WO2014185192A1 - Method for manufacturing silicon carbide semiconductor device and semiconductor module, silicon carbide semiconductor device, and semiconductor module - Google Patents

Method for manufacturing silicon carbide semiconductor device and semiconductor module, silicon carbide semiconductor device, and semiconductor module Download PDF

Info

Publication number
WO2014185192A1
WO2014185192A1 PCT/JP2014/060156 JP2014060156W WO2014185192A1 WO 2014185192 A1 WO2014185192 A1 WO 2014185192A1 JP 2014060156 W JP2014060156 W JP 2014060156W WO 2014185192 A1 WO2014185192 A1 WO 2014185192A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon carbide
semiconductor device
carbide semiconductor
substrate
region
Prior art date
Application number
PCT/JP2014/060156
Other languages
French (fr)
Japanese (ja)
Inventor
光彦 酒井
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Publication of WO2014185192A1 publication Critical patent/WO2014185192A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/20Sequence of activities consisting of a plurality of measurements, corrections, marking or sorting steps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic System
    • H01L29/1608Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66053Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide
    • H01L29/66068Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7827Vertical transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • H01L22/14Measuring as part of the manufacturing process for electrical parameters, e.g. resistance, deep-levels, CV, diffusions by electrical means

Definitions

  • the present invention relates to a silicon carbide semiconductor device and a method for manufacturing a semiconductor module, and a silicon carbide semiconductor device and a semiconductor module.
  • Patent Document 1 Japanese Patent Laid-Open No. 5-322961 discloses a method of measuring the pressure resistance by putting an inert liquid in a test tank opened on the side where a probe is arranged.
  • a semiconductor module is manufactured by mounting the separated individual chips on a module substrate.
  • withstand voltage measurement it is difficult to perform withstand voltage measurement on each separated chip, and thus withstand voltage measurement has been performed in a wafer state before separation.
  • the present invention has been made in view of the above problems, and one object thereof is to provide a method for manufacturing a silicon carbide semiconductor device and a method for manufacturing the silicon carbide semiconductor device capable of improving the manufacturing yield of a semiconductor module. It is to provide a method for manufacturing a semiconductor module to be implemented. Another object of the present invention is to provide a silicon carbide semiconductor device capable of suppressing breakage of the semiconductor module and a semiconductor module including the silicon carbide semiconductor device.
  • a method for manufacturing a silicon carbide semiconductor device includes a step of preparing a substrate made of silicon carbide, a step of forming a plurality of element portions on the substrate, and forming a first groove portion between the plurality of element portions. And a step of measuring the breakdown voltage of the element portion and a step of separating the plurality of element portions inside the first groove after the step of measuring the breakdown voltage of the element portion.
  • a method of manufacturing a semiconductor module according to the present invention includes a step of manufacturing a silicon carbide semiconductor device by the method of manufacturing a silicon carbide semiconductor device according to the present invention, a step of preparing a module substrate, and silicon carbide on the module substrate. A step of mounting a semiconductor device.
  • a silicon carbide semiconductor device includes a substrate made of silicon carbide and an element portion formed on the substrate.
  • a step portion is formed on at least one end face of the substrate and the element portion.
  • a semiconductor module according to the present invention includes the silicon carbide semiconductor device according to the present invention.
  • the manufacturing yield of the semiconductor module can be improved. Moreover, according to the silicon carbide semiconductor device and semiconductor module according to this invention, damage to a semiconductor module can be suppressed.
  • FIG. 1 is a schematic cross-sectional view showing a structure of a semiconductor module according to a first embodiment.
  • 1 is a schematic cross sectional view showing a structure of a silicon carbide semiconductor device according to a first embodiment.
  • 3 is a flowchart schematically showing a method for manufacturing the silicon carbide semiconductor device according to the first embodiment.
  • 3 is a flowchart schematically showing a method for manufacturing the semiconductor module according to the first embodiment. It is the schematic for demonstrating the process (S10) and process (S20) in the manufacturing method of the silicon carbide semiconductor device which concerns on Embodiment 1.
  • FIG. It is the schematic for demonstrating the process (S30) and process (S40) in the manufacturing method of the silicon carbide semiconductor device which concerns on Embodiment 1.
  • FIG. 7 is a schematic diagram for illustrating a step (S50) in the method for manufacturing the silicon carbide semiconductor device according to the first embodiment. It is the schematic for demonstrating the process (S60) and process (S70) in the manufacturing method of the silicon carbide semiconductor device which concerns on Embodiment 1.
  • FIG. 7 is a schematic diagram for illustrating a step (S80) in the method for manufacturing the silicon carbide semiconductor device according to the first embodiment. It is a schematic sectional drawing which shows the structure of a pressure
  • FIG. 6 is a schematic diagram for illustrating a step (S100) in the method for manufacturing the silicon carbide semiconductor device according to the first embodiment.
  • FIG. 6 is a schematic cross sectional view showing a configuration of a silicon carbide semiconductor device according to a second embodiment.
  • FIG. 7 is a schematic cross sectional view showing a configuration of a silicon carbide semiconductor device according to a third embodiment.
  • 12 is a flowchart schematically showing a method for manufacturing a silicon carbide semiconductor device according to a third embodiment.
  • FIG. 11 is a schematic diagram for illustrating a step (S240) in the method for manufacturing a silicon carbide semiconductor device according to the third embodiment.
  • a method for manufacturing a silicon carbide semiconductor device includes a step of preparing a substrate made of silicon carbide, a step of forming a plurality of element portions on the substrate, and a first portion between the plurality of element portions. After the step of forming the groove portion, the step of measuring the breakdown voltage of the element portion, and the step of measuring the breakdown voltage of the element portion, a step of separating the plurality of element portions inside the first groove portion is provided.
  • the present inventor has found that in a conventional method for manufacturing a silicon carbide semiconductor device, a defect is found in the inspection of the semiconductor module even if the defect is not confirmed in the breakdown voltage measurement in the wafer state, and as a result, the manufacturing yield of the semiconductor module decreases.
  • As a result when separating into individual chips after measuring the pressure resistance in the wafer state, defective chips are generated due to defects in dicing processing, etc., and the defective yields of the semiconductor modules are mounted by mounting the defective chips on the module substrate.
  • the present invention has been conceived.
  • a plurality of element portions are formed on a substrate, a first groove portion is formed between the plurality of element portions, and the inside of the first groove portion.
  • the element part is separated.
  • the breakdown voltage of the element portion is measured after the formation of the first groove portion and before the element portion is separated. Thereby, it can be separated into individual element parts after confirming whether or not the element part is defective due to the formation of the first groove part.
  • the manufacturing yield of the semiconductor module can be improved.
  • the manufacturing yield of the semiconductor module can be improved.
  • an epitaxial growth layer may be formed on the substrate in the step of forming the element portion.
  • the first groove portion reaching from the epitaxial growth layer to the substrate may be formed.
  • the first groove portion is formed so as to reach the substrate from the epitaxial growth layer, only the substrate in the first groove portion is subjected to a cutting process or the like in the step of separating the element portion, so that the element portion may be damaged. Can be lowered. As a result, it is possible to reduce the possibility that a defect is found in the inspection of the semiconductor module and the manufacturing yield is lowered.
  • an epitaxial growth layer having a conductivity type of the first conductivity type is formed on the substrate, and the first conductivity is formed in the epitaxial growth layer.
  • An impurity region of a second conductivity type that is a conductivity type different from the type may be formed.
  • the first groove portion reaching a position deeper than the bottom portion of the impurity region may be formed.
  • the first groove portion When the first groove portion is formed so as to reach a position deeper than the bottom portion of the impurity region, most of the portion operating as an element can be separated. For this reason, in the step of separating the element portion, only a portion that is not directly related to the operation of the element is processed, and the possibility that the element portion is damaged can be reduced. As a result, it is possible to further reduce the possibility that a defect is found in the inspection of the semiconductor module and the manufacturing yield is lowered.
  • a second groove portion having a width smaller than that of the first groove portion may be formed inside the first groove portion.
  • the method for manufacturing the silicon carbide semiconductor device includes a step of forming a protective film on the wall surface of the first groove portion after the step of measuring the breakdown voltage of the element portion and before the step of separating the element portion. Furthermore, you may provide. Thereby, the damage which a silicon carbide semiconductor device receives in the process of isolate
  • the method for manufacturing a silicon carbide semiconductor device may further include a step of selecting a non-defective product and a defective product among the plurality of element portions after the step of separating the element portions. Thereby, it is possible to more reliably prevent the silicon carbide semiconductor device including the defective element portion from being mounted on the module substrate.
  • a method for manufacturing a semiconductor module according to an embodiment of the present invention includes a step of manufacturing a silicon carbide semiconductor device by a method of manufacturing a silicon carbide semiconductor device according to the above embodiment, a step of preparing a module substrate, And a step of mounting the silicon carbide semiconductor device.
  • the silicon carbide semiconductor device is manufactured by the method for manufacturing the silicon carbide semiconductor device according to the above embodiment, the silicon carbide semiconductor device including the defective element portion Can be prevented from being mounted on the module substrate. Therefore, according to the method for manufacturing a semiconductor module according to the embodiment of the present invention, the manufacturing yield of the semiconductor module can be improved.
  • a silicon carbide semiconductor device includes a substrate made of silicon carbide and an element portion formed on the substrate.
  • a step portion is formed on at least one end face of the substrate and the element portion.
  • a step portion is formed on the end face. Therefore, the distance between the element portions of the silicon carbide semiconductor device (chip) when mounted on the module substrate can be made larger than that of the silicon carbide semiconductor device in which the step portion is not formed. Thereby, generation
  • the first region that is the region on the element portion side when viewed from the step portion has a smaller width than the second region that is the region on the substrate side when viewed from the step portion. May be.
  • the end face in the first region may be inclined so that the first region spreads toward the second region side. Thereby, it can be set as the structure which can ease electric field concentration more.
  • the silicon carbide semiconductor device according to the above embodiment may further include a protective film formed on the end face. Thereby, a silicon carbide semiconductor device in which damage is suppressed can be obtained.
  • the semiconductor module according to the embodiment of the present invention includes the silicon carbide semiconductor device according to the present embodiment. Therefore, according to the semiconductor module according to the embodiment of the present invention, it is possible to suppress damage to the module due to discharge between the mounted individual silicon carbide semiconductor devices (chips).
  • the semiconductor module 1 mainly includes a module substrate 2, a terminal 3, and a plurality of MOSFETs 10A.
  • the module substrate 2 includes an insulating substrate (not shown), a heat sink (not shown) as a heat sink made of metal, and the like.
  • the plurality of MOSFETs 10 ⁇ / b> A are arranged on the surface 2 ⁇ / b> A of the module substrate 2 and are connected to each other by the wiring 4.
  • the terminal 3 is connected to the MOSFET 10 ⁇ / b> A by the wiring 4.
  • MOSFET 10A is a silicon carbide semiconductor device according to the present embodiment.
  • the semiconductor module 1 may be sealed with a resin (not shown).
  • MOSFET 10A includes a silicon carbide substrate 20, an epitaxial growth layer 30, an oxide film 40, a source electrode 50 and a gate electrode 60 (element portion) formed on one main surface 20A of silicon carbide substrate 20. ) And the drain electrode 70 are mainly provided.
  • a drift region 31 In the epitaxial growth layer 30, a drift region 31, a body region 32, a source region 33, and a contact region 34 are formed.
  • the thickness of the MOSFET 10A is 50 ⁇ m or more and 600 ⁇ m or less, preferably 100 ⁇ m or more and 200 ⁇ m or less.
  • the thickness of the epitaxial growth layer 30 is 2 ⁇ m or more and 50 ⁇ m or less, preferably 5 ⁇ m or more and 35 ⁇ m or less.
  • the drift region 31 is formed on one main surface 20A of the silicon carbide substrate 20.
  • Drift region 31 has an n-type conductivity by including an n-type impurity such as N (nitrogen).
  • the body region 32 is formed in the epitaxial growth layer 30 so as to include the main surface 30A.
  • Body region 32 has a p-type conductivity by including a p-type impurity such as Al (aluminum) or B (boron).
  • the thickness of the body region 32 is not less than 0.1 ⁇ m and not more than 50 ⁇ m, preferably not less than 1 ⁇ m and not more than 3 ⁇ m.
  • the source region 33 is formed in the body region 32 so as to include the main surface 30A.
  • Source region 33 includes an n-type impurity such as P (phosphorus), for example, so that conductivity type is n-type, similar to drift region 31.
  • the source region 33 has a higher n-type impurity concentration than the drift region 31.
  • the contact region 34 includes the main surface 30 ⁇ / b> A and is formed in the body region 32 so as to be adjacent to the source region 33. Similar to body region 32, contact region 34 has a p-type conductivity by containing a p-type impurity. Contact region 34 has a higher p-type impurity concentration than body region 32.
  • Oxide film 40 is formed to cover part of main surface 30A.
  • the oxide film 40 is made of, for example, SiO 2 (silicon dioxide).
  • the gate electrode 60 is made of a conductive material such as polysilicon doped with impurities or aluminum, and is formed on the oxide film 40 in contact therewith.
  • the gate electrode 60 is formed so as to extend from one source region 33 to the other source region 33 under the gate electrode 60.
  • Source electrode 50 is formed on main surface 30 ⁇ / b> A so as to be in contact with source region 33 and contact region 34.
  • the source electrode 50 is made of a material capable of making ohmic contact with the source region 33, for example, Ni x Si y (nickel silicide), Ti x Si y (titanium silicide), Al x Si y (aluminum silicide), and Ti x Al. It is made of y Si z (titanium aluminum silicide) or the like and is electrically connected to the source region 33.
  • drain electrode 70 is formed on the other main surface 20B of the silicon carbide substrate 20. Drain electrode 70 is made of, for example, the same material as source electrode 50 and is electrically connected to silicon carbide substrate 20.
  • Step portion 13 is formed on end surface 11 of MOSFET 10A (end surface 11 of silicon carbide substrate 20).
  • the end surface 11 is a surface at the side end portion of the MOSFET 10A, and is a surface that intersects (orthogonally) the main surfaces 20A and 30A as shown in FIG.
  • the region on the element portion (epitaxial growth layer 30, oxide film 40, source electrode 50, and gate electrode 60) side when viewed from step portion 13 is first region A1, and silicon carbide is viewed from step portion 13.
  • a region on the substrate 20 side is a second region A2. As shown in FIG.
  • the width of the first region A1 (the width in the direction along the surface 20B of the silicon carbide substrate 20) is smaller than the width of the second region A2, and the width difference on the one end face 11 side.
  • W1 is 1 ⁇ m or more and 100 ⁇ m or less, preferably 5 ⁇ m or more and 50 ⁇ m or less, for example 70 ⁇ m.
  • stepped portion 13 is formed to be located on the side of silicon carbide substrate 20 as viewed from bottom surface 32 ⁇ / b> A of body region 32, and contact surface 20 ⁇ / b> A between silicon carbide substrate 20 and epitaxial growth layer 30. Is formed so as to be located on the silicon carbide substrate 20 side when viewed from the side. Further, the formation position of the stepped portion 13 is not limited to this. For example, the stepped portion 13 is formed so as to be located on the silicon carbide substrate 20 side when viewed from the bottom surface 32A and on the epitaxial growth layer 30 side when viewed from the contact surface 20A. Also good. In this case, the step portion 13 is formed on the end surface 11 of the epitaxial growth layer 30.
  • MOSFET 10A in a state where the voltage applied to gate electrode 60 is less than the threshold voltage, that is, in the off state, even if a voltage is applied between source electrode 50 and drain electrode 70, body region 32 drifts.
  • the pn junction formed with the region 31 is reverse-biased and becomes non-conductive.
  • a voltage equal to or higher than the threshold voltage is applied to the gate electrode 60, an inversion layer is formed in the channel region of the body region 32 (the body region 32 below the gate electrode 60).
  • the source region 33 and the drift region 31 are electrically connected, and a current flows between the source electrode 50 and the drain electrode 70.
  • the MOSFET 10A operates.
  • MOSFET (10A) according to the present embodiment is manufactured by performing steps (S10) to (S110).
  • steps (S120) to (S140) are performed to manufacture semiconductor module 1 according to the present embodiment. .
  • a silicon carbide substrate preparation step is performed as a step (S10).
  • silicon carbide substrate 20 having a conductivity type of n type (first conductivity type) is prepared by slicing an ingot (not shown) made of, for example, 4H—SiC. Is done.
  • step (S20) an epitaxial growth layer forming step is performed.
  • epitaxial growth layer 30 having an n conductivity type is formed on main surface 20A of silicon carbide substrate 20.
  • an ion implantation step is performed.
  • this step (S30) referring to FIG. 6, first, for example, aluminum (Al) ions are implanted into a region including main surface 30A of epitaxial growth layer 30 to thereby form body region 32 (impurity in epitaxial growth layer 30). Region) is formed.
  • the conductivity type of the body region 32 is p-type (second conductivity type).
  • phosphorus (P) ions are implanted at a depth shallower than the Al ion implantation depth in a region including main surface 30 ⁇ / b> A, thereby forming source region 33.
  • Al ions are implanted into a region adjacent to source region 33 and including main surface 30 ⁇ / b> A, thereby forming contact region 34 having a depth equivalent to that of source region 33.
  • a region where none of the body region 32, the source region 33, and the contact region 34 is formed becomes a drift region 31.
  • an activation annealing step is performed as a step (S40).
  • this step (S40) referring to FIG. 6, by heating silicon carbide substrate 20 on which epitaxially grown layer 30 including drift region 31, body region 32, source region 33 and contact region 34 is formed, the above step is performed.
  • the impurities introduced in (S30) are activated. As a result, desired carriers are generated in the region where the impurity is introduced.
  • an oxide film forming step is performed as a step (S50).
  • this step (S50) referring to FIG. 7, for example, by heating silicon carbide substrate 20 on which epitaxially grown layer 30 is formed in an oxygen-containing atmosphere, SiO 2 so as to cover main surface 30A of epitaxially grown layer 30 is covered.
  • An oxide film 40 made of 2 (silicon dioxide) is formed.
  • gate electrode 60 made of polysilicon is formed so as to be in contact with oxide film 40 by, for example, LPCVD (Low Pressure Chemical Vapor Deposition).
  • LPCVD Low Pressure Chemical Vapor Deposition
  • an ohmic electrode forming step is performed.
  • oxide film 40 is removed in a region where source electrode 50 is to be formed, and a region where source region 33 and contact region 34 are exposed is formed.
  • a film made of, for example, Ni is formed in the region.
  • a film made of, for example, Ni is formed on main surface 20B of silicon carbide substrate 20.
  • an alloying heat treatment is performed, and at least a part of the Ni film is silicided, whereby the source electrode 50 and the drain electrode 70 are formed.
  • element portion 80 including epitaxial growth layer 30, oxide film 40, source electrode 50, and gate electrode 60 on main surface 20A of silicon carbide substrate 20 is performed. A plurality of are formed.
  • a first dicing step is performed.
  • this step (S80) referring to FIG. 9, by performing dicing processing on epitaxial growth layer 30 and silicon carbide substrate 20 from the main surface 30A side, first groove portion 90 is formed between a plurality of element portions 80. Is formed.
  • the width W2 of the first groove portion 90 is, for example, 300 ⁇ m or less.
  • the first groove 90 may be formed so as to reach from the epitaxial growth layer 30 to the silicon carbide substrate 20 as shown in FIG. More specifically, bottom wall surface 90 ⁇ / b> A reaches a position deeper than bottom surface 32 ⁇ / b> A (bottom portion) of body region 32, and silicon carbide substrate 20 as viewed from contact surface 20 ⁇ / b> A between silicon carbide substrate 20 and epitaxial growth layer 30.
  • the first groove portion 90 may be formed so as to be located on the side.
  • a pressure resistance measuring step is performed.
  • the withstand voltages of the plurality of element portions 80 formed in the above steps (S20) to (S70) are measured.
  • voltage resistant measuring apparatus used in this process (S90) is demonstrated.
  • the pressure resistance measuring device 100 includes an airtight container 110, a camera 112, a stage 120, a probe 130, a voltage source 134, a gate controller 135, an inlet 140, and an outlet 150.
  • the heater 160 and the sensor 170 are provided.
  • the stage 120 is provided in the hermetic container 110 and is for supporting the silicon carbide substrate 20.
  • Stage 120 may have a vacuum chuck 121 for fixing silicon carbide substrate 20.
  • the probe 130 is provided in the airtight container 110.
  • One of the functions of the probe 130 is to obtain an electrical connection with the source electrode 50 by contacting the source electrode 50 (see FIG. 9).
  • the probe 130 may have a base 131 and needles 132 and 133, for example. Each of the needles 132 and 133 is for obtaining an electrical connection with the source electrode 50 and the gate electrode 60 (see FIG. 9), and is attached to the base 131.
  • the stage 120 is configured to be movable in the airtight container 110 by being provided on the moving mechanism 122. Accordingly, the stage 120 and the probe 130 are configured to be relatively displaceable. In other words, the probe 130 is configured to be movable relative to the stage 120.
  • the moving mechanism 122 is preferably a so-called XYZ stage that enables three-dimensional displacement.
  • the introduction port 140 is provided in the hermetic container 110 and is for introducing gas into the hermetic container 110.
  • the discharge port 150 is provided in the hermetic container 110 and is for discharging gas from the hermetic container 110.
  • Each of the inlet 140 and the outlet 150 has gate valves 141 and 151.
  • the heater 160 is for heating the silicon carbide substrate 20.
  • the heater 160 is disposed in the hermetic container 110 and may be disposed in the stage 120.
  • a heater power supply 161 disposed outside the hermetic container 110 may be connected to the heater 160.
  • the sensor 170 is provided in the hermetic container 110 in order to detect the dew point temperature in the hermetic container 110.
  • the sensor 170 may be a dew point thermometer designed specifically for direct measurement of the dew point temperature, or has a thermometer and a hygrometer to calculate the dew point temperature from the temperature and humidity. May be.
  • the sensor 170 may be connected to a reading unit 171 provided outside the hermetic container 110.
  • the voltage source 134 is connected to the probe 130. Specifically, the voltage source 134 is connected to apply a voltage between the needle 132 of the probe 130 and the stage 120.
  • the voltage that can be generated by the voltage source 134 is preferably about 600 V or more, more preferably about 1 kV or more, and further preferably about 3 kV or more.
  • the gate control unit 135 is connected so as to apply a voltage between the needles 132 and 133 of the probe 130.
  • the gate control unit 135 only needs to be capable of generating a voltage that can control the gate voltage of the element unit 80 (see FIG. 9).
  • the hermetic container 110 has a window 111 that transmits light so that the position of the element unit 80 (see FIG. 9) can be observed from the outside of the hermetic container 110.
  • the window 111 is made of a material that transmits light to a sufficient extent for this purpose, for example, glass or transparent resin.
  • the window 111 is preferably provided with a light shielding portion (not shown) for performing light shielding so that light does not enter through the window 111 during pressure resistance measurement.
  • This light-shielding portion is, for example, a cover that can be attached and detached outside the window 111 or a shutter provided outside or inside the window 111.
  • Camera 112 is arranged so that silicon carbide substrate 20 can be observed through window 111, as indicated by a broken line in FIG.
  • silicon carbide substrate 20 is supported in hermetic container 110. Specifically, silicon carbide substrate 20 is carried into airtight container 110 and further placed on stage 120. Thereby, the potential of drain electrode 70 located on the back surface of silicon carbide substrate 20 is set to the potential of stage 120 (see FIG. 11). Silicon carbide substrate 20 is fixed to stage 120. This fixing can be performed by the vacuum chuck 121.
  • the movement of the moving mechanism 122 causes a relative displacement between the stage 120 and the probe 130, so that the needles 132 and 133 are brought into contact with the source electrode 50 and the gate electrode 60, respectively, as shown in FIG. .
  • a voltage is supplied to the probe 130 while the probe 130 is in contact with the source electrode 50.
  • a voltage is supplied between the needle 132 of the probe 130 and the stage 120.
  • a voltage for measuring the withstand voltage is applied between the drain electrode 70 and the source electrode 50. This voltage is about 600V or more, for example.
  • the gate voltage is adjusted by the gate controller 135 as necessary. Thereby, the breakdown voltage of the element unit 80 (see FIG. 9) is measured.
  • a second dicing step is performed as a step (S100).
  • element portions 80 are separated in first groove portion 90 by further dicing the silicon carbide substrate 20. More specifically, the element portions 80 are separated from each other by forming the second groove portion 91 inside the first groove portion 90.
  • the width W3 of the second groove 91 is smaller than the width W2 of the first groove 90, and may be 100 ⁇ m or less, for example, 70 ⁇ m.
  • "Second groove portion 91" may be formed so as to penetrate silicon carbide substrate 20 in the thickness direction as shown in FIG. 12, and part of silicon carbide substrate 20 (a portion including main surface 20B). May be formed so as to remain.
  • second groove portion 91 is formed so as to leave a part of silicon carbide substrate 20, element portions 80 are completely separated from each other by applying a predetermined stress to silicon carbide substrate 20 thereafter. be able to.
  • a sorting step is performed.
  • this step (S110) after being separated into the individual element portions 80 in the step (S100), those determined as good products and those determined as defective in the pressure resistance measurement in the step (S90) are selected. Is done.
  • this step (S110) is not an essential step in the method for manufacturing a silicon carbide semiconductor device of the present invention, it is possible to reliably mount only the MOSFET including the element portion 80 determined to be non-defective by carrying out this step. it can. As a result, the module manufacturing yield can be improved.
  • steps (S10) to (S110) as described above, MOSFET 10A is manufactured, and the method for manufacturing the silicon carbide semiconductor device according to the present embodiment is completed.
  • a method for manufacturing a semiconductor module according to the present embodiment will be described.
  • a step (S120) a device preparation step is performed.
  • MOSFET 10A is manufactured by the method for manufacturing the silicon carbide semiconductor device according to the present embodiment.
  • the module substrate 2 is prepared by performing the step (S130) along with the step (S120) (see FIG. 1).
  • a device mounting step is performed as a step (S140).
  • a step (S140) referring to FIG. 1, a plurality of MOSFETs 10A are arranged on surface 2A of module substrate 2.
  • the MOSFETs 10 ⁇ / b> A or the MOSFET 10 ⁇ / b> A and the terminal 3 are electrically connected by the wiring 4.
  • the MOSFET 10A is mounted on the module substrate 2.
  • a plurality of element portions 80 are formed on silicon carbide substrate 20, and first groove portion 90 is formed between the plurality of element portions 80.
  • the plurality of element parts 80 are separated inside the first groove part 90.
  • the breakdown voltage of the element unit 80 is measured after the formation of the first groove 90 and before the element unit 80 is separated.
  • the manufacturing yield of the semiconductor module can be improved.
  • the manufacturing yield of the semiconductor module can be improved.
  • the step portion 13 is formed on the end face 11. Therefore, the distance between chips when mounted on the module substrate 2 as shown in FIG. 1 can be made larger than that of a MOSFET in which the step portion 13 is not formed. Thereby, generation
  • Embodiment 2 which is another embodiment of the present invention will be described.
  • the silicon carbide semiconductor device according to the present embodiment basically has the same configuration as MOSFET 10A according to the above-described first embodiment, operates in the same manner, and has the same effects.
  • the silicon carbide semiconductor device according to the present embodiment is different from MOSFET 10A in the configuration of first region A1.
  • end surface 11A in first region A1 is inclined so that first region A1 extends toward second region A2. .
  • an angle ⁇ exceeding 90 ° is formed by the main surface 30A and the end surface 11A of the epitaxial growth layer 30.
  • Embodiment 3 which is still another embodiment of the present invention will be described.
  • the silicon carbide semiconductor device according to the present embodiment basically has the same configuration as MOSFET 10A according to the above-described first embodiment, operates in the same manner, and has the same effects.
  • the silicon carbide semiconductor device according to the present embodiment differs from MOSFET 10A in that a protective film is formed on the end surface.
  • MOSFET 10C as the silicon carbide semiconductor device according to the present embodiment further includes a passivation film 92 (protective film) formed on end surface 11A and stepped portion 13 of first region A1.
  • the passivation film 92 is made of, for example, silicon dioxide (SiO 2 ), and is formed so as to be connected to the oxide film 40. Thereby, compared with the case where the said passivation film 92 is not formed, the damage which MOSFET10C receives can be suppressed.
  • steps (S150) to (S230) are performed similarly to steps (S10) to (S90) of the first embodiment.
  • element portion 80 is formed on silicon carbide substrate 20 as shown in FIG. 9, and the pressure resistance measurement of element portion 80 is completed.
  • a passivation film forming step is performed.
  • passivation film 92 made of silicon dioxide (SiO 2 ) is formed on bottom wall surface 90A and side wall surface 90B of first groove 90 by, for example, P (Plasma) -CVD. It is formed so as to cover.
  • steps (S250) and (S260) are performed in the same manner as steps (S100) and (S110) of the first embodiment, and MOSFET 10C according to the present embodiment is manufactured.
  • the method for manufacturing a silicon carbide semiconductor device and a semiconductor module of the present invention can be applied particularly advantageously in a method for manufacturing a silicon carbide semiconductor device and a semiconductor module that are required to improve the manufacturing yield of the semiconductor module.
  • the silicon carbide semiconductor device and the semiconductor module of the present invention can be particularly advantageously applied to a silicon carbide semiconductor device and a semiconductor module that are required to suppress damage to the semiconductor module.

Abstract

A method for manufacturing a silicon carbide semiconductor device is provided with: a step in which a silicon carbide substrate (20) is prepared; a step in which a plurality of element sections (80) are formed on the silicon carbide substrate (20); a step in which a first groove section (90) is formed between the plurality of element sections (80); a step in which the breakdown voltage of the element sections (80) is measured; and a step in which, after the step in which the breakdown voltage of the element sections (80) is measured, the plurality of element sections (80) are separated within the first groove section (90).

Description

炭化珪素半導体装置および半導体モジュールの製造方法、ならびに炭化珪素半導体装置および半導体モジュールSilicon carbide semiconductor device, semiconductor module manufacturing method, silicon carbide semiconductor device, and semiconductor module
 本発明は、炭化珪素半導体装置および半導体モジュールの製造方法、ならびに炭化珪素半導体装置および半導体モジュールに関する。 The present invention relates to a silicon carbide semiconductor device and a method for manufacturing a semiconductor module, and a silicon carbide semiconductor device and a semiconductor module.
 MOSFET(Metal Oxide Semiconductor Field Effect Transistor)などの炭化珪素半導体装置においては、耐圧は重要な特性のひとつである。そのため、炭化珪素半導体装置の製造方法では、炭化珪素からなる基板上に複数の素子を形成した後、当該素子に対して耐圧測定が実施される場合がある。たとえば特開平5-322961号公報(以下、特許文献1という)では、プローブが配置される側に開口した試験槽に、不活性液体を入れて耐圧を測定する方法が開示されている。 In a silicon carbide semiconductor device such as a MOSFET (Metal Oxide Semiconductor Field Effect Transistor), the breakdown voltage is one of important characteristics. Therefore, in the method for manufacturing a silicon carbide semiconductor device, after a plurality of elements are formed on a substrate made of silicon carbide, withstand voltage measurement may be performed on the elements. For example, Japanese Patent Laid-Open No. 5-322961 (hereinafter referred to as Patent Document 1) discloses a method of measuring the pressure resistance by putting an inert liquid in a test tank opened on the side where a probe is arranged.
特開平5-322961号公報JP-A-5-322961
 従来の炭化珪素半導体装置の製造方法では、炭化珪素基板上に複数の素子が形成された後に当該素子の耐圧が測定され、その後ダイシング加工により個々のチップに分離される。そして、分離された個々のチップをモジュール基板上に実装することにより半導体モジュールが製造される。このように、従来では分離された個々のチップに対して耐圧測定を実施することは困難であるため、分離前のウェハ状態において耐圧測定が実施されていた。 In a conventional method for manufacturing a silicon carbide semiconductor device, after a plurality of elements are formed on a silicon carbide substrate, the breakdown voltage of the elements is measured, and then separated into individual chips by dicing. Then, a semiconductor module is manufactured by mounting the separated individual chips on a module substrate. As described above, conventionally, it is difficult to perform withstand voltage measurement on each separated chip, and thus withstand voltage measurement has been performed in a wafer state before separation.
 この場合、ウェハ状態での耐圧測定では不良が確認されなくても個々のチップが実装された半導体モジュールの検査において不良が発見されることがあり、これにより半導体モジュールの製造歩留まりが低下するという問題がある。また、従来の半導体モジュールでは動作時に個々のチップ間に沿面放電が発生する場合があり、これによりモジュールが破損するという問題もある。 In this case, even when the breakdown voltage measurement in the wafer state is not confirmed, a defect may be found in the inspection of the semiconductor module on which the individual chip is mounted, thereby reducing the manufacturing yield of the semiconductor module. There is. Further, in a conventional semiconductor module, creeping discharge may occur between individual chips during operation, which causes a problem that the module is damaged.
 本発明は、上記課題に鑑みてなされたものであり、その一の目的は、半導体モジュールの製造歩留まりを向上させることが可能な炭化珪素半導体装置の製造方法および当該炭化珪素半導体装置の製造方法が実施される半導体モジュールの製造方法を提供することである。また、本発明の他の目的は、半導体モジュールの破損を抑制することが可能な炭化珪素半導体装置および当該炭化珪素半導体装置を備える半導体モジュールを提供することである。 The present invention has been made in view of the above problems, and one object thereof is to provide a method for manufacturing a silicon carbide semiconductor device and a method for manufacturing the silicon carbide semiconductor device capable of improving the manufacturing yield of a semiconductor module. It is to provide a method for manufacturing a semiconductor module to be implemented. Another object of the present invention is to provide a silicon carbide semiconductor device capable of suppressing breakage of the semiconductor module and a semiconductor module including the silicon carbide semiconductor device.
 本発明に従った炭化珪素半導体装置の製造方法は、炭化珪素からなる基板を準備する工程と、基板上に複数の素子部を形成する工程と、複数の素子部の間に第1溝部を形成する工程と、素子部の耐圧を測定する工程と、素子部の耐圧を測定する工程の後、第1溝部の内部において複数の素子部を分離する工程とを備えている。 A method for manufacturing a silicon carbide semiconductor device according to the present invention includes a step of preparing a substrate made of silicon carbide, a step of forming a plurality of element portions on the substrate, and forming a first groove portion between the plurality of element portions. And a step of measuring the breakdown voltage of the element portion and a step of separating the plurality of element portions inside the first groove after the step of measuring the breakdown voltage of the element portion.
 本発明に従った半導体モジュールの製造方法は、上記本発明に従った炭化珪素半導体装置の製造方法により炭化珪素半導体装置を製造する工程と、モジュール基板を準備する工程と、モジュール基板上に炭化珪素半導体装置を実装する工程とを備えている。 A method of manufacturing a semiconductor module according to the present invention includes a step of manufacturing a silicon carbide semiconductor device by the method of manufacturing a silicon carbide semiconductor device according to the present invention, a step of preparing a module substrate, and silicon carbide on the module substrate. A step of mounting a semiconductor device.
 本発明に従った炭化珪素半導体装置は、炭化珪素からなる基板と、基板上に形成された素子部とを備えている。基板および素子部の少なくとも一方の端面には、段差部が形成されている。本発明に従った半導体モジュールは、上記本発明に従った炭化珪素半導体装置を備えている。 A silicon carbide semiconductor device according to the present invention includes a substrate made of silicon carbide and an element portion formed on the substrate. A step portion is formed on at least one end face of the substrate and the element portion. A semiconductor module according to the present invention includes the silicon carbide semiconductor device according to the present invention.
 本発明に従った炭化珪素半導体装置および半導体モジュールの製造方法によれば、半導体モジュールの製造歩留まりを向上させることができる。また、本発明に従った炭化珪素半導体装置および半導体モジュールによれば、半導体モジュールの破損を抑制することができる。 According to the silicon carbide semiconductor device and the method for manufacturing a semiconductor module according to the present invention, the manufacturing yield of the semiconductor module can be improved. Moreover, according to the silicon carbide semiconductor device and semiconductor module according to this invention, damage to a semiconductor module can be suppressed.
実施の形態1に係る半導体モジュールの構造を示す概略断面図である。1 is a schematic cross-sectional view showing a structure of a semiconductor module according to a first embodiment. 実施の形態1に係る炭化珪素半導体装置の構造を示す概略断面図である。1 is a schematic cross sectional view showing a structure of a silicon carbide semiconductor device according to a first embodiment. 実施の形態1に係る炭化珪素半導体装置の製造方法を概略的に示すフローチャートである。3 is a flowchart schematically showing a method for manufacturing the silicon carbide semiconductor device according to the first embodiment. 実施の形態1に係る半導体モジュールの製造方法を概略的に示すフローチャートである。3 is a flowchart schematically showing a method for manufacturing the semiconductor module according to the first embodiment. 実施の形態1に係る炭化珪素半導体装置の製造方法における工程(S10)および工程(S20)を説明するための概略図である。It is the schematic for demonstrating the process (S10) and process (S20) in the manufacturing method of the silicon carbide semiconductor device which concerns on Embodiment 1. FIG. 実施の形態1に係る炭化珪素半導体装置の製造方法における工程(S30)および工程(S40)を説明するための概略図である。It is the schematic for demonstrating the process (S30) and process (S40) in the manufacturing method of the silicon carbide semiconductor device which concerns on Embodiment 1. FIG. 実施の形態1に係る炭化珪素半導体装置の製造方法における工程(S50)を説明するための概略図である。FIG. 7 is a schematic diagram for illustrating a step (S50) in the method for manufacturing the silicon carbide semiconductor device according to the first embodiment. 実施の形態1に係る炭化珪素半導体装置の製造方法における工程(S60)および工程(S70)を説明するための概略図である。It is the schematic for demonstrating the process (S60) and process (S70) in the manufacturing method of the silicon carbide semiconductor device which concerns on Embodiment 1. FIG. 実施の形態1に係る炭化珪素半導体装置の製造方法における工程(S80)を説明するための概略図である。FIG. 7 is a schematic diagram for illustrating a step (S80) in the method for manufacturing the silicon carbide semiconductor device according to the first embodiment. 耐圧測定装置の構成を示す概略断面図である。It is a schematic sectional drawing which shows the structure of a pressure | voltage resistant measuring apparatus. 耐圧測定方法を説明するための概略断面図である。It is a schematic sectional drawing for demonstrating a pressure | voltage resistant measuring method. 実施の形態1に係る炭化珪素半導体装置の製造方法における工程(S100)を説明するための概略図である。FIG. 6 is a schematic diagram for illustrating a step (S100) in the method for manufacturing the silicon carbide semiconductor device according to the first embodiment. 実施の形態2に係る炭化珪素半導体装置の構成を示す概略断面図である。FIG. 6 is a schematic cross sectional view showing a configuration of a silicon carbide semiconductor device according to a second embodiment. 実施の形態3に係る炭化珪素半導体装置の構成を示す概略断面図である。FIG. 7 is a schematic cross sectional view showing a configuration of a silicon carbide semiconductor device according to a third embodiment. 実施の形態3に係る炭化珪素半導体装置の製造方法を概略的に示すフローチャートである。12 is a flowchart schematically showing a method for manufacturing a silicon carbide semiconductor device according to a third embodiment. 実施の形態3に係る炭化珪素半導体装置の製造方法における工程(S240)を説明するための概略図である。FIG. 11 is a schematic diagram for illustrating a step (S240) in the method for manufacturing a silicon carbide semiconductor device according to the third embodiment.
 (本発明の実施の形態の説明)
 まず、本発明の実施の形態の内容を列記して説明する。本発明の実施の形態に係る炭化珪素半導体装置の製造方法は、炭化珪素からなる基板を準備する工程と、基板上に複数の素子部を形成する工程と、複数の素子部の間に第1溝部を形成する工程と、素子部の耐圧を測定する工程と、素子部の耐圧を測定する工程の後、第1溝部の内部において複数の素子部を分離する工程とを備えている。
(Description of Embodiment of the Present Invention)
First, the contents of the embodiment of the present invention will be listed and described. A method for manufacturing a silicon carbide semiconductor device according to an embodiment of the present invention includes a step of preparing a substrate made of silicon carbide, a step of forming a plurality of element portions on the substrate, and a first portion between the plurality of element portions. After the step of forming the groove portion, the step of measuring the breakdown voltage of the element portion, and the step of measuring the breakdown voltage of the element portion, a step of separating the plurality of element portions inside the first groove portion is provided.
 本発明者は、従来の炭化珪素半導体装置の製造方法において、ウェハ状態での耐圧測定では不良が確認されなかった場合でも半導体モジュールの検査において不良が発見され、その結果半導体モジュールの製造歩留まりが低下する原因について鋭意検討を行った。その結果、ウェハ状態での耐圧測定後個々のチップに分離する際にダイシング加工の不具合などに起因して不良チップが発生し、当該不良チップをモジュール基板上に実装することで半導体モジュールの製造歩留まりが低下することを見出し、本発明に想到した。 The present inventor has found that in a conventional method for manufacturing a silicon carbide semiconductor device, a defect is found in the inspection of the semiconductor module even if the defect is not confirmed in the breakdown voltage measurement in the wafer state, and as a result, the manufacturing yield of the semiconductor module decreases. We conducted an intensive study on the cause of this. As a result, when separating into individual chips after measuring the pressure resistance in the wafer state, defective chips are generated due to defects in dicing processing, etc., and the defective yields of the semiconductor modules are mounted by mounting the defective chips on the module substrate. Has been found, the present invention has been conceived.
 本発明の実施の形態に係る炭化珪素半導体装置の製造方法では、基板上に複数の素子部が形成され、当該複数の素子部の間に第1溝部が形成され、当該第1溝部の内部において素子部が分離される。また、第1溝部の形成後であって素子部を分離する前に当該素子部の耐圧が測定される。これにより、第1溝部の形成に起因した素子部の不良発生の有無を確認した上で個々の素子部に分離することができる。そして、良品であることが確認された素子部を含む炭化珪素半導体装置のみを実装することにより、半導体モジュールの製造歩留まりを向上させることができる。このように、本発明の実施の形態に係る炭化珪素半導体装置の製造方法によれば、半導体モジュールの製造歩留まりを向上させることができる。 In the method for manufacturing a silicon carbide semiconductor device according to the embodiment of the present invention, a plurality of element portions are formed on a substrate, a first groove portion is formed between the plurality of element portions, and the inside of the first groove portion. The element part is separated. Further, the breakdown voltage of the element portion is measured after the formation of the first groove portion and before the element portion is separated. Thereby, it can be separated into individual element parts after confirming whether or not the element part is defective due to the formation of the first groove part. Then, by mounting only the silicon carbide semiconductor device including the element portion that has been confirmed to be a non-defective product, the manufacturing yield of the semiconductor module can be improved. Thus, according to the method for manufacturing the silicon carbide semiconductor device according to the embodiment of the present invention, the manufacturing yield of the semiconductor module can be improved.
 上記実施の形態に係る炭化珪素半導体装置の製造方法において、素子部を形成する工程では、基板上にエピタキシャル成長層が形成されてもよい。また、第1溝部を形成する工程では、エピタキシャル成長層から基板にまで到達する第1溝部が形成されてもよい。 In the method for manufacturing the silicon carbide semiconductor device according to the above embodiment, an epitaxial growth layer may be formed on the substrate in the step of forming the element portion. In the step of forming the first groove portion, the first groove portion reaching from the epitaxial growth layer to the substrate may be formed.
 エピタキシャル成長層から基板にまで到達するように第1溝部を形成した場合には、素子部を分離する工程では第1溝部内の基板のみが切断加工などを受けるため、素子部が損傷を受ける可能性を低くすることができる。その結果、半導体モジュールの検査において不良が発見され、製造歩留まりが低下する可能性を低減することができる。 When the first groove portion is formed so as to reach the substrate from the epitaxial growth layer, only the substrate in the first groove portion is subjected to a cutting process or the like in the step of separating the element portion, so that the element portion may be damaged. Can be lowered. As a result, it is possible to reduce the possibility that a defect is found in the inspection of the semiconductor module and the manufacturing yield is lowered.
 上記実施の形態に係る炭化珪素半導体装置の製造方法において、素子部を形成する工程では、基板上に導電型が第1導電型であるエピタキシャル成長層が形成され、かつ、エピタキシャル成長層内に第1導電型と異なる導電型である第2導電型の不純物領域が形成されてもよい。また、第1溝部を形成する工程では、不純物領域の底部よりも深い位置にまで到達する第1溝部が形成されてもよい。 In the method for manufacturing the silicon carbide semiconductor device according to the above embodiment, in the step of forming the element portion, an epitaxial growth layer having a conductivity type of the first conductivity type is formed on the substrate, and the first conductivity is formed in the epitaxial growth layer. An impurity region of a second conductivity type that is a conductivity type different from the type may be formed. In the step of forming the first groove portion, the first groove portion reaching a position deeper than the bottom portion of the impurity region may be formed.
 不純物領域の底部よりも深い位置にまで到達するように第1溝部を形成した場合には、実質的に素子として動作する部分の殆どを分離した状態にすることができる。そのため、素子部を分離する工程では素子の動作に直接的な関連性の低い部分のみを加工することになり、素子部が損傷を受ける可能性を低減することができる。その結果、半導体モジュールの検査において不良が発見され、製造歩留まりが低下する可能性をより低減することができる。 When the first groove portion is formed so as to reach a position deeper than the bottom portion of the impurity region, most of the portion operating as an element can be separated. For this reason, in the step of separating the element portion, only a portion that is not directly related to the operation of the element is processed, and the possibility that the element portion is damaged can be reduced. As a result, it is possible to further reduce the possibility that a defect is found in the inspection of the semiconductor module and the manufacturing yield is lowered.
 上記実施の形態に係る炭化珪素半導体装置の製造方法において、素子部を分離する工程では、第1溝部の内部において第1溝部よりも幅が小さい第2溝部が形成されてもよい。これにより、第1溝部により分離された素子部が、素子部を分離する工程において損傷を受ける可能性をより確実に低減することができる。 In the method for manufacturing the silicon carbide semiconductor device according to the above embodiment, in the step of separating the element portion, a second groove portion having a width smaller than that of the first groove portion may be formed inside the first groove portion. Thereby, the possibility that the element part separated by the first groove part may be damaged in the step of separating the element part can be more reliably reduced.
 上記実施の形態に係る炭化珪素半導体装置の製造方法は、素子部の耐圧を測定する工程の後、素子部を分離する工程の前に、第1溝部の壁面上に保護膜を形成する工程をさらに備えていてもよい。これにより、素子部を分離する工程において炭化珪素半導体装置が受ける損傷を抑制することができる。 The method for manufacturing the silicon carbide semiconductor device according to the embodiment includes a step of forming a protective film on the wall surface of the first groove portion after the step of measuring the breakdown voltage of the element portion and before the step of separating the element portion. Furthermore, you may provide. Thereby, the damage which a silicon carbide semiconductor device receives in the process of isolate | separating an element part can be suppressed.
 上記実施の形態に係る炭化珪素半導体装置の製造方法は、素子部を分離する工程の後、複数の素子部のうち良品と不良品とを選別する工程をさらに備えていてもよい。これにより、不良品の素子部を含む炭化珪素半導体装置がモジュール基板上に実装されることをより確実に防止することができる。 The method for manufacturing a silicon carbide semiconductor device according to the above-described embodiment may further include a step of selecting a non-defective product and a defective product among the plurality of element portions after the step of separating the element portions. Thereby, it is possible to more reliably prevent the silicon carbide semiconductor device including the defective element portion from being mounted on the module substrate.
 本発明の実施の形態に係る半導体モジュールの製造方法は、上記実施の形態に係る炭化珪素半導体装置の製造方法により炭化珪素半導体装置を製造する工程と、モジュール基板を準備する工程と、モジュール基板上に炭化珪素半導体装置を実装する工程とを備えている。 A method for manufacturing a semiconductor module according to an embodiment of the present invention includes a step of manufacturing a silicon carbide semiconductor device by a method of manufacturing a silicon carbide semiconductor device according to the above embodiment, a step of preparing a module substrate, And a step of mounting the silicon carbide semiconductor device.
 本発明の実施の形態に係る半導体モジュールの製造方法では、上記実施の形態に係る炭化珪素半導体装置の製造方法により炭化珪素半導体装置が製造されるため、不良品の素子部を含む炭化珪素半導体装置がモジュール基板上に実装されることを防止することができる。したがって、本発明の実施の形態に係る半導体モジュールの製造方法によれば、半導体モジュールの製造歩留まりを向上させることができる。 In the method for manufacturing a semiconductor module according to the embodiment of the present invention, since the silicon carbide semiconductor device is manufactured by the method for manufacturing the silicon carbide semiconductor device according to the above embodiment, the silicon carbide semiconductor device including the defective element portion Can be prevented from being mounted on the module substrate. Therefore, according to the method for manufacturing a semiconductor module according to the embodiment of the present invention, the manufacturing yield of the semiconductor module can be improved.
 本発明の実施の形態に係る炭化珪素半導体装置は、炭化珪素からなる基板と、基板上に形成された素子部とを備えている。基板および素子部の少なくとも一方の端面には、段差部が形成されている。 A silicon carbide semiconductor device according to an embodiment of the present invention includes a substrate made of silicon carbide and an element portion formed on the substrate. A step portion is formed on at least one end face of the substrate and the element portion.
 本発明の実施の形態に係る炭化珪素半導体装置では、端面に段差部が形成されている。そのため、当該段差部が形成されていない炭化珪素半導体装置に比べて、モジュール基板上に実装した場合の炭化珪素半導体装置(チップ)の素子部間の距離をより大きくすることができる。これにより、実装された個々のチップ間における放電の発生を抑制することができる。したがって、本発明の実施の形態に係る炭化珪素半導体装置によれば、半導体モジュールの破損を抑制することができる。 In the silicon carbide semiconductor device according to the embodiment of the present invention, a step portion is formed on the end face. Therefore, the distance between the element portions of the silicon carbide semiconductor device (chip) when mounted on the module substrate can be made larger than that of the silicon carbide semiconductor device in which the step portion is not formed. Thereby, generation | occurrence | production of the discharge between each mounted chip | tip can be suppressed. Therefore, according to the silicon carbide semiconductor device according to the embodiment of the present invention, damage to the semiconductor module can be suppressed.
 上記実施の形態に係る炭化珪素半導体装置において、段差部から見て素子部側の領域である第1領域は、段差部から見て基板側の領域である第2領域よりも幅が小さくなっていてもよい。これにより、実装時のチップ間の距離を、素子部側の領域である第1領域において特に大きくすることができる。その結果、半導体モジュールの破損をより効果的に抑制することができる。 In the silicon carbide semiconductor device according to the above embodiment, the first region that is the region on the element portion side when viewed from the step portion has a smaller width than the second region that is the region on the substrate side when viewed from the step portion. May be. Thereby, the distance between the chips at the time of mounting can be particularly increased in the first region which is the region on the element portion side. As a result, damage to the semiconductor module can be suppressed more effectively.
 上記実施の形態に係る炭化珪素半導体装置において、第1領域における上記端面は、第1領域が第2領域側に向かって広がるように傾斜していてもよい。これにより、電界集中をより緩和することが可能な構造にすることができる。 In the silicon carbide semiconductor device according to the above embodiment, the end face in the first region may be inclined so that the first region spreads toward the second region side. Thereby, it can be set as the structure which can ease electric field concentration more.
 上記実施の形態に係る炭化珪素半導体装置は、上記端面上に形成された保護膜をさらに備えていてもよい。これにより、損傷が抑制された炭化珪素半導体装置を得ることができる。 The silicon carbide semiconductor device according to the above embodiment may further include a protective film formed on the end face. Thereby, a silicon carbide semiconductor device in which damage is suppressed can be obtained.
 本発明の実施の形態に係る半導体モジュールは、上記本実施の形態に係る炭化珪素半導体装置を備えている。したがって、本発明の実施の形態に係る半導体モジュールによれば、実装された個々の炭化珪素半導体装置(チップ)間の放電によるモジュールの破損を抑制することができる。 The semiconductor module according to the embodiment of the present invention includes the silicon carbide semiconductor device according to the present embodiment. Therefore, according to the semiconductor module according to the embodiment of the present invention, it is possible to suppress damage to the module due to discharge between the mounted individual silicon carbide semiconductor devices (chips).
 (本発明の実施の形態の詳細)
 次に、本発明の実施の形態の具体例を図面を参照しつつ説明する。なお、以下の図面において同一または相当する部分には同一の参照番号を付し、その説明は繰り返さない。
(Details of the embodiment of the present invention)
Next, specific examples of embodiments of the present invention will be described with reference to the drawings. In the following drawings, the same or corresponding parts are denoted by the same reference numerals, and description thereof will not be repeated.
 (実施の形態1)
 まず、本発明の一実施の形態である実施の形態1に係る半導体モジュールおよび炭化珪素半導体装置について説明する。図1を参照して、本実施の形態に係る半導体モジュール1は、モジュール基板2と、端子3と、複数のMOSFET10Aとを主に備えている。モジュール基板2は、絶縁基板(図示しない)や金属からなるヒートシンクとしての放熱板(図示しない)などを含んでいる。複数のMOSFET10Aは、モジュール基板2の表面2A上に配置されており、配線4により互いに接続されている。端子3は、配線4によりMOSFET10Aと接続されている。MOSFET10Aは、本実施の形態に係る炭化珪素半導体装置である。なお、半導体モジュール1は、図示しない樹脂により封止されていてもよい。
(Embodiment 1)
First, a semiconductor module and a silicon carbide semiconductor device according to the first embodiment which is an embodiment of the present invention will be described. With reference to FIG. 1, the semiconductor module 1 according to the present embodiment mainly includes a module substrate 2, a terminal 3, and a plurality of MOSFETs 10A. The module substrate 2 includes an insulating substrate (not shown), a heat sink (not shown) as a heat sink made of metal, and the like. The plurality of MOSFETs 10 </ b> A are arranged on the surface 2 </ b> A of the module substrate 2 and are connected to each other by the wiring 4. The terminal 3 is connected to the MOSFET 10 </ b> A by the wiring 4. MOSFET 10A is a silicon carbide semiconductor device according to the present embodiment. The semiconductor module 1 may be sealed with a resin (not shown).
 図2を参照して、MOSFET10Aは、炭化珪素基板20と、当該炭化珪素基板20の一方の主面20A上に形成されたエピタキシャル成長層30、酸化膜40、ソース電極50およびゲート電極60(素子部)と、ドレイン電極70とを主に備えている。エピタキシャル成長層30には、ドリフト領域31と、ボディ領域32と、ソース領域33と、コンタクト領域34とが形成されている。 Referring to FIG. 2, MOSFET 10A includes a silicon carbide substrate 20, an epitaxial growth layer 30, an oxide film 40, a source electrode 50 and a gate electrode 60 (element portion) formed on one main surface 20A of silicon carbide substrate 20. ) And the drain electrode 70 are mainly provided. In the epitaxial growth layer 30, a drift region 31, a body region 32, a source region 33, and a contact region 34 are formed.
 MOSFET10Aの厚みは、50μm以上600μm以下であり、好ましくは100μm以上200μm以下である。エピタキシャル成長層30の厚みは、2μm以上50μm以下であり、好ましくは5μm以上35μm以下である。 The thickness of the MOSFET 10A is 50 μm or more and 600 μm or less, preferably 100 μm or more and 200 μm or less. The thickness of the epitaxial growth layer 30 is 2 μm or more and 50 μm or less, preferably 5 μm or more and 35 μm or less.
 ドリフト領域31は、炭化珪素基板20の一方の主面20A上に形成されている。ドリフト領域31は、たとえばN(窒素)などのn型不純物を含むことにより、導電型がn型となっている。 The drift region 31 is formed on one main surface 20A of the silicon carbide substrate 20. Drift region 31 has an n-type conductivity by including an n-type impurity such as N (nitrogen).
 ボディ領域32は、主面30Aを含むようにエピタキシャル成長層30内に形成されている。ボディ領域32は、たとえばAl(アルミニウム)やB(硼素)などのp型不純物を含むことにより導電型がp型となっている。ボディ領域32の厚みは0.1μm以上50μm以下であり、好ましくは1μm以上3μm以下である。 The body region 32 is formed in the epitaxial growth layer 30 so as to include the main surface 30A. Body region 32 has a p-type conductivity by including a p-type impurity such as Al (aluminum) or B (boron). The thickness of the body region 32 is not less than 0.1 μm and not more than 50 μm, preferably not less than 1 μm and not more than 3 μm.
 ソース領域33は、主面30Aを含むようにボディ領域32内に形成されている。ソース領域33は、たとえばP(リン)などのn型不純物を含むことにより、ドリフト領域31と同様に導電型がn型となっている。ソース領域33は、ドリフト領域31よりもn型不純物の濃度が高くなっている。 The source region 33 is formed in the body region 32 so as to include the main surface 30A. Source region 33 includes an n-type impurity such as P (phosphorus), for example, so that conductivity type is n-type, similar to drift region 31. The source region 33 has a higher n-type impurity concentration than the drift region 31.
 コンタクト領域34は、主面30Aを含み、ソース領域33と隣接するようにボディ領域32内に形成されている。コンタクト領域34は、ボディ領域32と同様にp型不純物を含むことにより導電型がp型となっている。コンタクト領域34は、ボディ領域32よりもp型不純物の濃度が高くなっている。 The contact region 34 includes the main surface 30 </ b> A and is formed in the body region 32 so as to be adjacent to the source region 33. Similar to body region 32, contact region 34 has a p-type conductivity by containing a p-type impurity. Contact region 34 has a higher p-type impurity concentration than body region 32.
 酸化膜40は、主面30Aの一部を覆うように形成されている。酸化膜40は、たとえばSiO(二酸化珪素)からなっている。 Oxide film 40 is formed to cover part of main surface 30A. The oxide film 40 is made of, for example, SiO 2 (silicon dioxide).
 ゲート電極60は、たとえば不純物が添加されたポリシリコンや、アルミニウムなどの導電体からなっており、酸化膜40上に接触して形成されている。ゲート電極60は、当該ゲート電極60下において一方のソース領域33から他方のソース領域33にまで延在するように形成されている。 The gate electrode 60 is made of a conductive material such as polysilicon doped with impurities or aluminum, and is formed on the oxide film 40 in contact therewith. The gate electrode 60 is formed so as to extend from one source region 33 to the other source region 33 under the gate electrode 60.
 ソース電極50は、主面30A上においてソース領域33およびコンタクト領域34に接触するように形成されている。ソース電極50は、ソース領域33に対してオーミック接触することができる材料、たとえばNiSi(ニッケルシリサイド)、TiSi(チタンシリサイド)、AlSi(アルミシリサイド)およびTiAlSi(チタンアルミシリサイド)などからなっており、ソース領域33に対して電気的に接続されている。 Source electrode 50 is formed on main surface 30 </ b> A so as to be in contact with source region 33 and contact region 34. The source electrode 50 is made of a material capable of making ohmic contact with the source region 33, for example, Ni x Si y (nickel silicide), Ti x Si y (titanium silicide), Al x Si y (aluminum silicide), and Ti x Al. It is made of y Si z (titanium aluminum silicide) or the like and is electrically connected to the source region 33.
 ドレイン電極70は、炭化珪素基板20の他方の主面20B上に形成されている。ドレイン電極70は、たとえばソース電極50と同様の材料からなっており、炭化珪素基板20に対して電気的に接続されている。 The drain electrode 70 is formed on the other main surface 20B of the silicon carbide substrate 20. Drain electrode 70 is made of, for example, the same material as source electrode 50 and is electrically connected to silicon carbide substrate 20.
 MOSFET10Aの端面11(炭化珪素基板20の端面11)には段差部13が形成されている。端面11は、MOSFET10Aの側端部における面であり、図2に示すように主面20A,30Aに対して交差(直交)する面である。MOSFET10Aでは、段差部13から見て素子部(エピタキシャル成長層30、酸化膜40、ソース電極50およびゲート電極60)側の領域が第1領域A1となっており、また段差部13から見て炭化珪素基板20側の領域が第2領域A2となっている。図2に示すように、第1領域A1の幅(炭化珪素基板20の表面20Bに沿った方向における幅)は第2領域A2の幅よりも小さくなっており、一方の端面11側における幅差W1は1μm以上100μm以下であり、好ましくは5μm以上50μm以下であり、たとえば70μmである。 Step portion 13 is formed on end surface 11 of MOSFET 10A (end surface 11 of silicon carbide substrate 20). The end surface 11 is a surface at the side end portion of the MOSFET 10A, and is a surface that intersects (orthogonally) the main surfaces 20A and 30A as shown in FIG. In MOSFET 10A, the region on the element portion (epitaxial growth layer 30, oxide film 40, source electrode 50, and gate electrode 60) side when viewed from step portion 13 is first region A1, and silicon carbide is viewed from step portion 13. A region on the substrate 20 side is a second region A2. As shown in FIG. 2, the width of the first region A1 (the width in the direction along the surface 20B of the silicon carbide substrate 20) is smaller than the width of the second region A2, and the width difference on the one end face 11 side. W1 is 1 μm or more and 100 μm or less, preferably 5 μm or more and 50 μm or less, for example 70 μm.
 段差部13は、図2に示すように、ボディ領域32の底面32Aから見て炭化珪素基板20側に位置するように形成されており、また炭化珪素基板20とエピタキシャル成長層30との接触面20Aから見て炭化珪素基板20側に位置するように形成されている。また、段差部13の形成位置はこれに限定されず、たとえば底面32Aから見て炭化珪素基板20側に位置し、かつ接触面20Aから見てエピタキシャル成長層30側に位置するように形成されていてもよい。この場合、段差部13はエピタキシャル成長層30の端面11に形成される。 As shown in FIG. 2, stepped portion 13 is formed to be located on the side of silicon carbide substrate 20 as viewed from bottom surface 32 </ b> A of body region 32, and contact surface 20 </ b> A between silicon carbide substrate 20 and epitaxial growth layer 30. Is formed so as to be located on the silicon carbide substrate 20 side when viewed from the side. Further, the formation position of the stepped portion 13 is not limited to this. For example, the stepped portion 13 is formed so as to be located on the silicon carbide substrate 20 side when viewed from the bottom surface 32A and on the epitaxial growth layer 30 side when viewed from the contact surface 20A. Also good. In this case, the step portion 13 is formed on the end surface 11 of the epitaxial growth layer 30.
 次に、本実施の形態に係るMOSFET10Aの動作について説明する。図2を参照して、ゲート電極60に印加された電圧が閾値電圧未満の状態、すなわちオフ状態では、ソース電極50とドレイン電極70との間に電圧が印加されても、ボディ領域32とドリフト領域31との間に形成されるpn接合が逆バイアスとなり、非導通状態となる。一方、ゲート電極60に閾値電圧以上の電圧が印加されると、ボディ領域32のチャネル領域(ゲート電極60下のボディ領域32)に反転層が形成される。その結果、ソース領域33とドリフト領域31とが電気的に接続され、ソース電極50とドレイン電極70との間に電流が流れる。以上のようにして、MOSFET10Aは動作する。 Next, the operation of MOSFET 10A according to the present embodiment will be described. Referring to FIG. 2, in a state where the voltage applied to gate electrode 60 is less than the threshold voltage, that is, in the off state, even if a voltage is applied between source electrode 50 and drain electrode 70, body region 32 drifts. The pn junction formed with the region 31 is reverse-biased and becomes non-conductive. On the other hand, when a voltage equal to or higher than the threshold voltage is applied to the gate electrode 60, an inversion layer is formed in the channel region of the body region 32 (the body region 32 below the gate electrode 60). As a result, the source region 33 and the drift region 31 are electrically connected, and a current flows between the source electrode 50 and the drain electrode 70. As described above, the MOSFET 10A operates.
 次に、本実施の形態に係る半導体モジュールおよび炭化珪素半導体装置の製造方法について説明する。本実施の形態に係る炭化珪素半導体装置の製造方法では、図3を参照して、工程(S10)~(S110)が実施されることにより上記本実施の形態に係るMOSFET10Aが製造される。また、本実施の形態に係る半導体モジュールの製造方法では、図4を参照して、工程(S120)~(S140)が実施されることにより上記本実施の形態に係る半導体モジュール1が製造される。 Next, a method for manufacturing the semiconductor module and the silicon carbide semiconductor device according to the present embodiment will be described. In the method for manufacturing the silicon carbide semiconductor device according to the present embodiment, referring to FIG. 3, MOSFET (10A) according to the present embodiment is manufactured by performing steps (S10) to (S110). In the method for manufacturing a semiconductor module according to the present embodiment, referring to FIG. 4, steps (S120) to (S140) are performed to manufacture semiconductor module 1 according to the present embodiment. .
 図3を参照して、本実施の形態に係る炭化珪素半導体装置の製造方法では、まず、工程(S10)として、炭化珪素基板準備工程が実施される。この工程(S10)では、図5を参照して、たとえば4H-SiCからなるインゴット(図示しない)をスライスすることにより、導電型がn型(第1導電型)である炭化珪素基板20が準備される。 Referring to FIG. 3, in the method for manufacturing a silicon carbide semiconductor device according to the present embodiment, first, a silicon carbide substrate preparation step is performed as a step (S10). In this step (S10), referring to FIG. 5, silicon carbide substrate 20 having a conductivity type of n type (first conductivity type) is prepared by slicing an ingot (not shown) made of, for example, 4H—SiC. Is done.
 次に、工程(S20)として、エピタキシャル成長層形成工程が実施される。この工程(S20)では、図5を参照して、炭化珪素基板20の主面20A上において導電型がn型であるエピタキシャル成長層30が形成される。 Next, as a step (S20), an epitaxial growth layer forming step is performed. In this step (S20), referring to FIG. 5, epitaxial growth layer 30 having an n conductivity type is formed on main surface 20A of silicon carbide substrate 20.
 次に、工程(S30)として、イオン注入工程が実施される。この工程(S30)では、図6を参照して、まず、たとえばアルミニウム(Al)イオンがエピタキシャル成長層30の主面30Aを含む領域に注入されることにより、エピタキシャル成長層30内にボディ領域32(不純物領域)が形成される。ボディ領域32の導電型はp型(第2導電型)である。次に、たとえばリン(P)イオンが主面30Aを含む領域において、上記Alイオンの注入深さよりも浅い深さで注入されることにより、ソース領域33が形成される。次に、たとえばAlイオンが、ソース領域33に隣接し主面30Aを含む領域に注入されることにより、ソース領域33と同等の深さを有するコンタクト領域34が形成される。また、エピタキシャル成長層30において、ボディ領域32、ソース領域33およびコンタクト領域34がいずれも形成されない領域はドリフト領域31となる。 Next, as a step (S30), an ion implantation step is performed. In this step (S30), referring to FIG. 6, first, for example, aluminum (Al) ions are implanted into a region including main surface 30A of epitaxial growth layer 30 to thereby form body region 32 (impurity in epitaxial growth layer 30). Region) is formed. The conductivity type of the body region 32 is p-type (second conductivity type). Next, for example, phosphorus (P) ions are implanted at a depth shallower than the Al ion implantation depth in a region including main surface 30 </ b> A, thereby forming source region 33. Next, for example, Al ions are implanted into a region adjacent to source region 33 and including main surface 30 </ b> A, thereby forming contact region 34 having a depth equivalent to that of source region 33. In the epitaxial growth layer 30, a region where none of the body region 32, the source region 33, and the contact region 34 is formed becomes a drift region 31.
 次に、工程(S40)として、活性化アニール工程が実施される。この工程(S40)では、図6を参照して、ドリフト領域31、ボディ領域32、ソース領域33およびコンタクト領域34を含むエピタキシャル成長層30が形成された炭化珪素基板20を加熱することにより、上記工程(S30)において導入された不純物が活性化される。これにより、不純物が導入された領域において所望のキャリアが生成する。 Next, an activation annealing step is performed as a step (S40). In this step (S40), referring to FIG. 6, by heating silicon carbide substrate 20 on which epitaxially grown layer 30 including drift region 31, body region 32, source region 33 and contact region 34 is formed, the above step is performed. The impurities introduced in (S30) are activated. As a result, desired carriers are generated in the region where the impurity is introduced.
 次に、工程(S50)として、酸化膜形成工程が実施される。この工程(S50)では、図7を参照して、たとえば酸素を含む雰囲気中においてエピタキシャル成長層30が形成された炭化珪素基板20を加熱することにより、エピタキシャル成長層30の主面30Aを覆うようにSiO(二酸化珪素)からなる酸化膜40が形成される。 Next, an oxide film forming step is performed as a step (S50). In this step (S50), referring to FIG. 7, for example, by heating silicon carbide substrate 20 on which epitaxially grown layer 30 is formed in an oxygen-containing atmosphere, SiO 2 so as to cover main surface 30A of epitaxially grown layer 30 is covered. An oxide film 40 made of 2 (silicon dioxide) is formed.
 次に、工程(S60)として、ゲート電極形成工程が実施される。この工程(S60)では、図8を参照して、たとえばLPCVD(Low Pressure Chemical Vapor Deposition)法により、酸化膜40上に接触するようにポリシリコンからなるゲート電極60が形成される。 Next, as a step (S60), a gate electrode forming step is performed. In this step (S60), referring to FIG. 8, gate electrode 60 made of polysilicon is formed so as to be in contact with oxide film 40 by, for example, LPCVD (Low Pressure Chemical Vapor Deposition).
 次に、工程(S70)として、オーミック電極形成工程が実施される。この工程(S70)では、図8を参照して、まず、ソース電極50を形成すべき領域において酸化膜40が除去され、ソース領域33およびコンタクト領域34が露出した領域が形成される。そして、当該領域において、たとえばNiからなる膜が形成される。一方、炭化珪素基板20の主面20B上に、たとえばNiからなる膜が形成される。その後、合金化熱処理が施され、上記Niからなる膜の少なくとも一部がシリサイド化されることにより、ソース電極50およびドレイン電極70が形成される。このように上記工程(S20)~(S70)が実施されることにより、炭化珪素基板20の主面20A上において、エピタキシャル成長層30、酸化膜40、ソース電極50およびゲート電極60を含む素子部80が複数形成される。 Next, as a step (S70), an ohmic electrode forming step is performed. In this step (S70), referring to FIG. 8, first, oxide film 40 is removed in a region where source electrode 50 is to be formed, and a region where source region 33 and contact region 34 are exposed is formed. In the region, a film made of, for example, Ni is formed. On the other hand, a film made of, for example, Ni is formed on main surface 20B of silicon carbide substrate 20. Thereafter, an alloying heat treatment is performed, and at least a part of the Ni film is silicided, whereby the source electrode 50 and the drain electrode 70 are formed. By performing steps (S20) to (S70) as described above, element portion 80 including epitaxial growth layer 30, oxide film 40, source electrode 50, and gate electrode 60 on main surface 20A of silicon carbide substrate 20 is performed. A plurality of are formed.
 次に、工程(S80)として、第1ダイシング工程が実施される。この工程(S80)では、図9を参照して、主面30A側からエピタキシャル成長層30および炭化珪素基板20に対してダイシング加工を施すことにより、複数の素子部80同士の間に第1溝部90が形成される。第1溝部90の幅W2は、たとえば300μm以下である。 Next, as a step (S80), a first dicing step is performed. In this step (S80), referring to FIG. 9, by performing dicing processing on epitaxial growth layer 30 and silicon carbide substrate 20 from the main surface 30A side, first groove portion 90 is formed between a plurality of element portions 80. Is formed. The width W2 of the first groove portion 90 is, for example, 300 μm or less.
 この工程(S80)では、図9に示すようにエピタキシャル成長層30から炭化珪素基板20にまで到達するように第1溝部90が形成されてもよい。より具体的には、底壁面90Aが、ボディ領域32の底面32A(底部)よりも深い位置にまで到達し、かつ炭化珪素基板20とエピタキシャル成長層30との接触面20Aから見て炭化珪素基板20側に位置するように第1溝部90が形成されてもよい。 In this step (S80), the first groove 90 may be formed so as to reach from the epitaxial growth layer 30 to the silicon carbide substrate 20 as shown in FIG. More specifically, bottom wall surface 90 </ b> A reaches a position deeper than bottom surface 32 </ b> A (bottom portion) of body region 32, and silicon carbide substrate 20 as viewed from contact surface 20 </ b> A between silicon carbide substrate 20 and epitaxial growth layer 30. The first groove portion 90 may be formed so as to be located on the side.
 次に、工程(S90)として、耐圧測定工程が実施される。この工程(S90)では、上記工程(S20)~(S70)において形成された複数の素子部80の耐圧が測定される。まず、この工程(S90)において用いられる耐圧測定装置の構造について説明する。 Next, as a step (S90), a pressure resistance measuring step is performed. In this step (S90), the withstand voltages of the plurality of element portions 80 formed in the above steps (S20) to (S70) are measured. First, the structure of the pressure | voltage resistant measuring apparatus used in this process (S90) is demonstrated.
 図10を参照して、耐圧測定装置100は、気密容器110と、カメラ112と、ステージ120と、プローブ130と、電圧源134と、ゲート制御部135と、導入口140と、排出口150と、ヒータ160と、センサ170とを備えている。 Referring to FIG. 10, the pressure resistance measuring device 100 includes an airtight container 110, a camera 112, a stage 120, a probe 130, a voltage source 134, a gate controller 135, an inlet 140, and an outlet 150. The heater 160 and the sensor 170 are provided.
 ステージ120は、気密容器110内に設けられており、炭化珪素基板20を支持するためのものである。ステージ120は、炭化珪素基板20を固定するための真空チャック121を有していてもよい。 The stage 120 is provided in the hermetic container 110 and is for supporting the silicon carbide substrate 20. Stage 120 may have a vacuum chuck 121 for fixing silicon carbide substrate 20.
 プローブ130は気密容器110内に設けられている。プローブ130の機能の一つは、ソース電極50(図9参照)に接触することによってソース電極50との電気的接続を得ることである。プローブ130は、たとえば、基部131と針132および133とを有してもよい。針132および133のそれぞれはソース電極50およびゲート電極60(図9参照)との電気的接続を得るためのものであり、基部131に取り付けられている。 The probe 130 is provided in the airtight container 110. One of the functions of the probe 130 is to obtain an electrical connection with the source electrode 50 by contacting the source electrode 50 (see FIG. 9). The probe 130 may have a base 131 and needles 132 and 133, for example. Each of the needles 132 and 133 is for obtaining an electrical connection with the source electrode 50 and the gate electrode 60 (see FIG. 9), and is attached to the base 131.
 ステージ120は移動機構122上に設けられることで、気密容器110内において移動可能に構成されている。これによりステージ120とプローブ130とが相対的に変位可能に構成されている。言い換えれば、プローブ130はステージ120に対して相対的に移動可能に構成されている。移動機構122は、好ましくは、3次元的な変位を可能とする、いわゆるXYZステージである。 The stage 120 is configured to be movable in the airtight container 110 by being provided on the moving mechanism 122. Accordingly, the stage 120 and the probe 130 are configured to be relatively displaceable. In other words, the probe 130 is configured to be movable relative to the stage 120. The moving mechanism 122 is preferably a so-called XYZ stage that enables three-dimensional displacement.
 導入口140は、気密容器110に設けられており、気密容器110内にガスを導入するためのものである。排出口150は、気密容器110に設けられており、気密容器110からガスを排出するためのものである。導入口140および排出口150のそれぞれはゲート弁141および151を有する。 The introduction port 140 is provided in the hermetic container 110 and is for introducing gas into the hermetic container 110. The discharge port 150 is provided in the hermetic container 110 and is for discharging gas from the hermetic container 110. Each of the inlet 140 and the outlet 150 has gate valves 141 and 151.
 ヒータ160は炭化珪素基板20を加熱するためのものである。ヒータ160は気密容器110内に配置されており、ステージ120内に配置されていてもよい。ヒータ160には、気密容器110の外部に配置されたヒータ電源161が接続されていてもよい。 The heater 160 is for heating the silicon carbide substrate 20. The heater 160 is disposed in the hermetic container 110 and may be disposed in the stage 120. A heater power supply 161 disposed outside the hermetic container 110 may be connected to the heater 160.
 センサ170は、気密容器110内の露点温度を検出するために、気密容器110内に設けられている。センサ170は、露点温度を直接測定可能なように専用に設計された露点温度計であってもよく、あるいは、温度および湿度から露点温度を算出するために温度計および湿度計を有するものであってもよい。センサ170は、気密容器110の外部に設けられた読取部171と接続されていてもよい。 The sensor 170 is provided in the hermetic container 110 in order to detect the dew point temperature in the hermetic container 110. The sensor 170 may be a dew point thermometer designed specifically for direct measurement of the dew point temperature, or has a thermometer and a hygrometer to calculate the dew point temperature from the temperature and humidity. May be. The sensor 170 may be connected to a reading unit 171 provided outside the hermetic container 110.
 電圧源134はプローブ130に接続されている。具体的には電圧源134は、プローブ130の針132と、ステージ120との間に電圧を加えるように接続されている。電圧源134が発生可能な電圧は、好ましくは600V程度以上であり、より好ましくは1kV程度以上であり、さらに好ましくは3kV程度以上である。 The voltage source 134 is connected to the probe 130. Specifically, the voltage source 134 is connected to apply a voltage between the needle 132 of the probe 130 and the stage 120. The voltage that can be generated by the voltage source 134 is preferably about 600 V or more, more preferably about 1 kV or more, and further preferably about 3 kV or more.
 ゲート制御部135は、プローブ130の針132および133の間に電圧を加えるように接続されている。ゲート制御部135は、素子部80(図9参照)のゲート電圧を制御できる程度の電圧を発生可能なものであればよい。 The gate control unit 135 is connected so as to apply a voltage between the needles 132 and 133 of the probe 130. The gate control unit 135 only needs to be capable of generating a voltage that can control the gate voltage of the element unit 80 (see FIG. 9).
 気密容器110は、気密容器110の外部から素子部80(図9参照)の位置が観測可能となるように、光を透過する窓111を有する。窓111は、この目的に十分な程度に光を透過する材料から作られており、たとえばガラスまたは透明樹脂から作られている。窓111には、耐圧測定時に窓111を介して光が入射しないように遮光を行なうための遮光部(図示せず)が設けられることが好ましい。この遮光部は、たとえば、窓111の外側において着脱され得るカバー、または、窓111の外側または内側に設けられたシャッターである。カメラ112は、図10中の破線で示すように、窓111を介して炭化珪素基板20を観察し得るように配置されている。 The hermetic container 110 has a window 111 that transmits light so that the position of the element unit 80 (see FIG. 9) can be observed from the outside of the hermetic container 110. The window 111 is made of a material that transmits light to a sufficient extent for this purpose, for example, glass or transparent resin. The window 111 is preferably provided with a light shielding portion (not shown) for performing light shielding so that light does not enter through the window 111 during pressure resistance measurement. This light-shielding portion is, for example, a cover that can be attached and detached outside the window 111 or a shutter provided outside or inside the window 111. Camera 112 is arranged so that silicon carbide substrate 20 can be observed through window 111, as indicated by a broken line in FIG.
 次に、耐圧測定装置100を用いた耐圧測定方法について、図10および図11を参照して説明する。まず、気密容器110内に炭化珪素基板20が支持される。具体的には、炭化珪素基板20が気密容器110内に搬入され、さらにステージ120上に載置される。これにより炭化珪素基板20の裏面に位置するドレイン電極70の電位がステージ120の電位とされる(図11参照)。また炭化珪素基板20がステージ120に固定される。この固定は、真空チャック121によって行われ得る。 Next, a pressure resistance measuring method using the pressure resistance measuring apparatus 100 will be described with reference to FIG. 10 and FIG. First, silicon carbide substrate 20 is supported in hermetic container 110. Specifically, silicon carbide substrate 20 is carried into airtight container 110 and further placed on stage 120. Thereby, the potential of drain electrode 70 located on the back surface of silicon carbide substrate 20 is set to the potential of stage 120 (see FIG. 11). Silicon carbide substrate 20 is fixed to stage 120. This fixing can be performed by the vacuum chuck 121.
 次に、移動機構122の駆動によってステージ120とプローブ130との間の相対変位が生じることにより、図11に示すように、針132および133のそれぞれがソース電極50およびゲート電極60に接触させられる。このようにしてソース電極50にプローブ130が接触させられつつ、プローブ130に電圧が供給される。具体的には、プローブ130の針132とステージ120との間に電圧が供給される。これによりドレイン電極70およびソース電極50の間に、耐圧測定のための電圧が印加される。この電圧は、たとえば600V程度以上である。また必要に応じてゲート制御部135によってゲート電圧が調整される。これにより素子部80(図9参照)の耐圧が測定される。 Next, the movement of the moving mechanism 122 causes a relative displacement between the stage 120 and the probe 130, so that the needles 132 and 133 are brought into contact with the source electrode 50 and the gate electrode 60, respectively, as shown in FIG. . In this way, a voltage is supplied to the probe 130 while the probe 130 is in contact with the source electrode 50. Specifically, a voltage is supplied between the needle 132 of the probe 130 and the stage 120. As a result, a voltage for measuring the withstand voltage is applied between the drain electrode 70 and the source electrode 50. This voltage is about 600V or more, for example. Further, the gate voltage is adjusted by the gate controller 135 as necessary. Thereby, the breakdown voltage of the element unit 80 (see FIG. 9) is measured.
 次に、工程(S100)として、第2ダイシング工程が実施される。この工程(S100)では、図12を参照して、炭化珪素基板20に対してさらにダイシング加工を施すことにより、第1溝部90において素子部80同士が分離される。より具体的には、第1溝部90の内部において第2溝部91が形成されることにより、素子部80同士が分離される。図12に示すように、第2溝部91の幅W3は第1溝部90の幅W2よりも小さく、100μm以下であってもよく、たとえば70μmである。また、「第2溝部91」は、図12に示すように炭化珪素基板20を厚み方向に貫通するように形成されたものでもよく、炭化珪素基板20の一部(主面20Bを含む部分)を残存させるように形成されたものでもよい。なお、第2溝部91が炭化珪素基板20の一部を残存させるように形成された場合には、その後炭化珪素基板20に対して所定の応力を加えることにより素子部80同士を完全に分離することができる。 Next, a second dicing step is performed as a step (S100). In this step (S100), referring to FIG. 12, element portions 80 are separated in first groove portion 90 by further dicing the silicon carbide substrate 20. More specifically, the element portions 80 are separated from each other by forming the second groove portion 91 inside the first groove portion 90. As shown in FIG. 12, the width W3 of the second groove 91 is smaller than the width W2 of the first groove 90, and may be 100 μm or less, for example, 70 μm. "Second groove portion 91" may be formed so as to penetrate silicon carbide substrate 20 in the thickness direction as shown in FIG. 12, and part of silicon carbide substrate 20 (a portion including main surface 20B). May be formed so as to remain. When second groove portion 91 is formed so as to leave a part of silicon carbide substrate 20, element portions 80 are completely separated from each other by applying a predetermined stress to silicon carbide substrate 20 thereafter. be able to.
 次に、工程(S110)として、選別工程が実施される。この工程(S110)では、上記工程(S100)において個々の素子部80に分離された後、上記工程(S90)の耐圧測定において良品と判断されたものと不良品と判断されたものとが選別される。この工程(S110)は、本発明の炭化珪素半導体装置の製造方法において必須の工程ではないが、これを実施することにより良品と判断された素子部80を含むMOSFETのみを確実に実装することができる。その結果、モジュール製造の歩留まりを向上させることができる。以上のようにして工程(S10)~(S110)が実施されることにより上記MOSFET10Aが製造され、本実施の形態に係る炭化珪素半導体装置の製造方法が完了する。 Next, as a step (S110), a sorting step is performed. In this step (S110), after being separated into the individual element portions 80 in the step (S100), those determined as good products and those determined as defective in the pressure resistance measurement in the step (S90) are selected. Is done. Although this step (S110) is not an essential step in the method for manufacturing a silicon carbide semiconductor device of the present invention, it is possible to reliably mount only the MOSFET including the element portion 80 determined to be non-defective by carrying out this step. it can. As a result, the module manufacturing yield can be improved. By performing steps (S10) to (S110) as described above, MOSFET 10A is manufactured, and the method for manufacturing the silicon carbide semiconductor device according to the present embodiment is completed.
 次に、本実施の形態に係る半導体モジュールの製造方法について説明する。図4を参照して、本実施の形態に係る半導体モジュールの製造方法では、まず、工程(S120)として、デバイス準備工程が実施される。この工程(S120)では、上記本実施の形態に係る炭化珪素半導体装置の製造方法によりMOSFET10Aが製造される。また、工程(S120)と並んで工程(S130)が実施されることにより、モジュール基板2が準備される(図1参照)。 Next, a method for manufacturing a semiconductor module according to the present embodiment will be described. Referring to FIG. 4, in the method for manufacturing a semiconductor module according to the present embodiment, first, as a step (S120), a device preparation step is performed. In this step (S120), MOSFET 10A is manufactured by the method for manufacturing the silicon carbide semiconductor device according to the present embodiment. Further, the module substrate 2 is prepared by performing the step (S130) along with the step (S120) (see FIG. 1).
 工程(S120)および(S130)が完了した後、工程(S140)としてデバイス実装工程が実施される。この工程(S140)では、図1を参照して、モジュール基板2の表面2A上において複数のMOSFET10Aが配置される。そして、MOSFET10A同士、またはMOSFET10Aと端子3とが配線4により電気的に接続される。このようにしてモジュール基板2上にMOSFET10Aが実装される。以上のようにして工程(S120)~(S140)が実施されることにより上記半導体モジュール1が製造され、本実施の形態に係る半導体モジュールの製造方法が完了する。 After the steps (S120) and (S130) are completed, a device mounting step is performed as a step (S140). In this step (S140), referring to FIG. 1, a plurality of MOSFETs 10A are arranged on surface 2A of module substrate 2. The MOSFETs 10 </ b> A or the MOSFET 10 </ b> A and the terminal 3 are electrically connected by the wiring 4. In this way, the MOSFET 10A is mounted on the module substrate 2. By performing steps (S120) to (S140) as described above, the semiconductor module 1 is manufactured, and the manufacturing method of the semiconductor module according to the present embodiment is completed.
 以上のように、本実施の形態に係る炭化珪素半導体装置の製造方法では、炭化珪素基板20上に複数の素子部80が形成され、複数の素子部80の間に第1溝部90が形成され、第1溝部90の内部において複数の素子部80が分離される。また、第1溝部90の形成後であって素子部80を分離する前に素子部80の耐圧が測定される。これにより、第1溝部90の形成に起因した素子部80の不良発生の有無を確認した上で個々の素子部80に分離することができる。そして、良品であることが確認された素子部80を含むMOSFET10Aのみを実装することで、半導体モジュールの製造歩留まりを向上させることができる。このように、本実施の形態に係る炭化珪素半導体装置および半導体モジュールの製造方法によれば、半導体モジュールの製造歩留まりを向上させることができる。 As described above, in the method for manufacturing the silicon carbide semiconductor device according to the present embodiment, a plurality of element portions 80 are formed on silicon carbide substrate 20, and first groove portion 90 is formed between the plurality of element portions 80. The plurality of element parts 80 are separated inside the first groove part 90. Further, the breakdown voltage of the element unit 80 is measured after the formation of the first groove 90 and before the element unit 80 is separated. As a result, it is possible to separate each element unit 80 after confirming whether or not the element unit 80 is defective due to the formation of the first groove 90. Then, by mounting only the MOSFET 10A including the element unit 80 that has been confirmed to be non-defective, the manufacturing yield of the semiconductor module can be improved. Thus, according to the silicon carbide semiconductor device and the method for manufacturing a semiconductor module according to the present embodiment, the manufacturing yield of the semiconductor module can be improved.
 また、本実施の形態に係るMOSFET10Aでは、端面11において段差部13が形成されている。そのため、当該段差部13が形成されていないMOSFETに比べて、図1に示すようにモジュール基板2上に実装した場合のチップ間の距離をより大きくすることができる。これにより、実装された個々のチップ間における放電の発生を抑制することができる。したがって、本実施の形態に係るMOSFET10および半導体モジュール1によれば、チップ間の放電によるモジュールの破損を抑制することができる。 Further, in the MOSFET 10A according to the present embodiment, the step portion 13 is formed on the end face 11. Therefore, the distance between chips when mounted on the module substrate 2 as shown in FIG. 1 can be made larger than that of a MOSFET in which the step portion 13 is not formed. Thereby, generation | occurrence | production of the discharge between each mounted chip | tip can be suppressed. Therefore, according to MOSFET 10 and semiconductor module 1 according to the present embodiment, damage to the module due to discharge between chips can be suppressed.
 (実施の形態2)
 次に、本発明の他の実施の形態である実施の形態2について説明する。本実施の形態に係る炭化珪素半導体装置は、基本的には上記実施の形態1に係るMOSFET10Aと同様の構成を備え、同様に動作し、同様の効果を奏する。しかし、本実施の形態に係る炭化珪素半導体装置は、第1領域A1の構成において上記MOSFET10Aとは異なっている。
(Embodiment 2)
Next, Embodiment 2 which is another embodiment of the present invention will be described. The silicon carbide semiconductor device according to the present embodiment basically has the same configuration as MOSFET 10A according to the above-described first embodiment, operates in the same manner, and has the same effects. However, the silicon carbide semiconductor device according to the present embodiment is different from MOSFET 10A in the configuration of first region A1.
 図13を参照して、本実施の形態に係る炭化珪素半導体装置であるMOSFET10Bでは、第1領域A1における端面11Aは、第1領域A1が第2領域A2に向かって広がるように傾斜している。これにより、エピタキシャル成長層30の主面30Aおよび端面11Aにより、90°を超える角θが形成されている。これにより、当該角θが90°である上記実施の形態1の場合に比べて電界集中をより緩和し易い構造にすることができる。 Referring to FIG. 13, in MOSFET 10B which is the silicon carbide semiconductor device according to the present embodiment, end surface 11A in first region A1 is inclined so that first region A1 extends toward second region A2. . Thereby, an angle θ exceeding 90 ° is formed by the main surface 30A and the end surface 11A of the epitaxial growth layer 30. Thereby, it is possible to achieve a structure in which the electric field concentration is more easily relaxed than in the case of the first embodiment in which the angle θ is 90 °.
 (実施の形態3)
 次に、本発明のさらに他の実施の形態である実施の形態3について説明する。本実施の形態に係る炭化珪素半導体装置は、基本的には上記実施の形態1に係るMOSFET10Aと同様の構成を備え、同様に動作し、同様の効果を奏する。しかし、本実施の形態に係る炭化珪素半導体装置は、端面上に保護膜が形成されている点において上記MOSFET10Aとは異なっている。
(Embodiment 3)
Next, Embodiment 3 which is still another embodiment of the present invention will be described. The silicon carbide semiconductor device according to the present embodiment basically has the same configuration as MOSFET 10A according to the above-described first embodiment, operates in the same manner, and has the same effects. However, the silicon carbide semiconductor device according to the present embodiment differs from MOSFET 10A in that a protective film is formed on the end surface.
 図14を参照して、本実施の形態に係る炭化珪素半導体装置であるMOSFET10Cは、第1領域A1の端面11Aおよび段差部13上に形成されたパッシベーション膜92(保護膜)をさらに備えている。パッシベーション膜92は、たとえば二酸化珪素(SiO)などからなり、酸化膜40と繋がるように形成されている。これにより、当該パッシベーション膜92が形成されない場合に比べて、MOSFET10Cが受ける損傷を抑制することができる。 Referring to FIG. 14, MOSFET 10C as the silicon carbide semiconductor device according to the present embodiment further includes a passivation film 92 (protective film) formed on end surface 11A and stepped portion 13 of first region A1. . The passivation film 92 is made of, for example, silicon dioxide (SiO 2 ), and is formed so as to be connected to the oxide film 40. Thereby, compared with the case where the said passivation film 92 is not formed, the damage which MOSFET10C receives can be suppressed.
 次に、本実施の形態に係る炭化珪素半導体装置の製造方法について説明する。図15を参照して、まず、上記実施の形態1の工程(S10)~(S90)と同様に工程(S150)~(S230)が実施される。これにより、図9に示すように炭化珪素基板20上に素子部80が形成され、当該素子部80の耐圧測定が完了した状態となる。 Next, a method for manufacturing the silicon carbide semiconductor device according to the present embodiment will be described. Referring to FIG. 15, first, steps (S150) to (S230) are performed similarly to steps (S10) to (S90) of the first embodiment. Thereby, element portion 80 is formed on silicon carbide substrate 20 as shown in FIG. 9, and the pressure resistance measurement of element portion 80 is completed.
 次に、工程(S240)として、パッシベーション膜形成工程が実施される。この工程(S240)では、図16を参照して、たとえばP(Plasma)-CVD法などにより、二酸化珪素(SiO)からなるパッシベーション膜92が第1溝部90の底壁面90Aおよび側壁面90B上を覆うように形成される。そして、工程(S240)が完了した後に上記実施の形態1の工程(S100)および(S110)と同様に工程(S250)および(S260)が実施され、上記本実施の形態に係るMOSFET10Cが製造される。 Next, as a step (S240), a passivation film forming step is performed. In this step (S240), referring to FIG. 16, passivation film 92 made of silicon dioxide (SiO 2 ) is formed on bottom wall surface 90A and side wall surface 90B of first groove 90 by, for example, P (Plasma) -CVD. It is formed so as to cover. Then, after step (S240) is completed, steps (S250) and (S260) are performed in the same manner as steps (S100) and (S110) of the first embodiment, and MOSFET 10C according to the present embodiment is manufactured. The
 今回開示された実施の形態はすべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなく請求の範囲によって示され、請求の範囲と均等の意味、および範囲内でのすべての変更が含まれることが意図される。 It should be considered that the embodiment disclosed this time is illustrative in all respects and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
 本発明の炭化珪素半導体装置および半導体モジュールの製造方法は、半導体モジュールの製造歩留まりを向上させることが要求される炭化珪素半導体装置および半導体モジュールの製造方法において、特に有利に適用され得る。また、本発明の炭化珪素半導体装置および半導体モジュールは、半導体モジュールの破損を抑制することが要求される炭化珪素半導体装置および半導体モジュールにおいて、特に有利に適用され得る。 The method for manufacturing a silicon carbide semiconductor device and a semiconductor module of the present invention can be applied particularly advantageously in a method for manufacturing a silicon carbide semiconductor device and a semiconductor module that are required to improve the manufacturing yield of the semiconductor module. In addition, the silicon carbide semiconductor device and the semiconductor module of the present invention can be particularly advantageously applied to a silicon carbide semiconductor device and a semiconductor module that are required to suppress damage to the semiconductor module.
 1 半導体モジュール、2 モジュール基板、2A 表面、3 端子、4 配線、10 MOSFET、11,11A,11B 端面、13 段差部、20 炭化珪素基板、20A 主面,接触面、30 エピタキシャル成長層、31 ドリフト領域、32 ボディ領域、32A 底面、33 ソース領域、34 コンタクト領域、40 酸化膜、50 ソース電極、60 ゲート電極、70 ドレイン電極、80 素子部、90 第1溝部、90A 底壁面、90B 側壁面、91 第2溝部、92 パッシベーション膜、100 耐圧測定装置、110 気密容器、111 窓、112 カメラ、120 ステージ、121 真空チャック、122 移動機構、130 プローブ、131 基部、132 針、134 電圧源、135 ゲート制御部、140 導入口、141 ゲート弁、150 排出口、160 ヒータ、161 ヒータ電源、170 センサ、171 読取部、A1 第1領域、A2 第2領域、W1 幅差、W2,W3 幅。 1 semiconductor module, 2 module substrate, 2A surface, 3 terminal, 4 wiring, 10 MOSFET, 11, 11A, 11B end face, 13 stepped portion, 20 silicon carbide substrate, 20A main surface, contact surface, 30 epitaxial growth layer, 31 drift region , 32 body region, 32A bottom surface, 33 source region, 34 contact region, 40 oxide film, 50 source electrode, 60 gate electrode, 70 drain electrode, 80 element part, 90 first groove, 90A bottom wall surface, 90B side wall surface, 91 Second groove part, 92 passivation film, 100 pressure resistance measuring device, 110 airtight container, 111 window, 112 camera, 120 stage, 121 vacuum chuck, 122 moving mechanism, 130 probe, 131 base, 132 needle, 134 voltage source, 135 Gate control unit, 140 inlet, 141 a gate valve, 150 outlet, 160 a heater, 161 a heater power source, 170 sensor, 171 reader, A1 first area, A2 second area, W1 width difference, W2, W3 width.

Claims (12)

  1.  炭化珪素からなる基板を準備する工程と、
     前記基板上に複数の素子部を形成する工程と、
     前記複数の素子部の間に第1溝部を形成する工程と、
     前記素子部の耐圧を測定する工程と、
     前記素子部の耐圧を測定する工程の後、前記第1溝部の内部において前記複数の素子部を分離する工程とを備える、炭化珪素半導体装置の製造方法。
    Preparing a substrate made of silicon carbide;
    Forming a plurality of element portions on the substrate;
    Forming a first groove portion between the plurality of element portions;
    Measuring the breakdown voltage of the element portion;
    And a step of separating the plurality of element portions inside the first groove portion after the step of measuring the breakdown voltage of the element portion.
  2.  前記素子部を形成する工程では、前記基板上にエピタキシャル成長層が形成され、
     前記第1溝部を形成する工程では、前記エピタキシャル成長層から前記基板にまで到達する前記第1溝部が形成される、請求項1に記載の炭化珪素半導体装置の製造方法。
    In the step of forming the element portion, an epitaxial growth layer is formed on the substrate,
    2. The method for manufacturing a silicon carbide semiconductor device according to claim 1, wherein in the step of forming the first groove portion, the first groove portion reaching from the epitaxial growth layer to the substrate is formed.
  3.  前記素子部を形成する工程では、前記基板上に導電型が第1導電型であるエピタキシャル成長層が形成され、かつ、前記エピタキシャル成長層内に前記第1導電型と異なる導電型である第2導電型の不純物領域が形成され、
     前記第1溝部を形成する工程では、前記不純物領域の底部よりも深い位置にまで到達する前記第1溝部が形成される、請求項1に記載の炭化珪素半導体装置の製造方法。
    In the step of forming the element portion, an epitaxial growth layer having a conductivity type of the first conductivity type is formed on the substrate, and a second conductivity type having a conductivity type different from the first conductivity type in the epitaxial growth layer. Impurity regions are formed,
    2. The method for manufacturing a silicon carbide semiconductor device according to claim 1, wherein in the step of forming the first groove portion, the first groove portion reaching a position deeper than a bottom portion of the impurity region is formed.
  4.  前記素子部を分離する工程では、前記第1溝部の内部において前記第1溝部よりも幅が小さい第2溝部が形成される、請求項1~3のいずれか1項に記載の炭化珪素半導体装置の製造方法。 The silicon carbide semiconductor device according to any one of claims 1 to 3, wherein in the step of separating the element portion, a second groove portion having a width smaller than that of the first groove portion is formed in the first groove portion. Manufacturing method.
  5.  前記素子部の耐圧を測定する工程の後、前記素子部を分離する工程の前に、前記第1溝部の壁面上に保護膜を形成する工程をさらに備える、請求項1~4のいずれか1項に記載の炭化珪素半導体装置の製造方法。 5. The method according to claim 1, further comprising a step of forming a protective film on the wall surface of the first groove portion after the step of measuring the breakdown voltage of the element portion and before the step of separating the element portion. A method for manufacturing the silicon carbide semiconductor device according to the item.
  6.  前記素子部を分離する工程の後、前記複数の素子部のうち良品と不良品とを選別する工程をさらに備える、請求項1~5のいずれか1項に記載の炭化珪素半導体装置の製造方法。 6. The method for manufacturing a silicon carbide semiconductor device according to claim 1, further comprising a step of selecting a non-defective product and a defective product among the plurality of device portions after the step of separating the device portion. .
  7.  請求項1~6のいずれか1項に記載の炭化珪素半導体装置の製造方法により炭化珪素半導体装置を製造する工程と、
     モジュール基板を準備する工程と、
     前記モジュール基板上に前記炭化珪素半導体装置を実装する工程とを備える、半導体モジュールの製造方法。
    A step of manufacturing a silicon carbide semiconductor device by the method of manufacturing a silicon carbide semiconductor device according to any one of claims 1 to 6,
    Preparing a module substrate; and
    Mounting the silicon carbide semiconductor device on the module substrate.
  8.  炭化珪素からなる基板と、
     前記基板上に形成された素子部とを備え、
     前記基板および前記素子部の少なくとも一方の端面には、段差部が形成されている、炭化珪素半導体装置。
    A substrate made of silicon carbide;
    And an element portion formed on the substrate,
    A silicon carbide semiconductor device, wherein a step portion is formed on at least one end face of the substrate and the element portion.
  9.  前記段差部から見て前記素子部側の領域である第1領域は、前記段差部から見て前記基板側の領域である第2領域よりも幅が小さい、請求項8に記載の炭化珪素半導体装置。 9. The silicon carbide semiconductor according to claim 8, wherein a width of a first region, which is a region on the element portion side when viewed from the stepped portion, is smaller than a second region which is a region on the substrate side when viewed from the stepped portion. apparatus.
  10.  前記第1領域における前記端面は、前記第1領域が前記第2領域側に向かって広がるように傾斜している、請求項9に記載の炭化珪素半導体装置。 The silicon carbide semiconductor device according to claim 9, wherein the end surface in the first region is inclined so that the first region spreads toward the second region.
  11.  前記端面上に形成された保護膜をさらに備える、請求項8~10のいずれか1項に記載の炭化珪素半導体装置。 11. The silicon carbide semiconductor device according to claim 8, further comprising a protective film formed on the end face.
  12.  請求項8~11のいずれか1項に記載の炭化珪素半導体装置を備える、半導体モジュール。 A semiconductor module comprising the silicon carbide semiconductor device according to any one of claims 8 to 11.
PCT/JP2014/060156 2013-05-16 2014-04-08 Method for manufacturing silicon carbide semiconductor device and semiconductor module, silicon carbide semiconductor device, and semiconductor module WO2014185192A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013103955A JP2014225557A (en) 2013-05-16 2013-05-16 Method of manufacturing silicon carbide semiconductor device and semiconductor module, and silicon carbide semiconductor device and semiconductor module
JP2013-103955 2013-05-16

Publications (1)

Publication Number Publication Date
WO2014185192A1 true WO2014185192A1 (en) 2014-11-20

Family

ID=51898174

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/060156 WO2014185192A1 (en) 2013-05-16 2014-04-08 Method for manufacturing silicon carbide semiconductor device and semiconductor module, silicon carbide semiconductor device, and semiconductor module

Country Status (2)

Country Link
JP (1) JP2014225557A (en)
WO (1) WO2014185192A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112582290A (en) * 2019-09-30 2021-03-30 三菱电机株式会社 Semiconductor test apparatus, test method of semiconductor device, and manufacturing method of semiconductor device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6809334B2 (en) * 2017-03-29 2021-01-06 Tdk株式会社 Semiconductor devices and their manufacturing methods
JPWO2020012811A1 (en) * 2018-07-11 2021-07-08 住友電気工業株式会社 Silicon carbide semiconductor device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003100819A (en) * 2001-09-26 2003-04-04 Toshiba Corp Withstand voltage inspection method and apparatus thereof
JP2004186536A (en) * 2002-12-05 2004-07-02 Sanyo Electric Co Ltd Semiconductor device and method for manufacturing the same
WO2010021070A1 (en) * 2008-08-19 2010-02-25 パナソニック株式会社 Apparatus and method for measuring withstand voltage of semiconductor element
JP2013187438A (en) * 2012-03-09 2013-09-19 Mitsubishi Electric Corp Silicon carbide semiconductor device and manufacturing method of the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003100819A (en) * 2001-09-26 2003-04-04 Toshiba Corp Withstand voltage inspection method and apparatus thereof
JP2004186536A (en) * 2002-12-05 2004-07-02 Sanyo Electric Co Ltd Semiconductor device and method for manufacturing the same
WO2010021070A1 (en) * 2008-08-19 2010-02-25 パナソニック株式会社 Apparatus and method for measuring withstand voltage of semiconductor element
JP2013187438A (en) * 2012-03-09 2013-09-19 Mitsubishi Electric Corp Silicon carbide semiconductor device and manufacturing method of the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112582290A (en) * 2019-09-30 2021-03-30 三菱电机株式会社 Semiconductor test apparatus, test method of semiconductor device, and manufacturing method of semiconductor device
CN112582290B (en) * 2019-09-30 2024-03-08 三菱电机株式会社 Semiconductor test device, method for testing semiconductor device, and method for manufacturing semiconductor device

Also Published As

Publication number Publication date
JP2014225557A (en) 2014-12-04

Similar Documents

Publication Publication Date Title
KR101481878B1 (en) Power semiconductor device, power module and method for manufacturing power semiconductor device
JP6627757B2 (en) Silicon carbide semiconductor device and method of manufacturing the same
US8399962B2 (en) Semiconductor chip and process for production thereof
EP3667736B1 (en) Semiconductor device and manufacturing method for same
US9029871B2 (en) Semiconductor device
JP5560538B2 (en) Manufacturing method of semiconductor device
JP5526291B1 (en) Semiconductor device and manufacturing method thereof
US10504996B2 (en) Silicon carbide semiconductor device
CN109216281B (en) Fabrication of semiconductor regions in electronic chips
WO2014185192A1 (en) Method for manufacturing silicon carbide semiconductor device and semiconductor module, silicon carbide semiconductor device, and semiconductor module
KR20140031846A (en) Production method for semiconductor device
US20130134442A1 (en) Semiconductor device and method for manufacturing same
US9793344B2 (en) Semiconductor device and method of manufacturing the same
US9935021B2 (en) Method for evaluating a semiconductor wafer
JP5719182B2 (en) Insulated gate bipolar transistor inspection method, manufacturing method, and test circuit
WO2015029635A1 (en) Method for manufacturing wide band gap semiconductor device, method for manufacturing semiconductor module, wide band gap semiconductor device and semiconductor module
JP2016054189A (en) Breakdown voltage measuring method of semiconductor element and semiconductor element manufacturing method
CN115377064A (en) Method for manufacturing silicon carbide semiconductor device
CN115360172A (en) Method for manufacturing silicon carbide semiconductor device
JP6982549B2 (en) Manufacturing method of silicon carbide semiconductor device and silicon carbide semiconductor inspection device
JP2017135273A (en) Semiconductor device and manufacturing method for the same
US20180277453A1 (en) Semiconductor device and method for manufacturing the same
JP2016154181A (en) Silicon carbide semiconductor device
JP2018163936A (en) Manufacturing method of semiconductor device and semiconductor device
JPWO2018029786A1 (en) Semiconductor device and manufacturing method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14798445

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14798445

Country of ref document: EP

Kind code of ref document: A1