WO2014187381A1 - 一种不平衡区的导频发射功率增强方法、及基站 - Google Patents

一种不平衡区的导频发射功率增强方法、及基站 Download PDF

Info

Publication number
WO2014187381A1
WO2014187381A1 PCT/CN2014/078688 CN2014078688W WO2014187381A1 WO 2014187381 A1 WO2014187381 A1 WO 2014187381A1 CN 2014078688 W CN2014078688 W CN 2014078688W WO 2014187381 A1 WO2014187381 A1 WO 2014187381A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
channel
downlink
enhanced
common pilot
Prior art date
Application number
PCT/CN2014/078688
Other languages
English (en)
French (fr)
Inventor
詹建明
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP14800861.8A priority Critical patent/EP3086605B1/en
Priority to US15/105,922 priority patent/US9723574B2/en
Publication of WO2014187381A1 publication Critical patent/WO2014187381A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/32TPC of broadcast or control channels
    • H04W52/325Power control of control or pilot channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • H04W36/0085Hand-off measurements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/143Downlink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/16Deriving transmission power values from another channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • H04W52/362Aspects of the step size
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/40TPC being performed in particular situations during macro-diversity or soft handoff
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/042Public Land Mobile systems, e.g. cellular systems
    • H04W84/045Public Land Mobile systems, e.g. cellular systems using private Base Stations, e.g. femto Base Stations, home Node B

Definitions

  • the present invention relates to pilot transmission techniques, and more particularly to a method for enhancing pilot transmission power in an unbalanced region, and a base station. Background technique
  • the UMTS Universal Mobile Telecommunications System
  • low-power base stations for example, Micro, Pico base stations
  • the low-power base stations are deployed in the macro cells for implementing hotspots.
  • Supplementary coverage which forms a heterogeneous network (Hetnet) scenario in which a macro cell and a low-power cell coexist.
  • Hetnet heterogeneous network
  • the uplink and downlink imbalance of the user may occur, resulting in limited uplink coverage of some cells.
  • the uplink macro diversity gain even without the uplink macro diversity gain, even causes the user to drop calls, the uplink and downlink data traffic is very low, or the handover fails, and also interferes with a series of user performance degradations such as the user experience of the uplink and downlink balance area users. As a result, there is no effective solution in the related art for the problem of the uplink and downlink imbalance. Summary of the invention
  • the embodiment of the present invention is to provide a method for enhancing a pilot transmit power, and a base station, which solves the interference of users in an unbalanced area in a UMTS Hetnet network deployment by using an enhanced pilot technology, and the technical solution of the embodiment of the present invention is implemented in this manner.
  • a method for enhancing pilot transmission power in an unbalanced area comprising: The main common pilot channel transmit power after the enhanced power is obtained according to the transmit power and the increment of the primary common pilot channel when the power is not enhanced;
  • the transmit power of the downlink traffic channel is the same as the transmit power of the unenhanced power, and the downlink traffic channel transmit power is obtained according to the transmit power of the primary common pilot channel when the power is not enhanced;
  • the transmit power of the primary common pilot channel after the enhanced power is obtained according to the transmit power and the increment of the primary common pilot channel when the power is not enhanced, including:
  • Pp cpich Pvitmal _ p _ cpich + Delta; wherein, the cpich is the main common pilot channel transmit power after the enhanced power, and the P*ual _ p _ cpich is the unenhanced power The transmit power of the common pilot channel, the Z ⁇ Zto being the increment.
  • the transmitting power of the downlink common channel is obtained according to the transmit power of the primary common pilot channel according to the unenhanced power, including:
  • P H S PD SCH P VltrUal _ P _ Cplch + ⁇ ⁇ where, the downlink traffic channel transmission power, the ⁇ _; ⁇ ; ⁇ the power of the primary common pilot channel when the power is not enhanced,
  • the ⁇ is obtained by the radio network controller RNC through the base station application part protocol NBAP signaling configuration.
  • the method further includes:
  • the downlink physical channel of the low power base station cell and the downlink dedicated control physical channel sent to the soft handover area user include any one of the following physical channels:
  • Main common control physical channel primary synchronization channel, secondary synchronization channel, enhanced uplink hybrid automatic request retransmission response indication channel, dedicated physical control channel, partial dedicated physical channel, enhanced Row relative to the authorized channel;
  • the other channels excluding the above physical channels are obtained according to the transmit power of the primary common pilot channel when the unenhanced power is obtained.
  • the method further includes: according to the transmit power of the primary common pilot channel is not enhanced, according to the uplink and downlink unbalanced area size, the soft handover parameter, and the low power base station cell between the low power base station cell and the macro cell
  • the offset parameter of the independent cell is used to obtain the /).
  • the soft handoff measurement report is triggered at the uplink boundary and the soft handoff process can be successful
  • Obtaining the Z ⁇ Zto according to the uplink and downlink unbalanced area size, the soft handover parameter, and the offset parameter of the independent cell of the low power base station cell includes:
  • Delta DU-(Rla-Hla/2+CIO); wherein, the Z ⁇ Zto is the increment, the DU is the size of the uplink and downlink unbalanced area, and the Rla and the Hla are the Soft switching parameters, the CIO being the biasing parameter.
  • the downlink pilot boundary and the uplink boundary can be the same.
  • Obtaining the Z ⁇ Zto according to the uplink and downlink unbalanced area size, the soft handover parameter, and the offset parameter of the independent cell of the low power base station cell includes:
  • a base station, the base station includes:
  • a first power adjustment unit configured to obtain a transmit power of the primary common pilot channel after the enhanced power is obtained according to a transmit power and an increment of the primary common pilot channel when the power is not enhanced;
  • the second power adjustment unit is configured to: the transmit power of the downlink traffic channel is the same as the transmit power of the unenhanced power, and the transmit power of the downlink traffic channel is obtained according to the transmit power of the primary common pilot channel when the power is not enhanced;
  • a sending unit configured to separately transmit power by using a primary common pilot channel after the enhanced power
  • the rate and downlink traffic channel transmit power are transmitted to the primary common pilot channel and the downlink traffic channel.
  • the first power adjustment unit is further configured to: according to the transmit power and the increment of the primary common pilot channel when the power is not enhanced, the formula of the primary common pilot channel transmit power after the enhanced power is obtained: P P ⁇ cpich- Pvitrual _ p _ cpich + Delta; wherein, the power of the primary common pilot channel after the enhanced power, the _ p _ cpich is the transmit power of the primary common pilot channel when the power is not enhanced, and the Z ⁇ Zto is the increment.
  • the second power adjustment unit is further configured to obtain a downlink traffic channel transmit power according to a transmit power of the primary common pilot channel when the power is not enhanced:
  • P Hall SC H P* ual — P — c
  • the transmission power is the downlink traffic channel, and the transmission power of the primary common pilot channel when the power is not enhanced, the ⁇ It is obtained by the radio network controller RNC through the base station application part protocol NBAP signaling configuration.
  • the first power adjustment unit is further configured to obtain a downlink physical channel of the low power base station cell and a downlink dedicated control physics sent to the soft handover area user by using the boosted power primary common pilot channel transmit power.
  • the downlink physical channel of the low power base station cell and the downlink dedicated control physical channel sent to the soft handover area user include any one of the following physical channels:
  • a primary common control physical channel a primary synchronization channel, a secondary synchronization channel, an enhanced uplink hybrid automatic request retransmission acknowledgement indicator channel, a dedicated physical control channel, a partially dedicated physical channel, and an enhanced uplink relative grant channel;
  • the second power adjustment unit is further configured to: in the downlink physical channel of the low power base station cell and the downlink dedicated control physical channel sent to the soft handover area user, excluding the primary common control physical channel, the primary synchronization channel, the secondary synchronization channel, and the enhancement
  • the uplink hybrid automatic request retransmission acknowledgement indication channel, the dedicated physical control channel, the partial dedicated physical channel, and the enhanced uplink relative grant channel are all obtained according to the transmit power of the primary common pilot channel according to the unenhanced power. Transmit power.
  • the first power adjustment unit further includes:
  • the incremental acquisition subunit is configured to be independent of the uplink and downlink unbalanced area, the soft handover parameter, and the low power base station cell between the low power base station cell and the macro cell without increasing the transmit power of the primary common pilot channel.
  • the offset parameter of the cell is used to obtain the /) e to.
  • the Z ⁇ Zto is the increment
  • the DU is the size of the uplink and downlink unbalanced area
  • the R1a and the Hla are the soft handover parameters
  • the CIO is the offset parameter.
  • the first power adjustment unit, the second power adjustment unit, the sending unit, and the incremental acquisition subunit use a central processing unit (CPU) and a digital signal processor when performing processing.
  • CPU central processing unit
  • DSP Digital Singnal Processor
  • FPGA Field - Programmable Gate Array
  • the method of the embodiment of the present invention includes: obtaining, according to the transmit power and the increment of the primary common pilot channel, the transmit power of the primary common pilot channel after the enhanced power; the transmit power of the downlink traffic channel and the transmit of the unenhanced power The power is the same, and the downlink traffic channel transmit power is obtained according to the transmit power of the primary common pilot channel when the power is not enhanced; and the primary common pilot channel transmit power and the downlink traffic channel transmit power are respectively sent by using the enhanced power to send the primary public a pilot channel and the downlink traffic channel.
  • the transmission power of the primary common pilot channel of the low-power base station cell is enhanced, the transmission power of the primary common pilot channel and the downlink traffic channel is separately transmitted.
  • the common pilot channel and the downlink traffic channel are used to implement spatial separation between the downlink common boundary of the primary common pilot and the downlink service boundary, thereby avoiding interference of users in the unbalanced area in the network deployment.
  • Figure 1 is a schematic diagram of uplink and downlink unbalance of a UMTS Hetnet network
  • FIG. 3 is a schematic structural diagram of an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of separating a downlink pilot boundary and a downlink service boundary by causing an unbalanced area boundary to trigger soft handover after the low power base station cell enhances the pilot power according to the embodiment of the present invention
  • FIG. 5 is a schematic diagram of a soft handover of an unbalanced area boundary triggered by a pilot boundary of a low power base station cell with enhanced P-CPICH/P-CCPCH/SCH power according to an embodiment of the present invention
  • FIG. 6 is a schematic diagram of the DPCCH/E-HICH power of the downlink dedicated channel transmitted by the user in the unbalanced area according to the Enhanced P-CPICH power according to an embodiment of the present invention
  • FIG. 7 is a schematic diagram of separating a downlink pilot boundary from a downlink service boundary by using a low power base station cell to enhance pilot power, and then triggering soft handover in an area other than the unbalanced area;
  • FIG. 8 is a diagram of a low power base station cell enhanced P-CPICH/P-CCPCH/SCH function according to an embodiment of the present invention.
  • the UMTS network deployment is taken as an example in the embodiment of the present invention.
  • the uplink and downlink imbalance of the user is unbalanced, which results in a series of user performance degradation results, such as some cell uplink coverage.
  • P competes for low uplink macro diversity gain or even no uplink macro diversity gain, and even causes users to drop calls, and uplink and downlink data traffic is very low.
  • the switch fails, and it also interferes with the service experience of users in the uplink and downlink balance area.
  • There may be multiple reasons for the user's uplink and downlink imbalances such as:
  • the pilot configuration of individual cells in the network planning is different, and some of the pilot configurations of the cells are larger or d or more than the pilots of the neighboring cells;
  • the low-power base station is added to the macro cell coverage area to meet the traffic demand of the hot spot or the blind area, because the power of the low-power base station is too different from the power of the macro base station, but the reception of the low-power base station is too large.
  • the sensitivity is equal to or less than the receiving sensitivity of the macro base station, resulting in a large uplink and downlink unbalanced area in the edge area of the low power base station.
  • these low-power base stations are deployed in the macro cell to achieve supplementary coverage of hotspots, forming a Hetnet heterogeneous network in which a macro cell and a low-power cell coexist, and in the UMTS Hetnet scenario, the uplink and downlink of the UMTS Hetnet network
  • the imbalance diagram is shown in Figure 1.
  • the embodiment of the present invention solves the user performance degradation caused by the unbalanced uplink and downlink service link by solving the interference of the UMTS Hetnet unbalanced area by using the enhanced pilot technology.
  • a method for enhancing pilot transmission power in an unbalanced area according to an embodiment of the present invention, as shown in FIG. 2, Including the following steps:
  • Step 101 The transmit power of the primary common pilot channel after the enhanced power is obtained according to the transmit power and the increment of the primary common pilot channel when the power is not enhanced.
  • the transmit power of the primary common pilot channel when the power is not enhanced is the original primary common pilot channel transmit power.
  • Step 102 The transmit power of the downlink traffic channel is the same as the transmit power of the unenhanced power, and the downlink traffic channel transmit power is obtained according to the transmit power of the primary common pilot channel when the power is not enhanced.
  • the transmit power of the primary common pilot channel is the original primary common pilot channel transmit power when the power is not enhanced, and the step 102 is to use the original primary common pilot channel transmit power as the reference reference for the downlink traffic channel transmit power.
  • the coverage of the downlink traffic channel is the same as that of the original primary common pilot channel.
  • Step 103 Send the primary common pilot channel and the downlink traffic channel by using the enhanced common primary common pilot channel transmit power and the downlink traffic channel transmit power.
  • step 103 is to separately transmit the primary common pilot channel and the downlink traffic channel by using different transmit powers of the primary common pilot channel and the downlink traffic channel, so as to implement spatial separation between the downlink common boundary of the primary common pilot and the downlink service boundary.
  • Steps 101-102 of this embodiment are in no particular order.
  • the base station of the embodiment of the present invention includes: a first power adjustment unit 11 configured to obtain a boosted power primary common pilot channel according to a transmit power and an increment of a primary common pilot channel when the power is not enhanced. Transmit power; the second power adjusting unit 12 is configured to: the transmit power of the downlink traffic channel is the same as the transmit power of the unenhanced power, and obtain the downlink traffic channel transmit power according to the transmit power of the primary common pilot channel when the power is not enhanced; The unit 13 is configured to separately send the primary common pilot channel and the downlink traffic channel by using the enhanced common primary common pilot channel transmit power and the downlink traffic channel transmit power.
  • first power adjustment unit the second power adjustment unit, and the sending unit are on the low power base station side, and when performing processing, a central processing unit (CPU) and a digital signal processor (DSP) may be used. , Digital Singnal Processor ) or Field - Programmable Gate Array (FPGA) implementation.
  • CPU central processing unit
  • DSP digital signal processor
  • FPGA Field - Programmable Gate Array
  • the embodiment of the present invention is a solution for uplink and downlink unbalance.
  • the enhanced pilot technology is used to strengthen the pilot transmit power of the low-power base station, so that the downlink common boundary of the main common pilot of the low-power cell and the original downlink service are
  • the spatial separation between the borders is implemented, and the differentiated coverage strategy between the pilot and the downlink services of the low-power cell is realized, the low-power cell pilot and the broadcast channel are covered, and the low-power cell downlink service covers the small coverage, and the related technology is solved.
  • Users in the Zhonghongwei imbalance area cannot successfully complete the soft handover process and the wireless interface synchronization process.
  • the uplink and downlink service link unbalanced area users can obtain the uplink macro diversity gain, and the uplink and downlink service link unbalanced area users are prevented from causing uplink interference to the low-power cell, and the interference is changed into a useful signal, thereby improving the user's service experience and improving. Hetnet network performance.
  • FIG. 1 is a schematic diagram of the uplink and downlink unbalance in the current UMTS Hetnet, where the uplink boundary is The downstream boundaries differ by DU (dB).
  • DU DU
  • the P-CPICH transmit power of the primary common pilot channel of the enhanced low power base station and the transmit power of the virtual primary common pilot channel are introduced, so that the downlink pilot boundary and the downlink traffic channel boundary are spatially separated.
  • the primary common pilot channel (P-CPICH) transmit power of the low power base station is in the original primary common pilot
  • the channel (P-CPICH) transmit power is increased by Delta (dB)
  • the increased Delta (dB) size is determined by the size of the uplink and downlink unbalanced area between the original low-power base station cell and the macro cell, soft handover parameters Rla, Hla, and low.
  • the size of the offset CIO parameter of the power cell independent cell is determined (described in the subsequent section II).
  • the enhanced primary common pilot channel is referred to as an enhanced primary common pilot channel (Enhanced P-CPICH), and the original primary common pilot channel is referred to as Virtual P-CPICH or Old P-CPICH;
  • Enhanced P-CPICH enhanced primary common pilot channel
  • Virtual P-CPICH Virtual P-CPICH or Old P-CPICH
  • the transmit power of the primary common control physical channel (P-CCPCH), the primary synchronization channel (P-SCH), and the secondary synchronization channel (S-SCH) is also increased by Delta (dB). They are called Enhanced P-CCPCH, Enhanced P-SCH, Enhanced S-SCH.
  • the downlink common physical channels P-CCPCH, P-SCH, S-SCH, and downlink dedicated control physical channel E-HICH/DPCCH/F-DPCH/E-RGCH transmissions transmitted to users of the soft handover area The power is based on the Enhanced P-CPICH power.
  • the other downlink physical channels are based on the virtual P-CPICH transmit power of the virtual primary common pilot channel.
  • the downlink physical channel of the low-power base station cell and the downlink dedicated control physical channel sent to the soft handover zone user are respectively obtained, that is, low power
  • the downlink physical channel of the base station cell and the downlink dedicated control physical channel transmitted to the soft handover area user include P-CCPCH, P-SCH, S-SCH, E-HICH, DPCCH, F-DPCH, E-RGCH
  • These channels are referenced to the Enhanced P-CPICH transmit power.
  • the ratio of the transmit power of these channels to the reference reference power (the Enhanced P-CPICH transmit power) follows the existing power ratio for how to obtain the respective transmit power of these channels, but the reference reference is The Enhanced P-CPICH transmit power.
  • the Virtual P-CPICH transmit power is used as a reference reference, and how to exclude the other channels is how to obtain respective transmit powers according to the Virtual P-CPICH transmit power.
  • the ratio between the power of the other channels excluding the channels and the reference reference power follows the existing power ratio, but the reference reference power is the Virtual P- CPICH transmit power.
  • the downlink physical channel HS-PDSCH and the R99 downlink dedicated physical data channel DPDCH of the HSDPA service are referenced by the virtual primary common pilot channel transmission power, so that the downlink HSDPA/R99 service coverage range of the cell of the low power base station is virtualized.
  • the coverage of the primary common pilot channel Virtual P-CPICH is the same (less than the Enhanced P-CPICH coverage), so that the low power base station cell pilot coverage is larger than the low power base station cell downlink service coverage, so that the unbalanced domain user gets low power. Uplink service of the base station cell.
  • the macro cell and the low downlink pilot boundary are identical to the uplink boundary, so that the unbalanced zone UE between the original uplink and downlink boundaries can detect the low-power base station cell master.
  • the common pilot signal has an opportunity to trigger a soft handover measurement event report, and the downlink pilot boundary is moved toward the uplink boundary by enhancing the pilot transmission power.
  • is obtained by the Radio Network Controller (RNC) through Base Station Application Part Protocol (NBAP) signaling configuration.
  • the transmit power is referenced, so that spatial separation between the primary common pilot downlink boundary of the macro cell and the low power cell and the original downlink service boundary occurs. Referring to FIG. 4 and FIG.
  • the configuration of the pilot power in the related art and the configuration between the downlink physical channel and the pilot result in the same downlink downlink boundary and the downlink service boundary (refer to FIG. 1).
  • the method for determining the power level of the P-CPICH for the low power base station cell In order to enable users in the uplink and downlink unbalanced area to receive uplink service services of the low power cell. There are two possible scenarios:
  • the Enhanced P-CPICH transmit power needs to be increased by Delta (dB) relative to the Virtual P-CPICH transmit power.
  • P P ⁇ cpich ⁇ Pvitrual _ p _ cpich + Delta the transmit power of the primary common control physical channel ( P-CCPCH ) and the primary synchronization channel ( P-SCH ) and the secondary synchronization channel ( S-SCH ) are also increased by Delta ( dB ), refer to Figure 5.
  • the Delta size is associated with the soft handover parameters Rla, Hla and the offset CIO parameters of the independent cells of the low power base station cell.
  • the downlink dedicated channel DPCCH/E-HICH power transmitted by the unbalanced area user is based on the Enhanced P-CPICH power, refer to FIG. 6.
  • the downlink pilot boundary is the same as the uplink boundary, so that the uplink soft combining gain region (toward the macro cell) outside the uplink boundary can also receive the uplink service of the low-power cell, and the Delta needs to be set.
  • P-CCPCH primary common control physical channel
  • the transmission power of the synchronization channel (P-SCH) and the secondary synchronization channel (S-SCH) is also increased by Delta (dB), see FIG.
  • the Delta size is associated with the offset CIO parameter of the independent cell of the low power base station cell.
  • the power is based on the Enhanced P-CPICH power, refer to Figure 9.
  • the CIO of the low-power cell can be set to 0 or set to non-zero.
  • CIO parameter settings and downlink pilots The power-enhanced Delta size setting needs to ensure that the soft handoff process is successful, especially the synchronization process of the wireless interface is successful, which can bring the uplink macro diversity gain.
  • a low-power base station with a maximum transmit power of 34 dB (2.5 W) per cell is deployed in a macro cell with a maximum transmit power of 43 dB (20 W) in the same frequency.
  • the receiving sensitivity of the low-power cell and the macro cell is the same.
  • the uplink soft combining gain region (toward the macro cell) outside the uplink boundary can also receive the uplink service of the low-power cell.
  • the above two different CIO configurations make the primary common pilot channel (P-CPICH) transmit power of the low power base station increase by 3 dB based on the original primary common pilot channel (P-CPICH) transmit power, and the corresponding primary common control physics
  • the transmission power of the channel (P-CCPCH) and the primary synchronization channel (P-SCH) and the secondary synchronization channel (S-SCH) is also increased by 3 dB, according to the conventional configuration ratio of the common physical channel output power of the cell, for example, P- CPICH, P-CCPCH, P-SCH, and S-SCH account for 10%, 5%, 4%, and 4% of the maximum transmit power, and occupy a total of 23% of the maximum transmit power of the cell, as shown in Table 8 below.
  • the downlink channel transmit power configuration table of the low-power base station without the booster power is increased.
  • the low-power base station cells P-CPICH, P-CCPCH, P-SCH, and S-SCH will increase the transmit power by 23%.
  • the 23% increase in power of P-CPICH, P-CCPCH, P-SCH, and S-SCH can be configured in two ways:
  • One is to occupy the transmit power of the current cell, that is, P-CPICH, P-CCPCH, P-SCH, and S-SCH occupy 46% of the maximum transmit power of the cell, which means that the available power of the downlink service-related channel is reduced by 0.575W ( 2.
  • Table 9 is the transmit power configuration table when the low power base station cell enhances the dominant frequency power and the maximum transmit power of the cell remains unchanged); the second configuration mode is The 23% power added by P-CPICH, P-CCPCH, P-SCH, and S-SCH does not occupy the transmit power of the current cell, that is, the maximum transmit power of the low-power base station cell increases by 23%, which means that the downlink service-related channel
  • the available power is not reduced by the enhancement of the pilot power, as shown in Table 10 below (Table 10 is the low power base station cell enhanced pilot frequency power, the maximum transmit power of the cell and the enhanced transmit power configuration table), downlink R99 & HSDPA & HSUPA
  • Table 10 is the low power base station cell enhanced pilot frequency power, the maximum transmit power of the cell and the enhanced transmit power configuration table
  • Table 10 is the low power base station cell enhanced pilot frequency power, the maximum transmit power of the cell and the enhanced transmit power configuration table
  • the available power of the downlink traffic channel is not reduced, and the increase of the maximum transmit power of
  • a low-power base station with a maximum transmit power of 31 dB (1.25 W) per cell is deployed in a macro cell with a maximum transmit power of 43 dB (20 W) at the same frequency.
  • the receiving sensitivity of the low-power cell and the macro cell is the same.
  • the primary common pilot channel (P-CPICH) transmit power of the low power base station is increased by 4 dB based on the original primary common pilot channel (P-CPICH) transmit power, and the corresponding primary common control physical channel
  • the 34.5% increase in P-CPICH, P-CCPCH, P-SCH, and S-SCH can be configured in two ways:
  • Table 10 is the low power base station cell enhanced pilot frequency power, the maximum transmit power of the cell and the enhanced transmit power configuration table), downlink R99 & HSDPA & HSUPA downlink service
  • the available power of the channel is not reduced.
  • Channel a synchronization channel transmission power unbalance can make the original area of the user receives the low-power cell uplink traffic services to enhance system performance and capacity.
  • P-CCPCH b%*Tx*XX 10 A (Delta/10); Delta is dominated by low power base stations
  • P-CPICH/P-CCPCH/P-SCH/S-SCH accounted for 46% of the total power.
  • P-CPICH/P-CCPCH/P-SCH/S-SCH accounts for 57.5% of the total power-enhanced dominant frequency power rate.
  • P-SCH c%*Tx*XX 10 A (Delta/l 0); Delta is the increased power (dB) of the low power base station dominant frequency;
  • AICH f%*Tx transmit power is the same as the offset between the original P-CPICH power
  • DPCCH needs to be enhanced for DPCCH power of users in soft handoff area
  • F-DPCH needs to be enhanced for F-DPCH power of users in soft handoff area
  • E-RGCH needs to be enhanced for E-RGCH power of users in soft handoff area
  • E-HICH needs to be enhanced for E-HICH power for soft handoff area users
  • P-CCPCH Primary Common Control Physical Channel
  • P-SCH Primary Synchronisation Channel Primary Synchronization Channel
  • AICH Acquisition Indicator Channel 4i is indicated channel
  • PICH Page Indicator Channel paging indicator channel
  • HS-DSCH High Speed Downlink Shared Channel High Speed Downlink Shared Channel
  • DPCCH Dedicated Physical Control Channel dedicated physical control channel
  • DPDCH Dedicated Physical Data Channel dedicated physical data channel
  • F-DPCH Fractional Dedicated Physical Channel Partial Dedicated Physical Channel
  • E-DCH Enhanced Dedicated Channel Enhanced Dedicated Channel
  • E-DPCCH E-DCH Dedicated Physical Control Channel enhanced dedicated physical control channel
  • E-DPDCH E-DCH Dedicated Physical Data Channel enhanced dedicated physical data channel
  • E-HICH E-DCH Hybrid ARQ Indicator Channel Enhanced Uplink Hybrid Automatic Request Retransmission Answer Indicator Channel
  • E-RGCH E-DCH Relative Grant Channel Enhanced Uplink Relative Grant Channel
  • E-AGCH E-DCH Absolute Grant Channel Enhanced Upstream Absolute Grant Channel
  • HS-DPCCH Dedicated Physical Control Channel (uplink) for HS-DSCH High Speed Uplink Feedback Channel
  • HS-PDSCH High Speed Physical Downlink Shared Channel
  • HS-SCCH Shared Control Channel for HS-DSCH High Speed Downlink Control Channel.
  • the integrated module described in the embodiment of the present invention can also be stored in a computer readable form if it is implemented in the form of a software function module and sold or used as a standalone product. Take the storage medium. Based on such understanding, the technical solution of the embodiments of the present invention may be embodied in the form of a software product in essence or in the form of a software product.
  • the computer software product is stored in a storage medium and includes a plurality of instructions.
  • a computer device (which may be a personal computer, server, or network device, etc.) is implemented to perform all or part of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a removable hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk or an optical disk, and the like, which can store program codes. .
  • ROM read-only memory
  • RAM random access memory
  • magnetic disk or an optical disk and the like, which can store program codes.
  • embodiments of the invention are not limited to any specific combination of hardware and software.
  • an embodiment of the present invention further provides a computer storage medium, wherein a computer program is stored, and the computer program is used to execute the method of the embodiment of the present invention.
  • the method of the embodiment of the present invention includes: obtaining a transmit power of a primary common pilot channel after enhanced power according to a transmit power and an increment of a primary common pilot channel when the power is not enhanced; a transmit power of the downlink traffic channel and an unenhanced power
  • the transmit power of the time is the same, and the transmit power of the downlink traffic channel is obtained according to the transmit power of the primary common pilot channel when the power is not enhanced; the transmit power of the primary common pilot channel and the transmit power of the downlink traffic channel after the enhanced power are respectively used Describe a primary common pilot channel and the downlink traffic channel.
  • the transmit power of the primary common pilot channel of the low-power base station cell is enhanced. Therefore, in the embodiment of the present invention, the transmit power of the downlink traffic channel of the macro cell and the low-power cell can be reduced, and the primary common pilot channel and the downlink are respectively sent.
  • the service channel is used to implement spatial separation between the downlink common boundary of the primary common pilot and the downlink service boundary, thereby avoiding interference of users in the unbalanced area in the network deployment.

Abstract

一种不平衡区的导频发射功率增强方法及基站,其中,所述方法包括:根据未增强功率时主公共导频信道的发射功率和增量得到增强功率后的主公共导频信道发射功率;下行业务信道的发射功率与未增强功率时的发射功率相同,并根据未增强功率时主公共导频信道的发射功率得到下行业务信道发射功率;分别采用所述增强功率后的主公共导频信道发射功率和下行业务信道发射功率发送所述主公共导频信道和所述下行业务信道。

Description

一种不平衡区的导频发射功率增强方法、 及基站 技术领域
本发明涉及导频发射技术, 尤其涉及一种不平衡区的导频发射功率增 强方法、 及基站。 背景技术
本申请发明人在实现本申请实施例技术方案的过程中, 至少发现现有 技术中存在如下技术问题:
在 实 际 的通用 移动通信 系 统 ( UMTS , Universal Mobile Telecommunications System )的网络部署中, 存在作为宏基站补充的低功率 基站(例如 Micro、 Pico基站), 低功率基站部署在宏小区中用于实现对热 点的补充覆盖, 从而形成宏小区与低功率小区共存的异构网络(Hetnet )场 景, 在这种场景下会发生用户的上下行链路不平衡的问题, 从而导致有些 小区上行覆盖受限, 降低了上行宏分集增益, 甚至没有上行宏分集增益, 甚至导致用户掉话、 上下行数据业务流量非常低或者切换失败, 也会干扰 上下行链路平衡区域用户的业务体验等一系列用户性能下降的结果, 针对 该上下行链路不平衡的问题, 相关技术中, 并未存在有效的解决方案。 发明内容
有鉴于此, 本发明实施例希望提供一种导频发射功率增强方法、 及基 站,通过增强导频技术解决 UMTS Hetnet网络部署中不平衡区用户的干扰, 本发明实施例的技术方案是这样实现的:
一种不平衡区的导频发射功率增强方法, 所述方法包括: 根据未增强功率时主公共导频信道的发射功率和增量得到增强功率后 的主公共导频信道发射功率;
下行业务信道的发射功率与未增强功率时的发射功率相同, 并根据未 增强功率时主公共导频信道的发射功率得到下行业务信道发射功率;
分别采用所述增强功率后的主公共导频信道发射功率和下行业务信道 发射功率发送所述主公共导频信道和所述下行业务信道。
优选地, 所述根据未增强功率时主公共导频信道的发射功率和增量得 到增强功率后的主公共导频信道发射功率, 包括:
Pp― cpich = Pvitmal _ p _ cpich + Delta; 其中, 所述 — cpich为所述增强功率后 的主公共导频信道发射功率,所述 P*ual _ p _ cpich为所述未增强功率时主公共 导频信道的发射功率, 所述 Z^Zto为所述增量。
优选地, 所述根据未增强功率时主公共导频信道的发射功率得到下行 业务信道发射功率, 包括:
PHSPDSCH = PVltrUal _ P _Cplch + ^ ^ 其中, 所述 为所述下行业务信道 发射功率, 所述 ^^_; ^;^未增强功率时主公共导频信道的发射功率, 所 述 Γ是由无线网络控制器 RNC通过基站应用部分协议 NBAP信令配置得 到。
优选地, 所述方法还包括:
根据所述增强功率后的主公共导频信道发射功率得到低功率基站小区 的下行物理信道、 及发送给软切换区用户的下行专用控制物理信道各自的 发射功率;
所述低功率基站小区的下行物理信道、 及发送给软切换区用户的下行 专用控制物理信道包括以下任一个物理信道:
主公共控制物理信道、 主同步信道、 辅同步信道、 增强上行混合自动 请求重传应答指示信道、 专用物理控制信道、 部分专用物理信道、 增强上 行相对授权信道;
排除以上物理信道的其他信道, 皆根据所述未增强功率时主公共导频 信道的发射功率得到各自的发射功率。
优选地, 所述方法还包括: 在未增强主公共导频信道的发射功率情况 下根据低功率基站小区与宏小区之间具有的上下行不平衡区大小、 软切换 参数、 低功率基站小区的独立小区的偏置参数来得到所述/) 。
优选地, 在上行边界处触发软切换测量报告并且软切换过程能够成功 的情况下,
根据所述上下行不平衡区大小、 软切换参数、 低功率基站小区的独立 小区的偏置参数来得到所述 Z^Zto包括:
Delta =DU-(Rla-Hla/2+CIO); 其中, 所述 Z^Zto为所述增量, 所述 DU 为所述上下行不平衡区大小, 所述 Rla和所述 Hla为所述软切换参数, 所 述 CIO为所述偏置参数。
优选地, 在下行导频边界与上行边界能够相同的情况下,
根据所述上下行不平衡区大小、 软切换参数、 低功率基站小区的独立 小区的偏置参数来得到所述 Z^Zto包括:
Delta = \]-C\0; 其中, 所述 Z) to为所述增量, 所述 DU为所述上下 行不平衡区大小, 所述 CIO为所述偏置参数。
一种基站, 所述基站包括:
第一功率调整单元, 配置为根据未增强功率时主公共导频信道的发射 功率和增量得到增强功率后的主公共导频信道发射功率;
第二功率调整单元, 配置为下行业务信道的发射功率与未增强功率时 的发射功率相同, 并根据未增强功率时主公共导频信道的发射功率得到下 行业务信道发射功率;
发送单元, 配置为分别采用所述增强功率后的主公共导频信道发射功 率和下行业务信道发射功率发送所述主公共导频信道和所述下行业务信 道。
优选地, 所述第一功率调整单元, 还配置为根据未增强功率时主公共 导频信道的发射功率和增量得到增强功率后的主公共导频信道发射功率所 采用的公式为: PP― cpich― Pvitrual _ p _ cpich + Delta; 其中, 所述 为所述 增强功率后的主公共导频信道发射功率,所述
Figure imgf000006_0001
_ p _ cpich为所述未增强功 率时主公共导频信道的发射功率, 所述 Z^Zto为所述增量。
优选地, 所述第二功率调整单元, 还配置为根据未增强功率时主公共 导频信道的发射功率得到下行业务信道发射功率所采用的公式为:
P廳 SCH = P*ualPc 其中, 所述 为所述下行业务信道发射 功率,所述 ^^_; ^;^未增强功率时主公共导频信道的发射功率,所述 Γ是 由无线网络控制器 RNC通过基站应用部分协议 NBAP信令配置得到。
优选地, 所述第一功率调整单元, 还配置为 居所述增强功率后的主 公共导频信道发射功率得到低功率基站小区的下行物理信道、 及发送给软 切换区用户的下行专用控制物理信道各自的发射功率;
所述低功率基站小区的下行物理信道、 及发送给软切换区用户的下行 专用控制物理信道包括以下任一个物理信道:
主公共控制物理信道、 主同步信道、 辅同步信道、 增强上行混合自动 请求重传应答指示信道、 专用物理控制信道、 部分专用物理信道、 增强上 行相对授权信道;
第二功率调整单元, 还配置为对低功率基站小区的下行物理信道、 及 发送给软切换区用户的下行专用控制物理信道中, 排除主公共控制物理信 道、 主同步信道、 辅同步信道、 增强上行混合自动请求重传应答指示信道、 专用物理控制信道、 部分专用物理信道、 增强上行相对授权信道之外的其 他信道, 皆根据所述未增强功率时主公共导频信道的发射功率得到各自的 发射功率。
优选地, 所述第一功率调整单元, 还包括:
增量获取子单元, 配置为在未增强主公共导频信道的发射功率情况下 根据低功率基站小区与宏小区之间具有的上下行不平衡区大小、 软切换参 数、 低功率基站小区的独立小区的偏置参数来得到所述/) e to。
优选地, 所述增量获取子单元, 还配置为在上行边界处触发软切换测 量报告并且软切换过程能够成功的情况下, Z^Zto = DU-(Rla-Hla/2+CIO); 其中, 所述 Z^Zto为所述增量, 所述 DU为所述上下行不平衡区大小, 所述 Rla和所述 Hla为所述软切换参数, 所述 CIO为所述偏置参数。
优选地, 所述增量获取子单元, 还配置为在下行导频边界与上行边界 能够相同的情况下, Z Zto =DU-CIO; 其中, 所述 Z^Zto为所述增量, 所述 DU为所述上下行不平衡区大小, 所述 CIO为所述偏置参数。
所述第一功率调整单元、 所述第二功率调整单元、 所述发送单元、 所 述增量获取子单元在执行处理时,采用中央处理器( CPU, Central Processing Unit )、 数字信号处理器(DSP, Digital Singnal Processor )或可编程逻辑阵 歹 'J ( FPGA, Field - Programmable Gate Array ) 实现。
本发明实施例的方法包括: 根据未增强功率时主公共导频信道的发射 功率和增量得到增强功率后的主公共导频信道发射功率; 下行业务信道的 发射功率与未增强功率时的发射功率相同, 并根据未增强功率时主公共导 频信道的发射功率得到下行业务信道发射功率; 分别采用所述增强功率后 的主公共导频信道发射功率和下行业务信道发射功率发送所述主公共导频 信道和所述下行业务信道。
由于增强了低功率基站小区的主公共导频信道的发射功率, 因此, 可 范围, 采用主公共导频信道和下行业务信道不同的发射功率分别发送主公 共导频信道和下行业务信道, 来实现主公共导频下行边界与下行业务边界 之间的空间分离, 避免了网络部署中不平衡区用户的干扰。 附图说明
图 1为 UMTS Hetnet网络的上下行链路不平衡示意图;
图 2为本发明实施例的方法流程图;
图 3为本发明实施例的组成结构示意图;
图 4为本发明实施例低功率基站小区增强导频功率后使得不平衡区边 界触发软切换, 下行导频边界与下行业务边界分离示意图;
图 5为本发明实施例低功率基站小区增强 P-CPICH/P-CCPCH/SCH功 率后导频边界使得不平衡区边界触发软切换示意图;
图 6 为本发明实施例针对不平衡区用户发射的下行专用信道 DPCCH/E-HICH功率以 Enhanced P-CPICH功率为参考示意图;
图 7 为本发明实施例低功率基站小区增强导频功率后使得不平衡区域 以外区域触发软切换, 下行导频边界与下行业务边界分离示意图;
图 8为本发明实施例低功率基站小区增强 P-CPICH/P-CCPCH/SCH功
具体实施方式
下面结合附图对技术方案的实施作进一步的详细描述。
本发明实施例以 UMTS网络部署为例进行阐述, 在 UMTS Hetnet的网 络部署中, 由于存在用户的上下行链路不平衡的问题, 从而导致了一系列 用户性能下降的结果, 如有些小区上行覆盖受限, P争低上行宏分集增益甚 至没有上行宏分集增益, 甚至导致用户掉话、 上下行数据业务流量非常低 或者切换失败, 也会干扰上下行链路平衡区域用户的业务体验等等结果。 导致用户的上下行链路不平衡的原因可能有多种情况, 例如:
1 ) 网络规划中个别小区的导频配置有差异, 有的小区导频配置比邻近 小区的导频大一些或 d、一些;
2 )由于网络中的基站设备生产批次不同或者新基站的接收敏度提升原 因, 导致出现相邻的基站接收灵敏度相差较大;
3 )外界干扰导致, 下行链路覆盖变差或者上行链路覆盖变差;
4 )在一些用户热点地区或者盲区通过在宏小区覆盖区中增加低功率基 站来满足热点或盲区的业务需要, 由于低功率基站的功率相对于宏基站功 率相差太大, 但是低功率基站的接收灵敏度与宏基站的接收灵敏度相等或 者相差较小, 从而导致低功率基站的边缘区出现较大的上下行链路不平衡 区。
尤其在移动宽带业务发展迅猛, 各种 3GPP制式智能终端(手机、数据 卡、 iPad等) 的数据业务井喷式应用, 直接导致了热点地区数据流量以及 各种基于移动互联网应用的 APP应用呈现爆炸式增长趋势, 仅仅增强传统 的宏小区性能很难完全解决问题, 所以采用在宏小区中部署同频的低功率 基站(例如 Micro、 Pico基站)来解决急速增长的数据流量以及各种基于移 动互联网应用的 APP应用需求, 这些低功率基站部署在宏小区中来实现对 热点的补充覆盖, 形成宏小区与低功率小区共存的 Hetnet 异构网络, 在 UMTS Hetnet场景下, UMTS Hetnet网络的上下行链路不平衡示意图如图 1 所示。
针对上述上下行链路不平衡的问题, 本发明实施例通过增强导频技术 解决 UMTS Hetnet不平衡区用户干扰, 解决了上下行业务链路不平衡带来 的用户性能下降问题。
本发明实施例的不平衡区的导频发射功率增强方法, 如图 2所示, 包 括以下步骤:
步骤 101、根据未增强功率时主公共导频信道的发射功率和增量得到增 强功率后的主公共导频信道发射功率。
这里, 未增强功率时主公共导频信道的发射功率即为原有主公共导频 信道发射功率。
步骤 102、 下行业务信道的发射功率与未增强功率时的发射功率相同, 并根据未增强功率时主公共导频信道的发射功率得到下行业务信道发射功 率。
这里, 未增强功率时主公共导频信道的发射功率即为原有主公共导频 信道发射功率, 步骤 102 即为将原有主公共导频信道发射功率作为下行业 务信道发射功率的参考基准 , 使得下行业务信道覆盖范围与原有主公共导 频信道的覆盖范围相同。
步骤 103、分别采用所述增强功率后的主公共导频信道发射功率和下行 业务信道发射功率发送所述主公共导频信道和所述下行业务信道。
这里, 步骤 103 即为采用主公共导频信道和下行业务信道不同的发射 功率分别发送主公共导频信道和下行业务信道, 来实现主公共导频下行边 界与下行业务边界之间的空间分离。
本实施例的步骤 101-102不分先后。
本发明实施例的基站, 如图 3所示, 包括: 第一功率调整单元 11 , 配 置为根据未增强功率时主公共导频信道的发射功率和增量得到增强功率后 的主公共导频信道发射功率; 第二功率调整单元 12, 配置为下行业务信道 的发射功率与未增强功率时的发射功率相同, 并根据未增强功率时主公共 导频信道的发射功率得到下行业务信道发射功率; 发送单元 13, 配置为分 别采用所述增强功率后的主公共导频信道发射功率和下行业务信道发射功 率发送所述主公共导频信道和所述下行业务信道。 这里需要指出的是, 第一功率调整单元、 第二功率调整单元和发送单 元在低功率基站侧, 在执行处理时, 可以采用中央处理器 (CPU, Central Processing Unit )、 数字信号处理器 ( DSP, Digital Singnal Processor )或可 编程還辑阵列 (FPGA, Field - Programmable Gate Array ) 实现。
采用本发明实施例, 达到的有益效果为:
本发明实施例是一种针对上下行链路不平衡的解决方案通过增强导频 技术, 加强低功率基站的导频发射功率, 使得低功率小区的主公共导频下 行边界与原有的下行业务边界之间实现了空间分离, 实现了低功率小区的 导频与下行业务之间的差异化覆盖策略, 低功率小区导频和广播信道大覆 盖, 低功率小区下行业务覆盖小覆盖, 解决相关技术中宏微不平衡区用户 无法成功完成软切换过程以及无线接口同步过程的问题。 从而使上下行业 务链路不平衡区用户能够获得上行宏分集增益, 避免上下行业务链路不平 衡区用户对低功率小区带来上行干扰, 变干扰为有用信号, 提升用户的业 务体验, 提升 Hetnet网络性能。 采用本发明实施例, 能在不用对相关技术 中 UMTS终端升级的情况下, 从根本上解决上下行业务链路不平衡导致用 户掉话、 切换失败、 数据业务体验变差问题, 提升网络容量和性能。
以下为了描述的方便, 针对上下行链路不平衡的解决方案以 UMTS Hetnet场景为参考, 来说明本发明实施例, 图 1为当前 UMTS Hetnet中上 下行链路不平衡的示意图, 其中上行边界与下行边界相差 DU ( dB )。 后续 实施例为了方便描述, 以虚拟主公共导频信道发射功率代表未增强功率时 主公共导频信道的发射功率(原有主公共导频信道发射功率), 不做赞述。
第一、 增强低功率基站的主公共导频信道 P-CPICH发射功率以及虚拟 主公共导频信道发射功率的引入, 使得下行导频边界与下行业务信道边界 实现空间分离。
低功率基站的主公共导频信道( P-CPICH )发射功率在原有主公共导频 信道( P-CPICH )发射功率基础上增加 Delta ( dB ), 增加的 Delta ( dB ) 大 小由原来低功率基站小区与宏小区之间的上下行不平衡区大小、 软切换参 数 Rla、 Hla、低功率基站独立小区的偏置 CIO参数大小来决定(在后续的 第二节中具体说明)。 为了表述的方便, 增强后的主公共导频信道称作为增 强主公共导频信道(Enhanced P-CPICH ), 原来的主公共导频信道称作为 Virtual P-CPICH或 Old P-CPICH; 另外, 为了保证软切换过程中无线接口 同步成功, 主公共控制物理信道(P-CCPCH )和主同步信道(P-SCH )、 辅 同步信道(S-SCH ) 的发射功率也相应地增加 Delta ( dB ), 分别称作为 Enhanced P-CCPCH, Enhanced P-SCH, Enhanced S-SCH。
在低功率基站的小区中, 下行公共物理信道 P-CCPCH、 P-SCH, S-SCH 以 及发射 给软切换 区 用 户 的 下 行 专 用 控 制 物 理信 道 E-HICH/DPCCH/F-DPCH/E-RGCH发射功率以 Enhanced P-CPICH功率作为 参考基准, 其他的下行物理信道都以虚拟主公共导频信道 Virtual P-CPICH 发射功率为参考基准, 参考图 5和图 6。
这里需要指出的是, 根据所述 Enhanced P-CPICH发射功率得到上述低 功率基站小区的下行物理信道、 及发送给软切换区用户的下行专用控制物 理信道各自的发射功率, 也就是说, 低功率基站小区的下行物理信道、 及 发送给软切换区用户的下行专用控制物理信道中, 包括 P-CCPCH、 P-SCH, S-SCH、 E-HICH , DPCCH、 F-DPCH、 E-RGCH 在内的这些信道以所述 Enhanced P-CPICH发射功率作为参考基准。 针对如何得到这些信道各自的 发射功率而言, 这些信道的发射功率与所述参考基准功率 (所述 Enhanced P-CPICH发射功率)之间的比例关系遵循既有的功率比例, 但是参考基准 是所述 Enhanced P-CPICH发射功率。 对于排除这些信道之外的其他信道, 皆以所述 Virtual P-CPICH发射功率作为参考基准, 对于排除这些信道之外 的其他信道是如何根据所述 Virtual P-CPICH发射功率得到各自的发射功率 而言, 排除这些信道之外的其他信道的功率与参考基准功率 (所述 Virtual P-CPICH发射功率)之间的比例关系遵循既有的功率比例, 但是, 参考基 准功率是所述 Virtual P-CPICH发射功率。
例如, 其中 HSDPA业务的下行物理信道 HS-PDSCH以及 R99下行专 用物理数据信道 DPDCH以虚拟主公共导频信道发射功率为参考基准,使得 低功率基站的小区的下行 HSDPA/R99业务覆盖的范围与虚拟主公共导频信 道 Virtual P-CPICH覆盖的范围相同 (小于 Enhanced P-CPICH覆盖范围), 使得低功率基站小区导频覆盖大于低功率基站小区下行业务覆盖, 这样就 使得不平衡域用户得到低功率基站小区的上行服务。
通过增强低功率基站小区的主公共导频发射功率可以缩小宏小区与低 下行导频边界与上行边界完全相同, 让原有上下行边界之间的不平衡区 UE 能够检测到低功率基站小区主公共导频信号, 从而有机会触发软切换测量 事件上报, 通过增强导频发射功率使得下行导频边界朝上行边界移动。
根据所述 Virtual P-CPICH发射功率得到下行业务信道发射功率, 采用 的公式为: PHCH = P 其中, 所述/ ^P WOT为所述下行业 务信道发射功率, 所述 为所述 Virtual P-CPICH发射功率, 所述
Γ是由无线网络控制器(RNC )通过基站应用部分协议(NBAP )信令配置 得到。 以所述 Virtual P-CPICH发射功率代表未增强功率时主公共导频信道 的发射功率(原有主公共导频信道发射功率), 也就是说, 低功率基站的下 行业务信道以 Virtual P-CPICH发射功率为参考基准, 这样就出现宏小区与 低功率小区的主公共导频下行边界与原有的下行业务边界之间实现了空间 分离, 参考图 4和图 7。 而相关技术中的导频功率配置以及下行物理信道与 导频之间的配置方式导致下行导频边界与下行业务边界相同 (参考图 1 )。
二、 低功率基站小区增强 P-CPICH功率大小的确定方法 为了使得上下行链路不平衡区的用户能够接收到低功率小区的上行业 务服务。 可能出现两种可能情况:
1 )第一种情况, 是在上行边界处就要触发软切换测量报告并让软切换 过程能够成功, 那么 Enhanced P-CPICH发射功率相对于 Virtual P-CPICH 发射功率需要增加 Delta ( dB ), 即 PP― cpich― Pvitrual _ p _ cpich + Delta , 主公共 控制物理信道( P-CCPCH )和主同步信道( P-SCH )、 辅同步信道( S-SCH ) 的发射功率也相应地增加 Delta ( dB ), 参考图 5。 其中 Delta大小与软切换 参数 Rla、 Hla以及低功率基站小区的独立小区的偏置 CIO参数相关联, Delta大小遵循下面的公式: Delta=DU-(Rla-Hla/2+CIO) , 参考图 4。
为了使得不平衡区用户获得上行宏分集增益, 针对不平衡区用户发射 的下行专用信道 DPCCH/E-HICH功率以 Enhanced P-CPICH功率为参考基 准, 参考图 6。
2 )第二种情况, 是让下行导频边界与上行边界相同, 这样上行边界以 外的上行软合并增益区域(朝向宏小区)也能够接收到低功率小区的上行 业务服务, 就需要 Delta设置得更大, Enhanced P-CPICH发射功率相对于 Virtual P-CPICH 发射功 率还是需要增加 Delta ( dB ) , 即 PP - cpkh = Pvitmai _ p _ cpkh + Delta , 主公共控制物理信道( P-CCPCH )和主同 步信道( P-SCH )、辅同步信道( S-SCH )的发射功率也相应地增加 Delta( dB ), 参考图 8。其中 Delta大小与低功率基站小区的独立小区的偏置 CIO参数相 关联, Delta大小遵循下面的公式: Delta=DU-CIO, 参考图 7。
功率以 Enhanced P-CPICH功率为参考基准, 参考图 9。
低功率小区的 CIO可以设置为 0, 也可以设置为非 0, CIO越大, Delta 值就越小, 这样导频增加的功率就越小。 总之 CIO参数设置以及下行导频 功率增强 Delta 大小设置需要保证软切换过程成功尤其是无线接口的同步 过程成功, 这样可以带来上行宏分集增益。 应用实例一 :
以每小区最大发射功率为 34dB(2.5W)的低功率基站部署在同频的最大 发射功率为 43dB(20W)的宏小区为例, 其中低功率小区与宏小区的接收灵 敏度相同, 这样上下行边界不平衡区大小 DU=43-34=9dB。
UE从宏小区移动到低功率小区过程中,如果要让上行边界处就要触发 软切换测量报告并让软切换过程能够成功 , 增强低功率基站的导频功率参 考图 4要求。 其中 Rla=3dB, Hla=0, 低功率基站小区的独立小区的偏置设 置为 CIO=3dB,这样 Delta=DU-(Rla-Hla/2+CIO)=9-(3-0+3 ) =3dB。
UE从宏小区移动到低功率小区过程中, 如果要让下行导频边界与上行 边界相同, 这样上行边界以外的上行软合并增益区域(朝向宏小区)也能 够接收到低功率小区的上行业务服务,增强低功率基站的导频功率参考图 7 要求。 其中 Rla=3dB , Hla=0, 低功率基站小区的独立小区的偏置设置为 CIO=6dB,这样 Delta=DU-CIO=9-6=3dB。
以上两种不同的 CIO 配置都使得低功率基站的主公共导频信道 (P-CPICH)发射功率在原有主公共导频信道 (P-CPICH)发射功率基础上增加 3dB, 相应的主公共控制物理信道(P-CCPCH )和主同步信道(P-SCH )、 辅同步信道(S-SCH )的发射功率也相应地增加 3dB, 按照小区的公共物理 信道输出功率常规配置比例来看,例如 P-CPICH、 P-CCPCH, P-SCH、 S-SCH 占最大发射功率的 10%、 5%、 4%、 4%, 总共占用 23%的小区最大发射功 率, 参考如下表 8所示 (表 8为未增强主导频功率的低功率基站的下行信 道发射功率配置表), 增加 3dB后, 低功率基站小区 P-CPICH、 P-CCPCH, P-SCH、 S-SCH将增加 23%的发射功率。 P-CPICH、 P-CCPCH、 P-SCH、 S-SCH所增加的 23%功率可以有两种 配置方式:
一种是占用当前小区的发射功率,也就是 P-CPICH、P-CCPCH、P-SCH、 S-SCH 占小区的最大发射功率的 46%, 意味着下行业务相关信道的可用功 率减少 0.575W(=2. 5*23%), 参考如下表 9所示(表 9为低功率基站小区增 强主导频功率、 小区最大发射功率保持不变情况下的发射功率配置表); 第二种配置方式是, P-CPICH, P-CCPCH, P-SCH、 S-SCH 所增加的 23 %功率不占用当前小区的发射功率,也就是低功率基站小区的最大发射功 率增加 23%, 意味着下行业务相关信道的可用功率不会因为导频功率的增 强而减少, 参考如下表 10所示(表 10为低功率基站小区增强主导频功率、 小区最大发射功率同时增强情况下的发射功率配置表), 下行 R99&HSDPA&HSUPA下行业务信道可用功率没有减少,原来的低功率基站 小区最大发射功率为 34dB(2.5W)的增加为 34.8dB (2. 5 x (1+23%)=3W), 这 样通过增加导频和广播信道、 同步信道的发射功率就可以让原有的不平衡 区用户接收到低功率小区的上行业务服务, 提升系统性能和容量。
应用实例二 :
以每小区最大发射功率为 31dB(1.25W)的低功率基站部署在同频的最 大发射功率为 43dB(20W)的宏小区为例, 其中低功率小区与宏小区的接收 灵敏度相同, 这样上下行边界不平衡区大小 DU=43-31=12dB。
UE从宏小区移动到低功率小区过程中,如果要让上行边界处就要触发 软切换测量报告并让软切换过程能够成功 , 增强低功率基站的导频功率参 考图 2要求, 其中 Rla=3dB, Hla=0, 低功率基站小区的独立小区的偏置设 置为 CIO=5dB,这样 Delta=DU-(Rla-Hla/2+CIO)=12-(3-0+5 ) =4dB。
这样低功率基站的主公共导频信道 (P-CPICH)发射功率在原有主公共 导频信道 (P-CPICH)发射功率基础上增加 4dB, 相应的主公共控制物理信道 ( P-CCPCH )和主同步信道(P-SCH )、 辅同步信道(S-SCH ) 的发射功率 也相应地增加 4dB , 按照小区的公共物理信道输出功率常规配置比例来看, 例如 P-CPICH、 P-CCPCH, P-SCH、 S-SCH占最大发射功率的 10%、 5%、 4%、 4%, 总共占用 23%的小区最大发射功率, 参考如下表 8所示(表 8为 未增强主导频功率的低功率基站的下行信道发射功率配置表), 增加 4dB 后, 低功率基站小区 P-CPICH、 P-CCPCH、 P-SCH、 S-SCH将增加 ( 2.5-1) χ 23%=34.5%的发射功率。
P-CPICH、 P-CCPCH, P-SCH、 S-SCH所增加的 34.5%功率可以有两种 配置方式:
一种是占用当前小区的发射功率,也就是 P-CPICH、 P-CCPCH、P-SCH、 S-SCH 占小区的最大发射功率的 46%, 意味着下行业务相关信道的可用功 率减少 0.43W(=1.25*34.5%), 参考如下表 9所示 (表 9为低功率基站小区 增强主导频功率、 小区最大发射功率保持不变情况下的发射功率配置表); 第二种配置方式是, P-CPICH, P-CCPCH、 P-SCH、 S-SCH 所增加的 23 %功率不占用当前小区的发射功率,也就是低功率基站小区的最大发射功 率增加 34.5%,意味着下行业务相关信道的可用功率不会因为导频功率的增 强而减少, 参考如下表 10所示(表 10为低功率基站小区增强主导频功率、 小区最大发射功率同时增强情况下的发射功率配置表), 下行 R99&HSDPA&HSUPA下行业务信道可用功率没有减少,原来的低功率基站 小 区 最大发射功 率为 31dB(1.25W)的增加为 32.3dB (1.25 χ (1+34.5%)=1.68W) , 这样通过增加导频和广播信道、 同步信道的发射功率 就可以让原有的不平衡区用户接收到低功率小区的上行业务服务, 提升系 统性能和容量。 下行物理信道 发射功率 备注
P-CPICH
P-CCPCH b%*Tx
A%+b%+c%+d%+e%+f%+g%+h%=l ;
P-SCH
例如 a%=10%, b%=5%, c%=4%, d%=4%,
S-SCH d%*Tx
P-CPICH/P-CCPCH/P-SCH/S-SC占 23%总
S-CCPCH e%*Tx
功率
未增强主导频功 AICH f%*Tx
率的低功率基站 PICH g%*Tx
最大发射功率 DPDCH
=Tx(W) DPCCH
F-DPCH
HS-PDSCH
h%*Tx
HS-SCCH o
E-AGCH * H H
E-RGCH
E-fflCH
Figure imgf000018_0001
下行物理信道 发射功率 备注
P-CPICH a%*Tx*X
P-CCPCH b%*Tx*X X=10A(Delta/10); Delta为低功率基站主导
P-SCH c%*Tx*X 频所增加的功 · ( dB );
例 1 : a%=10%, b%=5%, c%=4%, d%=4%, Delta=3dB, X=2,
P-CPICH/P-CCPCH/P-SCH/S-SCH占总功 率的 46%。
S-SCH d%*Tx*X 例 2: a%=10%, b%=5%, c%=4%, d%=4%,
Delta=4dB, X=2.5,
P-CPICH/P-CCPCH/P-SCH/S-SCH占总功 增强主导频功率 率的 57.5%
的低功率基站最
大发射功率
S-CCPCH
=Tx(W) e%*Tx 发射功率与原有的 P-CPICH
AICH f%*Tx 导频功率 (虚拟导频功率大小&%*1 )之
PICH g%*Tx 间的偏移相同
DPDCH 下行业务信道可用功率减少
DPCCH (a%+b%+c%+d%)(X- l)*Tx,
F-DPCH 例 1 : Tx=2.5W, a%=10%, b%=5%, c%=4%,
[h%- d%=4%, Delta=3dB, X=2,下行业 ^言道可
HS-PDSCH
(a%+b%+c%+ 用功率减少 0.575W(=2.5*23%);
HS-SCCH
d%)(X-l)]*Tx 例 2: Tx=1.25W, a%=10%, b%=5%,
E-AGCH
c%=4%, d%=4%, Delta=4dB, X=2.5,
E-RGCH 下行业务信道可用功率减少
E-fflCH 0.43W(=1.25*34.5%);
Figure imgf000019_0001
下行物理信道 发射功率 备注
P-CPICH a%*Tx*X
P-CCPCH b%*Tx*X
P-SCH c%*Tx*X X= 10A(Delta/l 0); Delta为低功率基站主导频所增加 的功率 (dB );
例 1: Tx=2.5W, a%=10%, b%=5%, c%=4%, d%=4%, Delta=3dB, X=2,一个小区最大发射功率增加 2.5W*23%=0.575W,即最大发射功率变为 3W。
S-SCH d%*Tx*X 例 2: Tx=1.25W, a%=10%, b%=5%, c%=4%, d%=4%,
Delta=4dB, X=2.5,一个小区最大发射功率增加 增强主导频功率 1.25W*34.5%=0.43W,即最大发射功率变为 1.68W。 的低功率基站最
大发射功率
=Tx*(l+a%+b% S-CCPCH e%*Tx
+c%+d%)(W) AICH f%*Tx 发射功率与原有的 P-CPICH功率之间的偏移相同
PICH g%*Tx
DPDCH
DPCCH 针对软切换区用户的 DPCCH功率需要增强
F-DPCH 针对软切换区用户的 F-DPCH功率需要增强
HS-PDSCH
h%*Tx
HS-SCCH
E-AGCH
E-RGCH 针对软切换区用户的 E-RGCH功率需要增强
E-HICH 针对软切换区用户的 E-HICH功率需要增强
Figure imgf000020_0001
这里, 对本文及附图涉及的相关信道的英文全称及中文注释说明如下:
P-CCPCH: Primary Common Control Physical Channel主公共控制物理 信道
P-SCH: Primary Synchronisation Channel主同步信道
S-SCH: Secondary Synchronisation Channel辅同步信道
AICH: Acquisition Indicator Channel 4i获指示信道
PICH: Page Indicator Channel寻呼指示信道
HS-DSCH: High Speed Downlink Shared Channel高速下行链路共享信 道
DPCCH: Dedicated Physical Control Channel专用物理控制信道
DPDCH: Dedicated Physical Data Channel专用物理数据信道 F-DPCH: Fractional Dedicated Physical Channel部分专用物理信道
E-DCH: Enhanced Dedicated Channel增强专用信道
E-DPCCH: E-DCH Dedicated Physical Control Channel增强专用物理控 制信道
E-DPDCH: E-DCH Dedicated Physical Data Channel增强专用物理数据 信道
E-HICH: E-DCH Hybrid ARQ Indicator Channel增强上行混合自动请求 重传应答指示信道
E-RGCH: E-DCH Relative Grant Channel增强上行相对授权信道 E-AGCH: E-DCH Absolute Grant Channel增强上行绝对授权信道 HS-DPCCH: Dedicated Physical Control Channel (uplink) for HS-DSCH 高速上行反馈信道
HS-PDSCH: High Speed Physical Downlink Shared Channel高速下行物 理共享信道
HS-SCCH: Shared Control Channel for HS-DSCH高速下行控制信道 本发明实施例所述集成的模块如果以软件功能模块的形式实现并作为 独立的产品销售或使用时, 也可以存储在一个计算机可读取存储介质中。 基于这样的理解, 本发明实施例的技术方案本质上或者说对现有技术做出 贡献的部分可以以软件产品的形式体现出来, 该计算机软件产品存储在一 个存储介质中, 包括若干指令用以使得一台计算机设备(可以是个人计算 机、 服务器、 或者网络设备等)执行本发明各个实施例所述方法的全部或 部分。 而前述的存储介质包括: U盘、 移动硬盘、 只读存储器 (ROM, Read-Only Memory ) , 随机存取存储器 ( RAM, Random Access Memory ), 磁碟或者光盘等各种可以存储程序代码的介质。 这样, 本发明实施例不限 制于任何特定的硬件和软件结合。 相应的, 本发明实施例还提供一种计算机存储介质, 其中存储有计算 机程序, 该计算机程序用于执行本发明实施例的方法。
以上所述, 仅为本发明的较佳实施例而已, 并非用于限定本发明的保 护范围。 工业实用性 本发明实施例的方法包括: 根据未增强功率时主公共导频信道的发射 功率和增量得到增强功率后的主公共导频信道发射功率; 下行业务信道的 发射功率与未增强功率时的发射功率相同, 并根据未增强功率时主公共导 频信道的发射功率得到下行业务信道发射功率; 分别采用所述增强功率后 的主公共导频信道发射功率和下行业务信道发射功率发送所述主公共导频 信道和所述下行业务信道。 由于增强了低功率基站小区的主公共导频信道 的发射功率, 因此, 采用本发明实施例, 可以缩小宏小区与低功率小区的 下行业务信道不同的发射功率分别发送主公共导频信道和下行业务信道, 来实现主公共导频下行边界与下行业务边界之间的空间分离, 避免了网络 部署中不平衡区用户的干扰。

Claims

权利要求书
1、 一种不平衡区的导频发射功率增强方法, 所述方法包括: 根据未增强功率时主公共导频信道的发射功率和增量得到增强功率后 的主公共导频信道发射功率;
下行业务信道的发射功率与未增强功率时的发射功率相同, 并根据未 增强功率时主公共导频信道的发射功率得到下行业务信道发射功率;
分别采用所述增强功率后的主公共导频信道发射功率和下行业务信道 发射功率发送所述主公共导频信道和所述下行业务信道。
2、 根据权利要求 1所述的方法, 其中, 所述根据未增强功率时主公共 导频信道的发射功率和增量得到增强功率后的主公共导频信道发射功率, 包括:
Pp― cpich = Pvitrual _ p _ cpich + Delta; 其中, 所述 — cpich为所述增强功率后 的主公共导频信道发射功率,所述 Pvit I _ p _ cpich为所述未增强功率时主公共 导频信道的发射功率, 所述 Z^Zto为所述增量。
3、 根据权利要求 1或 2所述的方法, 其中, 所述根据未增强功率时主 公共导频信道的发射功率得到下行业务信道发射功率, 包括:
PHS隱 其中, 所述 为所述下行业务信道 发射功率, 所述 ^^_/^;^未增强功率时主公共导频信道的发射功率, 所 述 Γ是由无线网络控制器 RNC通过基站应用部分协议 NBAP信令配置得 到。
4、 根据权利要求 1所述的方法, 其中, 所述方法还包括:
根据所述增强功率后的主公共导频信道发射功率得到低功率基站 '』、区 的下行物理信道、 及发送给软切换区用户的下行专用控制物理信道各自的 发射功率;
所述低功率基站小区的下行物理信道、 及发送给软切换区用户的下行 专用控制物理信道包括以下任一个物理信道:
主公共控制物理信道、 主同步信道、 辅同步信道、 增强上行混合自动 请求重传应答指示信道、 专用物理控制信道、 部分专用物理信道、 增强上 行相对授权信道;
排除以上物理信道的其他信道, 皆根据所述未增强功率时主公共导频 信道的发射功率得到各自的发射功率。
5、 根据权利要求 2所述的方法, 其中, 所述方法还包括: 在未增强主 公共导频信道的发射功率情况下根据低功率基站小区与宏小区之间具有的 上下行不平衡区大小、 软切换参数、 低功率基站小区的独立小区的偏置参 数来得到所述 Z^Zto。
6、 根据权利要求 5所述的方法, 其中, 在上行边界处触发软切换测量 报告并且软切换过程能够成功的情况下,
根据所述上下行不平衡区大小、 软切换参数、 低功率基站小区的独立 小区的偏置参数来得到所述 Z^Zto包括:
Delta =DU-(Rla-Hla/2+CIO); 其中, 所述 Z^Zto为所述增量, 所述 DU 为所述上下行不平衡区大小, 所述 Rla和所述 Hla为所述软切换参数, 所 述 CIO为所述偏置参数。
7、 根据权利要求 5所述的方法, 其中, 在下行导频边界与上行边界能 够相同的情况下,
根据所述上下行不平衡区大小、 软切换参数、 低功率基站小区的独立 小区的偏置参数来得到所述 Z^Zto包括:
Delta = \]-C\0; 其中, 所述 Z) to为所述增量, 所述 DU为所述上下 行不平衡区大小, 所述 CIO为所述偏置参数。
8、 一种基站, 所述基站包括:
第一功率调整单元, 配置为根据未增强功率时主公共导频信道的发射 功率和增量得到增强功率后的主公共导频信道发射功率;
第二功率调整单元, 配置为下行业务信道的发射功率与未增强功率时 的发射功率相同, 并根据未增强功率时主公共导频信道的发射功率得到下 行业务信道发射功率;
发送单元, 配置为分别采用所述增强功率后的主公共导频信道发射功 率和下行业务信道发射功率发送所述主公共导频信道和所述下行业务信 道。
9、 根据权利要求 8所述的基站, 其中, 所述第一功率调整单元, 还配 置为根据未增强功率时主公共导频信道的发射功率和增量得到增强功率后 的 主 公 共 导 频 信 道 发 射 功 率 所 采 用 的 公 式 为 :
Pp― cpich = Pvitrual _ p _ cpich + Delta; 其中, 所述 Pp― cpich为所述增强功率后的主 公共导频信道发射功率,所述 Pvit I _ p _ cpich为所述未增强功率时主公共导频 信道的发射功率, 所述 Z^Zto为所述增量。
10、 根据权利要求 8或 9所述的基站, 其中, 所述第二功率调整单元, 还配置为根据未增强功率时主公共导频信道的发射功率得到下行业务信道 发射功率所采用的公式为: PmpDSCH = Pvltmal_p cpich +r 其中,所 i PHSPDSCH 为所述下行业务信道发射功率, 所逸 P*uai _ p _cpich未增强功率时主公共导频 信道的发射功率, 所述 Γ是由无线网络控制器 RNC通过基站应用部分协议 NBAP信令配置得到。
11、 根据权利要求 8 所述的基站, 其中, 所述第一功率调整单元, 还 配置为根据所述增强功率后的主公共导频信道发射功率得到低功率基站 d、 区的下行物理信道、 及发送给软切换区用户的下行专用控制物理信道各自 的发射功率;
所述低功率基站小区的下行物理信道、 及发送给软切换区用户的下行 专用控制物理信道包括以下任一个物理信道: 主公共控制物理信道、 主同步信道、 辅同步信道、 增强上行混合自动 请求重传应答指示信道、 专用物理控制信道、 部分专用物理信道、 增强上 行相对授权信道;
第二功率调整单元, 还配置为对低功率基站小区的下行物理信道、 及 发送给软切换区用户的下行专用控制物理信道中, 排除主公共控制物理信 道、 主同步信道、 辅同步信道、 增强上行混合自动请求重传应答指示信道、 专用物理控制信道、 部分专用物理信道、 增强上行相对授权信道之外的其 他信道, 皆根据所述未增强功率时主公共导频信道的发射功率得到各自的 发射功率。
12、 根据权利要求 9所述的基站, 其中, 所述第一功率调整单元, 还 包括:
增量获取子单元, 配置为在未增强主公共导频信道的发射功率情况下 根据低功率基站小区与宏小区之间具有的上下行不平衡区大小、 软切换参 数、 低功率基站小区的独立小区的偏置参数来得到所述/) e to。
13、 根据权利要求 12所述的基站, 其中, 所述增量获取子单元, 还配 置为在上行边界处触发软切换测量报告并且软切换过程能够成功的情况 下, = ϋυ-(Ι 1 -Η1 /2+αθ); 其中, 所述 Z)eZto为所述增量, 所述 DU 为所述上下行不平衡区大小, 所述 Rla和所述 Hla为所述软切换参数, 所 述 CIO为所述偏置参数。
14、 根据权利要求 12所述的基站, 其中, 所述增量获取子单元, 还配 置为在下行导频边界与上行边界能够相同的情况下, Z Zto =DU-CIO;其中, 所述 Z^Zto为所述增量,所述 DU为所述上下行不平衡区大小,所述 CIO为
PCT/CN2014/078688 2013-12-17 2014-05-28 一种不平衡区的导频发射功率增强方法、及基站 WO2014187381A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP14800861.8A EP3086605B1 (en) 2013-12-17 2014-05-28 Imbalanced area pilot frequency transmission power enhancement method and base station
US15/105,922 US9723574B2 (en) 2013-12-17 2014-05-28 Imbalanced area pilot frequency transmission power enhancement method and base station

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310695868.3A CN104717734A (zh) 2013-12-17 2013-12-17 一种不平衡区的导频发射功率增强方法、及基站
CN201310695868.3 2013-12-17

Publications (1)

Publication Number Publication Date
WO2014187381A1 true WO2014187381A1 (zh) 2014-11-27

Family

ID=51932931

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/078688 WO2014187381A1 (zh) 2013-12-17 2014-05-28 一种不平衡区的导频发射功率增强方法、及基站

Country Status (4)

Country Link
US (1) US9723574B2 (zh)
EP (1) EP3086605B1 (zh)
CN (1) CN104717734A (zh)
WO (1) WO2014187381A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1559112A (zh) * 2001-10-22 2004-12-29 ��˹��ŵ�� 导频信道功率自动调谐
CN1874585A (zh) * 2005-06-03 2006-12-06 上海华为技术有限公司 相邻基站间实现上下行覆盖平衡的方法
WO2011116513A1 (en) * 2010-03-23 2011-09-29 Huawei Technologies Co., Ltd. Method for controlling interference in a cellular communication arrangement

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1559112A (zh) * 2001-10-22 2004-12-29 ��˹��ŵ�� 导频信道功率自动调谐
CN1874585A (zh) * 2005-06-03 2006-12-06 上海华为技术有限公司 相邻基站间实现上下行覆盖平衡的方法
WO2011116513A1 (en) * 2010-03-23 2011-09-29 Huawei Technologies Co., Ltd. Method for controlling interference in a cellular communication arrangement

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3086605A4 *

Also Published As

Publication number Publication date
EP3086605A1 (en) 2016-10-26
US9723574B2 (en) 2017-08-01
EP3086605A4 (en) 2017-07-26
US20170006558A1 (en) 2017-01-05
CN104717734A (zh) 2015-06-17
EP3086605B1 (en) 2018-10-03

Similar Documents

Publication Publication Date Title
CN103444239B (zh) 用于小区间上行链路干扰控制的方法和装置
US9503941B2 (en) Systems and methods for supporting an enhanced serving cell change when moving among different cell types
AU2014393235B2 (en) Device to device synchronization source selection
KR101619967B1 (ko) 비전용 채널 상태에서 사용자 장비에 의한 소프터 핸드오버를 인에이블하기 위한 시스템 및 방법
EP2232929B1 (en) Method and apparatus of signaling and procedure to support uplink power level determination
EP3520493B1 (en) Methods and nodes for cell selection in a wireless communication network
KR101863342B1 (ko) 무선 통신들에서 프레임 조기 종료를 위해 외부 루프 전력 제어를 수행하기 위한 장치 및 방법들
EP2866489A1 (en) Uplink interference management method, node and system
EP3105979B1 (en) Ul control channel consideration for heterogeneous networks
US9743413B2 (en) Network node, user node and methods for power boosting DPCCH
CN113785629A (zh) 用于非陆地网络中的ue小区选择控制的装置、方法和计算机程序
EP2880948B1 (en) Method and apparatus for use in a mobile communication network
US9241289B1 (en) Dynamic adjustment of cell reselection parameters for a wireless communication device
EP3082365A1 (en) Method for implementing soft handover of user equipment, and radio network controller
EP2856833B1 (en) Method for selecting antennas to be included in a set of receiving antennas
TW201130355A (en) Systems and methods to allow fractional frequency reuse in TD-SCDMA systems
WO2014161264A1 (zh) 一种宏基站与低功率基站协同通信的方法及系统
WO2014194799A1 (zh) 通信方法、无线网络控制器和用户设备
EP3089517B1 (en) Soft handover processing method and apparatus
WO2014187381A1 (zh) 一种不平衡区的导频发射功率增强方法、及基站
WO2015100947A1 (zh) 小区重选方法、装置和小区参数配置方法、装置
WO2015013934A1 (zh) 一种定时调整的方法、装置和系统
CN104105184A (zh) 宏基站和低功率节点间的干扰控制方法及装置
US20160254896A1 (en) A Node and Method for Establishing a Radio Link without a Dedicated Physical Channel/Fractional-Dedicated Physical Channel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14800861

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2014800861

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014800861

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15105922

Country of ref document: US