20に示す光学エンジン2lと比較して、光源装置10lに代えて、光源装置10nを備える点で異なる。より具体的には、光源装置10nは、光源装置10lと比較して、励起光が透過する際に波長変換される透過型の蛍光体回転ドラム110lに代えて、励起光が反射する際に波長変換する反射型の蛍光体回転ドラム110nを含む点で異なる。 Referring to FIG. 27, optical engine 2n is different from optical engine 2l shown in FIG. 20 in that light source device 10n is provided instead of light source device 10l. More specifically, in comparison with the light source device 10l, the light source device 10n has a wavelength when the excitation light is reflected instead of the transmissive phosphor rotating drum 110l that is wavelength-converted when the excitation light is transmitted. The difference is that a reflective phosphor rotating drum 110n to be converted is included.
 光源装置10nは、励起用レーザ光源102と、蛍光体回転ドラム110nと、集光レンズ111と、ダイクロイックミラー119とを備える。 The light source device 10n includes an excitation laser light source 102, a phosphor rotating drum 110n, a condenser lens 111, and a dichroic mirror 119.
 励起用レーザ光源102は、励起光(紫外光)を出射する。ダイクロイックミラー119は、励起用レーザ光源102から出射される励起光が45°で入射される角度に配設されており、紫外光を反射させる一方、可視光を透過させるという光学的特性を有している。ダイクロイックミラー119によって反射された励起光は、集光レンズ111での屈折作用により、蛍光体回転ドラム110nの外周面にて集光する。これにより、蛍光体回転ドラム110nにおける蛍光体の励起に有効利用できる光を効率良く供給することができる。 The excitation laser light source 102 emits excitation light (ultraviolet light). The dichroic mirror 119 is disposed at an angle at which excitation light emitted from the excitation laser light source 102 is incident at 45 °, and has an optical characteristic of reflecting visible light while reflecting ultraviolet light. ing. The excitation light reflected by the dichroic mirror 119 is condensed on the outer peripheral surface of the phosphor rotating drum 110n by the refracting action of the condenser lens 111. Thereby, the light which can be effectively used for excitation of the phosphor in the phosphor rotating drum 110n can be efficiently supplied.
 蛍光体回転ドラム110nは、励起光の光軸と直交(図の紙面に垂直な方向に相当)する回転軸300nと、回転軸300nを中心に回転自在な回転体200nとを含む。 The phosphor rotating drum 110n includes a rotating shaft 300n orthogonal to the optical axis of the excitation light (corresponding to a direction perpendicular to the drawing sheet), and a rotating body 200n that is rotatable about the rotating shaft 300n.
 回転体200nは、図示しないモータに接続される。当該モータを回転駆動することにより、回転体200nが回転軸300nを中心として回転する。回転体200nは、耐熱性ガラス等を基材として中空円筒状に形成されており、その外周面に、励起用レーザ光源102から出射された光を受ける。 Rotating body 200n is connected to a motor (not shown). By rotating the motor, the rotating body 200n rotates about the rotation shaft 300n. The rotating body 200n is formed in a hollow cylindrical shape using heat-resistant glass or the like as a base material, and receives light emitted from the excitation laser light source 102 on the outer peripheral surface thereof.
 このように回転体200nを回転させることにより、回転体200nの外周面上に配された蛍光体(図示せず)に入射する光の照射位置は回転軸300nを中心とする円周上を時間的に移動することとなる。これにより、蛍光体の特定の位置に集中的に光が入射されることによって、当該特定の位置が過熱されて損傷するのを抑制することができる。 By rotating the rotator 200n in this manner, the irradiation position of light incident on a phosphor (not shown) arranged on the outer peripheral surface of the rotator 200n takes time on the circumference around the rotation axis 300n. Will move. Thereby, it can suppress that the said specific position is overheated and damaged when light injects into the specific position of fluorescent substance intensively.
 図28は、図27における回転体200nの構成を説明する図である。図28(a)は、回転軸300nに垂直な方向(図の紙面に水平な方向に相当)の断面図である、図28(b)は、回転体200nの外周部の拡大図である。 FIG. 28 is a diagram illustrating the configuration of the rotating body 200n in FIG. FIG. 28A is a cross-sectional view in a direction perpendicular to the rotating shaft 300n (corresponding to a direction horizontal to the drawing sheet), and FIG. 28B is an enlarged view of the outer peripheral portion of the rotating body 200n.
 図28(a)を参照して、回転体200nは、回転軸方向に延びる円筒状の透光性基材210と、透光性基材210の外周面上に全面にわたって配置される蛍光体と、ミラー膜232とを含む。 Referring to FIG. 28A, a rotating body 200n includes a cylindrical translucent substrate 210 extending in the rotation axis direction, and a phosphor disposed over the entire outer peripheral surface of the translucent substrate 210. , And mirror film 232.
 蛍光体は、R光蛍光体220Rと、G光蛍光体220Gと、B光蛍光体220Bとを含む。R光蛍光体220Rは、紫外光により励起されてR光を発光する。G光蛍光体220Gは、紫外光により励起されてG光を発光する。B光蛍光体220Bは、紫外光により励起されてB光を発光する。 The phosphor includes an R light phosphor 220R, a G light phosphor 220G, and a B light phosphor 220B. The R light phosphor 220R emits R light when excited by ultraviolet light. The G light phosphor 220G is excited by ultraviolet light and emits G light. The B light phosphor 220B is excited by ultraviolet light to emit B light.
 R光蛍光体220R、G光蛍光体220GおよびB光蛍光体220Bは、透光性基材210の外周面上に、図28(a)に示す配列で並べられている。具体的には、R光蛍光体220R、G光蛍光体220G、B光蛍光体220Bは、その順に、円周方向に隣り合わせとなるように配置されており、それぞれ異なる角度範囲を有している。 The R light phosphor 220R, the G light phosphor 220G, and the B light phosphor 220B are arranged on the outer peripheral surface of the translucent substrate 210 in the arrangement shown in FIG. Specifically, the R light phosphor 220R, the G light phosphor 220G, and the B light phosphor 220B are arranged so as to be adjacent to each other in the circumferential direction in that order, and have different angle ranges. .
 なお、R光蛍光体220R,G光蛍光体220G,B光蛍光体220Bの占有する角度範囲の比率は、白色光を得るためのR光、G光、B光の混合比率に応じて設定することができる。たとえばR光,G光,B光の混合比率が1:2:1である場合には、各色蛍光体220R,220G,220Bの角度範囲の比率を1:2:1とすればよい。この角度範囲の比率は、各色光の混合比率に併せて各色蛍光体220R,220G,220Bの発光特性を考慮して設定することが可能である。 The ratio of the angle range occupied by the R light phosphor 220R, the G light phosphor 220G, and the B light phosphor 220B is set according to the mixing ratio of the R light, the G light, and the B light to obtain white light. be able to. For example, when the mixing ratio of R light, G light, and B light is 1: 2: 1, the ratio of the angle ranges of the respective color phosphors 220R, 220G, 220B may be 1: 2: 1. The ratio of the angle range can be set in consideration of the light emission characteristics of the respective color phosphors 220R, 220G, and 220B in accordance with the mixing ratio of the respective color lights.
 ミラー膜232は、透光性基材210の内周面上に全面にわたって配置される。ミラー膜232は、各色蛍光体220R,220G,220Bが発光する可視光を反射する可視光反射部材である。 The mirror film 232 is disposed over the entire inner peripheral surface of the translucent substrate 210. The mirror film 232 is a visible light reflecting member that reflects visible light emitted from the respective color phosphors 220R, 220G, and 220B.
 図28(b)には、図28(a)中に破線で囲んだ領域RGN2の拡大図を示す。図28(b)に示すように、R,G,Bの蛍光体(たとえば、G光蛍光体220Gとする)には、集光レンズ111により集光された励起光が入射される。G光蛍光体220Gは、この励起光を吸収してG光を発光する。このとき、G光蛍光体220Gの発光光は、等方性を有する放射光であるため、回転体200nの径方向の外側に向かう光以外に、径方向内方に向かう光も発生する。ミラー膜232は、この径方向の内側に向かう光を反射するように形成されている。そのため、G光蛍光体220Gの発光光を、効率良く集光レンズ111に入射させることができ、光源装置10nの光利用効率を高めることができる。 FIG. 28 (b) shows an enlarged view of the region RGN2 surrounded by a broken line in FIG. 28 (a). As shown in FIG. 28B, excitation light condensed by the condenser lens 111 is incident on the R, G, and B phosphors (for example, the G light phosphor 220G). The G light phosphor 220G absorbs this excitation light and emits G light. At this time, since the emitted light of the G light phosphor 220G is isotropic radiated light, light traveling inward in the radial direction is also generated in addition to light traveling outward in the radial direction of the rotating body 200n. The mirror film 232 is formed so as to reflect the light traveling inward in the radial direction. Therefore, the emitted light of the G light phosphor 220G can be efficiently incident on the condenser lens 111, and the light use efficiency of the light source device 10n can be increased.
 また、集光レンズ111で集光した励起光を各色蛍光体220R,220G,220Bに入射する構成としたことにより、蛍光体220での励起(波長変換)に有効に利用できる光が増えるため、点光源に近い発光部を実現することができる。その結果、光利用効率が向上する。 In addition, since the excitation light condensed by the condenser lens 111 is configured to be incident on the respective color phosphors 220R, 220G, and 220B, light that can be effectively used for excitation (wavelength conversion) in the phosphor 220 increases. A light emitting unit close to a point light source can be realized. As a result, light utilization efficiency is improved.
 上記の構成において、回転体200nが回転軸300nを中心にして回転することにより、蛍光体に入射する励起光の入射位置は、R光蛍光体220R、G光蛍光体220G、B光蛍光体220Bの順に周期的に変化する。この結果、回転体200nは、R光、G光、B光をその順に周期的に発光する。回転体200nから周期的に放射されるR光、G光、B光は、集光レンズ111により集光される。集光レンズ111により集光された各色光は、ダイクロイックミラー119を透過して透光性ロッド80(図28)の一方の端部に入射する。 In the above configuration, when the rotator 200n rotates about the rotation axis 300n, the incident positions of the excitation light incident on the phosphor are the R light phosphor 220R, the G light phosphor 220G, and the B light phosphor 220B. It changes periodically in this order. As a result, the rotating body 200n periodically emits R light, G light, and B light in that order. R light, G light, and B light periodically emitted from the rotating body 200 n are collected by the condenser lens 111. Each color light condensed by the condenser lens 111 passes through the dichroic mirror 119 and enters one end of the translucent rod 80 (FIG. 28).
 以上のように、この発明の実施の形態10によれば、蛍光体回転ドラムの外周面上に、円周方向に複数の色光をそれぞれ発光する複数の蛍光体を並設することにより、励起用レーザ光源から出射した光を、蛍光体回転ドラムを用いて時分割により、R光、G光、B光からなる照明光に変換することができる。したがって、単一の励起用レーザ光源のみから光源装置を構成することができ、光源装置を小型化することができる。 As described above, according to the tenth embodiment of the present invention, a plurality of phosphors each emitting a plurality of colored lights in the circumferential direction are arranged in parallel on the outer circumferential surface of the phosphor rotating drum, thereby Light emitted from the laser light source can be converted into illumination light composed of R light, G light, and B light by time division using a phosphor rotating drum. Therefore, the light source device can be configured only from a single excitation laser light source, and the light source device can be reduced in size.
 また、本実施の形態10においても、励起用レーザ光源から出射される励起光を蛍光体に集光させることにより、蛍光体で効率良く波長変換することができるとともに、蛍光体で発光した光を効率良く出射側に向かわせることができるため、光利用効率を高めることができ、照明光の輝度が向上する。この結果、小型で高輝度かつ高効率な光源装置を実現することができる。 Also in the tenth embodiment, the excitation light emitted from the excitation laser light source can be condensed on the phosphor, whereby the wavelength can be efficiently converted by the phosphor, and the light emitted from the phosphor can be converted. Since the light can be efficiently directed to the emission side, the light use efficiency can be increased, and the luminance of the illumination light is improved. As a result, a light source device that is small and has high brightness and high efficiency can be realized.
 (変更例)
 図29は、この発明の実施の形態10の変更例に係る光源装置が備える回転体200pの構成を説明する図である。図29(a)は、回転軸(図示せず)に垂直な方向(図の紙面に水平な方向に相当)の断面図である、図29(b)は、回転体200pの外周部の拡大図である。
(Example of change)
FIG. 29 is a diagram illustrating the configuration of a rotating body 200p included in a light source device according to a modification of the tenth embodiment of the present invention. FIG. 29A is a cross-sectional view in a direction perpendicular to a rotation axis (not shown) (corresponding to a direction horizontal to the drawing sheet), and FIG. 29B is an enlarged view of the outer peripheral portion of the rotating body 200p. FIG.
 図29(a)を参照して、回転体200pは、回転軸方向に延びる円筒状の透光性基材210と、透光性基材210の外周面上に全面にわたって配置される蛍光体と、ミラー膜232とを含む。 Referring to FIG. 29 (a), a rotator 200p includes a cylindrical translucent substrate 210 extending in the direction of the rotation axis, and a phosphor disposed over the entire outer peripheral surface of the translucent substrate 210. , And mirror film 232.
 蛍光体は、R光蛍光体220Rと、G光蛍光体220Gと、B光蛍光体220Bと、紫外光により励起されてYe光を発光するYe光蛍光体220Yeとを含む。 The phosphor includes an R light phosphor 220R, a G light phosphor 220G, a B light phosphor 220B, and a Ye light phosphor 220Ye that emits Ye light when excited by ultraviolet light.
 R光蛍光体220R、G光蛍光体220G、B光蛍光体220BおよびYe光蛍光体220Yeは、透光性基材210の外周面上に、図29(a)に示す配列で並べられている。具体的には、R光蛍光体220R、Ye光蛍光体220Ye、G光蛍光体220G、B光蛍光体220Bは、その順に、円周方向に隣り合わせとなるように配置されており、それぞれ異なる角度範囲を有している。 The R light phosphor 220R, the G light phosphor 220G, the B light phosphor 220B, and the Ye light phosphor 220Ye are arranged on the outer peripheral surface of the translucent substrate 210 in the arrangement shown in FIG. . Specifically, the R light phosphor 220R, the Ye light phosphor 220Ye, the G light phosphor 220G, and the B light phosphor 220B are arranged so as to be adjacent to each other in the circumferential direction in that order, and are at different angles. Have a range.
 なお、R光蛍光体220R、G光蛍光体220G、B光蛍光体220B、Ye光蛍光体220Yeの占有する角度範囲の比率は、白色光を得るためのR光、G光、B光、Ye光の混合比率に応じて設定することができる。たとえばR光、G光、B光、Ye光の混合比率が1:1:1:1である場合には、各色蛍光体220R,220G,200B,220Yeの角度範囲の比率を1:1:1:1とすればよい。この角度範囲の比率は、各色光の混合比率に併せて各色蛍光体220R,220G,220B,220Yeの発光特性を考慮して設定することが可能である。 Note that the ratio of the angle ranges occupied by the R light phosphor 220R, the G light phosphor 220G, the B light phosphor 220B, and the Ye light phosphor 220Ye is R light, G light, B light, and Ye for obtaining white light. It can be set according to the mixing ratio of light. For example, when the mixing ratio of R light, G light, B light, and Ye light is 1: 1: 1: 1, the ratio of the angular ranges of the respective color phosphors 220R, 220G, 200B, and 220Ye is 1: 1: 1. : 1. The ratio of the angle range can be set in consideration of the light emission characteristics of the respective color phosphors 220R, 220G, 220B, and 220Ye in combination with the mixing ratio of the respective color lights.
 ミラー膜232は、透光性基材210の内周面上に全面にわたって配置されており、各色蛍光体220R,220G,220B,220Yeが発光する可視光を反射する。  The mirror film 232 is disposed over the entire inner peripheral surface of the translucent substrate 210, and reflects visible light emitted from the color phosphors 220R, 220G, 220B, and 220Ye. *
 図29(b)には、図29(a)中に破線で囲んだ領域RGN3の拡大図を示す。図29(b)に示すように、Ye光蛍光体220Yeには、集光レンズ117により集光された励起光が入射される。Ye光蛍光体220Yeは、この励起光を吸収してYe光を発光する。ミラー膜232は、Ye光蛍光体220Yeが発光するYe光のうち、回転体200pの径方向内方に向かう光を反射する。 FIG. 29 (b) shows an enlarged view of the region RGN3 surrounded by a broken line in FIG. 29 (a). As shown in FIG. 29B, the excitation light condensed by the condenser lens 117 is incident on the Ye light phosphor 220Ye. The Ye light phosphor 220Ye absorbs this excitation light and emits Ye light. The mirror film 232 reflects light traveling inward in the radial direction of the rotating body 200p out of Ye light emitted from the Ye light phosphor 220Ye.
 上記の構成において、回転体200pが図示しない回転軸を中心にして回転することにより、蛍光体に入射する励起光の照射位置は、R光蛍光体220R、Ye光蛍光体220Ye、G光蛍光体220G、B光蛍光体220Bの順に周期的に変化する。この結果、回転体200pは、R光、Ye光、G光、B光をその順に周期的に発光する。回転体200pから周期的に放射されるR光、Ye光、G光、B光は、集光レンズ117により集光される。集光レンズ117により集光された各色光は、ダイクロイックミラー119を透過して透光性ロッド80(図27)の一方の端部に入射する。 In the above configuration, when the rotator 200p rotates about a rotation axis (not shown), the irradiation position of the excitation light incident on the phosphor is R light phosphor 220R, Ye light phosphor 220Ye, G light phosphor. It changes periodically in the order of 220G and B photophosphor 220B. As a result, the rotating body 200p periodically emits R light, Ye light, G light, and B light in that order. R light, Ye light, G light, and B light periodically emitted from the rotating body 200p are collected by the condenser lens 117. Each color light condensed by the condenser lens 117 passes through the dichroic mirror 119 and enters one end of the translucent rod 80 (FIG. 27).
 以上のように、本変更例によれば、励起用レーザ光から出射した光を、蛍光体回転ドラムを用いて時分割により、R光、G光、B光、Ye光からなる照明光に変換することができる。このうちのYe光は、色度図上でR光、G光およびB光が再現可能な色範囲外の色を再現可能な光である。したがって、本変更例に係る光源装置によれば、色度図上で再現できる色の範囲が広がることにより、表示される画像の色再現性が向上する。また、R光、G光およびB光にYe光が追加されたことにより、表示される画像の輝度が向上する。 As described above, according to this modification, the light emitted from the excitation laser light is converted into illumination light composed of R light, G light, B light, and Ye light by time division using the phosphor rotating drum. can do. Of these, Ye light is light that can reproduce colors outside the color range in which R light, G light, and B light can be reproduced on the chromaticity diagram. Therefore, according to the light source device according to the present modification, the color range that can be reproduced on the chromaticity diagram is widened, so that the color reproducibility of the displayed image is improved. Further, the Ye light is added to the R light, the G light, and the B light, so that the brightness of the displayed image is improved.
 [実施の形態11]
 図30は、この発明の実施の形態11に係る光源装置を光源系に用いた、プロジェクタの主要部の構成を模式的に示す図である。本発明に実施の形態11に係るプロジェクタは、先の実施の形態8~10に係るプロジェクタと対比して、単一の光変調素子をR,G,B各色を時分割で切替えて共通使用する単板方式に代えて、R,G,B各色専用の光変調素子を備える3板方式に変更した点で異なる。
[Embodiment 11]
FIG. 30 is a diagram schematically showing the configuration of the main part of the projector using the light source device according to Embodiment 11 of the present invention for the light source system. In contrast to the projectors according to the eighth to tenth embodiments, the projector according to the eleventh embodiment of the present invention uses a single light modulation element in common by switching R, G, and B colors in a time division manner. Instead of the single plate method, it is different in that it is changed to a three plate method including light modulation elements dedicated to R, G, and B colors.
 図30を参照して、本発明の実施の形態11に係るプロジェクタは、液晶デバイスを利用して映像を投写するプロジェクタであって、光学エンジン2qと、投写レンズ3とを備え、その外郭を筐体(図示せず)で覆われている。なお、プロジェクタは、スピーカ等の音声を出力するための構成要素や、光学エンジン2qの構成要素および音声出力手段を電気的に制御するための回路基板なども搭載されているが、図30では、これらを含む一部の構成要素の図示は省略されている。 Referring to FIG. 30, a projector according to an eleventh embodiment of the present invention is a projector that projects an image using a liquid crystal device, and includes an optical engine 2q and a projection lens 3, and has an outer casing. Covered with a body (not shown). The projector is also equipped with components such as a speaker for outputting sound, a circuit board for electrically controlling the components of the optical engine 2q and the sound output means, but in FIG. The illustration of some components including these is omitted.
 光学エンジン2qは、光源装置10qを含む。光源装置10qは、図27で説明した光源装置10nと基本的な構成が同じであり、励起光が反射する際に波長変換する反射型の蛍光体回転ドラム110qを含んでいる。 The optical engine 2q includes a light source device 10q. The light source device 10q has the same basic configuration as the light source device 10n described with reference to FIG. 27, and includes a reflective phosphor rotating drum 110q that converts the wavelength when excitation light is reflected.
 光源装置10qは、励起用レーザ光源102と、蛍光体回転ドラム110qと、集光レンズ111と、ダイクロイックミラー119とを備える。 The light source device 10q includes an excitation laser light source 102, a phosphor rotating drum 110q, a condenser lens 111, and a dichroic mirror 119.
 励起用レーザ光源102は、励起光(紫外光)を出射する。ダイクロイックミラー119は、励起用レーザ光源102から出射される励起光を反射させる一方、当該励起光から波長変換した可視光を透過させる。ダイクロイックミラー119によって反射された励起光は、集光レンズ111での屈折作用により、蛍光体回転ドラム110qの外周面にて集光する。これにより、蛍光体回転ドラム110qにおける蛍光体の励起に有効利用できる光を効率良く供給することができる。 The excitation laser light source 102 emits excitation light (ultraviolet light). The dichroic mirror 119 reflects the excitation light emitted from the excitation laser light source 102 and transmits visible light whose wavelength is converted from the excitation light. The excitation light reflected by the dichroic mirror 119 is condensed on the outer peripheral surface of the phosphor rotating drum 110q by the refracting action of the condenser lens 111. Thereby, the light which can be effectively used for excitation of the phosphor in the phosphor rotating drum 110q can be efficiently supplied.
 蛍光体回転ドラム110qは、励起光の光軸と直交(図の紙面に垂直な方向に相当)する回転軸300qと、回転軸300qを中心に回転自在な回転体200qとを含む。 The phosphor rotating drum 110q includes a rotating shaft 300q orthogonal to the optical axis of the excitation light (corresponding to a direction perpendicular to the drawing sheet), and a rotating body 200q that is rotatable about the rotating shaft 300q.
 回転体200qは、図示しないモータに接続される。当該モータを回転駆動することにより、回転体200qが回転軸300qを中心として回転する。回転体200qは、耐熱性ガラス等を基材として中空円筒状に形成されており、その外周面に、励起用レーザ光源102から出射された光を受ける。 Rotating body 200q is connected to a motor (not shown). By rotating the motor, the rotating body 200q rotates about the rotation shaft 300q. Rotating body 200q is formed in a hollow cylindrical shape using heat-resistant glass or the like as a base material, and receives light emitted from excitation laser light source 102 on the outer peripheral surface thereof.
 本実施の形態11において、回転体200qは、励起用レーザ光源102から出射された光を吸収してR光、G光、B光を発光する。回転体200qから発光した各色光は、集光レンズ111により集光される。集光レンズ111により集光された各色光は、ダイクロイックミラー119を透過してフライアイインテグレータ11に入射される。 In the eleventh embodiment, the rotating body 200q absorbs light emitted from the excitation laser light source 102 and emits R light, G light, and B light. Each color light emitted from the rotating body 200q is condensed by the condenser lens 111. Each color light condensed by the condenser lens 111 passes through the dichroic mirror 119 and enters the fly eye integrator 11.
 光源装置10qからの光は、フライアイインテグレータ11を介して、PBS(偏光ビームスプリッタ)アレイ12およびコンデンサレンズ13に入射される。フライアイインテグレータ11は、蝿の目状のレンズ群からなるフライアイレンズを備え、液晶パネル18,24,33に入射する光の照度分布が均一となるよう、光源装置10qから入射される光に光学作用を付与する。 The light from the light source device 10 q is incident on a PBS (polarized beam splitter) array 12 and a condenser lens 13 via the fly eye integrator 11. The fly-eye integrator 11 includes a fly-eye lens made up of a lens group having a corrugated eye shape. Add optical action.
 PBSアレイ12は、複数のPBSと1/2波長板がアレイ状に配列されたものであり、フライアイインテグレータ11から入射された光の偏光方向を1方向に揃える。コンデンサレンズ13は、PBSアレイ12から入射された光に集光作用を付与する。コンデンサレンズ13を透過した光は、ダイクロイックミラー14に入射する。 The PBS array 12 has a plurality of PBSs and half-wave plates arranged in an array, and aligns the polarization direction of the light incident from the fly eye integrator 11 in one direction. The condenser lens 13 condenses light incident from the PBS array 12. The light transmitted through the condenser lens 13 enters the dichroic mirror 14.
 ダイクロイックミラー14は、コンデンサレンズ13から入射された光のうち、B光のみを透過し、R光およびG光を反射する。ダイクロイックミラー14を透過したB光は、ミラー15に導かれ、そこで反射され、コンデンサレンズ16に入射される。 The dichroic mirror 14 transmits only the B light among the light incident from the condenser lens 13 and reflects the R light and the G light. The B light transmitted through the dichroic mirror 14 is guided to the mirror 15, reflected there, and incident on the condenser lens 16.
 コンデンサレンズ16は、B光がほぼ平行光で液晶パネル18に入射するよう、B光に光学作用を付与する。コンデンサレンズ16を透過したB光は、入射側偏光板17を介して液晶パネル18に入射される。液晶パネル18は、青色用の映像信号に応じて駆動され、その駆動状態に応じてB光を変調する。液晶パネル18によって変調されたB光は、出射側偏光板19を介して、ダイクロイックプリズム20に入射される。 The condenser lens 16 imparts an optical action to the B light so that the B light enters the liquid crystal panel 18 as substantially parallel light. The B light transmitted through the condenser lens 16 is incident on the liquid crystal panel 18 via the incident side polarizing plate 17. The liquid crystal panel 18 is driven according to the blue video signal, and modulates the B light according to the driving state. The B light modulated by the liquid crystal panel 18 is incident on the dichroic prism 20 via the emission side polarizing plate 19.
 ダイクロイックミラー14によって反射された光のうちG光は、ダイクロイックミラー21によって反射され、コンデンサレンズ22に入射される。コンデンサレンズ22は、G光がほぼ平行光で液晶パネル24に入射するよう、G光に光学作用を付与する。コンデンサレンズ22を透過したG光は、入射側偏光板23を介して液晶パネル24に入射される。液晶パネル24は、緑色用の映像信号に応じて駆動され、その駆動状態に応じてG光を変調する。液晶パネル24によって変調されたG光は、出射側偏光板25を介して、ダイクロイックプリズム20に入射される。 G light out of the light reflected by the dichroic mirror 14 is reflected by the dichroic mirror 21 and enters the condenser lens 22. The condenser lens 22 imparts an optical action to the G light so that the G light enters the liquid crystal panel 24 as substantially parallel light. The G light transmitted through the condenser lens 22 is incident on the liquid crystal panel 24 through the incident side polarizing plate 23. The liquid crystal panel 24 is driven according to the green video signal and modulates the G light according to the driving state. The G light modulated by the liquid crystal panel 24 is incident on the dichroic prism 20 via the output side polarizing plate 25.
 ダイクロイックミラー21を透過したR光は、コンデンサレンズ26に入射される。コンデンサレンズ26は、R光がほぼ平行光で液晶パネル33に入射するよう、R光に光学作用を付与する。コンデンサレンズ26を透過したR光は、光路長調整用のリレーレンズ27,29,31と2つのミラー28,30とからなる光路を進み、入射側偏光板32を介して液晶パネル33に入射される。液晶パネル33は、赤色用の映像信号に応じて駆動され、その駆動情報に応じてR光を変調する。液晶パネル33によって変調されたR光は、出射側偏光板34を介して、ダイクロイックプリズム20に入射される。 The R light transmitted through the dichroic mirror 21 is incident on the condenser lens 26. The condenser lens 26 imparts an optical action to the R light so that the R light enters the liquid crystal panel 33 as substantially parallel light. The R light transmitted through the condenser lens 26 travels on an optical path composed of relay lenses 27, 29, 31 for adjusting the optical path length and the two mirrors 28, 30, and is incident on the liquid crystal panel 33 through the incident side polarizing plate 32. The The liquid crystal panel 33 is driven according to the video signal for red and modulates the R light according to the drive information. The R light modulated by the liquid crystal panel 33 is incident on the dichroic prism 20 via the emission side polarizing plate 34.
 ダイクロイックプリズム20は、液晶パネル18,24,33によって変調されたB光、G光およびR光を色合成し、投写レンズ3へと入射させる。投写レンズ3は、投写光を被投写面(スクリーン)上に結像させるためのレンズ群と、これらレンズ群の一部を光軸方向に変位させて投写画像のズーム状態およびフォーカス状態を調整するためのアクチュエータを備えている。ダイクロイックプリズム20によって色合成された光は、投写レンズ3によって、スクリーン上に拡大投写される。 The dichroic prism 20 color-synthesizes the B light, G light, and R light modulated by the liquid crystal panels 18, 24, 33 and makes the light enter the projection lens 3. The projection lens 3 adjusts the zoom state and the focus state of the projected image by displacing a part of the lens group for forming an image of the projection light on the projection surface (screen) and in the optical axis direction. An actuator is provided. The light synthesized by the dichroic prism 20 is enlarged and projected on the screen by the projection lens 3.
 (光源装置の構成)
 以下、図面を用いて、図30における光源装置10qに用いられる蛍光体回転ドラム110qの構成を説明する。
(Configuration of light source device)
Hereinafter, the configuration of the phosphor rotating drum 110q used in the light source device 10q in FIG. 30 will be described with reference to the drawings.
 図30において、回転体200qは、各々が、励起用レーザ光源102から出射された光を受けてR光、G光、B光を発光する、複数の蛍光部を含む。この複数の蛍光部は、図31に示すように、各々の外周面上に蛍光体が塗布された複数の回転リングを、回転軸方向に配列させることにより形成されている。 In FIG. 30, the rotating body 200q includes a plurality of fluorescent portions that each receive light emitted from the excitation laser light source 102 and emit R light, G light, and B light. As shown in FIG. 31, the plurality of fluorescent portions are formed by arranging a plurality of rotating rings each having a fluorescent material coated on each outer peripheral surface in the rotation axis direction.
 図31は、回転リングの配列方向と垂直となる面を切り口とした回転リングごとの断面図である。 FIG. 31 is a cross-sectional view of each rotating ring with a plane perpendicular to the direction in which the rotating rings are arranged.
 図31を参照して、回転体200qは、複数(たとえば、3個とする)の回転リング212_1,212_2,212_3を含む。同図では、理解を容易にするために、回転リング212_1,212_2,212_3を回転軸に平行にずらして表示しているが、実際には、これらの回転リングは、回転軸方向に並設されるものである。 Referring to FIG. 31, rotating body 200q includes a plurality of (for example, three) rotating rings 212_1, 212_2, and 212_3. In the figure, for easy understanding, the rotating rings 212_1, 212_2, and 212_3 are displayed while being shifted in parallel with the rotating shaft. However, in actuality, these rotating rings are arranged in parallel in the rotating shaft direction. Is.
 回転リング212_1,212_2,212_3は、同一の形状を有している。以下では、回転リング212_1,212_2,212_3を総称する場合には、符号212を用いる。 The rotating rings 212_1, 212_2, 212_3 have the same shape. Hereinafter, the reference numeral 212 is used to collectively refer to the rotating rings 212_1, 212_2, and 212_3.
 回転リング212は、円環状の透光性基材210と、透光性基材210の外周面上の全面にわたって配置される蛍光体と、ミラー膜232とを含む。 The rotating ring 212 includes an annular translucent substrate 210, a phosphor disposed over the entire outer peripheral surface of the translucent substrate 210, and a mirror film 232.
 蛍光体は、R光蛍光体220Rと、G光蛍光体220Gと、B光蛍光体220Bとを含む。R光蛍光体220R、G光蛍光体220GおよびB光蛍光体220Bは、透光性基材210の外周面上に、図31に示す配列で並べられている。具体的には、R光蛍光体220R、G光蛍光体220G、B光蛍光体220Bは、その順に、円周方向に隣り合わせとなるように配置されており、それぞれ異なる角度範囲を有している。 The phosphor includes an R light phosphor 220R, a G light phosphor 220G, and a B light phosphor 220B. The R light phosphor 220R, the G light phosphor 220G, and the B light phosphor 220B are arranged on the outer peripheral surface of the translucent substrate 210 in the arrangement shown in FIG. Specifically, the R light phosphor 220R, the G light phosphor 220G, and the B light phosphor 220B are arranged so as to be adjacent to each other in the circumferential direction in that order, and have different angle ranges. .
 ミラー膜232は、透光性基材210の内周面上に全面にわたって配置される。ミラー膜232は、各色蛍光体220R,220G,220Bが発光する可視光を反射する。 The mirror film 232 is disposed over the entire inner peripheral surface of the translucent substrate 210. The mirror film 232 reflects visible light emitted from the respective color phosphors 220R, 220G, and 220B.
 回転リング212が回転軸300qを中心にして回転することにより、蛍光体に入射する励起光の照射位置は、R光蛍光体220R、G光蛍光体220G、B光蛍光体220Bの順に周期的に変化する。この結果、回転リング212は、R光、G光、B光をその順に周期的に発光する。 As the rotating ring 212 rotates around the rotation axis 300q, the irradiation position of the excitation light incident on the phosphor is periodically in the order of the R light phosphor 220R, the G light phosphor 220G, and the B light phosphor 220B. Change. As a result, the rotating ring 212 periodically emits R light, G light, and B light in that order.
 本実施の形態11において、複数の回転リング212_1,212_2,212_3は、回転軸方向に、異なる色光の蛍光体が隣り合わせとなるように配列される。具体的には、回転リング212_1のR光蛍光体220R、回転リング212_2のG光蛍光体220G、回転リング212_3のB光蛍光体220Bが、回転軸方向に隣り合わせとなるように配列される。 In the eleventh embodiment, the plurality of rotating rings 212_1, 212_2, and 212_3 are arranged so that phosphors of different color lights are adjacent to each other in the rotation axis direction. Specifically, the R light phosphor 220R of the rotating ring 212_1, the G light phosphor 220G of the rotating ring 212_2, and the B light phosphor 220B of the rotating ring 212_3 are arranged adjacent to each other in the rotation axis direction.
 したがって、回転体200qが回転軸300qを中心にして回転することにより、回転リング212_1,212_2,212_3は、R光、G光、B光をそれぞれ発光する。そして、回転リング212_1,212_2,212_3は、各々が、R光、G光、B光の順に周期的に発光することから、回転体200q全体としては、常時、R光、G光、B光を出射することとなる。 Therefore, when the rotating body 200q rotates around the rotation axis 300q, the rotating rings 212_1, 212_2, and 212_3 emit R light, G light, and B light, respectively. Since each of the rotating rings 212_1, 212_2, and 212_3 periodically emits light in the order of R light, G light, and B light, the entire rotating body 200q always emits R light, G light, and B light. It will be emitted.
 回転体200qから出射されるR光、G光、B光は、集光レンズ111により集光される。集光レンズ117により集光された各色光は、ダイクロイックミラー119を透過してフライアイインテグレータ11(図30)に入射される。 The R light, G light, and B light emitted from the rotating body 200q are collected by the condenser lens 111. Each color light condensed by the condenser lens 117 passes through the dichroic mirror 119 and enters the fly eye integrator 11 (FIG. 30).
 光源装置10qからの光は、フライアイインテグレータ11を介して、PBS(偏光ビームスプリッタ)アレイ12およびコンデンサレンズ13に入射される。 The light from the light source device 10 q is incident on a PBS (polarized beam splitter) array 12 and a condenser lens 13 via the fly eye integrator 11.
 以上のように、この発明の実施の形態11によれば、円周方向に複数の色光をそれぞれ発光する複数の蛍光体が配列された回転リングを、回転軸方向に、異なる色光の蛍光体が隣り合わせとなるように並設することにより、励起用レーザ光源から出射した光を、蛍光体回転ドラムを用いて、R光、G光、B光の合成光からなる照明光に変換することができる。 As described above, according to the eleventh embodiment of the present invention, a rotating ring in which a plurality of phosphors each emitting a plurality of color lights in the circumferential direction is arranged, and phosphors of different color lights are arranged in the rotation axis direction. By arranging them side by side, the light emitted from the excitation laser light source can be converted into illumination light composed of combined light of R light, G light, and B light using a phosphor rotating drum. .
 また、本実施の形態11においても、励起用レーザ光源から出射される励起光を蛍光体に集光させることにより、蛍光体で効率良く波長変換することができるとともに、蛍光体で発光した光を効率良く出射側に向かわせることができるため、光利用効率を高めることができ、照明光の輝度が向上する。この結果、高輝度かつ高効率な光源装置を実現することができる。 Also in the eleventh embodiment, the excitation light emitted from the excitation laser light source is condensed on the phosphor, whereby the wavelength can be efficiently converted by the phosphor, and the light emitted from the phosphor can be converted. Since the light can be efficiently directed to the emission side, the light use efficiency can be increased, and the luminance of the illumination light is improved. As a result, a light source device with high brightness and high efficiency can be realized.
 (変更例)
 図32は、この発明の実施の形態11の変更例に係る光源装置が備える回転体200rの構成を説明する図である。
(Example of change)
FIG. 32 is a diagram illustrating the configuration of a rotating body 200r provided in a light source device according to a modification of Embodiment 11 of the present invention.
 図32を参照して、本変更例に係る回転体200rは、図31に示す回転体200qと比較して、3個の回転リング212_1~212_3に代えて、4個の回転リング214_1~214_4により構成される点で異なる。 Referring to FIG. 32, the rotating body 200r according to the present modification example includes four rotating rings 214_1 to 214_4 instead of the three rotating rings 212_1 to 212_3 as compared to the rotating body 200q illustrated in FIG. It differs in that it is configured.
 図32は、回転リングの配列方向と垂直となる面を切り口とした回転リングごとの断面図である。同図では、理解を容易にするために、回転リング214_1~214_4を回転軸に平行にずらして表示しているが、実際には、これらの回転リングは、回転軸方向に並設されるものである。 FIG. 32 is a cross-sectional view of each rotating ring with a plane perpendicular to the direction in which the rotating rings are arranged. In the figure, for the sake of easy understanding, the rotating rings 214_1 to 214_4 are displayed while being shifted in parallel to the rotating shaft. However, in actuality, these rotating rings are arranged in parallel in the rotating shaft direction. It is.
 回転リング214_1~214_4は、同一の形状を有している。以下では、回転リング214_1~214_4を総称する場合には、符号214を用いる。 The rotating rings 214_1 to 214_4 have the same shape. Hereinafter, the reference numeral 214 is used to collectively refer to the rotating rings 214_1 to 214_4.
 回転リング214は、円環状の透光性基材210と、透光性基材210の外周面上の全面にわたって配置される蛍光体と、ミラー膜232とを含む。 The rotating ring 214 includes an annular translucent substrate 210, a phosphor disposed over the entire outer peripheral surface of the translucent substrate 210, and a mirror film 232.
 蛍光体は、R光蛍光体220Rと、G光蛍光体220Gと、B光蛍光体220B、Ye光蛍光体220Yeとを含む。R光蛍光体220R、G光蛍光体220G、B光蛍光体220BおよびYe蛍光体220Yeは、透光性基材210の外周面上に、図16に示す配列で並べられている。具体的には、R光蛍光体220R、G光蛍光体220G、B光蛍光体220B、Ye蛍光体220Yeは、その順に、円周方向に隣り合わせとなるように配置されており、それぞれ異なる角度範囲を有している。 The phosphor includes an R light phosphor 220R, a G light phosphor 220G, a B light phosphor 220B, and a Ye light phosphor 220Ye. The R light phosphor 220R, the G light phosphor 220G, the B light phosphor 220B, and the Ye phosphor 220Ye are arranged on the outer peripheral surface of the translucent substrate 210 in the arrangement shown in FIG. Specifically, the R light phosphor 220R, the G light phosphor 220G, the B light phosphor 220B, and the Ye phosphor 220Ye are arranged so as to be adjacent to each other in the circumferential direction in that order, and each has a different angular range. have.
 ミラー膜232は、透光性基材210の内周面上に全面にわたって配置される。ミラー膜232は、各色蛍光体220R,220G,220B,220Yeが発光する可視光を反射する。 The mirror film 232 is disposed over the entire inner peripheral surface of the translucent substrate 210. The mirror film 232 reflects visible light emitted from the respective color phosphors 220R, 220G, 220B, and 220Ye.
 回転リング214が回転軸(図示せず)を中心にして回転することにより、蛍光体に入射する励起光の照射位置は、R光蛍光体220R、G光蛍光体220G、B光蛍光体220B、Ye光蛍光体220Yeの順に周期的に変化する。この結果、回転リング214は、R光、G光、B光、Ye光をその順に周期的に発光する。 By rotating the rotating ring 214 around a rotation axis (not shown), the irradiation position of the excitation light incident on the phosphor is the R light phosphor 220R, the G light phosphor 220G, the B light phosphor 220B, It changes periodically in the order of Ye photophosphor 220Ye. As a result, the rotating ring 214 periodically emits R light, G light, B light, and Ye light in that order.
 本変更例おいて、複数の回転リング214_1~214_4は、回転軸方向に、異なる色光の蛍光体が隣り合わせとなるように配列される。具体的には、回転リング214_1のR光蛍光体220R、回転リング214_4のG光蛍光体220G、回転リング214_3のB光蛍光体220B、回転リング214_4のYe蛍光体220Yeが、回転軸方向に隣り合わせとなるように配列される。 In this modification, the plurality of rotating rings 214_1 to 214_4 are arranged so that phosphors of different color lights are adjacent to each other in the direction of the rotation axis. Specifically, the R phosphor 220R of the rotating ring 214_1, the G phosphor 220G of the rotating ring 214_4, the B phosphor 220B of the rotating ring 214_3, and the Ye phosphor 220Ye of the rotating ring 214_4 are adjacent to each other in the rotation axis direction. Are arranged so that
 したがって、回転体200rが回転軸を中心にして回転することにより、回転リング214_1~214_4は、R光、G光、B光、Ye光をそれぞれ発光する。そして、回転リング214_1~214_4は、各々が、R光、G光、B光、Ye光の順に周期的に発光することから、回転体200r全体としては、常時、R光、G光、B光、Ye光を出射することとなる。 Therefore, when the rotating body 200r rotates around the rotation axis, the rotating rings 214_1 to 214_4 emit R light, G light, B light, and Ye light, respectively. Since each of the rotating rings 214_1 to 214_4 periodically emits light in the order of R light, G light, B light, and Ye light, the entire rotating body 200r always has R light, G light, and B light. , Ye light is emitted.
 回転体200rから出射されるR光、G光、B光、Ye光は、集光レンズ111により集光される。集光レンズ117により集光された各色光は、ダイクロイックミラー119を透過してフライアイインテグレータ11(図30)に入射される。 The R light, G light, B light, and Ye light emitted from the rotating body 200r are condensed by the condenser lens 111. Each color light condensed by the condenser lens 117 passes through the dichroic mirror 119 and enters the fly eye integrator 11 (FIG. 30).
 光源装置10rからの光は、フライアイインテグレータ11を介して、PBS(偏光ビームスプリッタ)アレイ12およびコンデンサレンズ13に入射される。 The light from the light source device 10 r enters the PBS (polarized beam splitter) array 12 and the condenser lens 13 via the fly eye integrator 11.
 以上のように、本変更例によれば、励起用レーザ光から出射した光を、蛍光体回転ドラムを用いて、R光、G光、B光、Ye光の合成光からなる照明光に変換することができる。これにより、本変更例に係る光源装置によれば、色度図上で再現できる色の範囲が広がることにより、表示される画像の色再現性が向上する。また、R光、G光およびB光にYe光が追加されたことにより、表示される画像の輝度が向上する。 As described above, according to this modification, the light emitted from the excitation laser beam is converted into illumination light composed of the combined light of R light, G light, B light, and Ye light using the phosphor rotating drum. can do. Thereby, according to the light source device which concerns on this example of a change, the color reproducibility of the image displayed is improved by expanding the range of the color which can be reproduced on a chromaticity diagram. Further, the Ye light is added to the R light, the G light, and the B light, so that the brightness of the displayed image is improved.
 なお、本変更例では、R光、G光、B光に加えてYe光を第4色光として利用する構成を例示したが、第4色光はこれに限定されるものではない。たとえば、第4色光は、シアン光、マゼンタ光であってもよい。あるいは、単一の色光とする以外にも、複数の色光であってもよい。 In this modification, the configuration using Ye light as the fourth color light in addition to the R light, G light, and B light is exemplified, but the fourth color light is not limited to this. For example, the fourth color light may be cyan light or magenta light. Alternatively, a plurality of color lights may be used besides the single color light.
 上記の実施の形態8~11においては、本発明に係る光源装置を投写型映像表示装置としてのプロジェクタに適用した例について説明したが、これに限定されるものではない。また、プロジェクタの構成についても上記の実施の形態において説明した構成に限定されるものではない。 In the above eighth to eleventh embodiments, the example in which the light source device according to the present invention is applied to a projector as a projection video display device has been described. However, the present invention is not limited to this. Further, the configuration of the projector is not limited to the configuration described in the above embodiment.
 また、上記の実施の形態8~11においては、励起光を出射する固体光源を、紫外光を出射するレーザ光源とした例について説明したが、これに限定されるものではない。たとえば、固体光源を青色レーザ光を出射するレーザ光源で構成してもよい。 Further, in the above eighth to eleventh embodiments, the solid light source that emits the excitation light is described as the laser light source that emits the ultraviolet light. However, the present invention is not limited to this. For example, the solid light source may be constituted by a laser light source that emits blue laser light.
 今回開示された実施の形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施の形態の説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is shown not by the above description of the embodiments but by the scope of claims for patent, and is intended to include meanings equivalent to the scope of claims for patent and all modifications within the scope.
 2,2k~2q 光学エンジン、3 投写レンズ、8 反射ミラー、10,10a~10r 光源装置、11 フライアイインテグレータ、12 PBSアレイ、13,16,22,26 コンデンサレンズ、14,21,55,61b,61c,119 ダイクロイックミラー、15,28,30,113,126 ミラー、18,24,33 液晶パネル、19,25,34 出射側偏光板、20,114 ダイクロイックプリズム、17,23,32 入射側偏光板、27,29,31 リレーレンズ、50c~50e,61 反射ミラー、50,50a,50b,50g,50j~50l 固体光源、51,57,63,300,300n,300q 回転軸、52,80 透光性ロッド、53 偏心レンズ、54,108,111,112,116,117,118 集光レンズ、、56,56i,1100 リフレクタ、58 支持部、60,60g,60h,220,220R,220G,200B,220Ye,600R,600G,600B,620R,620G,620B  蛍光体、62 蛍光体設置部、82 リレー光学系、84 光変調素子、102,1021 励起用レーザ光源、110k~110q 蛍光体回転ドラム、112m コリメーションレンズ、115 ダイクロイックキューブ、200k~200r 回転体、210R,210G,210B,212,214 回転リング、210 透光性基材、230 ダイクロイック膜、232 ミラー膜、1000 発光管。 2,2k-2q optical engine, 3 projection lens, 8 reflecting mirror, 10, 10a-10r light source device, 11 fly eye integrator, 12 PBS array, 13, 16, 22, 26 condenser lens, 14, 21, 55, 61b , 61c, 119, dichroic mirror, 15, 28, 30, 113, 126 mirror, 18, 24, 33 liquid crystal panel, 19, 25, 34 exit side polarizing plate, 20, 114 dichroic prism, 17, 23, 32 incident side polarization Plate, 27, 29, 31 relay lens, 50c-50e, 61 reflecting mirror, 50, 50a, 50b, 50g, 50j-50l solid light source, 51, 57, 63, 300, 300n, 300q rotating shaft, 52, 80 through Optical rod, 53 eccentric lens, 54, 108, 11 , 112, 116, 117, 118 condenser lens, 56, 56i, 1100 reflector, 58 support, 60, 60g, 60h, 220, 220R, 220G, 200B, 220Ye, 600R, 600G, 600B, 620R, 620G, 620B phosphor, 62 phosphor installation part, 82 relay optical system, 84 light modulation element, 102, 1021 excitation laser light source, 110k to 110q phosphor rotating drum, 112m collimation lens, 115 dichroic cube, 200k to 200r rotating body, 210R, 210G, 210B, 212, 214, rotating ring, 210 translucent substrate, 230 dichroic film, 232 mirror film, 1000 arc tube.

Claims (12)

  1.  光源装置と、
     入力された映像信号に基づき、前記光源装置から出射された光を変調する光変調部と、
     前記光変調部により変調された光を投写する投写部とを備え、
     前記光源装置は、
     固体光源と、
     前記固体光源が出射した光により励起され、可視域の光を発光する蛍光体と、
     前記蛍光体が発光した光を反射して所定の方向へ出射するためのリフレクタと、
     前記リフレクタの焦点位置に前記蛍光体を設置する蛍光体設置部とを含み、
     前記蛍光体設置部は、前記蛍光体の発光した光を前記リフレクタの反射面に導くための反射部を有する、投写型映像表示装置。
    A light source device;
    A light modulation unit that modulates light emitted from the light source device based on the input video signal;
    A projection unit that projects the light modulated by the light modulation unit,
    The light source device is
    A solid light source;
    A phosphor that is excited by light emitted from the solid-state light source and emits light in the visible region;
    A reflector for reflecting the light emitted by the phosphor and emitting it in a predetermined direction;
    Including a phosphor installation portion that installs the phosphor at a focal position of the reflector,
    The projection display unit, wherein the phosphor installation unit includes a reflection unit for guiding light emitted from the phosphor to a reflection surface of the reflector.
  2.  前記光源装置は、前記固体光源が出射した光の前記蛍光体への照射位置を連続的に移動させるための照射位置移動機構をさらに含む、請求項1に記載の投写型映像表示装置。 2. The projection display apparatus according to claim 1, wherein the light source device further includes an irradiation position moving mechanism for continuously moving the irradiation position of the light emitted from the solid light source to the phosphor.
  3.  前記照射位置移動機構は、
     前記蛍光体設置部に取付けられ、前記リフレクタの光軸に平行な回転軸と、
     前記回転軸を中心として前記蛍光体設置部を回転させることにより、前記固体光源が出射した光の前記蛍光体への照射位置を、前記回転軸を中心とする円周上に移動させるための回転機構とを含み、
     前記蛍光体は、発光する色光が互いに異なる複数の発光部が前記回転軸を中心とする円周方向に沿って順に配列された光入射面を有する、請求項2に記載の投写型映像表示装置。
    The irradiation position moving mechanism is
    A rotation axis attached to the phosphor installation portion, parallel to the optical axis of the reflector;
    Rotation for moving the irradiation position of the light emitted from the solid-state light source to the phosphor on the circumference centering on the rotation axis by rotating the phosphor installation portion around the rotation axis Including the mechanism,
    3. The projection display apparatus according to claim 2, wherein the phosphor has a light incident surface in which a plurality of light emitting units that emit different colored lights are sequentially arranged along a circumferential direction centering on the rotation axis. 4. .
  4.  前記固体光源は、少なくとも1個の光源からなり、
     前記少なくとも1個の光源は、前記リフレクタの頂点部側または前記リフレクタの開口部側に配され、前記リフレクタの内部に向けて光を出射する、請求項1に記載の投写型映像表示装置。
    The solid state light source comprises at least one light source,
    2. The projection display apparatus according to claim 1, wherein the at least one light source is arranged on an apex side of the reflector or an opening side of the reflector and emits light toward the inside of the reflector.
  5.  前記光源装置は、前記固体光源が出射した光を、前記蛍光体に集光させるための集光部材をさらに含む、請求項1に記載の投写型映像表示装置。 2. The projection display apparatus according to claim 1, wherein the light source device further includes a light collecting member for condensing the light emitted from the solid light source on the phosphor.
  6.  固体光源と、
     前記固体光源が出射した光により励起され、可視域の光を発光する蛍光体と、
     前記蛍光体が発光した光を反射して所定の方向へ出射するためのリフレクタと、
     前記リフレクタの焦点位置に前記蛍光体を設置する蛍光体設置部とを備え、
     前記蛍光体設置部は、前記蛍光体の発光した光を前記リフレクタの反射面に導くための反射部を有する、光源装置。
    A solid light source;
    A phosphor that is excited by light emitted from the solid-state light source and emits light in the visible region;
    A reflector for reflecting the light emitted by the phosphor and emitting it in a predetermined direction;
    A phosphor installation section that installs the phosphor at the focal position of the reflector;
    The phosphor installation unit is a light source device having a reflection unit for guiding light emitted from the phosphor to a reflection surface of the reflector.
  7.  光源装置と、
     入力された映像信号に基づき、前記光源装置から出射された光を変調する光変調部と、
     前記光変調部により変調された光を投写する投写部とを備え、
     前記光源装置は、
     固体光源と、
     前記固体光源の光軸と直交する軸を回転軸とする回転体と、
     前記回転体の外周面上に設けられ、前記固体光源が出射した光により励起されて可視域の光を発光する蛍光体とを含む、投写型映像表示装置。
    A light source device;
    A light modulation unit that modulates light emitted from the light source device based on the input video signal;
    A projection unit that projects the light modulated by the light modulation unit,
    The light source device is
    A solid light source;
    A rotating body whose axis of rotation is an axis orthogonal to the optical axis of the solid-state light source;
    A projection display apparatus, comprising: a phosphor that is provided on an outer peripheral surface of the rotating body and is excited by light emitted from the solid light source to emit light in a visible range.
  8.  前記回転体は、前記回転軸を中心として回転駆動される円筒状の透光性基材を含み、
     前記蛍光体は、前記透光性基材の外周面上に、円周方向に所定の角度範囲を有して配置され、
     前記光源装置は、
     前記透光性基材の内周面上に前記蛍光体と対向する位置に配置され、前記蛍光体が発光した光を前記回転体の径方向の外側に向けて反射して前記固体光源が出射した光を透過するダイクロイック膜をさらに含む、請求項7に記載の投写型映像表示装置。
    The rotating body includes a cylindrical translucent substrate that is driven to rotate about the rotation axis,
    The phosphor is disposed on the outer peripheral surface of the translucent substrate with a predetermined angular range in the circumferential direction,
    The light source device is
    The solid light source is emitted by reflecting the light emitted from the phosphor toward the outer side in the radial direction of the rotating body, disposed at a position facing the phosphor on the inner peripheral surface of the translucent substrate. The projection display apparatus according to claim 7, further comprising a dichroic film that transmits the transmitted light.
  9.  前記蛍光体は、回転軸方向に沿って並設され、前記固体光源が出射した光を受けて複数の色光をそれぞれ発光する複数の蛍光部を含み、
     前記複数の蛍光部は、前記透光性基材の外周面上に、回転軸方向から見たときに円周方向に互いに異なる角度範囲を有するように配置される、請求項8に記載の投写型映像表示装置。
    The phosphor includes a plurality of fluorescent portions that are arranged side by side along a rotation axis direction and receive light emitted from the solid-state light source to emit a plurality of colored lights, respectively.
    The projection according to claim 8, wherein the plurality of fluorescent parts are arranged on the outer peripheral surface of the translucent substrate so as to have different angular ranges in the circumferential direction when viewed from the rotation axis direction. Type image display device.
  10.  前記回転体は、前記回転軸を中心として回転駆動される円筒状の透光性基材を含み、
     前記蛍光体は、前記透光性基材の外周面の全面にわたって配置され、
     前記光源装置は、
     前記透光性基材の内周面の全面にわたって配置され、前記蛍光体が発光した光を前記回転体の径方向の外側に向けて反射する反射膜をさらに含む、請求項7に記載の投写型映像表示装置。
    The rotating body includes a cylindrical translucent substrate that is driven to rotate about the rotation axis,
    The phosphor is disposed over the entire outer peripheral surface of the translucent substrate,
    The light source device is
    The projection according to claim 7, further comprising a reflective film that is disposed over the entire inner peripheral surface of the translucent substrate and reflects light emitted from the phosphor toward the outside in the radial direction of the rotating body. Type image display device.
  11.  前記蛍光体は、円周方向に沿って並設され、前記固体光源が出射した光を受けて複数の色光をそれぞれ発光する複数の蛍光部を含み、
     前記複数の蛍光部は、前記透光性基材の外周面上に、円周方向に互いに異なる角度範囲を有するように配置される、請求項10に記載の投写型映像表示装置。
    The phosphor includes a plurality of fluorescent portions that are arranged side by side along a circumferential direction and emit light of a plurality of color lights in response to light emitted from the solid-state light source,
    11. The projection display apparatus according to claim 10, wherein the plurality of fluorescent portions are arranged on the outer peripheral surface of the translucent substrate so as to have different angular ranges in the circumferential direction.
  12.  固体光源と、
     前記固体光源の光軸と直交する軸を回転軸とする回転体と、
     前記回転体の外周面上に設けられ、前記固体光源が出射した光により励起されて可視域の光を発光する蛍光体とを備える、光源装置。
    A solid light source;
    A rotating body whose axis of rotation is an axis orthogonal to the optical axis of the solid-state light source;
    A light source device comprising: a phosphor that is provided on an outer peripheral surface of the rotating body and is excited by light emitted from the solid light source to emit light in a visible range.
PCT/JP2011/056613 2010-03-25 2011-03-18 Projection image display device and light source device WO2011118536A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2010-069794 2010-03-25
JP2010069794 2010-03-25
JP2010-072446 2010-03-26
JP2010072446 2010-03-26
JP2011033473A JP2011221502A (en) 2010-03-25 2011-02-18 Projection type video display apparatus and light source device
JP2011-033473 2011-02-18

Publications (1)

Publication Number Publication Date
WO2011118536A1 true WO2011118536A1 (en) 2011-09-29

Family

ID=44673090

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/056613 WO2011118536A1 (en) 2010-03-25 2011-03-18 Projection image display device and light source device

Country Status (2)

Country Link
JP (1) JP2011221502A (en)
WO (1) WO2011118536A1 (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012013898A (en) * 2010-06-30 2012-01-19 Jvc Kenwood Corp Light source unit and projection-type display apparatus
CN102722073A (en) * 2011-12-18 2012-10-10 深圳市光峰光电技术有限公司 Light source system and projector
CN102914939A (en) * 2011-10-21 2013-02-06 深圳市光峰光电技术有限公司 Light source system and related projection system
WO2013021773A1 (en) * 2011-08-08 2013-02-14 シャープ株式会社 Lighting device
JP2013202305A (en) * 2012-03-29 2013-10-07 Olympus Medical Systems Corp Light source device
WO2013183556A1 (en) * 2012-06-08 2013-12-12 Idec株式会社 Light source device and illumination device
WO2014073237A1 (en) * 2012-11-06 2014-05-15 東芝ライテック株式会社 Solid-state lighting device
WO2014115492A1 (en) * 2013-01-24 2014-07-31 パナソニック株式会社 Solid-state light source device
WO2014196020A1 (en) * 2013-06-04 2014-12-11 Necディスプレイソリューションズ株式会社 Illumination optical system and projector
CN104635411A (en) * 2015-01-27 2015-05-20 上海理工大学 Projection display system
CN105065986A (en) * 2015-08-06 2015-11-18 北京工业大学 Reflecting-type blue light LD backlight module
CN106681094A (en) * 2016-12-23 2017-05-17 海信集团有限公司 Fluorescence excitation device, projection light source and projection equipment
CN106707669A (en) * 2016-12-23 2017-05-24 海信集团有限公司 Fluorescence excitation device, projection light source and projection equipment
CN106773481A (en) * 2016-12-23 2017-05-31 海信集团有限公司 A kind of projection light source and projector equipment
CN107076374A (en) * 2014-10-17 2017-08-18 奥林巴斯株式会社 Light supply apparatus
EP3236313A1 (en) * 2016-04-19 2017-10-25 Canon Kabushiki Kaisha Illumination apparatus and projection display apparatus using the same
US9816683B2 (en) 2011-10-20 2017-11-14 Appotronics Corporation Limited Light sources system and projection device using the same
CN107765501A (en) * 2017-11-15 2018-03-06 四川长虹电器股份有限公司 A kind of laser source system
CN110879503A (en) * 2018-09-06 2020-03-13 鸿富锦精密工业(深圳)有限公司 Solid-state light source device
WO2021084449A1 (en) * 2019-11-01 2021-05-06 Ricoh Company, Ltd. Light-source device, image projection apparatus, and light-source optical system
US20230147353A1 (en) * 2020-03-31 2023-05-11 Kyocera Corporation Photoconversion device and illumination system

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5724245B2 (en) * 2010-08-19 2015-05-27 株式会社リコー Light source device, illumination device, and projection display device
US9989837B2 (en) * 2011-08-04 2018-06-05 Appotronics Corporation Limited Lighting device and projection device
CN102707551B (en) * 2011-08-04 2015-04-29 深圳市光峰光电技术有限公司 Lighting device and projection device
CN102520570B (en) * 2011-12-04 2015-05-27 深圳市光峰光电技术有限公司 Luminous device and projection system adopting same
CN105003843B (en) * 2012-03-23 2017-12-29 深圳市绎立锐光科技开发有限公司 Light source
DE102012209593B4 (en) 2012-06-06 2021-08-12 Osram Gmbh Lighting device
JP2016145848A (en) * 2013-05-22 2016-08-12 パナソニック株式会社 Optical conversion element and light source using the same
JP2015163947A (en) 2014-02-03 2015-09-10 キヤノン株式会社 Light source optical system, light source device having the same, and image display device
JP6504355B2 (en) 2014-06-06 2019-04-24 パナソニックIpマネジメント株式会社 Lamps and headlamps for vehicles

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003295319A (en) * 2002-04-04 2003-10-15 Nitto Kogaku Kk Light source unit and projector
JP2004327361A (en) * 2003-04-28 2004-11-18 Seiko Epson Corp Lighting device and projection type display device
JP2009277516A (en) * 2008-05-15 2009-11-26 Casio Comput Co Ltd Light source unit and projector
JP2010060855A (en) * 2008-09-04 2010-03-18 Ushio Inc Optical apparatus
JP2010197497A (en) * 2009-02-23 2010-09-09 Casio Computer Co Ltd Light emitting device, light source device, and projector using the light source device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003295319A (en) * 2002-04-04 2003-10-15 Nitto Kogaku Kk Light source unit and projector
JP2004327361A (en) * 2003-04-28 2004-11-18 Seiko Epson Corp Lighting device and projection type display device
JP2009277516A (en) * 2008-05-15 2009-11-26 Casio Comput Co Ltd Light source unit and projector
JP2010060855A (en) * 2008-09-04 2010-03-18 Ushio Inc Optical apparatus
JP2010197497A (en) * 2009-02-23 2010-09-09 Casio Computer Co Ltd Light emitting device, light source device, and projector using the light source device

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012013898A (en) * 2010-06-30 2012-01-19 Jvc Kenwood Corp Light source unit and projection-type display apparatus
WO2013021773A1 (en) * 2011-08-08 2013-02-14 シャープ株式会社 Lighting device
US9115873B2 (en) 2011-08-08 2015-08-25 Sharp Kabushiki Kaisha Lighting device
US9816683B2 (en) 2011-10-20 2017-11-14 Appotronics Corporation Limited Light sources system and projection device using the same
CN102914939A (en) * 2011-10-21 2013-02-06 深圳市光峰光电技术有限公司 Light source system and related projection system
JP2015504241A (en) * 2011-12-18 2015-02-05 アポトロニクス コーポレイション リミテッドAppotronics Corporation Limited Light source system and projection device using the same
CN102722073A (en) * 2011-12-18 2012-10-10 深圳市光峰光电技术有限公司 Light source system and projector
WO2013091453A1 (en) * 2011-12-18 2013-06-27 深圳市光峰光电技术有限公司 Light source system and projection device
JP2013202305A (en) * 2012-03-29 2013-10-07 Olympus Medical Systems Corp Light source device
WO2013183556A1 (en) * 2012-06-08 2013-12-12 Idec株式会社 Light source device and illumination device
JP2013254690A (en) * 2012-06-08 2013-12-19 Idec Corp Light source device, and illumination device
WO2014073237A1 (en) * 2012-11-06 2014-05-15 東芝ライテック株式会社 Solid-state lighting device
WO2014115492A1 (en) * 2013-01-24 2014-07-31 パナソニック株式会社 Solid-state light source device
US10139053B2 (en) 2013-01-24 2018-11-27 Panasonic Intellectual Property Management Co., Ltd. Solid-state light source device
WO2014196020A1 (en) * 2013-06-04 2014-12-11 Necディスプレイソリューションズ株式会社 Illumination optical system and projector
EP3184879A4 (en) * 2014-10-17 2018-05-02 Olympus Corporation Light source device
CN107076374B (en) * 2014-10-17 2020-02-28 奥林巴斯株式会社 Light source device
CN107076374A (en) * 2014-10-17 2017-08-18 奥林巴斯株式会社 Light supply apparatus
CN104635411B (en) * 2015-01-27 2016-11-30 上海理工大学 Projection display system
CN104635411A (en) * 2015-01-27 2015-05-20 上海理工大学 Projection display system
CN105065986A (en) * 2015-08-06 2015-11-18 北京工业大学 Reflecting-type blue light LD backlight module
EP3236313A1 (en) * 2016-04-19 2017-10-25 Canon Kabushiki Kaisha Illumination apparatus and projection display apparatus using the same
CN107305315A (en) * 2016-04-19 2017-10-31 佳能株式会社 Lighting device and the projection display equipment using lighting device
US10082731B2 (en) 2016-04-19 2018-09-25 Canon Kabushiki Kaisha Illumination apparatus and projection display apparatus using the same
CN107305315B (en) * 2016-04-19 2020-11-13 佳能株式会社 Illumination device and projection display device using the same
CN106681094A (en) * 2016-12-23 2017-05-17 海信集团有限公司 Fluorescence excitation device, projection light source and projection equipment
CN106773481A (en) * 2016-12-23 2017-05-31 海信集团有限公司 A kind of projection light source and projector equipment
CN106707669A (en) * 2016-12-23 2017-05-24 海信集团有限公司 Fluorescence excitation device, projection light source and projection equipment
CN107765501A (en) * 2017-11-15 2018-03-06 四川长虹电器股份有限公司 A kind of laser source system
CN110879503A (en) * 2018-09-06 2020-03-13 鸿富锦精密工业(深圳)有限公司 Solid-state light source device
WO2021084449A1 (en) * 2019-11-01 2021-05-06 Ricoh Company, Ltd. Light-source device, image projection apparatus, and light-source optical system
US20230147353A1 (en) * 2020-03-31 2023-05-11 Kyocera Corporation Photoconversion device and illumination system

Also Published As

Publication number Publication date
JP2011221502A (en) 2011-11-04

Similar Documents

Publication Publication Date Title
WO2011118536A1 (en) Projection image display device and light source device
JP5370764B2 (en) Light source device and projector
JP5491888B2 (en) Projection display
JP4711156B2 (en) Light source device and projector
EP2360523B1 (en) Solid-State Light Source Device
WO2012002254A1 (en) Light source device and lighting device
JP5870259B2 (en) Illumination device and projection display device including the illumination device
KR101292700B1 (en) Light source unit utilizing laser for light source and projector
JP2007156270A (en) Light source device and projection-type image display device
JP2014160227A (en) Illumination device and video display apparatus
TW201109723A (en) Light source unit and projector
KR20110001875A (en) Light source device and projector
JP2011128521A (en) Light source device and projector
JP2011095392A (en) Light source unit and projector
JP2012013898A (en) Light source unit and projection-type display apparatus
JP2011100163A (en) Light source device and projector
JP4733691B2 (en) Projection-type image display device
EP2889685B1 (en) Wavelength converter, optical system and light source unit incorporating wavelength converter, and projection device incorporating light source unit
CN111123631B (en) Illumination device and projection type image display device
CN107515510B (en) Light source device and projection display device
JP2012008303A (en) Light source device and projection type display device using the same
JP2011170363A (en) Light source device and projector
JP2001109068A (en) Light source device for projector
JP6086193B2 (en) Light source device, lighting method of light source device, and projector
JPWO2012172672A1 (en) Phosphor color foil and projection display device incorporating the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11759342

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11759342

Country of ref document: EP

Kind code of ref document: A1