WO2014187049A1 - 铝或铝合金表面微纳米加工方法及铝或铝合金结构 - Google Patents

铝或铝合金表面微纳米加工方法及铝或铝合金结构 Download PDF

Info

Publication number
WO2014187049A1
WO2014187049A1 PCT/CN2013/083591 CN2013083591W WO2014187049A1 WO 2014187049 A1 WO2014187049 A1 WO 2014187049A1 CN 2013083591 W CN2013083591 W CN 2013083591W WO 2014187049 A1 WO2014187049 A1 WO 2014187049A1
Authority
WO
WIPO (PCT)
Prior art keywords
aluminum
micro
aluminum alloy
nano
processing method
Prior art date
Application number
PCT/CN2013/083591
Other languages
English (en)
French (fr)
Inventor
张绍华
雷霆
王长明
赖愈华
Original Assignee
东莞劲胜精密组件股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东莞劲胜精密组件股份有限公司 filed Critical 东莞劲胜精密组件股份有限公司
Priority to EP13876766.0A priority Critical patent/EP2835450B1/en
Priority to DK13876766.0T priority patent/DK2835450T3/en
Publication of WO2014187049A1 publication Critical patent/WO2014187049A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25FPROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
    • C25F3/00Electrolytic etching or polishing
    • C25F3/02Etching
    • C25F3/04Etching of light metals

Definitions

  • the invention relates to the technical field of aluminum or aluminum alloy surface processing, in particular to a micro-nano processing method for an aluminum alloy surface, an aluminum or aluminum alloy and plastic integration method and an aluminum or aluminum alloy structure.
  • Nano-molding technology is to chemically or electrochemically etch the surface of the metal out of the nanopores.
  • a micro-nano porous structure similar to a coral reef is formed on the surface of the metal.
  • the metal parts that have been processed are placed in the mold of the book, and the mold is injection molded, and the plastic component is directly injected into the metal surface and solidified.
  • the mechanical lock of the micro-nano porous structure is used to closely match the plastic and the metal surface. integrate. Finally, all the modifications of the metal surface can be performed on the injection molded parts taken out of the mold.
  • the planar bonding of the metal and the plastic can be achieved, and the bonding process of the metal plastic is omitted.
  • the nanoforming technology is applied to the integrated combination of metal and plastic.
  • the etching liquid used contains a large amount of organic components contaminated by the environment, and the efficiency and effect of processing the nano-holes are also general.
  • the object of the present invention is to overcome the deficiencies of the prior art and provide a micro-nano processing method for the surface of aluminum or aluminum alloy, which effectively solves the environmental pollution problem of organic substances, improves the processing efficiency of micro-nano holes, and improves the processing quality.
  • Another object is to provide an integrated method of aluminum or aluminum alloy and plastic, which has the above advantages.
  • a further object is to provide an aluminum or aluminum alloy structure having micro-nano holes formed by the above method on the surface.
  • the present invention adopts the following technical solutions:
  • a micro-nano processing method for aluminum or aluminum alloy surface comprising the step of performing direct current electrochemical corrosion in an electrolyte containing hydrochloric acid, sulfuric acid, phosphoric acid and a corrosion inhibitor by using the aluminum or aluminum alloy as an anode, wherein hydrochloric acid
  • the concentration of the sulfuric acid is 0. 9 ⁇ L 2mol/L
  • the concentration of the pity acid is 0, 6 ⁇ lmol/L.
  • the concentration of the corrosion inhibitor is 0. 5 ⁇ 2. 0g/L.
  • the corrosion inhibitor may be an organic candle retardant such as thiourea, methylcellulose, morpholine, butylamine, cyclohexylamine, cyclohexanol, ethylenediamine, triethylenetetramine and derivatives thereof, or inorganic salts.
  • organic candle retardant such as thiourea, methylcellulose, morpholine, butylamine, cyclohexylamine, cyclohexanol, ethylenediamine, triethylenetetramine and derivatives thereof, or inorganic salts.
  • copper sulfate, potassium iodide, potassium bromide and the like Such as copper sulfate, potassium iodide, potassium bromide and the like.
  • the corrosion current density is 0, l ⁇ 0 passport4 A/cm 2
  • the etching liquid temperature is 25 ⁇ 70 ⁇
  • the electrification corrosion time is 10s ⁇ 100s.
  • the etching solution temperature is 40 ° C to 70 ° C, and the electrification etching time is 30 s to 80 s.
  • the surface of the aluminum or aluminum alloy is treated with an alkali solution prior to DC electrochemical etching.
  • the aluminum or aluminum alloy surface is immersed in a NaOH solution having a mass concentration of 2% to 4% for 2 to 6 minutes.
  • the surface of the aluminum or aluminum alloy is treated with an acid solution prior to DC electrochemical etching.
  • the aluminum or aluminum alloy surface is immersed in a HN0 3 solution having a mass concentration of 1% to 4% for 4 minutes.
  • micro-nano porous structure is used to tightly bond the plastic to the surface of the aluminum or aluminum alloy.
  • the present invention uses an electrolyte containing an inorganic acid component of L 5 ⁇ 3 ol / L hydrochloric acid, 0.9 mol / L sulfuric acid, 0, 6 ⁇ lraol / L phosphoric acid and a corrosion inhibitor to aluminum or aluminum alloy DC electrochemical etching is carried out to obtain a uniform distribution of pores in the micro-nano porous structure, and the processing is fast and efficient.
  • the organic components contained in the etching liquid used in the past are completely eliminated, which is easy to cause environmental pollution.
  • the processing method of the present invention has the advantages of fast, safe, simple process and good controllability.
  • micro-nano porous structure formed on the surface of the aluminum or aluminum alloy of the invention is more advantageous for the integration of the aluminum or aluminum alloy structure and the plastic, and the metal plastic component with high bonding strength can be obtained after the injection molding, and the aluminum is environmentally and efficiently realized. Integrated composite preparation of alloy and plastic.
  • a corrosion current of 0 1 1 to 0, 4 A/cm 2 is used at an etching solution temperature of 25 ⁇ to 70 ⁇ , especially 40 ⁇ to 70 ⁇ .
  • the density is continuously corroded for 10s ⁇ 100s, preferably 30s ⁇ 80s, for optimum processing results.
  • Example 1 is an aluminum alloy plate (of A5052) Corrosion micrograph embodiment of the present invention
  • Figure 2 is an aluminum alloy plate obtained in Example (of A5052) Corrosion high magnification electron micrograph embodiment of the present invention
  • 3 is a oxidized electron micrograph of an aluminum alloy plate (A6063) obtained according to an embodiment of the present invention
  • FIG. 4 is a high-voltage electron micrograph of an aluminum alloy plate (A6063) obtained according to an embodiment of the present invention; Corroded electron micrograph of the obtained aluminum foil;
  • Figure 6 is a high magnification electron micrograph of an aluminum foil obtained in accordance with an embodiment of the present invention.
  • a micro-nano processing method for an aluminum or aluminum alloy surface includes the following process:
  • Aluminium or aluminum alloy for example, 1 000-7000 aluminum alloy
  • the fixture is designed according to the product.
  • the preprocessing process can be as follows:
  • sandpaper can be used to polish the surface of aluminum or aluminum alloy to remove the oxide layer formed during storage of aluminum or aluminum alloy, to obtain a new surface, or to remove the surface oxide layer by chemical cleaning;
  • the surface of the aluminum or aluminum alloy can be cleaned with a solution of detergent and water to remove surface oil, which is then cleaned with distilled water, but dried in a 120-inch vacuum oven.
  • the portion that does not need to be etched may be first protected by paraffin coating, and then the aluminum or aluminum alloy is immersed in the NaOH solution for tens of minutes, the NaOH mass concentration is preferably 2% 4%, and the immersion is preferably 2 to 6 minutes. .
  • the aluminum or aluminum alloy is immersed in the HN03 solution for several minutes, and the HN03 mass concentration is preferably 1% 4%, and the immersion is preferably 1-4 minutes.
  • the surface of the aluminum or aluminum alloy is pretreated by the above steps, which can effectively remove the surface oil and oxide layer, and activate the surface to improve the subsequent electrochemical corrosion effect. .
  • This step is the key to micro-nano etching of aluminum alloy surfaces.
  • Formulated with hydrochloric acid + sulfuric acid + phosphoric acid The concentration of the sulphuric acid is 0. 9 ⁇ l, 2mol/L, the concentration of the phosphoric acid is 0. 6 ⁇ lmol/L, and the appropriate amount is added.
  • the etching agent is preferably a concentration of 0.5 to 2 0 g/L, and the electrolyte solution for the above formulation can achieve an optimum corrosion inhibition effect.
  • the pretreated aluminum alloy sample is placed in the electrolyte as an anode, and the cathode may be an inert graphite or a platinum electrode, etc., and the temperature of the etching solution is controlled to be 25 ⁇ to 70 ⁇ , more preferably 40 ⁇ to 70 ⁇ , applied.
  • the DC current density is 0, lA/cm 2 ⁇ 4 ⁇ / ⁇ 2
  • the energization is 10 s to 100 s, more preferably 30 s to 80 s.
  • post-treatment can be carried out for cleaning and drying.
  • the DC-chemically etched aluminum foil is first washed with distilled water, and then immersed in alcohol or acetone for several seconds and then at 70. Dry in a C oven.
  • the surface of the aluminum or aluminum alloy can be quickly produced with a micro-nano hole having a pore diameter of 50 nm to 20 ⁇ m, thereby achieving environmentally friendly and efficient aluminum or aluminum alloy surface. , high quality nano molding.
  • inventions are directed to an aluminum or aluminum alloy and plastic integrated method, the method comprising the steps of:
  • micro-nano porous structure is used to tightly bond the plastic to the surface of the aluminum or aluminum alloy.
  • Still other embodiments are directed to an aluminum or aluminum alloy structure having surfaces having the features and advantages of the present invention as further illustrated by the following examples.
  • a commercially available 2 ⁇ thick ⁇ 5052 aluminum alloy plate was purchased, and the aluminum alloy was uniformly cut into 20 mm x l0 intestine aluminum sheets by wire cutting.
  • the iron sandpapers of the models 360, 600#, and 800# are selected in order to be polished.
  • the sample When grinding, each time a sandpaper is changed, the sample must be rotated 900 to ensure that all the scratches left by the previous process are worn away, so that the thickness of the sample reaches about 5u, and then washed with ultrasonic solution for 10 minutes in the ultrasonic wave.
  • the surface is oily, then cleaned with deionized water and dried in a 120 ⁇ dry box.
  • a constant pressure DC power supply is controlled to a current density of 0. 15A / cm
  • a constant pressure DC power supply is controlled to a current density of 0. 15A / cm 2
  • the electrolyte temperature is 40. C, power on for 30s.
  • the aluminum alloy sheet was cleaned by ffi deionized water, then immersed in acetone for 5 s, and dried in a 70 ⁇ drying oven.
  • the corrosion electron micrograph is shown in Figure 2 and Figure 2. It can be seen from the corrosion electron micrograph that the pore size of the coarse pores obtained on the etched surface is 1 - 3 ⁇ m, and a large number of nanopores with a nanopore diameter of 30 50 nm are evenly distributed.
  • a commercially available 2I 1 thick A6063 aluminum alloy plate was purchased, and the aluminum alloy was uniformly cut into 20 mm X 10 mm aluminum pieces by wire cutting. A small hole is opened in each piece of aluminum alloy sheet, and the surface of the model is 360#, 600#, 800# is used to polish the surface.
  • the sample is rotated 900 to ensure that all the scratches left by the previous process are worn away, the surface of the sample is removed to a thickness of about 5 um, and then washed with ultrasonic solution for 10 minutes in an ultrasonic wave. Remove surface oil, then clean it with deionized water and dry in a 12CTC drying oven
  • Aluminum foil was purchased and cut into 20 mm X 10 mm sheets. a small hole in each sheet, The 5% solution of NaOH solution 100 ml, rij tr 40 was prepared by ion-exchanged water. C. The aforementioned aluminum foil piece was immersed in this solution for 2 minutes in a suspended manner, and then the aluminum foil piece was cleaned with deionized water.
  • the composition of the etching liquid is 2 m 0 l/L hydrochloric acid, 0.9 mol/L sulfuric acid, 0.6 mol/L phosphoric acid, and 0.
  • the treatment was carried out for 70 s in a 4 g/L triethylenetetramine solution at a temperature of 60 t and a direct current of 0.15 A/cm 2 .
  • the aluminum foil was then rinsed with deionized water, soaked in acetone for 5 s, then at 70. Dry in the C drying box.
  • the photo of the rot 3 ⁇ 4 mirror is shown in Figure 5 and Figure 6. Obtained from the etched electron micrograph, obtained on the etched surface
  • the concentration of hydrochloric acid in the electrolyte of the present invention is 1, as verified by other numerous examples (not to be described herein). 5 ⁇ 3mol/L, the concentration of sulfuric acid is 0, 9 ⁇ 1. 2mol/L, the concentration of phosphoric acid is 0. 6 ⁇ hnol / L is feasible, and using the electrolyte of the present invention, when the etching temperature is as low as 25 ⁇ , the corrosion current density is as low as 0 réelle 1 A/cm 2 .
  • the case where the continuous electrification corrosion is as short as 10 s, although the effect of processing ⁇ is not optimal, but the shape and the distribution are better.
  • the content of the above is further described in detail with reference to the specific preferred embodiment, and the present invention cannot be considered. The specific implementation is limited to the description. It should be understood that those skilled in the art can make some simple deductions or substitutions without departing from the inventive concept, and should be considered as belonging to the present invention. protected range.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • ing And Chemical Polishing (AREA)

Abstract

一种铝或铝合金表面的微纳米加工方法,包括以所述铝或铝合金作为阳极放入含有盐酸、硫酸、磷酸和缓蚀剂的电解液中进行直流电化学腐蚀的步骤,其中盐酸的浓度为1.5〜3mol/L,硫酸的浓度为0.9〜1.2mol/L,磷酸的浓度为0.6〜1mol/L。一种铝或铝合金与塑胶一体化方法,包括以下步骤:使用所述的微纳米加工方法在铝或铝合金表面加工出微纳米多孔结构;利用所述微纳米多孔结构将塑胶与铝或铝合金表面紧密地结合在一起。一种铝或铝合金结构,其表面具有使用所述的微纳米加工方法而形成的微纳米多孔结构。使用该方法,微纳米孔洞加工效率高,质量好,且环保。

Description

铝或铝合金表面微纳米加工方法及铝或铝合金结构
、本发明涉及铝或铝合金表面加工技术领域, 特别是涉及一种铝合金表 面的微纳米加工方法.、 铝或铝合金与塑胶一体化方法及铝或铝合金结构。
^ 纳米成型技术就是用化学或者说电化学的手段把金属的表面侵蚀出纳 米孔洞, 通过选择特殊的刻蚀液, 使金属表面出现类似于珊瑚礁状的微纳 米多孔结构。然后将已经处理过的金属件放书迸模具内,迸行模内射出成型, 直接将塑胶成分注射到金属表面并凝固, 通过微纳米多孔结构的机械锁合 作用, 将塑胶与金属表面紧密地结合在一起。 最后, 由模内取出的注塑件 可以进行金属表面所有的修饰加工。 金属表面经过这样的微纳米处理, 可 实现金属与塑胶的平面粘结,省略了金属 塑胶的粘结工艺。该纳米成型技 术要应用于金属与塑胶的一体化结合。 现有的铝合金表面微纳米处理过程 中,使用的刻蚀液中含大量对环境污染的有机成分,加工出纳米孔洞的效率 和效果也一般。 、 本发明的目的在于克服现有技术的不足, 提供一种铝或铝合金表面的 微纳米加工方法, 有效地解决有机物的环境污染问题, 同时提高微纳米孔 洞加工效率, 并改善加工质量。
另一目的是提供一种铝或铝合金与塑胶一体化方法, 具有上述优点。 又一目的是提供一种铝或铝合金结构, 其表面具有通过上述方法形成 的微纳米孔洞。
为实现上述目的, 本发明采用以下技术方案:
一种铝或铝合金表面的微纳米加工方法, 包括以所述铝或铝合金作为 阳极放入含有盐酸、 硫酸、 磷酸和缓蚀剂的电解液中迸行直流电化学腐蚀 的歩骤, 其中盐酸的浓度为 L 5〜3mol/L, 硫酸的浓度为 0. 9〜L 2mol/L, 憐酸的浓度为 0, 6〜lmol/L。
可进一步采用以下一些技术方案:
缓蚀剂的浓度为 0. 5〜2. 0g/L。 缓蚀剂可以是有机物缓烛剂如硫脲、 甲基纤维素、 吗啉、 丁胺, 环己 胺、 环己醇、 乙烯二胺、 三乙烯四胺及它们的衍生物, 或是无机盐如硫酸 铜、 碘化钾、 溴化钾等。
腐蚀电流密度为 0, l〜0„4 A/cm2, 腐蚀液温度为 25Ό〜70Ό, 通电腐 蚀时间为 10s〜100s。
更优地, 腐蚀液温度为 40°C〜70°C, 通电腐蚀时间为 30s〜80s。 在进行直流电化学腐蚀之前, 用碱液对铝或铝合金表面进行处理。 将铝或铝合金表面在质量浓度为 2%-4%的 NaOH溶液中浸泡 2〜6分钟。 在进行直流电化学腐蚀之前, 用酸液对铝或铝合金表面进行处理。 将铝或铝合金表面在质量浓度为 1%- 4%的 HN03溶液中浸泡 〜 4分钟。 一种铝或铝合金与塑胶一体化方法, 包括以下步骤:
使用所述的微纳米加工方法在铝或铝合金表面加工出微纳米多孔结
' 利用所述微纳米多孔结构将塑胶与铝或铝合金表面紧密地结合在一 起。
一种铝或铝合金结构, 其表面具有使用所述的微纳米加工方法而形成 ' 本发明的有益技术效果:
本发明用含有 L 5〜3 ol/L盐酸、 0. 9〜1. 2mol/L硫酸.、 0, 6〜lraol/L 磷酸的无机酸组分以及缓蚀剂的电解液对铝或铝合金进行直流电化学腐 蚀, 获得微纳米多孔结构的孔洞分布均匀一致, 并且加工起来快速高效, 另一方面, 还彻底消除了以往所使用的刻蚀液中含有的有机成分而易对环 境造成污染问题。 本发明的加工方法具有快速、 安全、 工序简洁化且可控 性好的优点。 利用本发明在铝或铝合金表面形成的微纳米多孔结构, 更有 利于铝或铝合金结构与塑料一体化, 注塑成型后可获得具有较高结合强度 的金属塑胶组件, 环保、 高效地实现铝合金与塑胶的一体化复合制备。
根据较佳的实施例, 针对含上述特别的无机酸组分的电解液, 以 25 Ό〜70Ό尤其是 40Ό〜70Ό的腐蚀液温度, 使用 0„ 1〜0, 4 A/cm2的腐蚀电 流密度持续通电腐蚀 10s〜100s, 更佳 30s〜80s, 可获得最优化的加工效 果。
¾ 图 1为根据本发明实施例所得的铝合金板 (A5052 ) 腐蚀电镜图; 图 2为根据本发明实施例所得的铝合金板(A5052 )腐蚀高倍电镜图; 图 3为根据本发明实施例所得的铝合金板 (A6063 ) 腐烛电镜图; 图 4为根据本发明实施例所得的铝合金板(A6063 )腐蚀高倍电镜图; 图 5为根据本发明实施例所得的铝箔腐蚀电镜图;
图 6为根据本发明实施例所得的铝箔腐蚀高倍电镜图。
" 以下结合附图对本发明的实施例作详细说明。 应该强调的是, 下述说 明仅仅是示例性的, 而不是为了限制本发明的范围及其应用。
参阅图 1, 在一些具体实施例里, 铝或铝合金表面的微纳米加工方法 包括如下过程:
(1) 试样准备工作
将铝或铝合金(例如 1 0 0 0— 7 0 0 0系铝合金) 加工成要求的形 状与尺寸, 并根据产品设计配套的夹具。
(2) 试样预处理
预处理过程可以采用如下方式:
1) 可选取不同型号的砂纸打磨铝或铝合金表面, 以除去铝或铝合金 储存过程中生成的氧化层, 获得新的表面, 或可采用化学清洗的方法除去 表面氧化层;
2)脱脂处理
可用清洁剂和水的溶液清洗铝或铝合金表面, 以去除表面油污, 接着 用蒸馏水将其清洗干净, 然而在 120Ό真空千燥箱中千燥。
3)碱液处理
可先将不需要刻蚀的部分用石蜡涂覆的方式保护起来, 然后将铝或铝 合金浸入 NaOH溶液中浸泡若千分钟, NaOH质量浓度优选为 2% 4%,浸泡优 选为 2- 6分钟。
4)酸液处理
将铝或铝合金浸入 HN03溶液中浸泡若干分钟, HN03质量浓度优选为 1% 4%, 浸泡优选为 1 -4分钟。
由于铝或铝合金表面的状态对后续的腐蚀工艺具有重要影响, 采用上 述步骤对铝或铝合金表面进行预处理, 可以有效清除表面油污及氧化层, 并活化表面, 提高后续电化学腐蚀的效果。
( 3 ) 直流电化学腐蚀
此步骤是铝合金表面微纳米刻蚀的关键。 以盐酸 +硫酸 +磷酸配制一 定浓度电解液,其中盐酸的浓度为 1. 5〜3mol/L, 硫酸的浓度为 0. 9〜 l , 2mol/L,磷酸的浓度为 0. 6〜lmol/L, 且添加有适量的缓蚀剂, 优选为 0. 5〜2 0g/L 的浓度, 针对上述配方的电解液可达到最优的缓蚀效果。 将 预处理完毕的铝合金试样作为阳极放入电解液中, 阴极可以采用惰性石墨 或铂电极等, 控制刻蚀液温度为 25 Ό〜70 Ό, 更优选为 4 0 Ό〜70 Ό, 施 加直流电流密度为 0, lA/cm2〜 4 Α/ η2 ,通电 10s〜100s,更优选为 3 0s〜 80s。
(4) 后处理
腐蚀完毕后可以实施后处理以进行清洁和干燥, 例如, 把经过直流电 化学腐蚀的铝箔先用蒸馏水进行清洗, 然后可以放入酒精或丙酮中浸泡数 秒, 再在 70。C烘箱中烘干。
通过上述实施例的铝或铝合金表面纳米加工过程, 可快速地使铝或铝 合金表面产生孔径为 50纳米- 20微米、 均匀分布的微纳米孔, 从而实现铝 或铝合金表面的环保、 高效、 高品质的纳米成型。
另一些实施例是关于一种铝或铝合金与塑胶一体化方法, 该方法包括 以下步骤:
使用所述的微纳米加工方法在铝或铝合金表面加工出微纳米多孔结 构;
利用所述微纳米多孔结构将塑胶与铝或铝合金表面紧密地结合在一 起。
又一些实施例里是关于一种铝或铝合金结构, 其表面具有使用所述的 以下通过几个实例更进一步地展示本发明的特征及优点。
实例 1
购入市售的 2πΐίη厚的 Α5052铝合金板, 使用线切割将铝合金均匀切割 成 20mmx l0腸的铝片。 按顺序选取型号为 360 、 600#、 800#的铁砂纸迸行 打磨处理。 磨制时, 每换一道砂纸, 试样必须旋转 900以保证将前道工序 留下的划痕全部磨掉, 使磨样厚度达到约 5u 水平, 然后使用乙醇溶液在 超声波中清洗 10分钟, 去除表面油污, 接着用去离子水将其清洗干净, 在 120 Ό干燥箱中干燥。
^离子交换水配制质量浓度为 2%的 NaOH溶液 lOOral ,用水浴加热到 40 将前述铝合金片以悬挂的方式在此溶液中浸渍处理 2分钟, 接着用去 离子水将铝合金片清洗千净。
接着用离子交换水稀释质量浓度为 1%的 HN03溶液 100ml,用水浴加热 到 4οτ:, 将前述铝合金片以悬挂的方式在此溶液中浸渍处理 4分钟。接着 用去离子水将铝合金片清洗干净。
然后将铝合金片作为阳极, 以石墨片作为阴极, 电解槽中盛入
L 5mol /L的盐酸、 0. 9fflol /L的硫酸、 0. 6rool/L的磽酸混合液作为电解液, 加入一定的缓蚀剂, 以恒压直流电源控制电流密度为 0. 15A/cm2, 电解液温 度为 40。C, 通电 30s。 接着 ffi去离子水将铝合金片清洗干净, 然后放入丙 酮中浸泡 5s , 在 70Ό烘干箱中烘干。腐蚀电镜照片如图 和图 2所示。从 腐蚀电镜照片可见, 刻蚀表面上获得的粗孔孔径在 1 -- 3微米, 纳米孔径为 30 50纳米的大量纳米孔洞均匀分布。
实例 2
购入市售的 2I 1厚的 A6063铝合金板, 使用线切割将铝合金均匀切割 成 20mmX 10mm的铝片。每片铝合金片上开一小孔,按顺序选取型号为 360#、 600#、 800#的铁砂纸打磨表面。 打磨时, 每换一道砂纸, 试样旋转 900以 保证将前道工序留下的划痕全部磨掉, 使试样表面去除厚度达到约 5um的 水平, 然后使用乙醇溶液在超声波中清洗 10分钟, 去除表面油污, 接着用 去离子水将其清洗干净, 在 12CTC干燥箱中干燥
用离子交换水配制质量浓度为 2%的 NaOH溶液 100ml,用水浴加热到 40 V , 将前述铝合金片以悬挂的方式在此溶液中浸渍处理 2分钟, 接着用去 离子水将铝片清洗干净。
接着用离子交换水配置质量浓度为 ί ΗΝ03和 0. 5%HF混合溶液 100ml , 用水浴加热到 40Ό , 将前述铝合金片以悬挂的方式在此溶液中浸渍处理 1 分钟。 接着用去离子水将铝合金片清洗干净。
然后把铝合金片作为阳极, 在 2mol/L 的盐酸、 0 9mol/L 的硫酸、
0, 8mol/L的磷酸、 2。 0g/L聚乙二醇、 1. 5g/L硫脲混合而成的电解液中处 理 70s, 腐蚀电流密度为 0. 3Α/αη2, 电解液温度为 60Ό。 接着用去离子水 将铝片清洗干净, 放入丙酮中浸泡 5s, 然后在 70Ό烘干箱中烘干。腐蚀电 镜照片如图 3和图 4所示。 从腐蚀电镜照片可见, 刻蚀表面上获得的粗孔 孔径在 1-3微米, 纳米孔径为 20 40纳米的大量纳米孔洞均匀分布。
实例 3
购入市售的铝箔, 裁剪成 20mmX 10mm的薄片。 每片薄片上开一小孔, 用离子交换水配制质量浓度为 1. 5%的 NaOH溶液 100ml, r i j tr 40。C, 将前述铝箔片以悬挂的方式在此溶液中浸渍处理 2分钟, 接着用去 离子水将铝箔片清洗干净。
接着用离子交换水配置质量浓度为 1%的 HN03溶液 100ml,用水浴加热
Figure imgf000008_0001
然后以铝箔片作为阳极, 将石墨片作为阴极, 在刻蚀液组成为 2m0l/L 盐酸、 0. 9mol/L的硫酸、 0. 6mol/L的磷酸、 0。 4g/L三乙烯四胺的电解液 中, 保持温度为 60t, 加载直流电流 0. 15A/cm2处理 70s。 接着用去离子 水将铝箔片清洗干净, 放入丙酮中浸泡 5s, 然后在 70。C烘干箱中烘干。腐 ¾镜照片如图 5, 图 6所示。 从腐蚀电镜照片可见, 刻蚀表面上获得的
Figure imgf000008_0002
而经其他大量实例验证 (此处不再赘述), 本发明的电解液中, 盐酸 的浓度在 1。 5〜3mol/L,硫酸的浓度在 0, 9〜1。 2mol/L,磷酸的浓度在 0. 6〜 hnol/L都是可行的,而使用本发明的电解液, 当采用低至 25Ό的腐蚀液温 低至 0„ 1 A/cm2的腐蚀电流密度, 持续通电腐蚀短至 10s的情况 虽然加工 ί效果并非最为理想, 但也都能获得形状和分布较好的纳 以上内容是结合具体的优选实施方式对本发明所作的进一步详细说 明, 不能认定本发明的具体实施只局限于这些说明。 对于本发明所属技术 领域的普通技术人员来说, 在不脱离本发明构思的前提下, 还可以做出若 干简单推演或替换, 都应当视为属于本发明的保护范围。

Claims

权 利 要 求 书
1. 一种铝或铝合金表面的微纳米加工方法, 其特征在于, 包括以所 述铝或铝合金作为阳极放入含有盐酸、 硫酸、 磷酸和缓蚀剂的电解液中进 行直流电化学腐蚀的步骤, 其中盐酸的浓度为 L 5〜3mol/L, 硫酸的浓度 为 0. 9〜1. 2mol/L,磷酸的浓度为 0. 6〜] mol/L。
2. 如权利要求 1所述的微纳米加工方法, 其特征在于,缓蚀剂的浓度 为 0. 5〜2. 0g/L, 缓烛剂可以是有机物缓蚀剂如硫脲、 甲基纤维素、 吗啉、 丁胺, 环己胺、 环己醇、 乙烯二胺、 三乙烯四胺及它们的衍生物, 或是无 机盐如硫酸铜、 碘化钾、 溴化钾。
3. 如权利要求 1或 2所述的微纳米加工方法, 其特征在于,腐蚀电流 密度为 0. 1〜(! 4 A/cm2,腐蚀液温度为 25O〜70°C,通电腐蚀时间为 10s〜 100 s。
4. 如权利要求 3 所述的微纳米加工方法, 其特征在于, 腐蚀液温度 为 40。C〜70°C, 通电腐蚀时间为 30s〜80s。
5. 如权利要求 1至 4任一项所述的微纳米加工方法,其特征在于, 在 进行直流电化学腐蚀之前, 用碱液对铝或铝合金表面迸行处理。
6. 如权利要求 5 所述的微纳米加工方法, 其特征在于, 将铝或铝合 金表面在质量浓度为 2%- 4%的 NaOH溶液中浸泡 2〜6分钟。
7. 如权利要求 1至 6任一项所述的微纳米加工方法,其特征在于, 在 进行直流电化学腐蚀之前, 用酸液对铝或铝合金表面迸行处理。
8. 如权利要求 7 所述的微纳米加工方法, 其特征在于, 将铝或铝合 金表面在质量浓度为 1% 4%的 HN03溶液中浸泡 1〜4分钟。
9. 一种铝或铝合金与塑胶一体化方法, 其特征在于,包括以下步骤- 使用权利要求 1至 8任一项所述的微纳米加工方法在铝或铝合金表面 加工出微纳米多孔结构;
利用所述微纳米多孔结构将塑胶与铝或铝合金表面紧密地结合在一 起。
10. —种铝或铝合金结构, 其特征在于,其表面具有使用权利要求 1 至 8任一项所述的微纳米加工方法而形成的微纳米多孔结构。
PCT/CN2013/083591 2013-05-21 2013-09-16 铝或铝合金表面微纳米加工方法及铝或铝合金结构 WO2014187049A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP13876766.0A EP2835450B1 (en) 2013-05-21 2013-09-16 Micro-nano processing method for aluminum or aluminum alloy surface
DK13876766.0T DK2835450T3 (en) 2013-05-21 2013-09-16 PROCEDURE FOR MICRO-NANO PREPARATION FOR ALUMINUM OR ALUMINUM ALLOY SURFACE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310191239.7 2013-05-21
CN201310191239.7A CN103276435B (zh) 2013-05-21 2013-05-21 铝或铝合金表面微纳米加工方法及铝或铝合金结构

Publications (1)

Publication Number Publication Date
WO2014187049A1 true WO2014187049A1 (zh) 2014-11-27

Family

ID=49059044

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/083591 WO2014187049A1 (zh) 2013-05-21 2013-09-16 铝或铝合金表面微纳米加工方法及铝或铝合金结构

Country Status (4)

Country Link
EP (1) EP2835450B1 (zh)
CN (1) CN103276435B (zh)
DK (1) DK2835450T3 (zh)
WO (1) WO2014187049A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103276435B (zh) * 2013-05-21 2014-08-06 东莞劲胜精密组件股份有限公司 铝或铝合金表面微纳米加工方法及铝或铝合金结构
CN104630872A (zh) * 2015-02-27 2015-05-20 深圳市梦之坊通信产品有限公司 铝合金表面纳米孔处理方法、及与塑胶结合的方法
CN105525336B (zh) * 2016-01-26 2018-01-23 广东劲胜智能集团股份有限公司 一种碳纤维金属复合电子产品机身结构及其制作方法
CN106363869B (zh) * 2016-10-25 2019-04-12 深圳市宝元金实业有限公司 一种在金属基材表面形成纳米孔洞的方法
CN108284562A (zh) * 2017-01-10 2018-07-17 优尔材料工业(深圳)有限公司 锆基非晶合金件与塑料件的复合体及其制备方法
CN106917972A (zh) * 2017-03-22 2017-07-04 浙江比弦物联科技有限公司 一种照明灯灯体加工方法
CN108000795B (zh) * 2017-12-03 2019-08-27 无锡市恒利弘实业有限公司 一种用于纳米注塑成型的复合材料的制备方法和应用
CN109338448B (zh) * 2018-09-10 2020-05-08 深圳科诺桥科技股份有限公司 对金属薄膜表面进行发泡处理的方法
CN115572964A (zh) * 2022-11-21 2023-01-06 河北宇天材料科技有限公司 一种铝合金腔体导电氧化处理方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991004785A1 (en) * 1989-09-29 1991-04-18 Alcan International Limited Porous membranes suitable for separation devices and other uses
CN2381648Y (zh) * 1998-11-22 2000-06-07 熊一言 铝基金属陶瓷不溶阳极
CN1861846A (zh) * 2006-03-27 2006-11-15 无锡市骏达交通环保有限公司 改进的铝电解电容器用阴极箔表面残留铜的去除方法
CN101211696A (zh) * 2006-12-30 2008-07-02 新疆众和股份有限公司 电解电容器低阻抗阳极铝箔腐蚀方法及其化学处理处理液
CN102229266A (zh) * 2010-06-10 2011-11-02 鸿富锦精密工业(深圳)有限公司 铝或铝合金与塑料的复合体及其制作方法
CN103276435A (zh) * 2013-05-21 2013-09-04 东莞劲胜精密组件股份有限公司 铝或铝合金表面微纳米加工方法及铝或铝合金结构

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS544359A (en) * 1977-06-10 1979-01-13 Toyo Aluminium Kk Method of making aluminum foil for positive electrode of electrorytic capacitor
GB8922069D0 (en) * 1989-09-29 1989-11-15 Alcan Int Ltd Separation devices incorporating porous anodic films
CN100338703C (zh) * 2002-07-24 2007-09-19 扬州宏远电子有限公司 35Vw和50Vw高比容低接触电阻阳极箔生产工艺
CN101029411A (zh) * 2006-12-19 2007-09-05 东莞市东阳光电容器有限公司 阳极铝箔的电化学腐蚀工艺
CN101532159B (zh) * 2009-03-10 2011-01-12 集美大学 一种金属铝超疏水表面的制备方法
CN102268183A (zh) * 2010-06-04 2011-12-07 鸿富锦精密工业(深圳)有限公司 铝或铝合金与塑料的复合体及其制作方法
CN102373499A (zh) * 2010-08-19 2012-03-14 可成科技股份有限公司 合金与塑料的结合方法
CN102691080B (zh) * 2011-03-24 2016-08-03 广东广云新材料科技股份有限公司 铝制品

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991004785A1 (en) * 1989-09-29 1991-04-18 Alcan International Limited Porous membranes suitable for separation devices and other uses
CN2381648Y (zh) * 1998-11-22 2000-06-07 熊一言 铝基金属陶瓷不溶阳极
CN1861846A (zh) * 2006-03-27 2006-11-15 无锡市骏达交通环保有限公司 改进的铝电解电容器用阴极箔表面残留铜的去除方法
CN101211696A (zh) * 2006-12-30 2008-07-02 新疆众和股份有限公司 电解电容器低阻抗阳极铝箔腐蚀方法及其化学处理处理液
CN102229266A (zh) * 2010-06-10 2011-11-02 鸿富锦精密工业(深圳)有限公司 铝或铝合金与塑料的复合体及其制作方法
CN103276435A (zh) * 2013-05-21 2013-09-04 东莞劲胜精密组件股份有限公司 铝或铝合金表面微纳米加工方法及铝或铝合金结构

Also Published As

Publication number Publication date
DK2835450T3 (en) 2018-04-16
EP2835450A4 (en) 2015-12-09
CN103276435B (zh) 2014-08-06
EP2835450B1 (en) 2018-02-21
EP2835450A1 (en) 2015-02-11
CN103276435A (zh) 2013-09-04

Similar Documents

Publication Publication Date Title
WO2014187049A1 (zh) 铝或铝合金表面微纳米加工方法及铝或铝合金结构
CN106567122B (zh) 一种钛及钛合金的电化学抛光电解液及其抛光方法
JP6004181B2 (ja) 陽極酸化皮膜及びその製造方法
CN108000795B (zh) 一种用于纳米注塑成型的复合材料的制备方法和应用
CN102286768B (zh) 一种制备超疏水镁合金表面的工艺方法
CN103129048B (zh) 金属与塑料的复合体的制备方法及复合体
CN102766891B (zh) 一种利用离子液体在NdFeB磁体表面电沉积Al防护镀层的方法
CN103173840A (zh) 一种磨削用电镀金刚石砂轮的制备方法
CN103225096B (zh) 多孔阳极氧化铝膜的制备方法
CN104786426B (zh) 使金属嵌件注塑成型的方法及金属嵌件的注塑产品
CN106119927B (zh) 电化学处理制备各向异性油水分离铜网的方法
CN101942654B (zh) 铝合金超疏水表面的一步浸泡处理方法
CN109023378A (zh) 一种阴极辊化学抛光液及抛光方法
CN104630872A (zh) 铝合金表面纳米孔处理方法、及与塑胶结合的方法
TW201207163A (en) Method for stripping nitride coatings
CN104711654A (zh) 氧化石墨烯/电泳漆复合涂层及其电泳沉积制备方法
CN103451704B (zh) 一种金属树脂复合体的制备方法及其制备的金属树脂复合体
CN108950570A (zh) 一种锂离子电池负极集流体用多孔铜箔的制备方法
CN105506727A (zh) 一种铝合金与塑胶复合体的制备方法
CN110129858B (zh) 一种离子液体辅助镁锂合金阳极氧化成膜方法
KR101701314B1 (ko) 양극산화된 금속산화물 나노다공성 템플레이트 제작방법
CN113201738B (zh) 一种选择性激光熔化AlSi10Mg成形工件的电化学表面处理方法
CN105088308B (zh) 高铜高硅铝合金阳极氧化环保工艺
WO2015093159A1 (ja) アルミニウム材の電解研磨処理方法
CN113113321B (zh) 半导体高密度引线框架及其制造工艺

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2013876766

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13876766

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE